Sample records for bacterial resistance mechanisms

  1. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    PubMed Central

    SOARES, Geisla Mary Silva; FIGUEIREDO, Luciene Cristina; FAVERI, Marcelo; CORTELLI, Sheila Cavalca; DUARTE, Poliana Mendes; FERES, Magda

    2012-01-01

    Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole) and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections. PMID:22858695

  2. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage

    PubMed Central

    Lehtinen, Sonja; Blanquart, François; Croucher, Nicholas J.; Turner, Paul; Lipsitch, Marc; Fraser, Christophe

    2017-01-01

    Understanding how changes in antibiotic consumption affect the prevalence of antibiotic resistance in bacterial pathogens is important for public health. In a number of bacterial species, including Streptococcus pneumoniae, the prevalence of resistance has remained relatively stable despite prolonged selection pressure from antibiotics. The evolutionary processes allowing the robust coexistence of antibiotic sensitive and resistant strains are not fully understood. While allelic diversity can be maintained at a locus by direct balancing selection, there is no evidence for such selection acting in the case of resistance. In this work, we propose a mechanism for maintaining coexistence at the resistance locus: linkage to a second locus that is under balancing selection and that modulates the fitness effect of resistance. We show that duration of carriage plays such a role, with long duration of carriage increasing the fitness advantage gained from resistance. We therefore predict that resistance will be more common in strains with a long duration of carriage and that mechanisms maintaining diversity in duration of carriage will also maintain diversity in antibiotic resistance. We test these predictions in S. pneumoniae and find that the duration of carriage of a serotype is indeed positively correlated with the prevalence of resistance in that serotype. These findings suggest heterogeneity in duration of carriage is a partial explanation for the coexistence of sensitive and resistant strains and that factors determining bacterial duration of carriage will also affect the prevalence of resistance. PMID:28096340

  3. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  4. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents

    PubMed Central

    Singh, Shriti; Singh, Santosh Kumar; Chowdhury, Indrajit; Singh, Rajesh

    2017-01-01

    A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms. PMID:28553416

  5. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies.

    PubMed

    Kanwar, Indulata; Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Oral diseases like dental caries and periodontal disease are directly associated with the capability of bacteria to form biofilm. Periodontal diseases have been associated to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. Biofilm communities are the causative agents of biological developments such as dental caries, periodontitis, peri-implantitis and causing periodontal tissue breakdown. The review recapitulates the latest advancements in treatment of clinical biofilm infections and scientific investigations, while these novel anti-biofilm strategies are still in nascent phases of development, efforts dedicated to these technologies could ultimately lead to anti-biofilm therapies that are superior to the current antibiotic treatment. This paper provides a review of the literature focusing on the studies on biofilm in the oral cavity, formation of dental plaque biofilm, drug resistance of bacterial biofilm and the antibiofilm approaches as biofilm preventive agents in dentistry, and their mechanism of biofilm inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Mechanisms of Antibiotic Resistance

    PubMed Central

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  7. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Lauren

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure ofmore » the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes« less

  8. Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance

    PubMed Central

    El-Halfawy, Omar M.; Klett, Javier; Ingram, Rebecca J.; Loutet, Slade A.; Murphy, Michael E. P.; Martín-Santamaría, Sonsoles

    2017-01-01

    ABSTRACT The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo. These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus. Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo. Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins. PMID:28292982

  9. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance.

    PubMed

    McDowell, Ian C; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.

  10. Transcriptome of American Oysters, Crassostrea virginica, in Response to Bacterial Challenge: Insights into Potential Mechanisms of Disease Resistance

    PubMed Central

    McDowell, Ian C.; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E.; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance. PMID:25122115

  11. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria

    PubMed Central

    Band, Victor I.; Weiss, David S.

    2014-01-01

    Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance. PMID:25927010

  12. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  13. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    PubMed Central

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2012-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956

  14. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens.

    PubMed

    LaRock, Christopher N; Nizet, Victor

    2015-11-01

    Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mechanism of bacterial membrane poration by Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Arora, Ankita; Mishra, Abhijit

    2015-03-01

    Bacterial resistance to conventional antibiotics is a major health concern. Antimicrobial peptides (AMPs), an important component of mammalian immune system, are thought to utilize non-specific interactions to target common features on the outer membranes of pathogens; hence development of resistance to such AMPs may be less pronounced. Most AMPs are amphiphilic and cationic in nature. Most AMPs form pores in the bacterial membranes causing them to lyse, however, the exact mechanism is unknown. Here, we study the AMP CHRG01 (KSSTRGRKSSRRKK), derived from human β defensin 3 (hBD3) with all Cysteine residues substituted with Serine. Circular Dichorism studies indicate that CHRG01 shows helicity and there is change in helicity as it interacts with the lipid membrane. The AMP was effective against different species of bacteria. Leakage of cellular components from bacterial cells observed by SEM and AFM indicates AMP action by pore formation. Confocal microscopy studies on giant vesicles incubated with AMP confirm poration. The effect of this AMP on model bacterial membranes is characterized using Small Angle X-ray scattering and Fluorescence spectroscopy to elucidate the mechanism behind antimicrobial activity.

  16. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Lauren

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure ofmore » the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.« less

  17. Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?

    PubMed Central

    Beceiro, Alejandro; Tomás, María

    2013-01-01

    SUMMARY Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. PMID:23554414

  18. Drug Resistance and Gene Transfer Mechanisms in Respiratory/Oral Bacteria.

    PubMed

    Jiang, S; Zeng, J; Zhou, X; Li, Y

    2018-06-01

    Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.

  19. Antibiotics and Bacterial Resistance in the 21st Century

    PubMed Central

    Fair, Richard J; Tor, Yitzhak

    2014-01-01

    Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed. PMID:25232278

  20. Bacterial Cell Mechanics.

    PubMed

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  1. Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination.

    PubMed

    Jia, Shuyu; Shi, Peng; Hu, Qing; Li, Bing; Zhang, Tong; Zhang, Xu-Xiang

    2015-10-20

    For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.

  2. Trojan Horse Antibiotics—A Novel Way to Circumvent Gram-Negative Bacterial Resistance?

    PubMed Central

    Tillotson, Glenn S.

    2016-01-01

    Antibiotic resistance has been emerged as a major global health problem. In particular, gram-negative species pose a significant clinical challenge as bacteria develop or acquire more resistance mechanisms. Often, these bacteria possess multiple resistance mechanisms, thus nullifying most of the major classes of drugs. Novel approaches to this issue are urgently required. However, the challenges of developing new agents are immense. Introducing novel agents is fraught with hurdles, thus adapting known antibiotic classes by altering their chemical structure could be a way forward. A chemical addition to existing antibiotics known as a siderophore could be a solution to the gram-negative resistance issue. Siderophore molecules rely on the bacterial innate need for iron ions and thus can utilize a Trojan Horse approach to gain access to the bacterial cell. The current approaches to using this potential method are reviewed. PMID:27773991

  3. Trojan Horse Antibiotics-A Novel Way to Circumvent Gram-Negative Bacterial Resistance?

    PubMed

    Tillotson, Glenn S

    2016-01-01

    Antibiotic resistance has been emerged as a major global health problem. In particular, gram-negative species pose a significant clinical challenge as bacteria develop or acquire more resistance mechanisms. Often, these bacteria possess multiple resistance mechanisms, thus nullifying most of the major classes of drugs. Novel approaches to this issue are urgently required. However, the challenges of developing new agents are immense. Introducing novel agents is fraught with hurdles, thus adapting known antibiotic classes by altering their chemical structure could be a way forward. A chemical addition to existing antibiotics known as a siderophore could be a solution to the gram-negative resistance issue. Siderophore molecules rely on the bacterial innate need for iron ions and thus can utilize a Trojan Horse approach to gain access to the bacterial cell. The current approaches to using this potential method are reviewed.

  4. Mechanism of quinolone action and resistance.

    PubMed

    Aldred, Katie J; Kerns, Robert J; Osheroff, Neil

    2014-03-18

    Quinolones are one of the most commonly prescribed classes of antibacterials in the world and are used to treat a variety of bacterial infections in humans. Because of the wide use (and overuse) of these drugs, the number of quinolone-resistant bacterial strains has been growing steadily since the 1990s. As is the case with other antibacterial agents, the rise in quinolone resistance threatens the clinical utility of this important drug class. Quinolones act by converting their targets, gyrase and topoisomerase IV, into toxic enzymes that fragment the bacterial chromosome. This review describes the development of the quinolones as antibacterials, the structure and function of gyrase and topoisomerase IV, and the mechanistic basis for quinolone action against their enzyme targets. It will then discuss the following three mechanisms that decrease the sensitivity of bacterial cells to quinolones. Target-mediated resistance is the most common and clinically significant form of resistance. It is caused by specific mutations in gyrase and topoisomerase IV that weaken interactions between quinolones and these enzymes. Plasmid-mediated resistance results from extrachromosomal elements that encode proteins that disrupt quinolone-enzyme interactions, alter drug metabolism, or increase quinolone efflux. Chromosome-mediated resistance results from the underexpression of porins or the overexpression of cellular efflux pumps, both of which decrease cellular concentrations of quinolones. Finally, this review will discuss recent advancements in our understanding of how quinolones interact with gyrase and topoisomerase IV and how mutations in these enzymes cause resistance. These last findings suggest approaches to designing new drugs that display improved activity against resistant strains.

  5. Antimicrobial resistance mechanisms and potential synthetic treatments.

    PubMed

    Ali, Junaid; Rafiq, Qasim A; Ratcliffe, Elizabeth

    2018-04-01

    Since the discovery of antibiotics by Sir Alexander Fleming they have been used throughout medicine and play a vital role in combating microorganisms. However, with their vast use, development of resistance has become more prevalent and their use is currently under threat. Antibiotic resistance poses a global threat to human and animal health, with many bacterial species having developed some form of resistance and in some cases within a year of first exposure to antimicrobial agents. This review aims to examine some of the mechanisms behind resistance. Additionally, re-engineering organisms, re-sensitizing bacteria to antibiotics and gene-editing techniques such as the clustered regularly interspaced short palindromic repeats-Cas9 system are providing novel approaches to combat bacterial resistance. To that extent, we have reviewed some of these novel and innovative technologies.

  6. Mechanisms of Drug Resistance: Daptomycin Resistance

    PubMed Central

    Tran, Truc T.; Munita, Jose M.; Arias, Cesar A.

    2016-01-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction in clinical practice in 2003, DAP has become an important key front-line antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP-resistance (R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp, and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP resistance are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have offered novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria. PMID:26495887

  7. Bacterial charity work leads to population-wide resistance.

    PubMed

    Lee, Henry H; Molla, Michael N; Cantor, Charles R; Collins, James J

    2010-09-02

    Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.

  8. Bacillus subtilis vegetative isolate surviving chlorine dioxide exposure: an elusive mechanism of resistance.

    PubMed

    Martin, D J H; Wesgate, R L; Denyer, S P; McDonnell, G; Maillard, J-Y

    2015-12-01

    Oxidizing agents such as chlorine dioxide are widely used microbicides, including for disinfection of medical equipment. We isolated a Bacillus subtilis isolate from a washer-disinfector whose vegetative form demonstrated unique resistance to chlorine dioxide (0·03%) and hydrogen peroxide (7·5%). The aim of this study was to understand the mechanisms of resistance expressed by this isolate. A range of resistance mechanisms were investigated in the B. subtilis isolate and a reference B. subtilis strain (ATCC 6051) to include bacterial cell aggregation, the presence of profuse exopolysaccharide (EPS), and the expression of detoxification enzymes. The basis of resistance of the isolate to high concentrations of oxidizing agents was not linked to the presence of endospores. Although, the presence of EPS, aggregation and expression of detoxification enzymes may play a role in bacterial survival to low concentrations of chlorine dioxide, it is unlikely that the mechanisms helped tested to survive the bactericidal effect of higher oxidizer concentrations. Overall, the mechanisms conferring resistance to chlorine dioxide and hydrogen peroxide remains elusive. Based on recent advances in the mode of action of oxidizing agents and notably hydrogen peroxide, we postulate that additional efficient intracellular mechanisms may be involved to explain significant resistance to in-use concentrations of commonly used high-level disinfectants. The isolation of a highly resistant vegetative Gram-positive bacterium to a highly reactive oxidizing agent is worrying. Understanding the mechanisms conferring such resistance is essential to effectively control such bacterial isolates. Here, we postulate that there are still mechanisms of bacterial resistance that have not been fully characterized. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  9. Test for bacterial resistance build-up against plasma treatment

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. L.; Shimizu, T.; Schmidt, H.-U.; Li, Y.-F.; Morfill, G. E.; Isbary, G.

    2012-07-01

    It is well known that the evolution of resistance of microorganisms to a range of different antibiotics presents a major problem in the control of infectious diseases. Accordingly, new bactericidal ‘agents’ are in great demand. Using a cold atmospheric pressure (CAP) plasma dispenser operated with ambient air, a more than five orders of magnitude inactivation or reduction of Methicillin-resistant Staphylococcus aureus (MRSA; resistant against a large number of the tested antibiotics) was obtained in less than 10 s. This makes CAP the most promising candidate for combating nosocomial (hospital-induced) infections. To test for the occurrence and development of bacterial resistance against such plasmas, experiments with Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Enterococcus mundtii) were performed. The aim was to determine quantitative limits for primary (naturally) or secondary (acquired) resistance against the plasma treatment. Our results show that E. coli and E. mundtii possess no primary resistance against the plasma treatment. By generating four generations of bacteria for every strain, where the survivors of the plasma treatment were used for the production of the next generation, a lower limit to secondary resistance was obtained. Our results indicate that CAP technology could contribute to the control of infections in hospitals, in outpatient care and in disaster situations, providing a new, fast and efficient broad-band disinfection technology that is not constrained by bacterial resistance mechanisms.

  10. A network-based approach for resistance transmission in bacterial populations.

    PubMed

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-07

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.

  11. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  12. Colourful parrot feathers resist bacterial degradation

    PubMed Central

    Burtt, Edward H.; Schroeder, Max R.; Smith, Lauren A.; Sroka, Jenna E.; McGraw, Kevin J.

    2011-01-01

    The brilliant red, orange and yellow colours of parrot feathers are the product of psittacofulvins, which are synthetic pigments known only from parrots. Recent evidence suggests that some pigments in bird feathers function not just as colour generators, but also preserve plumage integrity by increasing the resistance of feather keratin to bacterial degradation. We exposed a variety of colourful parrot feathers to feather-degrading Bacillus licheniformis and found that feathers with red psittacofulvins degraded at about the same rate as those with melanin and more slowly than white feathers, which lack pigments. Blue feathers, in which colour is based on the microstructural arrangement of keratin, air and melanin granules, and green feathers, which combine structural blue with yellow psittacofulvins, degraded at a rate similar to that of red and black feathers. These differences in resistance to bacterial degradation of differently coloured feathers suggest that colour patterns within the Psittaciformes may have evolved to resist bacterial degradation, in addition to their role in communication and camouflage. PMID:20926430

  13. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  14. Cationic Antimicrobial Peptide Resistance Mechanisms of Streptococcal Pathogens

    PubMed Central

    LaRock, Christopher N.; Nizet, Victor

    2015-01-01

    Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. PMID:25701232

  15. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    PubMed Central

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. PMID:21509046

  16. Macrolide antibiotic interaction and resistance on the bacterial ribosome.

    PubMed

    Poehlsgaard, Jacob; Douthwaite, Stephen

    2003-02-01

    Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.

  17. New Technologies for Rapid Bacterial Identification and Antibiotic Resistance Profiling.

    PubMed

    Kelley, Shana O

    2017-04-01

    Conventional approaches to bacterial identification and drug susceptibility testing typically rely on culture-based approaches that take 2 to 7 days to return results. The long turnaround times contribute to the spread of infectious disease, negative patient outcomes, and the misuse of antibiotics that can contribute to antibiotic resistance. To provide new solutions enabling faster bacterial analysis, a variety of approaches are under development that leverage single-cell analysis, microfluidic concentration and detection strategies, and ultrasensitive readout mechanisms. This review discusses recent advances in this area and the potential of new technologies to enable more effective management of infectious disease.

  18. Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants.

    PubMed

    Pontes, Daniela Santos; de Araujo, Rodrigo Santos Aquino; Dantas, Natalina; Scotti, Luciana; Scotti, Marcus Tullius; de Moura, Ricardo Olimpio; Mendonca-Junior, Francisco Jaime Bezerra

    2018-01-01

    The ever increasing number of multidrug-resistant microorganism pathogens has become a great and global public health threat. Antibiotic mechanisms of action and the opposing mechanisms of resistance are intimately associated, but comprehension of the biochemical and molecular functions of such drugs is not a simple exercise. Both the environment, and genetic settings contribute to alterations in phenotypic resistance (natural bacterial evolution), and make it difficult to control the emergence and impacts of antibiotic resistance. Under such circumstances, comprehension of how bacteria develop and/or acquire antibiotic resistance genes (ARG) has a critical role in developing propositions to fight against these superbugs, and to search for new drugs. In this review, we present and discuss both general information and examples of common genetic and molecular mechanisms related to antibiotic resistance, as well as how the expression and interactions of ARGs are important to drug resistance. At the same time, we focus on the recent achievements in the search for antibiotic adjuvants, which help combat antibiotic resistance through deactivation of bacterial mechanisms of action such as β-lactamases. Recent advances involving the use of anti-resistance drugs such as: efflux pump inhibitors; anti-virulence drugs; drugs against quorum sensing; and against type II/III secretion systems are revealed. Such antibiotic adjuvants (as explored herein) collaborate against the problems of antibiotic resistance, and may restore or prolong the therapeutic activity of known antibiotics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Bacterial resistance modifying tetrasaccharide agents from Ipomoea murucoides.

    PubMed

    Chérigo, Lilia; Pereda-Miranda, Rogelio; Gibbons, Simon

    2009-01-01

    As part of an ongoing project to identify oligosaccharides which modulate bacterial multidrug resistance, the CHCl(3)-soluble extract from flowers of a Mexican arborescent morning glory, Ipomoea murucoides, through preparative-scale recycling HPLC, yielded five lipophilic tetrasaccharide inhibitors of Staphylococcusaureus multidrug efflux pumps, murucoidins XII-XVI (1-5). The macrocyclic lactone-type structures for these linear hetero-tetraglycoside derivatives of jalapinolic acid were established by spectroscopic methods. These compounds were tested for in vitro antibacterial and resistance modifying activity against strains of Staphylococcus aureus possessing multidrug resistance efflux mechanisms. Only murucoidin XIV (3) displayed antimicrobial activity against SA-1199B (MIC 32microg/ml), a norfloxacin-resistant strain that over-expresses the NorA MDR efflux pump. The four microbiologically inactive (MIC>512microg/ml) tetrasaccharides increased norfloxacin susceptibility of this strain by 4-fold (8microg/ml from 32microg/ml) at concentrations of 25microg/ml, while murucoidin XIV (3) exerted the same potentiation effect at a concentration of 5microg/ml.

  20. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding.

    PubMed

    Li, Changyan; Wei, Jing; Lin, Yongjun; Chen, Hao

    2012-05-01

    Resistant germplasm resources are valuable for developing resistant varieties in agricultural production. However, recessive resistance genes are usually overlooked in hybrid breeding. Compared with dominant traits, however, they may confer resistance to different pathogenic races or pest biotypes with different mechanisms of action. The recessive rice bacterial blight resistance gene xa13, also involved in pollen development, has been cloned and its resistance mechanism has been recently characterized. This report describes the conversion of bacterial blight resistance mediated by the recessive xa13 gene into a dominant trait to facilitate its use in a breeding program. This was achieved by knockdown of the corresponding dominant allele Xa13 in transgenic rice using recently developed artificial microRNA technology. Tissue-specific promoters were used to exclude most of the expression of artificial microRNA in the anther to ensure that Xa13 functioned normally during pollen development. A battery of highly bacterial blight resistant transgenic plants with normal seed setting rates were acquired, indicating that highly specific gene silencing had been achieved. Our success with xa13 provides a paradigm that can be adapted to other recessive resistance genes.

  1. Modeling physiological resistance in bacterial biofilms.

    PubMed

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  2. Bacterial resistance to silver nanoparticles and how to overcome it

    NASA Astrophysics Data System (ADS)

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  3. Bacterial resistance to silver nanoparticles and how to overcome it.

    PubMed

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  4. Capsule Polysaccharide Mediates Bacterial Resistance to Antimicrobial Peptides

    PubMed Central

    Campos, Miguel A.; Vargas, Miguel A.; Regueiro, Verónica; Llompart, Catalina M.; Albertí, Sebastián; Bengoechea, José A.

    2004-01-01

    The innate immune system plays a critical role in the defense of areas exposed to microorganisms. There is an increasing body of evidence indicating that antimicrobial peptides and proteins (APs) are one of the most important weapons of this system and that they make up the protective front for the respiratory tract. On the other hand, it is known that pathogenic organisms have developed countermeasures to resist these agents such as reducing the net negative charge of the bacterial membranes. Here we report the characterization of a novel mechanism of resistance to APs that is dependent on the bacterial capsule polysaccharide (CPS). Klebsiella pneumoniae CPS mutant was more sensitive than the wild type to human neutrophil defensin 1, β-defensin 1, lactoferrin, protamine sulfate, and polymyxin B. K. pneumoniae lipopolysaccharide O antigen did not play an important role in AP resistance, and CPS was the only factor conferring protection against polymyxin B in strains lacking O antigen. In addition, we found a significant correlation between the amount of CPS expressed by a given strain and the resistance to polymyxin B. We also showed that K. pneumoniae CPS mutant bound more polymyxin B than the wild-type strain with a concomitant increased in the self-promoted pathway. Taken together, our results suggest that CPS protects bacteria by limiting the interaction of APs with the surface. Finally, we report that K. pneumoniae increased the amount of CPS and upregulated cps transcription when grown in the presence of polymyxin B and lactoferrin. PMID:15557634

  5. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  6. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin.

    PubMed

    Gomes, Cláudia; Martínez-Puchol, Sandra; Palma, Noemí; Horna, Gertrudis; Ruiz-Roldán, Lidia; Pons, Maria J; Ruiz, Joaquim

    2017-02-01

    From its introduction in 1952 onwards, the clinical use of macrolides has been steadily increasing, both in human and veterinary medicine. Although initially designed to the treatment of Gram-positive microorganisms, this antimicrobial family has also been used to treat specific Gram-negative bacteria. Some of them, as azithromycin, are considered in the armamentarium against Enterobacteriaceae infections. However, the facility that this bacterial genus has to gain or develop mechanisms of antibiotic resistance may compromise the future usefulness of these antibiotics to fight against Enterobacteriaceae infections. The present review is focused on the mechanisms of macrolide resistance, currently described in Enterobacteriaceae.

  7. Inheritance of bacterial spot resistance in Capsicum annuum var. annuum.

    PubMed

    Silva, L R A; Rodrigues, R; Pimenta, S; Correa, J W S; Araújo, M S B; Bento, C S; Sudré, C P

    2017-04-20

    Since 2008, Brazil is the largest consumer of agrochemicals, which increases production costs and risks of agricultural products, environment, and farmers' contamination. Sweet pepper, which is one of the main consumed vegetables in the country, is on top of the list of the most sprayed crops. The bacterial spot, caused by Xanthomonas spp, is one of the most damaging diseases of pepper crops. Genetic resistant consists of a suitable way of disease control, but development of durable resistant cultivars as well as understanding of plant-bacterium interaction is being a challenge for plant breeders and pathologists worldwide. Inheritance of disease resistance is often variable, depending on genetic background of the parents. The knowledge of the genetic base controlling such resistance is the first step in a breeding program aiming to develop new genotypes, bringing together resistance and other superior agronomic traits. This study reports the genetic basis of bacterial spot resistance in Capsicum annuum var. annuum using mean generation analysis from crosses between accessions UENF 2285 (susceptible) and UENF 1381 (resistant). The plants of each generation were grown in a greenhouse and leaflets were inoculated with bacterial strain ENA 4135 at 10 5 CFU/mL in 1.0 cm 2 of the mesophyll. Evaluations were performed using a scoring scale whose grades ranged from 1.0 (resistant) to 5.0 (susceptible), depending on symptom manifestation. Genetic control of bacterial spot has a quantitative aspect, with higher additive effect. The quantitative analysis showed that five genes were the minimum number controlling bacterial spot resistance. Additive effect was higher (6.06) than dominant (3.31) and explained 86.36% of total variation.

  8. Developing live bacterial vaccines by selecting resistance to antibacterials

    USDA-ARS?s Scientific Manuscript database

    Four chemicals were used in this study to modify bacterial isolates through chemical-resistance strategy. All bacteria were able to develop high resistance to gossypol. However, none of the gossypol-resistant isolate was attenuated. Although majority of the proflavine hemisulfate-resistant isolates ...

  9. Antimicrobial resistance mechanisms among Campylobacter.

    PubMed

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  10. A maize resistance gene functions against bacterial streak disease in rice.

    PubMed

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  11. [Bacterial drug resistance and etiology of non-complicated urinary tract infections].

    PubMed

    Chávez-Valencia, Venice; Gallegos-Nava, Selma; Arce-Salinas, C Alejandro

    2010-01-01

    Bacterial resistance to antibiotics is associated with morbidity, mortality, and an increase in cost. Our objective was to assess bacterial resistance from cultures of patients with non-complicated urinary tract infection (UTI). We analyzed antibiotic resistance using the VITEK-II system among patients attending the internal medicine unit with non-complicated UTI. 1,479 urine cultures were performed; we excluded: 98 due to contamination, 924 had no bacterial growth, and 57 had missing data. Among the 404 samples that were positive, 240 were found among out patients and 164 among hospitalized patients. E coli were the most frequent pathogen, followed by Enterococcus, and K pneumonia, in out patients; E coli, P aeruginosa, and fungal infections (23% of cases) in hospitalized patients. Samples with E coli among out patients displayed resistance of 50% to fluoroquinolones and 55% to sulfas. Among hospitalized patients, resistance was observed in 71 and 66% respectively. Resistance to P aeruginosa was 38% for amynoglucosides and carbapenems and 100% for piperacillin; Enterococcus had 50% for fluoroquinolones. E. coli is the most common pathogen among UTI patients. We must adapt guidelines to recommend antibiotics and design a comprehensive control program to reduce the high levels of bacterial antibiotic resistance among our population.

  12. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern

    PubMed Central

    Xu, Feifei; Tang, Yongchao; Gao, Ying

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  13. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern.

    PubMed

    Cui, Hua; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Zhao, Kaijun

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  14. Mechanisms of resistance to linalool in Salmonella Senftenberg and their role in survival on basil.

    PubMed

    Kalily, Emmanuel; Hollander, Amit; Korin, Ben; Cymerman, Itamar; Yaron, Sima

    2016-11-01

    Fresh produce contaminated with human pathogens raises vital and ecological questions about bacterial survival strategies. Such occurrence was basil harboring Salmonella enterica serovar Senftenberg that caused an outbreak in 2007. This host was unanticipated due to its production of antibacterial substances, including linalool. We show that linalool perforates bacterial membranes, resulting in increased permeability and leakage of vital molecules. It also inhibits cell motility and causes bacterial aggregation. Linalool-resistance was investigated by identification and characterization of S. Senftenberg mutants that perform altered resistance. Resistance mechanisms include selective permeability, regulated efflux/influx and chemotaxis-controlled motility. Moreover, survival of S. Senftenberg on basil leaves was substantially affected by McpL, a putative chemotaxis-related receptor, and RfaG, a component of the lipopolysaccharide production pathway, both have a role in resistance to linalool. Results reveal that adaptation to linalool occurs in nature by concurrent mechanisms. This adaption raises concerns about pathogens adaptation to new hosts including antimicrobial-compound-producing plants. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Bacterial cheating limits the evolution of antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff

    2011-03-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.

  16. A maize resistance gene functions against bacterial streak disease in rice

    PubMed Central

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease. PMID:16230639

  17. PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION

    EPA Science Inventory

    Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...

  18. Resistance of Bacteria to Biocides.

    PubMed

    Maillard, Jean-Yves

    2018-04-01

    Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.

  19. Alternatives to overcoming bacterial resistances: State-of-the-art.

    PubMed

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  20. Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling

    PubMed Central

    Jacobs, Matthieu; Grégoire, Nicolas; Couet, William; Bulitta, Jurgen B.

    2016-01-01

    Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS) were performed for models with one susceptible bacterial population without (M1) or with a resting stage (M2), a one population model with adaptive resistance (M5), models with pre-existing susceptible and resistant populations without (M3) or with (M4) inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6). For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range) or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h). Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions) were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10%) and had good imprecision (<30%). However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and

  1. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  2. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping

    PubMed Central

    Heras, Begoña; Totsika, Makrina; Peters, Kate M.; Paxman, Jason J.; Gee, Christine L.; Jarrott, Russell J.; Perugini, Matthew A.; Whitten, Andrew E.; Schembri, Mark A.

    2014-01-01

    Aggregation and biofilm formation are critical mechanisms for bacterial resistance to host immune factors and antibiotics. Autotransporter (AT) proteins, which represent the largest group of outer-membrane and secreted proteins in Gram-negative bacteria, contribute significantly to these phenotypes. Despite their abundance and role in bacterial pathogenesis, most AT proteins have not been structurally characterized, and there is a paucity of detailed information with regard to their mode of action. Here we report the structure–function relationships of Antigen 43 (Ag43a), a prototypic self-associating AT protein from uropathogenic Escherichia coli. The functional domain of Ag43a displays a twisted L-shaped β-helical structure firmly stabilized by a 3D hydrogen-bonded scaffold. Notably, the distinctive Ag43a L shape facilitates self-association and cell aggregation. Combining all our data, we define a molecular “Velcro-like” mechanism of AT-mediated bacterial clumping, which can be tailored to fit different bacterial lifestyles such as the formation of biofilms. PMID:24335802

  3. Epidemiology and antibiotic resistance of bacterial meningitis in Dapaong, northern Togo.

    PubMed

    Karou, Simplice D; Balaka, Abago; Bamoké, Mitiname; Tchelougou, Daméhan; Assih, Maléki; Anani, Kokou; Agbonoko, Kodjo; Simpore, Jacques; de Souza, Comlan

    2012-11-01

    To assess the seasonality of the bacterial meningitis and the antibiotic resistance of incriminated bacteria over the last three years in the northern Togo. From January 2007 to January 2010, 533 cerebrospinal fluids (CSF) samples were collected from patients suspected of meningitis in the Regional Hospital of Dapaong (northern Togo). After microscopic examination, samples were cultured for bacterial identification and antibiotic susceptibility. The study included 533 patients (306 male and 227 female) aged from 1 day to 55 years [average age (13.00±2.07) years]. Bacterial isolation and identification were attempted for 254/533 (47.65%) samples. The bacterial species identified were: Neisseria meningitidis A (N. meningitidis A) (58.27%), Neisseria meningitidis W135 (N. meningitidis W135) (7.09%), Streptococcus pneumoniae (S. pneumoniae) (26.77%), Haemophilus influenza B (H. influenza B) (6.30%) and Enterobacteriaceae (1.57%). The results indicated that bacterial meningitis occur from November to May with a peak in February for H. influenzae and S. pneumoniae and March for Neisseriaceae. The distribution of positive CSF with regards to the age showed that subjects between 6 and 12 years followed by subjects of 0 to 5 years were most affected with respective frequencies of 67.82% and 56.52% (P<0.001). Susceptibility tests revealed that bacteria have developed resistance to several antibiotics including aminosides (resistance rate >20% for both bacterial strains), macrolides (resistance rate > 30% for H. influenzae) quinolones (resistance rate >15% for H. influenzae and N. meningitidis W135). Over three years, the prevalence of S. pneumoniae significantly increased from 8.48% to 73.33% (P<0.001), while the changes in the prevalence of H. influenzae B were not statistically significant: 4.24%, vs. 8.89%, (P = 0.233). Our results indicate that data in African countries differ depending on geographical location in relation to the African meningitis belt. This underlines

  4. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    PubMed

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  5. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  6. Mechanical influences in bacterial morphogenesis and cell division

    NASA Astrophysics Data System (ADS)

    Sun, Sean

    2010-03-01

    Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.

  7. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    PubMed Central

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  8. Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria.

    PubMed

    Makdoumi, Karim; Bäckman, Anders

    2016-09-01

    To evaluate the bactericidal effect of clinical ultraviolet A (UVA) settings used in photoactivated chromophore for infectious keratitis (PACK)-collagen cross-linking (CXL) in antibiotic-resistant and non-resistant bacterial strains. Well-characterized bacterial strains from clinical isolates, without and with antibiotic resistance, were studied in a pairwise comparison. The evaluated pathogens were Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis. Bacteria were dispersed in PBS and diluted to a concentration of approximately 4 × 10 5 /ml. Riboflavin was added to a concentration of 0.01%. By spreading the solution on a microscope slide, a fluid film layer, with a thickness of around 400 mm, was formed and UVA exposure followed. Eight separate exposures were made for each strain (n = 8). The degree of elimination in resistant and non-resistant pathogens was compared. The bactericidal efficacy of exposure differed between the tested microorganisms, and the mean elimination ranged between 60 and 92%, being most extensive in both of the evaluated Pseudomonas strains and least in the E. faecalis strains. Similar reductions were seen in antibiotic-resistant and non-resistant strains, with the exception of S. aureus, in which the resistant strain metchicillin-resistant Staphylococcus aureus (MRSA) was eradicated in a greater extent than the non-resistant strain (P = 0.030). UVA-riboflavin settings used in PACK-CXL are effective in reducing both antibiotic-resistant and non-resistant bacteria. Antibiotic resistance does not appear to be protective against the photooxidative exposure. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  9. Bacterial resistance to antibodies: a model evolutionary study.

    PubMed

    Schulman, Lawrence S

    2017-03-21

    The tangled nature model of evolution (reviewed in the main text) is adapted for use in the study of antibody resistance acquired by horizontal gene transfer. Exchanges of DNA and the acquisition of resistant gene sequences are considered. For the parameters used, resistant strains rapidly proliferate and dominate, although initial intense antibiotic treatment can occasionally prevent this. Variation in genome distribution appears to be long tailed. If this is reflected in nature, the occurrence of resistant bacterial strains can be expected, as well as considerable variation in patient outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Molecular characterization of resistance mechanisms: methicillin resistance Staphylococcus aureus, extended spectrum β-lactamases and carbapenemases].

    PubMed

    Oteo, Jesús; Belén Aracil, María

    2015-07-01

    Multi-drug resistance in bacterial pathogens increases morbidity and mortality in infected patients and it is a threat to public health concern by their high capacity to spread. For both reasons, the rapid detection of multi-drug resistant bacteria is critical. Standard microbiological procedures require 48-72 h to provide the antimicrobial susceptibility results, thus there is emerging interest in the development of rapid detection techniques. In recent years, the use of selective and differential culture-based methods has widely spread. However, the capacity for detecting antibiotic resistance genes and their low turnaround times has made molecular methods a reference for diagnosis of multidrug resistance. This review focusses on the molecular methods for detecting some mechanisms of antibiotic resistance with a high clinical and epidemiological impact: a) Enzymatic resistance to broad spectrum β-lactam antibiotics in Enterobacteriaceae, mainly extended spectrum β-lactamases (ESBL) and carbapenemases; and b) methicillin resistance in Staphylococcus aureus. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  11. Microbial pollution in wildlife: Linking agricultural manuring and bacterial antibiotic resistance in red-billed choughs.

    PubMed

    Blanco, Guillermo; Lemus, Jesús A; Grande, Javier

    2009-05-01

    The spread of pathogens in the environment due to human activities (pathogen pollution) may be involved in the emergence of many diseases in humans, livestock and wildlife. When manure from medicated livestock and urban effluents is spread onto agricultural land, both residues of antibiotics and bacteria carrying antibiotic resistance may be introduced into the environment. The transmission of bacterial resistance from livestock and humans to wildlife remains poorly understood even while wild animals may act as reservoirs of resistance that may be amplified and spread in the environment. We determined bacterial resistance to antibiotics in wildlife using the red-billed chough Pyrrhocorax pyrrhocorax as a potential bioindicator of soil health, and evaluated the role of agricultural manuring with waste of different origins in the acquisition and characteristics of such resistance. Agricultural manure was found to harbor high levels of bacterial resistance to multiple antibiotics. Choughs from areas where manure landspreading is a common agricultural practice harbor a high bacterial resistance to multiple antibiotics, resembling the resistance profile found in the waste (pig slurry and sewage sludge) used in each area. The transfer of bacterial resistance to wildlife should be considered as an important risk for environmental health when agricultural manuring involves fecal material containing multiresistant enteric bacteria including pathogens from livestock operations and urban areas. The assessment of bacterial resistance in wild animals may be valuable for the monitoring of environmental health and for the management of emergent infectious diseases influenced by the impact of different human activities in the environment.

  12. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance.

    PubMed

    Cao, Qi; Feng, Fenfen; Wang, Huan; Xu, Xiaojuan; Chen, Huanchun; Cai, Xuwang; Wang, Xiangru

    2018-01-01

    Haemophilus parasuis is an opportunistic pathogen localized in the upper respiratory tracts of pigs, its infection begins from bacterial survival under complex conditions, like hyperosmosis, oxidative stress, phagocytosis, and sometimes antibiotics as well. The two-component signal transduction (TCST) system serves as a common stimulus-response mechanism that allows microbes to sense and respond to diverse environmental conditions via a series of phosphorylation reactions. In this study, we investigated the role of TCST system CpxRA in H. parasuis in response to different environmental stimuli by constructing the ΔcpxA and ΔcpxR single deletion mutants as well as the ΔcpxRA double deletion mutant from H. parasuis serotype 4 isolate JS0135. We demonstrated that H. parasuis TCST system CpxRA confers bacterial tolerance to stresses and bactericidal antibiotics. The CpxR was found to play essential roles in mediating oxidative stress, osmotic stresses and alkaline pH stress tolerance, as well as macrolide resistance (i.e. erythromycin), but the CpxA deletion did not decrease bacterial resistance to abovementioned stresses. Moreover, we found via RT-qPCR approach that HAPS_RS00160 and HAPS_RS09425, both encoding multidrug efflux pumps, were significantly decreased in erythromycin challenged ΔcpxR and ΔcpxRA mutants compared with wild-type strain JS0135. These findings characterize the role of the TCST system CpxRA in H. parasuis conferring stress response tolerance and bactericidal resistance, which will deepen our understanding of the pathogenic mechanism in H. parasuis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Newer systems for bacterial resistances to toxic heavy metals.

    PubMed Central

    Silver, S; Ji, G

    1994-01-01

    Bacterial plasmids contain specific genes for resistances to toxic heavy metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, and Zn2+. Recent progress with plasmid copper-resistance systems in Escherichia coli and Pseudomonas syringae show a system of four gene products, an inner membrane protein (PcoD), an outer membrane protein (PcoB), and two periplasmic Cu(2+)-binding proteins (PcoA and PcoC). Synthesis of this system is governed by two regulatory proteins (the membrane sensor PcoS and the soluble responder PcoR, probably a DNA-binding protein), homologous to other bacterial two-component regulatory systems. Chromosomally encoded Cu2+ P-type ATPases have recently been recognized in Enterococcus hirae and these are closely homologous to the bacterial cadmium efflux ATPase and the human copper-deficiency disease Menkes gene product. The Cd(2+)-efflux ATPase of gram-positive bacteria is a large P-type ATPase, homologous to the muscle Ca2+ ATPase and the Na+/K+ ATPases of animals. The arsenic-resistance system of gram-negative bacteria functions as an oxyanion efflux ATPase for arsenite and presumably antimonite. However, the structure of the arsenic ATPase is fundamentally different from that of P-type ATPases. The absence of the arsA gene (for the ATPase subunit) in gram-positive bacteria raises questions of energy-coupling for arsenite efflux. The ArsC protein product of the arsenic-resistance operons of both gram-positive and gram-negative bacteria is an intracellular enzyme that reduces arsenate [As(V)] to arsenite [As(III)], the substrate for the transport pump. Newly studied cation efflux systems for Cd2+, Zn2+, and Co2+ (Czc) or Co2+ and Ni2+ resistance (Cnr) lack ATPase motifs in their predicted polypeptide sequences. Therefore, not all plasmid-resistance systems that function through toxic ion efflux are ATPases. The first well-defined bacterial metallothionein was found in the cyanobacterium Synechococcus

  14. The mechanism of action of Russian propolis ethanol extracts against two antibiotic-resistant biofilm-forming bacteria.

    PubMed

    Bryan, J; Redden, P; Traba, C

    2016-02-01

    The interaction between antibiotic-resistant Staphylococcus aureus and antibiotic-sensitive Escherichia coli biofilm-forming bacteria and Russian propolis ethanol extracts was evaluated. In this study, bacterial cell death occurred when the cell membranes of bacteria interacted specifically with the antibacterial compounds found in propolis. In order to understand the Russian propolis ethanol extract mechanism of action, microscopy and bacterial lysis studies were conducted. Results uncovered from these experiments imply that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional. The results obtained throughout this study demonstrate cell membrane damage, resulting in cell lysis and eventually bacterial death. Most strains of bacteria and subsequently biofilms, have evolved and have altered their chemical composition in an attempt to protect themselves from antibiotics. The resistant nature of bacteria stems from the chemical rather than the physical means of inactivation of antibiotics. The results uncovered in this work demonstrate the potential application of Russian propolis ethanol extracts as a very efficient and effective method for bacterial and biofilm inactivation. © 2015 The Society for Applied Microbiology.

  15. Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications.

    PubMed

    Kruger, Martin C; Bertin, Philippe N; Heipieper, Hermann J; Arsène-Ploetze, Florence

    2013-05-01

    Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.

  16. Bacterial Adaptation to Antibiotics through Regulatory RNAs.

    PubMed

    Felden, Brice; Cattoir, Vincent

    2018-05-01

    The extensive use of antibiotics has resulted in a situation where multidrug-resistant pathogens have become a severe menace to human health worldwide. A deeper understanding of the principles used by pathogens to adapt to, respond to, and resist antibiotics would pave the road to the discovery of drugs with novel mechanisms. For bacteria, antibiotics represent clinically relevant stresses that induce protective responses. The recent implication of regulatory RNAs (small RNAs [sRNAs]) in antibiotic response and resistance in several bacterial pathogens suggests that they should be considered innovative drug targets. This minireview discusses sRNA-mediated mechanisms exploited by bacterial pathogens to fight against antibiotics. A critical discussion of the newest findings in the field is provided, with emphasis on the implication of sRNAs in major mechanisms leading to antibiotic resistance, including drug uptake, active drug efflux, drug target modifications, biofilms, cell walls, and lipopolysaccharide (LPS) biosynthesis. Of interest is the lack of knowledge about sRNAs implicated in Gram-positive compared to Gram-negative bacterial resistance. Copyright © 2018 American Society for Microbiology.

  17. [Fluoroquinolones and Gram-negative bacteria: antimicrobial activity and mechanisms of resistance].

    PubMed

    Luzzaro, F

    2008-04-01

    Fluoroquinolones acts by interacting with type II topoisomerases (DNA gyrase and topoisomerases IV). Related to this mechanism of action, bacteria have developed resistance mechanisms consisting in some target mutations (GyrA/GyrB for DNA gyrase and ParC/ParE for topoisomerase IV) or in a reduced access to the target itself, by either decreased permeability or augmented expression of efflux pumps, such as AcrAB and MexAB. Along with these classical mechanisms of chromosomal resistance, the presence of fluoroquinolones resistant proteins (Qnr) has been recently evidenced, codified by transmissible genes by means of plasmids, especially in Enterobacter spp., Escherichia coli and Klebsiella pneumoniae, whereas Proteus mirabilis and non fermenter Gram-negative, like Acinetobacter spp. and Pseudomonas aeruginosa, are not involved in such a kind of resistance. Qnr proteins determine a slight increase in MIC values, which often remains below the susceptibility breakpoint. More relevant is their impact on MPC values. Additionally, new specific resistance mechanisms have been described. AAC(6')-Ib-cr represents the first enzyme able to inactivate, by acetylation, antimicrobials of two different classes, aminoglycosides and fluoroquinolones. However, ciprofloxacin and norfloxacin, but not levofloxacin, are susceptible to this enzyme action. Finally, the presence of another resistance mechanism has been reported, an efflux-pump plasmid-mediated, codified by the QepA gene, which acts by a selective mechanism. Only hydrophilic fluoroquinolones, i.e. norfloxacin and ciprofloxacin, but not all the other ones, i.e. levofloxacin, moxifloxacin, etc, are affected by this mechanism. In the light of these new information, it is clear that, in terms of bacterial resistance, it is not any more possible to assimilate one fluoroquinolones to another, since different molecules can be diversely active, due to the specific resistance mechanism.

  18. Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases.

    PubMed

    Hutin, Mathilde; Césari, Stella; Chalvon, Véronique; Michel, Corinne; Tran, Tuan Tu; Boch, Jens; Koebnik, Ralf; Szurek, Boris; Kroj, Thomas

    2016-10-01

    Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance

    PubMed Central

    Pérez-Llarena, Francisco J.; Bou, Germán

    2016-01-01

    Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans. PMID:27065974

  20. [Opportunistic pathogen Candida glabrata and the mechanisms of its resistance to antifungal drugs].

    PubMed

    Berila, N; Subík, J

    2010-04-01

    Treatment of not only bacterial but also fungal infections is currently a growing concern. A major reason is the acquisition of multidrug resistance in both prokaryotic and human cells. The multidrug resistance phenotype is a cellular response to the presence of cytotoxic substances in the environment. The basic mechanism of multidrug resistance is overexpression of the membrane proteins involved in the extrusion of toxic substances outside the cell. The resistance mechanism based on the efflux of inhibitors as a result of the overproduction of transport proteins was also observed in some plant and animal pathogens and human tumour cells. The phenomenon of multidrug resistance associated with an excessive and long-term use of antifungals, in particular of azole derivatives, was also confirmed in the yeast Candida glabrata which is becoming a growing concern for health care professionals. Reduced susceptibility to azole derivatives in particular, a high potential for adapting to stressors, and multiple mechanisms of resistance to structurally and functionally unrelated antifungal drugs make the species C. glabrata a potential threat to hospital patients.

  1. Using Natural Products to Treat Resistant and Persistent Bacterial Infections

    NASA Astrophysics Data System (ADS)

    Deering, Robert W.

    Antimicrobial resistance is a growing threat to human health both worldwide and in the United States. Most concerning is the emergence of multi-drug resistant (MDR) bacterial pathogens, especially the 'ESKAPE' pathogens for which treatment options are dwindling. To complicate the problem, approvals of antibiotic drugs are extremely low and many research and development efforts in the pharmaceutical industry have ceased, leaving little certainty that critical new antibiotics are nearing the clinic. New antibiotics are needed to continue treating these evolving infections. In addition to antibiotics, approaches that aim to inhibit or prevent antimicrobial resistance could be useful. Also, studies that improve our understanding of bacterial pathophysiology could lead to new therapies for infectious disease. Natural products, especially those from the microbial world, have been invaluable as resources for new antibacterial compounds and as insights into bacterial physiology. The goal of this dissertation is to find new ways to treat resistant bacterial infections and learn more about the pathophysiology of these bacteria. Investigations of natural products to find molecules able to be used as new antibiotics or to modulate resistance and other parts of bacterial physiology are crucial aspects of the included studies. The first included study, which is reported in chapter two, details a chemical investigation of a marine Pseudoalteromonas sp. Purification efforts of the microbial metabolites were guided by testing against a resistance nodulation of cell division model of efflux pumps expressed in E. coli. These pumps play an important role in the resistance of MDR Gram negative pathogens such as Pseudomonas aeruginosa and Enterobacteriaceae. Through this process, 3,4-dibromopyrrole-2,5-dione was identified as a potent inhibitor of the RND efflux pumps and showed synergistic effects against the E. coli strain with common antibiotics including fluoroquinolones, beta

  2. Mechanisms of Resistance to Bacteriocins Targeting the Mannose Phosphotransferase System ▿

    PubMed Central

    Kjos, Morten; Nes, Ingolf F.; Diep, Dzung B.

    2011-01-01

    The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed. PMID:21421780

  3. Genetics and breeding of bacterial leaf spot resistance

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) is a globally important disease of whole head and baby leaf lettuce that reduces crop yield and quality. Host resistance is the most feasible method to reduce disease losses. Screening Lactuca accessions has id...

  4. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  5. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review

    PubMed Central

    Liu, Xiaodong; Zhang, Lin; Wong, Sunny Hei; Chan, Matthew TV; Wu, William KK

    2017-01-01

    Background Over the decades, new antibacterial agents have been developed in an attempt to combat drug resistance, but they remain unsuccessful. Recently, a novel class of bacterial gene expression regulators, bacterial small RNAs (sRNAs), has received increasing attention toward their involvement in antibiotic resistance. This systematic review aimed to discuss the potential of these small molecules as antibacterial drug targets. Methods Two investigators performed a comprehensive search of MEDLINE, EmBase, and ISI Web of Knowledge from inception to October 2016, without restriction on language. We included all in vitro and in vivo studies investigating the role of bacterial sRNA in antibiotic resistance. Risk of bias of the included studies was assessed by a modified guideline of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Results Initial search yielded 432 articles. After exclusion of non-original articles, 20 were included in this review. Of these, all studies examined bacterial-type strains only. There were neither relevant in vivo nor clinical studies. The SYRCLE scores ranged from to 5 to 7, with an average of 5.9. This implies a moderate risk of bias. sRNAs influenced the antibiotics susceptibility through modulation of gene expression relevant to efflux pumps, cell wall synthesis, and membrane proteins. Conclusion Preclinical studies on bacterial-type strains suggest that modulation of sRNAs could enhance bacterial susceptibility to antibiotics. Further studies on clinical isolates and in vivo models are needed to elucidate the therapeutic value of sRNA modulation on treatment of multidrug-resistant bacterial infection. PMID:29290689

  6. Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens.

    PubMed

    Tran, Thien B; Wang, Jiping; Doi, Yohei; Velkov, Tony; Bergen, Phillip J; Li, Jian

    2018-01-01

    Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii , Pseudomonas aeruginosa , and Klebsiella pneumoniae . Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii , P. aeruginosa , and K. pneumoniae , including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii . The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.

  7. Differential resistance of drinking water bacterial populations to monochloramine disinfection.

    PubMed

    Chiao, Tzu-Hsin; Clancy, Tara M; Pinto, Ameet; Xi, Chuanwu; Raskin, Lutgarde

    2014-04-01

    The impact of monochloramine disinfection on the complex bacterial community structure in drinking water systems was investigated using culture-dependent and culture-independent methods. Changes in viable bacterial diversity were monitored using culture-independent methods that distinguish between live and dead cells based on membrane integrity, providing a highly conservative measure of viability. Samples were collected from lab-scale and full-scale drinking water filters exposed to monochloramine for a range of contact times. Culture-independent detection of live cells was based on propidium monoazide (PMA) treatment to selectively remove DNA from membrane-compromised cells. Quantitative PCR (qPCR) and pyrosequencing of 16S rRNA genes was used to quantify the DNA of live bacteria and characterize the bacterial communities, respectively. The inactivation rate determined by the culture-independent PMA-qPCR method (1.5-log removal at 664 mg·min/L) was lower than the inactivation rate measured by the culture-based methods (4-log removal at 66 mg·min/L). Moreover, drastic changes in the live bacterial community structure were detected during monochloramine disinfection using PMA-pyrosequencing, while the community structure appeared to remain stable when pyrosequencing was performed on samples that were not subject to PMA treatment. Genera that increased in relative abundance during monochloramine treatment include Legionella, Escherichia, and Geobacter in the lab-scale system and Mycobacterium, Sphingomonas, and Coxiella in the full-scale system. These results demonstrate that bacterial populations in drinking water exhibit differential resistance to monochloramine, and that the disinfection process selects for resistant bacterial populations.

  8. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    PubMed Central

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Background Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Results Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients’ and family caregivers’ needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients’ quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. Conclusion The institutional stakeholders’ perspectives and their suggestion of a case-based approach advance the development

  9. Understanding institutional stakeholders' perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study.

    PubMed

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Information lacks about institutional stakeholders' perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term "institutional stakeholder" includes persons in leading positions with responsibility in hospitals' multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders' individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients' and family caregivers' needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients' quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. The institutional stakeholders' perspectives and their suggestion of a case-based approach advance the development process of a patient-, family-, staff-, and institutional

  10. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    PubMed

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.

  11. Prevalence and antimicrobial resistance pattern of bacterial meningitis in Egypt

    PubMed Central

    Shaban, Lamyaa; Siam, Rania

    2009-01-01

    Infectious diseases are the leading cause of morbidity and mortality in the developing world. In Egypt bacterial diseases constitute a great burden, with several particular bacteria sustaining the leading role of multiple serious infections. This article addresses profound bacterial agents causing a wide array of infections including but not limited to pneumonia and meningitis. The epidemiology of such infectious diseases and the prevalence of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae are reviewed in the context of bacterial meningitis. We address prevalent serotypes in Egypt, antimicrobial resistance patterns and efficacy of vaccines to emphasize the importance of periodic surveillance for appropriate preventive and treatment strategies. PMID:19778428

  12. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs.

    PubMed

    Huerta, Belinda; Marti, Elisabet; Gros, Meritxell; López, Pilar; Pompêo, Marcelo; Armengol, Joan; Barceló, Damià; Balcázar, Jose Luis; Rodríguez-Mozaz, Sara; Marcé, Rafael

    2013-07-01

    Antibiotic resistance represents a growing global health concern due to the overuse and misuse of antibiotics. There is, however, little information about how the selective pressure of clinical antibiotic usage can affect environmental communities in aquatic ecosystems and which bacterial groups might be responsible for dissemination of antibiotic resistance genes (ARGs) into the environment. In this study, chemical and biological characterization of water and sediments from three water supply reservoirs subjected to a wide pollution gradient allowed to draw an accurate picture of the concentration of antibiotics and prevalence of ARGs, in order to evaluate the potential role of ARGs in shaping bacterial communities, and to identify the bacterial groups most probably carrying and disseminating ARGs. Results showed significant correlation between the presence of ARG conferring resistance to macrolides and the composition of bacterial communities, suggesting that antibiotic pollution and the spreading of ARG might play a role in the conformation of bacterial communities in reservoirs. Results also pointed out the bacterial groups Actinobacteria and Firmicutes as the ones probably carrying and disseminating ARGs. The potential effect of antibiotic pollution and the presence of ARGs on the composition of bacterial communities in lacustrine ecosystems prompt the fundamental question about potential effects on bacterial-related ecosystem services supplied by lakes and reservoirs. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de; Mueller, Christa; Harms, Katrin S.

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associatedmore » with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.« less

  14. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance.

    PubMed

    Shade, Ashley; Read, Jordan S; Welkie, David G; Kratz, Timothy K; Wu, Chin H; McMahon, Katherine D

    2011-10-01

    For lake microbes, water column mixing acts as a disturbance because it homogenizes thermal and chemical gradients known to define the distributions of microbial taxa. Our first objective was to isolate hypothesized drivers of lake bacterial response to water column mixing. To accomplish this, we designed an enclosure experiment with three treatments to independently test key biogeochemical changes induced by mixing: oxygen addition to the hypolimnion, nutrient addition to the epilimnion, and full water column mixing. We used molecular fingerprinting to observe bacterial community dynamics in the treatment and control enclosures, and in ambient lake water. We found that oxygen and nutrient amendments simulated the physical-chemical water column environment following mixing and resulted in similar bacterial communities to the mixing treatment, affirming that these were important drivers of community change. These results demonstrate that specific environmental changes can replicate broad disturbance effects on microbial communities. Our second objective was to characterize bacterial community stability by quantifying community resistance, recovery and resilience to an episodic disturbance. The communities in the nutrient and oxygen amendments changed quickly (had low resistance), but generally matched the control composition by the 10th day after treatment, exhibiting resilience. These results imply that aquatic bacterial assemblages are generally stable in the face of disturbance. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Molecular epidemiological survey of bacteremia by multidrug resistant Pseudomonas aeruginosa: the relevance of intrinsic resistance mechanisms

    PubMed Central

    Dantas, Raquel Cristina Cavalcanti; Silva, Rebecca Tavares e; Ferreira, Melina Lorraine; Gonçalves, Iara Rossi; Araújo, Bruna Fuga; de Campos, Paola Amaral; Royer, Sabrina; Batistão, Deivid William da Fonseca; Gontijo-Filho, Paulo Pinto; Ribas, Rosineide Marques

    2017-01-01

    The bacterial factors associated with bacteremia by multidrug-resistant and extensively drug-resistant P. aeruginosa, including overexpression of efflux pumps, AmpC overproduction, and loss/alteration of the OprD porin in isolates that are non-Metallo-β-Lactamase producing were analyzed in a retrospective study. Molecular analyses included strain typing by Pulsed Field Gel Electrophoresis and identification of key genes via qualitative and quantitative PCR-based assays. Previous use of carbapenems and tracheostomy was independently associated with the development of bacteremia by extensively drug-resistant and multidrug-resistant strains of P. aeruginosa. A high consumption of antimicrobials was observed, and 75.0% of the isolates contained amplicons with the blaSPM-1 and blaVIM genes. Of the 47 non-Metallo-β-Lactamase isolates, none had another type of carbapenemase. However, the isolates exhibited high rates of hyperproduction of AmpC, loss of the OprD porin (71.4%) and the presence of MexABOprM (57.1%) and MexXY (64.3%). This study suggests that in non-Metallo-β-Lactamase isolates, the association of intrinsic resistance mechanisms could contributes to the expression of multidrug-resistant/extensively drug-resistant phenotypes. PMID:28481953

  16. Bacterial flagella grow through an injection-diffusion mechanism

    PubMed Central

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-01-01

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell. DOI: http://dx.doi.org/10.7554/eLife.23136.001 PMID:28262091

  17. Bacterial flagella grow through an injection-diffusion mechanism.

    PubMed

    Renault, Thibaud T; Abraham, Anthony O; Bergmiller, Tobias; Paradis, Guillaume; Rainville, Simon; Charpentier, Emmanuelle; Guet, Călin C; Tu, Yuhai; Namba, Keiichi; Keener, James P; Minamino, Tohru; Erhardt, Marc

    2017-03-06

    The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.

  18. [Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia].

    PubMed

    Lu, Yun-Yun; Luo, Rong; Fu, Zhou

    2017-09-01

    To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P<0.05). There were significant differences in the incidence rate of viral infection between different season groups (P<0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin

  19. Emergence of antibiotic resistance from multinucleated bacterial filaments

    PubMed Central

    Bos, Julia; Zhang, Qiucen; Vyawahare, Saurabh; Rogers, Elizabeth; Rosenberg, Susan M.; Austin, Robert H.

    2015-01-01

    Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli. Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer. PMID:25492931

  20. Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone.

    PubMed

    Wu, Fan; Xu, Tingting; Zhao, Guangyao; Meng, Shuangshuang; Wan, Mimi; Chi, Bo; Mao, Chun; Shen, Jian

    2017-05-30

    Silicone catheter has been widely used in peritoneal dialysis. The research missions of improving blood compatibility and the ability of resisting bacterial adhesion of silicone catheter have been implemented for the biomedical requirements. However, most of modification methods of surface modification were only able to develop the blood-contacting biomaterials with good hemocompatibility. It is difficult for the biomaterials to resist bacterial adhesion. Here, agarose was selected to resist bacterial adhesion, and heparin was chosen to improve hemocompatibility of materials. Both of them were loaded into mesoporous silica nanoparticles (MSNs), which were successfully modified on the silicone film surface via electrostatic interaction. Structures of the mesoporous coatings were characterized in detail by dynamic light scattering, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope, and water contact angle. Platelet adhesion and aggregation, whole blood contact test, hemolysis and related morphology test of red blood cells, in vitro clotting time tests, and bacterial adhesion assay were performed to evaluate the anticoagulant effect and the ability of resisting bacterial adhesion of the modified silicone films. Results indicated that silicone films modified by MSNs had a good anticoagulant effect and could resist bacterial adhesion. The modified silicone films have potential as blood-contacting biomaterials that were attributed to their biomedical properties.

  1. Cooperation, competition and antibiotic resistance in bacterial colonies.

    PubMed

    Frost, Isabel; Smith, William P J; Mitri, Sara; Millan, Alvaro San; Davit, Yohan; Osborne, James M; Pitt-Francis, Joe M; MacLean, R Craig; Foster, Kevin R

    2018-06-01

    Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic-resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations. Selection for intracellular resistance to streptomycin is very strong in colonies, such that resistance is favoured at very low antibiotic doses. In contrast, selection for extracellular resistance to carbenicillin is weak in colonies, and high doses of antibiotic are required to select for resistance. Manipulating the density and spatial structure of colonies reveals that this difference is partly explained by the fact that the local degradation of carbenicillin by β-lactamase-secreting cells protects neighbouring sensitive cells from carbenicillin. In addition, we discover a second unexpected effect: the inducible elongation of cells in response to carbenicillin allows sensitive cells to better compete for the rapidly growing colony edge. These combined effects mean that antibiotic treatment can select against antibiotic-resistant strains, raising the possibility of treatment regimes that suppress sensitive strains while limiting the rise of antibiotic resistance. We argue that the detailed study of bacterial interactions will be fundamental to understanding and overcoming antibiotic resistance.

  2. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  3. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.

  4. Growth mechanics of bacterial cell wall and morphology of bacteria

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  5. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2016-01-01

    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability. PMID:26931811

  6. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    PubMed

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high.

  7. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.

    PubMed

    Schoonbeek, Henk-Jan; Wang, Hsi-Hua; Stefanato, Francesca L; Craze, Melanie; Bowden, Sarah; Wallington, Emma; Zipfel, Cyril; Ridout, Christopher J

    2015-04-01

    Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Design, synthesis and biological evaluation of novel aryldiketo acids with enhanced antibacterial activity against multidrug resistant bacterial strains.

    PubMed

    Cvijetić, Ilija N; Verbić, Tatjana Ž; Ernesto de Resende, Pedro; Stapleton, Paul; Gibbons, Simon; Juranić, Ivan O; Drakulić, Branko J; Zloh, Mire

    2018-01-01

    Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating

    PubMed Central

    Tyler, Bonnie J.; Hook, Andrew; Pelster, Andreas; Williams, Paul; Alexander, Morgan; Arlinghaus, Heinrich F.

    2017-01-01

    Catheter associated urinary tract infections are the most common health related infections worldwide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infections, new materials that resist bacterial biofilm formation are needed. A composite catheter material, consisting of bulk poly(dimethylsiloxane) (PDMS) coated with a novel bacterial biofilm resistant polyacrylate [ethylene glycol dicyclopentenyl ether acrylate (EGDPEA)-co-di(ethyleneglycol) methyl ether methacrylate (DEGMA)], has been proposed. The coated material shows excellent bacterial resistance when compared to commercial catheter materials, but delamination of the EGDPEA-co-DEGMA coatings under mechanical stress presents a challenge. In this work, the use of oxygen plasma treatment to improve the wettability and reactivity of the PDMS catheter material and improve adhesion with the EGDPEA-co-DEGMA coating has been investigated. Argon cluster three dimensional-imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to probe the buried adhesive interface between the EGDPEA-co-DEGMA coating and the treated PDMS. ToF-SIMS analysis was performed in both dry and frozen-hydrated states, and the results were compared to mechanical tests. From the ToF-SIMS data, the authors have been able to observe the presence of PDMS, silicates, salt particles, cracks, and water at the adhesive interface. In the dry catheters, low molecular weight PDMS oligomers at the interface were associated with poor adhesion. When hydrated, the hydrophilic silicates attracted water to the interface and led to easy delamination of the coating. The best adhesion results, under hydrated conditions, were obtained using a combination of 5 min O2 plasma treatment and silane primers. Cryo-ToF-SIMS analysis of the hydrated catheter material showed that the bond between the primed PDMS catheter and the EGDPEA-co-DEGMA coating was stable in the

  10. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance

    PubMed Central

    Guilhelmelli, Fernanda; Vilela, Nathália; Albuquerque, Patrícia; Derengowski, Lorena da S.; Silva-Pereira, Ildinete; Kyaw, Cynthia M.

    2013-01-01

    Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them. PMID:24367355

  11. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    PubMed

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  12. The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants

    PubMed Central

    Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu

    2016-01-01

    Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs. PMID:27907117

  13. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-05

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  14. Whole-Transcriptome and -Genome Analysis of Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolates Identifies Downregulation of ethA as a Mechanism of Ethionamide Resistance

    PubMed Central

    de Welzen, Lynne; Eldholm, Vegard; Maharaj, Kashmeel; Manson, Abigail L.; Earl, Ashlee M.

    2017-01-01

    ABSTRACT Genetics-based drug susceptibility testing has improved the diagnosis of drug-resistant tuberculosis but is limited by our lack of knowledge of all resistance mechanisms. Next-generation sequencing has assisted in identifying the principal genetic mechanisms of resistance for many drugs, but a significant proportion of phenotypic drug resistance is unexplained genetically. Few studies have formally compared the transcriptomes of susceptible and resistant Mycobacterium tuberculosis strains. We carried out comparative whole-genome transcriptomics of extensively drug-resistant (XDR) clinical isolates using RNA sequencing (RNA-seq) to find novel transcription-mediated mechanisms of resistance. We identified a promoter mutation (t to c) at position −11 (t−11c) relative to the start codon of ethA that reduces the expression of a monooxygenase (EthA) that activates ethionamide. (In this article, nucleotide changes are lowercase and amino acid substitutions are uppercase.) Using a flow cytometry-based reporter assay, we show that the reduced transcription of ethA is not due to transcriptional repression by ethR. Clinical strains harboring this mutation were resistant to ethionamide. Other ethA promoter mutations were identified in a global genomic survey of resistant M. tuberculosis strains. These results demonstrate a new mechanism of ethionamide resistance that can cause high-level resistance when it is combined with other ethionamide resistance-conferring mutations. Our study revealed many other genes which were highly up- or downregulated in XDR strains, including a toxin-antitoxin module (mazF5 mazE5) and tRNAs (leuX and thrU). This suggests that global transcriptional modifications could contribute to resistance or the maintenance of bacterial fitness have also occurred in XDR strains. PMID:28993337

  15. Imidazopyrazinones (IPYs): Non-Quinolone Bacterial Topoisomerase Inhibitors Showing Partial Cross-Resistance with Quinolones.

    PubMed

    Jeannot, Frédéric; Taillier, Thomas; Despeyroux, Pierre; Renard, Stéphane; Rey, Astrid; Mourez, Michaël; Poeverlein, Christoph; Khichane, Imène; Perrin, Marc-Antoine; Versluys, Stéphanie; Stavenger, Robert A; Huang, Jianzhong; Germe, Thomas; Maxwell, Anthony; Cao, Sha; Huseby, Douglas L; Hughes, Diarmaid; Bacqué, Eric

    2018-04-26

    In our quest for new antibiotics able to address the growing threat of multidrug resistant infections caused by Gram-negative bacteria, we have investigated an unprecedented series of non-quinolone bacterial topoisomerase inhibitors from the Sanofi patrimony, named IPYs for imidazopyrazinones, as part of the Innovative Medicines Initiative (IMI) European Gram Negative Antibacterial Engine (ENABLE) organization. Hybridization of these historical compounds with the quinazolinediones, a known series of topoisomerase inhibitors, led us to a novel series of tricyclic IPYs that demonstrated potential for broad spectrum activity, in vivo efficacy, and a good developability profile, although later profiling revealed a genotoxicity risk. Resistance studies revealed partial cross-resistance with fluoroquinolones (FQs) suggesting that IPYs bind to the same region of bacterial topoisomerases as FQs and interact with at least some of the keys residues involved in FQ binding.

  16. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    PubMed

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  17. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice

    PubMed Central

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Lan, Xiujin; Mao, Long

    2013-01-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat. PMID:23918959

  18. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    PubMed

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  19. Mounting resistance of uropathogens to antimicrobial agents: A retrospective study in patients with chronic bacterial prostatitis relapse.

    PubMed

    Stamatiou, Konstantinos; Pierris, Nikolaos

    2017-07-01

    Despite recent progress in the management of chronic bacterial prostatitis (CBP), many cases relapse. Increased drug resistance patterns of responsible bacteria have been proposed as the most probable causative factor. Driven by the limited number of previous studies addressing this topic, we aimed to study whether antibiotic resistance increases in patients with CBP when relapse occurs. A secondary aim of this study was to determine the resistance patterns of responsible bacteria from patients with CBP. The study material consisted of bacterial isolates from urine and/or prostatic secretions obtained from patients with CBP. Bacterial identification was performed by using the Vitek 2 Compact system and susceptibility testing was performed by disc diffusion and/or the Vitek 2 system. Interpretation of susceptibility results was based on Clinical and Laboratory Standards Institute guidelines. A total of 253 samples from patients diagnosed with CBP for the first time (group A) and 137 samples from relapsing patients with a history of CBP and previous antibiotic treatment (group B) were analyzed. A significant reduction in bacterial resistance to the less used antibiotics (TMP-SMX, tetracyclines, aminoglycosides, penicillins, and macrolides) was noted. An increase in resistance to quinolones of many bacteria that cause CBP was also noted with the increase in resistance of enterococcus strains being alarming. Comparison of the resistance profile of CBP-responsible bacteria between samples from first-time-diagnosed patients and samples from relapsing patients revealed notable differences that could be attributed to previous antibiotic treatment.

  20. Molecular mechanisms of action of bacterial exotoxins.

    PubMed

    Balfanz, J; Rautenberg, P; Ullmann, U

    1996-07-01

    Toxins are one of the inventive strategies that bacteria have developed in order to survive. As virulence factors, they play a major role in the pathogenesis of infectious diseases. Recent discoveries have once more highlighted the effectiveness of these precisely adjusted bacterial weapons. Furthermore, toxins have become an invaluable tool in the investigation of fundamental cell processes, including regulation of cellular functions by various G proteins, cytoskeletal dynamics and neural transmission. In this review, the bacterial toxins are presented in a rational classification based on the molecular mechanisms of action.

  1. Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload

    PubMed Central

    Rowland, Jennifer L.; Niederweis, Michael

    2012-01-01

    SUMMARY Mycobacterium tuberculosis is an important bacterial pathogen with an extremely slow growth rate, an unusual outer membrane of very low permeability and a cunning ability to survive inside the human host despite a potent immune response. A key trait of M. tuberculosis is to acquire essential nutrients while still preserving its natural resistance to toxic compounds. In this regard, copper homeostasis mechanisms are particularly interesting, because copper is an important element for bacterial growth, but copper overload is toxic. In M. tuberculosis at least two enzymes require copper as a cofactor: the Cu/Zn-superoxide dismutase SodC and the cytochrome c oxidase which is essential for growth in vitro. Mutants of M. tuberculosis lacking the copper metallothionein MymT, the efflux pump CtpV and the membrane protein MctB are more susceptible to copper indicating that these proteins are part of a multipronged system to balance intracellular copper levels. Recent evidence showed that part of copper toxicity is a reversible damage of accessible Fe-S clusters of dehydratases and the displacement of other divalent cations such as zinc and manganese as cofactors in proteins. There is accumulating evidence that macrophages use copper to poison bacteria trapped inside phagosomes. Here, we review the rapidly increasing knowledge about copper homeostasis mechanisms in M. tuberculosis and contrast those with similar mechanisms in E. coli. These findings reveal an intricate interplay between the host which aims to overload the phagosome with copper and M. tuberculosis which utilizes several mechanisms to reduce the toxic effects of excess copper. PMID:22361385

  2. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature.

    PubMed

    Cohen, Stephen P; Liu, Hongxia; Argueso, Cristiana T; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie; Leach, Jan E

    2017-01-01

    Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic

  3. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature

    PubMed Central

    Argueso, Cristiana T.; Pereira, Andy; Vera Cruz, Casiana; Verdier, Valerie

    2017-01-01

    Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61) containing Xa7, a bacterial blight disease resistance (R) gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant hormone abscisic

  4. 75 FR 33317 - Antibacterial Resistance and Diagnostic Device and Drug Development Research for Bacterial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Institute of Allergy and Infectious Diseases and the Infectious Diseases Society of America (IDSA) regarding... Diseases Society of America, regarding scientific issues in antibacterial drug resistance and product... discussion of the scale of the current bacterial resistance problem, (2) current understanding of the science...

  5. Bacterial Cysteine-Inducible Cysteine Resistance Systems

    PubMed Central

    Takumi, Kazuhiro

    2016-01-01

    ABSTRACT Cysteine donates sulfur to macromolecules and occurs naturally in many proteins. Because low concentrations of cysteine are cytotoxic, its intracellular concentration is stringently controlled. In bacteria, cysteine biosynthesis is regulated by feedback inhibition of the activities of serine acetyltransferase (SAT) and 3-phosphoglycerate dehydrogenase (3-PGDH) and is also regulated at the transcriptional level by inducing the cysteine regulon using the master regulator CysB. Here, we describe two novel cysteine-inducible systems that regulate the cysteine resistance of Pantoea ananatis, a member of the family Enterobacteriaceae that shows great potential for producing substances useful for biotechnological, medical, and industrial purposes. One locus, designated ccdA (formerly PAJ_0331), encodes a novel cysteine-inducible cysteine desulfhydrase (CD) that degrades cysteine, and its expression is controlled by the transcriptional regulator encoded by ccdR (formerly PAJ_0332 or ybaO), located just upstream of ccdA. The other locus, designated cefA (formerly PAJ_3026), encodes a novel cysteine-inducible cysteine efflux pump that is controlled by the transcriptional regulator cefR (formerly PAJ_3027), located just upstream of cefA. To our knowledge, this is the first example where the expression of CD and an efflux pump is regulated in response to cysteine and is directly involved in imparting resistance to excess levels of cysteine. We propose that ccdA and cefA function as safety valves that maintain homeostasis when the intra- or extracellular cysteine concentration fluctuates. Our findings contribute important insights into optimizing the production of cysteine and related biomaterials by P. ananatis. IMPORTANCE Because of its toxicity, the bacterial intracellular cysteine level is stringently regulated at biosynthesis. This work describes the identification and characterization of two novel cysteine-inducible systems that regulate, through degradation and

  6. Suppression of bacterial blight on mustard greens with host plant resistance and Acibenzolar-S-Methyl

    USDA-ARS?s Scientific Manuscript database

    Bacterial blight, caused by Pseudomonas cannabina pv. alisalensis, attacks the leaves of most brassica vegetables, including mustard greens (Brassica juncea). ‘Carolina Broadleaf,’ a new mustard cultivar, is resistant to bacterial blight. Acibenzolar-S-methyl (trade name Actigard) has been used to m...

  7. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  8. Combating multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Xu, Ze-Qi; Flavin, Michael T; Flavin, John

    2014-02-01

    Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged as one of the world's greatest health threats. The development of novel antibiotics to treat MDR Gram-negative bacteria has, however, stagnated over the last half century. This review provides an overview of recent R&D activities in the search for novel antibiotics against MDR Gram-negatives. It provides emphasis in three key areas. First, the article looks at new analogs of existing antibiotic molecules such as β-lactams, tetracyclines, and aminoglycoside as well as agents against novel bacterial targets such as aminoacyl-tRNA synthetase and peptide deformylase. Second, it also examines alternative strategies to conventional approaches including cationic antimicrobial peptides, siderophores, efflux pump inhibitors, therapeutic antibodies, and renewed interest in abandoned treatments or those with limited indications. Third, the authors aim to provide an update on the current clinical development status for each drug candidate. The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.

  9. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana.

    PubMed

    Agyepong, Nicholas; Govinden, Usha; Owusu-Ofori, Alex; Essack, Sabiha Yusuf

    2018-01-01

    Multidrug-resistant Gram-negative bacteria have emerged as major clinical and therapeutic dilemma in hospitals in Ghana.To describe the prevalence and profile of infections attributable to multidrug-resistant Gram-negative bacteria among patients at the Komfo Anokye Teaching Hospital in the Ashanti region of Ghana. Bacterial cultures were randomly selected from the microbiology laboratory from February to August, 2015. Bacterial identification and minimum inhibitory concentrations were conducted using standard microbiological techniques and the Vitek-2 automated system. Patient information was retrieved from the hospital data. Of the 200 isolates, consisting of K. pneumoniae , A. baumannii , P. aeruginosa , Enterobacter spp. , E. coli , Yersinia spp. , Proteus mirabilis , Pasteurella spp., Chromobacterium violaceum, Salmomella enterica , Vibrio spp. , Citrobacter koseri , Pantoea spp. , Serratia spp. , Providencia rettgeri Burkholderia cepacia , Aeromonas spp. , Cadecea lapagei and Sphingomonas paucimobilis , 101 (50.5%) and 99 (49.5%) recovered from male and female patients respectively The largest proportion of patients were from age-group ≥60 years (24.5%) followed by < 10 years (24.0%) and least 10-19 years (9.5%) with a mean patient age of 35.95 ± 27.11 (0.2-91) years. The decreasing order of specimen source was urine 97 (48.5%), wound swabs 47 (23.5%), sputum 22 (11.0%) bronchial lavage, nasal and pleural swabs 1 (0.50%). Urinary tract infection was diagnosed in 34.5% of patients, sepsis in 14.5%, wound infections (surgical and chronic wounds) in 11.0%, pulmonary tuberculosis in 9.0% and appendicitis, bacteremia and cystitis in 0.50%. The isolates showed high resistance to ampicillin (94.4%), trimethoprim/sulfamethoxazole (84.5%), cefuroxime (79.0%) and cefotaxime (71.3%) but low resistance to ertapenem (1.5%), meropenem (3%) and amikacin (11%). The average multi-drug resistance was 89.5%, and ranged from 53.8% in Enterobacter spp. to 100.0% in

  10. Treatment of acute bacterial rhinosinusitis caused by antimicrobial-resistant Streptococcus pneumoniae.

    PubMed

    Anon, Jack B

    2004-08-02

    Acute bacterial rhinosinusitis (ABRS) is a secondary bacterial infection of the nose and paranasal sinuses, usually preceded by a viral upper respiratory infection or allergy, with symptoms that have not improved after 10 days or that have worsened after 5 to 7 days. Streptococcus pneumoniae and Haemophilus influenzae are the most common causes of ABRS in adults. Increasing rates of antimicrobial resistance among S. pneumoniae and beta-lactamase production among H. influenzae are formidable challenges to the successful treatment of infections caused by these organisms. To this end, various formulations of amoxicillin-clavulanate have been developed, the most recent of which is pharmacokinetically enhanced and provides a total daily dose of 4,000 mg of amoxicillin and 250 mg of clavulanate. This formulation has been shown to be safe and effective in the treatment of infections caused by penicillin-resistant S. pneumoniae (minimum inhibitory concentration 2 microg/mL); the clavulanate component provides adequate coverage of beta-lactamase-producing pathogens.

  11. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  12. Comparative antibacterial effects of moxifloxacin and levofloxacin on Streptococcus pneumoniae strains with defined mechanisms of resistance: impact of bacterial inoculum.

    PubMed

    Bowker, K E; Garvey, M I; Noel, A R; Tomaselli, S G; Macgowan, A P

    2013-05-01

    We aim to further define the impact of the mechanism of fluoroquinolone resistance and inoculum load on the pharmacodynamic effects of levofloxacin and moxifloxacin on Streptococcus pneumoniae. The antibacterial effects of and emergence of resistance (EoR) to moxifloxacin (400 mg once daily) or levofloxacin (750 mg once daily or 500 mg twice daily) were compared using five S. pneumoniae strains containing no known resistance mechanisms, efflux resistance mechanisms, a parC mutation or parC and gyrA mutations, at high (10(8) cfu/mL) and low (10(6) cfu/mL) inocula. An in vitro pharmacokinetic model was used and simulations were performed over 96 h. After drug exposure, isolates were tested for the presence of efflux pumps and mutations in the quinolone resistance-determining regions. A high inoculum diminished the antibacterial effect of moxifloxacin and levofloxacin. Levofloxacin at both dosages produced EoR with all strains. Levofloxacin regimens with AUC/MIC ratios <100 produced EoR. Moxifloxacin produced EoR with the parC strain only. Levofloxacin dosing regimens with low AUC/MIC ratios select for efflux pump overexpression, leading to fluoroquinolone resistance. Levofloxacin dosing may select for gyrA mutations, inducing moxifloxacin resistance. These data confirm that a fluoroquinolone AUC/MIC ratio of >100 is required for prevention of EoR.

  13. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant.

    PubMed

    Narciso-da-Rocha, Carlos; Rocha, Jaqueline; Vaz-Moreira, Ivone; Lira, Felipe; Tamames, Javier; Henriques, Isabel; Martinez, José Luis; Manaia, Célia M

    2018-06-05

    Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, bla CTX-M , bla OXA-A , bla TEM , bla SHV , sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control. Copyright © 2018 Elsevier Ltd. All rights

  14. Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment

    PubMed Central

    Ternent, Lucy; Dyson, Rosemary J.; Krachler, Anne-Marie; Jabbari, Sara

    2015-01-01

    Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention. PMID:25701634

  15. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae).

    PubMed

    Dang, Kai; Doggett, Stephen L; Veera Singham, G; Lee, Chow-Yang

    2017-06-29

    The worldwide resurgence of bed bugs [both Cimex lectularius L. and Cimex hemipterus (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by kdr mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.

  16. Resistance to bacteriocins produced by Gram-positive bacteria.

    PubMed

    Bastos, Maria do Carmo de Freire; Coelho, Marcus Lívio Varella; Santos, Olinda Cabral da Silva

    2015-04-01

    Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed. © 2015 The Authors.

  17. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    PubMed Central

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  18. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015).

    PubMed

    van Spijk, J N; Schmitt, S; Fürst, A E; Schoster, A

    2016-06-01

    Antimicrobial resistance has become an important concern in veterinary medicine. The aim of this study was to describe the rate of antimicrobial resistance in common equine pathogens and to determine the occurrence of multidrug-resistant isolates. A retrospective analysis of all susceptibility testing results from bacterial pathogens cultured from horses at the University of Zurich Equine Hospital (2012-2015) was performed. Strains exhibiting resistance to 3 or more antimicrobial categories were defined as multidrug-resistant. Susceptibility results from 303 bacterial pathogens were analyzed, most commonly Escherichia coli (60/303, 20%) and Staphylococcus aureus (40/303, 13%). High rates of acquired resistance against commonly used antimicrobials were found in most of the frequently isolated equine pathogens. The highest rate of multidrug resistance was found in isolates of Acinetobacter baumannii (23/24, 96%), followed by Enterobacter cloacae complex (24/28, 86%) and Escherichia coli (48/60, 80%). Overall, 60% of Escherichia coli isolates were phenotypically ESBL-producing and 68% of Staphylococcus spp. were phenotypically methicillin-resistant. High rates of acquired antimicrobial resistance towards commonly used antibiotics are concerning and underline the importance of individual bacteriological and antimicrobial susceptibility testing to guide antimicrobial therapy. Minimizing and optimizing antimicrobial therapy in horses is needed.

  19. The Three Bacterial Lines of Defense against Antimicrobial Agents.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-09-09

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.

  20. The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice.

    PubMed

    Liu, Qing; Yang, Jianyuan; Yan, Shijuan; Zhang, Shaohong; Zhao, Junliang; Wang, Wenjuan; Yang, Tifeng; Wang, Xiaofei; Mao, Xingxue; Dong, Jingfang; Zhu, Xiaoyuan; Liu, Bin

    2016-11-01

    This is the first report that GLP gene (OsGLP2-1) is involved in panicle blast and bacterial blight resistance in rice. In addition to its resistance to blast and bacterial blight, OsGLP2-1 has also been reported to co-localize with a QTLs for sheath blight resistance in rice. These suggest that the disease resistance provided by OsGLP2-1 is quantitative and broad spectrum. Its good resistance to these major diseases in rice makes it to be a promising target in rice breeding. Rice (Oryza sativa) blast caused by Magnaporthe oryzae and bacterial blight caused by Xanthomonas oryzae pv. oryzae are the two most destructive rice diseases worldwide. Germin-like protein (GLP) gene family is one of the important defense gene families which have been reported to be involved in disease resistance in plants. Although GLP proteins have been demonstrated to positively regulate leaf blast resistance in rice, their involvement in resistance to panicle blast and bacterial blight, has not been reported. In this study, we reported that one of the rice GLP genes, OsGLP2-1, was significantly induced by blast fungus. Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. The temporal and spatial expression analysis revealed that OsGLP2-1is highly expressed in leaves and panicles and sub-localized in the cell wall. Compared with empty vector transformed (control) plants, the OsGLP2-1 overexpressing plants exhibited higher levels of H 2 O 2 both before and after pathogen inoculation. Moreover, OsGLP2-1 was significantly induced by jasmonic acid (JA). Overexpression of OsGLP2-1 induced three well-characterized defense-related genes which are associated in JA-dependent pathway after pathogen infection. Higher endogenous level of JA was also identified in OsGLP2-1 overexpressing plants than in control plants both before and after pathogen inoculation. Together, these results suggest that OsGLP2-1 functions as a positive regulator to

  1. ANTIBIOTICS IN MANAGEMENT OF STAPHYLOCOCCAL ENDOCARDITIS—With Special Reference to Increasing Bacterial Resistance

    PubMed Central

    Levinson, David C.; Griffith, George C.; Pearson, Harold E.

    1951-01-01

    Eighteen patients with staphylococcal endocarditis were observed at the Los Angeles County Hospital over a 3-year period (1947-49, inclusive). Twelve died. Bacterial sensitivity studies were carried out in 15 of the cases, and there was resistance to penicillin in ten. Aureomycin was effective in two cases of Staphylococcus aureus endocarditis in which there was no response to penicillin therapy. In one case of Staphylococcus aureus endocarditis the organism was resistant to penicillin and developed increasing resistance to aureomycin. PMID:14812349

  2. Socioeconomic and Behavioral Factors Leading to Acquired Bacterial Resistance to Antibiotics in Developing Countries

    PubMed Central

    Okeke, Iruka N.; Lamikanra, Adebayo

    1999-01-01

    In developing countries, acquired bacterial resistance to antimicrobial agents is common in isolates from healthy persons and from persons with community-acquired infections. Complex socioeconomic and behavioral factors associated with antibiotic resistance, particularly regarding diarrheal and respiratory pathogens, in developing tropical countries, include misuse of antibiotics by health professionals, unskilled practitioners, and laypersons; poor drug quality; unhygienic conditions accounting for spread of resistant bacteria; and inadequate surveillance. PMID:10081668

  3. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    PubMed

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance

  4. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains.

    PubMed

    Rohde, Christine; Resch, Grégory; Pirnay, Jean-Paul; Blasdel, Bob G; Debarbieux, Laurent; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Almeida, Gabriel Magno de Freitas; Makalatia, Khatuna; Malik, Danish J; Mašlaňová, Ivana; Merabishvili, Maia; Pantucek, Roman; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-04-05

    Phage therapy is increasingly put forward as a "new" potential tool in the fight against antibiotic resistant infections. During the "Centennial Celebration of Bacteriophage Research" conference in Tbilisi, Georgia on 26-29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.

  5. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains

    PubMed Central

    Rohde, Christine; Resch, Grégory; Blasdel, Bob G.; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Makalatia, Khatuna; Malik, Danish J.; Mašlaňová, Ivana; Merabishvili, Maia; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-01-01

    Phage therapy is increasingly put forward as a “new” potential tool in the fight against antibiotic resistant infections. During the “Centennial Celebration of Bacteriophage Research” conference in Tbilisi, Georgia on 26–29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application. PMID:29621199

  6. Molecular mechanics of Staphylococcus aureus adhesin, CNA, and the inhibition of bacterial adhesion by stretching collagen

    PubMed Central

    Madani, Ali; Garakani, Kiavash

    2017-01-01

    Bacterial adhesion to collagen, the most abundant protein in humans, is a critical step in the initiation and persistence of numerous bacterial infections. In this study, we explore the collagen binding mechanism of the multi-modular cell wall anchored collagen adhesin (CNA) in Staphylococcus aureus and examine how applied mechanical forces can modulate adhesion ability. The common structural-functional elements and domain organization of CNA are present across over 50 genera of bacteria. Through the use of molecular dynamics models and normal mode analysis, we shed light on the CNA’s structural and conformational dynamics and its interactions with collagen that lead to collagen binding. Our results suggest that the linker region, CNA165-173, acts as a hinge exhibiting bending, extensional, and torsional modes of structural flexibility and its residues are key in the interaction of the CNA-collagen complex. Steered molecular dynamics simulations were conducted with umbrella sampling. During the course of these simulations, the ‘locking’ latch from the CNA N2 domain was dissociated from its groove in the CNA N1 domain, implying the importance of the latch for effective ligand binding. Finally, we observed that the binding efficiency of the CNA N1-N2 domains to collagen decreases greatly with increasing tensile force application to the collagen peptides. Thus, CNA and similar adhesins might preferentially bind to sites in which collagen fibers are cleaved, such as in wounded, injured, or inflamed tissues, or in which the collagenous tissue is less mature. As alternative techniques for control of bacterial infection are in-demand due to the rise of bacterial antibiotic resistance, results from our computational studies with respect to the mechanoregulation of the collagen binding site may inspire new therapeutics and engineering solutions by mechanically preventing colonization and/or further pathogenesis. PMID:28665944

  7. Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays.

    PubMed

    Ma, Liyuan; Li, Qian; Shen, Li; Feng, Xue; Xiao, Yunhua; Tao, Jiemeng; Liang, Yili; Yin, Huaqun; Liu, Xueduan

    2016-10-01

    Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S(0) substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.

  8. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    PubMed

    Nemchinov, Lev G; Shao, Jonathan; Lee, Maya N; Postnikova, Olga A; Samac, Deborah A

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  9. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae

    PubMed Central

    Shao, Jonathan; Lee, Maya N.; Postnikova, Olga A.; Samac, Deborah A.

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties. PMID:29244864

  10. Mechanisms of Candida biofilm drug resistance

    PubMed Central

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  11. Clinical management of resistance evolution in a bacterial infection: A case study.

    PubMed

    Woods, Robert J; Read, Andrew F

    2015-10-10

    We report the case of a patient with a chronic bacterial infection that could not be cured. Drug treatment became progressively less effective due to antibiotic resistance, and the patient died, in effect from overwhelming evolution. Even though the evolution of drug resistance was recognized as a major threat, and the fundamentals of drug resistance evolution are well understood, it was impossible to make evidence-based decisions about the evolutionary risks associated with the various treatment options. We present this case to illustrate the urgent need for translational research in the evolutionary medicine of antibiotic resistance. © The Author(s) 2015. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  12. An investigation of total bacterial communities, culturable antibiotic-resistant bacterial communities and integrons in the river water environments of Taipei city.

    PubMed

    Yang, Chu-Wen; Chang, Yi-Tang; Chao, Wei-Liang; Shiung, Iau-Iun; Lin, Han-Sheng; Chen, Hsuan; Ho, Szu-Han; Lu, Min-Jheng; Lee, Pin-Hsuan; Fan, Shao-Ning

    2014-07-30

    The intensive use of antibiotics may accelerate the development of antibiotic-resistant bacteria (ARB). The global geographical distribution of environmental ARB has been indicated by many studies. However, the ARB in the water environments of Taiwan has not been extensively investigated. The objective of this study was to investigate the communities of ARB in Huanghsi Stream, which presents a natural acidic (pH 4) water environment. Waishuanghsi Stream provides a neutral (pH 7) water environment and was thus also monitored to allow comparison. The plate counts of culturable bacteria in eight antibiotics indicate that the numbers of culturable carbenicillin- and vancomycin-resistant bacteria in both Huanghsi and Waishuanghsi Streams are greater than the numbers of culturable bacteria resistant to the other antibiotics tested. Using a 16S rDNA sequencing approach, both the antibiotic-resistant bacterial communities (culture-based) and the total bacterial communities (metagenome-based) in Waishuanghsi Stream exhibit a higher diversity than those in Huanghsi Stream were observed. Of the three classes of integron, only class I integrons were identified in Waishuanghsi Stream. Our results suggest that an acidic (pH 4) water environment may not only affect the community composition of antibiotic-resistant bacteria but also the horizontal gene transfer mediated by integrons. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  14. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    PubMed

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  15. Novel Bacterial Topoisomerase Inhibitors with Potent Broad-Spectrum Activity against Drug-Resistant Bacteria.

    PubMed

    Charrier, Cédric; Salisbury, Anne-Marie; Savage, Victoria J; Duffy, Thomas; Moyo, Emmanuel; Chaffer-Malam, Nathan; Ooi, Nicola; Newman, Rebecca; Cheung, Jonathan; Metzger, Richard; McGarry, David; Pichowicz, Mark; Sigerson, Ralph; Cooper, Ian R; Nelson, Gary; Butler, Hayley S; Craighead, Mark; Ratcliffe, Andrew J; Best, Stuart A; Stokes, Neil R

    2017-05-01

    The novel bacterial topoisomerase inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that does not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms and Mycobacterium tuberculosis No cross-resistance with fluoroquinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC 90 values were 4 and 8 μg/ml against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli , respectively. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies of resistance typically <10 -8 against E. coli and A. baumannii at concentrations equivalent to 4-fold the MIC. Compound-resistant E. coli mutants that were isolated following serial passage were characterized by whole-genome sequencing and carried a single Arg38Leu amino acid substitution in the GyrA subunit of DNA gyrase. Preliminary in vitro safety data indicate that the series shows a promising therapeutic index and potential for low human ether-a-go-go-related gene (hERG) inhibition (50% inhibitory concentration [IC 50 ], >100 μM). In summary, the compounds' distinct mechanism of action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development, and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents. Copyright © 2017 American Society for Microbiology.

  16. A Bactericidal Guanidinomethyl Biaryl That Alters the Dynamics of Bacterial FtsZ Polymerization

    PubMed Central

    Kaul, Malvika; Parhi, Ajit K.; Zhang, Yongzheng; LaVoie, Edmond J.; Tuske, Steve; Arnold, Eddy; Kerrigan, John E.; Pilch, Daniel S.

    2014-01-01

    The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. PMID:23050700

  17. Bacterial genome engineering and synthetic biology: combating pathogens.

    PubMed

    Krishnamurthy, Malathy; Moore, Richard T; Rajamani, Sathish; Panchal, Rekha G

    2016-11-04

    The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.

  18. Reduction of rainbow trout spleen size by splenectomy does not alter resistance against bacterial cold water disease

    USDA-ARS?s Scientific Manuscript database

    In lower vertebrates, the contribution of the spleen to anti-bacterial immunity is poorly understood. Researchers have previously reported a phenotypic and genetic correlation between resistance to Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD) and spleen so...

  19. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review

    PubMed Central

    Nhung, Nguyen Thi; Chansiripornchai, Niwat; Carrique-Mas, Juan J.

    2017-01-01

    Antimicrobial resistance (AMR) is a global health threat, and antimicrobial usage and AMR in animal production is one of its contributing sources. Poultry is one of the most widespread types of meat consumed worldwide. Poultry flocks are often raised under intensive conditions using large amounts of antimicrobials to prevent and to treat disease, as well as for growth promotion. Antimicrobial resistant poultry pathogens may result in treatment failure, leading to economic losses, but also be a source of resistant bacteria/genes (including zoonotic bacteria) that may represent a risk to human health. Here we reviewed data on AMR in 12 poultry pathogens, including avian pathogenic Escherichia coli (APEC), Salmonella Pullorum/Gallinarum, Pasteurella multocida, Avibacterium paragallinarum, Gallibacterium anatis, Ornitobacterium rhinotracheale (ORT), Bordetella avium, Clostridium perfringens, Mycoplasma spp., Erysipelothrix rhusiopathiae, and Riemerella anatipestifer. A number of studies have demonstrated increases in resistance over time for S. Pullorum/Gallinarum, M. gallisepticum, and G. anatis. Among Enterobacteriaceae, APEC isolates displayed considerably higher levels of AMR compared with S. Pullorum/Gallinarum, with prevalence of resistance over >80% for ampicillin, amoxicillin, tetracycline across studies. Among the Gram-negative, non-Enterobacteriaceae pathogens, ORT had the highest levels of phenotypic resistance with median levels of AMR against co-trimoxazole, enrofloxacin, gentamicin, amoxicillin, and ceftiofur all exceeding 50%. In contrast, levels of resistance among P. multocida isolates were less than 20% for all antimicrobials. The study highlights considerable disparities in methodologies, as well as in criteria for phenotypic antimicrobial susceptibility testing and result interpretation. It is necessary to increase efforts to harmonize testing practices, and to promote free access to data on AMR in order to improve treatment guidelines as well as to

  20. The Bactericidal Effect of High Temperature Is an Essential Resistance Mechanism of Chicken Macrophage against Brucella abortus Infection.

    PubMed

    Arayan, Lauren Togonon; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Xuan, Huy Tran; Baek, Eun Jin; Min, Wongi; Kim, Suk

    2017-10-28

    Knowledge of avian host responses to brucellosis is critical to understanding how birds resist this infection; however, this mechanism is not well established. On the other hand, temperature has a major involvement in the physiology of living organisms, and cell death induced by heat is attributed to protein denaturation. This study demonstrates the direct bactericidal effect of a high temperature (41ºC) on Brucella abortus that resulted in the gradual reduction of intracellular bacteria and inhibited bacterial growth within avian macrophage HD11 in an increasing period of time. On the other hand, this study also revealed that high temperature does not affect the rate of bacterial uptake, as confirmed by the bacterial adherence assay. No significant difference was observed in the expression of target genes between infected and uninfected cells for both temperatures. This study suggests the susceptibility of B. abortus to bacterial death under a high temperature with an increased period of incubation, leading to suppression of bacterial growth.

  1. Bacterial Profile, Antibacterial Resistance Pattern, and Associated Factors from Women Attending Postnatal Health Service at University of Gondar Teaching Hospital, Northwest Ethiopia.

    PubMed

    Bitew Kifilie, Abebaw; Dagnew, Mulat; Tegenie, Birhanemeskel; Yeshitela, Biruk; Howe, Rawleigh; Abate, Ebba

    2018-01-01

    Surgical site infection is a vital cause of maternal mortality and morbidity, especially in resource-limited countries. The rise of antibiotic resistance bacterial infection poses a big threat to this vulnerable population. However, there is lack of studies around the study area. The purpose of this study was to identify bacterial profile, antibacterial resistance pattern, and associated factors among mothers attending postnatal care health service. Institutional based cross-sectional study was conducted on 107 study participants at University of Gondar Teaching Hospital from 1 January 2016 to 30 May 2016. Wound swab, aspirate, and biopsy were collected and performed for culture and drug resistance testing. Data were entered and analyzed by using SPSS version 20. Bivariate and multivariate logistic regression models were fitted to determine the associated factors for bacterial infection. Odds ratio (95% CI) was calculated to determine the strength of statistically significant associated factors. Bacterial growth was confirmed in 90 (84.1%) of 107 study participants suspected to have surgical site infection. The predominant bacterial isolates were S. aureus (41.6%), E. coli (19.8%), K. pneumoniae (13.9%), coagulase negative Staphylococcus (12.9%), and Enterobacter spp. (4%). The majority of isolates were resistant to ampicillin, amoxicillin, and tetracycline but susceptible to ceftriaxone and amikacin. Multidrug-resistant bacteria species were isolated. Using a procedure such as cesarean section and episiotomy for delivery and premature rapture of membrane had strong association with bacterial infection. The high prevalence of bacterial profile and isolation of multidrug-resistant bacteria pose a big threat to postnatal mothers and their children. Factors such as cesarean section, episiotomy for delivery, and premature rapture of membrane were predictors for bacterial infection. Therefore, there should be done a continuous surveillance as well as rational use of

  2. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight.

    PubMed

    Datta, K; Baisakh, N; Thet, K Maung; Tu, J; Datta, S K

    2002-12-01

    Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.

  3. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance.

    PubMed

    Opal, Steven M

    2016-12-16

    The emergence of multi-drug resistant (MDR) microbial pathogens threatens the very foundation upon which standard antibacterial chemotherapy is based. We must consider non-antibiotic solutions to manage invasive bacterial infections. Transition from antibiotics to non-traditional treatments poses real clinical challenges that will not be easy to solve. Antibiotics will continue to reliably treat some infections (e.g., group A streptococci and Treponema pallidum) but will likely need adjuvant therapies or will need to be replaced for many bacterial infections in the future.

  4. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  5. Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus

    PubMed Central

    David, Michael Z.; Salata, Robert A.

    2012-01-01

    Meticillin-resistant Staphylococcus aureus (MRSA) strains are prevalent bacterial pathogens that cause both health care and community-associated infections. Increasing resistance to commonly prescribed antibiotics has made MRSA a serious threat to public health throughout the world. The USA300 strain of MRSA has been responsible for an epidemic of community-associated infections in the US, mostly involving skin and soft tissue but also more serious invasive syndromes such as pneumonia, severe sepsis and endocarditis. MRSA strains are particularly serious and potentially lethal pathogens that possess virulence mechanisms including toxins, adhesins, enzymes and immunomodulators. One of these is Panton–Valentine leukocidin (PVL), a toxin associated with abscess formation and severe necrotizing pneumonia. Earlier studies suggested that PVL was a major virulence factor in community-associated MRSA infections. However, some recent data have not supported this association while others have, leading to controversy. Therefore, investigators continue to search for additional mechanisms of pathogenesis. In this review, we summarize the current understanding of the biological basis of MRSA virulence and explore future directions for research, including potential vaccines and antivirulence therapies under development that might allow clinicians to more successfully treat and prevent MRSA infections. PMID:22745137

  6. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China

    PubMed Central

    Yan, Lei; Liu, Dan; Wang, Xin-Hua; Wang, Yunkun; Zhang, Bo; Wang, Mingyu; Xu, Hai

    2017-01-01

    Emerging antimicrobial resistance is a major threat to human’s health in the 21st century. Understanding and combating this issue requires a full and unbiased assessment of the current status on the prevalence of antimicrobial resistance genes and their correlation with each other and bacterial groups. In aquatic environments that are known reservoirs for antimicrobial resistance genes, we were able to reach this goal on plasmid-mediated quinolone resistance (PMQR) genes that lead to resistance to quinolones and possibly also to the co-emergence of resistance to β-lactams. Novel findings were made that qepA and aac-(6′)-Ib genes that were previously regarded as similarly abundant with qnr genes are now dominant among PMQR genes in aquatic environments. Further statistical analysis suggested that the correlation between PMQR and β-lactam resistance genes in the environment is still weak, that the correlations between antimicrobial resistance genes could be weakened by sufficient wastewater treatment, and that the prevalence of PMQR has been implicated in environmental, pathogenic, predatory, anaerobic, and more importantly, human symbiotic bacteria. This work provides a comprehensive analysis of PMQR genes in aquatic environments in Jinan, China, and provides information with which combat with the antimicrobial resistance problem may be fought. PMID:28094345

  7. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    PubMed

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era. © 2015 WILEY Periodicals, Inc.

  8. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time.

    PubMed

    Koskella, Britt; Parr, Nicole

    2015-08-19

    Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host-parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics.

  9. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time

    PubMed Central

    Koskella, Britt; Parr, Nicole

    2015-01-01

    Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host–parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics. PMID:26150663

  10. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway[C][W][OPEN

    PubMed Central

    Schenk, Sebastian T.; Hernández-Reyes, Casandra; Samans, Birgit; Stein, Elke; Neumann, Christina; Schikora, Marek; Reichelt, Michael; Mithöfer, Axel; Becker, Annette; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. PMID:24963057

  11. Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia.

    PubMed

    Wu, Muzo; Gibbons, John G; DeLoid, Glen M; Bedugnis, Alice S; Thimmulappa, Rajesh K; Biswal, Shyam; Kobzik, Lester

    2017-07-01

    Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia. Copyright © 2017 the American Physiological Society.

  12. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations

    PubMed Central

    Farrell, Fred D.

    2017-01-01

    Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant ‘surfs’ at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance. PMID:28592660

  13. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations.

    PubMed

    Farrell, Fred D; Gralka, Matti; Hallatschek, Oskar; Waclaw, Bartlomiej

    2017-06-01

    Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant 'surfs' at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance. © 2017 The Author(s).

  14. Effect of Seed Treatment by Cold Plasma on the Resistance of Tomato to Ralstonia solanacearum (Bacterial Wilt)

    PubMed Central

    Jiang, Jiafeng; Lu, Yufang; Li, Jiangang; Li, Ling; He, Xin; Shao, Hanliang; Dong, Yuanhua

    2014-01-01

    This study investigated the effect of cold plasma seed treatment on tomato bacterial wilt, caused by Ralstonia solanacearum (R. solanacearum), and the regulation of resistance mechanisms. The effect of cold plasma of 80W on seed germination, plant growth, nutrient uptake, disease severity, hydrogen peroxide (H2O2) concentration and activities of peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.10.3.2) and phenylalanine ammonia lyase (PAL; EC 4.3.1.5) were examined in tomato plants. Plasma treatment increased tomato resistance to R. solanacearum with an efficacy of 25.0%. Plasma treatment significantly increased both germination and plant growth in comparison with the control treatment, and plasma-treated plants absorbed more calcium and boron than the controls. In addition, H2O2 levels in treated plants rose faster and reached a higher peak, at 2.579 µM gFW−1, 140% greater than that of the control. Activities of POD (421.3 U gFW−1), PPO (508.8 U gFW−1) and PAL (707.3 U gFW−1) were also greater in the treated plants than in the controls (103.0 U gFW−1, 166.0 U gFW−1 and 309.4 U gFW−1, respectively). These results suggest that plasma treatment affects the regulation of plant growth, H2O2 concentration, and POD, PPO and PAL activity in tomato, resulting in an improved resistance to R. solanacearum. Consequently, cold plasma seed treatment has the potential to control tomato bacterial wilt caused by R. solanacearum. PMID:24840508

  15. Absence of bacterial resistance following repeat exposure to photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Pedigo, Lisa A.; Gibbs, Aaron J.; Scott, Robert J.; Street, Cale N.

    2009-06-01

    The prevalence of antibiotic resistant bacteria necessitates exploration of alternative approaches to treat hospital and community acquired infections. The aim of this study was to determine whether bacterial pathogens develop resistance to antimicrobial photodynamic therapy (aPDT) during repeated sub-lethal challenge. Antibiotic sensitive and resistant strains of S. aureus and antibiotic sensitive E. coli were subjected to repeat PDT treatments using a methylene blue photosensitizer formulation and 670 nm illumination from a non-thermal diode laser. Parameters were adjusted such that kills were <100% so that surviving colonies could be passaged for subsequent exposures. With each repeat, kills were compared to those using non-exposed cultures of the same strain. Oxacillin resistance was induced in S. aureus using a disc diffusion method. For each experiment, "virgin" and "repeat" cultures were exposed to methylene blue at 0.01% w/v and illuminated with an energy dose of 20.6 J/cm2. No significant difference in killing of E. coli (repeat vs. virgin culture) was observed through 11 repeat exposures. Similar results were seen using MSSA and MRSA, wherein kill rate did not significantly differ from control over 25 repeat exposures. In contrast, complete oxacillin resistance could be generated in S. aureus over a limited number of exposures. PDT is effective in the eradication of pathogens including antibiotic resistance strains. Furthermore, repeated sub-lethal exposure does not induce resistance to subsequent PDT treatments. The absence of resistance formation represents a significant advantage of PDT over traditional antibiotics.

  16. Mechanisms of Resistance to Photodynamic Therapy

    PubMed Central

    Casas, Adriana; Di Venosa, Gabriela; Hasan, Tayyaba; Batlle, Alcira

    2013-01-01

    Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells. The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization. Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms. In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells. PMID:21568910

  17. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2015-01-01

    The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance. PMID:26322035

  18. Bacterial pneumonia as an influenza complication.

    PubMed

    Martin-Loeches, Ignacio; van Someren Gréve, Frank; Schultz, Marcus J

    2017-04-01

    The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.

  19. Antimicrobial Resistance in Hospital-Acquired Gram-Negative Bacterial Infections

    PubMed Central

    Mehrad, Borna; Clark, Nina M.; Zhanel, George G.

    2015-01-01

    Aerobic gram-negative bacilli, including the family of Enterobacteriaceae and non-lactose fermenting bacteria such as Pseudomonas and Acinetobacter species, are major causes of hospital-acquired infections. The rate of antibiotic resistance among these pathogens has accelerated dramatically in recent years and has reached pandemic scale. It is no longer uncommon to encounter gram-negative infections that are untreatable using conventional antibiotics in hospitalized patients. In this review, we provide a summary of the major classes of gram-negative bacilli and their key mechanisms of antimicrobial resistance, discuss approaches to the treatment of these difficult infections, and outline methods to slow the further spread of resistance mechanisms. PMID:25940252

  20. Comparison of the structural basis for thermal stability between archaeal and bacterial proteins.

    PubMed

    Ding, Yanrui; Cai, Yujie; Han, Yonggang; Zhao, Bingqiang

    2012-01-01

    In this study, the structural basis for thermal stability in archaeal and bacterial proteins was investigated. There were many common factors that confer resistance to high temperature in both archaeal and bacterial proteins. These factors include increases in the Lys content, the bends and blanks of secondary structure, the Glu content of salt bridge; decreases in the number of main-side chain hydrogen bond and exposed surface area, and changes in the bends and blanks of amino acids. Certainly, the utilization of charged amino acids to form salt bridges is a primary factor. In both heat-resistant archaeal and bacterial proteins, most Glu and Asp participate in the formation of salt bridges. Other factors may influence either archaeal or bacterial protein thermostability, which includes the more frequent occurrence of shorter 3(10)-helices and increased hydrophobicity in heat-resistant archaeal proteins. However, there were increases in average helix length, the Glu content in salt bridges, temperature factors and decreases in the number of main-side chain hydrogen bonds, uncharged-uncharged hydrogen bonds, hydrophobicity, and buried and exposed polar surface area in heat-resistant bacterial proteins. Evidently, there are few similarities and many disparities between the heat-resistant mechanisms of archaeal and bacterial proteins.

  1. Antimicrobial utilization and bacterial resistance at three different hospitals.

    PubMed

    Vlahović-Palcevski, V; Morović, M; Palcevski, G; Betica-Radić, L

    2001-01-01

    It has been generally recognized that the prevalence of bacterial resistance among bacteria is an unavoidable consequence of antibiotic use and is positively linked to the overall use of antibacterial drugs. The purpose of this study was to investigate the extent of antimicrobial usage and to evaluate the antimicrobial resistance at three different hospital settings in Croatia: a clinical hospital, a general hospital and a specialized clinic for infectious diseases. In this survey the antimicrobial drug consumption and antimicrobial susceptibility test results were analyzed for the first 6 months of 1997 in three different hospitals in Croatia: the University Hospital Center (UHC), Rijeka, the Clinic for Infectious Diseases 'Dr Fran Mihaljević', Zagreb and the Dubrovnik General Hospital. The data were collected from corresponding hospital pharmacy records and microbiology laboratories. Antimicrobial drug utilization was expressed in number of defined daily doses (DDDs) per 100 bed days. High antimicrobial utilization and high resistance rates were found in all three hospitals. At the Clinic for Infectious Diseases, the most frequently used antimicrobials where those of narrow spectrum while at the UHC Rijeka and the Dubrovnik General Hospital the broad spectrum antimicrobials were mostly used. The highest antimicrobial consumption was noted at the Susak locality of the UHC, Rijeka, where the highest resistance rates of bacteria to antimicrobials were also found. Results of this observational study indicate that attempts should be made to reduce the influence of factors that may lead to emergent resistance. The most effective approach to the prevention of transmission of multidrug-resistant pathogens is preventing the initial emergence of resistance. A rational and strict antibiotic policy is thus of great importance for the optimal use of these agents.

  2. Prevalence of bacterial pathogens and their anti-microbial resistance in Tilapia and their pond water in Trinidad.

    PubMed

    Newaj-Fyzul, A; Mutani, A; Ramsubhag, A; Adesiyun, A

    2008-05-01

    In Trinidad, Tilapia (Oreonchromis spp.) is one of the most important fresh water food fish and the number of farms has been increasing annually. A study was conducted in the local tilapia industry to determine the microbial quality of pond water, prevalence of bacterial pathogens and their anti-microbial resistance using the disk diffusion method. Seventy-five apparently healthy fish and 15 pond water samples from three of the four commercial tilapia fish farms in the country were processed. The 202 bacterial isolates recovered from fish slurry and 88 from water, belonged to 13 and 16 genera respectively. The predominant bacteria from fish slurry were Pseudomonas spp. (60.0%), Aeromonas spp. (44.0%), Plesiomonas (41.3%) and Chromobacterium (36.0%) (P < 0.05; chi(2)) compared with isolates from pond water where Bacillus spp. (80.0%), Staphylococcus spp., Alcaligenes spp. and Aeromonas spp. (60.0%) were most prevalent (P < 0.05; chi(2)). Using eight anti-microbial agents, to test bacteria from five genera (Aeromonas, Chromobacterium, Enterobacter, Plesiomonas and Pseudomonas), 168 (97.1%) of 173 bacterial isolates from fish slurry exhibited resistance to one or more anti-microbial agents compared with 47 (90.4%) of 52 from water (P > 0.05; chi(2)). Resistance was high to ampicillin, 90.2% (158 of 173), erythromycin, 66.5% (115 of 173) and oxytetracycline, 52.6%, (91 of 173) but relatively low to chloramphenicol, 9.8% (17 of 173) and sulphamethoxazole/trimethoprim, 6.4% (11 of 173) (P < 0.05; chi(2)). For pond water isolates, the frequency of resistance across bacterial genera ranged from 75% (nine of 12) for Chromobacter spp. to 100% found amongst Enterobacter spp. (six of six), Plesiomonas spp. (nine of nine) and Pseudomonas spp. (eight of eight) (P < 0.05; chi(2)). Resistance was generally high to ampicillin, 78.8% (41 of 52), erythromycin, 51.9% (27 of 52) and oxytetracycline, 34.5% (18 of 52) but low to sulphamethoxazole/trimethoprim, 7.7% (four of 52) and

  3. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems.

    PubMed

    Zhang, Junpeng; Li, Weiying; Chen, Jiping; Qi, Wanqi; Wang, Feng; Zhou, Yanyan

    2018-07-01

    There is growing awareness of the antibiotic-resistance crisis and its implications for public health among clinicians, researchers, politicians, and the public. We studied bacterial antibiotic resistance transition and the role of biofilms in a drinking water distribution system (DWDS). We tracked several different antibiotic resistant bacteria (ARB) with resistance to tetracycline, sulfamethoxazole, clindamycin, and norfloxacin for one year in a DWDS. The results indicated that the amount of ARB increased in tap water, presumably due to biofilm detachment. The effect of biofilm detachment on the transmission of antibiotic resistance from biofilms to tap water was explored by using a bacterial annular reactor. The percentage of ARB of inlet water, outlet water, and biofilms ranged from 0.26% to 9.85%, 1.08%-16.29%, and 0.52%-29.97%, respectively in a chlorinated system, and from 0.23% to 9.89%, 0.84%-16.84%, and 0.35%-17.77%, respectively, in a chloraminated system. The relative abundances of antibiotic resistance Acinetobacter, Sphingomonas, and Bradyrhizobium were higher in outlet water than in inlet water, as determined by high throughout sequencing. The amount of ARB percentage varied with the concentration of viable but non-culturable (VBNC) cells (r = 0.21, n = 160, P < 0.05) in biofilm, suggesting a higher antibiotic resistance mutation rate in VBNC cells. Our results suggest that biofilm detachment was promoted by disinfectant and affected the overall bacterial antibiotic resistance of microbes in tap water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Bacterial-fungal interactions: ecology, mechanisms and challenges.

    PubMed

    Deveau, Aurélie; Bonito, Gregory; Uehling, Jessie; Paoletti, Mathieu; Becker, Matthias; Bindschedler, Saskia; Hacquard, Stéphane; Hervé, Vincent; Labbé, Jessy; Lastovetsky, Olga A; Mieszkin, Sophie; Millet, Larry J; Vajna, Balázs; Junier, Pilar; Bonfante, Paola; Krom, Bastiaan P; Olsson, Stefan; van Elsas, Jan Dirk; Wick, Lukas Y

    2018-05-01

    Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.

  5. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    PubMed Central

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study

  6. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens.

    PubMed

    Cheng, Xu; Etalo, Desalegn W; van de Mortel, Judith E; Dekkers, Ester; Nguyen, Linh; Medema, Marnix H; Raaijmakers, Jos M

    2017-11-01

    Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Mechanisms responsible for imipenem resistance among Pseudomonas aeruginosa clinical isolates exposed to imipenem concentrations within the mutant selection window.

    PubMed

    Vassilara, Foula; Galani, Irene; Souli, Maria; Papanikolaou, Konstantinos; Giamarellou, Helen; Papadopoulos, Antonios

    2017-07-01

    The aim of this study was to determine the propensities of imipenem to select for resistant Pseudomonas aeruginosa mutants by determining the mutant prevention concentrations (MPCs) for 9 unrelated clinical isolates and the accession of any relationship with mechanisms of resistance development. The MPC/MIC ratios ranged from 4 to 16. Detection of resistance mechanisms in the mutant derivatives of the nine isolates mainly revealed inactivating mutations in the gene coding for outer membrane protein OprD. Point mutations leading to premature stop codons or amino acid substitution S278P, ≥1bp deletion leading to frameshift mutations and interruption of the oprD by an insertion sequence, were observed. MPC and mutant selection window (MSW) are unique parameters that may guide the implementation of antimicrobial treatment, providing useful information about the necessary imipenem concentration needed in the infection area, in order to avoid the emergence of resistance, especially in clinical situations with high bacterial load. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Antimicrobial resistance prediction in PATRIC and RAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, James J.; Boisvert, Sebastien; Brettin, Thomas

    The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned bymore » their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. Lastly, this set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.« less

  9. Antimicrobial Resistance Prediction in PATRIC and RAST.

    PubMed

    Davis, James J; Boisvert, Sébastien; Brettin, Thomas; Kenyon, Ronald W; Mao, Chunhong; Olson, Robert; Overbeek, Ross; Santerre, John; Shukla, Maulik; Wattam, Alice R; Will, Rebecca; Xia, Fangfang; Stevens, Rick

    2016-06-14

    The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88-99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71-88%. This set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.

  10. Antimicrobial resistance prediction in PATRIC and RAST

    DOE PAGES

    Davis, James J.; Boisvert, Sebastien; Brettin, Thomas; ...

    2016-06-14

    The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned bymore » their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. Lastly, this set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.« less

  11. Bacterial adherence in the pathogenesis of urinary tract infection: a review.

    PubMed

    Reid, G; Sobel, J D

    1987-01-01

    Bacterial adherence to the uroepithelium is recognized as an important mechanism in the initiation and pathogenesis of urinary tract infections (UTI). The uropathogens originate predominantly in the intestinal tract and initially colonize the periurethral region and ascend into the bladder, resulting in symptomatic or asymptomatic bacteriuria. Thereafter, depending on host factors and bacterial virulence factors, the organisms may further ascend and give rise to pyelonephritis. Uropathogens are selected by the presence of virulence characteristics that enable them to resist the normally efficient host defense mechanisms. Considerable progress has been made in identifying bacterial adhesins and in demonstrating bacterial receptor sites on uroepithelial surfaces. Recent studies have identified natural anti-adherence mechanisms in humans as well as possible increased susceptibility to UTI when these mechanisms are defective and when receptor density on uroepithelial cells is altered. Knowledge of bacterial adherence mechanisms may permit alternative methods of prevention and management of urinary infection, including the use of subinhibitory concentrations of antibiotics, vaccine development, nonimmune inhibition of bacterial adhesins and receptor sites, and the use of autochthonous flora, such as lactobacilli, to exclude uropathogens from colonizing the urinary tract.

  12. K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Nav Channels

    PubMed Central

    Ngo, Van; Wang, Yibo; Haas, Stephan; Noskov, Sergei Y.; Farley, Robert A.

    2016-01-01

    Crystal structures of several bacterial Nav channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Nav channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial NavAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of NavAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Nav channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free-energy landscapes

  13. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    PubMed Central

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  14. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens.

    PubMed

    Andersen, Jody L; He, Gui-Xin; Kakarla, Prathusha; K C, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F

    2015-01-28

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  15. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    PubMed

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  16. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    PubMed Central

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  17. Antibiotic resistance genes and intI1 prevalence in a swine wastewater treatment plant and correlation with metal resistance, bacterial community and wastewater parameters.

    PubMed

    Yuan, Qing-Bin; Zhai, Yi-Fan; Mao, Bu-Yun; Hu, Nan

    2018-06-07

    The livestock wastewater treatment plant represents an important reservoir of antibiotic resistance determinants in the environment. The study explored the prevalence of five antibiotic resistance genes (ARGs, including sulI, tetA, qnrD, mphB and mcr-1) and class 1 integron (intI1) in a typical livestock wastewater treatment plant, and analyzed their integrated association with two metal resistance genes (copA and czcA), two pathogens genes (Staphylococcus and Campylobacter), bacterial community and wastewater properties. Results indicated that all investigated genes were detected in the plant. The treatment plant could not completely remove ARGs abundances, with up to 2.2 × 10 4 ~3.7 × 10 8 copies/L of them remaining in the effluent. Mcr-1 was further enriched by 27-fold in the subsequent pond. The correlation analysis showed that mphB significantly correlateed with tetA and intI. Mcr-1 strongly correlated with copA. MphB and intI significantly correlated with czcA. The correlations implied a potential co-selection risk of bacterial resistant to antibiotics and metals. Redundancy analyses indicated that qnrD and mcr-1 strongly correlated with 13 and 14 bacterial genera, respectively. Most ARGs positively correlated to wastewater nutrients, indicating that an efficient reduction of wastewater nutrients would contribute to the antibiotic resistance control. The study will provide useful implications on fates and reductions of ARGs in livestock facilities and receiving environments. Copyright © 2018. Published by Elsevier Inc.

  18. Efflux pumps as antimicrobial resistance mechanisms.

    PubMed

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  19. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens

    PubMed Central

    Santajit, Sirijan; Indrawattana, Nitaya

    2016-01-01

    The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are multidrug resistant isolates, which is one of the greatest challenges in clinical practice. Multidrug resistance is amongst the top three threats to global public health and is usually caused by excessive drug usage or prescription, inappropriate use of antimicrobials, and substandard pharmaceuticals. Understanding the resistance mechanisms of these bacteria is crucial for the development of novel antimicrobial agents or other alternative tools to combat these public health challenges. Greater mechanistic understanding would also aid in the prediction of underlying or even unknown mechanisms of resistance, which could be applied to other emerging multidrug resistant pathogens. In this review, we summarize the known antimicrobial resistance mechanisms of ESKAPE pathogens. PMID:27274985

  20. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens.

    PubMed

    Santajit, Sirijan; Indrawattana, Nitaya

    2016-01-01

    The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are multidrug resistant isolates, which is one of the greatest challenges in clinical practice. Multidrug resistance is amongst the top three threats to global public health and is usually caused by excessive drug usage or prescription, inappropriate use of antimicrobials, and substandard pharmaceuticals. Understanding the resistance mechanisms of these bacteria is crucial for the development of novel antimicrobial agents or other alternative tools to combat these public health challenges. Greater mechanistic understanding would also aid in the prediction of underlying or even unknown mechanisms of resistance, which could be applied to other emerging multidrug resistant pathogens. In this review, we summarize the known antimicrobial resistance mechanisms of ESKAPE pathogens.

  1. Mechanisms of hexavalent chromium resistance and removal by microorganisms.

    PubMed

    Joutey, Nezha Tahri; Sayel, Hanane; Bahafid, Wifak; El Ghachtouli, Naïma

    2015-01-01

    Chromium has been and is extensively used worldwide in multiple industrial processes and is routinely discharged to the environment from such processes. Therefore, this heavy metal is a potential threat to the environment and to public health, primarily because it is non-biodegradable and environmentally persistent. Chromium exists in several oxidation states, the most stable of which are trivalent Cr(Ill) and hexavalent Cr(VI) species. Each species possesses its own individual chemical characteristics and produces its own biological effects. For example, Cr (Ill) is an essential oligoelement for humans, whereas Cr(VI) is carcinogenic and mutagenic. Several chemical methods are used to remove Cr(VI) from contaminated sites. Each of these methods has advantages and disadvantages. Currently, bioremediation is often the preferred method to deal with Cr contaminated sites, because it is eco-friendly, cost-effective and is a "natural" technology. Many yeast, bacterial and fungal species have been assessed for their suitability to reduce or remove Cr(VI) contamination. The mechanisms by which these microorganisms resist and reduce Cr(VI) are variable and are species dependent. There are several Cr-resistance mechanisms that are displayed by microorganisms. These include active efflux of Cr compounds, metabolic reduction of Cr(VI) to Cr (ill), and either intercellular or extracellular prec1p1tation. Microbial Cr (VI) removal typically involves three stages: binding of chromium to the cell surface, translocation of chromium into the cell, and reduction of Cr(VI) to Cr (ill). Cr(VI) reduction by microorganisms may proceed on the cell surface, outside the cell, or intracellularly, either directly via chromate reductase enzymes, or indirectly via metabolite reduction of Cr(VI). The uptake of chromium ions is a biphasic process. The primary step is known as biosorption, a metabolic energyindependent process. Thereafter, bioaccumulation occurs, but is much slower, and is

  2. In vitro bacterial isolate susceptibility to empirically selected antimicrobials in 111 dogs with bacterial pneumonia.

    PubMed

    Proulx, Alexandre; Hume, Daniel Z; Drobatz, Kenneth J; Reineke, Erica L

    2014-01-01

    To determine the proportion of airway bacterial isolates resistant to both empirically selected and recently administered antimicrobials, and to assess the impact of inappropriate initial empiric antimicrobials selection on length of hospital stay and survival to discharge in dogs with bacterial pneumonia. Retrospective study. University veterinary teaching hospital. One hundred and eleven dogs with a clinical diagnosis of bacterial pneumonia that had aerobic bacterial culture and susceptibility testing performed from a tracheal wash sample. None. Overall, 26% (29/111) of the dogs had at least 1 bacterial isolate that was resistant to empirically selected antimicrobials. In dogs with a history of antimicrobial administration within the preceding 4 weeks, a high incidence (57.4%, 31/54) of in vitro bacterial resistance to those antimicrobials was found: 64.7% (11/17) in the community-acquired pneumonia group, 55.2% (16/29) in the aspiration pneumonia group, and 50.0% (4/8) in the other causes of bacterial pneumonia group. No statistically significant association was found between bacterial isolate resistance to empirically selected antimicrobials and length of hospital stay or mortality. The high proportion of in vitro airway bacterial resistance to empiric antimicrobials would suggest that airway sampling for bacterial culture and susceptibility testing may be helpful in guiding antimicrobial therapy and recently administered antimicrobials should be avoided when empirically selecting antimicrobials. Although no relationship was found between inappropriate initial empiric antimicrobial selection and length of hospital stay or mortality, future prospective studies using standardized airway-sampling techniques, treatment modalities, and stratification of disease severity based on objective values, such as arterial blood gas analysis in all dogs with pneumonia, would be needed to determine if a clinical effect of in vitro bacterial resistance to empirically

  3. Fitness and Recovery of Bacterial Communities and Antibiotic Resistance Genes in Urban Wastewaters Exposed to Classical Disinfection Treatments.

    PubMed

    Di Cesare, Andrea; Fontaneto, Diego; Doppelbauer, Julia; Corno, Gianluca

    2016-09-20

    Antibiotic resistance genes (ARGs) are increasingly appreciated to be important as micropollutants. Indirectly produced by human activities, they are released into the environment, as they are untargeted by conventional wastewater treatments. In order to understand the fate of ARGs and of other resistant forms (e.g., phenotypical adaptations) in urban wastewater treatment plants (WWTPs), we monitored three WWTPs with different disinfection processes (chlorine, peracetic acid (PAA), and ultraviolet light (UV)). We monitored WWTPs influx and pre- and postdisinfection effluent over 24 h, followed by incubation experiments lasting for 96 h. We measured bacterial abundance, size distribution and aggregational behavior, the proportion of intact (active) cells, and the abundances of four ARGs and of the mobile element integron1. While all the predisinfection treatments of all WWTPs removed the majority of bacteria and of associated ARGs, of the disinfection processes only PAA efficiently removed bacterial cells. However, the stress imposed by PAA selected for bacterial aggregates and, similarly to chlorine, stimulated the selection of ARGs during the incubation experiment. This suggests disinfections based on chemically aggressive destruction of bacterial cell structures can promote a residual microbial community that is more resistant to antibiotics and, given the altered aggregational behavior, to competitive stress in nature.

  4. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure

    PubMed Central

    Kubicek-Sutherland, Jessica Z.; Heithoff, Douglas M.; Ersoy, Selvi C.; Shimp, William R.; House, John K.; Marth, Jamey D.; Smith, Jeffrey W.; Mahan, Michael J.

    2015-01-01

    Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies. PMID:26501114

  5. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure.

    PubMed

    Kubicek-Sutherland, Jessica Z; Heithoff, Douglas M; Ersoy, Selvi C; Shimp, William R; House, John K; Marth, Jamey D; Smith, Jeffrey W; Mahan, Michael J

    2015-09-01

    Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host-pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.

  6. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    PubMed

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Analysis of antimicrobial resistance mechanisms in MDR bacteria by microarray and high-throughput sequencing

    USDA-ARS?s Scientific Manuscript database

    Antimicrobial resistance in pathogenic bacteria is a major concern in human and animal health. The National Antimicrobial Resistance Monitoring System (NARMS) was designed by the CDC, FDA, and USDA to monitor antimicrobial resistance in the U.S. The Bacterial Epidemiology and Antimicrobial Resistanc...

  8. Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement.

    PubMed

    Li, Jianghua; Zhang, Kaixi; Ruan, Lin; Chin, Seow Fong; Wickramasinghe, Nirmani; Liu, Hanbin; Ravikumar, Vikashini; Ren, Jinghua; Duan, Hongwei; Yang, Liang; Chan-Park, Mary B

    2018-06-26

    Biofilms and the rapid evolution of multidrug resistance complicate the treatment of bacterial infections. Antibiofilm agents such as metallic-inorganic nanoparticles or peptides act by exerting antibacterial effects and, hence, do not combat biofilms of antibiotics-resistant strains. In this Letter, we show that the block copolymer DA95B5, dextran- block-poly((3-acrylamidopropyl) trimethylammonium chloride (AMPTMA)- co-butyl methacrylate (BMA)), effectively removes preformed biofilms of various clinically relevant multidrug-resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE V583), and Enteroccocus faecalis (OG1RF). DA95B5 self-assembles into core-shell nanoparticles with a nonfouling dextran shell and a cationic core. These nanoparticles diffuse into biofilms and attach to bacteria but do not kill them; instead, they promote the gradual dispersal of biofilm bacteria, probably because the solubility of the bacteria-nanoparticle complex is enhanced by the nanoparticle dextran shell. DA95B5, when applied as a solution to a hydrogel pad dressing, shows excellent in vivo MRSA biofilm removal efficacy of 3.6 log reduction in a murine excisional wound model, which is significantly superior to that for vancomycin. Furthermore, DA95B5 has very low in vitro hemolysis and negligible in vivo acute toxicity. This new strategy for biofilm removal (nanoscale bacterial debridement) is orthogonal to conventional rapidly developing resistance traits in bacteria so that it is as effective toward resistant strains as it is toward sensitive strains and may have widespread applications.

  9. Minimizing potential resistance: the molecular view--a comment on Courvalin and Trieu-Cuot.

    PubMed

    Hooper, D C

    2001-09-15

    The complexity of bacterial resistance to antimicrobial agents is driven by the interplay of many mechanistic and epidemiologic factors. Mechanistically, resistance by target alteration, reduced permeation, and drug inactivation can occur by both chromosomal mutation and acquisition of new genetic elements. Epidemiologically, exposure to antimicrobial agents provides a growth or persistence advantage for any existing resistant bacteria, generally irrespective of the mechanism. When a single chromosomal mutation is sufficient to cause resistance, any such exposure provides a risk of selection, as long as a sufficiently large bacterial population is exposed. Transmission of resistant bacteria can also amplify resistance of any type, but it is particularly important for complex resistance mechanisms that have evolved over time and for mechanisms that depend on infrequent biological events in nature. Because true biological barriers to the development of resistance are likely to be elusive, multiple approaches that address both the use of antimicrobial agents and transmission are necessary to slow the advance of resistance.

  10. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging cause of acute bacterial parotitis.

    PubMed

    Nicolasora, Nelson P; Zacharek, Mark A; Malani, Anurag N

    2009-02-01

    Staphylococcus aureus has long been recognized as a cause of acute bacterial parotitis. A case of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) parotitis is presented, highlighting the emergence of this increasingly important pathogen to cause a wide variety of infections. Also reviewed are the salient clinical and microbiologic features of this novel infection.

  11. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance.

    PubMed

    Wang, Mingyu; Shen, Weitao; Yan, Lei; Wang, Xin-Hua; Xu, Hai

    2017-12-01

    Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quorum sensing and microbial drug resistance.

    PubMed

    Chen, Yu-fan; Liu, Shi-yin; Liang, Zhi-bin; Lv, Ming-fa; Zhou, Jia-nuan; Zhang, Lian-hui

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  13. Building and Breaking the Cell Wall in Four Acts: A Kinesthetic and Tactile Role-Playing Exercise for Teaching Beta-Lactam Antibiotic Mechanism of Action and Resistance

    PubMed Central

    Popovich, John; Stephens, Michelle; Celaya, Holly; Suwarno, Serena; Barclay, Shizuka; Yee, Emily; Dean, David A.; Farris, Megan; Haydel, Shelley E.

    2018-01-01

    “Building and breaking the cell wall” is designed to review the bacterial cell envelope, previously learned in lower-division biology classes, while introducing new topics such as antibiotics and bacterial antibiotic resistance mechanisms. We developed a kinesthetic and tactile modeling activity where students act as cellular components and construct the cell wall. In the first two acts, students model a portion of the gram-positive bacterial cell envelope and then demonstrate in detail how the peptidoglycan is formed. Act III involves student demonstration of the addition of β-lactam antibiotics to the environment and how they inhibit the formation of peptidoglycan, thereby preventing bacterial replication. Using Staphylococcus aureus as a model for gram-positive bacteria, students finish the activity (Act IV) by acting out how S. aureus often becomes resistant to β-lactam antibiotics. A high level of student engagement was observed, and the activity received positive feedback. In an assessment administered prior to and two months after the activity, significant improvements in scores were observed (p < 0.0001), demonstrating increased understanding and retention. This activity allows students to (i) visualize, role play, and kinesthetically “build” the cell envelope and form the peptidoglycan layer, (ii) understand the mechanism of action for β-lactam antibiotics, as well as how gene acquisition and protein changes result in resistance, and (iii) work cooperatively and actively to promote long-term retention of the subject material. PMID:29904519

  14. Aminomethyl Spectinomycins as Novel Therapeutics for Drug Resistant Respiratory Tract and Sexually Transmitted Bacterial Infections

    PubMed Central

    Madhura, Dora B.; Shcherbakov, Dimitri; Zheng, Zhong; Liu, Jiuyu; Abdelrahman, Yasser M.; Singh, Aman P.; Duscha, Stefan; Rathi, Chetan; Lee, Robin B.; Belland, Robert J.; Meibohm, Bernd; Rosch, Jason W.; Böttger, Erik C.; Lee, Richard E.

    2015-01-01

    The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A novel series of N-benzyl substituted 3'-(R)- 3'-aminomethyl-3'-hydroxy spectinomycins was developed based on a computational analysis of the aminomethyl spectinomycin binding site and structure guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non-ribosome binding 3'-(S) isomers of the leads demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target. In addition to improved antibacterial potency, compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series, compound 1, exhibited excellent chemical stability, which was superior to spectinomycin and had no significant interaction with a panel of human receptors and drug metabolism enzymes suggesting low potential for adverse reactions or drug-drug interactions in vivo. Compound 1 was active in vitro against a panel of penicillin, macrolide, and cephalosporin resistant S. pneumoniae clinical isolates and cured mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate N-benzyl aminomethyl spectinomycins possess suitable properties for further development as novel antibacterial agents to treat drug resistant respiratory tract and sexually transmitted bacterial infections. PMID:25995221

  15. Resistance Emergence Mechanism and Mechanism of Resistance Suppression by Tobramycin for Cefepime for Pseudomonas aeruginosa

    PubMed Central

    Bonomo, Robert A.; Bahniuk, Nadzeya; Bulitta, Juergen B.; VanScoy, Brian; DeFiglio, Holland; Fikes, Steven; Brown, David; Drawz, Sarah M.; Kulawy, Robert; Louie, Arnold

    2012-01-01

    The panoply of resistance mechanisms in Pseudomonas aeruginosa makes resistance suppression difficult. Defining optimal regimens is critical. Cefepime is a cephalosporin whose 3′ side chain provides some stability against AmpC β-lactamases. We examined the activity of cefepime against P. aeruginosa wild-type strain PAO1 and its isogenic AmpC stably derepressed mutant in our hollow-fiber infection model. Dose-ranging studies demonstrated complete failure with resistance emergence (both isolates). Inoculum range studies demonstrated ultimate failure for all inocula. Lower inocula failed last (10 days to 2 weeks). Addition of a β-lactamase inhibitor suppressed resistance even with the stably derepressed isolate. Tobramycin combination studies demonstrated resistance suppression in both the wild-type and the stably derepressed isolates. Quantitating the RNA message by quantitative PCR demonstrated that tobramycin decreased the message relative to that in cefepime-alone experiments. Western blotting with AmpC-specific antibody for P. aeruginosa demonstrated decreased expression. We concluded that suppression of β-lactamase expression by tobramycin (a protein synthesis inhibitor) was at least part of the mechanism behind resistance suppression. Monte Carlo simulation demonstrated that a regimen of 2 g of cefepime every 8 h plus 7 mg/kg of body weight of tobramycin daily would provide robust resistance suppression for Pseudomonas isolates with cefepime MIC values up to 8 mg/liter and tobramycin MIC values up to 1 mg/liter. For P. aeruginosa resistance suppression, combination therapy is critical. PMID:22005996

  16. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.

    PubMed

    Kamika, Ilunga; Momba, Maggy N B

    2013-02-06

    Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Significant differences (p < 0.05) observed between dead and living microbial

  17. K + block is the mechanism of functional asymmetry in bacterial Na v channels

    DOE PAGES

    Ngo, Van; Wang, Yibo; Haas, Stephan; ...

    2016-01-04

    Crystal structures of several bacterial Na v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na vAb channel. This approach provided new insight into the mechanism of selective ion permeation inmore » bacterial Nav channels. The non-equilibrium simulations indicate that two or three extracellular K + ions can block the entrance to the selectivity filter of Na vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K +, three Na + ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na + ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K + block is equivalent to large applied potentials experimentally measured for two bacterial Na v channels to induce inward currents of K + ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed

  18. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    PubMed

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  19. Novel mechanisms power bacterial gliding motility.

    PubMed

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. © 2016 John Wiley & Sons Ltd.

  20. Combination Approaches to Combat Multi-Drug Resistant Bacteria

    PubMed Central

    Worthington, Roberta J.; Melander, Christian

    2013-01-01

    The increasing prevalence of infections caused by multi-drug resistant bacteria is a global health problem that is exacerbated by the dearth of novel classes of antibiotics entering the clinic over the past 40 years. Herein we describe recent developments toward combination therapies for the treatment of multi-drug resistant bacterial infections. These efforts include antibiotic-antibiotic combinations, and the development of adjuvants that either directly target resistance mechanisms such as the inhibition of β-lactamase enzymes, or indirectly target resistance by interfering with bacterial signaling pathways such as two-component systems. We also discuss screening of libraries of previously approved drugs to identify non-obvious antimicrobial adjuvants. PMID:23333434

  1. Mechanisms of antibiotic resistance in enterococci

    PubMed Central

    Miller, William R; Munita, Jose M; Arias, Cesar A

    2015-01-01

    Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches. PMID:25199988

  2. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  3. New insights in the bacterial spore resistance to extreme terrestrial and extraterrestrial factors

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Horneck, Gerda; Reitz, Guenther

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. The extremely high resistance of bacterial endospores to environmental stress factors has intrigued researchers since long time and many characteristic spore features, especially those involved in the protection of spore DNA, have already been uncovered. The disclosure of the complete genomic sequence of Bacillus subtilis 168, one of the often used astrobiological model system, and the rapid development of tran-scriptional microarray techniques have opened new opportunities of gaining further insights in the enigma of spore resistance. Spores of B. subtilis were exposed to various extreme ter-restrial and extraterrestrial stressors to reach a better understanding of the DNA protection and repair strategies, which them to cope with the induced DNA damage. Following physical stress factors of environmental importance -either on Earth or in space -were selected for this thesis: (i) mono-and polychromatic UV radiation, (ii) ionizing radiation, (iii) exposure to ultrahigh vacuum; and (iv) high shock pressures simulating meteorite impacts. To reach a most comprehensive understanding of spore resistance to those harsh terrestrial or simulated extraterrestrial conditions, a standardized experimental protocol of the preparation and ana-lyzing methods was established including the determination of the following spore responses: (i) survival, (ii) induced mutations, (iii) DNA damage, (iv) role of different repair pathways by use of a set of repair deficient mutants, and (v) transcriptional responses during spore germi-nation by use of genome-wide transcriptome analyses and confirmation by RT-PCR. From this comprehensive set of data on spore resistance to a variety of environmental stress parameters a model of a "built-in" transcriptional program of bacterial spores in response to DNA damaging treatments to ensure DNA restoration

  4. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review

    PubMed Central

    Chandra, Harish; Bishnoi, Parul; Yadav, Archana; Patni, Babita; Mishra, Abhay Prakash; Nautiyal, Anant Ram

    2017-01-01

    Indiscriminate and irrational use of antibiotics has created an unprecedented challenge for human civilization due to microbe’s development of antimicrobial resistance. It is difficult to treat bacterial infection due to bacteria’s ability to develop resistance against antimicrobial agents. Antimicrobial agents are categorized according to their mechanism of action, i.e., interference with cell wall synthesis, DNA and RNA synthesis, lysis of the bacterial membrane, inhibition of protein synthesis, inhibition of metabolic pathways, etc. Bacteria may become resistant by antibiotic inactivation, target modification, efflux pump and plasmidic efflux. Currently, the clinically available treatment is not effective against the antibiotic resistance developed by some bacterial species. However, plant-based antimicrobials have immense potential to combat bacterial, fungal, protozoal and viral diseases without any known side effects. Such plant metabolites include quinines, alkaloids, lectins, polypeptides, flavones, flavonoids, flavonols, coumarin, terpenoids, essential oils and tannins. The present review focuses on antibiotic resistance, the resistance mechanism in bacteria against antibiotics and the role of plant-active secondary metabolites against microorganisms, which might be useful as an alternative and effective strategy to break the resistance among microbes. PMID:28394295

  5. Reengineering Antibiotics to Combat Bacterial Resistance: Click Chemistry [1,2,3]-Triazole Vancomycin Dimers with Potent Activity against MRSA and VRE.

    PubMed

    Silverman, Steven M; Moses, John E; Sharpless, K Barry

    2017-01-01

    Vancomycin has long been considered a drug of last resort. Its efficiency in treating multiple drug-resistant bacterial infections, particularly methicillin-resistant Staphylococcus aureus (MRSA), has had a profound effect on the treatment of life-threatening infections. However, the emergence of resistance to vancomycin is a cause for significant worldwide concern, prompting the urgent development of new effective treatments for antibiotic resistant bacterial infections. Harnessing the benefits of multivalency and cooperativity against vancomycin-resistant strains, we report a Click Chemistry approach towards reengineered vancomycin derivatives and the synthesis of a number of dimers with increased potency against MRSA and vancomycin resistant Enterococci (VRE; VanB). These semi-synthetic dimeric ligands were linked together with great efficiency using the powerful CuAAC reaction, demonstrating high levels of selectivity and purity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mechanisms of Drug-Resistance in Kinases

    PubMed Central

    Barouch-Bentov, Rina; Sauer, Karsten

    2010-01-01

    Introduction Because of their important roles in disease and excellent “druggability”, kinases have become the second-largest drug target family. The great success of the BCR-ABL inhibitor imatinib in treating CML illustrates the high potential of kinase inhibitor (KI) therapeutics, but also unveiled a major limitation: the development of drug-resistance. This is a significant concern as KIs reach large patient populations for an expanding array of indications. Areas covered We provide an up-to-date understanding of the mechanisms through which KIs function, and through which cells can become KI-resistant. We review current and future approaches to overcome KI-resistance, focussing on currently approved KIs and KIs in clinical trials. We then discuss approaches to improve KI efficacy and overcome drug-resistance and novel approaches to develop less drug-resistance prone KI-therapeutics. Expert opinion Although drug-resistance is a concern for current KI-therapeutics, recent progress in our understanding of the underlying mechanisms and promising technological advances may overcome this limitation and provide powerful new therapeutics. PMID:21235428

  7. Potential Mechanism of Action of 3'-Demethoxy-6-O-demethyl-isoguaiacin on Methicillin Resistant Staphylococcus aureus.

    PubMed

    Favela-Hernández, Juan Manuel J; Clemente-Soto, Aldo F; Balderas-Rentería, Isaías; Garza-González, Elvira; Camacho-Corona, María del Rayo

    2015-07-08

    Bacterial infections represent one of the main threats to global public health. One of the major causative agents associated with high morbidity and mortality infections in hospitals worldwide is methicillin-resistant Staphylococcus aureus. Therefore, there is a need to develop new antibacterial agents to treat these infections, and natural products are a rich source of them. In previous studies, we reported that lignan 3'-demethoxy-6-O-demethylisoguaiacin, isolated and characterized from Larrea tridentate, showed the best activity towards methicillin-resistant S. aureus. Thus, the aim of this study was to determine the potential molecular mechanism of the antibacterial activity of 3'-demethoxy-6-O-demethylisoguaiacin against methicillin-resistant S. aureus using microarray technology. Results of microarray genome expression were validated by real-time polymerase chain reaction (RT-PCR). The genetic profile expression results showed that lignan 3'-demethoxy-6-O-demethylisoguaiacin had activity on cell membrane affecting proteins of the ATP-binding cassette (ABC) transport system causing bacteria death. This molecular mechanism is not present in any antibacterial commercial drug and could be a new target for the development of novel antibacterial agents.

  8. Potential mechanism of action of 3'-demethoxy-6-O-demethyl-isoguaiacin on methicillin resistant Staphylococcus aureus.

    PubMed

    Favela-Hernández, Juan Manuel J; Clemente-Soto, Aldo F; Balderas-Rentería, Isaías; Garza-González, Elvira; Camacho-Corona, María Del Rayo

    2015-07-08

    Bacterial infections represent one of the main threats to global public health. One of the major causative agents associated with high morbidity and mortality infections in hospitals worldwide is methicillin-resistant Staphylococcus aureus. Therefore, there is a need to develop new antibacterial agents to treat these infections, and natural products are a rich source of them. In previous studies, we reported that lignan 3'-demethoxy-6-O-demethylisoguaiacin, isolated and characterized from Larrea tridentate, showed the best activity towards methicillin-resistant S. aureus. Thus, the aim of this study was to determine the potential molecular mechanism of the antibacterial activity of 3'-demethoxy-6-O-demethylisoguaiacin against methicillin-resistant S. aureus using microarray technology. Results of microarray genome expression were validated by real-time polymerase chain reaction (RT-PCR). The genetic profile expression results showed that lignan 3'-demethoxy-6-O-demethylisoguaiacin had activity on cell membrane affecting proteins of the ATP-binding cassette (ABC) transport system causing bacteria death. This molecular mechanism is not present in any antibacterial commercial drug and could be a new target for the development of novel antibacterial agents.

  9. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  10. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  11. Mechanism for detecting NAPL using electrical resistivity imaging.

    PubMed

    Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark

    2017-10-01

    The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.

    PubMed

    Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-02-19

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Açaí (Euterpe oleracea Mart.) Modulates Oxidative Stress Resistance in Caenorhabditis elegans by Direct and Indirect Mechanisms

    PubMed Central

    Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J.; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; de Paula Oliveira, Riva

    2014-01-01

    Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms. PMID:24594796

  14. Açaí (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms.

    PubMed

    Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; Oliveira, Riva de Paula

    2014-01-01

    Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms.

  15. Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance.

    PubMed

    Chen, Lin; Guo, Xianpu; Xie, Conghua; He, Li; Cai, Xingkui; Tian, Lingli; Song, Botao; Liu, Jun

    2013-07-01

    The somatic hybrids were derived previously from protoplast fusion between Solanum tuberosum and S. chacoense to gain the bacterial wilt resistance from the wild species. The genome components analysis in the present research was to clarify the nuclear and cytoplasmic composition of the hybrids, to explore the molecular markers associated with the resistance, and provide information for better use of these hybrids in potato breeding. One hundred and eight nuclear SSR markers and five cytoplasmic specific primers polymorphic between the fusion parents were used to detect the genome components of 44 somatic hybrids. The bacterial wilt resistance was assessed thrice by inoculating the in vitro plants with a bacterial suspension of race 1. The disease index, relative disease index, and resistance level were assigned to each hybrid, which were further analyzed in relation to the molecular markers for elucidating the potential genetic base of the resistance. All of the 317 parental unique nuclear SSR alleles appeared in the somatic hybrids with some variations in the number of bands detected. Nearly 80 % of the hybrids randomly showed the chloroplast pattern of one parent, and most of the hybrids exhibited a fused mitochondrial DNA pattern. One hundred and nine specific SSR alleles of S. chacoense were analyzed for their relationship with the disease index of the hybrids, and three alleles were identified to be significantly associated with the resistance. Selection for the resistant SSR alleles of S. chacoense may increase the possibility of producing resistant pedigrees.

  16. Mechanisms of antibiotic resistance in Staphylococcus aureus.

    PubMed

    Pantosti, Annalisa; Sanchini, Andrea; Monaco, Monica

    2007-06-01

    Staphylococcus aureus can exemplify better than any other human pathogen the adaptive evolution of bacteria in the antibiotic era, as it has demonstrated a unique ability to quickly respond to each new antibiotic with the development of a resistance mechanism, starting with penicillin and methicillin, until the most recent, linezolid and daptomycin. Resistance mechanisms include enzymatic inactivation of the antibiotic (penicillinase and aminoglycoside-modification enzymes), alteration of the target with decreased affinity for the antibiotic (notable examples being penicillin-binding protein 2a of methicillin-resistant S. aureus and D-Ala-D-Lac of peptidoglycan precursors of vancomycin-resistant strains), trapping of the antibiotic (for vancomycin and possibly daptomycin) and efflux pumps (fluoroquinolones and tetracycline). Complex genetic arrays (staphylococcal chromosomal cassette mec elements or the vanA operon) have been acquired by S. aureus through horizontal gene transfer, while resistance to other antibiotics, including some of the most recent ones (e.g., fluoroquinolones, linezolid and daptomycin) have developed through spontaneous mutations and positive selection. Detection of the resistance mechanisms and their genetic basis is an important support to antibiotic susceptibility surveillance in S. aureus.

  17. Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice.

    PubMed

    Demeure, Christian E; Blanchet, Charlène; Fitting, Catherine; Fayolle, Corinne; Khun, Huot; Szatanik, Marek; Milon, Geneviève; Panthier, Jean-Jacques; Jaubert, Jean; Montagutelli, Xavier; Huerre, Michel; Cavaillon, Jean-Marc; Carniel, Elisabeth

    2012-01-01

    Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance. The kinetics of infection, circulating blood cells, granulopoiesis, lesions, and cellular populations in the spleen, and cytokine production in various tissues were compared in SEG and susceptible C57BL/6J mice after subcutaneous infection with the virulent Y. pestis CO92. Bacterial invasion occurred early (day 2) but was transient in SEG/Pas mice, whereas in C57BL/6J mice it was delayed but continuous until death. The bacterial load in all organs significantly correlated with the production of 5 cytokines (granulocyte colony-stimulating factor, keratinocyte-derived chemokine (KC), macrophage cationic peptide-1 (MCP-1), interleukin 1α, and interleukin 6) involved in monocyte and neutrophil recruitment. Indeed, higher proportions of these 2 cell types in blood and massive recruitment of F4/80(+)CD11b(-) macrophages in the spleen were observed in SEG/Pas mice at an early time point (day 2). Later times after infection (day 4) were characterized in C57BL/6J mice by destructive lesions of the spleen and impaired granulopoiesis. A fast and efficient Y. pestis dissemination in SEG mice may be critical for the triggering of an early and effective innate immune response necessary for surviving plague.

  18. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    PubMed

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling

  19. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    PubMed

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  20. Interactions of plaunotol with bacterial membranes.

    PubMed

    Koga, T; Watanabe, H; Kawada, H; Takahashi, K; Utsui, Y; Domon, H; Ishii, C; Narita, T; Yasuda, H

    1998-08-01

    Plaunotol, a cytoprotective antiulcer agent, has a bactericidal effect against Helicobacter pylori, which may result from interaction of this compound with the bacterial cell membrane. The purpose of the present study was to confirm that plaunotol interacts with the H. pylori membrane. Membrane fluidities were measured using two stearic acid spin labels, namely 5-doxyl-stearic acid (in which the nitroxide group is located in the upper portion of the bacterial cell membrane) and 16-doxyl-stearic acid methyl ester (in which the nitroxide group is located deeper in the bacterial cell membrane), by means of electron spin resonance. The membrane fluidities of plaunotol-treated cells were significantly increased in the measurements made using the two spin labels. We also attempted to isolate plaunotol-resistant H. pylori in vitro by two different methods. To assess the level of resistance that could be reached, H. pylori was passaged five times on an agar plate containing subinhibitory concentrations of plaunotol or metronidazole. To measure the rate of development of resistance, H. pylori was grown with subinhibitory concentrations (0.25 x MIC) of plaunotol or metronidazole, and quantitatively plated on to medium containing 4 x MIC of the compounds. This treatment was repeated once more. No plaunotol-resistant colonies were selected by the two methods. H. pylori developed resistance to metronidazole easily and at a relatively high rate. The mechanism by which plaunotol directly fluidizes and destroys the H. pylori membrane might make it difficult for this organism to develop resistance to plaunotol. It was confirmed that the bactericidal effects of plaunotol were also shown against Staphylococcus aureus, Streptococcus pneumoniae, Neisseria gonorrhoeae, Moraxella catarrhalis and Haemophilus influenzae. No such effect was seen against Escherichia coli and Pseudomonas aeruginosa.

  1. Mechanism of uranium (VI) removal by two anaerobic bacterial communities.

    PubMed

    Martins, Mónica; Faleiro, Maria Leonor; da Costa, Ana M Rosa; Chaves, Sandra; Tenreiro, Rogério; Matos, António Pedro; Costa, Maria Clara

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. The Effect of a Low Fluoride Delivery System on Bacterial Metabolism.

    DTIC Science & Technology

    1980-09-01

    Fluorides, an4 -Ique mechanisms, slow release delivery, temporary restora- tions, bacterial attachment, Streptococcus mutans , bacterial metabo’ilsm...concentrations of NaF, SnF 4 , Na2SnF6 , TiF 4 , and SnCI2 on altering plaque formation by Streptococcus mutans NCTC 10449. Specific tests were...preparation. Microorganisms, Growth Media, and Growth A streptomycin resistant mutant of Streptococcus mutans NCTC 10449 (Bratthall serotype c) has been

  3. PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Dinjaski, Nina; Fernández-Gutiérrez, Mar; Selvam, Shivaram; Parra-Ruiz, Francisco J.; Lehman, Susan M.; Román, Julio San; García, Ernesto; García, José L.; García, Andrés J.; Prieto, María Auxiliadora

    2013-01-01

    Biomaterial-associated infections represent a significant clinical problem, and treatment of these microbial infections is becoming troublesome due to the increasing number of antibiotic-resistant strains. Here, we report a naturally functionalized bacterial polyhydroxyalkanoate (PHACOS) with antibacterial properties. We demonstrate that PHACOS selectively and efficiently inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo. This ability has been ascribed to the functionalized side chains containing thioester groups. Significantly less (3.2-fold) biofilm formation of S. aureus was detected on PHACOS compared to biofilms formed on control poly(3-hydroxyoctanoate-co-hydroxyhexanoate) and poly(ethylene terephthalate), but no differences were observed in bacterial adhesion among these polymers. PHACOS elicited minimal cytotoxic and inflammatory effects on murine macrophages and supported normal fibroblast adhesion. In vivo fluorescence imaging demonstrated minimal inflammation and excellent antibacterial activity for PHACOS compared to controls in an in vivo model of implant-associated infection. Additionally, reductions in neutrophils and macrophages in the vicinity of sterile PHACOS compared to sterile PHO implant were observed by immunohistochemistry. Moreover, a similar percentage of inflammatory cells was found in the tissue surrounding sterile PHACOS and S. aureus pre-colonized PHACOS implants, and these levels were significantly lower than S. aureus pre-colonized control polymers. These findings support a contact active surface mode of antibacterial action for PHACOS and establish this functionalized polyhydroxyalkanoate as an infection-resistant biomaterial. PMID:24094939

  4. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  5. Insights in Nanoparticle-Bacterium Interactions: New Frontiers to Bypass Bacterial Resistance to Antibiotics.

    PubMed

    Diab, Roudayna; Khameneh, Bahman; Joubert, Olivier; Duval, Raphael

    2015-01-01

    Nanotechnology has been revealed as a fundamental approach for antibiotics delivery. In this paper, recent findings demonstrating the superiority of nanocarried-antibiotics over "naked" ones and the ways by which nanoparticles can help to overwhelm bacterial drug resistance are reviewed. The second part of this paper sheds light on nanoparticle-bacterium interaction patterns. Finally, key factors affecting the effectiveness of nanoparticles interactions with bacteria are discussed.

  6. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients

    PubMed Central

    Vinod Kumar, B.; Hobani, Yahya Hasan; Abdulhaq, Ahmed; Jerah, Ahmed Ali; Hakami, Othman M.; Eltigani, Magdeldin; Bidwai, Anil K.

    2014-01-01

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised. PMID:25292217

  7. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients.

    PubMed

    Kumar, B Vinod; Hobani, Yahya Hasan; Abdulhaq, Ahmed; Jerah, Ahmed Ali; Hakami, Othman M; Eltigani, Magdeldin; Bidwai, Anil K

    2014-01-01

    Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised.

  8. Antibiotic resistance profile of bacterial isolates from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea.

    PubMed

    Rho, Hyunjin; Shin, Bongjin; Lee, Okbok; Choi, Yu-Hyun; Rho, Jaerang; Lee, Jiyoung

    2012-05-01

    The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from animal farming aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (∼26.04%) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria, including the genera Delftia, Burkholderia, Escherichia, Enterobacter, Acinetobacter, Shigella and Pseudomonas.

  9. Mechanism of quinolone resistance in anaerobic bacteria.

    PubMed

    Oh, H; Edlund, C

    2003-06-01

    Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.

  10. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles.

    PubMed

    Kwon, Young Sang; Ryu, Choong-Min; Lee, Soohyun; Park, Hyo Bee; Han, Ki Soo; Lee, Jung Han; Lee, Kyunghee; Chung, Woo Sik; Jeong, Mi-Jeong; Kim, Hee Kyu; Bae, Dong-Won

    2010-11-01

    Plant root-associated bacteria (rhizobacteria) elicit plant basal immunity referred to as induced systemic resistance (ISR) against multiple pathogens. Among multi-bacterial determinants involving such ISR, the induction of ISR and promotion of growth by bacterial volatile compounds was previously reported. To exploit global de novo expression of plant proteins by bacterial volatiles, proteomic analysis was performed after exposure of Arabidopsis plants to the rhizobacterium Bacillus subtilis GB03. Ethylene biosynthesis enzymes were significantly up-regulated. Analysis by quantitative reverse transcriptase polymerase chain reaction confirmed that ethylene biosynthesis-related genes SAM-2, ACS4, ACS12, and ACO2 as well as ethylene response genes, ERF1, GST2, and CHIB were up-regulated by the exposure to bacterial volatiles. More interestingly, the emission of bacterial volatiles significantly up-regulated both key defense mechanisms mediated by jasmonic acid and salicylic acid signaling pathways. In addition, high accumulation of antioxidant proteins also provided evidence of decreased sensitivity to reactive oxygen species during the elicitation of ISR by bacterial volatiles. The present results suggest that the proteomic analysis of plant defense responses in bacterial volatile-mediated ISR can reveal the mechanisms of plant basal defenses orchestrated by endogenous ethylene production pathways and the generation of reactive oxygen species.

  11. Melanoma patient derived xenografts acquire distinct Vemurafenib resistance mechanisms

    PubMed Central

    Monsma, David J; Cherba, David M; Eugster, Emily E; Dylewski, Dawna L; Davidson, Paula T; Peterson, Chelsea A; Borgman, Andrew S; Winn, Mary E; Dykema, Karl J; Webb, Craig P; MacKeigan, Jeffrey P; Duesbery, Nicholas S; Nickoloff, Brian J; Monks, Noel R

    2015-01-01

    Variable clinical responses, tumor heterogeneity, and drug resistance reduce long-term survival outcomes for metastatic melanoma patients. To guide and accelerate drug development, we characterized tumor responses for five melanoma patient derived xenograft models treated with Vemurafenib. Three BRAFV600E models showed acquired drug resistance, one BRAFV600E model had a complete and durable response, and a BRAFV600V model was expectedly unresponsive. In progressing tumors, a variety of resistance mechanisms to BRAF inhibition were uncovered, including mutant BRAF alternative splicing, NRAS mutation, COT (MAP3K8) overexpression, and increased mutant BRAF gene amplification and copy number. The resistance mechanisms among the patient derived xenograft models were similar to the resistance pathways identified in clinical specimens from patients progressing on BRAF inhibitor therapy. In addition, there was both inter- and intra-patient heterogeneity in resistance mechanisms, accompanied by heterogeneous pERK expression immunostaining profiles. MEK monotherapy of Vemurafenib-resistant tumors caused toxicity and acquired drug resistance. However, tumors were eradicated when Vemurafenib was combined the MEK inhibitor. The diversity of drug responses among the xenograft models; the distinct mechanisms of resistance; and the ability to overcome resistance by the addition of a MEK inhibitor provide a scheduling rationale for clinical trials of next-generation drug combinations. PMID:26101714

  12. Distribution of macrolide resistance mechanisms in Bulgarian clinical isolates of Streptococcus pyogenes during the years of 2013-2016.

    PubMed

    Muhtarova, Adile A; Gergova, Raina T; Mitov, Ivan G

    2017-09-01

    Streptococcus pyogenes, or group A streptococcus (GAS), is the main etiological agent of bacterial tonsillopharyngitis and a common cause of a wide variety of other mild to severe infections. Objectives of the present study was to determine and evaluate the distribution of genetic mechanisms associated with certain phenotypes of macrolide resistance in Bulgarian GAS isolated during the years of 2013-2016. All GAS strains were screened for the macrolide resistance genes erm(A), erm(B) and mef(A), using multiplex polymerase chain reaction (PCR). The minimal inhibitory concentrations (MICs) of erythromycin, azithromycin, clarithromycin, clindamycin were determined by E-tests. Almost 23% of GAS isolates obtained in 2013-2014 and near 40% of them in 2015-2016 contained various elements of resistance. The predominant gene was mef(A), which encodes an efflux pump (M-phenotype), identified in 57.84% of the macrolide-resistant strains. The next frequently prevalent mechanism was a combination of mef(A) and erm(B) in 22.55%, which determined high-level inducible or constitutive resistance to macrolides, lincosamides and streptogramins (iMLSB or cMLSB). The highest MIC value (>256mg/L) was detected in association with erm(B) (p<0.05). The MIC range was observed to be much higher in the isolates with combinations of resistance genes vs. those with mef genes alone (p<0.05). The data about the distribution and prevalence of macrolide resistance mechanisms obtained in this study can help in the treatment of persistent and recurrent GAS infections and in the correct choice of empiric therapy. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  13. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni.

    PubMed

    Dai, Lei; Sahin, Orhan; Tang, Yizhi; Zhang, Qijing

    2017-12-15

    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OX R ) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OX R phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR , which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OX R phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OX R mutants in bacterial organisms. IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OX R mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OX R mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OX R mutants in a bacterial population. This method represents a technical

  14. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    PubMed

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  15. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    PubMed Central

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p < 0

  16. Mechanisms of buffer therapy resistance

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.

    2014-01-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761

  17. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides.

    PubMed

    Hölzel, C S; Harms, K S; Küchenhoff, H; Kunz, A; Müller, C; Meyer, K; Schwaiger, K; Bauer, J

    2010-05-01

    Antibiotic residues as well as antibiotic-resistant bacteria in environmental samples might pose a risk to human health. This study aimed to investigate the association between antibiotic residues and bacterial antimicrobial resistance in liquid pig manure used as fertilizer. Concentrations of tetracyclines (TETs) and sulfonamides (SULs) were determined by liquid chromatography-mass spectrometry in 305 pig manure samples; antibiotic contents were correlated to the phenotypic resistance of Escherichia coli (n = 613) and enterococci (n = 564) towards up to 24 antibiotics. In 121 samples, the concentration of the TET resistance genes tet(M), tet(O) and tet(B) was quantified by real-time-PCR. TETs were found in 54% of the samples. The median sum concentration of all investigated TETs in the positive samples was 0.73 mg kg(-1). SULs were found with a similar frequency (51%) and a median sum concentration of 0.15 mg kg(-1) in the positive samples. Associated with the detection of TETs and/or SULs, resistance rates were significantly elevated for several substances - some of them not used in farm animals, e.g. chloramphenicol and synercid. In addition, multiresistant isolates were found more often in samples containing antibiotics. Analysis of the resistance genes tet(M) and tet(O) already showed a significant increase in their concentrations - but not in tet(B) - in the lowest range of total TET concentration. Mean tet(M) concentrations increased by the factor of 4.5 in the TET concentration range of 0.1-1 mg kg(-1), compared to negative manure samples. Antibiotic contamination of manure seems to be associated with a variety of changes in bacterial resistance, calling for a prudent use of antibiotics in farm animals. This study provides an interdisciplinary approach to assess antimicrobial resistance by combining the microbiological analysis of bacterial resistance with high quality chemical analysis of antibiotic residues in a representative number of environmental

  18. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing

    PubMed Central

    Peng, Zhong; Kim, Hyeun Bum; Stratton, Charles W.; Wu, Bin

    2017-01-01

    ABSTRACT Oral antibiotics such as metronidazole, vancomycin and fidaxomicin are therapies of choice for Clostridium difficile infection. Several important mechanisms for C. difficile antibiotic resistance have been described, including the acquisition of antibiotic resistance genes via the transfer of mobile genetic elements, selective pressure in vivo resulting in gene mutations, altered expression of redox-active proteins, iron metabolism, and DNA repair, as well as via biofilm formation. This update summarizes new information published since 2010 on phenotypic and genotypic resistance mechanisms in C. difficile and addresses susceptibility test methods and other strategies to counter antibiotic resistance of C. difficile. PMID:28404671

  19. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome.

    PubMed

    Vaz-Moreira, Ivone; Nunes, Olga C; Manaia, Célia M

    2014-07-01

    Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Potential mechanisms of resistance to microtubule inhibitors.

    PubMed

    Kavallaris, Maria; Annereau, Jean-Philippe; Barret, Jean-Marc

    2008-06-01

    Antimitotic drugs targeting the microtubules, such as the taxanes and vinca alkaloids, are widely used in the treatment of neoplastic diseases. Development of drug resistance over time, however, limits the efficacy of these agents and poses a clinical challenge to long-term improvement of patient outcomes. Understanding the mechanism(s) of drug resistance becomes paramount to allowing for alternative, if not improved, therapeutic options that might circumvent this challenge. Vinflunine, a novel microtubule inhibitor, has shown superior preclinical antitumor activity, and displays a different pattern of resistance, compared with other agents in the vinca alkaloid class.

  1. Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer.

    PubMed

    Abdel-Hafiz, Hany A

    2017-07-06

    Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.

  2. The Pleiotropic Antibacterial Mechanisms of Ursolic Acid against Methicillin-Resistant Staphylococcus aureus (MRSA).

    PubMed

    Wang, Chao-Min; Jhan, Yun-Lian; Tsai, Shang-Jie; Chou, Chang-Hung

    2016-07-07

    (1) BACKGROUND: Several triterpenoids were found to act synergistically with classes of antibiotic, indicating that plant-derived chemicals have potential to be used as therapeutics to enhance the activity of antibiotics against multidrug-resistant pathogens. However, the mode of action of triterpenoids against bacterial pathogens remains unclear. The objective of this study is to evaluate the interaction between ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA); (2) METHODS: The ability of ursolic acid to damage mammalian and bacterial membranes was examined. The proteomic response of methicillin-resistant S. aureus in ursolic acid treatment was investigated using two-dimensional (2D) proteomic analysis; (3) RESULTS: Ursolic acid caused the loss of staphylococcal membrane integrity without hemolytic activity. The comparison of the protein pattern of ursolic acid-treated and normal MRSA cells revealed that ursolic acid affected a variety of proteins involved in the translation process with translational accuracy, ribonuclease and chaperon subunits, glycolysis and oxidative responses; (4) CONCLUSION: The mode of action of ursolic acid appears to be the influence on the integrity of the bacterial membrane initially, followed by inhibition of protein synthesis and the metabolic pathway. These findings reflect that the pleiotropic effects of ursolic acid against MRSA make it a promising antibacterial agent in pharmaceutical research.

  3. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    PubMed Central

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  4. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    NASA Astrophysics Data System (ADS)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  5. Nanosilver–Silica Composite: Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings

    PubMed Central

    Ge, Yanling; Palva, Airi; Nordström, Katrina

    2017-01-01

    Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on silica matrix to form a nanosilver–silica (Ag–SiO2) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag–SiO2 composite, showed higher antibacterial effects against MRSA and E. coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag–SiO2 composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications. PMID:28878170

  6. [Surveillance of healthcare associated infections, bacterial resistance and antibiotic consumption in high-complexity hospitals in Colombia, 2011].

    PubMed

    Villalobos, Andrea Patricia; Barrero, Liliana Isabel; Rivera, Sandra Milena; Ovalle, María Victoria; Valera, Danik

    2014-04-01

    Preventing healthcare associated infections, especially for resistant microorganisms, is a priority. In Colombia, the surveillance of such events was started through a national pilot study. To describe the epidemiology of device-associated infections, bacterial resistance and antibiotic consumption patterns in institutions with intensive care units (ICU), 2011. Descriptive observational study in 10 health institutions from three Colombian provinces: Antioquia, Valle del Cauca, and Bogotá. Surveillance protocols were designed and implemented by trained health professionals in each hospital. A web tool was designed for data reporting and analysis. Infection rates, device-use percentages and antibiotics defined daily dose (DDD) were calculated. Bacterial resistance phenotypes and profiles were reported and analyzed using Whonet 5.6. The most common event was bloodstream infection (rate > 4.8/1000 catheter-days) followed by ventilator-associated pneumonia (VAP) and catheter-related urinary tract infection, showing a wide variability among institutions. A high consumption of meropenem in the ICU (DDD 22.5/100 beds-day) was observed, as well as a high carbapenem resistance (> 11.6%) and a high frequency of third generation cephalosporins resistance (> 25.6%) in Enterobacteriaceae in ICUs and hospitalization wards. The percentage of methicillin-resistant Staphylococcus aureus was higher in hospitalization wards (34.3%). This is the first experience in measuring these events in Colombia. It is necessary to implement a national surveillance system aimed at guiding governmental and institutional actions oriented to infection prevention and control, to resistance management and to the promotion of antibiotics rational use, along with a follow-up and monitoring process.

  7. Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight.

    PubMed

    Li, Xiaolin; Liu, Wen; Li, Bing; Liu, Guoyin; Wei, Yunxie; He, Chaozu; Shi, Haitao

    2018-03-01

    Gibberellin (GA) is an essential plant hormone in plant growth and development as well as various stress responses. DELLA proteins are important repressors of GA signal pathway. GA and DELLA have been extensively investigated in several model plants. However, the in vivo roles of GA and DELLA in cassava, one of the most important crops and energy crops in the tropical area, are unknown. In this study, systematic genome-wide analysis identified 4 MeDELLAs in cassava, as evidenced by the evolutionary tree, gene structures and motifs analyses. Gene expression analysis found that 4 MeDELLAs were commonly regulated by flg22 and Xanthomonas axonopodis pv manihotis (Xam). Through overexpression in Nicotiana benthamiana, we found that 4 MeDELLAs conferred improved disease resistance against cassava bacterial blight. Through virus-induced gene silencing (VIGS) in cassava, we found that MeDELLA-silenced plants exhibited decreased disease resistance, with less callose deposition and lower transcript levels of defense-related genes. This is the first study identifying MeDELLAs as positive regulators of disease resistance against cassava bacterial blight. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Evidence of major genes affecting resistance to bacterial cold water disease in rainbow trout using Bayesian methods of segregation analysis

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation for BCWD resistance in our rainbow trout population, and a family-based selection program to improve resistance was initiated at the National Center for Cool and Col...

  9. Evidence of major genes affecting bacterial cold water disease resistance in rainbow trout using Bayesian methods of complex segregation analysis

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation for BCWD resistance in our rainbow trout population, and a family-based selection program to improve resistance was initiated at the NCCCWA in 2005. The main objec...

  10. Mechanics of torque generation in the bacterial flagellar motor

    PubMed Central

    Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959

  11. Mechanics of torque generation in the bacterial flagellar motor.

    PubMed

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  12. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance.

    PubMed

    Kang, Yoo Kyung; Kwon, Kyu; Ryu, Jea Sung; Lee, Ha Neul; Park, Chankyu; Chung, Hyun Jung

    2017-04-19

    The overuse of antibiotics plays a major role in the emergence and spread of multidrug-resistant bacteria. A molecularly targeted, specific treatment method for bacterial pathogens can prevent this problem by reducing the selective pressure during microbial growth. Herein, we introduce a nonviral treatment strategy delivering genome editing material for targeting antibacterial resistance. We apply the CRISPR-Cas9 system, which has been recognized as an innovative tool for highly specific and efficient genome engineering in different organisms, as the delivery cargo. We utilize polymer-derivatized Cas9, by direct covalent modification of the protein with cationic polymer, for subsequent complexation with single-guide RNA targeting antibiotic resistance. We show that nanosized CRISPR complexes (= Cr-Nanocomplex) were successfully formed, while maintaining the functional activity of Cas9 endonuclease to induce double-strand DNA cleavage. We also demonstrate that the Cr-Nanocomplex designed to target mecA-the major gene involved in methicillin resistance-can be efficiently delivered into Methicillin-resistant Staphylococcus aureus (MRSA), and allow the editing of the bacterial genome with much higher efficiency compared to using native Cas9 complexes or conventional lipid-based formulations. The present study shows for the first time that a covalently modified CRISPR system allows nonviral, therapeutic genome editing, and can be potentially applied as a target specific antimicrobial.

  13. Protein Oxidation: Key to Bacterial Desiccation Resistance?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Jim K.; Li, Shu-Mei W.; Gaidamakova, E.

    For extremely ionizing radiation resistant bacteria, survival has been attributed to protection of proteins from oxidative damage during irradiation, with the result that repair systems survive and function with far greater efficiency during recovery than in sensitive bacteria. Here we examined the relationship between survival of dry-climate soil bacteria and the level of cellular protein oxidation induced by desiccation. Bacteria were isolated from surface soils of the shrub-steppe of the U.S. Department of Energy’s Hanford Site in Washington state. A total of 63 isolates were used for phylogenetic analysis. The majority of isolates were closely related to members of themore » genus Deinococcus, with Chelatococcus, Methylobacterium and Bosea also among the genera identified. Desiccation-resistant isolates accumulated high intracellular manganese and low iron concentrations compared to sensitive bacteria. In vivo, proteins of desiccation-resistant bacteria were protected from oxidative modifications that introduce carbonyl groups in sensitive bacteria during drying. We present the case that survival of bacteria that inhabit dry-climate soils are highly dependent on mechanisms which limit protein oxidation during dehydration.« less

  14. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L.

    PubMed

    Gomi, Kenji; Satoh, Masaru; Ozawa, Rika; Shinonaga, Yumi; Sanada, Sachiyo; Sasaki, Katsutomo; Matsumura, Masaya; Ohashi, Yuko; Kanno, Hiroo; Akimitsu, Kazuya; Takabayashi, Junji

    2010-01-01

    A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.

  15. Mechanisms of Bacterial Colonization of the Respiratory Tract

    PubMed Central

    Siegel, Steven J.; Weiser, Jeffrey N.

    2016-01-01

    Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis. PMID:26488280

  16. Resistant mechanisms and molecular epidemiology of imipenem-resistant Acinetobacter baumannii.

    PubMed

    Xiao, Shu-Zhen; Chu, Hai-Qing; Han, Li-Zhong; Zhang, Zhe-Min; Li, Bing; Zhao, Lan; Xu, Liyun

    2016-09-01

    The aim of the study was to investigate the resistant mechanisms and homology of imipenem-resistant Acinetobacter baumannii (A. baumannii). A total of 46 non-duplicate imipenem‑resistant A. baumannii clinical isolates were collected from three tertiary hospitals between July, 2011 and June, 2012. The minimal inhibitory concentrations (MICs) of antimicrobial agents were determined using the agar dilution method. Phenylalanine‑arginine β-naphthylamide was used to detect the presence of the efflux pump-mediated resistant mechanism. Polymerase chain reaction was employed to amplify genes associated with drug resistance, including β‑lactamase genes, efflux pump genes and outer membrane protein gene CarO. A few amplicons were randomly selected and sequenced. Multilocus sequence analysis (MLST) was employed in typing A. baumanni. A. baumannii was resistant to imipenem, simultaneously showing resistance to several other antimicrobials. In addtition, 13 A. baumannii were found to mediate drug resistance through operation of the efflux pump. Of the various drug resistance genes tested, blaOXA‑51 was present in 46 isolates, blaOXA‑23 gene was present in 44 isolates and blaNDM gene was found in only one strain. Other drug resistant‑associated genes, including blaKPC, blaIMP, blaOXA-24, blaOXA‑58, blaSHV, blaGIM and blaVIM were not detected. Mutation of adeS and outer membrane protein gene CarO were found in a few of the imipenem‑resistant isolates. The MLST analysis revealed that all 46 clinical isolates were clustered into 11 genotypes and the most frequent genotype was ST208. In conclusion, β‑lactamase genes, genes involved in efflux pump and mutation of outer membrane protein encoding gene may be important in mediating imipenem resistance in A. baumannii. Of the 11 different genotypes, ST11 was shared by the majority of A. baumannii, which may be due to horizontal transfer of patients from hospitals.

  17. Evolution of herbicide resistance mechanisms in grass weeds.

    PubMed

    Matzrafi, Maor; Gadri, Yaron; Frenkel, Eyal; Rubin, Baruch; Peleg, Zvi

    2014-12-01

    Herbicide resistant weeds are becoming increasingly common, threatening global food security. Here, we present BrIFAR: a new model system for the functional study of mechanisms of herbicide resistance in grass weeds. We have developed a large collection of Brachypodium accessions, the BrI collection, representing a wide range of habitats. Wide screening of the responses of the accessions to four major herbicide groups (PSII, ACCase, ALS/AHAS and EPSPS inhibitors) identified 28 herbicide-resistance candidate accessions. Target-site resistance to PSII inhibitors was found in accessions collected from habitats with a known history of herbicide applications. An amino acid substitution in the psbA gene (serine264 to glycine) conferred resistance and also significantly affected the flowering and shoot dry weight of the resistant accession, as compared to the sensitive accession. Non-target site resistance to ACCase inhibitors was found in accessions collected from habitats with a history of herbicide application and from a nature reserve. In-vitro enzyme activity tests and responses following pre-treatment with malathion (a cytochrome-P450 inhibitor) indicated sensitivity at the enzyme level, and give strong support to diclofop-methyl and pinoxaden enhanced detoxification as NTS resistance mechanism. BrIFAR can promote better understanding of the evolution of mechanisms of herbicide resistance and aid the implementation of integrative management approaches for sustainable agriculture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens.

    PubMed

    Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M

    2017-09-01

    Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance.

    PubMed

    Germe, Thomas; Vörös, Judit; Jeannot, Frederic; Taillier, Thomas; Stavenger, Robert A; Bacqué, Eric; Maxwell, Anthony; Bax, Benjamin D

    2018-05-04

    Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA ('poisoning') in an analogous fashion to fluoroquinolones, but without the requirement for the water-metal-ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase-DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases.

  20. A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance

    PubMed Central

    Germe, Thomas; Vörös, Judit; Jeannot, Frederic; Taillier, Thomas; Stavenger, Robert A; Bacqué, Eric; Bax, Benjamin D

    2018-01-01

    Abstract Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA (‘poisoning’) in an analogous fashion to fluoroquinolones, but without the requirement for the water–metal–ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase–DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases. PMID:29538767

  1. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    PubMed

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Impact on Bacterial Resistance of Therapeutically Nonequivalent Generics: The Case of Piperacillin-Tazobactam

    PubMed Central

    Rodriguez, Carlos A.; Agudelo, Maria; Aguilar, Yudy A.; Zuluaga, Andres F.

    2016-01-01

    Previous studies have demonstrated that pharmaceutical equivalence and pharmacokinetic equivalence of generic antibiotics are necessary but not sufficient conditions to guarantee therapeutic equivalence (better called pharmacodynamic equivalence). In addition, there is scientific evidence suggesting a direct link between pharmacodynamic nonequivalence of generic vancomycin and promotion of resistance in Staphylococcus aureus. To find out if even subtle deviations from the expected pharmacodynamic behavior with respect to the innovator could favor resistance, we studied a generic product of piperacillin-tazobactam characterized by pharmaceutical and pharmacokinetic equivalence but a faulty fit of Hill’s Emax sigmoid model that could be interpreted as pharmacodynamic nonequivalence. We determined the impact in vivo of this generic product on the resistance of a mixed Escherichia coli population composed of ∼99% susceptible cells (ATCC 35218 strain) and a ∼1% isogenic resistant subpopulation that overproduces TEM-1 β-lactamase. After only 24 hours of treatment in the neutropenic murine thigh infection model, the generic amplified the resistant subpopulation up to 20-times compared with the innovator, following an inverted-U dose-response relationship. These findings highlight the critical role of therapeutic nonequivalence of generic antibiotics as a key factor contributing to the global problem of bacterial resistance. PMID:27191163

  3. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    PubMed

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  4. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    PubMed

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  5. Treatment of bacterial meningitis: an update.

    PubMed

    Shin, Seon Hee; Kim, Kwang Sik

    2012-10-01

    The introduction of protein conjugate vaccines for Haemophilus influenzae type b (Hib), Streptococcus pneumoniae (S. pneumoniae) and Neisseria meningitidis (N. menigitidis) has changed the epidemiology of bacterial meningitis. Bacterial meningitis continues to be an important cause of mortality and morbidity, and our incomplete knowledge of its pathogenesis and emergence of antimicrobial resistant bacteria contribute to such mortality and morbidity. An early empiric antibiotic treatment is critical for the management of patients with bacterial meningitis. This article gives an overview on optimal treatment strategies of bacterial meningitis, along with considerations of new insights on epidemiology, clinical and laboratory findings supportive of bacterial meningitis, chemoprophylaxis, selection of initial antimicrobial agents for suspected bacterial meningitis, antimicrobial resistance and utility of new antibiotics, status on anti-inflammatory agents and adjunctive therapy, and pathogenesis of bacterial meningitis. Prompt treatment of bacterial meningitis with an appropriate antibiotic is essential. Optimal antimicrobial treatment of bacterial meningitis requires bactericidal agents able to penetrate the blood-brain barrier (BBB), with efficacy in cerebrospinal fluid (CSF). Several new antibiotics have been introduced for the treatment of meningitis caused by resistant bacteria, but their use in human studies has been limited. More complete understanding of the microbial and host interactions that are involved in the pathogenesis of bacterial meningitis and associated neurologic sequelae is likely to help in developing new strategies for the prevention and therapy of bacterial meningitis.

  6. Marker-assisted selection for resistance to bacterial cold water disease in a commercial rainbow trout breeding population

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD), caused by Flavobacterium psychrophilum, is an endemic and problematic disease in rainbow trout (Oncorhynchus mykiss) aquaculture. Previously, we have identified SNPs (single nucleotide polymorphisms) associated with BCWD resistance in rainbow trout. The objective...

  7. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  8. Characterisation of glufosinate resistance mechanisms in Eleusine indica.

    PubMed

    Jalaludin, Adam; Yu, Qin; Zoellner, Peter; Beffa, Roland; Powles, Stephen B

    2017-06-01

    An Eleusine indica population has evolved resistance to glufosinate, a major post-emergence herbicide of global agriculture. This population was analysed for target-site (glutamine synthetase) and non-target-site (glufosinate uptake, translocation and metabolism) resistance mechanisms. Glutamine synthetase (GS) activity extracted from susceptible (S) and resistant (R*) plants was equally sensitive to glufosinate inhibition, with IC 50 values of 0.85 mm and 0.99 mm, respectively. The extractable GS activity was also similar in S and R* samples. Foliar uptake of [ 14 C]-glufosinate did not differ in S and R* plants, nor did glufosinate net uptake in leaf discs. Translocation of [ 14 C]-glufosinate into untreated shoots and roots was also similar in both populations, with 44% to 47% of the herbicide translocated out from the treated leaf 24 h after treatment. The HPLC and LC-MS analysis of glufosinate metabolism revealed no major metabolites in S or R* leaf tissue. Glufosinate resistance in this resistant population is not due to an insensitive GS, or increased activity, or altered glufosinate uptake and translocation, or enhanced glufosinate metabolism. Thus, target-site resistance is likely excluded and the exact resistance mechanism(s) remain to be determined. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Global Governance Mechanisms to Address Antimicrobial Resistance.

    PubMed

    Padiyara, Ponnu; Inoue, Hajime; Sprenger, Marc

    2018-01-01

    Since their discovery, antibiotics, and more broadly, antimicrobials, have been a cornerstone of modern medicine. But the overuse and misuse of these drugs have led to rising rates of antimicrobial resistance, which occurs when bacteria adapt in ways that render antibiotics ineffective. A world without effective antibiotics can have drastic impacts on population health, global development, and the global economy. As a global common good, antibiotic effectiveness is vulnerable to the tragedy of the commons, where a shared limited resource is overused by a community when each individual exploits the finite resource for their own benefit. A borderless threat like antimicrobial resistance requires global governance mechanisms to mitigate its emergence and spread, and it is the responsibility of all countries and relevant multilateral organizations. These mechanisms can be in the form of legally binding global governance mechanisms such as treaties and regulatory standards or nonbinding mechanisms such as political declarations, resolutions, or guidelines. In this article, we argue that while both are effective methods, the strong, swift, and coordinated action needed to address rising rates of antimicrobial resistance will be better served through legally binding governance mechanisms.

  10. Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava.

    PubMed

    Yoodee, Sunisa; Kobayashi, Yohko; Songnuan, Wisuwat; Boonchird, Chuenchit; Thitamadee, Siripong; Kobayashi, Issei; Narangajavana, Jarunya

    2018-01-01

    Cassava bacterial blight (CBB) disease caused by Xanthomonas axonopodis pv. manihotis (Xam) is a severe disease in cassava worldwide. In addition to causing significant cassava yield loss, CBB disease has not been extensively studied, especially in terms of CBB resistance genes. The present research demonstrated the molecular mechanisms underlining the defense response during Xam infection in two cassava cultivars exhibiting different degrees of disease resistance, Huay Bong60 (HB60) and Hanatee (HN). Based on gene expression analysis, ten of twelve putative defense-related genes including, leucine-rich repeat receptor-like kinases (LRR-RLKs), resistance (R), WRKY and pathogenesis-related (PR) genes, were differentially expressed between these two cassava cultivars during Xam infection. The up-regulation of defense-related genes observed in HB60 may be the mechanism required for the reduction of disease severity in the resistant cultivar. Interestingly, priming with salicylic acid (SA) or methyl jasmonate (MeJA) for 24 h before Xam inoculation could enhance the defense response in both cassava cultivars. The disease severity was decreased 10% in the resistant cultivar (HB60) and was remarkably reduced 21% in the susceptible cultivar (HN) by SA/MeJA priming. Priming with Xam inoculation modulated cassava4.1_013417, cassava4.1_030866 and cassava4.1_020555 (highest similarity to MeWRKY59, MePR1 and AtPDF2.2, respectively) expression and led to enhanced resistance of the susceptible cultivar in the second infection. The putative cis-regulatory elements were predicted in an upstream region of these three defense-related genes. The different gene expression levels in these genes between the two cultivars were due to the differences in cis-regulatory elements in their promoter regions. Taken together, our study strongly suggested that the induction of defense-related genes correlated with defense resistance against Xam infection, and exogenous application of SA or Me

  11. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    USDA-ARS?s Scientific Manuscript database

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  12. The resistance patterns of normal ocular bacterial flora to 4 fluoroquinolone antibiotics.

    PubMed

    Park, Shin Hae; Lim, Jeong-A; Choi, Jun-Sub; Kim, Kyung-A; Joo, Choun-Ki

    2009-01-01

    The purposes of this study were to determine the normal ocular bacterial flora isolated from patients undergoing anterior segment surgery and to evaluate their in vitro susceptibility to ciprofloxacin, levofloxacin, gatifloxacin, and moxifloxacin. During January 2006 to December 2006, conjunctival swabs taken from 385 eyes were inoculated onto 5% blood agar plates. The isolated bacteria were classified by analysis of 16s ribosomal DNA sequencing. Disk diffusion testing was performed in accordance with Clinical and Laboratory Standards Institute Performance Standards. Three hundred sixty-three microorganisms were isolated in 291 samples from 385 eyes. Gram-positive species predominated (89.8%, 326 of the 363 isolates), and Staphylococcus epidermidis was the most frequently isolated organism, accounting for 60.6% (220 of the 363 isolates). For 293 gram-positive isolates, the prevalence rates of in vitro resistance to ciprofloxacin, levofloxacin, gatifloxacin, and moxifloxacin were 22.2% (65 isolates), 11.6% (34), 2.7% (8), and 5.1% (15), respectively. Two of the gram-negative isolates were resistant to only ciprofloxacin (5.4%, 2 of 37 isolates) and not to other fluoroquinolones. Of 62 ciprofloxacin-resistant, coagulase-negative staphylococci, 32 (51.6%) showed coresistance to levofloxacin. Seven organisms were resistant to all the fluoroquinolones. Fluoroquinolones have activity against normal aerobic flora of the ocular surface. Normal ocular flora, especially gram-positive species, has low resistance to the fourth-generation fluoroquinolones -- gatifloxacin and moxifloxacin.

  13. [Resistance risk, cross-resistance and biochemical resistance mechanism of Laodelphax striatellus to buprofezin].

    PubMed

    Mao, Xu-lian; Liu, Jin; Li, Xu-ke; Chi, Jia-jia; Liu, Yong-jie

    2016-01-01

    In order to investigate the resistance development law and biochemical resistance mechanism of Laodelphax striatellus to buprofezin, spraying rice seedlings was used to continuously screen resistant strains of L. striatellus and dipping rice seedlings was applied to determine the toxicity and cross-resistance of L. striatellus to insecticides. After 32-generation screening with buprofezin, L. striatellus developed 168.49 folds resistance and its reality heritability (h2) was 0.11. If the killing rate was 80%-90%, L. striatellus was expected to develop 10-fold resistance to buprofezin only after 5 to 6 generations breeding. Because the actual reality heritability of field populations was usually lower than that of the resistant strains, the production of field populations increasing with 10-fold resistance would need much longer time. The results of cross-resistance showed that resistant strain had high level cross-resistance with thiamethoxam and imidacloprid, low level cross-resistance with acetamiprid, and no cross-resistance with pymetrozine and chlorpyrifos. The activity of detoxification enzymes of different strains and the syergism of synergist were measured. The results showed that cytochrome P450 monooxygenase played a major role in the resistance of L. striatellus to buprofezin, the esterase played a minor role and the GSH-S-transferase had no effect. Therefore, L. striatellus would have high risk to develop resistance to buprofezin when used in the field and might be delayed by using pymetrozine and chlorpyrifos.

  14. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens

    PubMed Central

    HAYDEL, SHELLEY E.; REMENIH, CHRISTINE M.; WILLIAMS, LYNDA B.

    2008-01-01

    SYNOPSIS Objectives The capacity to properly address the worldwide incidence of infectious diseases lies in the ability to detect, prevent, and effectively treat these infections. Therefore, identifying and analyzing inhibitory agents are worthwhile endeavors in an era when few new classes of effective antimicrobials have been developed. The use of geological nanomaterials to heal skin infections has been evident since the earliest recorded history, and specific clay minerals may prove valuable in the treatment of bacterial diseases, including infections for which there are no effective antibiotics, such as Buruli ulcer and multi-drug resistant infections. Methods We have subjected two iron-rich clay minerals, which have previously been used to treat Buruli ulcer patients, to broth culture testing of antibiotic-susceptible and -resistant pathogenic bacteria to assess the feasibility of using clay minerals as therapeutic agents. Results One specific mineral, CsAg02, demonstrated bactericidal activity against pathogenic Escherichia coli, extended-spectrum β-lactamase (ESBL) E. coli, S. enterica serovar Typhimurium, Pseudomonas aeruginosa, and Mycobacterium marinum and a combined bacteriostatic/bactericidal effect against Staphylococcus aureus, penicillin-resistant S. aureus (PRSA), methicillin-resistant S. aureus (MRSA), and Mycobacterium smegmatis, while another mineral with similar structure and bulk crystal chemistry, CsAr02, had no effect on or enhanced bacterial growth. The <0.2 μm fraction of CsAg02 and CsAg02 heated to 200°C or 550°C retained bactericidal activity, while cation-exchanged CsAg02 and CsAg02 heated to 900°C no longer killed E. coli. Conclusions Our results indicate that specific mineral products have intrinsic, heat-stable antibacterial properties, which could provide an inexpensive treatment against numerous human bacterial infections. PMID:18070832

  15. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  16. The intrinsic resistome of bacterial pathogens.

    PubMed

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  17. In vitro characterization of the antibacterial spectrum of novel bacterial type II topoisomerase inhibitors of the aminobenzimidazole class.

    PubMed

    Mani, Nagraj; Gross, Christian H; Parsons, Jonathan D; Hanzelka, Brian; Müh, Ute; Mullin, Steve; Liao, Yusheng; Grillot, Anne-Laure; Stamos, Dean; Charifson, Paul S; Grossman, Trudy H

    2006-04-01

    Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.

  18. In Vitro Characterization of the Antibacterial Spectrum of Novel Bacterial Type II Topoisomerase Inhibitors of the Aminobenzimidazole Class

    PubMed Central

    Mani, Nagraj; Gross, Christian H.; Parsons, Jonathan D.; Hanzelka, Brian; Müh, Ute; Mullin, Steve; Liao, Yusheng; Grillot, Anne-Laure; Stamos, Dean; Charifson, Paul S.; Grossman, Trudy H.

    2006-01-01

    Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities. PMID:16569833

  19. [Resistance mechanisms and cross-resistance of phoxim-resistant Frankliniella occidentalis Pergande population].

    PubMed

    Wang, Sheng-Yin; Zhou, Xian-Hong; Zhang, An-Sheng; Li, Li-Li; Men, Xing-Yuan; Zhang, Si-Cong; Liu, Yong-Jie; Yu, Yi

    2012-07-01

    To understand the resistance risks of Frankliniella occidentalis Pergande against phoxim, this paper studied the resistance mechanisms of phoxim-resistant F. occidentalis population against phoxim and the cross-resistance of the population against other insecticides. The phoxim-resistant population had medium level cross-resistance to chlorpyrifos, lambda-cyhalothrin, and methomyl, low level cross-resistance to chlorfenapyr, imidacloprid, emamectin-benzoate, and spinosad, but no cross-resistance to acetamiprid and abamectin. The synergists piperonyl butoxide (PBO), s, s, s-tributyl phosphorotrithioate (DEF), and triphenyl phosphate (TPP) had significant synergism (P < 0.05) on the toxicity of phoxim to the resistant (XK), field (BJ), and susceptible (S) populations, while diethyl maleate (DEM) had no significant synergism to XK and S populations but had significant synergism to BJ population. As compared with S population, the XK and BJ populations had significantly increased activities of mixed-functional oxidases P450 (2.79-fold and 1.48-fold), b, (2.88-fold and 1.88-fold), O-demethylase (2.60-fold and 1.68-fold), and carboxylesterase (2.02-fold and 1.61-fold, respectively), and XK population had a significantly increased acetylcholine esterase activity (3.10-fold). Both XK and BJ population had an increased activity of glutathione S-transferases (1.11-fold and 1.20-fold, respectively), but the increment was not significant. The increased detoxification enzymes activities in F. occidentalis could play an important role in the resistance of the plant against phoxim.

  20. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.

    PubMed

    Islam, Md Mahmudul; Hameed, H M Adnan; Mugweru, Julius; Chhotaray, Chiranjibi; Wang, Changwei; Tan, Yaoju; Liu, Jianxiong; Li, Xinjie; Tan, Shouyong; Ojima, Iwao; Yew, Wing Wai; Nuermberger, Eric; Lamichhane, Gyanu; Zhang, Tianyu

    2017-01-20

    Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  1. Disease resistance: Molecular mechanisms and biotechnological applications

    USDA-ARS?s Scientific Manuscript database

    This special issue “Disease resistance: molecular mechanisms and biotechnological applications” contains 11 review articles and four original research papers. Research in the area of engineering for disease resistance continues to progress although only 10% of the transgenic plants registered for ...

  2. Bacterial Cytological Profiling (BCP) as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus.

    PubMed

    Quach, D T; Sakoulas, G; Nizet, V; Pogliano, J; Pogliano, K

    2016-02-01

    Successful treatment of bacterial infections requires the timely administration of appropriate antimicrobial therapy. The failure to initiate the correct therapy in a timely fashion results in poor clinical outcomes, longer hospital stays, and higher medical costs. Current approaches to antibiotic susceptibility testing of cultured pathogens have key limitations ranging from long run times to dependence on prior knowledge of genetic mechanisms of resistance. We have developed a rapid antimicrobial susceptibility assay for Staphylococcus aureus based on bacterial cytological profiling (BCP), which uses quantitative fluorescence microscopy to measure antibiotic induced changes in cellular architecture. BCP discriminated between methicillin-susceptible (MSSA) and -resistant (MRSA) clinical isolates of S. aureus (n = 71) within 1-2 h with 100% accuracy. Similarly, BCP correctly distinguished daptomycin susceptible (DS) from daptomycin non-susceptible (DNS) S. aureus strains (n = 20) within 30 min. Among MRSA isolates, BCP further identified two classes of strains that differ in their susceptibility to specific combinations of beta-lactam antibiotics. BCP provides a rapid and flexible alternative to gene-based susceptibility testing methods for S. aureus, and should be readily adaptable to different antibiotics and bacterial species as new mechanisms of resistance or multidrug-resistant pathogens evolve and appear in mainstream clinical practice.

  3. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles.

    PubMed

    Farag, Mohamed A; Zhang, Huiming; Ryu, Choong-Min

    2013-07-01

    Certain plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) and plant growth promotion in the absence of physical contact with plants via volatile organic compound (VOC) emissions. In this article, we review the recent progess made by research into the interactions between PGPR VOCs and plants, focusing on VOC emission by PGPR strains in plants. Particular attention is given to the mechanisms by which these bacterial VOCs elicit ISR. We provide an overview of recent progress in the elucidation of PGPR VOC interactions from studies utilizing transcriptome, metabolome, and proteome analyses. By monitoring defense gene expression patterns, performing 2-dimensional electrophoresis, and studying defense signaling null mutants, salicylic acid and ethylene have been found to be key players in plant signaling pathways involved in the ISR response. Bacterial VOCs also confer induced systemic tolerance to abiotic stresses, such as drought and heavy metals. A review of current analytical approaches for PGPR volatile profiling is also provided with needed future developments emphasized. To assess potential utilization of PGPR VOCs for crop plants, volatile suspensions have been applied to pepper and cucumber roots and found to be effective at protecting plants against plant pathogens and insect pests in the field. Taken together, these studies provide further insight into the biological and ecological potential of PGPR VOCs for enhancing plant self-immunity and/or adaptation to biotic and abiotic stresses in modern agriculture.

  4. Progress on mechanism of ethambutol resistance in Mycobacterium Tuberculosis.

    PubMed

    Wang, Ting; Jiao, Wei-wei; Shen, A-dong

    2016-10-20

    The occurance and prevalence of multidrug-resistant tuberculosis poses a serious threat to the global tuberculosis control. Ethambutol (EMB) is one of the first-line anti-tuberculosis drugs, which is usually used in combination with isoniazid and rifampicin for treating pan-sensitive tuberculosis, and it can also be used in drug-resistant tuberculosis. However, the situation of EMB resistance is alarmingly high, especially in multi-drug resistant tuberculosis. In China, EMB resistance rate in the previously treated cases was up to 17.2% and showed an increased tendency. What was worse, 51.3%-66.7% of multidrug-resistant tuberculosis cases were resistant to EMB. Thus, it is important to understand the drug resistance mechanism of EMB, which will help to slow down the drug resistance rate of EMB. In this review, we focus on the current status of EMB resistance, the effects of EMB and the mechanisms of EMB resistance in Mycobacterium tuberculosis.

  5. Survivial Strategies in Bacterial Range Expansions

    NASA Astrophysics Data System (ADS)

    Frey, Erwin

    2014-03-01

    Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.

  6. Exogenous l-Valine Promotes Phagocytosis to Kill Multidrug-Resistant Bacterial Pathogens

    PubMed Central

    Chen, Xin-hai; Liu, Shi-rao; Peng, Bo; Li, Dan; Cheng, Zhi-xue; Zhu, Jia-xin; Zhang, Song; Peng, Yu-ming; Li, Hui; Zhang, Tian-tuo; Peng, Xuan-xian

    2017-01-01

    The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics. To explore metabolite candidates, we applied a metabolomics approach to investigate the metabolic profiles of mice after Klebsiella pneumoniae infection. Compared with the mice that died from K. pneumoniae infection, mice that survived the infection displayed elevated levels of l-valine. Our analysis showed that l-valine increased macrophage phagocytosis, thereby reducing the load of pathogens; this effect was not only limited to K. pneumoniae but also included Escherichia coli clinical isolates in infected tissues. Two mechanisms are involved in this process: l-valine activating the PI3K/Akt1 pathway and promoting NO production through the inhibition of arginase activity. The NO precursor l-arginine is necessary for l-valine-stimulated macrophage phagocytosis. The valine-arginine combination therapy effectively killed K. pneumoniae and exerted similar effects in other Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our study extends the role of metabolism in innate immunity and develops the possibility of employing the metabolic modulator-mediated innate immunity as a therapy for bacterial infections. PMID:28321214

  7. Resistance of different stocks and transferrin genotypes of coho salmon, Oncorhynchus kisutch, and steelhead trout, Salmo gairdneri, to bacterial kidney disease and vibriosis

    USGS Publications Warehouse

    Winter , Gary W.; Schreck, Carl B.; McIntyre, John D.

    1979-01-01

    Juvenile coho salmon and steelhead trout ofdifferentstocks and three transferrin genotypes(AA, AC, and CCl, all reared in identical or similar environments, were experimentally infected with Corynebacterium sp., the causative agent ofbacterial kidney disease, or with Vibrio anguillarum, the causative agent of vibriosis. Mortality due to the pathogens was compared among stocks within a species and among transferrin genotypes within a stock to determine whetherthere was a geneticbasis for resistance to disease. Differences in resistance to bacterial kidney disease among coho salmon stocks had a genetic basis. Stock susceptibility to vibriosis was strongly influenced by environmental factors. Coho salmon orsteelhead trout of one stock may be resistant to one disease but susceptible to another. The importance of transferrin genotype of coho salmon in resistance to bacterial kidney disease was stock specific; in stocks that showed differential resistance of genotypes, the AA was the most susceptible. No differencesin resistance to vibriosis were observed among transferrin genotypes.

  8. Whole Genome Sequence Analysis of Pig Respiratory Bacterial Pathogens with Elevated Minimum Inhibitory Concentrations for Macrolides.

    PubMed

    Dayao, Denise Ann Estarez; Seddon, Jennifer M; Gibson, Justine S; Blackall, Patrick J; Turni, Conny

    2016-10-01

    Macrolides are often used to treat and control bacterial pathogens causing respiratory disease in pigs. This study analyzed the whole genome sequences of one clinical isolate of Actinobacillus pleuropneumoniae, Haemophilus parasuis, Pasteurella multocida, and Bordetella bronchiseptica, all isolated from Australian pigs to identify the mechanism underlying the elevated minimum inhibitory concentrations (MICs) for erythromycin, tilmicosin, or tulathromycin. The H. parasuis assembled genome had a nucleotide transition at position 2059 (A to G) in the six copies of the 23S rRNA gene. This mutation has previously been associated with macrolide resistance but this is the first reported mechanism associated with elevated macrolide MICs in H. parasuis. There was no known macrolide resistance mechanism identified in the other three bacterial genomes. However, strA and sul2, aminoglycoside and sulfonamide resistance genes, respectively, were detected in one contiguous sequence (contig 1) of A. pleuropneumoniae assembled genome. This contig was identical to plasmids previously identified in Pasteurellaceae. This study has provided one possible explanation of elevated MICs to macrolides in H. parasuis. Further studies are necessary to clarify the mechanism causing the unexplained macrolide resistance in other Australian pig respiratory pathogens including the role of efflux systems, which were detected in all analyzed genomes.

  9. Bacterial meningitis - principles of antimicrobial treatment.

    PubMed

    Jawień, Miroslaw; Garlicki, Aleksander M

    2013-01-01

    Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.

  10. The social structure of microbial community involved in colonization resistance.

    PubMed

    He, Xuesong; McLean, Jeffrey S; Guo, Lihong; Lux, Renate; Shi, Wenyuan

    2014-03-01

    It is well established that host-associated microbial communities can interfere with the colonization and establishment of microbes of foreign origins, a phenomenon often referred to as bacterial interference or colonization resistance. However, due to the complexity of the indigenous microbiota, it has been extremely difficult to elucidate the community colonization resistance mechanisms and identify the bacterial species involved. In a recent study, we have established an in vitro mice oral microbial community (O-mix) and demonstrated its colonization resistance against an Escherichia coli strain of mice gut origin. In this study, we further analyzed the community structure of the O-mix by using a dilution/regrowth approach and identified the bacterial species involved in colonization resistance against E. coli. Our results revealed that, within the O-mix there were three different types of bacterial species forming unique social structure. They act as 'Sensor', 'Mediator' and 'Killer', respectively, and have coordinated roles in initiating the antagonistic action and preventing the integration of E. coli. The functional role of each identified bacterial species was further confirmed by E. coli-specific responsiveness of the synthetic communities composed of different combination of the identified players. The study reveals for the first time the sophisticated structural and functional organization of a colonization resistance pathway within a microbial community. Furthermore, our results emphasize the importance of 'Facilitation' or positive interactions in the development of community-level functions, such as colonization resistance.

  11. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-03-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties.

  12. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed Central

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-01-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties. PMID:10049932

  13. [Successful treatment of a necrotizing, multi-resistant bacterial pyoderma in a python with cold plasma therapy].

    PubMed

    Klinger, Christoph; Dengler, Berrett; Bauer, Thomas; Mueller, Ralf S

    2018-02-01

    A 4-year-old ball python was presented 3 weeks after multiple bite wounds from a prey rat with large skin lesions, a concurrent deep bacterial pyoderma and clinical signs for septicemia, including neurolo -gical symptoms. Affected tissue separated from the underlying muscular layer revealing parts of the muscles. Clinical examination and cyto -logy was consistent with bacterial pyoderma; septicemia was an additional tentative clinical diagnosis. Empirical lincomycin and marbo -floxacin (bacterial culture revealed a multi-resistant Stenotrophomonas maltophilia susceptible to fluoroquinolones) treatment improved the patient's general condition but skin wounds deteriorated to multifocal eschars with intracellular rods. Further diagnostics were limited for financial reasons, euthanasia was considered. Cold atmospheric pressure plasma (CAPP) therapy was performed six times in 4 weeks. Within 1 week, inflammatory symptoms resolved. Re-epithelialization was completed few weeks later. In the following year, the snake sloughed three times without any signs of dysecdysis. CAPP therapy may offer a viable treatment option for bacterial (especially multiresistant) pyoderma and necrotizing dermatitis in snakes. Schattauer GmbH.

  14. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes.

    PubMed

    Wei, Yunxie; Chang, Yanli; Zeng, Hongqiu; Liu, Guoyin; He, Chaozu; Shi, Haitao

    2018-01-01

    With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Fluorescent Antibiotics: New Research Tools to Fight Antibiotic Resistance.

    PubMed

    Stone, M Rhia L; Butler, Mark S; Phetsang, Wanida; Cooper, Matthew A; Blaskovich, Mark A T

    2018-05-01

    Better understanding how multidrug-resistant (MDR) bacteria can evade current and novel antibiotics requires a better understanding of the chemical biology of antibiotic action. This necessitates using new tools and techniques to advance our knowledge of bacterial responses to antibiotics, ideally in live cells in real time, to selectively investigate bacterial growth, division, metabolism, and resistance in response to antibiotic challenge. In this review, we discuss the preparation and biological evaluation of fluorescent antibiotics, focussing on how these reporters and assay methods can help elucidate resistance mechanisms. We also examine the potential utility of such probes for real-time in vivo diagnosis of infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy

    PubMed Central

    Wong, Michael; Daly, Seth M.; Greenberg, David E.; Toprak, Erdal

    2016-01-01

    The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene’s sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities. PMID:27631336

  17. Bacterial proteinases as targets for the development of second-generation antibiotics.

    PubMed

    Travis, J; Potempa, J

    2000-03-07

    The emergence of bacterial pathogen resistance to common antibiotics strongly supports the necessity to develop alternative mechanisms for combating drug-resistant forms of these infective organisms. Currently, few pharmaceutical companies have attempted to investigate the possibility of interrupting metabolic pathways other than those that are known to be involved in cell wall biosynthesis. In this review, we describe multiple, novel roles for bacterial proteinases during infection using, as a specific example, the enzymes from the organism Porphyromonas gingivalis, a periodontopathogen, which is known to be involved in the development and progression of periodontal disease. In this manner, we are able to justify the concept of developing synthetic inhibitors against members of this class of enzymes as potential second-generation antibiotics. Such compounds could not only prove valuable in retarding the growth and proliferation of bacterial pathogens but also lead to the use of this class of inhibitors against invasion by other infective organisms.

  18. The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria

    PubMed Central

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16–23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family. PMID:23776501

  19. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    PubMed

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  20. Molecular mechanisms of CRISPR-mediated microbial immunity.

    PubMed

    Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus

    2014-02-01

    Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.

  1. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  2. Variations in the Degree of d-Alanylation of Teichoic Acids in Lactococcus lactis Alter Resistance to Cationic Antimicrobials but Have No Effect on Bacterial Surface Hydrophobicity and Charge▿

    PubMed Central

    Giaouris, Efstathios; Briandet, Romain; Meyrand, Mickael; Courtin, Pascal; Chapot-Chartier, Marie-Pierre

    2008-01-01

    An increase of the degree of d-alanylation of teichoic acids in Lactococcus lactis resulted in a significant increase of bacterial resistance toward the cationic antimicrobials nisin and lysozyme, whereas the absence of d-alanylation led to a decreased resistance toward the same compounds. In contrast, the same variations of the d-alanylation degree did not modify bacterial cell surface charge and hydrophobicity. Bacterial adhesion to polystyrene and glass surfaces was not modified either. PMID:18539809

  3. Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry for Detection of Antibiotic Resistance Mechanisms: from Research to Routine Diagnosis

    PubMed Central

    Chudáčková, Eva; Walková, Radka

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied as an identification procedure in clinical microbiology and has been widely used in routine laboratory practice because of its economical and diagnostic benefits. The range of applications of MALDI-TOF MS has been growing constantly, from rapid species identification to labor-intensive proteomic studies of bacterial physiology. The purpose of this review is to summarize the contribution of the studies already performed with MALDI-TOF MS concerning antibiotic resistance and to analyze future perspectives in this field. We believe that current research should continue in four main directions, including the detection of antibiotic modifications by degrading enzymes, the detection of resistance mechanism determinants through proteomic studies of multiresistant bacteria, and the analysis of modifications of target sites, such as ribosomal methylation. The quantification of antibiotics is suggested as a new approach to study influx and efflux in bacterial cells. The results of the presented studies demonstrate that MALDI-TOF MS is a relevant tool for the detection of antibiotic resistance and opens new avenues for both clinical and experimental microbiology. PMID:23297261

  4. Molecular Basis for Lytic Bacteriophage Resistance in Enterococci.

    PubMed

    Duerkop, Breck A; Huo, Wenwen; Bhardwaj, Pooja; Palmer, Kelli L; Hooper, Lora V

    2016-08-30

    The human intestine harbors diverse communities of bacteria and bacteriophages. Given the specificity of phages for their bacterial hosts, there is growing interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. A significant barrier to such therapies is the rapid development of phage-resistant bacteria, highlighting the need to understand how bacteria acquire phage resistance in vivo Here we identify novel lytic phages in municipal raw sewage that kill Enterococcus faecalis, a Gram-positive opportunistic pathogen that resides in the human intestine. We show that phage infection of E. faecalis requires a predicted integral membrane protein that we have named PIPEF (for phage infection protein from E. faecalis). We find that PIPEF is conserved in E. faecalis and harbors a 160-amino-acid hypervariable region that determines phage tropism for distinct enterococcal strains. Finally, we use a gnotobiotic mouse model of in vivo phage predation to show that the sewage phages temporarily reduce E. faecalis colonization of the intestine but that E. faecalis acquires phage resistance through mutations in PIPEF Our findings define the molecular basis for an evolutionary arms race between E. faecalis and the lytic phages that prey on them. They also suggest approaches for engineering E. faecalis phages that have altered host specificity and that can subvert phage resistance in the host bacteria. Bacteriophage therapy has received renewed attention as a potential solution to the rise in antibiotic-resistant bacterial infections. However, bacteria can acquire phage resistance, posing a major barrier to phage therapy. To overcome this problem, it is necessary to understand phage resistance mechanisms in bacteria. We have unraveled one such resistance mechanism in Enterococcus faecalis, a Gram-positive natural resident of the human intestine that has acquired antibiotic resistance and can cause opportunistic infections

  5. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps

    PubMed Central

    Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624

  6. Management of multidrug resistant bacterial endemic.

    PubMed

    Zahar, J-R; Lesprit, P

    2014-09-01

    The fight against multi-drug resistant Gram-negative bacilli (MDRGNB), especially extended-spectrum β-lactamase producing Enterobacteriaceae, is about to be lost in our country. The emergence of new resistance mechanisms to carbapenems in these Enterobacteriaceae exposes patients to a risk of treatment failure without any other therapeutic options. This dramatic situation is paradoxical because we are well aware of the 2 major factors responsible for this situation: 1) MDRO cross-transmission, associated with a low compliance to standard precautions, especially hand hygiene, and 2) overexposure of patients to antibiotics. The implementation of a "search and isolate" policy, which was justified to control the spread of some MDRO that remained rare in the country, was not associated with a better adherence to standard precautions. The antibiotic policy and the measures implemented to control antibiotic consumptions have rarely been enforced and have shown inconsistent results. Notably, no significant decrease of antibiotic consumption has been observed. There is no excuse for these poor results, because some authors evaluating the effectiveness of programs for the control of MDRO have reported their positive effects on antimicrobial resistance without any detrimental effects. It is now urgent to deal with the 2 major factors by establishing an educational and persuasive program with quantified and opposable objectives. Firstly, we have to improve the observance of hand hygiene above 70%. Secondly, we have to define and reach a target for the reduction of antibiotic consumption both in community and in hospital settings. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  8. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids

    PubMed Central

    He, Susu; Chandler, Michael; Varani, Alessandro M.; Hickman, Alison B.; Dekker, John P.

    2016-01-01

    ABSTRACT The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance. PMID:27923922

  9. Risk factors for drug-resistant bacterial pneumonia in older patients hospitalized with pneumonia in a Chinese population.

    PubMed

    Ma, H M; Ip, Margaret; Woo, Jean; Hui, David S C; Lui, Grace C Y; Lee, Nelson L S; Chan, Paul K S; Rainer, T H

    2013-09-01

    The relationship between healthcare-associated pneumonia (HCAP) and resistant bacteria is unclear. The aim of this study was to identify the risk factors for pneumonia caused by drug-resistant bacteria (DRB). A prospective cohort study was conducted at a tertiary teaching hospital in Hong Kong. Consecutive older patients (aged ≥65 years) were hospitalized with pneumonia from January 2004 to June 2005. DRB comprised methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae and Acinetobacter baumannii. The entire cohort consisted of 1176 older patients. Of 472 (40.1%) patients with etiological diagnosis established, bacterial pneumonia was found in 354 (30.1%) cases. DRB were isolated in 48 patients: P. aeruginosa (41), MRSA (5) and ESBL producing enteric bacilli (3). Co-infection with P. aeruginosa and MRSA was found in one patient. The prevalence of DRB in culture-positive pneumonia was 20.1% (48/239). Patients with DRB were more likely to have limitation in activities of daily living, bronchiectasis, dementia, severe pneumonia, recent hospitalization and recent antibiotic use. Logistic regression revealed that bronchiectasis [relative risk (RR) 14.12, P = 0.002], recent hospitalization (RR 4.89, P < 0.001) and severe pneumonia (RR 2.42, P = 0.010) were independent predictors of drug-resistant bacterial pneumonia. Recent hospitalization is the only risk factor for HCAP which is shown to be associated with DRB. Nursing home residence is not a risk factor. The concept of HCAP may not be totally applicable in Hong Kong where the prevalence of drug-resistant pathogens in pneumonia is low.

  10. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato

    PubMed Central

    Tai, Thomas H.; Dahlbeck, Douglas; Clark, Eszter T.; Gajiwala, Paresh; Pasion, Romela; Whalen, Maureen C.; Stall, Robert E.; Staskawicz, Brian J.

    1999-01-01

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species. PMID:10570214

  11. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.

    PubMed

    Tai, T H; Dahlbeck, D; Clark, E T; Gajiwala, P; Pasion, R; Whalen, M C; Stall, R E; Staskawicz, B J

    1999-11-23

    The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site-leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

  12. Mechanisms of quinolone action and microbial response.

    PubMed

    Hawkey, Peter M

    2003-05-01

    Over the years, chromosomal mapping of the bacterial genome of Escherichia coli has demonstrated that many loci are associated with quinolone resistance, which is mainly a result of chromosomal mutation or alteration of the quantity or type of porins in the outer membrane of Gram-negative bacteria. There has been one report of a small and confined episode of plasmid-mediated resistance to fluoroquinolones, which did not appear to persist. With the increasingly widespread use of an expanding range of fluoroquinolone antibiotics, a range and mix in individual bacterial isolates of the different mechanisms of resistance to fluoroquinolones will undoubtedly be encountered amongst clinically significant bacteria. Currently, transferable resistance is extremely rare and most resistant bacteria arise from clonal expansion of mutated strains. However, it is conceivable that in the future, horizontal gene transfer may become a more important means of conferring resistance to fluoroquinolones.

  13. Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin

    NASA Astrophysics Data System (ADS)

    Marín-Menéndez, Alejandro; Montis, Costanza; Díaz-Calvo, Teresa; Carta, Davide; Hatzixanthis, Kostas; Morris, Christopher J.; McArthur, Michael; Berti, Debora

    2017-01-01

    Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy.

  14. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids.

    PubMed

    He, Susu; Chandler, Michael; Varani, Alessandro M; Hickman, Alison B; Dekker, John P; Dyda, Fred

    2016-12-06

    The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance. The spread of antibiotic resistance among Gram-negative bacteria is a serious public health threat, as it can critically limit the types of drugs that can be used to treat infected patients. In particular, carbapenem-resistant members of the Enterobacteriaceae family are responsible for a significant and growing burden of morbidity and mortality. Here, we report on the mechanisms underlying the evolution of several plasmids carried by previously sequenced clinical Enterobacteriaceae isolates from the National Institutes of Health Clinical Center (NIH CC). Our ability to track genetic rearrangements that occurred within resistance plasmids was dependent on accurate annotation of the mobile genetic elements within the plasmids, which was greatly aided by access to long-read DNA sequencing data and knowledge of their mechanisms. Mobile genetic elements such as

  15. [Enzymes for disrupting bacterial communication, an alternative to antibiotics?

    PubMed

    Rémy, B; Plener, L; Elias, M; Daudé, D; Chabrière, E

    2016-11-01

    Quorum sensing (QS) is used by bacteria to communicate and synchronize their actions according to the cell density. In this way, they produce and secrete in the surrounding environment small molecules dubbed autoinducers (AIs) that regulate the expression of certain genes. The phenotypic traits regulated by QS are diverse and include pathogenicity, biofilm formation or resistance to anti-microbial treatments. The strategy, aiming at disrupting QS, known as quorum quenching (QQ), has emerged to counteract bacterial virulence and involves QS-inhibitors (QSI) or QQ-enzymes degrading AIs. Differently from antibiotics, QQ aims at blocking cell signaling and does not alter bacterial survival. This considerably decreases the selection pressure as compared to bactericide treatments and may reduce the occurrence of resistance mechanisms. QQ-enzymes are particularly appealing as they may disrupt molecular QS-signal without entering the cell and in a catalytic way. This review covers several aspects of QQ-based medical applications and the potential subsequent emergence of resistance is discussed. Copyright © 2016 Académie Nationale de Pharmacie. All rights reserved.

  16. Bacterial sex in dental plaque.

    PubMed

    Olsen, Ingar; Tribble, Gena D; Fiehn, Nils-Erik; Wang, Bing-Yan

    2013-01-01

    Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  17. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    PubMed

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  18. Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith.) Against Drug Resistance Bacterial Isolates

    PubMed Central

    Aiyegoro, Olayinka; Adewusi, Adekanmi; Oyedemi, Sunday; Akinpelu, David; Okoh, Anthony

    2011-01-01

    Infection due to multidrug resistance pathogens is difficult to manage due to bacterial virulence factors and because of a relatively limited choice of antimicrobial agents. Thus, it is imperative to discover fresh antimicrobials or new practices that are effective for the treatment of infectious diseases caused by drug-resistant microorganisms. The objective of this experiment is to investigate for synergistic outcomes when crude methanolic extract of the stem bark of Afzelia africana and antibiotics were combined against a panel of antibiotic resistant bacterial strains that have been implicated in infections. Standard microbiological protocols were used to determine the minimum inhibitory concentrations (MICs) of the extract and antibiotics, as well as to investigate the effect of combinations of the methanolic extract of A. africana stem bark and selected antibiotics using the time-kill assay method. The extract of Afzelia africana exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria made up of environmental and standard strains at a screening concentration of 5 mg/mL. The MICs of the crude extracts and the antibiotics varied between 1 μg/mL and 5.0 mg/mL. Overall, synergistic response constituted about 63.79% of all manner of combinations of extract and antibiotics against all test organisms; antagonism was not detected among the 176 tests carried out. The extract from A. africana stem bark showed potentials of synergy in combination with antibiotics against strains of pathogenic bacteria. The detection of synergy between the extract and antibiotics demonstrates the potential of this plant as a source of antibiotic resistance modulating compounds. PMID:21845091

  19. Cross-resistance of bisultap resistant strain of Nilaparvata lugens and its biochemical mechanism.

    PubMed

    Ling, Shanfeng; Zhang, Runjie

    2011-02-01

    The resistant (R) strain of the planthopper Nilaparvata lugens (Stål) selected for bisultap resistance displayed 7.7-fold resistance to bisultap and also had cross-resistance to nereistoxin (monosultap, thiocyclam, and cartap), chlorpyrifos, dimethoate, and malathion but no cross-resistance to buprofezin, imidacloprid, and fipronil. To find out the biochemical mechanism of resistance to bisultap, biochemical assay was done. The results showed that cytochrome P450 monooxygenases (P450) activity in R strain was 2.71-fold that in susceptible strain (S strain), in which the changed activity for general esterase (EST) was 1.91 and for glutathione S-transferases only 1.32. Piperonyl butoxide (PBO) could significantly inhibit P450 activity (percentage of inhibition [PI]: 37.31%) in the R strain, with ESTs PI = 16.04% by triphenyl phosphate (TPP). The results also demonstrated that diethyl maleate had no synergism with bisultap. However, PBO displayed significant synergism in three different strains, and the synergism increased with resistance (S strain 1.42, Lab strain, 2.24 and R strain, 3.23). TPP also showed synergism for three strains, especially in R strain (synergistic ratio = 2.47). An in vitro biochemical study and in vivo synergistic study indicated that P450 might be play important role in the biochemical mechanism of bisultap resistance and that esterase might be the important factor of bisultap resistance. Acetylcholinesterase (AChE) insensitivity play important role in bisultap resistance. We suggest that buprofezin, imidacloprid, and fipronil could be used in resistance management programs for N. lugens via alternation and rotation with bisultap.

  20. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance.

    PubMed

    Bai, Xiaohui; Ma, Xiaolin; Xu, Fengming; Li, Jing; Zhang, Hang; Xiao, Xiang

    2015-11-15

    Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases.

    PubMed

    Basarab, Gregory S; Kern, Gunther H; McNulty, John; Mueller, John P; Lawrence, Kenneth; Vishwanathan, Karthick; Alm, Richard A; Barvian, Kevin; Doig, Peter; Galullo, Vincent; Gardner, Humphrey; Gowravaram, Madhusudhan; Huband, Michael; Kimzey, Amy; Morningstar, Marshall; Kutschke, Amy; Lahiri, Sushmita D; Perros, Manos; Singh, Renu; Schuck, Virna J A; Tommasi, Ruben; Walkup, Grant; Newman, Joseph V

    2015-07-14

    With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.

  2. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases

    PubMed Central

    Basarab, Gregory S.; Kern, Gunther H.; McNulty, John; Mueller, John P.; Lawrence, Kenneth; Vishwanathan, Karthick; Alm, Richard A.; Barvian, Kevin; Doig, Peter; Galullo, Vincent; Gardner, Humphrey; Gowravaram, Madhusudhan; Huband, Michael; Kimzey, Amy; Morningstar, Marshall; Kutschke, Amy; Lahiri, Sushmita D.; Perros, Manos; Singh, Renu; Schuck, Virna J. A.; Tommasi, Ruben; Walkup, Grant; Newman, Joseph V.

    2015-01-01

    With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy. PMID:26168713

  3. Impact of restricted amoxicillin/clavulanic acid use on Escherichia coli resistance--antibiotic DU90% profiles with bacterial resistance rates: a visual presentation.

    PubMed

    Mimica Matanovic, Suzana; Bergman, Ulf; Vukovic, Dubravka; Wettermark, Björn; Vlahovic-Palcevski, Vera

    2010-10-01

    High use of amoxicillin/clavulanic acid (AMC) at the University Hospital Osijek (Croatia) contributed to high rates of resistance in Enterobacteriaceae, in particular Escherichia coli (50%). Thus, in order to decrease bacterial resistance, AMC use was restricted. We present results of the restriction on resistance amongst antibiotics accounting for 90% of antibiotic use [drug utilisation 90% (DU90%)]. Data were analysed on antibiotic use and microbiological susceptibility of E. coli during two 9-month periods, before and after the restriction of AMC use. Drug use was presented as numbers of defined daily doses (DDDs) and DDDs/100 bed-days. Resistance of E. coli to antibiotics was presented as percentages of isolated strains in the DU90% segment. Use of AMC was 16 DDDs/100 bed-days or 30% of all antibiotics before the intervention. Use of AMC fell to 2 DDDs/100 bed-days or 4% after the intervention, and resistance of E. coli fell from 37% to 11%. In conclusion, restricted use of AMC resulted in a significant decrease of E. coli resistance. DU90% resistance profiles are simple and useful tools in highlighting problems in antibiotic use and resistance but may also be useful in long-term follow-up of antibiotic policy. Copyright 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  4. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco

    PubMed Central

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Jürgen

    2013-01-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance. PMID:24025239

  5. Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin

    PubMed Central

    Echelman, Daniel J.; Lee, Alex Q.; Fernández, Julio M.

    2017-01-01

    Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. PMID:28348083

  6. Plant immunity: a lesson from pathogenic bacterial effector proteins.

    PubMed

    Cui, Haitao; Xiang, Tingting; Zhou, Jian-Min

    2009-10-01

    Phytopathogenic bacteria inject an array of effector proteins into host cells to alter host physiology and assist the infection process. Some of these effectors can also trigger disease resistance as a result of recognition in the plant cell by cytoplasmic immune receptors. In addition to effector-triggered immunity, plants immunity can be triggered upon the detection of Pathogen/Microbe-Associated Molecular Patterns by surface-localized immune receptors. Recent progress indicates that many bacterial effector proteins use a variety of biochemical properties to directly attack key components of PAMP-triggered immunity and effector-triggered immunity, providing new insights into the molecular basis of plant innate immunity. Emerging evidence indicate that the evolution of disease resistance in plants is intimately linked to the mechanism by which bacterial effectors promote parasitism. This review focuses on how these studies have conceptually advanced our understanding of plant-pathogen interactions.

  7. Evolutionary Explanations for Antibiotic Resistance in Daily Press, Online Websites and Biology Textbooks in Sweden

    ERIC Educational Resources Information Center

    Bohlin, Gustav; Höst, Gunnar E.

    2015-01-01

    The present study explores the extent and precision of evolutionary explanations for antibiotic resistance in communication directed toward the Swedish public. Bacterial resistance develops through evolutionary mechanisms and knowledge of these helps to explain causes underlying the growing prevalence of resistant strains, as well as important…

  8. Towards the Understanding of Resistance Mechanisms in Clinically Isolated Trimethoprim-resistant, Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.; Lombardo, M; Wright, D

    2010-01-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affectedmore » by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.« less

  9. Addressing Antibiotic Resistance Requires Robust International Accountability Mechanisms.

    PubMed

    Hoffman, Steven J; Ottersen, Trygve

    2015-01-01

    A proposed international agreement on antibiotic resistance will depend on robust accountability mechanisms for real-world impact. This article examines the central aspects of accountability relationships in international agreements and lays out ways to strengthen them. We provide a menu of accountability mechanisms that facilitate transparency, oversight, complaint, and enforcement, describe how these mechanisms can promote compliance, and identify key considerations for a proposed international agreement on antibiotic resistance. These insights can be useful for bringing about the revolutionary changes that new international agreements aspire to achieve. © 2015 American Society of Law, Medicine & Ethics, Inc.

  10. Induction of soybean resistance to bacterial pustule disease (Xanthomonas axonopodis pv. glycines) by rhizobacteria and organic material treatment

    NASA Astrophysics Data System (ADS)

    Khaeruni, A.; Johan, E. A.; Wijayanto, T.; Taufik, M.; Syafar, A. A. R.; Kade Sutariati, G. A.

    2018-02-01

    This study aimed to evaluate the role of different formulations and types of organic matter in improving yield and resistance of soybean plants to bacterial pustule disease. The study was prepared based on a randomized block design with a factorial pattern. The first factor was the application of rhizobacterial formulation (biofresh), ie F0 = without the application of rhizobacteria, F1 = application of biofresh in solid formulation, and F2 = application of biofresh in liquid formulation. The second factor was the application of organic materials, namely B1 = compost of soybean litter + cow dung, B2 = compost of rice straw + cow dung, B3 = compost of soybean litter + rice straw + cow dung. Observation of disease severity and soybean yield was conducted on five sample plants in each treatment. The results showed that the treatment of biological agent biofresh in solid formulation combined with compos of soybean litter, was the best treatment in increasing plant resistance to bacterial pustule disease and seed weight. Plant resistance induction occurred systemically characterized by salicylic acid increase of 0.3 mg and peroxidase increase of 0.07 unit / mL in the sample plants.

  11. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent.

    PubMed

    Królasik, Joanna; Zakowska, Zofia; Krepska, Milena; Klimek, Leszek

    2010-01-01

    The natural ability of microorganisms for adhesion and biofilm formation on various surfaces is one of the factors causing the inefficiency of a disinfection agent, despite its proven activity in vitro. The aim of the study was to determine the effectiveness of disinfecting substances on bacterial biofilms formed on stainless steel surface. A universally applied disinfecting agent was used in the tests. Bacterial strains: Listeria innocua, Pseudomonas putida, Micrococcus luteus, Staphylococcus hominis strains, were isolated from food contact surfaces, after a cleaning and disinfection process. The disinfecting agent was a commercially available acid specimen based on hydrogen peroxide and peroxyacetic acid, the substance that was designed for food industry usage. Model tests were carried out on biofilm formed on stainless steel (type 304, no 4 finish). Biofilms were recorded by electron scanning microscope. The disinfecting agent in usable concentration, 0.5% and during 10 minutes was ineffective for biofilms. The reduction of cells in biofilms was only 1-2 logarithmic cycles. The use of the agent in higher concentration--1% for 30 minutes caused reduction of cell number by around 5 logarithmic cycles only in the case of one microorganism, M. luteus. For other types: L. innocua, P. putida, S. hominis, the requirements placed on disinfecting agents were not fulfilled. The results of experiments proved that bacterial biofilms are resistant to the disinfectant applied in its operational parameters. Disinfecting effectiveness was achieved after twofold increase of the agent's concentration.

  12. Sequence- and structure-based computational analyses of Gram-negative tripartite efflux pumps in the context of bacterial membranes

    DOE PAGES

    Travers, Timothy; Wang, Katherine J.; Lopez, Cesar A.; ...

    2018-02-09

    Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this paper, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.

  13. Sequence- and structure-based computational analyses of Gram-negative tripartite efflux pumps in the context of bacterial membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travers, Timothy; Wang, Katherine J.; Lopez, Cesar A.

    Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this paper, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.

  14. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance.

    PubMed

    DeLorenzo, M E; Brooker, J; Chung, K W; Kelly, M; Martinez, J; Moore, J G; Thomas, M

    2016-04-01

    Antimicrobial compounds are widespread, emerging contaminants in the aquatic environment and may threaten ecosystem and human health. This study characterized effects of antimicrobial compounds common to human and veterinary medicine, aquaculture, and consumer personal care products [erythromycin (ERY), sulfamethoxazole (SMX), oxytetracycline (OTC), and triclosan (TCS)] in the grass shrimp Palaemonetes pugio. The effects of antimicrobial treatments on grass shrimp mortality and lipid peroxidation activity were measured. The effects of antimicrobial treatments on the bacterial community of the shrimp were then assessed by measuring Vibrio density and testing bacterial isolates for antibiotic resistance. TCS (0.33 mg/L) increased shrimp mortality by 37% and increased lipid peroxidation activity by 63%. A mixture of 0.33 mg/L TCS and 60 mg/L SMX caused a 47% increase in shrimp mortality and an 88% increase in lipid peroxidation activity. Exposure to SMX (30 mg/L or 60 mg/L) alone and to a mixture of SMX/ERY/OTC did not significantly affect shrimp survival or lipid peroxidation activity. Shrimp exposure to 0.33 mg/L TCS increased Vibrio density 350% as compared to the control whereas SMX, the SMX/TCS mixture, and the mixture of SMX/ERY/OTC decreased Vibrio density 78-94%. Increased Vibrio antibiotic resistance was observed for all shrimp antimicrobial treatments except for the mixture of SMX/ERY/OTC. Approximately 87% of grass shrimp Vibrio isolates displayed resistance to TCS in the control treatment suggesting a high level of TCS resistance in environmental Vibrio populations. The presence of TCS in coastal waters may preferentially increase the resistance and abundance of pathogenic bacteria. These results indicate the need for further study into the potential interactions between antimicrobials, aquatic organisms, and associated bacterial communities. © 2014 Wiley Periodicals, Inc.

  15. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant

    PubMed Central

    Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis

    2013-01-01

    Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347

  16. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure.

    PubMed

    Selvam, Ammaiyappan; Xu, Delin; Zhao, Zhenyong; Wong, Jonathan W C

    2012-12-01

    This study monitored the abundance of antibiotic resistant genes (ARGs) and the bacterial diversity during composting of swine manure spiked with chlortetracycline, sulfadiazine and ciprofloxacin at two different levels and a control without antibiotics. Resistance genes of tetracycline (tetQ, tetW, tetC, tetG, tetZ and tetY), sulfonamide (sul1, sul2, dfrA1 and dfrA7) and fluoroquinolone (gyrA and parC) represented 0.02-1.91%, 0.67-10.28% and 0.00005-0.0002%, respectively, of the total 16S rDNA copies in the initial composting mass. After 28-42 days of composting, these ARGs, except parC, were undetectable in the composting mass indicating that composting is a potential method of manure management. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of bacterial 16S rDNA of the composting mass indicated that the addition of antibiotics up to 100, 20 and 20mg/kg of chlortetracycline, sulfadiazine and ciprofloxacin, respectively, elicited only a transient perturbation and the bacterial diversity was restored in due course of composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  18. Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection

    PubMed Central

    Zhang, Hui; Li, Lu; Zhao, Zhe; Peng, Daxin; Zhou, Xiaohui

    2016-01-01

    Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance. PMID:27189325

  19. Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms.

    PubMed

    Kraupner, Nadine; Ebmeyer, Stefan; Bengtsson-Palme, Johan; Fick, Jerker; Kristiansson, Erik; Flach, Carl-Fredrik; Larsson, D G Joakim

    2018-04-25

    There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 μg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 μg/L or higher. Only at 5-10 μg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 μg/L and the corresponding no observed effect concentration 0.1 μg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species.

    PubMed

    Marti, Elisabet; Huerta, Belinda; Rodríguez-Mozaz, Sara; Barceló, Damià; Marcé, Rafael; Balcázar, Jose Luis

    2018-04-01

    This study was aimed to determine the abundance of four antibiotic resistance genes (bla TEM , ermB, qnrS and sulI), as well as bacterial community composition associated with the intestinal mucus of wild freshwater fish species collected from the Foix and La Llosa del Cavall reservoirs, which represent ecosystems with high and low anthropogenic disturbance, respectively. Water and sediments from these reservoirs were also collected and analyzed to determine the pollution level by antibiotics. The bla TEM gene was only detected in brown trout and Ebro barbel, which were collected from La Llosa del Cavall reservoir. In contrast, the sulI and qnrS genes were only detected in common carp, which were collected from the Foix reservoir. Although the ermB gene was also detected in common carp, the values were below the limit of quantification. Likewise, water and sediment samples from the Foix reservoir had higher concentrations and more classes of antibiotics than those from La Llosa del Cavall. Pyrosequencing analysis of 16S rRNA genes revealed significant differences in bacterial communities associated with the intestinal mucus of fish species. Therefore, these findings suggest that anthropogenic activities are not only increasing the pollution of aquatic environments, but also contributing to the emergence and spread of antibiotic resistance in organisms that inhabit such environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bacterial prostatitis.

    PubMed

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  2. Glycation & Insulin Resistance: Novel Mechanisms and Unique Targets?

    PubMed Central

    Song, Fei; Schmidt, Ann Marie

    2012-01-01

    Objectives Multiple biochemical, metabolic and signal transduction pathways contribute to insulin resistance. In this review, we present the evidence that the post-translational process of protein glycation may play role in insulin resistance. The post-translational modifications, the advanced glycation endproducts (AGEs), are formed and accumulate by endogenous and exogenous mechanisms. Methods and Results AGEs may contribute to insulin resistance by a variety of mechanisms, including generation of tumor necrosis factor-alpha, direct modification of the insulin molecule thereby leading to its impaired action, generation of oxidative stress, and impairment of mitochondrial function, as examples. AGEs may stimulate signal transduction via engagement of cellular receptors, such as RAGE, or receptor for AGE. AGE-RAGE interaction perpetuates AGE formation and cellular stress via induction of inflammation, oxidative stress and reduction in the expression and activity of the enzyme, glyoxalase I that detoxifies the AGE precursor, methylglyoxal, or MG. Conclusions Once set in motion, glycation-promoting mechanisms may stimulate ongoing AGE production and target tissue stresses that reduce insulin responsiveness. Strategies to limit AGE accumulation and action may contribute to prevention of insulin resistance and its consequences. PMID:22815341

  3. Determination of multidrug resistance mechanisms in Clostridium perfringens type A isolates using RNA sequencing and 2D-electrophoresis.

    PubMed

    Ma, Yu-Hua; Ye, Gui-Sheng

    2018-06-11

    In this study, we screened differentially expressed genes in a multidrug-resistant isolate strain of Clostridium perfringens by RNA sequencing. We also separated and identified differentially expressed proteins (DEPs) in the isolate strain by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). The RNA sequencing results showed that, compared with the control strain, 1128 genes were differentially expressed in the isolate strain, and these included 227 up-regulated genes and 901 down-regulated genes. Bioinformatics analysis identified the following genes and gene categories that are potentially involved in multidrug resistance (MDR) in the isolate strain: drug transport, drug response, hydrolase activity, transmembrane transporter, transferase activity, amidase transmembrane transporter, efflux transmembrane transporter, bacterial chemotaxis, ABC transporter, and others. The results of the 2-DE showed that 70 proteins were differentially expressed in the isolate strain, 45 of which were up-regulated and 25 down-regulated. Twenty-seven DEPs were identified by MS and these included the following protein categories: ribosome, antimicrobial peptide resistance, and ABC transporter, all of which may be involved in MDR in the isolate strain of C. perfringens. The results provide reference data for further investigations on the drug resistant molecular mechanisms of C. perfringens.

  4. Discovery of novel bacterial RNA polymerase inhibitors: pharmacophore-based virtual screening and hit optimization.

    PubMed

    Hinsberger, Stefan; Hüsecken, Kristina; Groh, Matthias; Negri, Matthias; Haupenthal, Jörg; Hartmann, Rolf W

    2013-11-14

    The bacterial RNA polymerase (RNAP) is a validated target for broad spectrum antibiotics. However, the efficiency of drugs is reduced by resistance. To discover novel RNAP inhibitors, a pharmacophore based on the alignment of described inhibitors was used for virtual screening. In an optimization process of hit compounds, novel derivatives with improved in vitro potency were discovered. Investigations concerning the molecular mechanism of RNAP inhibition reveal that they prevent the protein-protein interaction (PPI) between σ(70) and the RNAP core enzyme. Besides of reducing RNA formation, the inhibitors were shown to interfere with bacterial lipid biosynthesis. The compounds were active against Gram-positive pathogens and revealed significantly lower resistance frequencies compared to clinically used rifampicin.

  5. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils.

    PubMed

    Liu, Peng; Jia, Shuyu; He, Xiwei; Zhang, Xuxiang; Ye, Lin

    2017-12-01

    Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P < 0.05). It was also found that the application of manure could cause a transient effect on soil resistome composition and the relative abundance of ARGs increased from 7.37 ppm to 32.10 ppm. The abundance of aminoglycoside, sulfonamide and tetracycline resistance genes greatly increased after manure fertilization and then gradually returned to normal levels with the decay of some intestinal bacteria carrying ARGs. In contrast, the application of chemical fertilizers and straw ash significantly changed the bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

    PubMed Central

    Upcroft, Peter; Upcroft, Jacqueline A.

    2001-01-01

    The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently

  7. Mechanism of Antibacterial Activities of a Rice Hull Smoke Extract (RHSE) Against Multidrug-Resistant Salmonella Typhimurium In Vitro and in Mice.

    PubMed

    Kim, Sung Phil; Lee, Sang Jong; Nam, Seok Hyun; Friedman, Mendel

    2018-02-01

    The present study tested antibacterial activity of a rice hull smoke extract (RHSE) against a multidrug-resistant strain of Salmonella Typhimurium and examined its mode of suppressive action in vitro and in mice. In vitro studies showed that the minimum inhibitory concentration (MIC) value of RHSE was 1.29% (v/v). The inactivation was confirmed by complete loss of cell viability in the range of 10 4 to 10 7 colony forming units of the resistant Salmonella Typhimurium strain. Agarose and sodium dodecyl sulfate-polyacrylamide gel electrophoreses were used to evaluate the integrities of bacterial genomic DNA and total cellular protein profiles. The antibacterial action of RHSE results from a leakage of intracellular macromolecules following rupture of bacterial cells. Scanning electron microscopy of the cells shows that RHSE also induced deleterious morphological changes in the bacterial cell membrane of the pathogens. In vivo antibacterial activity of RHSE at a 1 × MIC concentration was examined in a bacterial gastroenteritis model using Balb/c mice orally infected with the Salmonella Typhimurium. The results show greatly decreased excretion of the bacteria into the feces and suppressed translocation of the bacteria to internal organs (cecum, mesenteric lymph node, spleen, and liver) compared with the infected mice not subjected to the RHSE treatment. Collectively, the present findings indicate that the mechanism of the antibacterial activities both in vitro and in the gastroenteritis environment of the animal model is the result of the direct disruption of cell structure, leading to cell death. RHSE has the potential to serve as a multifunctional food additive that might protect consumers against infections by antibiotic-resistant microorganisms. The rice hull derived liquid smoke has the potential to complement widely used wood-derived smoke as an antimicrobial flavor and health-promoting formulation for application in foods and feeds. Published 2017. This article

  8. Interactions Between QTL SAP6 and SU91 on Resistance to Common Bacterial Blight in Red Kidney Bean and Pinto Bean Populations

    USDA-ARS?s Scientific Manuscript database

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. We examined the interaction between two independent QTL, SAP6 and SU91, which condition resistance to CBB.The QTL were studied in a pinto bean F2 population a cross between Othello (sap6 sap6 //...

  9. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella.

    PubMed

    Zhang, Shuzhen; Zhang, Xiaolei; Shen, Jun; Li, Dongyang; Wan, Hu; You, Hong; Li, Jianhong

    2017-08-01

    Indoxacarb belongs to a class of insecticides known as oxadiazines and is the first commercialized pyrazoline-type voltage-dependent sodium channel blocker. A moderate level of resistance to indoxacarb has evolved in field populations of Plutella xylostella from Central China. In the present study, cross-resistance, resistance stability and metabolic mechanisms of indoxacarb resistance were investigated in this moth species. A P. xylostella strain with a high level of resistance to indoxacarb was obtained through continuous selection in the laboratory. The strain showed cross-resistance to metaflumizone, beta-cypermethrin and chlorfenapyr, but no resistance to cyantraniliprole, chlorantraniliprole, abamectin, chlorfluazuron, spinosad and diafenthiuron compared with the susceptible strain. Synergism tests revealed that piperonyl butoxide (PBO) (synergistic ratio, SR=7.8) and diethyl maleate (DEF) (SR=3.5) had considerable synergistic effects on indoxacarb toxicity in the resistant strain (F 58 ). Enzyme activity data showed there was an approximate 5.8-fold different in glutathione S-transferase (GST) and a 6.8-fold different in cytochrome P450 monooxygenase between the resistant strain (F 58 ) and susceptible strain, suggesting that the increased activity of these two enzymes is likely the main detoxification mechanism responsible for the species' resistance to indoxacarb. These results will be helpful for insecticide resistance management strategies to delay the development of indoxacarb resistance in fields. Copyright © 2017. Published by Elsevier Inc.

  10. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem

    PubMed Central

    Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen. PMID:26398358

  11. In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem.

    PubMed

    Philippe, Nadège; Maigre, Laure; Santini, Sébastien; Pinet, Elizabeth; Claverie, Jean-Michel; Davin-Régli, Anne-Véronique; Pagès, Jean-Marie; Masi, Muriel

    2015-01-01

    Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen.

  12. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong

    2016-12-01

    Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not

  13. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil.

    PubMed

    Zhang, Fengli; Zhao, Xiaoxue; Li, Qingbo; Liu, Jia; Ding, Jizhe; Wu, Huiying; Zhao, Zongsheng; Ba, Yue; Cheng, Xuemin; Cui, Liuxin; Li, Hongping; Zhu, Jingyuan

    2018-04-01

    Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

  14. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water.

    PubMed

    Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang

    2016-10-01

    The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development and validation of a clinical risk score for predicting drug-resistant bacterial pneumonia in older Chinese patients.

    PubMed

    Ma, Hon Ming; Ip, Margaret; Woo, Jean; Hui, David S C

    2014-05-01

    Health care-associated pneumonia (HCAP) and drug-resistant bacterial pneumonia may not share identical risk factors. We have shown that bronchiectasis, recent hospitalization and severe pneumonia (confusion, blood urea level, respiratory rate, low blood pressure and 65 year old (CURB-65) score ≥ 3) were independent predictors of pneumonia caused by potentially drug-resistant (PDR) pathogens. This study aimed to develop and validate a clinical risk score for predicting drug-resistant bacterial pneumonia in older patients. We derived a risk score by assigning a weighting to each of these risk factors as follows: 14, bronchiectasis; 5, recent hospitalization; 2, severe pneumonia. A 0.5 point was defined for the presence of other risk factors for HCAP. We compared the areas under the receiver-operating characteristics curve (AUROC) of our risk score and the HCAP definition in predicting PDR pathogens in two cohorts of older patients hospitalized with non-nosocomial pneumonia. The derivation and validation cohorts consisted of 354 and 96 patients with bacterial pneumonia, respectively. PDR pathogens were isolated in 48 and 21 patients in the derivation and validation cohorts, respectively. The AUROCs of our risk score and the HCAP definition were 0.751 and 0.650, respectively, in the derivation cohort, and were 0.782 and 0.671, respectively, in the validation cohort. The differences between our risk score and the HCAP definition reached statistical significance. A score ≥ 2.5 had the best balance between sensitivity and specificity. Our risk score outperformed the HCAP definition to predict pneumonia caused by PDR pathogens. A history of bronchiectasis or recent hospitalization is the major indication of starting empirical broad-spectrum antibiotics. © 2014 Asian Pacific Society of Respirology.

  16. Genome-wide association studies identify 25 genetic loci associated with resistance to Bacterial Cold Water Disease in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonids aquaculture. In previous studies we have identified moderate-large effect QTL for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a high density SNP array and...

  17. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    USDA-ARS?s Scientific Manuscript database

    A study was initiated to understand Burkholderia glumae, the major causal agent for bacterial panicle blight disease of rice; to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. Burkholderia glumae was frequently isolated from infected p...

  18. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    USDA-ARS?s Scientific Manuscript database

    A study was initiated to understand Burkholderia glumae (major causal agent for bacterial panicle blight disease of rice) to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. B. glumae was frequently isolated from symptomatic panicles on...

  19. Resistive pressure of a condenser humidifier in mechanically ventilated patients.

    PubMed

    Manthous, C A; Schmidt, G A

    1994-11-01

    Heat and moisture exchangers (or "nose" humidifiers) are commonly used to aid in the humidification of inspired gases of mechanically ventilated patients. These devices add resistance to the ventilator circuit that has heretofore not been quantified in critically ill patients. Accordingly, we determined the resistive pressures associated with new and old (but < 24 hrs in the circuit) humidifiers in 23 critically ill, mechanically ventilated patients. Prospective study. Adult medical and surgical intensive care units at a university center. Twenty-three critically ill, mechanically ventilated patients using a condenser humidifier between the wye and the endotracheal tube. Peak and plateau airway pressures were determined with the humidifier in place. These measurements were repeated without the humidifier, then after insertion of a fresh humidifier into the circuit. In five patients, measurements were repeated after humidifiers had remained in place for a full 24 hrs. The new humidifiers increased the resistive pressure of the ventilator circuit by 4.8 +/- 2.6 cm H2O compared with no humidifier (p < .01) and had a mean resistance of 4.2 +/- 1.5 cm H2O/L/sec. Old humidifiers increased resistive pressure by 6.3 +/- 3.6 cm H2O compared with no humidifier (p < .01) and had a mean resistance of 5.1 +/- 1.8 cm H2O/L/sec. The resistive pressure doubled from 3.4 +/- 1.2 to 7.0 +/- 1.8 cm H2O (p < .01) in five patients in whom the humidifiers were left in the ventilator circuit for a full 24 hrs. The humidifier adds a significant resistance to the ventilator circuit which may lead to incorrect assessment of respiratory system mechanics, to inappropriate therapy (e.g., bronchodilators), or to difficulty in weaning from mechanical ventilation.

  20. Trade-off Mechanisms Shaping the Diversity of Bacteria.

    PubMed

    Ferenci, Thomas

    2016-03-01

    Strain-to-strain variations in bacterial biofilm formation, metabolism, motility, virulence, evolvability, DNA repair and resistance (to phage, antibiotics, or environmental stresses) each contribute to bacterial diversity. Microbiologists should be aware that all of these traits are subject to constraints imposed by trade-offs, so adaptations improving one trait may be at the cost of another. A deeper appreciation of trade-offs is thus crucial for assessing the mechanistic limits on important bacterial characteristics. Studies of the negative correlations between various traits have revealed three molecular mechanisms, namely, trade-offs involving resource allocation, design constraint, and information processing. This review further discusses why these trade-off mechanisms are important in the establishment of models capable of predicting bacterial competition, coexistence, and sources of diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size

    PubMed Central

    Reimche, Jennifer L.; Kirse, Daniel J.; Whigham, Amy S.; Swords, W. Edward

    2016-01-01

    Abstract The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms. Consistent with previous studies, antibiotic concentrations required to eliminate biofilm bacteria tended to be drastically higher than concentrations required to kill planktonic bacteria. The size characterizations of the biofilms formed by the clinical isolates were compared to their minimum biofilm eradication concentrations for four antibiotics. This revealed no correlation between biofilm thickness or biomass and the ability to resist eradication by antibiotics. Therefore, we concluded that biofilm size does not play a role in antibiotic resistance, suggesting that reduction of antibiotic penetration may not be a significant mechanism for antibiotic resistance for this bacterial opportunist. PMID:27956464

  2. Hidden Selection of Bacterial Resistance to Fluoroquinolones In Vivo: The Case of Legionella pneumophila and Humans

    PubMed Central

    Shadoud, Lubana; Almahmoud, Iyad; Jarraud, Sophie; Etienne, Jérôme; Larrat, Sylvie; Schwebel, Carole; Timsit, Jean-François; Schneider, Dominique; Maurin, Max

    2015-01-01

    Background Infectious diseases are the leading cause of human morbidity and mortality worldwide. One dramatic issue is the emergence of microbial resistance to antibiotics which is a major public health concern. Surprisingly however, such in vivo adaptive ability has not been reported yet for many intracellular human bacterial pathogens such as Legionella pneumophila. Methods We examined 82 unrelated patients with Legionnaire's disease from which 139 respiratory specimens were sampled during hospitalization and antibiotic therapy. We both developed a real time PCR assay and used deep-sequencing approaches to detect antibiotic resistance mutations in L. pneumophila and follow their selection and fate in these samples. Findings We identified the in vivo selection of fluoroquinolone resistance mutations in L. pneumophila in two infected patients treated with these antibiotics. By investigating the mutational dynamics in patients, we showed that antibiotic resistance occurred during hospitalization most likely after fluoroquinolone treatment. Interpretation In vivo selection of antibiotic resistances in L. pneumophila may be associated with treatment failures and poor prognosis. This hidden resistance must be carefully considered in the therapeutic management of legionellosis patients and in the control of the gradual loss of effectiveness of antibiotics. PMID:26501115

  3. Hidden Selection of Bacterial Resistance to Fluoroquinolones In Vivo: The Case of Legionella pneumophila and Humans.

    PubMed

    Shadoud, Lubana; Almahmoud, Iyad; Jarraud, Sophie; Etienne, Jérôme; Larrat, Sylvie; Schwebel, Carole; Timsit, Jean-François; Schneider, Dominique; Maurin, Max

    2015-09-01

    Infectious diseases are the leading cause of human morbidity and mortality worldwide. One dramatic issue is the emergence of microbial resistance to antibiotics which is a major public health concern. Surprisingly however, such in vivo adaptive ability has not been reported yet for many intracellular human bacterial pathogens such as Legionella pneumophila. We examined 82 unrelated patients with Legionnaire's disease from which 139 respiratory specimens were sampled during hospitalization and antibiotic therapy. We both developed a real time PCR assay and used deep-sequencing approaches to detect antibiotic resistance mutations in L. pneumophila and follow their selection and fate in these samples. We identified the in vivo selection of fluoroquinolone resistance mutations in L. pneumophila in two infected patients treated with these antibiotics. By investigating the mutational dynamics in patients, we showed that antibiotic resistance occurred during hospitalization most likely after fluoroquinolone treatment. In vivo selection of antibiotic resistances in L. pneumophila may be associated with treatment failures and poor prognosis. This hidden resistance must be carefully considered in the therapeutic management of legionellosis patients and in the control of the gradual loss of effectiveness of antibiotics.

  4. Mechanisms and evolution of plant resistance to aphids.

    PubMed

    Züst, Tobias; Agrawal, Anurag A

    2016-01-06

    Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions.

  5. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions

    PubMed Central

    Ribeiro, Marta; Monteiro, Fernando J.; Ferraz, Maria P.

    2012-01-01

    Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field. PMID:23507884

  6. [Spontaneous bacterial peritonitis].

    PubMed

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  7. Within-host evolution of bacterial pathogens

    PubMed Central

    Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.

    2016-01-01

    Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595

  8. Within-host evolution of bacterial pathogens.

    PubMed

    Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J

    2016-03-01

    Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.

  9. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is one of the frequent causes of elevated mortality in salmonid aquaculture. Previously, we identified and validated microsatellites associated with QTL (quantitative trait loci) for BCWD resistance and spleen size in rainbow trout. The objective of this study was...

  10. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is one of the frequent causes of elevated mortality in salmonid aquaculture. Previously, we identified and validated microsatellite markers associated with QTL (quantitative trait loci) for BCWD resistance and spleen size in rainbow trout. The objective of this st...

  11. Anthelmintic Resistance in Haemonchus contortus: History, Mechanisms and Diagnosis.

    PubMed

    Kotze, A C; Prichard, R K

    2016-01-01

    Haemonchus contortus has shown a great ability to develop resistance to anthelmintic drugs. In many instances, resistance has appeared less than 10years after the introduction of a new drug class. Field populations of this species now show resistance to all major anthelmintic drug classes, including benzimidazoles (BZs), imidazothiazoles and macrocyclic lactones. In addition, resistance to the recently introduced amino-acetonitrile derivative class (monepantel) has already been reported. The existence of field populations showing resistance to all three major drug classes, and the early appearance of resistance to monepantel, threatens the sustainability of sheep and goat production systems worldwide. This chapter reviews the history of the development of resistance to the various anthelmintics in H. contortus and examines the mechanisms utilized by this species to resist the effects of these drugs. Some of these mechanisms are well understood, particularly for BZ drugs, while our knowledge and understanding of others are increasing. Finally, we summarize methods available for the diagnosis of resistance. While such diagnosis currently relies largely on the faecal egg count reduction test, which suffers from issues of expense and sensitivity, we describe past and current efforts to utilize cheaper and less laborious phenotypic assays with free-living life stages, and then describe progress on the development of molecular assays to provide sensitive resistance-detection tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Participation of necroptosis in the host response to acute bacterial pneumonia

    PubMed Central

    Ahn, Danielle; Prince, Alice

    2017-01-01

    Common pulmonary pathogens, such as Streptococcus pneumoniae and Staphylococcus aureus as well as the host-adapted pathogens responsible for health care associated pneumonias such as the carbapenem-resistant Klebsiella pneumoniae and Serratia marcesens are able to activate cell death through the RIPK1/RIPK3/MLKL cascade that causes necroptosis. Necroptosis can influence the pathogenesis of pneumonia through several mechanisms. Activation of this pathway can result in the loss of specific types of immune cells, especially macrophages and in doing so contribute to host pathology through loss of their critical immunoregulatory functions. However, in other settings of infection, necroptosis promotes pathogen removal and eradication of infected cells to control excessive proinflammatory signaling. Bacterial production of pore forming toxins provides a common mechanism to activate necroptosis by diverse bacterial species, with variable consequences depending upon the specific pathogen. Included in this brief review are data demonstrating the ability of the carbapenem-resistant ST258 K. pneumoniae to activate necroptosis in the setting of pneumonia, which is counterbalanced by their suppression of CYLD expression. Exactly how necroptosis and other mechanisms of cell death are co-regulated in the response to specific pulmonary pathogens remains a topic of active investigation and may provide potential therapeutic targets in the future. PMID:28125817

  13. Participation of Necroptosis in the Host Response to Acute Bacterial Pneumonia.

    PubMed

    Ahn, Danielle; Prince, Alice

    2017-01-01

    Common pulmonary pathogens, such as Streptococcus pneumoniae and Staphylococcus aureus, as well as the host-adapted pathogens responsible for health care-associated pneumonias, such as the carbapenem-resistant Klebsiella pneumoniae and Serratia marcecsens, are able to activate cell death through the RIPK1/RIPK3/MLKL cascade that causes necroptosis. Necroptosis can influence the pathogenesis of pneumonia through several mechanisms. Activation of this pathway can result in the loss of specific types of immune cells, especially macrophages, and, in so doing, contribute to host pathology through the loss of their critical immunoregulatory functions. However, in other settings of infection, necroptosis promotes pathogen removal and the eradication of infected cells to control excessive proinflammatory signaling. Bacterial production of pore-forming toxins provides a common mechanism to activate necroptosis by diverse bacterial species, with variable consequences depending upon the specific pathogen. Included in this brief review are data demonstrating the ability of the carbapenem-resistant ST258 K. pneumoniae to activate necroptosis in the setting of pneumonia, which is counterbalanced by their suppression of CYLD expression. Exactly how necroptosis and other mechanisms of cell death are coregulated in the response to specific pulmonary pathogens remains a topic of active investigation, and it may provide potential therapeutic targets in the future. © 2017 S. Karger AG, Basel.

  14. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.

    PubMed

    Wong, Jonathan P; DiTullio, Paul; Parkinson, Steve

    2015-01-01

    The global prevalence of antibiotic resistance and the threat posed by drug-resistant superbugs are a leading challenge confronting modern medicine in the 21st century. However, the progress on the development of novel antibiotics to combat this problem is severely lagging. A more concerted effort to develop novel therapeutic agents with robust activity and unique mechanisms of action will be needed to overcome the problem of drug resistance. Furthermore, biofilm forming bacteria are known to be increasingly resistant to the actions of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections. Bisphosphocins (also scientifically known as nubiotics) are novel small protonated deoxynucleotide molecules, and exert their antibacterial activity by depolarization of the bacterial cell membrane, causing bacterial cell death. Bisphosphocins may represent an effective weapon against antibiotic-resistant and biofilm-forming pathogenic bacteria. Preclinical efficacy studies in animals have shown that the compounds are safe and, efficacious against various bacterial infections, including drug-resistant pathogens. In vitro biochemical analysis confirmed that the bactericidal activity of bisphosphocins is mediated by depolarization of the bacterial cell membrane, and these compounds are better able to penetrate through bacterial biofilm and kill the biofilm encased bacteria. This article will cover the structure, mode of action, safety, efficacy and the current state of development of bisphosphocins. Together, the information presented here will present a strong case for bisphosphocins to be considered for use as new weapons to complement the existing arsenal of antimicrobial drugs and as a first line defence against drug-resistant and biofilm-forming bacteria.

  15. Bacterial responses to antibiotics and their combinations.

    PubMed

    Mitosch, Karin; Bollenbach, Tobias

    2014-12-01

    Antibiotics affect bacterial cell physiology at many levels. Rather than just compensating for the direct cellular defects caused by the drug, bacteria respond to antibiotics by changing their morphology, macromolecular composition, metabolism, gene expression and possibly even their mutation rate. Inevitably, these processes affect each other, resulting in a complex response with changes in the expression of numerous genes. Genome-wide approaches can thus help in gaining a comprehensive understanding of bacterial responses to antibiotics. In addition, a combination of experimental and theoretical approaches is needed for identifying general principles that underlie these responses. Here, we review recent progress in our understanding of bacterial responses to antibiotics and their combinations, focusing on effects at the levels of growth rate and gene expression. We concentrate on studies performed in controlled laboratory conditions, which combine promising experimental techniques with quantitative data analysis and mathematical modeling. While these basic research approaches are not immediately applicable in the clinic, uncovering the principles and mechanisms underlying bacterial responses to antibiotics may, in the long term, contribute to the development of new treatment strategies to cope with and prevent the rise of resistant pathogenic bacteria.

  16. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study.

    PubMed

    Shaker, Mohamed A; Shaaban, Mona I

    2017-06-15

    Despite the fact that carbapenems (powerful β-lactams antibiotics) were able to fight serious infectious diseases, nowadays the spread of carbapenems-resistant bacteria is considered the main challenge in antibacterial therapy. In this study, we focused on evaluating the surface conjugation of carbapenems (imipenem and meropenem) with gold nanoparticles as a delivering strategy to specifically and safely maximize their therapeutic efficacy while destroying the developing resistance of the pathogens. Different particle size formulae (35, 70 and 200nm) were prepared by citrate reduction method. The prepared nanoparticles were functionalized with imipenem (Ipm) or meropenem (Mem) and physico-chemically characterized for loading efficiency, particle size, morphology, and in-vitro release. The antibacterial efficacy was also evaluated against carbapenems resistant Gram-negative bacteria isolated from infected human, through measuring the minimum inhibitory concentration and antibiotic kill test. All the obtained gold nanoparticles showed a distinct nano-size with loading efficiency up to 72% and 74% for Ipm and Mem, respectively. The conjugation and physico-chemical stability of the formulated carbapenems were confirmed by FTIR and X-RPD. Diffusion driven release behavior was observed for both Ipm and Mem from all of the loaded gold nanoparticles. For both Ipm and Mem, formula with 35nm diameter showed the most significant enhancement in antibacterial activity against all the selected isolates including Klebsiella pneumoniae, Proteus mirabilis and Acinteobacter baumanii. Ipm loaded Gold nanoparticles demonstrated decrease in the MIC of Ipm down to four folds, whereas, Mem loaded gold nanoparticles showed decrease in the MIC of Mem down to three folds on the tested bacterial isolates. Based on these results, the formulation of carbapenems-loaded gold nanoparticles demonstrated to be a promising nano-size delivery vehicle for improving the therapeutic activity and

  17. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae?

    PubMed Central

    Colijn, Caroline; Cohen, Ted; Fraser, Christophe; Hanage, William; Goldstein, Edward; Givon-Lavi, Noga; Dagan, Ron; Lipsitch, Marc

    2010-01-01

    The rise of antimicrobial resistance in many pathogens presents a major challenge to the treatment and control of infectious diseases. Furthermore, the observation that drug-resistant strains have risen to substantial prevalence but have not replaced drug-susceptible strains despite continuing (and even growing) selective pressure by antimicrobial use presents an important problem for those who study the dynamics of infectious diseases. While simple competition models predict the exclusion of one strain in favour of whichever is ‘fitter’, or has a higher reproduction number, we argue that in the case of Streptococcus pneumoniae there has been persistent coexistence of drug-sensitive and drug-resistant strains, with neither approaching 100 per cent prevalence. We have previously proposed that models seeking to understand the origins of coexistence should not incorporate implicit mechanisms that build in stable coexistence ‘for free’. Here, we construct a series of such ‘structurally neutral’ models that incorporate various features of bacterial spread and host heterogeneity that have been proposed as mechanisms that may promote coexistence. We ask to what extent coexistence is a typical outcome in each. We find that while coexistence is possible in each of the models we consider, it is relatively rare, with two exceptions: (i) allowing simultaneous dual transmission of sensitive and resistant strains lets coexistence become a typical outcome, as does (ii) modelling each strain as competing more strongly with itself than with the other strain, i.e. self-immunity greater than cross-immunity. We conclude that while treatment and contact heterogeneity can promote coexistence to some extent, the in-host interactions between strains, particularly the interplay between coinfection, multiple infection and immunity, play a crucial role in the long-term population dynamics of pathogens with drug resistance. PMID:19940002

  18. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells.

    PubMed

    Suzuki, Kei; Kato, Yutaka; Yui, Arashi; Yamamoto, Shuji; Ando, Syota; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2018-05-01

    We investigated how bacterial communities adapted to external resistances and exhibited the performance of electricity production in microbial fuel cells (MFCs) with external resistance of 10 Ω (LR-MFC) and 1000 Ω (HR-MFC). The HR-MFC exhibited better performance than the LR-MFC. The power densities of the LR-MFC and the HR-MFC were 5.2 ± 1.6 mW m -2 and 28 ± 9.6 mW m -2 after day 197, respectively. Low-scan cyclic voltammetry analyses indicated that the onset potential of the HR-MFC was more negative than that of the LR-MFC, suggesting that the higher external resistance led to enrichment of the highly current producing bacteria on the anode surface. All clones of Geobacter retrieved from the LR-MFC and the HR-MFC were members of the Geobacter metallireducens clade. Although the population density of Geobacter decreased from days 366-427 in the HR-MFC, the current density was almost maintained. Multidimensional scaling analyses based on denaturing gradient gel electrophoresis profiles indicated that the dynamics of the biofilm and anolytic communities changed synchronously in the two MFCs, but the dynamics of the bacterial communities in the LR-MFC and the HR-MFC were different from each other, reflecting different processes in adaptation to the different external resistances. The results suggest that the microbial community structure was formed by adapting to higher external resistance, exhibiting more negative onset potential and higher performance of the HR-MFC through collaborating with anode-respiring bacteria and fermenters. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Reprint of: Quantitative proteomic analysis reveals that chemotaxis is involved in chlortetracycline resistance of Aeromonas hydrophila.

    PubMed

    Li, Wanxin; Ali, Farman; Cai, Qilan; Yao, Zujie; Sun, Lina; Lin, Wenxiong; Lin, Xiangmin

    2018-05-30

    In recent years, Aeromonas hydrophila, which has been classified as a food borne pathogen, has presented with increased levels of antibiotic resistance, with the mechanisms of this resistance being poorly understood. In this study, iTRAQ coupled mass spectrometry was employed to compare differentially expressed proteins in chlortetracycline (CTC) resistant A. hydrophila relative to a control strain. Result showed that a total of 234 differential proteins including 151 down-regulated and 83 up-regulated were identified in chlortetracycline resistance strain. Bioinformatics analysis showed that chemotaxis related proteins, such as CheA-2, CheR-3, CheW-2, EnvZ, PolA, FliS and FliG were down-regulated in addition to previously reported tricarboxylic acid cycle (TCA) related proteins also being down-regulated. A subset of identified differentially expressed proteins was then further validated via Western blotting. Exogenous metabolite combined with CTC further enhanced the bacterial susceptibilities to CTC in A. hydrophila. Furthermore, a bacterial survival capability assay showed that several chemotaxis related mutants, such as ΔcheR-3 and ΔAHA_0305, may affect the antimicrobial susceptibility of A. hydrophila. Overall, these findings contribute to a further understanding of the mechanism of CTC resistance in A. hydrophila and may contribute to the development of more effective future treatments. A. hydrophila is a well-known fish pathogenic bacterium and has presented with increasing levels of antibiotic resistance, with the mechanisms of this resistance being poorly understood. Our current study compared the differentially expression proteins between chlortetracycline (CTC) resistant and control stains via an iTARQ-based quantitative proteomics method. Chemotaxis related proteins were down-regulated in CTC resistant strain but exogenous metabolite addition increased bacterial susceptibility in A.hydrophila. Significantly, chemotaxis related genes depletion affected

  20. Validation of linked QTL for bacterial cold water disease resistance and spleen size on rainbow trout chromosome Omy19

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is caused by infection with Flavobacterium psychrophilum, and results in significant economic losses in salmonid aquaculture. Previously, we identified a major QTL for BCWD resistance and a QTL for spleen size (SPLW = spleen weight and SPLI = spleen index) in naï...

  1. Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216.

    PubMed

    Robbins, Matthew D; Darrigues, Audrey; Sim, Sung-Chur; Masud, Mohammed Abu Taher; Francis, David M

    2009-09-01

    Bacterial spot of tomato is caused by four species of Xanthomonas. The accession PI 128216 (Solanum pimpinellifolium) displays a hypersensitive reaction (HR) to race T3 strains (predominantely Xanthomonas perforans). We developed an inbred backcross (IBC) population (BC(2)S(5), 178 families) derived from PI 128216 and OH88119 (S. lycopersicum) as the susceptible recurrent parent for simultaneous introgression and genetic analysis of the HR response. These IBC families were evaluated in the greenhouse for HR to race T3 strain Xcv761. The IBC population was genotyped with molecular markers distributed throughout the genome in order to identify candidate loci conferring resistance. We treated the IBC population as a hypothesis forming generation to guide validation in subsequent crosses. Nonparametric analysis identified an association between HR and markers clustered on chromosome 11 (P < 0.05 to 0.0001) and chromosome 6 (0.04 > P > 0.002). Further analysis of the IBC population suggested that markers on chromosome 6 and 11 failed to assort independently, a phenomenon known as gametic phase disequilibrium. Therefore, to validate marker-trait linkages, resistant IBC plants were crossed with OH88119 and BC(3)F(2) progeny were evaluated for HR in the greenhouse. In these subsequent populations, the HR response was associated with the chromosome 11 markers (P < 0.0002) but not with the markers on chromosome 6 (P > 0.25). Independent F(2) families were developed by crossing resistant IBC lines to OH8245, OH88119, and OH7530. These populations were genotyped, organized into classes based on chromosome 11 markers, and evaluated for resistance in the field. The PI 128216 locus on chromosome 11 provided resistance that was dependent on gene dosage and genetic background. These results define a single locus, Rx-4, from PI 128216, which provides resistance to bacterial spot race T3, has additive gene action, and is located on chromosome 11.

  2. Efflux-mediated antimicrobial resistance.

    PubMed

    Poole, Keith

    2005-07-01

    Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

  3. [Profile of bacterial resistance in pediatric urinary tract infections in 2014].

    PubMed

    Flammang, A; Morello, R; Vergnaud, M; Brouard, J; Eckart, P

    2017-03-01

    In pediatric units, bacteria-producing extended-spectrum-betalactamase (ESBL) have an increasing prevalence among bacteria causing febrile urinary tract infections (UTIs). The purpose of this study was to evaluate the epidemiology of bacteria resistance patterns observed in UTIs, in order to assess the current antibiotic treatment protocols. This study is based upon a single-center retrospective chart review of the cytobacteriological urine cultures performed in UTIs between 1 January and 31 December 2014, in the medical pediatric unit of the Caen University Hospital. Out of the total of 219 cases of UTI, 26.9% were recurrences of UTI, 18.3% were infections in infants less than 3 months old, 21% of the patients suffered from underlying uropathy, and 16.4% of the patients had recently been exposed to antibiotics. In 80.3% of the cases, Escherichia coli was found, while Enterococcus faecalis was found in 5.6%. The antibiograms proved that 33.5% of the bacteria were sensitive. Half of E. coli were resistant to ampicillin, 4.9% to cefixime, 4.9% to ceftriaxone, 1.1% to gentamicin, and 27.8% to trimethoprim-sulfamethoxazole. Nine E. coli and one Enterobacter cloacae produced ESBL, accounting for 4.6% of the UTIs. We did not find any bacteria-producing high-level cephalosporinase. Cefixime resistance was statistically linked to ongoing antibiotic treatment (OR=5.98; 95% CI [1.44; 24.91], P=0.014) and underlying uropathy (OR=6.24; 95% CI [1.47; 26.42], P=0.013). Ceftriaxone resistance was statistically related to ongoing antibiotic treatment (OR=6.93; 95% CI [1.45; 33.13], P=0.015). These results argue in favor of maintaining intravenous ceftriaxone for probabilistic ambulatory treatment. However, in case of hospitalization, cefotaxime can replace ceftriaxone, due to its lower ecological impact. Moreover, it is necessary to continue monitoring bacterial resistance and regularly review our treatment protocols. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Glycol porphyrin derivatives and temoporfin elicit resistance to photodynamic therapy by different mechanisms

    PubMed Central

    Kralova, Jarmila; Kolar, Michal; Kahle, Michal; Truksa, Jaroslav; Lettlova, Sandra; Balusikova, Kamila; Bartunek, Petr

    2017-01-01

    The development of drug resistance is a major problem which often occurs during anticancer chemotherapies. Photodynamic therapy (PDT) has been studied as an alternative treatment modality for drug-resistant tumors, however the question of resistance to PDT and potential cross-resistance with chemotherapy has yet to be fully answered. To investigate the mechanism of resistance to PDT, we developed an in vitro experimental model system in a mouse mammary carcinoma cell line 4T1. We used two ethylene glycol derivatives of tetraphenylporphyrin, and tetraphenylchlorin derivative, temoporfin, as photosensitizers (PS). PDT-resistant clones were obtained by exposure to a set concentration of PS followed by irradiation with increasing light doses. PDT resistance to soluble glycol porphyrins was mediated mainly by increased drug efflux through ABCB1 (P-glycoprotein) as we demonstrated by specific ABCB1 knockdown experiments, which in turn rescued the sensitivity of resistant cells to PDT. In contrast, resistance raised to temoporfin, which is generally more lipophilic than glycol porphyrins, elicited mechanism based on sequestration of the drug to lysosomes. The resistance that is acquired from a particular PS could be overcome by using a different PS, which is not susceptible to the same mechanism(s) of resistance. Elucidation of the underlying mechanisms in various types of resistance might facilitate improvements in PDT treatment design. PMID:28295025

  5. Geometry and mechanics of growing bacterial colonies

    NASA Astrophysics Data System (ADS)

    You, Zhihong; Pearce, Daniel; Sengupta, Anupam; Giomi, Luca

    Bacterial colonies are abundant on living and non-living surfaces, and are known to mediate a broad range of processes in ecology, medicine and industry. Although extensively researched - from single cells up to the population levels - a comprehensive biophysical picture, highlighting the cell-to-colony dynamics, is still lacking. Here, using numerical and analytical models, we study the mechanics of self-organization leading to the colony morphology of cells growing on a substrate with free boundary. We consider hard rods to mimic the growth of rod-shaped non-motile cells, and show that the colony, as a whole, does not form an ordered nematic phase, nor does it result in a purely disordered (isotropic) phase. Instead, different sizes of domains, in which cells are highly aligned at specific orientations, are found. The distribution of the domain sizes follows an exponential relation - indicating the existence of a characteristic length scale that determines the domain size relative to that of the colony. A continuum theory, based on the hydrodynamics of liquid crystals, is built to account for these phenomena, and is applied to describe the buckling transition from a planar to three-dimensional (3D) colony. The theory supports preliminary experiments conducted with different strains of rod shaped bacterial cells, and reveals that the buckling transition can be regulated by varying the cell stiffness and aspect ratio. This work proposes that, in addition to biochemical pathways, the spatio-temporal organization in microbial colonies is significantly tuned by the biomechanical and geometric properties of the microbes in consideration.

  6. Bactericidal Specificity and Resistance Profile of Poly(Quaternary Ammonium) Polymers and Protein-Poly(Quaternary Ammonium) Conjugates.

    PubMed

    Ji, Weihang; Koepsel, Richard R; Murata, Hironobu; Zadan, Sawyer; Campbell, Alan S; Russell, Alan J

    2017-08-14

    Antibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides. We designed and synthesized a series of poly(quaternary ammonium) polymers, with tailorable molecular structures and architectures, to engineer their antibacterial specificity and their ability to delay the development of bacterial resistance. These linear poly(quaternary ammonium) homopolymers and block copolymers, generated using atom transfer radical polymerization, had structure-dependent antibacterial specificity toward Gram positive and negative bacterial species. When single block copolymers contained two polymer segments of differing antibacterial specificity, the polymer combined the specificities of its two components. Nanoparticulate human serum albumin-poly(quaternary ammonium) conjugates of these same polymers, synthesized via "grafting from" atom transfer radical polymerization, were strongly biocidal and also exhibited a marked decrease in the rate of bacterial resistance development relative to linear polymers. These protein-biocide conjugates mimicked the behavior of surface-presented polycationic biocides rather than their nonproteinaceous counterparts.

  7. Molecular Mechanisms of Bacterial Pathogenicity

    NASA Astrophysics Data System (ADS)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  8. Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis

    PubMed Central

    Ferris, Michael J; Masztal, Alicia; Aldridge, Kenneth E; Fortenberry, J Dennis; Fidel, Paul L; Martin, David H

    2004-01-01

    Background Bacterial vaginosis (BV) is a polymicrobial syndrome characterized by a change in vaginal flora away from predominantly Lactobacillus species. The cause of BV is unknown, but the condition has been implicated in diverse medical outcomes. The bacterium Atopobium vaginae has been recognized only recently. It is not readily identified by commercial diagnostic kits. Its clinical significance is unknown but it has recently been isolated from a tuboovarian abcess. Methods Nucleotide sequencing of PCR amplified 16S rRNA gene segments, that were separated into bands within lanes on polyacrylamide gels by denaturing gradient gel electrophoresis (DGGE), was used to examine bacterial vaginal flora in 46 patients clinically described as having normal (Lactobacillus spp. predominant; Nugent score ≤ 3) and abnormal flora (Nugent score ≥ 4). These women ranged in age from 14 to 48 and 82% were African American. Results The DGGE banding patterns of normal and BV-positive patients were recognizably distinct. Those of normal patients contained 1 to 4 bands that were focused in the centre region of the gel lane, while those of BV positive patients contained bands that were not all focused in the center region of the gel lane. More detailed analysis of patterns revealed that bands identified as Atopobium vaginae were present in a majority (12/22) of BV positive patients, while corresponding bands were rare (2/24) in normal patients. (P < 0.001) Two A. vaginae isolates were cultivated from two patients whose DGGE analyses indicated the presence of this organism. Two A. vaginae 16S rRNA gene sequences were identified among the clinical isolates. The same two sequences were obtained from DGGE bands of the corresponding vaginal flora. The sequences differed by one nucleotide over the short (~300 bp) segment used for DGGE analysis and migrated to slightly different points in denaturing gradient gels. Both isolates were strict anaerobes and highly metronidazole resistant

  9. Bacterial phylogeny structures soil resistomes across habitats

    NASA Astrophysics Data System (ADS)

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-05-01

    Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

  10. Bacterial fatty acid metabolism in modern antibiotic discovery.

    PubMed

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate.

    PubMed

    Jroundi, Fadwa; Gonzalez-Muñoz, Maria Teresa; Garcia-Bueno, Ana; Rodriguez-Navarro, Carlos

    2014-09-01

    Gypsum plasterworks and decorative surfaces are easily degraded, especially when exposed to humidity, and thus they require protection and/or consolidation. However, the conservation of historical gypsum-based structural and decorative materials by conventional organic and inorganic consolidants shows limited efficacy. Here, a new method based on the bioconsolidation capacity of carbonatogenic bacteria inhabiting the material was assayed on historical gypsum plasters and compared with conventional consolidation treatments (ethyl silicate; methylacrylate-ethylmethacrylate copolymer and polyvinyl butyral). Conventional products do not reach in-depth consolidation, typically forming a thin impervious surface layer which blocks pores. In contrast, the bacterial treatment produces vaterite (CaCO3) biocement, which does not block pores and produces a good level of consolidation, both at the surface and in-depth, as shown by drilling resistance measurement system analyses. Transmission electron microscopy analyses show that bacterial vaterite cement formed via oriented aggregation of CaCO3 nanoparticles (∼20nm in size), resulting in mesocrystals which incorporate bacterial biopolymers. Such a biocomposite has superior mechanical properties, thus explaining the fact that drilling resistance of bioconsolidated gypsum plasters is within the range of inorganic calcite materials of equivalent porosity, despite the fact that the bacterial vaterite cement accounts for only a 0.02 solid volume fraction. Bacterial bioconsolidation is proposed for the effective consolidation of this type of material. The potential applications of bacterial calcium carbonate consolidation of gypsum biomaterials used as bone graft substitutes are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Molecular Mapping of High Resistance to Bacterial Leaf Spot in Lettuce PI 358001-1.

    PubMed

    Wang, Yunwen; Lu, Huangjun; Hu, Jinguo

    2016-11-01

    Lettuce (Lactuca sativa L.) is a diploid (2n = 18) with a genome size of 2,600 Mbp, and belongs to the family Compositae. Bacterial leaf spot (BLS), caused by Xanthomonas campestris pv. vitians, is a major disease of lettuce worldwide. Leaf lettuce PI 358001-1 has been characterized as an accession highly resistant to BLS and has white seed. In order to understand inheritance of the high resistance in this germplasm line, an F 3 population consisting of 163 families was developed from the cross PI 358001-1 × 'Tall Guzmaine' (a susceptible Romaine lettuce variety with black seed). The segregation ratio of reaction to disease by seedling inoculation with X. campestris pv. vitians L7 strain in the F 3 families was shown to be 32:82:48 homozygous resistant/heterozygous/homozygous susceptible, fitting to 1:2:1 (n = 162, χ 2 = 3.19, P = 0.20). The segregation ratio of seed color by checking F 2 plants was 122:41 black/white, fitting to 3:1 (n = 163, χ 2 = 0.002, P = 0.96). The results indicated that both BLS resistance and seed color were inherited as a dominant gene mode. A genetic linkage map based on 124 randomly selected F 2 plants was developed to enable molecular mapping of the BLS resistance and the seed color trait. In total, 199 markers, comprising 176 amplified fragment length polymorphisms, 16 simple-sequence repeats, 5 resistant gene candidate markers, and 2 cleaved amplified polymorphic sequences (CAPS) markers were assigned to six linkage groups. The dominant resistance gene to BLS (Xcvr) was mapped on linkage group 2 and the gene locus y for seed color was identified on linkage group 5. Due to the nature of a single gene inheritance, the high-resistance gene should be readily transferred to adapted lettuce cultivars to battle against the devastating disease of lettuce.

  13. Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis

    PubMed Central

    Morrissey, John P.; Osbourn, Anne E.

    1999-01-01

    Many plants produce low-molecular-weight compounds which inhibit the growth of phytopathogenic fungi in vitro. These compounds may be preformed inhibitors that are present constitutively in healthy plants (also known as phytoanticipins), or they may be synthesized in response to pathogen attack (phytoalexins). Successful pathogens must be able to circumvent or overcome these antifungal defenses, and this review focuses on the significance of fungal resistance to plant antibiotics as a mechanism of pathogenesis. There is increasing evidence that resistance of fungal pathogens to plant antibiotics can be important for pathogenicity, at least for some fungus-plant interactions. This evidence has emerged largely from studies of fungal degradative enzymes and also from experiments in which plants with altered levels of antifungal secondary metabolites were generated. Whereas the emphasis to date has been on degradative mechanisms of resistance of phytopathogenic fungi to antifungal secondary metabolites, in the future we are likely to see a rapid expansion in our knowledge of alternative mechanisms of resistance. These may include membrane efflux systems of the kind associated with multidrug resistance and innate resistance due to insensitivity of the target site. The manipulation of plant biosynthetic pathways to give altered antibiotic profiles will also be valuable in telling us more about the significance of antifungal secondary metabolites for plant defense and clearly has great potential for enhancing disease resistance for commercial purposes. PMID:10477313

  14. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  15. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  16. Mechanisms of biotic resistance across complex life cycles.

    PubMed

    Rius, Marc; Potter, Elaine E; Aguirre, J David; Stachowicz, John J

    2014-01-01

    Biotic resistance is the ability of communities to inhibit the establishment, spread or impact of novel species. However, the interactions that underlie biotic resistance depend heavily on the contexts in which species interact. Consequently, studies of biotic resistance that consider single processes, patches, species or life-history stages may provide an incomplete picture of the capacity for communities to resist invasion. Many organisms have multiphasic life cycles, where individuals can occupy distinct niches at different stages of the life history. Generally, studies of biotic resistance focus on interactions within a single life-history stage, and interactions at other life-history stages are overlooked. Here, we demonstrate that different mechanisms of biotic resistance occur across the life history and together limit the invasion success of an introduced marine invertebrate (Ciona intestinalis) in Northern California. We tested the role of interactions (competition and predation) with the resident community in limiting the abundance of Ciona through experiments conducted on fertilization, larval survival, settlement, early postsettlement survival, and the survival of juveniles and adults. Under some circumstances, Ciona became abundant in mid-successional stages and showed more rapid growth rates than a morphologically similar native species, Ascidia ceratodes. However, predators reduced Ciona abundance much more than that of Ascidia at several life stages. Furthermore, Ciona appeared to be a weaker competitor at the adult stage. Early life-history interactions with other sessile species at the fertilization, larval and recruit stages had modest to no effects on Ciona abundance. The presence of biotic resistance mechanisms acting at multiple life stages, and potentially under different conditions, suggests that different components of biotic resistance interact to enhance the resident community's resistance to invasion. © 2013 The Authors. Journal of

  17. Resistance Status and Resistance Mechanisms in a Strain of Aedes aegypti (Diptera: Culicidae) From Puerto Rico.

    PubMed

    Estep, Alden S; Sanscrainte, Neil D; Waits, Christy M; Louton, Jessica E; Becnel, James J

    2017-11-07

    Puerto Rico (PR) has a long history of vector-borne disease and insecticide-resistant Aedes aegypti (L.). Defining contributing mechanisms behind phenotypic resistance is critical for effective vector control intervention. However, previous studies from PR have each focused on only one mechanism of pyrethroid resistance. This study examines the contribution of P450-mediated enzymatic detoxification and sodium channel target site changes to the overall resistance phenotype of Ae. aegypti collected from San Juan, PR, in 2012. Screening of a panel of toxicants found broad resistance relative to the lab susceptible Orlando (ORL1952) strain. We identified significant resistance to representative Type I, Type II, and nonester pyrethroids, a sodium channel blocker, and a sodium channel blocking inhibitor, all of which interact with the sodium channel. Testing of fipronil, a chloride channel agonist, also showed low but significant levels of resistance. In contrast, the PR and ORL1952 strains were equally susceptible to chlorfenapyr, which has been suggested as an alternative public health insecticide. Molecular characterization of the strain indicated that two common sodium channel mutations were fixed in the population. Topical bioassay with piperonyl butoxide (PBO) indicated cytochrome P450-mediated detoxification accounts for approximately half of the resistance profile. Transcript expression screening of cytochrome P450s and glutathione-S-transferases identified the presence of overexpressed transcripts. This study of Puerto Rican Ae. aegypti with significant contributions from both genetic changes and enzymatic detoxification highlights the necessity of monitoring for resistance but also defining the multiple resistance mechanisms to inform effective mosquito control. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  18. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    PubMed Central

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159

  19. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms.

    PubMed

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-02-19

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections.

  20. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  1. Establishing Statistical Equivalence of Data from Different Sampling Approaches for Assessment of Bacterial Phenotypic Antimicrobial Resistance

    PubMed Central

    2018-01-01

    ABSTRACT To assess phenotypic bacterial antimicrobial resistance (AMR) in different strata (e.g., host populations, environmental areas, manure, or sewage effluents) for epidemiological purposes, isolates of target bacteria can be obtained from a stratum using various sample types. Also, different sample processing methods can be applied. The MIC of each target antimicrobial drug for each isolate is measured. Statistical equivalence testing of the MIC data for the isolates allows evaluation of whether different sample types or sample processing methods yield equivalent estimates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Salmonella spp. from ground or trimmed meat versus cecal content samples of cattle in processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fecal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Monitoring System data). We found that the sample types for cattle yielded nonequivalent susceptibility estimates for several antimicrobial drug classes and thus may gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone susceptibility estimates for nontyphoidal salmonellae from human blood are nonequivalent to those from urine or feces, conjecturally due to the fluoroquinolone (ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also demonstrate statistical equivalence testing for comparing sample processing methods for fecal samples (culturing one versus multiple aliquots per sample) to assess AMR in fecal Escherichia coli. These methods yield equivalent results, except for tetracyclines. Importantly, statistical equivalence testing provides the MIC difference at which the data from two sample types or sample processing methods differ statistically. Data users (e.g., microbiologists and epidemiologists) may then interpret practical relevance

  2. Establishing Statistical Equivalence of Data from Different Sampling Approaches for Assessment of Bacterial Phenotypic Antimicrobial Resistance.

    PubMed

    Shakeri, Heman; Volkova, Victoriya; Wen, Xuesong; Deters, Andrea; Cull, Charley; Drouillard, James; Müller, Christian; Moradijamei, Behnaz; Jaberi-Douraki, Majid

    2018-05-01

    To assess phenotypic bacterial antimicrobial resistance (AMR) in different strata (e.g., host populations, environmental areas, manure, or sewage effluents) for epidemiological purposes, isolates of target bacteria can be obtained from a stratum using various sample types. Also, different sample processing methods can be applied. The MIC of each target antimicrobial drug for each isolate is measured. Statistical equivalence testing of the MIC data for the isolates allows evaluation of whether different sample types or sample processing methods yield equivalent estimates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Salmonella spp. from ground or trimmed meat versus cecal content samples of cattle in processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fecal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Monitoring System data). We found that the sample types for cattle yielded nonequivalent susceptibility estimates for several antimicrobial drug classes and thus may gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone susceptibility estimates for nontyphoidal salmonellae from human blood are nonequivalent to those from urine or feces, conjecturally due to the fluoroquinolone (ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also demonstrate statistical equivalence testing for comparing sample processing methods for fecal samples (culturing one versus multiple aliquots per sample) to assess AMR in fecal Escherichia coli These methods yield equivalent results, except for tetracyclines. Importantly, statistical equivalence testing provides the MIC difference at which the data from two sample types or sample processing methods differ statistically. Data users (e.g., microbiologists and epidemiologists) may then interpret practical relevance of the

  3. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size.

    PubMed

    Reimche, Jennifer L; Kirse, Daniel J; Whigham, Amy S; Swords, W Edward

    2017-02-01

    The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms. Consistent with previous studies, antibiotic concentrations required to eliminate biofilm bacteria tended to be drastically higher than concentrations required to kill planktonic bacteria. The size characterizations of the biofilms formed by the clinical isolates were compared to their minimum biofilm eradication concentrations for four antibiotics. This revealed no correlation between biofilm thickness or biomass and the ability to resist eradication by antibiotics. Therefore, we concluded that biofilm size does not play a role in antibiotic resistance, suggesting that reduction of antibiotic penetration may not be a significant mechanism for antibiotic resistance for this bacterial opportunist. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  5. Imipenem-resistant Gram-negative bacterial isolates carried by persons upon medical examination in Korea.

    PubMed

    Kim, So Yeon; Shin, Sang Yop; Rhee, Ji-Young; Ko, Kwan Soo

    2017-08-01

    Carbapenem-resistant Gram-negative bacteria (CR-GNB) have emerged and disseminated worldwide, become a great concern worldwide including Korea. The prevalence of fecal carriage of imipenem-resistant Gram-negative bacteria (IR-GNB) in persons in Korea was investigated. Stool samples were collected from 300 persons upon medical examination. Samples were screened for IR-GNB by using MacConkey agar with 2 μl/ml imipenem. Species were identified by 16S rRNA gene sequence analysis, and antimicrobial susceptibility was determined by the broth microdilution method. In total, 82 IR-GNB bacterial isolates were obtained from 79 (26.3%) out of 300 healthy persons. Multilocus sequence typing analysis showed very high diversity among IR P. aeruginosa, S. maltophilia, and E. cloacae isolates, and pulsed-field gel electrophoresis revealed five main pulsotypes of IR P. mirabilis. As for the presence of metallo-β-lactamases (MBLs), only one IMP-25-producing S. marcescens isolate was identified. Although only one carbapenemase-producing isolate was identified, the high colonization rates with IR-GNB isolates in this study is notable because carriers may be a reservoir for the dissemination of resistant pathogens within the community as well as in health care institutions.

  6. Bacteriophages and Bacterial Plant Diseases

    PubMed Central

    Buttimer, Colin; McAuliffe, Olivia; Ross, R. P.; Hill, Colin; O’Mahony, Jim; Coffey, Aidan

    2017-01-01

    Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops. PMID:28163700

  7. A new risk factor for neonatal vancomycin-resistant Enterococcus colonisation: bacterial probiotics.

    PubMed

    Topcuoglu, Sevilay; Gursoy, Tugba; Ovalı, Fahri; Serce, Ozge; Karatekin, Guner

    2015-08-01

    Vancomycin-resistant Enterococcus (VRE) colonisation can be controlled with strict adherence to infection control measures. We describe a VRE outbreak coincident with bacterial probiotic trial. Relationship between probiotic and VRE colonisation, and other possible risk factors were investigated. Two hundred and ten infants with gestational age less than 32 weeks had been randomised for a trial with probiotic preparation containing Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus plantarum, Bifidobacterium lactis, fructooligosaccharide, galactooligosaccharide, colostrums and lactoferrin (NBL probiotic ATP®; Nobel, Istanbul, Turkey) between February 2012 and August 2013 when a VRE outbreak also took place. The existence of a relationship between this probiotic preparation and VRE colonisation was investigated. The begining and end of the outbreak were coincident with the beginning and end of the probiotic trial. Demographic and clinical features of neonates did not differ between VRE colonised (n = 94) and non-colonised infants (n = 116) except for vancomycin (p = 0.012) and probiotic (p < 0.001) use. Probiotic and vancomycin exposure were significant risk factors for VRE colonisation. The acquisition and transfer of resistance genes of bacteria may be mediated by probiotics. Therefore, the safety of probiotics is a concern and should be investigated further.

  8. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance.

    PubMed

    Riber, Leise; Poulsen, Pernille H B; Al-Soud, Waleed A; Skov Hansen, Lea B; Bergmark, Lasse; Brejnrod, Asker; Norman, Anders; Hansen, Lars H; Magid, Jakob; Sørensen, Søren J

    2014-10-01

    We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    PubMed

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  10. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice.

    PubMed

    Suh, Jung-Pil; Jeung, Ji-Ung; Noh, Tae-Hwan; Cho, Young-Chan; Park, So-Hyun; Park, Hyun-Su; Shin, Mun-Sik; Kim, Chung-Kon; Jena, Kshirod K

    2013-02-08

    The development of resistant cultivars has been the most effective and economical strategy to control bacterial leaf blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In this study, three resistance genes (Xa4 + xa5 + Xa21) were transferred from an indica donor (IRBB57), using a marker-assisted backcrossing (MAB) breeding strategy, into a BB-susceptible elite japonica rice cultivar, Mangeumbyeo, which is high yielding with good grain quality. Our analysis led to the development of three elite advanced backcross breeding lines (ABL) with three resistance genes by foreground and phenotypic selection in a japonica genetic background without linkage drag. The background genome recovery of the ABL expressed more than 92.1% using genome-wide SSR marker analysis. The pathogenicity assays of three resistance-gene-derived ABL were conducted under glasshouse conditions with the 18 isolates of Xoo prevalent in Korea. The ABL exhibited very small lesion lengths, indicating a hypersensitive reaction to all 18 isolates of Xoo, with agronomic and grain quality traits similar to those of the recurrent parent. Pyramiding the resistance genes Xa4, xa5 and Xa21 provided a higher resistance to Xoo than the introduction of the individual resistance genes. Additionally, the combination of two dominant and one recessive BB resistance gene did not express any negative effect on agronomic traits in the ABL. The strategy of simultaneous foreground and phenotypic selection to introduce multiple R genes is very useful to reduce the cost and the time required for the isolation of desirable recombinants with target resistance genes in rice. The resistance-gene-derived ABL have practical breeding value without a yield penalty by providing broad-spectrum resistance against most of the existing isolates of BB in South Korea and will

  11. Antiseptic resistance: what do we know and what does it mean?

    PubMed

    Sheldon, Albert T

    2005-01-01

    Biocides (antiseptics, disinfectants, preservatives, sterilants) are used in clinical medicine as intervention strategies that prevent the dissemination of nosocomial pathogens. Biocides are also used for personal hygiene and to prevent cross-contamination of food-borne pathogens in homes, restaurants, day care centers, and nursing homes. However, laboratory evidence has emerged suggesting that the mechanism of nonsusceptibility to biocides may counter-select for resistance to antibiotics. Nature conserves successful survival strategies. Using existing mechanisms of resistance to antibiotics and their means of dissemination, microorganisms have adopted this same survival strategy for biocide nonsusceptibility. These mechanisms are intrinsic in nature or are acquired. The consequences to biocide efficacy in the clinical setting are probably not significant from the biocide perspective. But, the selective pressure biocides exert on bacterial populations that have mechanisms of resistance similar to those to antibiotics or that are also substrates for antibiotic resistance is of concern.

  12. The role of respiratory viruses in the etiology of bacterial pneumonia

    PubMed Central

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-01-01

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. PMID:26884414

  13. Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario.

    PubMed

    Ibsen, Michael; Fernando, Dinesh M; Kumar, Ayush; Kirkwood, Andrea E

    2017-05-01

    The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p < 0.05). Decaying and free-floating Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research.

  14. The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars

    USDA-ARS?s Scientific Manuscript database

    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane, and Little Gem express an incompatible host-pathogen in...

  15. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  16. Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus

    PubMed Central

    Chudobova, Dagmar; Dostalova, Simona; Blazkova, Iva; Michalek, Petr; Ruttkay-Nedecky, Branislav; Sklenar, Matej; Nejdl, Lukas; Kudr, Jiri; Gumulec, Jaromir; Tmejova, Katerina; Konecna, Marie; Vaculovicova, Marketa; Hynek, David; Masarik, Michal; Kynicky, Jindrich; Kizek, Rene; Adam, Vojtech

    2014-01-01

    There is an arising and concerning issue in the field of bacterial resistance, which is confirmed by the number of deaths associated with drug-resistant bacterial infections. The aim of this study was to compare the effects of antibiotics on Staphylococcus aureus non-resistant strain and strains resistant to cadmium or lead ions. Metal resistant strains were created by the gradual addition of 2 mM solution of metal ions (cadmium or lead) to the S. aureus culture. An increasing antimicrobial effect of ampicillin, streptomycin, penicillin and tetracycline (0, 10, 25, 50, 75, 150, 225 and 300 µM) on the resistant strains was observed using a method of growth curves. A significant growth inhibition (compared to control) of cadmium resistant cells was observed in the presence of all the four different antibiotics. On the other hand, the addition of streptomycin and ampicillin did not inhibit the growth of lead resistant strain. Other antibiotics were still toxic to the bacterial cells. Significant differences in the morphology of cell walls were indicated by changes in the cell shape. Our data show that the presence of metal ions in the urban environment may contribute to the development of bacterial strain resistance to other substances including antibiotics, which would have an impact on public health. PMID:24651395

  17. Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study

    PubMed Central

    Lübbert, Christoph; Wendt, Karolin; Feisthammel, Jürgen; Moter, Annette; Lippmann, Norman; Busch, Thilo; Mössner, Joachim; Hoffmeister, Albrecht; Rodloff, Arne C.

    2016-01-01

    Background Plastic stents used for the treatment of biliary obstruction will become occluded over time due to microbial colonization and formation of biofilms. Treatment of stent-associated cholangitis is often not effective because of inappropriate use of antimicrobial agents or antimicrobial resistance. We aimed to assess the current bacterial and fungal etiology of stent-associated biofilms, with particular emphasis on antimicrobial resistance. Methods Patients with biliary strictures requiring endoscopic stent placement were prospectively enrolled. After the retrieval of stents, biofilms were disrupted by sonication, microorganisms were cultured, and isolates were identified by matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and/or biochemical typing. Finally, minimum inhibitory concentrations (MICs) were determined for various antimicrobial agents. Selected stents were further analyzed by fluorescence in situ hybridization (FISH). Results Among 120 patients (62.5% males, median age 64 years) with biliary strictures (35% malignant, 65% benign), 113 double pigtail polyurethane and 100 straight polyethylene stents were analyzed after a median indwelling time of 63 days (range, 1–1274 days). The stent occlusion rate was 11.5% and 13%, respectively, being associated with a significantly increased risk of cholangitis (38.5% vs. 9.1%, P<0.001). Ninety-five different bacterial and 13 fungal species were detected; polymicrobial colonization predominated (95.8% vs. 4.2%, P<0.001). Enterococci (79.3%), Enterobacteriaceae (73.7%), and Candida spp. (55.9%) were the leading pathogens. Candida species were more frequent in patients previously receiving prolonged antibiotic therapy (63% vs. 46.7%, P = 0.023). Vancomycin-resistant enterococci accounted for 13.7%, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae with co-resistance to ciprofloxacin accounted for 13.9%, and azole-resistant Candida spp. accounted for

  18. Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study.

    PubMed

    Lübbert, Christoph; Wendt, Karolin; Feisthammel, Jürgen; Moter, Annette; Lippmann, Norman; Busch, Thilo; Mössner, Joachim; Hoffmeister, Albrecht; Rodloff, Arne C

    2016-01-01

    Plastic stents used for the treatment of biliary obstruction will become occluded over time due to microbial colonization and formation of biofilms. Treatment of stent-associated cholangitis is often not effective because of inappropriate use of antimicrobial agents or antimicrobial resistance. We aimed to assess the current bacterial and fungal etiology of stent-associated biofilms, with particular emphasis on antimicrobial resistance. Patients with biliary strictures requiring endoscopic stent placement were prospectively enrolled. After the retrieval of stents, biofilms were disrupted by sonication, microorganisms were cultured, and isolates were identified by matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and/or biochemical typing. Finally, minimum inhibitory concentrations (MICs) were determined for various antimicrobial agents. Selected stents were further analyzed by fluorescence in situ hybridization (FISH). Among 120 patients (62.5% males, median age 64 years) with biliary strictures (35% malignant, 65% benign), 113 double pigtail polyurethane and 100 straight polyethylene stents were analyzed after a median indwelling time of 63 days (range, 1-1274 days). The stent occlusion rate was 11.5% and 13%, respectively, being associated with a significantly increased risk of cholangitis (38.5% vs. 9.1%, P<0.001). Ninety-five different bacterial and 13 fungal species were detected; polymicrobial colonization predominated (95.8% vs. 4.2%, P<0.001). Enterococci (79.3%), Enterobacteriaceae (73.7%), and Candida spp. (55.9%) were the leading pathogens. Candida species were more frequent in patients previously receiving prolonged antibiotic therapy (63% vs. 46.7%, P = 0.023). Vancomycin-resistant enterococci accounted for 13.7%, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae with co-resistance to ciprofloxacin accounted for 13.9%, and azole-resistant Candida spp. accounted for 32.9% of the respective

  19. Mechanisms linking brain insulin resistance to Alzheimer's disease

    PubMed Central

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950

  20. [Capability of national reference laboratories in Latin America to detect emerging resistance mechanisms].

    PubMed

    Corso, Alejandra; Guerriero, Leonor; Pasterán, Fernando; Ceriana, Paola; Callejo, Raquel; Prieto, Mónica; Tuduri, Ezequiel; Lopardo, Horacio; Vay, Carlos; Smayevsky, Jorgelina; Tokumoto, Marta; Alvarez, Jorge Matheu; Pardo, Pilar Ramón; Galas, Marcelo

    2011-12-01

    To evaluate the capability of 17 national reference laboratories participating in the Latin American Quality Control Program in Bacteriology and Antibiotic Resistance (LA-EQAS) to detect emerging resistance mechanisms- namely: resistance of enterobacteria to carbapenems due to the presence of Klebsiella pneumoniae carbapenemase (KPC) and metallo-beta-lactamase (MBL) type IMP, and intermediate resistance of Staphylococcus aureus isolates to vancomycin (vancomycin-intermediate resistant S. aureus-VISA). The following three isolates were sent to the 17 participating LA-EQAS laboratories: KPC -producing Klebsiella pneumoniae PAHO-161, IMP-producing Enterobacter cloacae PAHO-166, and S. aureus PAHO-165 with intermediate resistance to vancomycin. Performance of each of the following operations was evaluated: interpretation of sensitivity tests, detection of the resistance mechanism, and assessment of either inhibition halo size (disk diffusion method) or minimum inhibitory concentration (MIC). Concordance in the detection of resistance mechanisms was 76.4%, 73.3%, and 66.7% for the K. pneumoniae PAHO-161, E. cloacae PAHO-166, and S. aureus PAHO-165 strains, respectively. Concordance between the inhibition areas observed by the participating laboratories and the ranges established by the coordinating laboratory was acceptable for all three isolates, at 90.8%, 92.8%, and 88.9%, respectively. Overall concordance in on the detection of KPC, MBL, and VISA resistance mechanisms was 72.1%. We consider the national reference laboratories in Latin America capable of recognizing these emerging resistance mechanisms and expect that maximum levels of concordance will be reached in the future.

  1. Mechanism-based model for tumor drug resistance.

    PubMed

    Kuczek, T; Chan, T C

    1992-01-01

    The development of tumor resistance to cytotoxic agents has important implications in the treatment of cancer. If supported by experimental data, mathematical models of resistance can provide useful information on the underlying mechanisms and aid in the design of therapeutic regimens. We report on the development of a model of tumor-growth kinetics based on the assumption that the rates of cell growth in a tumor are normally distributed. We further assumed that the growth rate of each cell is proportional to its rate of total pyrimidine synthesis (de novo plus salvage). Using an ovarian carcinoma cell line (2008) and resistant variants selected for chronic exposure to a pyrimidine antimetabolite, N-phosphonacetyl-L-aspartate (PALA), we derived a simple and specific analytical form describing the growth curves generated in 72 h growth assays. The model assumes that the rate of de novo pyrimidine synthesis, denoted alpha, is shifted down by an amount proportional to the log10 PALA concentration and that cells whose rate of pyrimidine synthesis falls below a critical level, denoted alpha 0, can no longer grow. This is described by the equation: Probability (growth) = probability (alpha 0 less than alpha-constant x log10 [PALA]). This model predicts that when growth curves are plotted on probit paper, they will produce straight lines. This prediction is in agreement with the data we obtained for the 2008 cells. Another prediction of this model is that the same probit plots for the resistant variants should shift to the right in a parallel fashion. Probit plots of the dose-response data obtained for each resistant 2008 line following chronic exposure to PALA again confirmed this prediction. Correlation of the rightward shift of dose responses to uridine transport (r = 0.99) also suggests that salvage metabolism plays a key role in tumor-cell resistance to PALA. Furthermore, the slope of the regression lines enables the detection of synergy such as that observed between

  2. Mechanisms of resistance change under pressure for AgNP-based conducting wires

    NASA Astrophysics Data System (ADS)

    Qian, Zhentao; Liu, Liping; Huang, Han; Cheng, Xiong; Zhu, Xiaobo; Gu, Wenhua

    2018-02-01

    The silver nanoparticle (AgNP) based conducting wire is a fundamental element of flexible electronic devices, especially in the printing electronics area. Its resistance change mechanisms under pressure is of both scientific interest and practical importance. AgNP-based conducting wires were fabricated on flexible substrates by electrospraying printing technology, and three possible resistance change mechanisms were studied: vertical deformation (VD) of the AgNP wire due to vertical pressure, horizontal wire elongation (HWE) along with the flexible substrate due to vertical pressure, and local micro deformation (LMD) at the touching edge. Analysis of the experiment data revealed that the resistance change due to VD was negligible, the resistance change due to PWE was one order of magnitude smaller than the measured value, and the resistance change due to PWE was the dominating mechanism.

  3. Genetic methods for detection of antibiotic resistance: focus on extended-spectrum β-lactamases.

    PubMed

    Chroma, Magdalena; Kolar, Milan

    2010-12-01

    In 1928, the first antibiotic, penicillin, was discovered. That was the beginning of a great era in the development and prescription of antibiotics. However, the introduction of these antimicrobial agents into clinical practice was accompanied by the problem of antibiotic resistance. Currently, bacterial resistance to antibiotics poses a major problem in both hospital and community settings throughout the world. This review provides examples of modern genetic methods and their practical application in the field of extended-spectrum β-lactamase detection. Since extended-spectrum β-lactamases are the main mechanism of Gram-negative bacterial resistance to oxyimino-cephalosporins, rapid and accurate detection is requested in common clinical practice. Currently, the detection of extended-spectrum β-lactamases is primarily based on the determination of bacterial phenotypes rather than genotypes. This is because therapeutic decisions are based on assessing the susceptibility rather than presence of resistance genes. One of the main disadvantages of genetic methods is high costs, including those of laboratory equipment. On the other hand, if these modern methods are introduced into diagnostics, they often help in rapid and accurate detection of certain microorganisms or their resistance and pathogenic determinants.

  4. Similar effects of QTL Haplotypes for Bacterial Cold Water Disease resistance across two generations in a commercial rainbow trout breeding population

    USDA-ARS?s Scientific Manuscript database

    Previously we have demonstrated that genomic selection (GS) for bacterial cold water disease (BCWD) resistance can double the accuracy of traditional pedigree-based selection in a commercial rainbow trout breeding population. The objective of this study was to evaluate the effectiveness of marker ...

  5. Rapid Bacterial Whole-Genome Sequencing to Enhance Diagnostic and Public Health Microbiology

    PubMed Central

    Reuter, Sandra; Ellington, Matthew J.; Cartwright, Edward J. P.; Köser, Claudio U.; Török, M. Estée; Gouliouris, Theodore; Harris, Simon R.; Brown, Nicholas M.; Holden, Matthew T. G.; Quail, Mike; Parkhill, Julian; Smith, Geoffrey P.; Bentley, Stephen D.; Peacock, Sharon J.

    2014-01-01

    IMPORTANCE The latest generation of benchtop DNA sequencing platforms can provide an accurate whole-genome sequence (WGS) for a broad range of bacteria in less than a day. These could be used to more effectively contain the spread of multidrug-resistant pathogens. OBJECTIVE To compare WGS with standard clinical microbiology practice for the investigation of nosocomial outbreaks caused by multidrug-resistant bacteria, the identification of genetic determinants of antimicrobial resistance, and typing of other clinically important pathogens. DESIGN, SETTING, AND PARTICIPANTS A laboratory-based study of hospital inpatients with a range of bacterial infections at Cambridge University Hospitals NHS Foundation Trust, a secondary and tertiary referral center in England, comparing WGS with standard diagnostic microbiology using stored bacterial isolates and clinical information. MAIN OUTCOMES AND MEASURES Specimens were taken and processed as part of routine clinical care, and cultured isolates stored and referred for additional reference laboratory testing as necessary. Isolates underwent DNA extraction and library preparation prior to sequencing on the Illumina MiSeq platform. Bioinformatic analyses were performed by persons blinded to the clinical, epidemiologic, and antimicrobial susceptibility data. RESULTS We investigated 2 putative nosocomial outbreaks, one caused by vancomycin-resistant Enterococcus faecium and the other by carbapenem-resistant Enterobacter cloacae; WGS accurately discriminated between outbreak and nonoutbreak isolates and was superior to conventional typing methods. We compared WGS with standard methods for the identification of the mechanism of carbapenem resistance in a range of gram-negative bacteria (Acinetobacter baumannii, E cloacae, Escherichia coli, and Klebsiella pneumoniae). This demonstrated concordance between phenotypic and genotypic results, and the ability to determine whether resistance was attributable to the presence of

  6. Optimization of Synergistic Combination Regimens against Carbapenem- and Aminoglycoside-Resistant Clinical Pseudomonas aeruginosa Isolates via Mechanism-Based Pharmacokinetic/Pharmacodynamic Modeling

    PubMed Central

    Yadav, Rajbharan; Nation, Roger L.

    2016-01-01

    ABSTRACT Optimizing antibiotic combinations is promising to combat multidrug-resistant Pseudomonas aeruginosa. This study aimed to systematically evaluate synergistic bacterial killing and prevention of resistance by carbapenem and aminoglycoside combinations and to rationally optimize combination dosage regimens via a mechanism-based mathematical model (MBM). We studied monotherapies and combinations of imipenem with tobramycin or amikacin against three difficult-to-treat double-resistant clinical P. aeruginosa isolates. Viable-count profiles of total and resistant populations were quantified in 48-h static-concentration time-kill studies (inoculum, 107.5 CFU/ml). We rationally optimized combination dosage regimens via MBM and Monte Carlo simulations against isolate FADDI-PA088 (MIC of imipenem [MICimipenem] of 16 mg/liter and MICtobramycin of 32 mg/liter, i.e., both 98th percentiles according to the EUCAST database). Against this isolate, imipenem (1.5× MIC) combined with 1 to 2 mg/liter tobramycin (MIC, 32 mg/liter) or amikacin (MIC, 4 mg/liter) yielded ≥2-log10 more killing than the most active monotherapy at 48 h and prevented resistance. For all three strains, synergistic killing without resistance was achieved by ≥0.88× MICimipenem in combination with a median of 0.75× MICtobramycin (range, 0.032× to 2.0× MICtobramycin) or 0.50× MICamikacin (range, 0.25× to 0.50× MICamikacin). The MBM indicated that aminoglycosides significantly enhanced the imipenem target site concentration up to 3-fold; achieving 50% of this synergistic effect required aminoglycoside concentrations of 1.34 mg/liter (if the aminoglycoside MIC was 4 mg/liter) and 4.88 mg/liter (for MICs of 8 to 32 mg/liter). An optimized combination regimen (continuous infusion of imipenem at 5 g/day plus a 0.5-h infusion with 7 mg/kg of body weight tobramycin) was predicted to achieve >2.0-log10 killing and prevent regrowth at 48 h in 90.3% of patients (median bacterial killing, >4.0 log10 CFU

  7. Organomineral interactions as an important mechanism for stabilisation of bacterial residues in soil

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Achtenhagen, Jan; Kästner, Matthias

    2017-04-01

    Although plant material is the original input of organic matter to soils, microbial residues have been identified to contribute to a large extent to soil organic matter. However, until now it is unclear how microbial residues are stabilised in soil and protected from degradation. We hypothesised that organomineral interactions, in particular encrustation by oxides, may play an important role, which might vary depending on environmental conditions, e.g. redox potential. Therefore we produced 14C-labelled Escherichia coli cells and cell envelope fragments and coprecipitated these materials with Fe oxide or Al oxide. Mineral-free (control) and mineral-encrusted bacterial residues were incubated for 345 days at 20˚ C under either oxic or oxygen-limited conditions, and mineralisation was quantified by scintillation counting of the CO2 produced during incubation. Oxygen limitation was achieved by first exchanging the atmosphere in the incubation vessels with dinitrogen gas. After 100 days of incubation, the anoxic treatments were waterlogged to further decrease the redox potential, and after 290 days, glucose and nutrients were supplied to all treatments in order to foster microbial activity and consumption of electron acceptors. The mineralisation curves were fitted by double-exponential (0-100 days), first-order kinetic (100-290 days) and linear (290-345 days) models. The model parameters were tested for significant differences between the treatments by three-way ANOVA with post-hoc Bonferroni t-test. We found that encrustation by the oxides significantly reduced mineralisation of the bacterial residues. This effect was inversed by reductive dissolution of Fe oxides after substrate and nutrient addition to the oxygen-limited treatments, suggesting a significant role of the encrustation in stabilisation of the bacterial residues. We also observed that bacterial cell envelope fragments were generally slightly more resistant to mineralisation than whole cells. The

  8. Priming by Rhizobacterium Protects Tomato Plants from Biotrophic and Necrotrophic Pathogen Infections through Multiple Defense Mechanisms

    PubMed Central

    Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul

    2011-01-01

    A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203

  9. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  10. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  11. Eradication of bacterial species via photosensitization

    NASA Astrophysics Data System (ADS)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1999-02-01

    Photosensitization and inactivation efficacy of three bacterial species: Prevotella nigrescens, Staphylococcus aureus and Escherichia coli have been investigated. Samples of Staphylococcus aureus and Escherichia coli were treated with the triphenylmethane dye malachite green isothiocyanate and exposed to light from a variety of continuous and pulsed light sauces at a wavelength of approximately 630 nm. Inactivation of the Gram-positive species Staphylococcus aureus was found to increase with radiation dose, whilst Gram-negative Escherichia coli was resistant to such treatment. Samples of the pigmented species Prevotella nigrescens were found to be inactivated by exposure to light alone. The mechanism of photosensitization and inactivation of Staphylococcus aureus with malachite green isothiocyanate is addressed. The possible roles of the excited triplet state of the photosensitizer, the involvement of molecular oxygen, and the bacterial cell wall are discussed. Photosensitization may provide a way of eliminating naturally pigmented species responsible for a variety of infections, including oral diseases such as gingivitis and periodontitis.

  12. Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds.

    PubMed

    Duke, Stephen O

    2011-06-08

    High levels of aminomethylphosphonic acid (AMPA), the main glyphosate metabolite, have been found in glyphosate-treated, glyphosate-resistant (GR) soybean, apparently due to plant glyphosate oxidoreductase (GOX)-like activity. AMPA is mildly phytotoxic, and under some conditions the AMPA accumulating in GR soybean correlates with glyphosate-caused phytotoxicity. A bacterial GOX is used in GR canola, and an altered bacterial glyphosate N-acetyltransferase is planned for a new generation of GR crops. In some weed species, glyphosate degradation could contribute to natural resistance. Neither an isolated plant GOX enzyme nor a gene for it has yet been reported in plants. Gene mutation or amplification of plant genes for GOX-like enzyme activity or horizontal transfer of microbial genes from glyphosate-degrading enzymes could produce GR weeds. Yet, there is no evidence that metabolic degradation plays a significant role in evolved resistance to glyphosate. This is unexpected, considering the extreme selection pressure for evolution of glyphosate resistance in weeds and the difficulty in plants of evolving glyphosate resistance via other mechanisms.

  13. Amoxicillin/clavulanate (Augmentin) resistant Escherichia coli in bacterial peritonitis after abdominal surgery--clinical outcome in ICU patients.

    PubMed

    Rahnama'i, M S; Wagenvoort, J H T; van der Linden, C J

    2009-05-01

    Bacterial resistance to antimicrobial agents is of great concern to clinicians. Patient outcome after infection is mainly dependent on the sensitivity of the bacterium to the agent used. We retrospectively studied 89 postoperative intensive care unit (ICU) patients with proven Escherichia coli peritonitis and investigated the clinical consequences of the E. coli resistance to amoxicillin/clavulanate. Significantly increased mortality, days of ventilation and ICU stay were noted in the co-amoxicillin/clavulanate resistant group. Furthermore, our results demonstrate that the sensitivity of E. coli to amoxicillin/clavulanate in the postoperative ICU setting has decreased in recent years. We can conclude that the current antibiotic regimen for the empirical treatment of ICU patients with peritonitis, as used in our hospital, needs to be changed. A switch, for instance, to ceftriaxone (Rocephin) in combination with metronidazole and gentamicin, instead of the present regimen of amoxicillin/clavulanate in combination with gentamicin, seems preferable.

  14. Urinary tract infections and bacterial prostatitis in men.

    PubMed

    Wagenlehner, Florian M E; Weidner, Wolfgang; Pilatz, Adrian; Naber, Kurt G

    2014-02-01

    The purpose of this review is to highlight advances in research on urinary tract infections (UTIs) and bacterial prostatitis in men in the preceding year. The antiseptic properties of the prostate secretions might be an important factor for prevention of recurrency. Risk factors for UTI in men include prostate enlargement and urological interventions, such as transrectal prostate biopsy. Preventive treatment of prostate enlargement has been demonstrated to reduce frequency of UTI. Ensuing infections after prostate biopsy, such as UTI and bacterial prostatitis, are increasing due to increasing rates of fluoroquinolone resistance. The increasing global antibiotic resistance also significantly affects management of UTI in men, and therefore calls for alternative strategies.Apart from prevention of complicating factors leading to UTI, a more thorough understanding of the pathophysiology may play a more important role in the future, to define new targets for treatment. Interesting results that might interfere with the intracellular mucosal bacterial load in the bladder wall have been found in the last years. UTI in men and bacterial prostatitis are currently underrepresented in the medical literature. Increasing antibacterial resistance calls for novel strategies in the prevention and management of UTI and bacterial prostatitis in men.

  15. Polymicrobial Gardnerella biofilm resists repeated intravaginal antiseptic treatment in a subset of women with bacterial vaginosis: a preliminary report.

    PubMed

    Swidsinski, Alexander; Loening-Baucke, Vera; Swidsinski, Sonja; Verstraelen, Hans

    2015-03-01

    Bacterial vaginosis is a recalcitrant polymicrobial biofilm infection that often resists standard antibiotic treatment. We therefore considered repeated treatment with octenidine, a local antiseptic that has previously been shown to be highly effective in several biofilm-associated infections. Twenty-four patients with recurrent BV were treated with a 7-day course of octenidine (octenidine dihydrochloride spray application with the commercial product Octenisept). In case of treatment failure or relapse within 6 months, patients were re-treated with a 28-day course of octenidine. In case of recurrence within 6 months after the second treatment course, patients were treated again with a 28-day course followed by weekly applications for 2 months. Treatment effect was evaluated by assessment of the presence of the biofilm on voided vaginal epithelial cells through fluorescence in situ hybridisation. The initial cure rate following a 7-day course of octenidine was as high as 87.5%. The 6-month relapse rate was, however, as high as 66.6%. Repeated treatment for 28 days led to an overall cure rate of 75.0%; however, it was also associated with emergence of complete resistance to octenidine in a subset of women. The overall cure rate after three treatment courses with 1-year follow-up was 62.5 %, with 37.5 % of the patients showing complete resistance to octenidine. Our preliminary results showed that octenidine dihydrochloride was initially highly effective, but the efficacy of repeated and prolonged treatment dropped quickly as challenge with the antiseptic rapidly led to bacterial resistance in a considerable subset of women.

  16. Resistive switching properties and physical mechanism of cobalt ferrite thin films

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zou, Lilan; Chen, Ruqi; Xie, Wei; Chen, Xinman; Qin, Ni; Li, Shuwei; Yang, Guowei; Bao, Dinghua

    2014-04-01

    We report reproducible resistive switching performance and relevant physical mechanism of sandwiched Pt/CoFe2O4/Pt structures in which the CoFe2O4 thin films were fabricated by a chemical solution deposition method. Uniform switching voltages, good endurance, and long retention have been demonstrated in the Pt/CoFe2O4/Pt memory cells. On the basis of the analysis of current-voltage characteristic and its temperature dependence, we suggest that the carriers transport through the conducting filaments in low resistance state with Ohmic conduction behavior, and the Schottky emission and Poole-Frenkel emission dominate the conduction mechanism in high resistance state. From resistance-temperature dependence of resistance states, we believe that the physical origin of the resistive switching refers to the formation and rupture of the oxygen vacancies related filaments. The nanostructured CoFe2O4 thin films can find applications in resistive random access memory.

  17. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    NASA Astrophysics Data System (ADS)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  18. Bacterial phylogeny structures soil resistomes across habitats

    PubMed Central

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-01-01

    Summary Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil1–3, including genes identical to those in human pathogens4. Despite the apparent overlap between soil and clinical resistomes4–6, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown3. General metagenome functions often correlate with the underlying structure of bacterial communities7–12. However, ARGs are hypothesized to be highly mobile4,5,13, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions13,14. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2895 ARGs we discovered were predominantly novel, and represent all major resistance mechanisms15. We demonstrate that distinct soil types harbor distinct resistomes, and that nitrogen fertilizer amendments strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements syntenic with ARGs were rare in soil compared to sequenced pathogens, suggesting that ARGs in the soil may not transfer between bacteria as readily as is observed in the clinic. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny13,14. PMID:24847883

  19. New extracellular resistance mechanism for cisplatin.

    PubMed

    Centerwall, Corey R; Kerwood, Deborah J; Goodisman, Jerry; Toms, Bonnie B; Dabrowiak, James C

    2008-01-01

    The HSQC NMR spectrum of 15N-cisplatin in cell growth media shows resonances corresponding to the monocarbonato complex, cis-[Pt(NH3)2(CO3)Cl](-), 4, and the dicarbonato complex, cis-[Pt(NH3)2(CO3)2](-2), 5, in addition to cisplatin itself, cis-[Pt(NH3)2Cl2], 1. The presence of Jurkat cells reduces the amount of detectable carbonato species by (2.8+/-0.7) fmol per cell and has little effect on species 1. Jurkat cells made resistant to cisplatin reduce the amount of detectable carbonato species by (7.9+/-5.6) fmol per cell and also reduce the amount of 1 by (3.4+/-0.9) fmol per cell. The amount of detectable carbonato species is also reduced by addition of the drug to medium that has previously been in contact with normal Jurkat cells (cells removed); the reduction is greater when drug is added to medium previously in contact with resistant Jurkat cells (cells removed). This shows that the platinum species are modified by a cell-produced substance that is released to the medium. Since the modified species have been shown not to enter or bind to cells, and since resistant cells modify more than non-resistant cells, the modification constitutes a new extracellular mechanism for cisplatin resistance which merits further attention.

  20. Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype

    PubMed Central

    Di Domenico, Enea Gino; Farulla, Ilaria; Prignano, Grazia; Gallo, Maria Teresa; Vespaziani, Matteo; Cavallo, Ilaria; Sperduti, Isabella; Pontone, Martina; Bordignon, Valentina; Cilli, Laura; De Santis, Alessandra; Di Salvo, Fabiola; Pimpinelli, Fulvia; Lesnoni La Parola, Ilaria; Toma, Luigi; Ensoli, Fabrizio

    2017-01-01

    Bacterial biofilm is a major factor in delayed wound healing and high levels of biofilm production have been repeatedly described in multidrug resistant organisms (MDROs). Nevertheless, a quantitative correlation between biofilm production and the profile of antimicrobial drug resistance in delayed wound healing remains to be determined. Microbial identification, antibiotic susceptibility and biofilm production were assessed in 135 clinical isolates from 87 patients. Gram-negative bacteria were the most represented microorganisms (60.8%) with MDROs accounting for 31.8% of the total isolates. Assessment of biofilm production revealed that 80% of the strains were able to form biofilm. A comparable level of biofilm production was found with both MDRO and not-MDRO with no significant differences between groups. All the methicillin-resistant Staphylococcus aureus (MRSA) and 80% of Pseudomonas aeruginosa MDR strains were found as moderate/high biofilm producers. Conversely, less than 17% of Klebsiella pneumoniae extended-spectrum beta-lactamase (ESBL), Escherichia coli-ESBL and Acinetobacter baumannii were moderate/high biofilm producers. Notably, those strains classified as non-biofilm producers, were always associated with biofilm producer bacteria in polymicrobial colonization. This study shows that biofilm producers were present in all chronic skin ulcers, suggesting that biofilm represents a key virulence determinant in promoting bacterial persistence and chronicity of ulcerative lesions independently from the MDRO phenotype. PMID:28513576

  1. Insecticide resistance status of Myzus persicae in Greece: long-term surveys and new diagnostics for resistance mechanisms.

    PubMed

    Voudouris, Costas Ch; Kati, Amalia N; Sadikoglou, Eldem; Williamson, Martin; Skouras, Panagiotis J; Dimotsiou, Ourania; Georgiou, Stella; Fenton, Brian; Skavdis, George; Margaritopoulos, John T

    2016-04-01

    Myzus persicae nicotianae is an important pest in Greece, controlled mainly by neonicotinoids. Monitoring of the aphid populations for resistance mechanisms is essential for effective control. Two new RFLP-based diagnostics for the detection of the M918T (super-kdr pyrethroid resistance) and nAChR R81T (neonicotinoid resistance) mutations were applied, along with other established assays, on 131 nicotianae multilocus genotypes (MLGs) collected from tobacco and peach in Greece in 2012-2013. Furthermore, we present resistance data from aphid clones (>500, mainly nicotianae) collected in 2006-2007. About half of the clones tested with a diagnostic dose of imidacloprid were tolerant. The R81T mutation was not found in the 131 MLGs and 152 clones examined. Over half (58.6%) of a subset of 29 clones showed a 9-36-fold overexpression of CYP6CY3. M918T was found at low to moderate frequencies. The kdr and MACE mechanisms and carboxylesterase-based resistance were found at high frequency in all years. The aphid retains costly resistance mechanisms even in the absence of pressure from certain insecticides, which could be attributed to factors related to climate and genetic properties of the populations. The indication of build-up of resistance/tolerance to neonicotinoids, related to CYP6CY3 overexpression, is a matter of concern. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Insecticides resistance in the Culex quinquefasciatus populations from northern Thailand and possible resistance mechanisms.

    PubMed

    Yanola, Jintana; Chamnanya, Saowanee; Lumjuan, Nongkran; Somboon, Pradya

    2015-09-01

    The mosquito vector Culex quinquefasciatus is known to be resistant to insecticides worldwide, including Thailand. This study was the first investigation of the insecticide resistance mechanisms, involving metabolic detoxification and target site insensitivity in C. quinquefasciatus from Thailand. Adult females reared from field-caught larvae from six provinces of northern Thailand were determined for resistant status by exposing to 0.05% deltamethrin, 0.75% permethrin and 5% malathion papers using the standard WHO susceptibility test. The overall mortality rates were 45.8%, 11.4% and 80.2%, respectively. A fragment of voltage-gated sodium channel gene was amplified and sequenced to identify the knock down resistance (kdr) mutation. The ace-1 gene mutation was determined by using PCR-RFLP. The L1014F kdr mutation was observed in all populations, but the homozygous mutant F/F1014 genotype was found only in two of the six provinces where the kdr mutation was significantly correlated with deltamethrin resistance. However, none of mosquitoes had the G119S mutation in the ace-1 gene. A laboratory deltamethrin resistant strain, Cq_CM_R, has been established showing a highly resistant level after selection for a few generations. The mutant F1014 allele frequency was significantly increased after one generation of selection. A synergist assay was performed to assess the metabolic detoxifying enzymes. Addition of bis(4-nitrophenyl)-phosphate (BNPP) and diethyl maleate (DEM), inhibitors of esterases and glutathione S-transferases (GST), respectively, into the larval bioassay of the Cq_CM strain with deltamethrin showed no significant reduction. By contrast, addition of piperonyl butoxide (PBO), an inhibitor of cytochrome P450 monooxygenases, showed a 9-fold reduction of resistance. Resistance to pyrethroids in C. quinquefasciatus is widely distributed in northern Thailand. This study reports for the first time for the detection of the L1014F kdr mutation in wild populations

  3. Carbon nanotubes as anti-bacterial agents.

    PubMed

    Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian

    2017-10-01

    Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

  4. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2016-02-02

    The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem-also called "microbiome"-is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. Copyright © 2016 de Steenhuijsen Piters and Bogaert.

  5. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  6. Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment

    PubMed Central

    Young, Suzanne; Nayak, Bina; Sun, Shan; Badgley, Brian D.; Rohr, Jason R.

    2016-01-01

    ABSTRACT Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health. PMID:27422829

  7. Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host.

    PubMed

    Dumford, Donald M; Skalweit, Marion

    2016-06-01

    This article reviews antibiotic resistance and treatment of bacterial infections in the growing number of patients who are immunocompromised: solid organ transplant recipients, the neutropenic host, and persons with human immunodeficiency virus and AIDS. Specific mechanisms of resistance in both gram-negative and gram-positive bacteria, as well as newer treatment options are addressed elsewhere, and are only briefly discussed in the context of the immunocompromised host. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks.

    PubMed

    Sun, Hongwei; Li, Guiying; Nie, Xin; Shi, Huixian; Wong, Po-Keung; Zhao, Huijun; An, Taicheng

    2014-08-19

    A systematic approach was developed to understand, in-depth, the mechanisms involved during the inactivation of bacterial cells using photoelectrocatalytic (PEC) processes with Escherichia coli K-12 as the model microorganism. The bacterial cells were found to be inactivated and decomposed primarily due to attack from photogenerated H2O2. Extracellular reactive oxygen species (ROSs), such as H2O2, may penetrate into the bacterial cell and cause dramatically elevated intracellular ROSs levels, which would overwhelm the antioxidative capacity of bacterial protective enzymes such as superoxide dismutase and catalase. The activities of these two enzymes were found to decrease due to the ROSs attacks during PEC inactivation. Bacterial cell wall damage was then observed, including loss of cell membrane integrity and increased permeability, followed by the decomposition of cell envelope (demonstrated by scanning electronic microscope images). One of the bacterial building blocks, protein, was found to be oxidatively damaged due to the ROSs attacks, as well. Leakage of cytoplasm and biomolecules (bacterial building blocks such as proteins and nucleic acids) were evident during prolonged PEC inactivation process. The leaked cytoplasmic substances and cell debris could be further degraded and, ultimately, mineralized with prolonged PEC treatment.

  9. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  10. The taccalonolides: microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms.

    PubMed

    Risinger, April L; Jackson, Evelyn M; Polin, Lisa A; Helms, Gregory L; LeBoeuf, Desiree A; Joe, Patrick A; Hopper-Borge, Elizabeth; Ludueña, Richard F; Kruh, Gary D; Mooberry, Susan L

    2008-11-01

    The taccalonolides are a class of structurally and mechanistically distinct microtubule-stabilizing agents isolated from Tacca chantrieri. A crucial feature of the taxane family of microtubule stabilizers is their susceptibility to cellular resistance mechanisms including overexpression of P-glycoprotein (Pgp), multidrug resistance protein 7 (MRP7), and the betaIII isotype of tubulin. The ability of four taccalonolides, A, E, B, and N, to circumvent these multidrug resistance mechanisms was studied. Taccalonolides A, E, B, and N were effective in vitro against cell lines that overexpress Pgp and MRP7. In addition, taccalonolides A and E were highly active in vivo against a doxorubicin- and paclitaxel-resistant Pgp-expressing tumor, Mam17/ADR. An isogenic HeLa-derived cell line that expresses the betaIII isotype of tubulin was generated to evaluate the effect of betaIII-tubulin on drug sensitivity. When compared with parental HeLa cells, the betaIII-tubulin-overexpressing cell line was less sensitive to paclitaxel, docetaxel, epothilone B, and vinblastine. In striking contrast, the betaIII-tubulin-overexpressing cell line showed greater sensitivity to all four taccalonolides. These data cumulatively suggest that the taccalonolides have advantages over the taxanes in their ability to circumvent multiple drug resistance mechanisms. The ability of the taccalonolides to overcome clinically relevant mechanisms of drug resistance in vitro and in vivo confirms that the taccalonolides represent a valuable addition to the family of microtubule-stabilizing compounds with clinical potential.

  11. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom.

    PubMed

    Pérez-Peinado, Clara; Dias, Susana Almeida; Domingues, Marco M; Benfield, Aurélie H; Freire, João Miguel; Rádis-Baptista, Gandhi; Gaspar, Diana; Castanho, Miguel A R B; Craik, David J; Henriques, Sónia Troeira; Veiga, Ana Salomé; Andreu, David

    2018-02-02

    Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Surface mediated cooperative interactions of drugs enhance mechanical forces for antibiotic action

    NASA Astrophysics Data System (ADS)

    Ndieyira, Joseph W.; Bailey, Joe; Patil, Samadhan B.; Vögtli, Manuel; Cooper, Matthew A.; Abell, Chris; McKendry, Rachel A.; Aeppli, Gabriel

    2017-02-01

    The alarming increase of pathogenic bacteria that are resistant to multiple antibiotics is now recognized as a major health issue fuelling demand for new drugs. Bacterial resistance is often caused by molecular changes at the bacterial surface, which alter the nature of specific drug-target interactions. Here, we identify a novel mechanism by which drug-target interactions in resistant bacteria can be enhanced. We examined the surface forces generated by four antibiotics; vancomycin, ristomycin, chloroeremomycin and oritavancin against drug-susceptible and drug-resistant targets on a cantilever and demonstrated significant differences in mechanical response when drug-resistant targets are challenged with different antibiotics although no significant differences were observed when using susceptible targets. Remarkably, the binding affinity for oritavancin against drug-resistant targets (70 nM) was found to be 11,000 times stronger than for vancomycin (800 μM), a powerful antibiotic used as the last resort treatment for streptococcal and staphylococcal bacteria including methicillin-resistant Staphylococcus aureus (MRSA). Using an exactly solvable model, which takes into account the solvent and membrane effects, we demonstrate that drug-target interactions are strengthened by pronounced polyvalent interactions catalyzed by the surface itself. These findings further enhance our understanding of antibiotic mode of action and will enable development of more effective therapies.

  13. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.

    PubMed

    Bressuire-Isoard, Christelle; Broussolle, Véronique; Carlin, Frédéric

    2018-05-17

    Bacterial spores are resistant to physical and chemical insults, which make them a major concern for public health and for industry. Spores help bacteria to survive extreme environmental conditions that vegetative cells cannot tolerate. Spore resistance and dormancy are important properties for applications in medicine, veterinary health, food safety, crop protection, and other domains. The resistance of bacterial spores results from a protective multilayered structure and from the unique composition of the spore core. The mechanisms of sporulation and germination, the first stage after breaking of dormancy, and organization of spore structure have been extensively studied in Bacillus species. This review aims to illustrate how far the structure, composition and properties of spores are shaped by the environmental conditions in which spores form. We look at the physiological and molecular mechanisms underpinning how sporulation media and environment deeply affect spore yield, spore properties like resistance to wet heat and physical and chemical agents, germination, and further growth. For example, spore core water content decreases as sporulation temperature increases, and resistance to wet heat increases. Controlling the fate of Bacillus spores is pivotal to controlling bacterial risks and process efficiencies in, for example, the food industry, and better control hinges on better understanding how sporulation conditions influence spore properties.

  14. Association analysis of bacterial leaf spot resistance and SNP markers derived from expressed sequence tags (ESTs) in lettuce (Lactuca sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot of lettuce, caused by Xanthomonas campestris pv. vitians, is a devastating disease of lettuce worldwide. Since there are no chemicals available for effective control of the disease, host-plant resistance is highly desirable to protect lettuce production. A total of 179 lettuce ge...

  15. Spatial Vulnerability: Bacterial Arrangements, Microcolonies, and Biofilms as Responses to Low Rather than High Phage Densities

    PubMed Central

    Abedon, Stephen T.

    2012-01-01

    The ability of bacteria to survive and propagate can be dramatically reduced upon exposure to lytic bacteriophages. Study of this impact, from a bacterium’s perspective, tends to focus on phage-bacterial interactions that are governed by mass action, such as can be observed within continuous flow or similarly planktonic ecosystems. Alternatively, bacterial molecular properties can be examined, such as specific phage‑resistance adaptations. In this study I address instead how limitations on bacterial movement, resulting in the formation of cellular arrangements, microcolonies, or biofilms, could increase the vulnerability of bacteria to phages. Principally: (1) Physically associated clonal groupings of bacteria can represent larger targets for phage adsorption than individual bacteria; and (2), due to a combination of proximity and similar phage susceptibility, individual bacteria should be especially vulnerable to phages infecting within the same clonal, bacterial grouping. Consistent with particle transport theory—the physics of movement within fluids—these considerations are suggestive that formation into arrangements, microcolonies, or biofilms could be either less profitable to bacteria when phage predation pressure is high or require more effective phage-resistance mechanisms than seen among bacteria not living within clonal clusters. I consider these ideas of bacterial ‘spatial vulnerability’ in part within a phage therapy context. PMID:22754643

  16. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania.

    PubMed

    Shah, Syed Q A; Colquhoun, Duncan J; Nikuli, Hamisi L; Sørum, Henning

    2012-08-21

    The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied.

  17. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes.

    PubMed

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y C; Wu, Na; Weimer, Bart C; Gao, George F; Liu, Yulan; Zhu, Baoli

    2016-11-15

    Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological constraints. We also found

  18. The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes

    PubMed Central

    Hu, Yongfei; Yang, Xi; Li, Jing; Lv, Na; Liu, Fei; Wu, Jun; Lin, Ivan Y. C.; Wu, Na; Gao, George F.

    2016-01-01

    ABSTRACT Horizontally acquired antibiotic resistance genes (ARGs) in bacteria are highly mobile and have been ranked as principal risk resistance determinants. However, the transfer network of the mobile resistome and the forces driving mobile ARG transfer are largely unknown. Here, we present the whole profile of the mobile resistome in 23,425 bacterial genomes and explore the effects of phylogeny and ecology on the recent transfer (≥99% nucleotide identity) of mobile ARGs. We found that mobile ARGs are mainly present in four bacterial phyla and are significantly enriched in Proteobacteria. The recent mobile ARG transfer network, which comprises 703 bacterial species and 16,859 species pairs, is shaped by the bacterial phylogeny, while an ecological barrier also exists, especially when interrogating bacteria colonizing different human body sites. Phylogeny is still a driving force for the transfer of mobile ARGs between farm animals and the human gut, and, interestingly, the mobile ARGs that are shared between the human and animal gut microbiomes are also harbored by diverse human pathogens. Taking these results together, we suggest that phylogeny and ecology are complementary in shaping the bacterial mobile resistome and exert synergistic effects on the development of antibiotic resistance in human pathogens. IMPORTANCE The development of antibiotic resistance threatens our modern medical achievements. The dissemination of antibiotic resistance can be largely attributed to the transfer of bacterial mobile antibiotic resistance genes (ARGs). Revealing the transfer network of these genes in bacteria and the forces driving the gene flow is of great importance for controlling and predicting the emergence of antibiotic resistance in the clinic. Here, by analyzing tens of thousands of bacterial genomes and millions of human and animal gut bacterial genes, we reveal that the transfer of mobile ARGs is mainly controlled by bacterial phylogeny but under ecological

  19. Increased Sleep Promotes Survival during a Bacterial Infection in Drosophila

    PubMed Central

    Kuo, Tzu-Hsing; Williams, Julie A.

    2014-01-01

    Study Objectives: The relationship between sleep and immune function is not well understood at a functional or molecular level. We therefore used a genetic approach in Drosophila to manipulate sleep and evaluated effects on the ability of flies to fight bacterial infection. Setting: Laboratory. Participants: Drosophila melanogaster. Methods and Results: We used a genetic approach to transiently alter neuronal excitability in the mushroom body, a region in the central brain that is known to regulate sleep. Flies with increased sleep for up to two days prior to a bacterial infection showed increased resistance to the infection and improved survival. These flies also had increased expression levels of a subset of anti-microbial peptide mRNA prior to infection, as well as increased NFκB activity during infection as indicated by in vivo luciferase reporter activity. In contrast, flies that experienced reduced sleep for up to two days prior to infection had no effect on survival or on NFκB activity during infection. However, flies with reduced sleep showed an altered defense mechanism, such that resistance to infection was increased, but at the expense of reduced tolerance. This effect was dependent on environmental condition. Conclusions: Increasing sleep enhanced activity of an NFκB transcription factor, increased resistance to infection, and strongly promoted survival. Together, these findings support the hypothesis that sleep is beneficial to the host by maintaining a robust immune system. Citation: Kuo TH, Williams JA. Increased sleep promotes survival during a bacterial infection in Drosophila. SLEEP 2014;37(6):1077-1086. PMID:24882902

  20. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance.

    PubMed

    Patel, Seema

    2016-11-01

    Despite the advent of next-generation sequencing (NGS) technologies, sophisticated data analysis and drug development efforts, bacterial drug resistance persists and is escalating in magnitude. To better control the pathogens, a thorough understanding of their genomic architecture and dynamics is vital. Bacterial genome is extremely complex, a mosaic of numerous co-operating and antagonizing components, altruistic and self-interested entities, behavior of which are predictable and conserved to some extent, yet largely dictated by an array of variables. In this regard, mobile genetic elements (MGE), DNA repair systems, post-segregation killing systems, toxin-antitoxin (TA) systems, restriction-modification (RM) systems etc. are dominant agents and horizontal gene transfer (HGT), gene redundancy, epigenetics, phase and antigenic variation etc. processes shape the genome. By illegitimate recombinations, deletions, insertions, duplications, amplifications, inversions, conversions, translocations, modification of intergenic regions and other alterations, bacterial genome is modified to tackle stressors like drugs, and host immune effectors. Over the years, thousands of studies have investigated this aspect and mammoth amount of insights have been accumulated. This review strives to distillate the existing information, formulate hypotheses and to suggest directions, that might contribute towards improved mitigation of the vicious pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Antibiotic Adjuvants: Rescuing Antibiotics from Resistance.

    PubMed

    Wright, Gerard D

    2016-11-01

    Rooted in the mechanism of action of antibiotics and subject to bacterial evolution, antibiotic resistance is difficult and perhaps impossible to overcome. Nevertheless, strategies can be used to minimize the emergence and impact of resistance. Antibiotic adjuvants offer one such approach. These are compounds that have little or no antibiotic activity themselves but act to block resistance or otherwise enhance antibiotic action. Antibiotic adjuvants are therefore delivered in combination with antibiotics and can be divided into two groups: Class I agents that act on the pathogen, and Class II agents that act on the host. Adjuvants offer a means to both suppress the emergence of resistance and rescue the activity of existing drugs, offering an orthogonal strategy complimentary to new antibiotic discovery VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens

    PubMed Central

    Wales, Andrew D.; Davies, Robert H.

    2015-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc) used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations. PMID:27025641

  3. The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species.

    PubMed

    Rodríguez-Beltrán, Jerónimo; Rodríguez-Rojas, Alexandro; Yubero, Elva; Blázquez, Jesús

    2013-06-01

    Animal fodder is routinely complemented with antibiotics together with other food supplements to improve growth. For instance, sepiolite is currently used as a dietary coadjuvant in animal feed, as it increases animal growth parameters and improves meat and derived final product quality. This type of food additive has so far been considered innocuous for the development and spread of antibiotic resistance. In this study, we demonstrate that sepiolite promotes the direct horizontal transfer of antibiotic resistance plasmids between bacterial species. The conditions needed for plasmid transfer (sepiolite and friction forces) occur in the digestive tracts of farm animals, which routinely receive sepiolite as a food additive. Furthermore, this effect may be aggravated by the use of antibiotics supplied as growth promoters.

  4. Nanoparticle Approaches against Bacterial Infections

    PubMed Central

    Gao, Weiwei; Thamphiwatana, Soracha; Angsantikul, Pavimol; Zhang, Liangfang

    2014-01-01

    Despite the wide success of antibiotics, the treatment of bacterial infection still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infection. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections. PMID:25044325

  5. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract.

    PubMed

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2', 7'-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results.

  6. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract

    PubMed Central

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2’, 7’-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results. PMID:25550774

  7. [Effect of normal microflora of female reproductive tract in colonization resistance].

    PubMed

    Cherkasov, S V

    2006-01-01

    The role of female reproductive tract microflora in the maintenance of biotope colonization resistance was described. The role of lactobacilli possessing antagonistic properties in the reproductive tract defense was assessed. Classification of bacterial mechanisms of colonization resistance including block of the adhesion, antagonistic action of normal microflora associated with the production of antibacterial substances and suppression of allochthonous bacteria persistence characteristics was presented. Colonization resistance was considered as a physiological phenomenon of microecological homeostasis being a result of symbiotic relations of a host organism and autochthonous microflora.

  8. Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluta, Radoslaw; Boer, D. Roeland; Lorenzo-Diaz, Fabian

    Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOB V family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOB V relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterizedmore » histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. In conclusion, we discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOB V histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.« less

  9. Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance

    DOE PAGES

    Pluta, Radoslaw; Boer, D. Roeland; Lorenzo-Diaz, Fabian; ...

    2017-07-24

    Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOB V family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOB V relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterizedmore » histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. In conclusion, we discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOB V histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.« less

  10. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Zou, Lili; Lu, Jun; Wang, Jun; Ren, Xiaoyuan; Zhang, Lanlan; Gao, Yu; Rottenberg, Martin E; Holmgren, Arne

    2017-08-01

    Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Bacterial Contamination of Adult House Flies (Musca domestica) and Sensitivity of these Bacteria to Various Antibiotics, Captured from Hamadan City, Iran.

    PubMed

    Nazari, Mansour; Mehrabi, Tahereh; Hosseini, Seyed Mostafa; Alikhani, Mohammad Yousef

    2017-04-01

    House flies ( Musca domestica ) have been known as a mechanical vector in spreading infectious diseases such as cholera, shigellosis, salmonellosis and skin infections. To investigate the bacterial contaminations of house flies and determine the resistance of these bacteria against various antibiotics. An analytical descriptive cross- sectional study was conducted. The study was performed from July to September 2015 in Hamadan University of Medical Sciences, Hamadan, Iran. A total number of 300 house flies were collected from four places, 75 flies from each place, including two educational hospitals belonging to Hamadan University of Medical Sciences, a fruit and vegetables center, and a livestock slaughter. The body surface of house flies was washed using the physiological sterile serum and the obtained solution was centrifuged at 2000 rpm for five minutes. The identification of bacteria was carried out using the phenotypic methods. The resistance of bacteria against various antibiotics was determined using the disk diffusion approach. Data were analysed by the employment of SPSS software package version 20.0. A total number of 394 bacterial strains were isolated from 275 house flies. The most prevalent type of bacteria was Bacillus spp which was detected in 31.1% of house flies. Moreover, Staphylococcus s pp. (22.9%), Escherichia coli (11.6%) were other prevalent species, whereas, Enterococcus s pp. was the least prevalent type of bacteria in the collected house flies. In terms of resistance to antibiotics, it was identified that bacteria extracted from house flies which were collected from hospital environments were more resistant to antibiotics compared with the resistance of bacteria extracted from house flies which were collected from non hospital environments. The maximum bacterial isolation was found in houseflies from hospital No.1 environment from around the accumulation of garbage. It is a well-known fact that house flies are a source of bacterial

  12. Thiamethoxam Resistance in the House Fly, Musca domestica L.: Current Status, Resistance Selection, Cross-Resistance Potential and Possible Biochemical Mechanisms.

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem; Iqbal, Javaid; Naeem-Ullah, Unsar

    2015-01-01

    The house fly, Musca domestica L., is an important ectoparasite with the ability to develop resistance to insecticides used for their control. Thiamethoxam, a neonicotinoid, is a relatively new insecticide and effectively used against house flies with a few reports of resistance around the globe. To understand the status of resistance to thiamethoxam, eight adult house fly strains were evaluated under laboratory conditions. In addition, to assess the risks of resistance development, cross-resistance potential and possible biochemical mechanisms, a field strain of house flies was selected with thiamethoxam in the laboratory. The results revealed that the field strains showed varying level of resistance to thiamethoxam with resistance ratios (RR) at LC50 ranged from 7.66-20.13 folds. Continuous selection of the field strain (Thia-SEL) for five generations increased the RR from initial 7.66 fold to 33.59 fold. However, resistance declined significantly when the Thia-SEL strain reared for the next five generations without exposure to thiamethoxam. Compared to the laboratory susceptible reference strain (Lab-susceptible), the Thia-SEL strain showed cross-resistance to imidacloprid. Synergism tests revealed that S,S,S-tributylphosphorotrithioate (DEF) and piperonyl butoxide (PBO) produced synergism of thiamethoxam effects in the Thia-SEL strain (2.94 and 5.00 fold, respectively). In addition, biochemical analyses revealed that the activities of carboxylesterase (CarE) and mixed function oxidase (MFO) in the Thia-SEL strain were significantly higher than the Lab-susceptible strain. It seems that metabolic detoxification by CarE and MFO was a major mechanism for thiamethoxam resistance in the Thia-SEL strain of house flies. The results could be helpful in the future to develop an improved control strategy against house flies.

  13. Thiamethoxam Resistance in the House Fly, Musca domestica L.: Current Status, Resistance Selection, Cross-Resistance Potential and Possible Biochemical Mechanisms

    PubMed Central

    Khan, Hafiz Azhar Ali; Akram, Waseem; Iqbal, Javaid; Naeem-Ullah, Unsar

    2015-01-01

    The house fly, Musca domestica L., is an important ectoparasite with the ability to develop resistance to insecticides used for their control. Thiamethoxam, a neonicotinoid, is a relatively new insecticide and effectively used against house flies with a few reports of resistance around the globe. To understand the status of resistance to thiamethoxam, eight adult house fly strains were evaluated under laboratory conditions. In addition, to assess the risks of resistance development, cross-resistance potential and possible biochemical mechanisms, a field strain of house flies was selected with thiamethoxam in the laboratory. The results revealed that the field strains showed varying level of resistance to thiamethoxam with resistance ratios (RR) at LC50 ranged from 7.66-20.13 folds. Continuous selection of the field strain (Thia-SEL) for five generations increased the RR from initial 7.66 fold to 33.59 fold. However, resistance declined significantly when the Thia-SEL strain reared for the next five generations without exposure to thiamethoxam. Compared to the laboratory susceptible reference strain (Lab-susceptible), the Thia-SEL strain showed cross-resistance to imidacloprid. Synergism tests revealed that S,S,S-tributylphosphorotrithioate (DEF) and piperonyl butoxide (PBO) produced synergism of thiamethoxam effects in the Thia-SEL strain (2.94 and 5.00 fold, respectively). In addition, biochemical analyses revealed that the activities of carboxylesterase (CarE) and mixed function oxidase (MFO) in the Thia-SEL strain were significantly higher than the Lab-susceptible strain. It seems that metabolic detoxification by CarE and MFO was a major mechanism for thiamethoxam resistance in the Thia-SEL strain of house flies. The results could be helpful in the future to develop an improved control strategy against house flies. PMID:25938578

  14. Lack of a Cytoplasmic RLK, Required for ROS Homeostasis, Induces Strong Resistance to Bacterial Leaf Blight in Rice.

    PubMed

    Yoo, Youngchul; Park, Jong-Chan; Cho, Man-Ho; Yang, Jungil; Kim, Chi-Yeol; Jung, Ki-Hong; Jeon, Jong-Seong; An, Gynheung; Lee, Sang-Won

    2018-01-01

    Many scientific findings have been reported on the beneficial function of reactive oxygen species (ROS) in various cellular processes, showing that they are not just toxic byproducts. The double-edged role of ROS shows the importance of the regulation of ROS level. We report a gene, rrsRLK (required for ROS-scavenging receptor-like kinase), that encodes a cytoplasmic RLK belonging to the non-RD kinase family. The gene was identified by screening rice RLK mutant lines infected with Xanthomonas oryzae pv. oryzae ( Xoo ), an agent of bacterial leaf blight of rice. The mutant (Δ rrsRLK ) lacking the Os01g02290 gene was strongly resistant to many Xoo strains, but not to the fungal pathogen Magnaporthe grisea . Δ rrsRLK showed significantly higher expression of OsPR1a , OsPR1b , OsLOX , RBBTI4 , and jasmonic acid-related genes than wild type. We showed that rrsRLK protein interacts with OsVOZ1 (vascular one zinc-finger 1) and OsPEX11 (peroxisomal biogenesis factor 11). In the further experiments, abnormal biogenesis of peroxisomes, hydrogen peroxide (H 2 O 2 ) accumulation, and reduction of activity of ROS-scavenging enzymes were investigated in Δ rrsRLK . These results suggest that the enhanced resistance in Δ rrsRLK is due to H 2 O 2 accumulation caused by irregular ROS-scavenging mechanism, and rrsRLK is most likely a key regulator required for ROS homeostasis in rice.

  15. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    PubMed

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  16. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors

    PubMed Central

    Mulcahy Levy, Jean M; Zahedi, Shadi; Griesinger, Andrea M; Morin, Andrew; Davies, Kurtis D; Aisner, Dara L; Kleinschmidt-DeMasters, BK; Fitzwalter, Brent E; Goodall, Megan L; Thorburn, Jacqueline; Amani, Vladimir; Donson, Andrew M; Birks, Diane K; Mirsky, David M; Hankinson, Todd C; Handler, Michael H; Green, Adam L; Vibhakar, Rajeev; Foreman, Nicholas K; Thorburn, Andrew

    2017-01-01

    Kinase inhibitors are effective cancer therapies, but tumors frequently develop resistance. Current strategies to circumvent resistance target the same or parallel pathways. We report here that targeting a completely different process, autophagy, can overcome multiple BRAF inhibitor resistance mechanisms in brain tumors. BRAFV600Emutations occur in many pediatric brain tumors. We previously reported that these tumors are autophagy-dependent and a patient was successfully treated with the autophagy inhibitor chloroquine after failure of the BRAFV600E inhibitor vemurafenib, suggesting autophagy inhibition overcame the kinase inhibitor resistance. We tested this hypothesis in vemurafenib-resistant brain tumors. Genetic and pharmacological autophagy inhibition overcame molecularly distinct resistance mechanisms, inhibited tumor cell growth, and increased cell death. Patients with resistance had favorable clinical responses when chloroquine was added to vemurafenib. This provides a fundamentally different strategy to circumvent multiple mechanisms of kinase inhibitor resistance that could be rapidly tested in clinical trials in patients with BRAFV600E brain tumors. DOI: http://dx.doi.org/10.7554/eLife.19671.001 PMID:28094001

  17. Drug Resistance Mechanisms in Non-Small Cell Lung Carcinoma

    PubMed Central

    Wangari-Talbot, Janet; Hopper-Borge, Elizabeth

    2014-01-01

    Lung cancer is the most commonly diagnosed cancer in the world. “Driver” and “passenger” mutations identified in lung cancer indicate that genetics play a major role in the development of the disease, progression, metastasis and response to therapy. Survival rates for lung cancer treatment have remained stagnant at ~15% over the past 40 years in patients with disseminated disease despite advances in surgical techniques, radiotherapy and chemotherapy. Resistance to therapy; either intrinsic or acquired has been a major hindrance to treatment leading to great interest in studies seeking to understand and overcome resistance. Genetic information gained from molecular analyses has been critical in identifying druggable targets and tumor profiles that may be predictors of therapeutic response and mediators of resistance. Mutated or overexpressed epidermal growth factor receptor (EGFR) and translocations in the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) genes (EML4-ALK) are examples of genetic aberrations resulting in targeted therapies for both localized and metastatic disease. Positive clinical responses have been noted in patients harboring these genetic mutations when treated with targeted therapies compared to patients lacking these mutations. Resistance is nonetheless a major factor contributing to the failure of targeted agents and standard cytotoxic agents. In this review, we examine molecular mechanisms that are potential drivers of resistance in non-small cell lung carcinoma, the most frequently diagnosed form of lung cancer. The mechanisms addressed include resistance to molecular targeted therapies as well as conventional chemotherapeutics through the activity of multidrug resistance proteins. PMID:24634705

  18. Linking internal and external bacterial community control gives mechanistic framework for pelagic virus-to-bacteria ratios.

    PubMed

    Våge, Selina; Pree, Bernadette; Thingstad, T Frede

    2016-11-01

    For more than 25 years, virus-to-bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co-evolutionary host-virus interactions, with a previously published "minimum" model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism-level properties such as cost of resistance. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Linking internal and external bacterial community control gives mechanistic framework for pelagic virus‐to‐bacteria ratios

    PubMed Central

    Pree, Bernadette; Thingstad, T. Frede

    2016-01-01

    Summary For more than 25 years, virus‐to‐bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co‐evolutionary host‐virus interactions, with a previously published “minimum” model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism‐level properties such as cost of resistance. PMID:27231817

  20. Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise.

    PubMed

    Stöhr, Eric J; Stembridge, Mike; Shave, Rob; Samuel, T Jake; Stone, Keeron; Esformes, Joseph I

    2017-10-01

    To improve the current understanding of the impact of resistance exercise on the heart, by examining the acute responses of left ventricular (LV) strain, twist, and untwisting rate ("LV mechanics"). LV echocardiographic images were recorded in systole and diastole before, during and immediately after (7-12 s) double-leg press exercise at two intensities (30% and 60% of maximum strength, one-repetition maximum). Speckle tracking analysis generated LV strain, twist, and untwisting rate data. Additionally, beat-by-beat blood pressure was recorded and systemic vascular resistance (SVR) and LV wall stress were calculated. Responses in both exercise trials were statistically similar (P > 0.05). During effort, stroke volume decreased, whereas SVR and LV wall stress increased (P < 0.05). Immediately after effort, stroke volume returned to baseline, whereas SVR and wall stress decreased (P < 0.05). Similarly, acute exercise was accompanied by a significant decrease in systolic parameters of LV muscle mechanics (P < 0.05). However, diastolic parameters, including LV untwisting rate, were statistically unaltered (P > 0.05). Immediately after exercise, systolic LV mechanics returned to baseline levels (P < 0.05) but LV untwisting rate increased significantly (P < 0.05). A single, acute bout of double-leg press resistance exercise transiently reduces systolic LV mechanics, but increases diastolic mechanics after exercise, suggesting that resistance exercise has a differential impact on systolic and diastolic heart muscle function. The findings may explain why acute resistance exercise has been associated with reduced stroke volume but chronic exercise training may result in increased LV volumes.