Science.gov

Sample records for bacterial rrna extraction

  1. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization.

    PubMed

    Anahtar, Melis N; Bowman, Brittany A; Kwon, Douglas S

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  2. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization

    PubMed Central

    Anahtar, Melis N.; Bowman, Brittany A.; Kwon, Douglas S.

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  3. Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing.

    PubMed

    Fantini, Elio; Gianese, Giulio; Giuliano, Giovanni; Fiore, Alessia

    2015-01-01

    Ion Torrent is a next generation sequencing technology based on the detection of hydrogen ions produced during DNA chain elongation; this technology allows analyzing and characterizing genomes, genes, and species. Here, we describe an Ion Torrent procedure applied to the metagenomic analysis of 16S rRNA gene amplicons to study the bacterial diversity in food and environmental samples. PMID:25343859

  4. Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing.

    PubMed

    Fantini, Elio; Gianese, Giulio; Giuliano, Giovanni; Fiore, Alessia

    2015-01-01

    Ion Torrent is a next generation sequencing technology based on the detection of hydrogen ions produced during DNA chain elongation; this technology allows analyzing and characterizing genomes, genes, and species. Here, we describe an Ion Torrent procedure applied to the metagenomic analysis of 16S rRNA gene amplicons to study the bacterial diversity in food and environmental samples.

  5. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  6. Decreases in average bacterial community rRNA operon copy number during succession

    PubMed Central

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-01-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution. PMID:26565722

  7. Decreases in average bacterial community rRNA operon copy number during succession.

    PubMed

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution. PMID:26565722

  8. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  9. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  10. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays.

    PubMed

    Small, J; Call, D R; Brockman, F J; Straub, T M; Chandler, D P

    2001-10-01

    We report on the development and validation of a simple microarray method for the direct detection of intact 16S rRNA from unpurified soil extracts. Total RNAs from Geobacter chapellei and Desulfovibrio desulfuricans were hybridized to an oligonucleotide array consisting of universal and species-specific 16S rRNA probes. PCR-amplified products from Geobacter and Desulfovibrio were easily and specifically detected under a range of hybridization times, temperatures, and buffers. However, reproducible, specific hybridization and detection of intact rRNA could be accomplished only by using a chaperone-detector probe strategy. With this knowledge, assay conditions were developed for rRNA detection using a 2-h hybridization time at room temperature. Hybridization specificity and signal intensity were enhanced using fragmented RNA. Formamide was required in the hybridization buffer in order to achieve species-specific detection of intact rRNA. With the chaperone detection strategy, we were able to specifically hybridize and detect G. chapellei 16S rRNA directly from a total-RNA soil extract, without further purification or removal of soluble soil constituents. The detection sensitivity for G. chapellei 16S rRNA in soil extracts was at least 0.5 microg of total RNA, representing approximately 7.5 x 10(6) Geobacter cell equivalents of RNA. These results suggest that it is now possible to apply microarray technology to the direct detection of microorganisms in environmental samples, without using PCR. PMID:11571176

  11. Spatiotemporal analysis of bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing.

    PubMed

    Basak, Pijush; Majumder, Niladri Shekhar; Nag, Sudip; Bhattacharyya, Anish; Roy, Debojyoti; Chakraborty, Arpita; SenGupta, Sohan; Roy, Arunava; Mukherjee, Arghya; Pattanayak, Rudradip; Ghosh, Abhrajyoti; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2015-04-01

    The influence of temporal and spatial variations on the microbial community composition was assessed in the unique coastal mangrove of Sundarbans using parallel 16S rRNA gene pyrosequencing. The total sediment DNA was extracted and subjected to the 16S rRNA gene pyrosequencing, which resulted in 117 Mbp of data from three experimental stations. The taxonomic analysis of the pyrosequencing data was grouped into 24 different phyla. In general, Proteobacteria were the most dominant phyla with predominance of Deltaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria within the sediments. Besides Proteobacteria, there are a number of sequences affiliated to the following major phyla detected in all three stations in both the sampling seasons: Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Chloroflexi, Cyanobacteria, Nitrospira, and Firmicutes. Further taxonomic analysis revealed abundance of micro-aerophilic and anaerobic microbial population in the surface layers, suggesting anaerobic nature of the sediments in Sundarbans. The results of this study add valuable information about the composition of microbial communities in Sundarbans mangrove and shed light on possible transformations promoted by bacterial communities in the sediments. PMID:25256302

  12. Comparison of bacterial communities in the Solimões and Negro River tributaries of the Amazon River based on small subunit rRNA gene sequences.

    PubMed

    Peixoto, J C C; Leomil, L; Souza, J V; Peixoto, F B S; Astolfi-Filho, S

    2011-01-01

    The microbiota of the Amazon River basin has been little studied. We compared the structure of bacterial communities of the Solimões and Negro Rivers, the main Amazon River tributaries, based on analysis of 16S rRNA gene sequences. Water was sampled with a 3-L Van Dorn collection bottle; samples were collected at nine different points/depths totaling 27 L of water from each river. Total DNA was extracted from biomass retained by a 0.22-μm filter after sequential filtration of the water through 0.8- and 0.22-μm filters. The 16S rRNA gene was amplified by PCR, cloned and sequenced, and the sequences were analyzed with the PHYLIP and DOTUR programs to obtain the operational taxonomic units (OTUs) and to calculate the diversity and richness indices using the SPADE program. Taxonomic affiliation was determined using the naive Bayesian rRNA Classifier of the RDP II (Ribosomal Database Project). We recovered 158 sequences from the Solimões River grouped into 103 OTUs, and 197 sequences from the Negro River library grouped into 90 OTUs by the DOTUR program. The Solimões River was found to have a greater diversity of bacterial genera, and greater estimated richness of 446 OTUs, compared with 242 OTUs from the Negro River, as calculated by ACE estimator. The Negro River has less bacterial diversity, but more 16S rRNA gene sequences belonging to the bacterial genus Polynucleobacter were detected; 56 sequences from this genus were found (about 30% of the total sequences). We suggest that a more in-depth investigation be made to elucidate the role played by these bacteria in the river environment. These differences in bacterial diversity between Solimões and Negro Rivers could be explained by differences in organic matter content and pH of the rivers. PMID:22183948

  13. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes.

    PubMed

    Fracchia, Letizia; Dohrmann, Anja B; Martinotti, Maria Giovanna; Tebbe, Christoph C

    2006-08-01

    Bacterial communities are important catalysts in the production of composts. Here, it was analysed whether the diversity of bacteria in finished composts is stable and specific for the production process. Single-strand conformation polymorphism (SSCP) based on polymerase chain reaction amplified partial 16S rRNA genes was used to profile and analyse bacterial communities found in total DNA extracted from finished composts. Different batches of compost samples stored over a period of 12 years and a 1-year-old vermicompost were compared to each other. According to digital image analysis, clear differences could be detected between the profiles from compost and vermicompost. Differences between three different periods of compost storage and between replicate vermicompost windrows were only minor. A total of 41 different 16S rRNA genes were identified from the SSCP profiles by DNA sequencing, with the vast majority related to yet-uncultivated bacteria. Sequences retrieved from compost mainly belonged to the phyla Actinobacteria and Firmicutes. In contrast, vermicompost was dominated by bacteria related to uncultured Chloroflexi, Acidobacteria, Bacteroidetes and Gemmatimonadetes. The differences were underscored with specific gene probes and Southern blot hybridizations. The results confirmed that different substrates and composting processes selected for specific bacterial communities in the finished products. The specificity and consistency of the bacterial communities inhabiting the compost materials suggest that cultivation-independent bacterial community analysis is a potentially useful indicator to characterize the quality of finished composts in regard to production processes and effects of storage conditions.

  14. Distinct Ectomycorrhizospheres Share Similar Bacterial Communities as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes

    PubMed Central

    Oger, P.; Morin, E.; Frey-Klett, P.

    2012-01-01

    Analysis of the 16S rRNA gene sequences generated from Xerocomus pruinatus and Scleroderma citrinum ectomycorrhizospheres revealed that similar bacterial communities inhabited the two ectomycorrhizospheres in terms of phyla and genera, with an enrichment of the Burkholderia genus. Compared to the bulk soil habitat, ectomycorrhizospheres hosted significantly more Alpha-, Beta-, and Gammaproteobacteria. PMID:22307291

  15. Terminal restriction fragment length polymorphism (T-RFLP) profiling of bacterial 16S rRNA genes.

    PubMed

    Osborne, Catherine A

    2014-01-01

    T-RFLP profiling is a very effective method for comparing many samples in an environmental microbiology study, because fingerprints of microbial diversity can be generated in a sensitive, reproducible, and cost-effective manner. This protocol describes the steps required to generate T-RFLP profiles of the dominant members of a bacterial community, by PCR amplification of the bacterial 16S rRNA genes and three restriction endonuclease digests to generate three different profiles for each sample. The generation of multiple profiles per sample provides enough information to confidently differentiate rich environmental bacterial communities.

  16. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences.

    PubMed

    Distel, D L; Lane, D J; Olsen, G J; Giovannoni, S J; Pace, B; Pace, N R; Stahl, D A; Felbeck, H

    1988-06-01

    The 16S rRNAs from the bacterial endosymbionts of six marine invertebrates from diverse environments were isolated and partially sequenced. These symbionts included the trophosome symbiont of Riftia pachyptila, the gill symbionts of Calyptogena magnifica and Bathymodiolus thermophilus (from deep-sea hydrothermal vents), and the gill symbionts of Lucinoma annulata, Lucinoma aequizonata, and Codakia orbicularis (from relatively shallow coastal environments). Only one type of bacterial 16S rRNA was detected in each symbiosis. Using nucleotide sequence comparisons, we showed that each of the bacterial symbionts is distinct from the others and that all fall within a limited domain of the gamma subdivision of the purple bacteria (one of the major eubacterial divisions previously defined by 16S rRNA analysis [C. R. Woese, Microbiol. Rev. 51: 221-271, 1987]). Two host specimens were analyzed in five of the symbioses; in each case, identical bacterial rRNA sequences were obtained from conspecific host specimens. These data indicate that the symbioses examined are species specific and that the symbiont species are unique to and invariant within their respective host species. PMID:3286609

  17. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    PubMed Central

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.

    2016-01-01

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation. PMID:27313569

  18. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE PAGES

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.

    2016-06-02

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  19. Development of a dual-internal-reference technique to improve accuracy when determining bacterial 16S rRNA:16S rRNA gene ratio with application to Escherichia coli liquid and aerosol samples.

    PubMed

    Zhen, Huajun; Krumins, Valdis; Fennell, Donna E; Mainelis, Gediminas

    2015-10-01

    cellular rRNA abundance and bacterial activity. PMID:26241659

  20. Development of a dual-internal-reference technique to improve accuracy when determining bacterial 16S rRNA:16S rRNA gene ratio with application to Escherichia coli liquid and aerosol samples.

    PubMed

    Zhen, Huajun; Krumins, Valdis; Fennell, Donna E; Mainelis, Gediminas

    2015-10-01

    cellular rRNA abundance and bacterial activity.

  1. Testing evolutionary models to explain the process of nucleotide substitution in gut bacterial 16S rRNA gene sequences.

    PubMed

    Garcia-Mazcorro, Jose F

    2013-09-01

    The 16S rRNA gene has been widely used as a marker of gut bacterial diversity and phylogeny, yet we do not know the model of evolution that best explains the differences in its nucleotide composition within and among taxa. Over 46 000 good-quality near-full-length 16S rRNA gene sequences from five bacterial phyla were obtained from the ribosomal database project (RDP) by study and, when possible, by within-study characteristics (e.g. anatomical region). Using alignments (RDPX and MUSCLE) of unique sequences, the FINDMODEL tool available at http://www.hiv.lanl.gov/ was utilized to find the model of character evolution (28 models were available) that best describes the input sequence data, based on the Akaike information criterion. The results showed variable levels of agreement (from 33% to 100%) in the chosen models between the RDP-based and the MUSCLE-based alignments among the taxa. Moreover, subgroups of sequences (using either alignment method) from the same study were often explained by different models. Nonetheless, the different representatives of the gut microbiota were explained by different proportions of the available models. This is the first report using evolutionary models to explain the process of nucleotide substitution in gut bacterial 16S rRNA gene sequences. PMID:23808388

  2. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates.

    PubMed

    Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin

    2015-03-01

    The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific

  3. Bacterial diversity of a Carolina Bay as determined by 16S rRNA gene analysis: Confirmation of novel taxa

    SciTech Connect

    Wise, M.G.; Shimkets, L.J.; McArthur, J.V.

    1997-04-01

    Carolina bays are naturally occurring shallow elliptical depressions largely fed by rain and shallow ground water. To identify members of the domain Bacteria which inhabit such an environment, we used PCR to construct a library of 16S rRNA genes (16S rDNAs) cloned from DNA extracted from the sediments of Rainbow Bay, located on the Savannah River Site, near Aiken, S.C. Oligonucleotides complementary to conserved regions of 16S rDNA were used as primers for PCR, and gel-purified PCR products were cloned into vector pGEM-T. Partial sequencing of the cloned 16S rDNAs revealed an extensive amount of phylogenetic diversity within this system. Of the 35 clones sequenced, 32 were affiliated with five bacterial groups: 11 clustered with the Proteobacteria division (including members of the alpha, beta, and delta subdivisions), 8 clustered with the Acidobacterium subdivision of the Fibrobacter division (as categorized by the Ribosomal Database Project`s taxonomic scheme, version 5.0), 7 clustered with the Verrucomicrobium subdivision of the Planctomyces division, 3 clustered with the gram-positive bacteria (Clostridium and relatives subdivision), and 3 clustered with the green nonsulfur bacteria. One sequence branched very deeply from the Bacteria and was found not to be associated with any of the major divisions when phylogenetic trees were constructed. Two clones did not consistently cluster with specific groups and may be chimeric sequences. None of the clones exhibited an exact match to any of the 16S rDNA sequences deposited in the databases, suggesting that most of the bacteria in Rainbow Bay are novel species. In particular, the clones related to the Acidobacterium subdivision and the Verrucomicrobium subdivision confirm the presence of novel taxa discovered previously in other molecular surveys of this type. 50 refs., 7 figs., 1 tab.

  4. Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa.

    PubMed Central

    Wise, M G; McArthur, J V; Shimkets, L J

    1997-01-01

    Carolina bays are naturally occurring shallow elliptical depressions largely fed by rain and shallow ground water. To identify members of the domain Bacteria which inhibit such an environment, we used PCR to construct a library of 16S rRNA genes (16S rDNAs) cloned from DNA extracted from the sediments of Rainbow bay, located on the Savannah River Site, near Aiken, S.C. Oligonucleotides complementary to conserved regions of 16S rDNA were used as primers for PCR, and gel-purified PCR products were cloned into vector pGEM-T. Partial sequencing of the cloned 16S rDNAs revealed an extensive amount of phylogenetic diversity within this system. Of the 35 clones sequenced, 32 were affiliated with five bacterial groups: 11 clustered with the Proteobacteria division (including members of the alpha, beta, and delta subdivisions), 8 clustered with the Acidobacterium subdivision of the Fibrobacter division (as categorized by the Ribosomal Database Project's taxonomic scheme, version 5.0), 7 clustered with the Verrucomicrobium subdivision of the Planctomyces division, 3 clustered with the gram-positive bacteria (Clostridium and relatives subdivision), and 3 clustered with the green nonsulfur bacteria. One sequence branched very deeply from the Bacteria and was found not to be associated with any of the major divisions when phylogenetic trees were constructed. Two clones did not consistently cluster with specific groups and may be chimeric sequences. None of the clones exhibited an exact match to any of the 16S rDNA sequences deposited in the databases, suggesting that most of the bacteria in Rainbow Bay are novel species. In particular, the clones related to the Acidobacterium subdivision and the Verrucomicrobium subdivision confirm the presence of novel taxa discovered previously in other molecular surveys of this type. PMID:9097448

  5. Comparison of Bacterial Extracellular Polymer Extraction Methods

    PubMed Central

    Brown, Melanie J.; Lester, John N.

    1980-01-01

    Five different bacterial extracellular polymer extraction methods and a combination of two of these methods were compared on cultures of activated sludge, synthetic activated sludge, and Klebsiella aerogenes. High-speed centrifugation was the most effective extraction method for the K. aerogenes culture, based on the comparatively small amount of cell disruption and the relatively high extracellular polymer yield. Steaming treatment was the most effective extraction method for the activated sludges, since it released a significant quantity of extracellular polymers from the flocs and caused less cellular disruption than ethylenediaminetetraacetic acid and sodium hydroxide treatments. Sodium hydroxide treatment caused extensive disruption in all cultures. Ultrasonication released low concentrations of extracellular polymers from all cultures. However, it caused no significant cell disruption and therefore may be useful as a preliminary treatment in conjunction with another extraction method. PMID:16345600

  6. Reverse Transcriptase-PCR Analysis of Bacterial rRNA for Detection and Characterization of Bacterial Species in Arthritis Synovial Tissue

    PubMed Central

    Kempsell, Karen E.; Cox, Charles J.; Hurle, Michael; Wong, Anthony; Wilkie, Scott; Zanders, Edward D.; Gaston, J. S. Hill; Crowe, J. Scott

    2000-01-01

    Onset of rheumatoid arthritis (RA) is widely believed to be preceded by exposure to some environmental trigger such as bacterial infectious agents. The influence of bacteria on RA disease onset or pathology has to date been controversial, due to inconsistencies between groups in the report of bacterial species isolated from RA disease tissue. Using a modified technique of reverse transcriptase-PCR amplification, we have detected bacterial rRNA in the synovial tissue of late-stage RA and non-RA arthritis controls. This may be suggestive of the presence of live bacteria. Sequencing of cloned complementary rDNA (crDNA) products revealed a number of bacterial sequences in joint tissue from each patient, and from these analyses a comprehensive profile of the organisms present was compiled. This revealed a number of different organisms in each patient, some of which are common to both RA and non-RA controls and are probably opportunistic colonizers of previously diseased tissue and others which are unique species. These latter organisms may be candidates for a specific role in disease pathology and require further investigation to exclude them as causative agents in the complex bacterial millieu. In addition, many of the detected bacterial species have not been identified previously from synovial tissue or fluid from arthritis patients. These may not be easily cultivable, since they were not revealed in previous studies using conventional in vitro bacterial culture methods. In situ hybridization analyses have revealed the joint-associated bacterial rRNA to be both intra- and extracellular. The role of viable bacteria or their nucleic acids as triggers in disease onset or pathology in either RA or non-RA arthritis controls is unclear and requires further investigation. PMID:10992514

  7. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    DOE PAGES

    None

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less

  8. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    SciTech Connect

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.

  9. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes.

    PubMed Central

    Krueger, D M; Cavanaugh, C M

    1997-01-01

    The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins. PMID:8979342

  10. Application of 16S rRNA metagenomics to analyze bacterial communities at a respiratory care centre in Taiwan.

    PubMed

    Tang, Chuan Yi; Yiu, Siu-Ming; Kuo, Han-Yueh; Tan, Te-Sheng; Liao, Ki-Hok; Liu, Chih-Chin; Hon, Wing-Kai; Liou, Ming-Li

    2015-03-01

    In this study, we applied a 16S ribosomal RNA (rRNA) metagenomics approach to survey inanimate hospital environments (IHEs) in a respiratory care center (RCC). A total of 16 samples, including 9 from medical devices and 7 from workstations, were analyzed. Besides, clinical isolates were retrospectively analyzed during the sampling period in the RCC. A high amount of microbial diversity was detected, with an average of 1,836 phylotypes per sample. In addition to Acinetobacter, more than 60 % of the bacterial communities present among the top 25 abundant genera were dominated by skin-associated bacteria. Differences in bacterial profiles were restricted to individual samples. Furthermore, compliance with hand hygiene guidelines may be unsatisfactory among hospital staff according to a principal coordinate analysis that indicated clustering of bacterial communities between devices and workstations for most of the sampling sites. Compared to the high incidence of clinical isolates in the RCC, only Staphylococcus and Acinetobacter were highly abundant in the IHEs. Despite Acinetobacter was the most abundant genus present in IHEs of the RCC, potential pathogens, e.g., Acinetobacter baumannii, might remain susceptible to carbapenem. This study is the first in Taiwan to demonstrate a high diversity of human-associated bacteria in the RCC via 16S rRNA metagenomics, which allows for new assessment of potential health risks in RCCs, aids in the evaluation of existing sanitation protocols, and furthers our understanding of the development of healthcare-associated infections.

  11. Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum.

    PubMed Central

    Springer, N; Ludwig, W; Amann, R; Schmidt, H J; Görtz, H D; Schleifer, K H

    1993-01-01

    The phylogenetic position of Caedibacter caryophila, a so far noncultured killer symbiont of Paramecium caudatum, was elucidated by comparative sequence analysis of in vitro amplified 16S rRNA genes (rDNA). C. caryophila is a member of the alpha subclass of the Proteobacteria phylum. Within this subclass C. caryophila is moderately related to Holospora obtusa, which is another obligate endosymbiont of Paramecium caudatum, and to Rickettsia. A 16S rRNA targeted specific hybridization probe was designed and used for in situ detection of C. caryophila within its host cell. Comparison of the 16S rDNA primary structure of C. caryophila with homologous sequences from other bacteria revealed an unusual insertion of 194 base pairs within the 5'-terminal part of the corresponding gene. The intervening sequence is not present in mature 16S rRNA of C. caryophila. It was demonstrated that C. caryophila contained fragmented 16S rRNA. Images Fig. 5 Fig. 6 PMID:8234331

  12. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis - contribution to improved aboveground apple plant growth?

    PubMed

    Yim, Bunlong; Winkelmann, Traud; Ding, Guo-Chun; Smalla, Kornelia

    2015-01-01

    Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia, and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e., potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments.

  13. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis - contribution to improved aboveground apple plant growth?

    PubMed

    Yim, Bunlong; Winkelmann, Traud; Ding, Guo-Chun; Smalla, Kornelia

    2015-01-01

    Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia, and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e., potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments. PMID:26635733

  14. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides

    PubMed Central

    Almutairi, Mashal M.; Park, Sung Ryeol; Rose, Simon; Hansen, Douglas A.; Vázquez-Laslop, Nora; Douthwaite, Stephen; Sherman, David H.; Mankin, Alexander S.

    2015-01-01

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S rRNA nucleotide A2058. PikR1 monomethylase is constitutively expressed; it confers low resistance at low fitness cost and is required for ketolide-induced activation of pikR2 to attain high-level resistance. The regulatory mechanism controlling pikR2 expression has been evolutionary optimized for preferential activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism. PMID:26438831

  15. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides.

    PubMed

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon; Hansen, Douglas A; Vázquez-Laslop, Nora; Douthwaite, Stephen; Sherman, David H; Mankin, Alexander S

    2015-10-20

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S rRNA nucleotide A2058. PikR1 monomethylase is constitutively expressed; it confers low resistance at low fitness cost and is required for ketolide-induced activation of pikR2 to attain high-level resistance. The regulatory mechanism controlling pikR2 expression has been evolutionary optimized for preferential activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism.

  16. 16S rRNA gene sequencing is a non-culture method of defining the specific bacterial etiology of ventilator-associated pneumonia.

    PubMed

    Xia, Li-Ping; Bian, Long-Yan; Xu, Min; Liu, Ying; Tang, Ai-Ling; Ye, Wen-Qin

    2015-01-01

    Ventilator-associated pneumonia (VAP) is an acquired respiratory tract infection following tracheal intubation. The most common hospital-acquired infection among patients with acute respiratory failure, VAP is associated with a mortality rate of 20-30%. The standard bacterial culture method for identifying the etiology of VAP is not specific, timely, or accurate in identifying the bacterial pathogens. This study used 16S rRNA gene metagenomic sequencing to identify and quantify the pathogenic bacteria in lower respiratory tract and oropharyngeal samples of 55 VAP patients. Sequencing of the 16S rRNA gene has served as a valuable tool in bacterial identification, particularly when other biochemical, molecular, or phenotypic identification techniques fail. In this study, 16S rRNA gene sequencing was performed in parallel with the standard bacterial culture method to identify and quantify bacteria present in the collected patient samples. Sequence analysis showed the colonization of multidrug-resistant strains in VAP secretions. Further, this method identified Prevotella, Proteus, Aquabacter, and Sphingomonas bacterial genera that were not detected by the standard bacterial culture method. Seven categories of bacteria, Streptococcus, Neisseria, Corynebacterium, Acinetobacter, Staphylococcus, Pseudomonas and Klebsiella, were detectable by both 16S rRNA gene sequencing and standard bacterial culture methods. Further, 16S rRNA gene sequencing had a significantly higher sensitivity in detecting Streptococcus and Pseudomonas when compared to standard bacterial culture. Together, these data present 16S rRNA gene sequencing as a novel VAP diagnosis tool that will further enable pathogen-specific treatment of VAP.

  17. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    PubMed Central

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-01-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future. PMID:26404329

  18. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes.

    PubMed

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-09-24

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.

  19. Description of Drinking Water Bacterial Communities Using 16S rRNA Gene Sequence Analyses

    EPA Science Inventory

    Descriptions of bacterial communities inhabiting water distribution systems (WDS) have mainly been accomplished using culture-based approaches. Due to the inherent selective nature of culture-based approaches, the majority of bacteria inhabiting WDS remain uncharacterized. The go...

  20. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    DOE PAGES

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.; Heimesaat, Markus M.

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n =more » 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.« less

  1. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens

    SciTech Connect

    Srinivasan, Ramya; Karaoz, Ulas; Volegova, Marina; MacKichan, Joanna; Kato-Maeda, Midori; Miller, Steve; Nadarajan, Rohan; Brodie, Eoin L.; Lynch, Susan V.; Heimesaat, Markus M.

    2015-02-06

    According to World Health Organization statistics of 2011, infectious diseases remain in the top five causes of mortality worldwide. However, despite sophisticated research tools for microbial detection, rapid and accurate molecular diagnostics for identification of infection in humans have not been extensively adopted. Time-consuming culture-based methods remain to the forefront of clinical microbial detection. The 16S rRNA gene, a molecular marker for identification of bacterial species, is ubiquitous to members of this domain and, thanks to ever-expanding databases of sequence information, a useful tool for bacterial identification. In this study, we assembled an extensive repository of clinical isolates (n = 617), representing 30 medically important pathogenic species and originally identified using traditional culture-based or non-16S molecular methods. This strain repository was used to systematically evaluate the ability of 16S rRNA for species level identification. To enable the most accurate species level classification based on the paucity of sequence data accumulated in public databases, we built a Naïve Bayes classifier representing a diverse set of high-quality sequences from medically important bacterial organisms. We show that for species identification, a model-based approach is superior to an alignment based method. Overall, between 16S gene based and clinical identities, our study shows a genus-level concordance rate of 96% and a species-level concordance rate of 87.5%. We point to multiple cases of probable clinical misidentification with traditional culture based identification across a wide range of gram-negative rods and gram-positive cocci as well as common gram-negative cocci.

  2. First report on the bacterial diversity in the distal gut of dholes (Cuon alpinus) by using 16S rRNA gene sequences analysis.

    PubMed

    Chen, Lei; Zhang, Honghai; Liu, Guangshuai; Sha, Weilai

    2016-05-01

    The aim of this study was to investigate the bacterial community in the distal gut of dholes (Cuon alpinus) based on the analysis of bacterial 16S rRNA gene sequences. Fecal samples were collected from five healthy unrelated dholes captured from Qilian Mountain in Gansu province of China. The diversity of the fecal bacteria community was investigated by constructing a polymerase chain reaction (PCR)-amplified 16S rRNA gene clone library. Bacterial 16S rRNA gene was amplified by using universal bacterial primers 27F and 1492R. A total of 275 chimera-free near full length 16S rRNA gene sequences were collected, and 78 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified according to the 97 % sequence similarity. Forty-two OTUs (53.8 %) showed less than 98 % sequence similarity to 16S rRNA gene sequences reported previously. Phylogenetic analysis demonstrated that dhole bacterial community comprised five different phyla, with the majority of sequences being classified within the phylum Bacteroidetes (64.7 %), followed by Firmicutes (29.8 %), Fusobacteria (4.7 %),Proteobacteria (0.4 %), and Actinobacteria (0.4 %). The only order Bacteroidales in phylum Bacteroidetes was the most abundant bacterial group in the intestinal bacterial community of dholes. Firmicutes and Bacteroidetes were the two most diverse bacterial phyla with 46.2 and 44.9 % of OTUs contained, respectively. Bacteroidales and Clostridiales were the two most diverse bacterial orders that contained 44.9 and 39.7 % of OTUs, respectively. PMID:26423781

  3. First report on the bacterial diversity in the distal gut of dholes (Cuon alpinus) by using 16S rRNA gene sequences analysis.

    PubMed

    Chen, Lei; Zhang, Honghai; Liu, Guangshuai; Sha, Weilai

    2016-05-01

    The aim of this study was to investigate the bacterial community in the distal gut of dholes (Cuon alpinus) based on the analysis of bacterial 16S rRNA gene sequences. Fecal samples were collected from five healthy unrelated dholes captured from Qilian Mountain in Gansu province of China. The diversity of the fecal bacteria community was investigated by constructing a polymerase chain reaction (PCR)-amplified 16S rRNA gene clone library. Bacterial 16S rRNA gene was amplified by using universal bacterial primers 27F and 1492R. A total of 275 chimera-free near full length 16S rRNA gene sequences were collected, and 78 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified according to the 97 % sequence similarity. Forty-two OTUs (53.8 %) showed less than 98 % sequence similarity to 16S rRNA gene sequences reported previously. Phylogenetic analysis demonstrated that dhole bacterial community comprised five different phyla, with the majority of sequences being classified within the phylum Bacteroidetes (64.7 %), followed by Firmicutes (29.8 %), Fusobacteria (4.7 %),Proteobacteria (0.4 %), and Actinobacteria (0.4 %). The only order Bacteroidales in phylum Bacteroidetes was the most abundant bacterial group in the intestinal bacterial community of dholes. Firmicutes and Bacteroidetes were the two most diverse bacterial phyla with 46.2 and 44.9 % of OTUs contained, respectively. Bacteroidales and Clostridiales were the two most diverse bacterial orders that contained 44.9 and 39.7 % of OTUs, respectively.

  4. Detection of bacterial 16S rRNA using a molecular beacon-based X sensor.

    PubMed

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2013-03-15

    We demonstrate how a long structurally constrained RNA can be analyzed in homogeneous solution at ambient temperatures with high specificity using a sophisticated biosensor. The sensor consists of a molecular beacon probe as a signal reporter and two DNA adaptor strands, which have fragments complementary to the reporter and to the analyzed RNA. One adaptor strand uses its long RNA-binding arm to unwind the RNA secondary structure. Second adaptor strand with a short RNA-binding arm hybridizes only to a completely complementary site, thus providing high recognition specificity. Overall the three-component sensor and the target RNA form a four-stranded DNA crossover (X) structure. Using this sensor, Escherichia coli16S rRNA was detected in real time with the detection limit of ~0.17 nM. The high specificity of the analysis was proven by differentiating Bacillus subtilis from E. coli 16S rRNA sequences. The sensor responds to the presence of the analyte within seconds.

  5. Isolation, crystallization, and investigation of ribosomal protein S8 complexed with specific fragments of rRNA of bacterial or archaeal origin.

    PubMed

    Tishchenko, S V; Vassilieva, J M; Platonova, O B; Serganov, A A; Fomenkova, N P; Mudrik, E S; Piendl, W; Ehresmann, C; Ehresmann, B; Garber, M B

    2001-09-01

    The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.

  6. The development of peptide ligands that target helix 69 rRNA of bacterial ribosomes.

    PubMed

    Dremann, Danielle N; Chow, Christine S

    2016-09-15

    Antibiotic resistance prevents successful treatment of common bacterial infections, making it clear that new target locations and drugs are required to resolve this ongoing challenge. The bacterial ribosome is a common target for antibacterials due to its essential contribution to cell viability. The focus of this work is a region of the ribosome called helix 69 (H69), which was recently identified as a secondary target site for aminoglycoside antibiotics. H69 has key roles in essential ribosomal processes such as subunit association, ribosome recycling, and tRNA selection. Conserved across phylogeny, bacterial H69 also contains two pseudouridines and one 3-methylpseudouridine. Phage display revealed a heptameric peptide sequence that targeted H69. Using solid-phase synthesis, peptide variants with higher affinity and improved selectivity to modified H69 were generated. Electrospray ionization mass spectrometry was used to determine relative apparent dissociation constants of the RNA-peptide complexes. PMID:27492196

  7. Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing.

    PubMed

    Basak, Pijush; Pramanik, Arnab; Sengupta, Sohan; Nag, Sudip; Bhattacharyya, Anish; Roy, Debojyoti; Pattanayak, Rudradip; Ghosh, Abhrajyoti; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2016-03-01

    The global knowledge of microbial diversity and function in Sundarbans ecosystem is still scarce, despite global advancement in understanding the microbial diversity. In the present study, we have analyzed the diversity and distribution of bacteria in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. Metagenome is comprised of 1,53,926 sequences with 108.8 Mbp data and with 55 ± 2% G + C content. Metagenome sequence data are available at NCBI under the Bioproject database with accession no. PRJNA245459. Bacterial community metagenome sequences were analyzed by MG-RAST software representing the presence of 56,547 species belonging to 44 different phyla. The taxonomic analysis revealed the dominance of phyla Proteobacteria within our dataset. Further taxonomic analysis revealed abundance of Bacteroidetes, Acidobactreia, Firmicutes, Actinobacteria, Nitrospirae, Cyanobacteria, Planctomycetes and Fusobacteria group as the predominant bacterial assemblages in this largely pristine mangrove habitat. The distribution of different community datasets obtained from four sediment samples originated from one sampling station at two different depths providing better understanding of the sediment bacterial diversity and its relationship to the ecosystem dynamics of this pristine mangrove sediment of Dhulibhashani in, Sundarbans.

  8. Evaluation of 16SpathDB 2.0, an automated 16S rRNA gene sequence database, using 689 complete bacterial genomes.

    PubMed

    Teng, Jade L L; Ho, Tom C C; Yeung, Ronald S Y; Wong, Annette Y P; Wang, Haiyin; Chen, Chen; Fung, Kitty S C; Lau, Susanna K P; Woo, Patrick C Y

    2014-02-01

    Interpretation of 16S rRNA sequences is a difficult problem faced by clinical microbiologists and technicians. In this study, we evaluated the updated 16SpathDB 2.0 database, using 689 16S rRNA sequences from 689 complete genomes of medically important bacteria. Among these 689 16S rRNA sequences, none was wrongly identified, with 35.8% reported as a single bacterial species having >98% identity with the query sequence (category 1), 63.9% reported as more than 1 bacterial species having >98% identity with the query sequence (category 2), 0.3% reported to the genus level (category 3), and none reported as no match (category 4). For the 16S rRNA sequences of non-duplicated bacterial species reported as category 1 or 2, the percentage of bacterial species reported as category 1 was significantly higher for anaerobic Gram-positive/Gram-negative bacteria than aerobic/facultative anaerobic Gram-positive/Gram-negative bacteria. 16SpathDB 2.0 is a user-friendly and accurate database for 16S rRNA sequence interpretation in clinical laboratories.

  9. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota

    PubMed Central

    Gill, Christina; Blow, Frances; Darby, Alistair C.

    2016-01-01

    Background Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. Results After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. Conclusions An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures

  10. Band smearing of PCR amplified bacterial 16S rRNA genes: dependence on initial PCR target diversity.

    PubMed

    Zrimec, Jan; Kopinč, Rok; Rijavec, Tomaž; Zrimec, Tatjana; Lapanje, Aleš

    2013-11-01

    Band smearing in agarose gels of PCR amplified bacterial 16S rRNA genes is understood to comprise amplicons of varying sizes arising from PCR errors, and requires elimination. We consider that with amplified heterogeneous DNA, delayed electro-migration is caused not by PCR errors but by dsDNA structures that arise from imperfect strand pairing. The extent of band smearing was found to be proportional to the sequence heterogeneity in 16S rRNA variable regions. Denaturing alkaline gels showed that all amplified DNA was of the correct size. A novel bioinformatic approach was used to reveal that band smearing occurred due to imperfectly paired strands of the amplified DNA. Since the smear is a structural fraction of the correct size PCR product, it carries important information on richness and diversity of the target DNA. For accurate analysis, the origin of the smear must first be identified before it is eliminated by examining the amplified DNA in denaturing alkaline gels.

  11. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16S rRNA gene amplicon sequencing.

    PubMed

    Lee, Da-Eun; Lee, Jinhwan; Kim, Young-Mog; Myeong, Jeong-In; Kim, Kyoung-Ho

    2016-04-01

    Bacterial diversity in a seawater recirculating aquaculture system (RAS) was investigated using 16S rRNA amplicon sequencing to understand the roles of bacterial communities in the system. The RAS was operated at nine different combinations of temperature (15°C, 20°C, and 25°C) and salinity (20‰, 25‰, and 32.5‰). Samples were collected from five or six RAS tanks (biofilters) for each condition. Fifty samples were analyzed. Proteobacteria and Bacteroidetes were most common (sum of both phyla: 67.2% to 99.4%) and were inversely proportional to each other. Bacteria that were present at an average of ≥ 1% included Actinobacteria (2.9%) Planctomycetes (2.0%), Nitrospirae (1.5%), and Acidobacteria (1.0%); they were preferentially present in packed bed biofilters, mesh biofilters, and maturation biofilters. The three biofilters showed higher diversity than other RAS tanks (aerated biofilters, floating bed biofilters, and fish tanks) from phylum to operational taxonomic unit (OTU) level. Samples were clustered into several groups based on the bacterial communities. Major taxonomic groups related to family Rhodobacteraceae and Flavobacteriaceae were distributed widely in the samples. Several taxonomic groups like [Saprospiraceae], Cytophagaceae, Octadecabacter, and Marivita showed a cluster-oriented distribution. Phaeobacter and Sediminicola-related reads were detected frequently and abundantly at low temperature. Nitrifying bacteria were detected frequently and abundantly in the three biofilters. Phylogenetic analysis of the nitrifying bacteria showed several similar OTUs were observed widely through the biofilters. The diverse bacterial communities and the minor taxonomic groups, except for Proteobacteria and Bacteroidetes, seemed to play important roles and seemed necessary for nitrifying activity in the RAS, especially in packed bed biofilters, mesh biofilters, and maturation biofilters. PMID:27033205

  12. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16S rRNA gene amplicon sequencing.

    PubMed

    Lee, Da-Eun; Lee, Jinhwan; Kim, Young-Mog; Myeong, Jeong-In; Kim, Kyoung-Ho

    2016-04-01

    Bacterial diversity in a seawater recirculating aquaculture system (RAS) was investigated using 16S rRNA amplicon sequencing to understand the roles of bacterial communities in the system. The RAS was operated at nine different combinations of temperature (15°C, 20°C, and 25°C) and salinity (20‰, 25‰, and 32.5‰). Samples were collected from five or six RAS tanks (biofilters) for each condition. Fifty samples were analyzed. Proteobacteria and Bacteroidetes were most common (sum of both phyla: 67.2% to 99.4%) and were inversely proportional to each other. Bacteria that were present at an average of ≥ 1% included Actinobacteria (2.9%) Planctomycetes (2.0%), Nitrospirae (1.5%), and Acidobacteria (1.0%); they were preferentially present in packed bed biofilters, mesh biofilters, and maturation biofilters. The three biofilters showed higher diversity than other RAS tanks (aerated biofilters, floating bed biofilters, and fish tanks) from phylum to operational taxonomic unit (OTU) level. Samples were clustered into several groups based on the bacterial communities. Major taxonomic groups related to family Rhodobacteraceae and Flavobacteriaceae were distributed widely in the samples. Several taxonomic groups like [Saprospiraceae], Cytophagaceae, Octadecabacter, and Marivita showed a cluster-oriented distribution. Phaeobacter and Sediminicola-related reads were detected frequently and abundantly at low temperature. Nitrifying bacteria were detected frequently and abundantly in the three biofilters. Phylogenetic analysis of the nitrifying bacteria showed several similar OTUs were observed widely through the biofilters. The diverse bacterial communities and the minor taxonomic groups, except for Proteobacteria and Bacteroidetes, seemed to play important roles and seemed necessary for nitrifying activity in the RAS, especially in packed bed biofilters, mesh biofilters, and maturation biofilters.

  13. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-01-01

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant(1,2), but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability(3,4). We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements(5) or inferences(6,7). PMID:27617693

  14. Macroalgal Extracts Induce Bacterial Assemblage Shifts and Sublethal Tissue Stress in Caribbean Corals

    PubMed Central

    Morrow, Kathleen M.; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R.; Paul, Valerie J.

    2012-01-01

    Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways. PMID:23028648

  15. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    PubMed

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data.

  16. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR.

    PubMed

    Tatti, Enrico; McKew, Boyd A; Whitby, Corrine; Smith, Cindy J

    2016-01-01

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included. PMID:27341629

  17. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR

    PubMed Central

    Tatti, Enrico; McKew, Boyd A.; Whitby, Corrine; Smith, Cindy J.

    2016-01-01

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included. PMID:27341629

  18. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR.

    PubMed

    Tatti, Enrico; McKew, Boyd A; Whitby, Corrine; Smith, Cindy J

    2016-06-11

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included.

  19. Antibacterial resistance, macrophage influx, and activation induced by bacterial rRNA with dimethyldioctadecylammonium bromide.

    PubMed Central

    Gonggrijp, R; Mullers, W J; Dullens, H F; van Boven, C P

    1985-01-01

    Intraperitoneally injected rRNA from Pseudomonas aeruginosa combined with dimethyldioctadecylammonium bromide (DDA) increased nonspecifically the resistance of mice against an intraperitoneal challenge with extracellular (P. aeruginosa, Escherichia coli) and intracellular (Listeria monocytogenes) bacteria. This study concerns the mechanism underlying the nonspecific resistance. RNA with DDA (RNA-DDA) induced a cell influx and activated peritoneal macrophages (M phi) as judged by the decreased 5'-nucleotidase and alkaline phosphodiesterase activities in M phi lysates, the enhanced O2- release, and the increased antitumor activity in comparison with unstimulated M phi. RNA without DDA did not enhance the resistance and did not influence the peritoneal cell numbers or M phi properties. DDA without RNA enhanced the resistance of mice only slightly; it induced a cell influx, yielding elicited M phi as judged by the decreased 5'-nucleotidase activity and increased alkaline phosphodiesterase activity, the slightly enhanced O2- release, and the absence of increased antitumor activity. Both RNA-DDA and DDA M phi showed an enhanced capacity to ingest and kill L. monocytogenes in vitro, DDA M phi being slightly less effective than RNA-DDA M phi with respect to killing. We conclude that the enhanced killing capacity of M phi for L. monocytogenes is characteristic of both elicited DDA M phi and activated RNA-DDA M phi. The relationship between nonspecific resistance, peritoneal cell numbers, and antibacterial M phi activity is discussed. In addition, it is shown that RNA and DDA retain their activity when they are injected apart, suggesting that they activate M phi by sequential action. PMID:2415454

  20. Extraction of Bacterial RNA from Soil: Challenges and Solutions

    PubMed Central

    Wang, Yong; Hayatsu, Masahito; Fujii, Takeshi

    2012-01-01

    Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing technologies, have recently been applied to examine bacterial gene expression in soil. These technologies are driving improvements in RNA extraction protocols. In this mini-review, progress in the extraction of bacterial RNA from soil is summarized with emphasis on the major difficulties in the development of methodologies and corresponding strategies to overcome them. PMID:22791042

  1. Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed

    PubMed Central

    Wüst, Pia K.; Nacke, Heiko; Kaiser, Kristin; Marhan, Sven; Sikorski, Johannes; Kandeler, Ellen; Daniel, Rolf

    2016-01-01

    Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actinobacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms. PMID:26896137

  2. Identification of bacterial species associated with the sheep scab mite (Psoroptes ovis) by using amplified genes coding for 16S rRNA.

    PubMed

    Hogg, J C; Lehane, M J

    1999-09-01

    This was the first molecular study of the bacterial flora of the sheep scab mite (Psoroptes ovis). A sequence analysis of genes coding for 16S rRNA revealed that Serratia marcescens and bacteria closely related to Staphylococcus intermedius or Staphylococcus chromogens and Alloiococcus otitidis were present. These bacteria were associated with skin lesions, dermatitis, and otitis media caused by P. ovis.

  3. Variability in abundance of the Bacterial and Archaeal 16S rRNA and amoA genes in water columns of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Chen, S.; Xie, W.; Wang, P.; Zhang, C. L.

    2014-12-01

    Recent advances in marine microbial ecology have shown that ammonia-oxidizing Archaea (AOA) are more abundant than ammonia-oxidizing bacteria (AOB), although total Bacteria are more abundant than total Archaea in marine environments. This study aimed to examine the spatial distribution and abundance of planktonic archaeal and bacterial 16S rRNA- and amoA genes in the northern South China Sea. Water samples were collected at different depths at six stations (maximum depth ranging from 1800 m to 3200 m)with four stations (B2, B3, B6, B7) located along a transect from the northeastern continental slope to the Bashi Strait and the other two (D3, D5) located southwest of this transect. Quantitative PCR of the 16S rRNA- and amoA genes was used to estimate the abundances of total Archaea, total Bacteria, and AOA and AOB, respectively. At the B series stations, the abundance of bacterial 16S rRNA gene was twofold to 36fold higher than that of the archaeal 16S rRNA gene while fivefold lower to sixfold higher at the two D stations, with both genes showing peak values slightly below sea surface (5-75 m depths) at all stations. The archaeal amoA gene had similar variations with the archaeal 16S rRNA gene, but was 1-4 orders of magnitude lower than the archaeal 16S rRNA gene at all stations. Bacterial amoA gene was below the detection at all stations. Our results also show the difference in depth profiles among these stations, which may be caused by the difference in water movement between these regions. The non-detection of bacterial amoA gene indicates that ammonia-oxidizing Archaea are the dominant group of microorganisms in nitrification of the South China Sea, which is consistent with observations in other oceans.

  4. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects.

    PubMed

    O'Neill, S L; Giordano, R; Colbert, A M; Karr, T L; Robertson, H M

    1992-04-01

    Bacterial endosymbionts of insects have long been implicated in the phenomenon of cytoplasmic incompatibility, in which certain crosses between symbiont-infected individuals lead to embryonic death or sex ratio distortion. The taxonomic position of these bacteria has, however, not been known with any certainty. Similarly, the relatedness of the bacteria infecting various insect hosts has been unclear. The inability to grow these bacteria on defined cell-free medium has been the major factor underlying these uncertainties. We circumvented this problem by selective PCR amplification and subsequent sequencing of the symbiont 16S rRNA genes directly from infected insect tissue. Maximum parsimony analysis of these sequences indicates that the symbionts belong in the alpha-subdivision of the Proteobacteria, where they are most closely related to the Rickettsia and their relatives. They are all closely related to each other and are assigned to the type species Wolbachia pipientis. Lack of congruence between the phylogeny of the symbionts and their insect hosts suggest that horizontal transfer of symbionts between insect species may occur. Comparison of the sequences for W. pipientis and for Wolbachia persica, an endosymbiont of ticks, shows that the genus Wolbachia is polyphyletic. A PCR assay based on 16S primers was designed for the detection of W. pipientis in insect tissue, and initial screening of insects indicates that cytoplasmic incompatibility may be a more general phenomenon in insects than is currently recognized. PMID:1557375

  5. The GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs.

    PubMed Central

    Winkler, W C; Grundy, F J; Murphy, B A; Henkin, T M

    2001-01-01

    Two different transcription termination control mechanisms, the T box and S box systems, are used to regulate transcription of many bacterial aminoacyl-tRNA synthetase, amino acid biosynthesis, and amino acid transport genes. Both of these regulatory mechanisms involve an untranslated mRNA leader region capable of adopting alternate structural conformations that result in transcription termination or transcription elongation into the downstream region. Comparative analyses revealed a small RNA secondary structural element, designated the GA motif, that is highly conserved in both T box and S box leader sequences. The motif consists of two short helices separated by an asymmetric internal loop, with highly conserved GA dinucleotide sequences on either side of the internal loop. Site-directed mutagenesis of this motif in model T and S box leader sequences indicated that it is essential for transcriptional regulation in both systems. This motif is similar to the binding site of yeast ribosomal protein L30, the Snu13p binding sites found in U4 snRNA and box C/D snoRNAs, and two elements in 23S rRNA. PMID:11497434

  6. Bacterial community composition of anthropogenic biochar and Amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing.

    PubMed

    Taketani, Rodrigo Gouvêa; Lima, Amanda Barbosa; da Conceição Jesus, Ederson; Teixeira, Wenceslau Geraldes; Tiedje, James M; Tsai, Siu Mui

    2013-08-01

    Biochar (BC) is a common minor constituent of soils and is usually derived from the burning of wood materials. In the case of Amazonian dark earth (ADE) soils, the increased amount of this material is believed to be due to anthropogenic action by ancient indigenous populations. In this study, we use 16S rRNA gene pyrosequencing to assess the bacterial diversity observed in the BC found in ADEs as well as in the dark earth itself and the adjacent Acrisol. Samples were taken from two sites, one cultivated with manioc and one with secondary forest cover. Analyses revealed that the community structure found in each sample had unique features. At a coarse phylogenetic resolution, the most abundant phyla in all sequence libraries were Actinobacteria, Acidobacteria, Verrucomicrobia and Proteobacteria that were present in similar relative abundance across all samples. However, the class composition varied between them highlighting the difference between the Acrisol and the remaining samples. This result was also corroborated by the comparison of the OTU composition (at 97 % identity). Also, soil coverage has shown an effect over the community structure observed in all samples. This pattern was found to be significant through unweighted UniFrac as well as P tests. These results indicate that, although the ADEs are found in patches within the Acrisols, the contrasting characteristics found between them led to the development of significantly different communities. PMID:23743632

  7. Diversity of endophytic bacteria in Malaysian plants as revealed by 16S rRNA encoding gene sequence based method of bacterial identification☆

    PubMed Central

    Loh, Chye Ying; Tan, Yin Yin; Rohani, Rahim; Weber, Jean-Frédéric F.; Bhore, Subhash Janardhan

    2013-01-01

    Bacterial endophytes do have several potential applications in pharmacy, medicine and agricultural biotech industry. The main objective of this study was to understand types of bacterial endophytes associated with dicotyledonous (dicot) and monocotyledonous (monocot) plant species. Isolation of the endophytic bacteria was performed using surface-sterilized various tissue samples, and identification of the endophytic bacterial isolates (EBIs) was completed using 16S rRNA encoding gene sequence similarity based method. In total, 996 EBIs were isolated and identified from 1055 samples of 31 monocot and 65 dicot plant species from Peninsular Malaysia. The 996 EBIs represented 71 different types of bacterial species. Twelve (12) out of 71 species are reported as endophytes for the first time. We conclude that diverse types of bacterial endophytes are associated with dicot and monocot plants, and could be useful in pharmacy, medicine and agricultural biotechnology for various potential applications. PMID:24396249

  8. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing.

    PubMed

    Zhou, Jiemin; Zhou, Xuemei; Li, Yuguang; Xing, Jianmin

    2015-09-15

    Biological technology used to treat flue gas is useful to replace conventional treatment, but there is sulfide inhibition. However, no sulfide toxicity effect was observed in haloalkaliphilic bioreactors. The performance of the ethanol-fed bioreactor was better than that of lactate-, glucose-, and formate-fed bioreactor, respectively. To support this result strongly, Illumina MiSeq paired-end sequencing of 16S rRNA gene was applied to investigate the bacterial communities. A total of 389,971 effective sequences were obtained and all of them were assigned to 10,220 operational taxonomic units (OTUs) at a 97% similarity. Bacterial communities in the glucose-fed bioreactor showed the greatest richness and evenness. The highest relative abundance of sulfate-reducing bacteria (SRB) was found in the ethanol-fed bioreactor, which can explain why the performance of the ethanol-fed bioreactor was the best. Different types of SRB, sulfur-oxidizing bacteria, and sulfur-reducing bacteria were detected, indicating that sulfur may be cycled among these microorganisms. Because high-throughput 16S rRNA gene paired-end sequencing has improved resolution of bacterial community analysis, many rare microorganisms were detected, such as Halanaerobium, Halothiobacillus, Desulfonatronum, Syntrophobacter, and Fusibacter. 16S rRNA gene sequencing of these bacteria would provide more functional and phylogenetic information about the bacterial communities.

  9. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. [Calyptogena magnifica; Bathymodiolus thermophilus; Lucinoma annulata; Lucinoma aequizonata; Codakia orbicularis

    SciTech Connect

    Distel, D.L.; Lane, D.J.; Olsen, G.J.; Giovannoni, S.J.; Pace, B.; Pace, N.R.; Stahl, D.A.; Felbeck, H.

    1988-06-01

    The 16S rRNAs from the bacterial endosymbionts of six marine invertebrates from diverse environments were isolated and partially sequenced. These symbionts included the trophosome symbiont of Riftia pachyptila, the gill symbionts of Calyptogena magnifica and Bathymodiolus thermophilus (from deep-sea hydrothermal vents), and the gill symbionts of Lucinoma annulata, Lucinoma aequizonata, and Codakia orbicularis (from relatively shallow coastal environments). Only one type of bacterial 16S rRNA was detected in each symbiosis. Using nucleotide sequence comparisons, we showed that each of the bacterial symbionts is distinct from the others and that all fall within a limited domain of the gamma subdivision of the purple bacteria (one of the major eubacterial divisions previously defined by 16S rRNA analysis. Two host specimens were analyzed in five of the symbioses; in each case, identical bacterial rRNA sequences were obtained from conspecific host specimens. These data indicate that the symbioses examined are species specific and that the symbiont species are unique to and invariant within their respective host species.

  10. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site. PMID:27138048

  11. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.

  12. [Characterizing Beijing's Airborne Bacterial Communities in PM2.5 and PM1 Samples During Haze Pollution Episodes Using 16S rRNA Gene Analysis Method].

    PubMed

    Wang, Bu-ying; Lang, Ji-dong; Zhang, Li-na; Fang, Jian-huo; Cao, Chen; Hao, Ji-ming; Zhu, Ting; Tian, Geng; Jiang, Jing-kun

    2015-08-01

    During 8th-14th Jan., 2013, severe particulate matter (PM) pollution episodes happened in Beijing. These air pollution events lead to high risks for public health. In addition to various PM chemical compositions, biological components in the air may also impose threaten. Little is known about airborne microbial community in such severe air pollution conditions. PM2.5 and PM10 samples were collected during that 7-day pollution period. The 16S rRNA gene V3 amplification and the MiSeq sequencing were performed for analyzing these samples. It is found that there is no significant difference at phylum level for PM2.5 bacterial communities during that 7-day pollution period both at phylum and at genus level. At genus level, Arthrobacter and Frankia are the major airborne microbes presented in Beijing winter.samples. At genus level, there are 39 common genera (combined by first 50 genera bacterial of the two analysis) between the 16S rRNA gene analysis and those are found by Metagenomic analysis on the same PM samples. Frankia and Paracoccus are relatively more abundant in 16S rRNA gene data, while Kocuria and Geodermatophilus are relatively more abundant in Meta-data. PM10 bacterial communities are similar to those of PM2.5 with some noticeable differences, i.e., at phylum level, more Firmicutes and less Actinobacteria present in PM10 samples than in PM2.5 samples, while at genus level, more Clostridium presents in PM10 samples. The findings in Beijing were compared with three 16S rRNA gene studies in other countries. Although the sampling locations and times are different from each other, compositions of bacterial community are similar for those sampled at the ground atmosphere. Airborne microbial communities near the ground surface are different from those sampled in the upper troposphere. PMID:26591997

  13. [Characterizing Beijing's Airborne Bacterial Communities in PM2.5 and PM1 Samples During Haze Pollution Episodes Using 16S rRNA Gene Analysis Method].

    PubMed

    Wang, Bu-ying; Lang, Ji-dong; Zhang, Li-na; Fang, Jian-huo; Cao, Chen; Hao, Ji-ming; Zhu, Ting; Tian, Geng; Jiang, Jing-kun

    2015-08-01

    During 8th-14th Jan., 2013, severe particulate matter (PM) pollution episodes happened in Beijing. These air pollution events lead to high risks for public health. In addition to various PM chemical compositions, biological components in the air may also impose threaten. Little is known about airborne microbial community in such severe air pollution conditions. PM2.5 and PM10 samples were collected during that 7-day pollution period. The 16S rRNA gene V3 amplification and the MiSeq sequencing were performed for analyzing these samples. It is found that there is no significant difference at phylum level for PM2.5 bacterial communities during that 7-day pollution period both at phylum and at genus level. At genus level, Arthrobacter and Frankia are the major airborne microbes presented in Beijing winter.samples. At genus level, there are 39 common genera (combined by first 50 genera bacterial of the two analysis) between the 16S rRNA gene analysis and those are found by Metagenomic analysis on the same PM samples. Frankia and Paracoccus are relatively more abundant in 16S rRNA gene data, while Kocuria and Geodermatophilus are relatively more abundant in Meta-data. PM10 bacterial communities are similar to those of PM2.5 with some noticeable differences, i.e., at phylum level, more Firmicutes and less Actinobacteria present in PM10 samples than in PM2.5 samples, while at genus level, more Clostridium presents in PM10 samples. The findings in Beijing were compared with three 16S rRNA gene studies in other countries. Although the sampling locations and times are different from each other, compositions of bacterial community are similar for those sampled at the ground atmosphere. Airborne microbial communities near the ground surface are different from those sampled in the upper troposphere.

  14. Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification.

    PubMed

    Yang, Qi; Franco, Christopher M M; Zhang, Wei

    2015-10-01

    Experiments were designed to validate the two common DNA extraction protocols (CTAB-based method and DNeasy Blood & Tissue Kit) used to effectively recover actinobacterial DNA from sponge samples in order to study the sponge-associated actinobacterial diversity. This was done by artificially spiking sponge samples with actinobacteria (spores, mycelia and a combination of the two). Our results demonstrated that both DNA extraction methods were effective in obtaining DNA from the sponge samples as well as the sponge samples spiked with different amounts of actinobacteria. However, it was noted that in the presence of the sponge, the bacterial 16S rRNA gene could not be amplified unless the combined DNA template was diluted. To test the hypothesis that the extracted sponge DNA contained inhibitors, dilutions of the DNA extracts were tested for six sponge species representing five orders. The results suggested that the inhibitors were co-extracted with the sponge DNA, and a high dilution of this DNA was required for the successful PCR amplification for most of the samples. The optimized PCR conditions, including primer selection, PCR reaction system and program optimization, further improved the PCR performance. However, no single PCR condition was found to be suitable for the diverse sponge samples using various primer sets. These results highlight for the first time that the DNA extraction methods used are effective in obtaining actinobacterial DNA and that the presence of inhibitors in the sponge DNA requires high dilution coupled with fine tuning of the PCR conditions to achieve success in the study of sponge-associated actinobacterial diversity.

  15. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis. PMID:27407295

  16. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.

  17. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor

    PubMed Central

    Esfandiari, Leyla; Wang, Siqing; Wang, Siqi; Banda, Anisha; Lorenzini, Michael; Kocharyan, Gayane; Monbouquette, Harold G.; Schmidt, Jacob J.

    2016-01-01

    A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA at 10 fM, which corresponds to ~100–1000 colony forming units/mL (CFU/mL) depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids. PMID:27455337

  18. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor.

    PubMed

    Esfandiari, Leyla; Wang, Siqing; Wang, Siqi; Banda, Anisha; Lorenzini, Michael; Kocharyan, Gayane; Monbouquette, Harold G; Schmidt, Jacob J

    2016-07-22

    A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA at 10 fM, which corresponds to ~100-1000 colony forming units/mL (CFU/mL) depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids.

  19. Ultradeep 16S rRNA Sequencing Analysis of Geographically Similar but Diverse Unexplored Marine Samples Reveal Varied Bacterial Community Composition

    PubMed Central

    Karutha Pandian, Shunmugiah

    2013-01-01

    Background Bacterial community composition in the marine environment differs from one geographical location to another. Reports that delineate the bacterial diversity of different marine samples from geographically similar location are limited. The present study aims to understand whether the bacterial community compositions from different marine samples harbour similar bacterial diversity since these are geographically related to each other. Methods and Principal Findings In the present study, 16S rRNA deep sequencing analysis targeting V3 region was performed using Illumina bar coded sequencing. A total of 22.44 million paired end reads were obtained from the metagenomic DNA of Marine sediment, Rhizosphere sediment, Seawater and the epibacterial DNA of Seaweed and Seagrass. Diversity index analysis revealed that Marine sediment has the highest bacterial diversity and the least bacterial diversity was observed in Rhizosphere sediment. Proteobacteria, Actinobacteria and Bacteroidetes were the dominant taxa present in all the marine samples. Nearly 62–71% of rare species were identified in all the samples and most of these rare species were unique to a particular sample. Further taxonomic assignment at the phylum and genus level revealed that the bacterial community compositions differ among the samples. Conclusion This is the first report that supports the fact that, bacterial community composition is specific for specific samples irrespective of its similar geographical location. Existence of specific bacterial community for each sample may drive overall difference in bacterial structural composition of each sample. Further studies like whole metagenomic sequencing will throw more insights to the key stone players and its interconnecting metabolic pathways. In addition, this is one of the very few reports that depicts the unexplored bacterial diversity of marine samples (Marine sediment, Rhizosphere sediment, Seawater) and the host associated marine samples

  20. Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags.

    PubMed

    Peng, Xin; Yu, Ke-Qiang; Deng, Guan-Hua; Jiang, Yun-Xia; Wang, Yu; Zhang, Guo-Xia; Zhou, Hong-Wei

    2013-12-01

    Low cost and high throughput capacity are major advantages of using next generation sequencing (NGS) techniques to determine metagenomic 16S rRNA tag sequences. These methods have significantly changed our view of microorganisms in the fields of human health and environmental science. However, DNA extraction using commercial kits has shortcomings of high cost and time constraint. In the present study, we evaluated the determination of fecal microbiomes using a direct boiling method compared with 5 different commercial extraction methods, e.g., Qiagen and MO BIO kits. Principal coordinate analysis (PCoA) using UniFrac distances and clustering showed that direct boiling of a wide range of feces concentrations gave a similar pattern of bacterial communities as those obtained from most of the commercial kits, with the exception of the MO BIO method. Fecal concentration by boiling method affected the estimation of α-diversity indices, otherwise results were generally comparable between boiling and commercial methods. The operational taxonomic units (OTUs) determined through direct boiling showed highly consistent frequencies with those determined through most of the commercial methods. Even those for the MO BIO kit were also obtained by the direct boiling method with high confidence. The present study suggested that direct boiling could be used to determine the fecal microbiome and using this method would significantly reduce the cost and improve the efficiency of the sample preparation for studying gut microbiome diversity.

  1. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers.

    PubMed

    Myer, Phillip R; Kim, MinSeok; Freetly, Harvey C; Smith, Timothy P L

    2016-09-01

    Amplicon sequencing utilizing next-generation platforms has significantly transformed how research is conducted, specifically microbial ecology. However, primer and sequencing platform biases can confound or change the way scientists interpret these data. The Pacific Biosciences RSII instrument may also preferentially load smaller fragments, which may also be a function of PCR product exhaustion during sequencing. To further examine theses biases, data is provided from 16S rRNA rumen community analyses. Specifically, data from the relative phylum-level abundances for the ruminal bacterial community are provided to determine between-sample variability. Direct sequencing of metagenomic DNA was conducted to circumvent primer-associated biases in 16S rRNA reads and rarefaction curves were generated to demonstrate adequate coverage of each amplicon. PCR products were also subjected to reduced amplification and pooling to reduce the likelihood of PCR product exhaustion during sequencing on the Pacific Biosciences platform. The taxonomic profiles for the relative phylum-level and genus-level abundance of rumen microbiota as a function of PCR pooling for sequencing on the Pacific Biosciences RSII platform were provided. For more information, see "Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers" P.R. Myer, M. Kim, H.C. Freetly, T.P.L. Smith (2016) [1]. PMID:27508263

  2. Bacterial community structure in the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss) as revealed by pyrosequencing-based analysis of 16S rRNA genes.

    PubMed

    Etyemez, Miray; Balcázar, José Luis

    2015-06-01

    In this study, we determined the diversity and composition of bacterial communities within the intestinal ecosystem of farmed rainbow trout (Oncorhynchus mykiss). Healthy rainbow trout, weighing between 520 and 750 g, were fed a commercial diet. Subsequently, genomic DNA was isolated from the intestinal mucus (n = 16 fish samples) and combined into groups of four fish samples each for pyrosequencing analysis of bacterial 16S rRNA genes. The results revealed that the most abundant operational taxonomic units (OTUs) were affiliated to the genera Acinetobacter, Cetobacterium, Pseudomonas, and Psychrobacter, and to a lesser extent, the genera Aeromonas, Clostridium, Deefgea, Flavobacterium, Neptuniibacter, and Mycoplasma. These findings could be used as a baseline for further studies about the role of bacterial communities in normal and altered host physiological states. PMID:25843896

  3. Rapid qualitative characterization of bacterial community in eutrophicated wastewater stabilization plant by T-RFLP method based on 16S rRNA genes.

    PubMed

    Belila, Abdelaziz; Snoussi, Mejdi; Hassan, Abdennaceur

    2012-01-01

    Waste stabilization ponds are a simple, low-cost extensive process for treating wastewater, and well adapted to low socio-economic conditions in developing countries where the microbial populations in these systems are not well characterized. The phylogenetic bacterial community structure within a Tunisian wastewater stabilization plant treating domestic wastewater was assessed by Terminal Restriction Fragment Length Polymorphism method targeting 16S rRNA genes and by the APLAUS+ software of the Microbial Community Analysis (MiCA) web based tool. The dimeric enzymatic digestion with HaeIII and HinfI restriction enzymes revealed high bacterial diversity within the plant where 11 bacterial phyla were identified. The total bacterial community structure includes bacteria catalysing nitrogen and phosphorus removal and bacteria involved in the sulfur cycle. The bacterial community was characterized by the dominance of Proteobacteria which was the most populous phylum (60%) followed by the Actinobacteria (20%), the Firmicutes (10.3%), the Bacteroidetes (2.3%), the Nitrospira (2.2%). Minor bacterial phyla groups occupied smaller fractions such as Chloroflexi, Deferribacteres and Verrumicrobia. T-RFLP analysis revealed also that The Proteobacteria phylum was characterized by the dominance of bacteria of The Gammaproteobacteria class.

  4. Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods.

    PubMed

    Vaz-Moreira, Ivone; Egas, Conceição; Nunes, Olga C; Manaia, Célia M

    2013-02-01

    This study aimed to assess the influence of water treatment and distribution on the bacterial communities with particular emphasis on tap water. Samples from the water treatment plant, the bulk supply distribution system and household taps, supplied by the same drinking water treatment plant, were analyzed using culture-dependent and culture-independent methods. Water treatment imposed alterations in the composition of the bacterial community, although this effect was more evident in the cultivable bacteria rather than among the total community assessed by 16S rRNA gene-denaturing gradient gel electrophoresis (DGGE) profiling. Water disinfection, mainly chlorination, promoted a reduction on bacterial diversity and cultivability, with a shift in the pattern of cultivable bacteria from predominantly Gram-negative to predominately Gram-positive and acid-fast. Downstream of the chlorination stages, tap water, in comparison with raw water, presented higher diversity indices and cultivability percentages. From the source to the tap, members of the Alpha-, Beta- and Gammaproteobacteria were the predominant lineages identified using 16S rRNA gene-DGGE analysis. Although with a lower coverage, the DGGE-based lineage identifications were in agreement with those found using 454-pyrosequencing analysis. Despite the effectiveness of water treatment to eliminate or inactivate most of the bacteria, Proteobacteria such as Acinetobacter, Bosea and Sphingomonadaceae may successfully colonize tap water.

  5. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  6. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    PubMed Central

    Yim, Bunlong; Winkelmann, Traud; Ding, Guo-Chun; Smalla, Kornelia

    2015-01-01

    Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing revealed significant differences in the bacterial community composition even after 8 weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus, and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia, and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e., potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments. PMID:26635733

  7. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats.

    PubMed

    Handl, Stefanie; Dowd, Scot E; Garcia-Mazcorro, Jose F; Steiner, Jörg M; Suchodolski, Jan S

    2011-05-01

    This study evaluated the fecal microbiota of 12 healthy pet dogs and 12 pet cats using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing. A total of 120,406 pyrosequencing reads for bacteria (mean 5017) and 5359 sequences (one pool each for dogs and cats) for fungi were analyzed. Additionally, group-specific 16S rRNA gene clone libraries for Bifidobacterium spp. and lactic acid-producing bacteria (LAB) were constructed. The most abundant bacterial phylum was Firmicutes, followed by Bacteroidetes in dogs and Actinobacteria in cats. The most prevalent bacterial class in dogs and cats was Clostridia, dominated by the genera Clostridium (clusters XIVa and XI) and Ruminococcus. At the genus level, 85 operational taxonomic units (OTUs) were identified in dogs and 113 OTUs in cats. Seventeen LAB and eight Bifidobacterium spp. were detected in canine feces. Ascomycota was the only fungal phylum detected in cats, while Ascomycota, Basidiomycota, Glomeromycota, and Zygomycota were identified in dogs. Nacaseomyces was the most abundant fungal genus in dogs; Saccharomyces and Aspergillus were predominant in cats. At the genus level, 33 different fungal OTUs were observed in dogs and 17 OTUs in cats. In conclusion, this study revealed a highly diverse bacterial and fungal microbiota in canine and feline feces.

  8. Use of 16S rRNA sequencing and quantitative PCR to correlate venous leg ulcer bacterial bioburden dynamics with wound expansion, antibiotic therapy, and healing

    PubMed Central

    Sprockett, Daniel D.; Ammons, Christine G.; Tuttle, Marie S.

    2016-01-01

    Clinical diagnosis of infection in chronic wounds is currently limited to subjective clinical signs and culture-based methods that underestimate the complexity of wound microbial bioburden as revealed by DNA-based microbial identification methods. Here, we use 16S rRNA next generation sequencing and quantitative polymerase chain reaction to characterize weekly changes in bacterial load, community structure, and diversity associated with a chronic venous leg ulcer over the 15-week course of treatment and healing. Our DNA-based methods and detailed sampling scheme reveal that the bacterial bioburden of the wound is unexpectedly dynamic, including changes in the bacterial load and community structure that correlate with wound expansion, antibiotic therapy, and healing. We demonstrate that these multidimensional changes in bacterial bioburden can be summarized using swabs taken prior to debridement, and therefore, can be more easily collected serially than debridement or biopsy samples. Overall, this case illustrates the importance of detailed clinical indicators and longitudinal sampling to determine the pathogenic significance of chronic wound microbial dynamics and guide best use of antimicrobials for improvement of healing outcomes. PMID:25902876

  9. Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes.

    PubMed

    Stefanova, Katerina; Tomova, Iva; Tomova, Anna; Radchenkova, Nadja; Atanassov, Ivan; Kambourova, Margarita

    2015-12-01

    Archaeal and bacterial diversity in two Bulgarian hot springs, geographically separated with different tectonic origin and different temperature of water was investigated exploring two genes, 16S rRNA and GH-57. Archaeal diversity was significantly higher in the hotter spring Levunovo (LV) (82°C); on the contrary, bacterial diversity was higher in the spring Vetren Dol (VD) (68°C). The analyzed clones from LV library were referred to twenty eight different sequence types belonging to five archaeal groups from Crenarchaeota and Euryarchaeota. A domination of two groups was observed, Candidate Thaumarchaeota and Methanosarcinales. The majority of the clones from VD were referred to HWCG (Hot Water Crenarchaeotic Group). The formation of a group of thermophiles in the order Methanosarcinales was suggested. Phylogenetic analysis revealed high numbers of novel sequences, more than one third of archaeal and half of the bacterial phylotypes displayed similarity lower than 97% with known ones. The retrieved GH-57 gene sequences showed a complex phylogenic distribution. The main part of the retrieved homologous GH-57 sequences affiliated with bacterial phyla Bacteroidetes, Deltaproteobacteria, Candidate Saccharibacteria and affiliation of almost half of the analyzed sequences is not fully resolved. GH-57 gene analysis allows an increased resolution of the biodiversity assessment and in depth analysis of specific taxonomic groups. [Int Microbiol 18(4):217-223 (2015)]. PMID:27611674

  10. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting.

    PubMed

    Valiente Moro, Claire; Thioulouse, Jean; Chauve, Claude; Normand, Philippe; Zenner, Lionel

    2009-01-01

    Dermanyssus gallinae (Arthropoda, Mesostigmata) is suspected to be involved in the transmission of a wide variety of pathogens, but nothing is known about its associated non-pathogenic bacterial community. To address this question, we examined the composition of bacterial communities in D. gallinae collected from standard poultry farms in Brittany, France. Genetic fingerprints of bacterial communities were generated by temporal temperature gradient gel electrophoresis (TTGE) separation of individual polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments, followed by DNA sequence analysis. Most of the sequences belonged to the Proteobacteria and Firmicute phyla, with a majority of sequences corresponding to the Enterobacteriales order and the Staphylococcus genus. By using statistical analysis, we showed differences in biodiversity between poultry farms. We also determined the major phylotypes that compose the characteristic microbiota associated with D. gallinae. Saprophytes, opportunistic pathogens and pathogenic agents such as Pasteurella multocida, Erysipelothrix rhusiopathiae and sequences close to the genus Aerococcus were identified. Endosymbionts such as Schineria sp., Spiroplasma sp. Anistosticta, "Candidatus Cardinium hertigii" and Rickettsiella sp. were also present in the subdominant bacterial community. Identification of potential targets within the symbiont community may be considered in the future as a means of ectoparasite control.

  11. Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes.

    PubMed

    Stefanova, Katerina; Tomova, Iva; Tomova, Anna; Radchenkova, Nadja; Atanassov, Ivan; Kambourova, Margarita

    2015-12-01

    Archaeal and bacterial diversity in two Bulgarian hot springs, geographically separated with different tectonic origin and different temperature of water was investigated exploring two genes, 16S rRNA and GH-57. Archaeal diversity was significantly higher in the hotter spring Levunovo (LV) (82°C); on the contrary, bacterial diversity was higher in the spring Vetren Dol (VD) (68°C). The analyzed clones from LV library were referred to twenty eight different sequence types belonging to five archaeal groups from Crenarchaeota and Euryarchaeota. A domination of two groups was observed, Candidate Thaumarchaeota and Methanosarcinales. The majority of the clones from VD were referred to HWCG (Hot Water Crenarchaeotic Group). The formation of a group of thermophiles in the order Methanosarcinales was suggested. Phylogenetic analysis revealed high numbers of novel sequences, more than one third of archaeal and half of the bacterial phylotypes displayed similarity lower than 97% with known ones. The retrieved GH-57 gene sequences showed a complex phylogenic distribution. The main part of the retrieved homologous GH-57 sequences affiliated with bacterial phyla Bacteroidetes, Deltaproteobacteria, Candidate Saccharibacteria and affiliation of almost half of the analyzed sequences is not fully resolved. GH-57 gene analysis allows an increased resolution of the biodiversity assessment and in depth analysis of specific taxonomic groups. [Int Microbiol 18(4):217-223 (2015)].

  12. Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes ▿ †

    PubMed Central

    Will, Christiane; Thürmer, Andrea; Wollherr, Antje; Nacke, Heiko; Herold, Nadine; Schrumpf, Marion; Gutknecht, Jessica; Wubet, Tesfaye; Buscot, François; Daniel, Rolf

    2010-01-01

    The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass. PMID:20729324

  13. Lactic acid bacterial extract as a biogenic mineral growth modifier

    NASA Astrophysics Data System (ADS)

    Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal

    2009-04-01

    The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.

  14. Bacterial community structure in Apis florea larvae analyzed by denaturing gradient gel electrophoresis and 16S rRNA gene sequencing.

    PubMed

    Saraithong, Prakaimuk; Li, Yihong; Saenphet, Kanokporn; Chen, Zhou; Chantawannakul, Panuwan

    2015-10-01

    This study characterizes the colonization and composition of bacterial flora in dwarf Asian honeybee (Apis florea) larvae and compares bacterial diversity and distribution among different sampling locations. A. florea larvae were collected from 3 locations in Chiang Mai province, Thailand. Bacterial DNA was extracted from each larva using the phenol-chloroform method. Denaturing gradient gel electrophoresis was performed, and the dominant bands were excised from the gels, cloned, and sequenced for bacterial species identification. The result revealed similarities of bacterial community profiles in each individual colony, but differences between colonies from the same and different locations. A. florea larvae harbor bacteria belonging to 2 phyla (Firmicutes and Proteobacteria), 5 classes (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli, and Clostridia), 6 genera (Clostridium, Gilliamella, Melissococcus, Lactobacillus, Saccharibacter, and Snodgrassella), and an unknown genus from uncultured bacterial species. The classes with the highest abundance of bacteria were Alphaproteobacteria (34%), Bacilli (25%), Betaproteobacteria (11%), Gammaproteobacteria (10%), and Clostridia (8%), respectively. Similarly, uncultured bacterial species were identified (12%). Environmental bacterial species, such as Saccharibacter floricola, were also found. This is the first study in which sequences closely related to Melissococcus plutonius, the causal pathogen responsible for European foulbrood, have been identified in Thai A. florea larvae. PMID:25393530

  15. Sampling of intestinal microbiota and targeted amplification of bacterial 16S rRNA genes for microbial ecologic analysis.

    PubMed

    Tong, Maomeng; Jacobs, Jonathan P; McHardy, Ian H; Braun, Jonathan

    2014-11-03

    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Accurate analysis of microbial composition and functional state in humans or mice requires appropriate collection and pre-processing of biospecimens. Methods to sample luminal and mucosal microbiota from human or mouse intestines and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using the methods in this unit can be used for downstream quantitative analysis of microbial ecology.

  16. Sampling of intestinal microbiota and targeted amplification of bacterial 16S rRNA genes for microbial ecologic analysis

    PubMed Central

    Tong, Maomeng; Jacobs, Jonathan P.; McHardy, Ian H.; Braun, Jonathan

    2015-01-01

    Dysbiosis of host-associated commensal microbiota is emerging as an important factor in risk and phenotype of immunologic, metabolic, and behavioral diseases. Appropriate collection and pre-processing of biospecimens from humans or mice is necessary for accurate analysis of microbial composition and functional state. Methods to sample intestinal luminal and mucosal microbiota from humans and mice, and to profile microbial phylogenetic composition using 16S rRNA sequencing are presented here. Data generated using this protocol can be used for downstream quantitative analysis of microbial ecology. PMID:25367129

  17. Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench).

    PubMed

    Maropola, Mapula Kgomotso Annah; Ramond, Jean-Baptiste; Trindade, Marla

    2015-05-01

    Culture-independent studies rely on the quantity and quality of the extracted environmental metagenomic DNA (mDNA). To fully access the plant tissue microbiome, the extracted plant mDNA should allow optimal PCR applications and the genetic content must be representative of the total microbial diversity. In this study, we evaluated the endophytic bacterial diversity retrieved using different mDNA extraction procedures. Metagenomic DNA from sorghum (Sorghum bicolor L. Moench) stem and root tissues were extracted using two classical DNA extraction protocols (CTAB- and SDS-based) and five commercial kits. The mDNA yields and quality as well as the reproducibility were compared. 16S rRNA gene terminal restriction fragment length polymorphism (t-RFLP) was used to assess the impact on endophytic bacterial community structures observed. Generally, the classical protocols obtained high mDNA yields from sorghum tissues; however, they were less reproducible than the commercial kits. Commercial kits retrieved higher quality mDNA, but with lower endophytic bacterial diversities compared to classical protocols. The SDS-based protocol enabled access to the highest sorghum endophytic diversities. Therefore, "SDS-extracted" sorghum root and stem microbiome diversities were analysed via 454 pyrosequencing, and this revealed that the two tissues harbour significantly different endophytic communities. Nevertheless, both communities are dominated by agriculturally important genera such as Microbacterium, Agrobacterium, Sphingobacterium, Herbaspirillum, Erwinia, Pseudomonas and Stenotrophomonas; which have previously been shown to play a role in plant growth promotion. This study shows that DNA extraction protocols introduce biases in culture-independent studies of environmental microbial communities by influencing the mDNA quality, which impacts the microbial diversity analyses and evaluation. Using the broad-spectrum SDS-based DNA extraction protocol allows the recovery of the most

  18. MiSeq HV4 16S rRNA gene analysis of bacterial community composition among the cave sediments of Indo-Burma biodiversity hotspot.

    PubMed

    De Mandal, Surajit; Zothansanga; Panda, Amrita Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu

    2016-06-01

    Caves in Mizoram, Northeast India, are potential hotspot diversity regions due to the historical significance of the formation of the Indo-Burman plateau and also because of their unexplored and unknown diversity. High-throughput paired end Illumina sequencing of the V4 region of 16S rRNA was performed to study the bacterial community of three caves situated in Champhai district of Mizoram, Northeast India. A total of 10,643 operational taxonomic units (OTUs) (based on 97 % cutoff) comprising of 21 major and 21 candidate phyla with a sequencing depth of 1,140,013 were found in this study. The overall taxonomic profile obtained by the RDP classifier and Greengenes OTU database revealed high diversity within the bacterial communities. Communities were dominated by Planctomycetes, Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes, while members of Archaea were less varied and mostly comprising of Eukaryoarchea. Analysis revealed that Farpuk (CFP) cave sediment has low microbial diversity and is mainly dominated by Actinobacteria (80 % reads), whereas different bacterial communities were found in the caves of Murapuk (CMP) and Lamsialpuk (CLP). Analysis also revealed that a major portion of the identified OTUs was classified under rare biosphere. Importantly, all these caves recorded a high number of unclassified OTUs, which might represent new species. Further analysis with whole genome sequencing is needed to validate the unknown species as well as to determine their functional role. PMID:26971799

  19. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers.

    PubMed

    Myer, Phillip R; Kim, MinSeok; Freetly, Harvey C; Smith, Timothy P L

    2016-08-01

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplification primer selection, and read length, which can affect the apparent microbial community. In this study, we compared short read 16S rRNA variable regions, V1-V3, with that of near-full length 16S regions, V1-V8, using highly diverse steer rumen microbial communities, in order to examine the impact of technology selection on phylogenetic profiles. Short paired-end reads from the Illumina MiSeq platform were used to generate V1-V3 sequence, while long "circular consensus" reads from the Pacific Biosciences RSII instrument were used to generate V1-V8 data. The two platforms revealed similar microbial operational taxonomic units (OTUs), as well as similar species richness, Good's coverage, and Shannon diversity metrics. However, the V1-V8 amplified ruminal community resulted in significant increases in several orders of taxa, such as phyla Proteobacteria and Verrucomicrobia (P < 0.05). Taxonomic classification accuracy was also greater in the near full-length read. UniFrac distance matrices using jackknifed UPGMA clustering also noted differences between the communities. These data support the consensus that longer reads result in a finer phylogenetic resolution that may not be achieved by shorter 16S rRNA gene fragments. Our work on the cattle rumen bacterial community demonstrates that utilizing near full-length 16S reads may be useful in conducting a more thorough study, or for developing a niche-specific database to use in analyzing data from shorter read technologies when budgetary constraints preclude use of near-full length 16S sequencing. PMID:27282101

  20. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by vineyard management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here, we demonstrate how vineyard management practices influence shifts in soil resources, which in turn affects shifts in soil-borne bacterial communities. The objective is to determine the hierarchical effects of management practices, soil attributes and location factors on the structure of soil-b...

  1. Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique.

    PubMed

    Wang, Chao; Xie, Bing; Han, Lu; Xu, Xiaofan

    2013-10-01

    In order to investigate the anaerobic ammonium-oxidation (Anammox) nitrogen removal pathway of the aged refuse bioreactor treating landfill leachate, a lab-scale bioreactor was established and run for 35 weeks, the performance of the bioreactor and its bacterial community structure of Planctomycetes were analyzed. The results showed that the average TN removal rate of landfill leachate could be reached to 89%. 16S rRNA gene library of Planctomycetes revealed that Anammox sequences accounted for 28.3% of the total Planctomycetes sequences in the bioreactor, and previously recognized Anammox bacterium Candidatus Kuenenia stuttgartiensis was the only detected Anammox species in the reactor. It was also found that Anammox bacteria distributed at different sites of the bioreactor while mostly concentrated in the middle and low-middle part. Results above confirmed that Anammox process could happen in aged refuse bioreactor treating landfill leachate and provided an alternative nitrogen removal pathway in practical landfills.

  2. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes.

    PubMed

    Pilhofer, Martin; Rappl, Kristina; Eckl, Christina; Bauer, Andreas Peter; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Petroni, Giulio

    2008-05-01

    In the past, studies on the relationships of the bacterial phyla Planctomycetes, Chlamydiae, Lentisphaerae, and Verrucomicrobia using different phylogenetic markers have been controversial. Investigations based on 16S rRNA sequence analyses suggested a relationship of the four phyla, showing the branching order Planctomycetes, Chlamydiae, Verrucomicrobia/Lentisphaerae. Phylogenetic analyses of 23S rRNA genes in this study also support a monophyletic grouping and their branching order--this grouping is significant for understanding cell division, since the major bacterial cell division protein FtsZ is absent from members of two of the phyla Chlamydiae and Planctomycetes. In Verrucomicrobia, knowledge about cell division is mainly restricted to the recent report of ftsZ in the closely related genera Prosthecobacter and Verrucomicrobium. In this study, genes of the conserved division and cell wall (dcw) cluster (ddl, ftsQ, ftsA, and ftsZ) were characterized in all verrucomicrobial subdivisions (1 to 4) with cultivable representatives (1 to 4). Sequence analyses and transcriptional analyses in Verrucomicrobia and genome data analyses in Lentisphaerae suggested that cell division is based on FtsZ in all verrucomicrobial subdivisions and possibly also in the sister phylum Lentisphaerae. Comprehensive sequence analyses of available genome data for representatives of Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes strongly indicate that their last common ancestor possessed a conserved, ancestral type of dcw gene cluster and an FtsZ-based cell division mechanism. This implies that Planctomycetes and Chlamydiae may have shifted independently to a non-FtsZ-based cell division mechanism after their separate branchings from their last common ancestor with Verrucomicrobia.

  3. A hybrid DNA extraction method for the qualitative and quantitative assessment of bacterial communities from poultry production samples.

    PubMed

    Rothrock, Michael J; Hiett, Kelli L; Gamble, John; Caudill, Andrew C; Cicconi-Hogan, Kellie M; Caporaso, J Gregory

    2014-01-01

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the "gold standard" enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples. PMID:25548939

  4. A hybrid DNA extraction method for the qualitative and quantitative assessment of bacterial communities from poultry production samples.

    PubMed

    Rothrock, Michael J; Hiett, Kelli L; Gamble, John; Caudill, Andrew C; Cicconi-Hogan, Kellie M; Caporaso, J Gregory

    2014-12-10

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the "gold standard" enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples.

  5. Use of 16S rRNA Gene Terminal Restriction Fragment Analysis To Assess the Impact of Solids Retention Time on the Bacterial Diversity of Activated Sludge

    PubMed Central

    Saikaly, Pascal E.; Stroot, Peter G.; Oerther, Daniel B.

    2005-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes was used to investigate the reproducibility and stability in the bacterial community structure of laboratory-scale sequencing batch bioreactors (SBR) and to assess the impact of solids retention time (SRT) on bacterial diversity. Two experiments were performed. In each experiment two sets of replicate SBRs were operated for a periods of three times the SRT. One set was operated at an SRT of 2 days and another set was operated at an SRT of 8 days. Samples for T-RFLP analysis were collected from the two sets of replicate reactors. HhaI, MspI, and RsaI T-RFLP profiles were analyzed using cluster analysis and diversity statistics. Cluster analysis with Ward's method using Jaccard distance and Hellinger distance showed that the bacterial community structure in both sets of reactors from both experimental runs was dynamic and that replicate reactors were clustered together and evolved similarly from startup. Richness (S), evenness (E), the Shannon-Weaver index (H), and the reciprocal of Simpson's index (1/D) were calculated, and the values were compared between the two sets of reactors. Evenness values were higher for reactors operated at an SRT of 2 days. Statistically significant differences in diversity (H and D) between the two sets of reactors were tested using a randomization procedure, and the results showed that reactors from both experimental runs that were operated at an SRT of 2 days had higher diversity (H and D) at the 5% level. T-RFLP analysis with diversity indices proved to be a powerful tool to analyze changes in the bacterial community diversity in response to changes in the operational parameters of activated-sludge systems. PMID:16204492

  6. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus.

    PubMed

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Lin, Xiao-Qing; Chen, Xue-Fang; Chen, Xin-De

    2016-01-01

    Although litchi has both nutrient and edible value, the extremely short preservation time limited its further market promotion. To explore processed litchi products with longer preservation time, litchi extract was selected as an alternative feedstock for production of bacterial cellulose (BC). After 2 weeks of static fermentation, 2.53 g/L of the BC membrane was obtained. The trace elements including magnesium (Mg) and sodium (Na) in the litchi extract were partly absorbed in the BC membrane, but no potassium (K) element was detected in it, curiously. Scanning electron microscope (SEM) photographs exhibited an ultrafine network nanostructure for the BC produced in the litchi extract. Analysis of the fourier-transform infrared spectroscopy (FTIR) confirmed the pellicles to be a cellulosic material. Interestingly, X-ray diffraction (XRD) results showed the BC membrane obtained from litchi extract had higher crystallinity of 94.0% than that from HS medium. Overall, the work showed the potential of producing high value-added polymer from litchi resources.

  7. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    PubMed Central

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings. PMID:25495940

  8. Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and pyrosequencing for the characterization of the dentine caries-associated microbiome.

    PubMed

    Schulze-Schweifing, Kathrin; Banerjee, Avijit; Wade, William G

    2014-01-01

    Culture-independent analyses have greatly expanded knowledge regarding the composition of complex bacterial communities including those associated with oral diseases. A consistent finding from such studies, however, has been the under-reporting of members of the phylum Actinobacteria. In this study, five pairs of broad range primers targeting 16S rRNA genes were used in clonal analysis of 6 samples collected from tooth lesions involving dentine in subjects with active caries. Samples were also subjected to cultural analysis and pyrosequencing by means of the 454 platform. A diverse bacterial community of 229 species-level taxa was revealed by culture and clonal analysis, dominated by representatives of the genera Prevotella, Lactobacillus, Selenomonas, and Streptococcus. The five most abundant species were: Lactobacillus gasseri, Prevotella denticola, Alloprevotella tannerae, S. mutans and Streptococcus sp. HOT 070, which together made up 31.6 % of the sequences. Two samples were dominated by lactobacilli, while the remaining samples had low numbers of lactobacilli but significantly higher numbers of Prevotella species. The different primer pairs produced broadly similar data but proportions of the phylum Bacteroidetes were significantly higher when primer 1387R was used. All of the primer sets underestimated the proportion of Actinobacteria compared to culture. Pyrosequencing analysis of the samples was performed to a depth of sequencing of 4293 sequences per sample which were identified to 264 species-level taxa, and resulted in significantly higher coverage estimates than the clonal analysis. Pyrosequencing, however, also underestimated the relative abundance of Actinobacteria compared to culture. PMID:25429361

  9. [Dominant phylotypes in the 16S rRNA gene clone libraries from bacterial mats of the Uzon caldera (Kamchatka, Russia) hydrothermal springs].

    PubMed

    Akimov, V N; Podosokorskaia, O A; Shliapnikov, M G; Gal'chenko, V F

    2013-01-01

    In situ analysis of the 16S rRNA genes form bacterial mats of five hydrothermal springs (36-58 degrees C) in the Uzon caldera (Kamchatka, Russia) was carried out using clone libraries. Eight clone libraries contained 18 dominant phylotypes (over 4-5%). In most clone libraries, the phylotype of the green sulfur bacterium Chlorobaculum sp. was among the dominant ones. The phylotypes of the green nonsulfur bacteria Chloroflexus and Roseiflexus and of purple nonsulfur bacteria Rhodoblastus, Rhodopseudomonas, and Rhodoferax were also among the dominant ones. Cyanobacteria were represented by one dominant phylotype in a single spring. Among nonphototrophic bacteria, the dominant phylotypes belonged to Sulfyrihydrogenibium sp., Geothrixsp., Acidobacterium sp., Meiothermus sp., Thiomonas sp., Thiofaba sp., and Spirochaeta sp. Three phylotypes were not identified at the genus level. Most genera of phototrophic and nonphototrophic organisms corresponding to the phylotypes from Uzon hydrotherms have been previously revealed in the hydrotherms of volcanically active regions of America, Asia, and Europe. These results indicate predominance of bacterial mats carrying out anaerobic photosynthesis in the hydrotherms of the Uzon caldera.

  10. Abundance and Activity of 16S rRNA, AmoA and NifH Bacterial Genes During Assisted Phytostabilization of Mine Tailings.

    PubMed

    Nelson, Karis N; Neilson, Julia W; Root, Robert A; Chorover, Jon; Maier, Raina M

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings. PMID:25495940

  11. Abundance and Activity of 16S rRNA, AmoA and NifH Bacterial Genes During Assisted Phytostabilization of Mine Tailings.

    PubMed

    Nelson, Karis N; Neilson, Julia W; Root, Robert A; Chorover, Jon; Maier, Raina M

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings.

  12. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost.

    PubMed

    Kitamura, Rika; Ishii, Kazuo; Maeda, Isamu; Kozaki, Toshinori; Iwabuchi, Kazunori; Saito, Takahiro

    2016-01-01

    Biofiltration technology based on microbial degradation and assimilation is used for the removal of malodorous compounds, such as ammonia. Microbes that degrade malodorous and/or organic substances are involved in composting and are retained after composting; therefore, mature composts can serve as an ideal candidate for a biofilter medium. In this study, we focused on different types of raw compost materials, as these are important factors determining the bacterial community profile and the chemical component of the compost. Therefore, bacterial community profiles, the abundance of the bacterial ammonia monooxygenase gene (amoA), and the quantities of chemical components were analyzed in composts produced from either food waste or cattle manure. The community profiles with the lowest beta diversity were obtained from single type of cattle manure compost. However, cattle manure composts showed greater alpha diversity, contained higher amounts of various rRNA gene fragments than those of food waste composts and contained the amoA gene by relative quantification, and Proteobacteria were abundantly found and nitrifying bacteria were detected in it. Nitrifying bacteria are responsible for ammonia oxidation and mainly belong to the Proteobacteria or Nitrospira phyla. The quantities of chemical components, such as salt, phosphorus, and nitrogen, differed between the cattle manure and food waste composts, indicating that the raw materials provided different fermentation environments that were crucial for the formation of different community profiles. The results also suggest that cattle manure might be a more suitable raw material for the production of composts to be used in the biofiltration of ammonia.

  13. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost.

    PubMed

    Kitamura, Rika; Ishii, Kazuo; Maeda, Isamu; Kozaki, Toshinori; Iwabuchi, Kazunori; Saito, Takahiro

    2016-01-01

    Biofiltration technology based on microbial degradation and assimilation is used for the removal of malodorous compounds, such as ammonia. Microbes that degrade malodorous and/or organic substances are involved in composting and are retained after composting; therefore, mature composts can serve as an ideal candidate for a biofilter medium. In this study, we focused on different types of raw compost materials, as these are important factors determining the bacterial community profile and the chemical component of the compost. Therefore, bacterial community profiles, the abundance of the bacterial ammonia monooxygenase gene (amoA), and the quantities of chemical components were analyzed in composts produced from either food waste or cattle manure. The community profiles with the lowest beta diversity were obtained from single type of cattle manure compost. However, cattle manure composts showed greater alpha diversity, contained higher amounts of various rRNA gene fragments than those of food waste composts and contained the amoA gene by relative quantification, and Proteobacteria were abundantly found and nitrifying bacteria were detected in it. Nitrifying bacteria are responsible for ammonia oxidation and mainly belong to the Proteobacteria or Nitrospira phyla. The quantities of chemical components, such as salt, phosphorus, and nitrogen, differed between the cattle manure and food waste composts, indicating that the raw materials provided different fermentation environments that were crucial for the formation of different community profiles. The results also suggest that cattle manure might be a more suitable raw material for the production of composts to be used in the biofiltration of ammonia. PMID:26111599

  14. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with Banana Fusarium Wilt disease suppression induced by bio-organic fertilizer application.

    PubMed

    Shen, Zongzhuan; Wang, Dongsheng; Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  15. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    PubMed Central

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  16. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing.

    PubMed

    Diouf, Michel; Roy, Virginie; Mora, Philippe; Frechault, Sophie; Lefebvre, Thomas; Hervé, Vincent; Rouland-Lefèvre, Corinne; Miambi, Edouard

    2015-01-01

    Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers.

  17. Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition.

    PubMed

    Terrat, Sebastien; Plassart, Pierre; Bourgeois, Emilie; Ferreira, Stéphanie; Dequiedt, Samuel; Adele-Dit-De-Renseville, Nathalie; Lemanceau, Philippe; Bispo, Antonio; Chabbi, Abad; Maron, Pierre-Alain; Ranjard, Lionel

    2015-01-01

    This study was designed to assess the influence of three soil DNA extraction procedures, namely the International Organization for Standardization (ISO-11063, GnS-GII and modified ISO procedure (ISOm), on the taxonomic diversity and composition of soil bacterial and fungal communities. The efficacy of each soil DNA extraction method was assessed on five soils, differing in their physico-chemical characteristics and land use. A meta-barcoded pyrosequencing approach targeting 16S and 18S rRNA genes was applied to characterize soil microbial communities. We first observed that the GnS-GII introduced some heterogeneity in bacterial composition between replicates. Then, although no major difference was observed between extraction procedures for soil bacterial diversity, we saw that the number of fungal genera could be underestimated by the ISO-11063. In particular, this procedure underestimated the detection in several soils of the genera Cryptococcus, Pseudallescheria, Hypocrea and Plectosphaerella, which are of ecological interest. Based on these results, we recommend using the ISOm method for studies focusing on both the bacterial and fungal communities. Indeed, the ISOm procedure provides a better evaluation of bacterial and fungal communities and is limited to the modification of the mechanical lysis step of the existing ISO-11063 standard.

  18. Synthesis of bacterial cellulose using hot water extracted wood sugars.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Gardner, Douglas J

    2015-06-25

    Bacterial cellulose (BC), a type of nanopolymer produced by Acetobacter xylinum is a nanostructured material with unique properties and wide applicability. However, a standard medium used for the cultivation of BC, the Hestrin-Schramm medium, is expensive and prevents wide scale extension of BC applications. In this research, a relatively low-cost culture media was successfully developed from wood hot water extracts for the Acetobacter xylinus 23769 strain. Hot water extract (HWE) is a residual material originating from pulp mills and lignocellulosic biorefineries and consists of mainly monomeric sugars, organic acids and organics. The effects of different pH (5, 6, 7 and 8) and temperatures (26, 28 and 30°C) were also examined in this research. There were no significant differences in the crystallinity and the recorded Iα fraction of cellulose produced between Hestrin-Schramm and the HWE medium. The maximum production of 0.15g/l of BC was obtained at a pH of 8 and temperature of 28°C. Glucose and xylose in the HWE were the main nutrient sources utilized in all BC cultivations based on high-pressure liquid chromatography (HPLC) results. HWE was shown to be a suitable carbon source for BC production, and a process was established for BC production from lignocellulosic feedstocks without using any modification of the HWE. HWE is an abundant and relatively inexpensive forest by-product. Using HWE for BC production could reduce burdens on the environment and also, achieve the goal of large scale BC production at low cost without using added culture nutrients. PMID:25839803

  19. Synthesis of bacterial cellulose using hot water extracted wood sugars.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Gardner, Douglas J

    2015-06-25

    Bacterial cellulose (BC), a type of nanopolymer produced by Acetobacter xylinum is a nanostructured material with unique properties and wide applicability. However, a standard medium used for the cultivation of BC, the Hestrin-Schramm medium, is expensive and prevents wide scale extension of BC applications. In this research, a relatively low-cost culture media was successfully developed from wood hot water extracts for the Acetobacter xylinus 23769 strain. Hot water extract (HWE) is a residual material originating from pulp mills and lignocellulosic biorefineries and consists of mainly monomeric sugars, organic acids and organics. The effects of different pH (5, 6, 7 and 8) and temperatures (26, 28 and 30°C) were also examined in this research. There were no significant differences in the crystallinity and the recorded Iα fraction of cellulose produced between Hestrin-Schramm and the HWE medium. The maximum production of 0.15g/l of BC was obtained at a pH of 8 and temperature of 28°C. Glucose and xylose in the HWE were the main nutrient sources utilized in all BC cultivations based on high-pressure liquid chromatography (HPLC) results. HWE was shown to be a suitable carbon source for BC production, and a process was established for BC production from lignocellulosic feedstocks without using any modification of the HWE. HWE is an abundant and relatively inexpensive forest by-product. Using HWE for BC production could reduce burdens on the environment and also, achieve the goal of large scale BC production at low cost without using added culture nutrients.

  20. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    SciTech Connect

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  1. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing

    PubMed Central

    Diouf, Michel; Roy, Virginie; Mora, Philippe; Frechault, Sophie; Lefebvre, Thomas; Hervé, Vincent; Rouland-Lefèvre, Corinne; Miambi, Edouard

    2015-01-01

    Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers. PMID:26444989

  2. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  3. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  4. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    PubMed

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. PMID:27561651

  5. Comparative analysis of eukaryotic marine microbial assemblages from 18S rRNA gene and gene transcript clone libraries by using different methods of extraction.

    PubMed

    Koid, Amy; Nelson, William C; Mraz, Amy; Heidelberg, Karla B

    2012-06-01

    Eukaryotic marine microbes play pivotal roles in biogeochemical nutrient cycling and ecosystem function, but studies that focus on the protistan biogeography and genetic diversity lag-behind studies of other microbes. 18S rRNA PCR amplification and clone library sequencing are commonly used to assess diversity that is culture independent. However, molecular methods are not without potential biases and artifacts. In this study, we compare the community composition of clone libraries generated from the same water sample collected at the San Pedro Ocean Time Series (SPOTs) station in the northwest Pacific Ocean. Community composition was assessed using different cell lysis methods (chemical and mechanical) and the extraction of different nucleic acids (DNA and RNA reverse transcribed to cDNA) to build Sanger ABI clone libraries. We describe specific biases for ecologically important phylogenetic groups resulting from differences in nucleic acid extraction methods that will inform future designs of eukaryotic diversity studies, regardless of the target sequencing platform planned.

  6. Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts.

    PubMed

    Yong, Ann-Li; Ooh, Keng-Fei; Ong, Hean-Chooi; Chai, Tsun-Thai; Wong, Fai-Chu

    2015-11-01

    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents.

  7. Simultaneous Extraction of Viral and Bacterial Nucleic Acids for Molecular Diagnostic Applications

    PubMed Central

    Kajiura, Lauren N.; Stewart, Scott D.; Dresios, John; Uyehara, Catherine F. T.

    2015-01-01

    Molecular detection of microbial pathogens in clinical samples requires the application of efficient sample lysis protocols and subsequent extraction and isolation of their nucleic acids. Here, we describe a simple and time-efficient method for simultaneous extraction of genomic DNA from gram-positive and -negative bacteria, as well as RNA from viral agents present in a sample. This method compared well with existing bacterial- and viral-specialized extraction protocols, worked reliably on clinical samples, and was not pathogen specific. This method may be used to extract DNA and RNA concurrently from viral and bacterial pathogens present in a sample and effectively detect coinfections in routine clinical diagnostics. PMID:26543438

  8. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  9. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs

    PubMed Central

    Fischer, Martin A.; Güllert, Simon; Neulinger, Sven C.; Streit, Wolfgang R.; Schmitz, Ruth A.

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  10. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs.

    PubMed

    Fischer, Martin A; Güllert, Simon; Neulinger, Sven C; Streit, Wolfgang R; Schmitz, Ruth A

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  11. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs

    PubMed Central

    Fischer, Martin A.; Güllert, Simon; Neulinger, Sven C.; Streit, Wolfgang R.; Schmitz, Ruth A.

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  12. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs.

    PubMed

    Fischer, Martin A; Güllert, Simon; Neulinger, Sven C; Streit, Wolfgang R; Schmitz, Ruth A

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  13. Seasonal variation in detection of bacterial DNA in arthritic stifle joints of dogs with cranial cruciate ligament rupture using PCR amplification of the 16S rRNA gene.

    PubMed

    Muir, Peter; Fox, Robin; Wu, Qiang; Baker, Theresa A; Zitzer, Nina C; Hudson, Alan P; Manley, Paul A; Schaefer, Susan L; Hao, Zhengling

    2010-02-24

    An underappreciated cause and effect relationship between environmental bacteria and arthritis may exist. Previously, we found that stifle arthritis in dogs was associated with the presence of environmental bacteria within synovium. Cranial cruciate ligament rupture (CCLR) is often associated with stifle arthritis in dogs. We now wished to determine whether seasonal variation in detection of bacterial material may exist in affected dogs, and to also conduct analyses of both synovium and synovial fluid. We also wished to analyze a larger clone library of the 16S rRNA gene to further understanding of the microbial population in the canine stifle. Synovial biopsies were obtained from 117 affected dogs from January to December 2006. Using PCR, synovium and synovial fluid were tested for Borrelia burgdorferi and Stenotrophomonas maltophilia DNA. Broad-ranging 16S rRNA primers were also used and PCR products were cloned and sequenced for bacterial identification. Overall, 41% of arthritic canine stifle joints contained bacterial DNA. Detection of bacterial DNA in synovial fluid samples was increased, when compared with synovium (p<0.01). Detection rates were highest in the winter and spring and lowest in the summer period, suggesting environmental factors influence the risk of translocation to the stifle. Organisms detected were predominately Gram's negative Proteobacteria, particularly the orders Rhizobiales (32.8% of clones) and Burkholderiales (20.0% of clones), usually as part of a polymicrobial population. PCR-positivity was inversely correlated with severity of arthritis assessed radiographically and with dog age. Bacterial translocation to the canine stifle may be associated with changes to the indoor environment. PMID:19758772

  14. Wild mushroom extracts as inhibitors of bacterial biofilm formation.

    PubMed

    Alves, Maria José; Ferreira, Isabel C F R; Lourenço, Inês; Costa, Eduardo; Martins, Anabela; Pintado, Manuela

    2014-08-06

    Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii) isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%). Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8%) and Mycenas rosea (44.8%) presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4%) and Russula delica (53.1%). Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition-almost 29%, by Russula delica extract). This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other studies are

  15. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  16. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  17. Evaluation of 16S Rrna amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  18. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract

    PubMed Central

    Pasquali, Christian; Salami, Olawale; Taneja, Manisha; Gollwitzer, Eva S.; Trompette, Aurelien; Pattaroni, Céline; Yadava, Koshika; Bauer, Jacques; Marsland, Benjamin J.

    2014-01-01

    Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae. PMID:25593914

  19. Microfluidic device for bacterial genome extraction and analysis

    NASA Astrophysics Data System (ADS)

    Galajda, Peter; Riehn, Robert; Wang, Yan-Mei; Keymer, Juan; Golding, Ido; Cox, Edward C.; Austin, Robert H.

    2006-03-01

    Although single molecule DNA manipulation and analysis techniques are emerging, methods for whole genome extraction from single cells, genomic length DNA handling and analytics is still to be developed. Here we present a microfabricated device to address some of these needs. This microfluidic chip is suitable for culturing bacteria and subsequently retrieve their genetic content. As a next step, the extracted DNA can be introduced in a nanostructured segment of the chip for precise handling, stretching and analysis. We hope that similar microdevices can be useful in studying genetic aspects of the cell lifecycle in a variety of organisms.

  20. Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene.

    PubMed

    Liu, Tingting; Kong, Weiwen; Chen, Nan; Zhu, Jing; Wang, Jingqi; He, Xiaoqing; Jin, Yi

    2016-02-01

    Flow cytometry (FCM) and 16S rRNA gene sequencing data are commonly used to monitor and characterize microbial differences in drinking water distribution systems. In this study, to assess microbial differences in drinking water distribution systems, 12 water samples from different sources water (groundwater, GW; surface water, SW) were analyzed by FCM, heterotrophic plate count (HPC), and 16S rRNA gene sequencing. FCM intact cell concentrations varied from 2.2 × 10(3) cells/mL to 1.6 × 10(4) cells/mL in the network. Characteristics of each water sample were also observed by FCM fluorescence fingerprint analysis. 16S rRNA gene sequencing showed that Proteobacteria (76.9-42.3%) or Cyanobacteria (42.0-3.1%) was most abundant among samples. Proteobacteria were abundant in samples containing chlorine, indicating resistance to disinfection. Interestingly, Mycobacterium, Corynebacterium, and Pseudomonas, were detected in drinking water distribution systems. There was no evidence that these microorganisms represented a health concern through water consumption by the general population. However, they provided a health risk for special crowd, such as the elderly or infants, patients with burns and immune-compromised people exposed by drinking. The combined use of FCM to detect total bacteria concentrations and sequencing to determine the relative abundance of pathogenic bacteria resulted in the quantitative evaluation of drinking water distribution systems. Knowledge regarding the concentration of opportunistic pathogenic bacteria will be particularly useful for epidemiological studies.

  1. Dynamics and rRNA transcriptional activity of lactococci and lactobacilli during Cheddar cheese ripening.

    PubMed

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2013-08-16

    Cheddar cheese is a complex ecosystem where both the bacterial population and the cheese making process contribute to flavor and texture development. The aim of this study was to use molecular methods to evaluate the impact of milk heat treatment and ripening temperature on starter lactococci and non-starter lactic acid bacteria (NSLAB) throughout ripening of Cheddar cheese. Eight Cheddar cheese batches were manufactured (four with thermized and four with pasteurized milk) and ripened at 4, 7 and 12°C to analyze the bacterial composition and rRNA transcriptional activity reflecting the ability of lactococci and lactobacilli to synthesize proteins. Abundance and rRNA transcription of lactococci and lactobacilli were quantified after DNA and RNA extraction by using quantitative PCR (qPCR) and reverse transcription-quantitative PCR (RT-qPCR) targeting the 16S rRNA gene, respectively. Results showed that lactococci remained dominant throughout ripening, although 16S rRNA genome and cDNA copies/g of cheese decreased by four and two log copy numbers, respectively. Abundance and rRNA transcription of Lactobacillus paracasei, Lactobacillus buchneri/parabuchneri, Lactobacillus rhamnosus, Lactobacillus brevis, and Lactobacillus coryniformis as well as total lactobacilli were also estimated using specific 16S rRNA primers. L. paracasei and L. buchneri/parabuchneri concomitantly grew in cheese made from thermized milk at 7 and 12°C, although L. paracasei displayed the most rRNA transcription among Lactobacillus species. This work showed that rRNA transcriptional activity of lactococci decreased throughout ripening and supports the usefulness of RNA analysis to assess which bacterial species have the ability to synthesize proteins during ripening, and could thereby contribute to cheese quality. PMID:23850855

  2. Bacterial and fungal DNA extraction from blood samples: manual protocols.

    PubMed

    Lorenz, Michael G; Mühl, Helge; Disqué, Claudia

    2015-01-01

    A critical point of molecular diagnosis of systemic infections is the method employed for the extraction of microbial DNA from blood. A DNA isolation method has to be able to fulfill several fundamental requirements for optimal performance of diagnostic assays. First of all, low- and high-molecular-weight substances of the blood inhibitory to downstream analytical reactions like PCR amplification have to be removed. This includes human DNA which is a known source of false-positive results and factor decreasing the analytical sensitivity of PCR assays by unspecific primer binding. At the same time, even extremely low amounts of microbial DNA need to be supplied to molecular diagnostic assays in order to detect low pathogen loads in the blood. Further, considering the variety of microbial etiologies of sepsis, a method should be capable of lysing Gram-positive, Gram-negative, and fungal organisms. Last, extraction buffers, reagents, and consumables have to be free of microbial DNA which leads to false-positive results. Here, we describe manual methods which allow the extraction of microbial DNA from small- and large-volume blood samples for the direct molecular analysis of pathogen.

  3. Evaluation of a fluorescence-labelled oligonucleotide probe targeting 23S rRNA for in situ detection of Salmonella serovars in paraffin-embedded tissue sections and their rapid identification in bacterial smears.

    PubMed Central

    Nordentoft, S; Christensen, H; Wegener, H C

    1997-01-01

    A method for the detection of Salmonella based on fluorescence in situ hybridization (FISH) has been developed and applied for the direct detection of Salmonella in pure cultures and in formalin-fixed, paraffin-embedded tissue sections. On the basis of the 23S rRNA gene sequences representing all of the S. enterica subspecies and S. bongori, an 18-mer oligonucleotide probe was selected. The specificity of the probe was tested by in situ hybridization to bacterial cell smears of pure cultures. Forty-nine of 55 tested Salmonella serovars belonging to subspecies I, II, IIIb, IV, and VI hybridized with the probe. The probe did not hybridize to serovars from subspecies IIIa (S. arizonae) or to S. bongori. No cross-reaction to 64 other strains of the family Enterobacteriaceae or 18 other bacterial strains outside this family was observed. The probe was tested with sections of formalin-fixed, paraffin-embedded tissue from experimentally infected mice or from animals with a history of clinical salmonellosis. In these tissue sections the probe hybridized specifically to Salmonella serovars, allowing for the detection of single bacterial cells. The development of a fluorescence-labelled specific oligonucleotide probe makes the FISH technique a promising tool for the rapid identification of S. enterica in bacterial smears, as well as for the detection of S. enterica in histological tissue sections. PMID:9316923

  4. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    SciTech Connect

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.; Andersen, G.L.; Lu, S.-E.; Wang, N.

    2009-03-01

    The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method. PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates in host

  5. Identification of the bacterial community responsible for traditional fermentation during sour cassava starch, cachaça and minas cheese production using culture-independent 16s rRNA gene sequence analysis

    PubMed Central

    Lacerda, Inayara C. A.; Gomes, Fátima C. O.; Borelli, Beatriz M.; Faria Jr., César L. L.; Franco, Gloria R.; Mourão, Marina M.; Morais, Paula B.; Rosa, Carlos A.

    2011-01-01

    We used a cultivation-independent, clone library-based 16S rRNA gene sequence analysis to identify bacterial communities present during traditional fermentation in sour cassava starch, cachaça and cheese production in Brazil. Partial 16S rRNA gene clone sequences from sour cassava starch samples collected on day five of the fermentation process indicated that Leuconostoc citreum was the most prevalent species, representing 47.6% of the clones. After 27 days of fermentation, clones (GenBank accession numbers GQ999786 and GQ999788) related to unculturable bacteria were the most prevalent, representing 43.8% of the clones from the bacterial community analyzed. The clone represented by the sequence GQ999786 was the most prevalent at the end of the fermentation period. The majority of clones obtained from cachaça samples during the fermentation of sugar cane juice were from the genus Lactobacillus. Lactobacillus nagelli was the most prevalent at the beginning of the fermentation process, representing 76.9% of the clones analyzed. After 21 days, Lactobacillus harbinensis was the most prevalent species, representing 75% of the total clones. At the end of the fermentation period, Lactobacillus buchneri was the most prevalent species, representing 57.9% of the total clones. In the Minas cheese samples, Lactococcus lactis was the most prevalent species after seven days of ripening. After 60 days of ripening, Streptococcus salivarius was the most prevalent species. Our data show that these three fermentation processes are conducted by a succession of bacterial species, of which lactic acid bacteria are the most prevalent. PMID:24031676

  6. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  7. Influence of DNA Extraction Method, 16S rRNA Targeted Hypervariable Regions, and Sample Origin on Microbial Diversity Detected by 454 Pyrosequencing in Marine Chemosynthetic Ecosystems

    PubMed Central

    Cruaud, Perrine; Vigneron, Adrien; Lucchetti-Miganeh, Céline; Ciron, Pierre Emmanuel; Godfroy, Anne

    2014-01-01

    Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities. PMID:24837380

  8. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys

    SciTech Connect

    Walters , William; Hyde, Embriette R.; Berg-Lyons, Donna; Ackermann, Gail; Humphrey, Greg; Parada , Alma; Gilbert, Jack A.; Jansson, Janet K.; Caporaso, Greg; Fuhrman, Jed A.; Apprill, Amy; Knight, Rob

    2015-12-22

    Designing primers for PCR-based taxonomic surveys that amplify a broad range of phylotypes in varied community samples is a difficult challenge, and the comparability of datasets amplified with varied primers requires attention. Here we examine the performance of modified 16S rRNA gene and ITS primers for archaea/bacteria and fungi, respectively, with non-aquatic samples. We moved primer barcodes to the 5’-end, allowing for a range of different 3’ primer pairings, such as the 515f/926r primer pair, which amplifies variable regions 4-5 of the 16S rRNA gene. We additionally demonstrate that modifications to the 515f/806r (variable region 4) 16S primer pair, which improves detection of Thaumarchaeota and SAR11 in marine samples, do not degrade performance on taxa already amplified effectively by the original primer set. Alterations to the fungal ITS primers did result in differential but overall improved performance compared to the original primers. In both cases, the improved primers should be widely adopted for amplicon studies.

  9. Comparison between a Broad-Range Real-Time and a Broad-Range End-Point PCR Assays for the Detection of Bacterial 16S rRNA in Clinical Samples.

    PubMed

    Meddeb, Mariam; Koebel, Christelle; Jaulhac, Benoît; Schramm, Frédéric

    2016-01-01

    Broad range PCR targeting the 16S rRNA gene is widely used to test clinical samples for the presence of bacterial DNA. End-point 16S PCR is both time-consuming and at high risk of cross-contamination. Prior to the replacement of the 16S end-point PCR assay routinely used in our clinical laboratory by a new 16S real-time PCR assay, we aimed to compare the performances of both techniques for the direct diagnosis of bacterial infections in clinical samples. In this prospective study, 129 clinical samples were included for direct comparison of both techniques. The sensitivity of 16S real-time PCR assay (76%) was significantly higher than that of end-point 16S PCR assay (41%) (p<0.01). Specificities of both PCR assays did not differ significantly (p=0.43). The 16S real-time PCR assay yielded an etiological diagnosis in 19% of culture-negative samples. It constitutes a reliable and complementary diagnostic tool to the bacterial culture.

  10. Composition and Metabolic Activities of the Bacterial Community in Shrimp Sauce at the Flavor-Forming Stage of Fermentation As Revealed by Metatranscriptome and 16S rRNA Gene Sequencings.

    PubMed

    Duan, Shan; Hu, Xiaoxi; Li, Mengru; Miao, Jianyin; Du, Jinghe; Wu, Rongli

    2016-03-30

    The bacterial community and the metabolic activities involved at the flavor-forming stage during the fermentation of shrimp sauce were investigated using metatranscriptome and 16S rRNA gene sequencings. Results showed that the abundance of Tetragenococcus was 95.1%. Tetragenococcus halophilus was identified in 520 of 588 transcripts annotated in the Nr database. Activation of the citrate cycle and oxidative phosphorylation, along with the absence of lactate dehydrogenase gene expression, in T. halophilus suggests that T. halophilus probably underwent aerobic metabolism during shrimp sauce fermentation. The metabolism of amino acids, production of peptidase, and degradation of limonene and pinene were very active in T. halophilus. Carnobacterium, Pseudomonas, Escherichia, Staphylococcus, Bacillus, and Clostridium were also metabolically active, although present in very small populations. Enterococcus, Abiotrophia, Streptococcus, and Lactobacillus were detected in metatranscriptome sequencing, but not in 16S rRNA gene sequencing. Many minor taxa showed no gene expression, suggesting that they were in dormant status. PMID:26978261

  11. Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    PubMed Central

    Baladi, S.; Kantengwa, S.; Donati, Y. R. A.; Polla, B. S.

    1994-01-01

    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor. PMID:18472933

  12. Comprehensive Meta-analysis of Ontology Annotated 16S rRNA Profiles Identifies Beta Diversity Clusters of Environmental Bacterial Communities

    PubMed Central

    Henschel, Andreas; Anwar, Muhammad Zohaib; Manohar, Vimitha

    2015-01-01

    Comprehensive mapping of environmental microbiomes in terms of their compositional features remains a great challenge in understanding the microbial biosphere of the Earth. It bears promise to identify the driving forces behind the observed community patterns and whether community assembly happens deterministically. Advances in Next Generation Sequencing allow large community profiling studies, exceeding sequencing data output of conventional methods in scale by orders of magnitude. However, appropriate collection systems are still in a nascent state. We here present a database of 20,427 diverse environmental 16S rRNA profiles from 2,426 independent studies, which forms the foundation of our meta-analysis. We conducted a sample size adaptive all-against-all beta diversity comparison while also respecting phylogenetic relationships of Operational Taxonomic Units(OTUs). After conventional hierarchical clustering we systematically test for enrichment of Environmental Ontology terms and their abstractions in all possible clusters. This post-hoc algorithm provides a novel formalism that quantifies to what extend compositional and semantic similarity of microbial community samples coincide. We automatically visualize significantly enriched subclusters on a comprehensive dendrogram of microbial communities. As a result we obtain the hitherto most differentiated and comprehensive view on global patterns of microbial community diversity. We observe strong clusterability of microbial communities in ecosystems such as human/mammal-associated, geothermal, fresh water, plant-associated, soils and rhizosphere microbiomes, whereas hypersaline and anthropogenic samples are less homogeneous. Moreover, saline samples appear less cohesive in terms of compositional properties than previously reported. PMID:26458130

  13. 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran.

    PubMed

    Sakamoto, Naoshige; Tanaka, Shigemitsu; Sonomoto, Kenji; Nakayama, Jiro

    2011-01-01

    Nukadoko is a naturally fermented rice bran mash traditionally used for pickling vegetables in Japan; its refreshment and fermentation cycles sometimes continue for many years. Here, we investigated the structure and dynamics of the bacterial community in nukadoko by conducting pyrosequencing and quantitative polymerase chain reaction (PCR) analyses of 16S ribosomal RNA genes (rDNA). Of the 16 different samples studied, 13 showed Lactobacillus-dominated microbiota, suggesting that aged nukadoko samples tend to realize a niche, favorable Lactobacillus species. The lactic acid bacterial community of each of the 16 samples was classified into 3 types according to the presence or absence of 2 predominant species, Lactobacillus namurensis and Lactobacillus acetotolerans. The dynamics of the bacterial community during fermentation and the subsequent ripening process were examined using a laboratory model of nukadoko inoculated with an aged nukadoko sample (inoculated model). Lb. namurensis grew rapidly in the first 2 days, accompanied with a rapid decrease in pH and an increase in lactate levels, while Lb. acetotolerans grew with a longer doubling time and slow acidification during the 20 days after inoculation. On the other hand, spontaneous fermentation of the nukadoko model prepared from fresh rice bran without the nukadoko inoculation (inoculant-free model), showed the growth of some non-Lactobacillus species such as staphylococci and bacilli within the first 10 days; thereafter, Lb. namurensis was dominant, while Lb. acetotolerans was not detected during the 20-day experimental period. These results suggest that the naturally established Lactobacillus community in aged nukadoko is effectively involved in the biocontrol of the microbial community of nukadoko during the refreshment and fermentation cycles. PMID:21084126

  14. Efficacy of Aqueous and Methanolic Extracts of Rheum Spiciformis against Pathogenic Bacterial and Fungal Strains

    PubMed Central

    Dar, Khalid Bashir; Bhat, Aashiq Hussain; Amin, Shajrul; Anees, Suhail; Masood, Akbar; Zargar, Mohammed Iqbal

    2016-01-01

    Introduction Rheum spiciformis is a newly identified edible medicinal plant of genus Rheum. The plant is used to treat various diseases on traditional levels in Kashmir Valley, India. Aim To evaluate the phytochemical screening, antibacterial and antifungal potential of aqueous and methanolic extracts of Rheum spiciformis, a traditionally used edible medicinal plant. Materials and Methods Methanolic and aqueous extracts of Rheum spiciformis were tested for their antimicrobial activities against six bacterial strains namely Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris and Escherichia coli and four fungal strains Penicillium chrysogenum, Aspergillus fumigatus, Candida albicans and Saccharomyces cerevisiae. The susceptibility of microbial strains to the two extracts was determined using agar well diffusion method. Phytochemical screening was carried out by using various standard procedures. Results Methanolic extract showed potent antimicrobial activity as compared to aqueous extract at the concentrations of 10, 30, 50, 80 and 100mg/ml. The most susceptible bacterial strains were Staphylococcus aureus with zone of inhibition (25±0.10mm), Klebsiella pneumonia (23±0.25mm), Proteus vulgaris (22±0.10mm) at the concentration of 100mg/ml. Aqueous extracts at the higher concentration were found effective against Proteus vulgaris and Bacillus subtilis with zone of inhibition (17±0.24mm) and (17±0.10mm), respectively. Among fungal strains the most susceptible were Aspergillus fumigatus (21±0.10mm), Saccharomyces cerevisiae (20±0.20mm) and Penicillium Chrysogenum (17±0.15mm) at the concentration of 100mg/ml methanol extract. The zone of inhibition for aqueous extract against fungal strains ranged between 14±0.13mm to 16±0.19mm at the highest concentration of plant extract. Phytochemical analysis revealed the presence of various secondary metabolites like flavonoids, saponins, volatile oils, phenols, steroids

  15. Comparison of DNA extraction methods in analysis of salivary bacterial communities.

    PubMed

    Lazarevic, Vladimir; Gaïa, Nadia; Girard, Myriam; François, Patrice; Schrenzel, Jacques

    2013-01-01

    Culture-independent high-throughput sequencing-based methods are widely used to study bacterial communities. Although these approaches are superior to traditional culture-based methods, they introduce bias at the experimental and bioinformatics levels. We assessed the diversity of the human salivary microbiome by pyrosequencing of the 16S rDNA V1-3 amplicons using metagenomic DNA extracted by two different protocols: a simple proteinase K digestion without a subsequent DNA clean-up step, and a bead-beating mechanical lysis protocol followed by column DNA purification. A high degree of congruence was found between the two extraction methods, most notably in regard to the microbial community composition. The results showed that for a given bioinformatics pipeline, all the taxa with an average proportion >0.12% in samples processed using one extraction method were also detected in samples extracted using the other method. The same taxa tended to be abundant and frequent for both extraction methods. The relative abundance of sequence reads assigned to the phyla Actinobacteria, Spirochaetes, TM7, Synergistetes, and Tenericutes was significantly higher in the mechanically-treated samples than in the enzymatically-treated samples, whereas the phylum Firmicutes showed the opposite pattern. No significant differences in diversity indices were found between the extraction methods, although the mechanical lysis method revealed higher operational taxonomic unit richness. Differences between the extraction procedures outweighed the variations due to the bioinformatics analysis pipelines used.

  16. Crude bacterial extracts of two new Streptomyces sp. isolates as bio-colorants for textile dyeing.

    PubMed

    Kramar, Ana; Ilic-Tomic, Tatjana; Petkovic, Milos; Radulović, Niko; Kostic, Mirjana; Jocic, Dragan; Nikodinovic-Runic, Jasmina

    2014-08-01

    Renewed demand for incorporation of natural dyes (bio-colorants) in textile industry could be met through biotechnological production of bacterial pigments. Two new Streptomyces strains (NP2 and NP4) were isolated for the remarkable ability to produce diffusible deep blue and deep red pigment into fermentation medium. Crude mycelial extracts of both strains were used as bio-colorants in conventional textile dyeing procedures avoiding downstream purification procedures. The yields of bio-colorants obtained in this way were 62 and 84 mg per g of mycelia for Streptomyces sp. NP2 and Streptomyces sp. NP4, respectively. Through nuclear magnetic resonance analysis of crude extracts before and after dyeing procedures, it was shown that both extracts contained prodigiosin-like family of compounds that exhibited different dyeing capabilities towards different textile fibers. Polyamide and acrylic fibers were colored to the deepest shade, polyester and triacetate fibers to a noticeable, but much lower shade depth, while cotton and cellulosic fibers stained weakly. These results confirmed that crude bacterial extracts had the characteristics similar to those of ionic and disperse dyes, which was consistent with the identified polypyrrolic prodigiosin-like structures.

  17. Use of bacterial extracts to enhance amino acid breakdown in dry fermented sausages.

    PubMed

    Herranz, B; Fernández, M; de la Hoz, L; Ordóñez, J A

    2006-02-01

    The effect of the intracellular cell-free extracts (ICFEs) of two bacterial strains (Lactobacillus sakei GO and Bacillus pumilus) on the amino acid catabolism and the sensory properties of dry fermented sausages, was investigated. Extracts were added to sausages alone or in combination with a protease, papain. Amino acid breakdown was monitored by the changes in free amino acids, ammonia and amine content during the ripening process. A 15% decrease in the content of free amino acids was observed in sausages added with the ICFE from L. sakei GO. Furthermore, the extract of L. sakei GO significantly reduced (54-68%) the content of the amino acids considered as precursors of the typical ripened flavour, i.e., valine, leucine and isoleucine. Chemical changes were not reflected in a significant improvement of the sensory quality of sausages added with the ICFEs. The potential use of the bacterial ICFEs studied in the present work for the manufacture of dry fermented sausages, and its comparison with the use of fungal extracts, are discussed. PMID:22061560

  18. CHARACTERIZATION OF BACTERIAL BIOMASS IN MARINE SEDIMENTS BENEATH THE ROSS ICE SHEET, ANTARCTICA BY PHOSPHOLIPIDS ANALYSIS AND 16S RRNA GENE SEQUENCING

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Glossner, A. W.; Dunbar, R. B.; Vogel, S. W.; Brandes, J.; Sahl, J. W.; Pepe-Ranney, C.; Spear, J. R.; Naish, T.; Powell, R. D.; Mandernack, K. W.

    2009-12-01

    heterotrophic organisms dominate these sediments, with the implication that primary productivity is derived from above. Integrating structural analyses and δ13C values of phospholipids, porewater chemistry, δ13CDIC and δ13CDIC values with 16S rRNA gene sequences provides a more comprehensive understanding of the biogeochemical influences of microbial carbon cycling that occur beneath marine sediments of Antarctica and elsewhere.

  19. Comparison of different DNA-extraction techniques to investigate the bacterial community of marine copepods

    NASA Astrophysics Data System (ADS)

    Brandt, Petra; Gerdts, Gunnar; Boersma, Maarten; Wiltshire, Karen H.; Wichels, Antje

    2010-12-01

    Marine zooplanktic organisms, such as copepods, are usually associated with large numbers of bacteria. Some of these bacteria live attached to copepods’ exoskeleton, while others prevail in their intestine and faecal pellets. Until now, general conclusions concerning the identity of these bacteria are problematic since the majority of previous studies focused on cultivable bacteria only. Hence, to date little is known on whether copepod genera or species harbour distinct bacterial populations and about the nature of this association. To shed more light on these copepod/bacteria consortia, the focus of this study was the development and evaluation of a suitable approach to extract bacterial DNA from different North Sea copepod genera. Furthermore, the bacterial DNA was analysed by PCR-DGGE and subsequent sequencing of excised bands. The result of this work was an appropriate extraction method for batches of ten to one copepod specimens and offered first insights as to which bacteria are attached to the copepods Acartia sp . and Temora sp . from Helgoland Roads (German Bight) and a laboratory-grown Acartia tonsa culture. It revealed the prevalence of Alphaproteobacteria.

  20. Analysis of bacterial community structure in Saba-Narezushi (Narezushi of Mackerel) by 16S rRNA gene clone library.

    PubMed

    Matsui, Hiroki; Tsuchiya, Rie; Isobe, Yuka; Narita, Miyo

    2013-08-01

    Narezushi, a derivation of sushi, is a traditional Japanese food made by fermenting salted fish meat and cooked rice together. In this study, the microbial diversity of saba-narezushi (narezushi of mackerel, Scomber japonicus) was analyzed by the 16S ribosomal RNA gene clone library method. Chemical composition was also analyzed to compare with different kinds of narezushi. The chemical composition of the narezushi was similar to those obtained from samma-narezushi. Ninety-four clones were randomly selected and DNA sequences of cloned fragments (approx. 890 bp) were analyzed. The DNA sequences obtained were phylogenetically analyzed. The expected operational taxonomy units (OTUs) by Chao1 estimates and Shannon-Wiener index (H') at 97% identity threshold were 48 and 1.822, respectively. The sequence similarity of the cloned fragment was equal to or higher than 98% of the sequence of cultivated bacterial species in the public database. Most of the clones (85%) belonged to lactic acid bacteria (LAB). Lactobacillus curvatus was the most abundant species followed by Lactococcus piscium and Leuconostoc gasicomitatum, suggesting that these bacteria play important roles in the fermentation of saba-narezushi.

  1. Pyrosequencing-based profiling of archaeal and bacterial 16S rRNA genes identifies a novel archaeon associated with black band disease in corals.

    PubMed

    Sato, Yui; Willis, Bette L; Bourne, David G

    2013-11-01

    Black band disease (BBD) is a microbial consortium that creates anoxic, sulfide-rich microenvironments and kills underlying coral tissues as it rapidly migrates across colonies. Although bacterial communities associated with BBD have been studied extensively, the presence and roles of archaea are unexplored. Using amplicon-pyrosequencing of 16S ribosomal RNA genes, we investigated the community structure of both archaea and bacteria within microbial lesions of BBD and the less-virulent precursor stage, 'cyanobacterial patches' (CP), affecting the coral Montipora hispida. We detected characteristic shifts in microbial communities during the development of BBD from CP, reflecting microenvironmental changes within lesions. Archaeal profiles in CP suggested a diverse assemblage affiliated with the Thaumarchaeota and Euryarchaeota, similar to communities described for oxic marine environments. In contrast, a novel ribotype, distantly affiliated to the Euryarchaeota, dominated up to 94% of archaeal sequences retrieved from BBD. The physiological characteristics of this dominant archaeal ribotype are unknown because of the novelty of its 16S ribosomal RNA gene sequences; however, their prominent associations with BBD lesions suggest the ability to thrive in the organic- and sulfide-rich anoxic microenvironment characteristic of BBD lesions. Discovery of this novel archaeal ribotype provides new insights into the microbial ecology and aetiology of BBD. PMID:24112537

  2. Analysis of bacterial community structure in Saba-Narezushi (Narezushi of Mackerel) by 16S rRNA gene clone library.

    PubMed

    Matsui, Hiroki; Tsuchiya, Rie; Isobe, Yuka; Narita, Miyo

    2013-08-01

    Narezushi, a derivation of sushi, is a traditional Japanese food made by fermenting salted fish meat and cooked rice together. In this study, the microbial diversity of saba-narezushi (narezushi of mackerel, Scomber japonicus) was analyzed by the 16S ribosomal RNA gene clone library method. Chemical composition was also analyzed to compare with different kinds of narezushi. The chemical composition of the narezushi was similar to those obtained from samma-narezushi. Ninety-four clones were randomly selected and DNA sequences of cloned fragments (approx. 890 bp) were analyzed. The DNA sequences obtained were phylogenetically analyzed. The expected operational taxonomy units (OTUs) by Chao1 estimates and Shannon-Wiener index (H') at 97% identity threshold were 48 and 1.822, respectively. The sequence similarity of the cloned fragment was equal to or higher than 98% of the sequence of cultivated bacterial species in the public database. Most of the clones (85%) belonged to lactic acid bacteria (LAB). Lactobacillus curvatus was the most abundant species followed by Lactococcus piscium and Leuconostoc gasicomitatum, suggesting that these bacteria play important roles in the fermentation of saba-narezushi. PMID:24425983

  3. Evaluation and optimisation of bacterial genomic DNA extraction for no-culture techniques applied to vinegars.

    PubMed

    Mamlouk, Dhouha; Hidalgo, Claudio; Torija, María-Jesús; Gullo, Maria

    2011-10-01

    Direct genomic DNA extraction from vinegars was set up and suitability for PCR assays performed by PCR/DGGE and sequencing of 16S rRNA gene. The method was tested on 12 intermediary products of special vinegars, fruit vinegars and condiments produced from different raw materials and procedures. DNAs extraction was performed on pellets by chemical, enzymatic, resin mediated methods and their modifications. Suitable yield and DNA purity were obtained by modification of a method based on the use of PVP/CTAB to remove polyphenolic components and esopolysaccharides. By sequencing of bands from DGGE gel, Gluconacetobacter europaeus, Acetobacter malorum/cerevisiae and Acetobacter orleanensis were detected as main species in samples having more than 4% of acetic acid content. From samples having no acetic acid content, sequences retrieved from excised bands revealed high similarity with prokaryotes with no function on vinegar fermentation: Burkholderia spp., Cupriavidus spp., Lactococcus lactis and Leuconostoc mesenteroides. The method was suitable to be applied for no-culture study of vinegars containing polyphenols and esopolysaccharides allowing a more complete assessment of vinegar bacteria.

  4. Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol

    PubMed Central

    Foroni, Elena; Duranti, Sabrina; Turroni, Francesca; Lugli, Gabriele Andrea; Sanchez, Borja; Martín, Rebeca; Gueimonde, Miguel; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco

    2013-01-01

    Assessing the distribution of 16S rRNA gene sequences within a biological sample represents the current state-of-the-art for determination of human gut microbiota composition. Advances in dissecting the microbial biodiversity of this ecosystem have very much been dependent on the development of novel high-throughput DNA sequencing technologies, like the Ion Torrent. However, the precise representation of this bacterial community may be affected by the protocols used for DNA extraction as well as by the PCR primers employed in the amplification reaction. Here, we describe an optimized protocol for 16S rRNA gene-based profiling of the fecal microbiota. PMID:23869230

  5. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates

    PubMed Central

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3–13.6 mm) than Gram-positive (1.8–8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  6. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates.

    PubMed

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3-13.6 mm) than Gram-positive (1.8-8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  7. Prevention of Bacterial Biofilms Formation on Urinary Catheter by Selected Plant Extracts.

    PubMed

    Adesina, T D; Nwinyi, O C; Olugbuyiro, J A O

    2015-02-01

    In this study, we investigated the feasibility of using Psidium guajava, Mangifera indica and Ocimum gratissimum leaf extracts in preventing Escherichia coli biofilm formation. The plants extractions were done with methanol under cold extraction. The various concentrations 5.0, 10.0 and 20.0 mg mL(-1) were used to coat 63 catheters under mild heat from water bath. Biofilm formation on the catheter was induced using cultures of E. coli. Biofilm formation was evaluated using aerobic plate count and turbidity at 600 nm. From the obtained results, Psidium guajava, Mangifera indica and Ocimum gratissimum delayed the onset of biofilm formation for a week. Ocimum gratissimum coated catheter had the highest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1) with bacterial count ranging from 2.2 x 10(5)-7.0 x 10(4) and 5.7 x 10(5)-3.7 x10(5) for 120 and 128 h, respectively. The Psidium guajava coated catheter had the lowest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1), with bacterial count ranging between 4.3 x 10(5)-1.9 x 10(3) and 7.7 x 10(5)-3.8 x 10(5) for 120 and 128 h, respectively. Despite the antimicrobial activities, the differences in the activity of these plant extracts were statistically not significant (p < 0.05).

  8. Prevention of Bacterial Biofilms Formation on Urinary Catheter by Selected Plant Extracts.

    PubMed

    Adesina, T D; Nwinyi, O C; Olugbuyiro, J A O

    2015-02-01

    In this study, we investigated the feasibility of using Psidium guajava, Mangifera indica and Ocimum gratissimum leaf extracts in preventing Escherichia coli biofilm formation. The plants extractions were done with methanol under cold extraction. The various concentrations 5.0, 10.0 and 20.0 mg mL(-1) were used to coat 63 catheters under mild heat from water bath. Biofilm formation on the catheter was induced using cultures of E. coli. Biofilm formation was evaluated using aerobic plate count and turbidity at 600 nm. From the obtained results, Psidium guajava, Mangifera indica and Ocimum gratissimum delayed the onset of biofilm formation for a week. Ocimum gratissimum coated catheter had the highest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1) with bacterial count ranging from 2.2 x 10(5)-7.0 x 10(4) and 5.7 x 10(5)-3.7 x10(5) for 120 and 128 h, respectively. The Psidium guajava coated catheter had the lowest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1), with bacterial count ranging between 4.3 x 10(5)-1.9 x 10(3) and 7.7 x 10(5)-3.8 x 10(5) for 120 and 128 h, respectively. Despite the antimicrobial activities, the differences in the activity of these plant extracts were statistically not significant (p < 0.05). PMID:26364356

  9. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  10. Inhibition of bacterial quorum sensing and biofilm formation by extracts of neotropical rainforest plants.

    PubMed

    Ta, Chieu Anh; Freundorfer, Marie; Mah, Thien-Fah; Otárola-Rojas, Marco; Garcia, Mario; Sanchez-Vindas, Pablo; Poveda, Luis; Maschek, J Alan; Baker, Bill J; Adonizio, Allison L; Downum, Kelsey; Durst, Tony; Arnason, John T

    2014-03-01

    Bacterial biofilms are responsible for many persistent infections by many clinically relevant pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Biofilms are much more resistant to conventional antibiotics than their planktonic counterparts. Quorum sensing, an intercellular communication system, controls pathogenesis and biofilm formation in most bacterial species. Quorum sensing provides an important pharmacological target since its inhibition does not provide a selective pressure for resistance. In this study, we investigated the quorum sensing and biofilm inhibitory activities of 126 plant extracts from 71 species collected from neotropical rainforests in Costa Rica. Quorum sensing and biofilm interference were assessed using a modified disc diffusion bioassay with Chromobacterium violaceum ATCC 12,472 and a spectrophotometric bioassay with Pseudomonas aeruginosa PA14, respectively. Species with significant anti-quorum sensing and/or anti-biofilm activities belonged to the Meliaceae, Melastomataceae, Lepidobotryaceae, Sapindaceae, and Simaroubaceae families. IC50 values ranged from 45 to 266 µg/mL. Extracts of these active species could lead to future development of botanical treatments for biofilm-associated infections. PMID:24488718

  11. Potential applications for Annona squamosa leaf extract in the treatment and prevention of foodborne bacterial disease.

    PubMed

    Dholvitayakhun, Achara; Trachoo, Nathanon; Sakee, Uthai; Cushnie, T P Tim

    2013-03-01

    Foodborne disease is a major public health problem. The present study examined Annona squamosa leaves, which are traditionally used to treat diarrhea and other infections, for their potential to be used in modern food safety or medicine. Active constituents were partially purified by ethanol extraction and column chromatography. MICs of the extract were 62.5 to 125 microg/mL against Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus, and 250 microg/mL against Campylobacter jejuni. In time-kill assays, 500 microg/mL of the extract reduced colony forming unit numbers of C. jejuni almost 10 000-fold within 12 hours. Similar decreases were seen against B. cereus, but over a longer time-frame. LC-MS analysis indicated the presence of reticuline and oxophoebine. Assessment of stability by MIC assay showed activity was heat-labile, with loss of activity greatest following high temperature treatments. Activity was relatively stable at refrigeration temperature. These results indicate A. squamosa has broad-spectrum but heat-labile activity against foodborne bacterial pathogens, and bactericidal activity against B. cereus and C. jejuni. This bactericidal activity is not sufficiently rapid for A. squamosa to be used as a food sanitizer, but the extract could potentially be developed as an additive for refrigerated foods, or a modern treatment for foodborne illness.

  12. Extraction of DNA from soil for analysis of bacterial diversity in transgenic and nontransgenic papaya sites.

    PubMed

    Sheu, Ceshing; Wu, Chung-Yi; Chen, Shu-Chuan; Lo, Chi-Chu

    2008-12-24

    The influence of transgenic crops on the soil diversity of microorganisms is one of the major risk assessments being conducted in Taiwan since 2007, and a reliable soil DNA extraction method for denaturing gradient gel electrophoresis (DGGE) is required. Six soils of different type, organic matter content, cation exchange capacity, and pH were tested, and four previously reported soil DNA extraction methods were applied to these soils. Soil DNA extracts by Zhou's CS method plus QIAquick gel was recommended in our laboratory for DGGE to monitor the microbial diversity in soil. There were some differences on the bacterial diversity based on DGGE patterns at the beginning of planting, and the difference decreased after six months. The results also indicated that clay content (10.8-25.0%) and pH (4.4-6.9) of different soil samples we tested did not affect the DNA extraction efficiencies, but positive correlations were found between the organic matter content (1.2-3.9%) of soils and the DNA yields in Widmer's GS method (r = 0.93, p = 0.005) and the MoBio UC method (r = 0.92, p = 0.007). Coefficient of determinations between organic matter content and DNA yield were higher than those between clay content, CEC, and pH, indicating that organic matter content was more correlated with DNA yield than that clay content, CEC, and pH in our soil samples tested.

  13. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts

    PubMed Central

    2013-01-01

    Background Marine microorganisms are considered to be an important source of bioactive molecules against various diseases and have great potential to increase the number of lead molecules in clinical trials. Progress in novel microbial culturing techniques as well as greater accessibility to unique oceanic habitats has placed the marine environment as a new frontier in the field of natural product drug discovery. Methods A total of 24 microbial extracts from deep-sea brine pools in the Red Sea have been evaluated for their anticancer potential against three human cancer cell lines. Downstream analysis of these six most potent extracts was done using various biological assays, such as Caspase-3/7 activity, mitochondrial membrane potential (MMP), PARP-1 cleavage and expression of γH2Ax, Caspase-8 and -9 using western blotting. Results In general, most of the microbial extracts were found to be cytotoxic against one or more cancer cell lines with cell line specific activities. Out of the 13 most active microbial extracts, six extracts were able to induce significantly higher apoptosis (>70%) in cancer cells. Mechanism level studies revealed that extracts from Chromohalobacter salexigens (P3-86A and P3-86B(2)) followed the sequence of events of apoptotic pathway involving MMP disruption, caspase-3/7 activity, caspase-8 cleavage, PARP-1 cleavage and Phosphatidylserine (PS) exposure, whereas another Chromohalobacter salexigens extract (K30) induced caspase-9 mediated apoptosis. The extracts from Halomonas meridiana (P3-37B), Chromohalobacter israelensis (K18) and Idiomarina loihiensis (P3-37C) were unable to induce any change in MMP in HeLa cancer cells, and thus suggested mitochondria-independent apoptosis induction. However, further detection of a PARP-1 cleavage product, and the observed changes in caspase-8 and -9 suggested the involvement of caspase-mediated apoptotic pathways. Conclusion Altogether, the study offers novel findings regarding the anticancer

  14. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability.

    PubMed

    Chiba, Akio; Sugimoto, Shinya; Sato, Fumiya; Hori, Seiji; Mizunoe, Yoshimitsu

    2015-05-01

    Biofilm-forming bacteria embedded in polymeric extracellular matrices (ECMs) that consist of polysaccharides, proteins and/or extracellular DNAs (eDNAs) acquire high resistance to antimicrobial agents and host immune systems. To understand molecular mechanisms of biofilm formation and maintenance and to develop therapeutic countermeasures against chronic biofilm-associated infections, reliable methods to isolate ECMs are inevitable. In this study, we refined the ECM extraction method recently reported and evaluated its applicability. Using three Staphylococcus aureus biofilms in which proteins, polysaccharides or eDNAs are major contributors to their integrity, ECMs were extracted using salts and detergents. We found that extraction with 1.5 M sodium chloride (NaCl) could be optimum for not only ECM proteins but also polysaccharides and eDNAs. In addition, long-time incubation was not necessary for efficient ECM isolation. Lithium chloride (LiCl) was comparative to NaCl but is more expensive. In contrast to SDS, NaCl hardly caused leakage of intracellular proteins and did not affect viability of bacterial cells within biofilms. Furthermore, this method is applicable to other bacteria such as Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli and Pseudomonas aeruginosa. Thus, this refined method is very simple, rapid, low cost and non-invasive and could be used for a broad range of applications.

  15. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability

    PubMed Central

    Chiba, Akio; Sugimoto, Shinya; Sato, Fumiya; Hori, Seiji; Mizunoe, Yoshimitsu

    2015-01-01

    Biofilm-forming bacteria embedded in polymeric extracellular matrices (ECMs) that consist of polysaccharides, proteins and/or extracellular DNAs (eDNAs) acquire high resistance to antimicrobial agents and host immune systems. To understand molecular mechanisms of biofilm formation and maintenance and to develop therapeutic countermeasures against chronic biofilm-associated infections, reliable methods to isolate ECMs are inevitable. In this study, we refined the ECM extraction method recently reported and evaluated its applicability. Using three Staphylococcus aureus biofilms in which proteins, polysaccharides or eDNAs are major contributors to their integrity, ECMs were extracted using salts and detergents. We found that extraction with 1.5 M sodium chloride (NaCl) could be optimum for not only ECM proteins but also polysaccharides and eDNAs. In addition, long-time incubation was not necessary for efficient ECM isolation. Lithium chloride (LiCl) was comparative to NaCl but is more expensive. In contrast to SDS, NaCl hardly caused leakage of intracellular proteins and did not affect viability of bacterial cells within biofilms. Furthermore, this method is applicable to other bacteria such as Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli and Pseudomonas aeruginosa. Thus, this refined method is very simple, rapid, low cost and non-invasive and could be used for a broad range of applications. PMID:25154775

  16. Antibiofilm Activity, Compound Characterization, and Acute Toxicity of Extract from a Novel Bacterial Species of Paenibacillus

    PubMed Central

    Alasil, Saad Musbah; Omar, Rahmat; Yusof, Mohd Yasim

    2014-01-01

    The effectiveness of many antimicrobial agents is currently decreasing; therefore, it is important to search for alternative therapeutics. Our study was carried out to assess the in vitro antibiofilm activity using microtiter plate assay, to characterize the bioactive compounds using Ultra Performance Liquid Chromatography-Diode Array Detection and Liquid Chromatography-Mass Spectrometry and to test the oral acute toxicity on Sprague Dawley rats of extract derived from a novel bacterial species of Paenibacillus strain 139SI. Our results indicate that the crude extract and its three identified compounds exhibit strong antibiofilm activity against a broad range of clinically important pathogens. Three potential compounds were identified including an amino acid antibiotic C8H20N3O4P (MW 253.237), phospholipase A2 inhibitor C21H36O5 (MW 368.512), and an antibacterial agent C14H11N3O2 (MW 253.260). The acute toxicity test indicates that the mortality rate among all rats was low and that the biochemical parameters, hematological profile, and histopathology examination of liver and kidneys showed no significant differences between experimental groups (P > 0.05). Overall, our findings suggest that the extract and its purified compounds derived from novel Paenibacillus sp. are nontoxic exhibiting strong antibiofilm activity against Gram-positive and Gram-negative pathogens that can be useful towards new therapeutic management of biofilm-associated infections. PMID:24790603

  17. Induction of sister chromatid exchanges and bacterial revertants by organic extracts of airborne particles. [Humans

    SciTech Connect

    Lockard, J.M.; Viau, C.J.; Lee-Stephens, C.; Caldwell, J.C.; Wojciechowski, J.P.; Enoch, H.G.; Sabharwal, P.S.

    1981-01-01

    The genotoxicities of organic extracts of airborne particles have been studied extensively in the Salmonella/mammalian microsome (Ames) test, but in few other bioassays. In these studies, we tested benzene-acetone extracts of particulate pollutants collected in Lexington, Kentucky, for capacity to induce increases in sister chromatid exchanges (SCE) in human lumphocytes and V79 cells, as well as in the Ames assay. Extracts induced linear dose-related increases in SCE in human lumphocytes and in bacterial revertants.However, variable responses were observed in SCE assays in V79 cells with and without activation by rat liver S9 or feeder layers of irradiated Syrian hamster fetal cells. We conclude that the SCE assay in human lumphocytes may be a useful indicator of the potential risks to humans of airborne particulate pollutants, as it utilizes human cells recently taken from the host, is rapid and economical, and requires small quantities of test materials. However, thorough studies of the quantitative relationships between SCE induction and mutagenicity in human cells are needed.

  18. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability.

    PubMed

    Chiba, Akio; Sugimoto, Shinya; Sato, Fumiya; Hori, Seiji; Mizunoe, Yoshimitsu

    2015-05-01

    Biofilm-forming bacteria embedded in polymeric extracellular matrices (ECMs) that consist of polysaccharides, proteins and/or extracellular DNAs (eDNAs) acquire high resistance to antimicrobial agents and host immune systems. To understand molecular mechanisms of biofilm formation and maintenance and to develop therapeutic countermeasures against chronic biofilm-associated infections, reliable methods to isolate ECMs are inevitable. In this study, we refined the ECM extraction method recently reported and evaluated its applicability. Using three Staphylococcus aureus biofilms in which proteins, polysaccharides or eDNAs are major contributors to their integrity, ECMs were extracted using salts and detergents. We found that extraction with 1.5 M sodium chloride (NaCl) could be optimum for not only ECM proteins but also polysaccharides and eDNAs. In addition, long-time incubation was not necessary for efficient ECM isolation. Lithium chloride (LiCl) was comparative to NaCl but is more expensive. In contrast to SDS, NaCl hardly caused leakage of intracellular proteins and did not affect viability of bacterial cells within biofilms. Furthermore, this method is applicable to other bacteria such as Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli and Pseudomonas aeruginosa. Thus, this refined method is very simple, rapid, low cost and non-invasive and could be used for a broad range of applications. PMID:25154775

  19. PAGE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence similarity and rDNA complexity.

    PubMed

    Espejo, R T; Feijóo, C G; Romero, J; Vásquez, M

    1998-06-01

    Analysis of the 16S rRNA genes retrieved directly from different environments has proven to be a powerful tool that has greatly expanded our knowledge of microbial diversity and phylogeny. It is shown here that sequence similarity between 80 and 100% among 16S rDNAs can be estimated by the electrophoretic migration of their heteroduplexes. This was measured by hybridization and electrophoresis in polyacrylamide gels of the product obtained after PCR amplification of almost the entire 16S rRNA gene from different bacterial species. These heteroduplexes were also observed after amplification of samples containing DNA from two or more bacterial species and a procedure was applied to identify reliably heteroduplexes among the amplification products. The electrophoretic migration of the heteroduplexes observed after PCR was used to detect the presence of 16S rDNAs with different sequences in DNA extracted from both a mixture of two bacterial species and samples containing a natural bacterial community.

  20. Polymeric Cryogel-Based Boronate Affinity Chromatography for Separation of Ribonucleic Acid from Bacterial Extracts.

    PubMed

    Shakya, Akhilesh Kumar; Srivastava, Akshay; Kumar, Ashok

    2015-01-01

    Three-dimensional monolithic columns are preferred stationary phase in column chromatography. Conventional columns based on silica or particles are efficient in bioseparation though associated with limitations of nonspecific interaction and uneven porosity that causes high mass transfer resistance for the movement of big molecules. Cryogels as a monolith column have shown promising application in bioseparation. Cryogels column can be synthesized in the form of a monolith at sub-zero temperature through gelation of pre-synthesized polymers or polymerization of monomers. Cryogels are macroporous and mechanically stable materials. They have open interconnected micron-sized pores with a wide range of porosity (10-200 μm). Current protocol demonstrated the ability of poly(hydroxymethyl methacrylate)-co-vinylphenyl boronic acid p(HEMA-co-VPBA) cryogel matrix for selective separation of RNA from the bacterial crude extract. PMID:26623972

  1. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils.

    PubMed

    Mahmoudi, Nagissa; Slater, Greg F; Fulthorpe, Roberta R

    2011-08-01

    Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both

  2. Different methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples.

    PubMed

    dos Santos Furtado, A L; Casper, P

    2000-08-01

    The efficiency of different treatments was tested to extract bacterial cells from freshwater sediment samples. The influence of sonication, density gradient centrifugation, fixation by formalin and centrifugation speed on bacterial recovery was investigated. The method developed by Smith and Azam [Mar. Microb. Food Webs 6 (1992) 107] to measure microbial activity on bacterioplankton (3H-leucine incorporation), was also evaluated in sediment samples. After 1 min of sonication bacterial abundance was reduced by about 47% in diluted sediments with tetrasodium pyrophosphate. With the addition of Percoll after sonication, bacterial counts were not significantly different (P<0.05). Fixation by formalin increased bacterial counts using sonication. However, higher bacterial abundance was estimated in non-sonicated samples. Bacterial abundance in samples centrifuged at 7000xg with and without Percoll was not significantly different (P<0.05). Highest bacterial abundance was obtained after centrifugation at low speed (750xg). Bacterial abundance decreased with higher centrifugation speed (750, 1500 and 3000xg), the difference, however, was not significant. Bacterial production ranged from 0.10 microg C cm(-3) d(-1) in autoclaved sediment to 0. 27 microg C cm(-3) d(-1) in untreated sediment. The radioactivity measured in controls of both untreated and autoclaved sediment was high (70 and 91%, respectively), indicating a high level of leucine adsorption in sediment particles. In contrast, radioactivity in control samples previously centrifuged was markedly lower (6%). Despite the high values of radioactivity in the controls, bacterial production in untreated sediment was significantly higher than in centrifuged sediment (P<0.05).

  3. Effects of different methods of DNA extraction for activated sludge on the subsequent analysis of bacterial community profiles.

    PubMed

    Sun, Lianpeng; Ouyang, Xiong; Tang, Yueheng; Yang, Ying; Luo, Ying

    2012-02-01

    The effect of different DNA extraction protocols on activated sludge DNA yield and bacterial community composition was evaluated by temperature gradient gel electrophoresis (TGGE). Nine different procedures to extract DNA were compared-sonication (30s), sonication (40s), sonication (50s), freezing-thawing, bead milling, sodium dodecyl sulfate (SDS)-lysozyme, SDS-proteinase K, SDS-lysozyme-proteinase, and a commercial extraction kit. It was found that the TGGE profiles and the DNA band numbers made significant differences via various extraction methods. The yield and purity of DNA extracted by sonication and other physical methods were not satisfactory, while the DNA purity extracted by SDS and other chemical-biological methods were better. Crude DNA extracts isolated by sonication and other physical methods passed the polymerase chain reaction, despite the absence of purification and acquired affluent DNA bands in TGGE. The affluence of bands in TGGE was not consistent with the yield and purification of DNA, but was correlative with extraction protocols. To analyze the activated sludge bacterial community by TGGE fingerprint, it is necessary to make a synthesis of the TGGE fingerprint profiles of chemical and physical DNA extraction methods to overcome the representative bias.

  4. Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato.

    PubMed

    Kwak, A Min; Min, Kyeong Jin; Lee, Sang Yeop; Kang, Hee Wan

    2015-09-01

    Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding β-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction. PMID:26539048

  5. Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

    PubMed Central

    Kwak, A Min; Min, Kyeong Jin; Lee, Sang Yeop

    2015-01-01

    Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding β-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction. PMID:26539048

  6. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined. PMID:24687752

  7. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  8. The Extraction and Partial Purification of Bacterial DNA as a Practical Exercise for GCE Advanced Level Students.

    ERIC Educational Resources Information Center

    Falconer, A. C.; Hayes, L. J.

    1986-01-01

    Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)

  9. A hybrid DNA extraction method for the qualitative and quantitative assessment of bacterial communities from poultry production samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in th...

  10. Bacterial Diversity in Çamalti Saltern, Turkey.

    PubMed

    Mutlu, Mehmet Burçin; Güven, Kiymet

    2015-01-01

    A combination of culture-dependent and culture-independent approaches was employed to identify the bacterial diversity of Çamalti solar saltern in Turkey. The bacterial communities of Çamalti Saltern were analyzed by molecular techniques that included denaturing gradient gel electrophoresis of 16S rRNA gene fragments PCR amplified from DNA extracted from the water samples of the saltern and 16S rRNA gene library analysis. A total of 42 isolates were identified at the genus/species level and 17 of them were found to belong to the Bacteria domain. All bacterial isolates were phylogenetically related to Halobacillus, Virgibacillus and Halomonas genus. A total of 50 clones from 16S rRNA gene library were analyzed by ARDRA. 16S rRNA sequence analysisof these clones revealed that most (85%) of the bacterial clones were related to Salinibacter genus members of the Bacteroidetes. The sequences of DGGE bands were related to the uncultured Salinibacter, uncultured halophilic bacterium and Halomonas sp. This work highlights the halophilic bacterial diversity of Çamalti marine solar saltern. PMID:26094314

  11. Characteristics and anticancer properties of bacterial cellulose films containing ethanolic extract of mangosteen peel.

    PubMed

    Taokaew, Siriporn; Nunkaew, Natthawut; Siripong, Pongpun; Phisalaphong, Muenduen

    2014-01-01

    Bacterial cellulose (BC) films containing an ethanolic extract of mangosteen peel were prepared and their physical, chemical, and anticancer properties were characterized. The cumulative absorption and release profiles of bioactive compounds in the films were determined based on total phenolic and α-mangostin content. The BC films were filled with total phenolic compounds expressed as gallic acid equivalent varying from 4.72 to 275.91 mg/cm3 dried film, and α-mangostin varying from 2.06 to 248.20 mg/cm3 dried film. A Fourier transform infrared spectroscopy evaluation showed that there were weak interactions between the functional groups of the extract and the BC. Decreases in the water absorption capacity and water vapor transmission rate of the modified films were detected. Release studies were performed using Franz diffusion cells. In a non-transdermal system, the release of bioactive compounds from the films depended on concentration, immersion time, and the pH of the dissolution medium. A transdermal diffusion study showed that 59-62% of total phenolic compounds that were initially loaded were released from the films and more than 95% of bioactive compounds released from the films were adsorbed into pig skin. Only very small amount of the bioactive compounds penetrated through pig skin and into phosphate and acetate buffers. In studies of anticancer abilities, the release of 2.0 μg/ml α-mangostin from the BC films could suppress the growth of B16F10 melanoma (approximately 31% survival). With the release of α-mangostin at greater than 17.4-18.4 μg/ml, less than 15 and 5% survival of B16F10 melanoma and MCF-7 breast cancer cells, respectively, was observed.

  12. Bacterial extract OM-85 BV protects mice against experimental chronic rhinosinusitis

    PubMed Central

    Tao, Yanli; Yuan, Tiejun; Li, Xuechang; Yang, Shuqin; Zhang, Fanping; Shi, Li

    2015-01-01

    Objectives: To investigate the therapeutic effects of OM-85 BV as an adjunctive treatment on experimental chronic rhinosinusitis (CRS) in mice. Methodology: Female BALB/c mice aged 8-12 weeks were sensitized and administrated by intranasal Aspergillus fumigatis (AF) three times per week for 1 week, 3 weeks, 2 months and 3 months (n = 10 each time point). The mice were randomly and equally assigned to four groups: normal control group, model group, OM-85-BV plus amoxicillin group, and isolated amoxicillin group. Inflammatory changes were determined by hematoxylin-eosin (HE) staining. The expression levels of suppressor of cytokine signaling (SOCS) 1, SOCS3, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in samples were assessed by using real-time PCR (RT-PCR) and Western blotting. Results: There were significantly inflammatory and structural changes between the model and other groups. Compared to the model group, the mRNA expression levels of SOCS1, SOCS3, TNF-α, and IFN-γ were significantly decreased in OM-85-BV plus amoxicillin group and isolated amoxicillin group, along with the protein levels. Conclusion: The bacterial extract OM-85 BV is a low-cost alternatively adjunctive drug to treat CRS with simple oral administration, good safety, and few side effects. PMID:26261565

  13. Anti-bacterial and anti-inflammatory effects of ethanol extract from Houttuynia cordata poultice.

    PubMed

    Sekita, Yasuko; Murakami, Keiji; Yumoto, Hiromichi; Mizuguchi, Hiroyuki; Amoh, Takashi; Ogino, Satoshi; Matsuo, Takashi; Miyake, Yoichiro; Fukui, Hiroyuki; Kashiwada, Yoshiki

    2016-06-01

    Houttuynia cordata (HC) has been commonly used as many traditional remedies in local areas of Japan. Although many pharmacological activities of HC have been reported, the mechanism underlying the effect of HC remains unknown. We conducted the interview survey in Japan to verify how HC was actually used. The interview survey revealed that HC poultice (HCP) prepared from smothering fresh leaves of HC was most frequently used for the treatment of purulent skin diseases including furuncle and carbuncle with high effectiveness. Ethanol extract of HCP (eHCP) showed anti-bacterial effects against methicillin-resistant Staphylococcus aureus (MRSA), and showed an anti-biofilm activity against MRSA. eHCP showed dose-dependent inhibition of S. aureus lipoteichoic acid (LTA)-induced interleukin-8 and CCL20 production in human keratinocyte without any cytotoxicity. These results suggest that HCP is effective for skin abscess and its underlying mechanism might be the complicated multiple activities for both bacteria and host cells. PMID:27023331

  14. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis.

    PubMed

    Siboni, Nachshon; Abrego, David; Seneca, Francois; Motti, Cherie A; Andreakis, Nikos; Tebben, Jan; Blackall, Linda L; Harder, Tilmann

    2012-01-01

    Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0-2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05) in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05) following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that utilized cues

  15. Using Bacterial Extract along with Differential Gene Expression in Acropora millepora Larvae to Decouple the Processes of Attachment and Metamorphosis

    PubMed Central

    Siboni, Nachshon; Abrego, David; Seneca, Francois; Motti, Cherie A.; Andreakis, Nikos; Tebben, Jan; Blackall, Linda L.; Harder, Tilmann

    2012-01-01

    Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0–2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05) in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05) following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that utilized cues

  16. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data.

    PubMed

    Bengtsson-Palme, Johan; Hartmann, Martin; Eriksson, Karl Martin; Pal, Chandan; Thorell, Kaisa; Larsson, Dan Göran Joakim; Nilsson, Rolf Henrik

    2015-11-01

    The ribosomal rRNA genes are widely used as genetic markers for taxonomic identification of microbes. Particularly the small subunit (SSU; 16S/18S) rRNA gene is frequently used for species- or genus-level identification, but also the large subunit (LSU; 23S/28S) rRNA gene is employed in taxonomic assignment. The METAXA software tool is a popular utility for extracting partial rRNA sequences from large sequencing data sets and assigning them to an archaeal, bacterial, nuclear eukaryote, mitochondrial or chloroplast origin. This study describes a comprehensive update to METAXA - METAXA2 - that extends the capabilities of the tool, introducing support for the LSU rRNA gene, a greatly improved classifier allowing classification down to genus or species level, as well as enhanced support for short-read (100 bp) and paired-end sequences, among other changes. The performance of METAXA2 was compared to other commonly used taxonomic classifiers, showing that METAXA2 often outperforms previous methods in terms of making correct predictions while maintaining a low misclassification rate. METAXA2 is freely available from http://microbiology.se/software/metaxa2/. PMID:25732605

  17. Absence of mutagenic effects of a particular Symphytum officinale L. liquid extract in the bacterial reverse mutation assay.

    PubMed

    Benedek, Birgit; Ziegler, Andreas; Ottersbach, Peter

    2010-03-01

    Comfrey (Symphytum officinale L.) root is traditionally used for the topical treatment of contusions, strains and sprains. Besides allantoin and rosmarinic acid, which are discussed as pharmacologically active principles, the drug contains pyrrolizidine alkaloids (PAs) known for their hepatotoxic, carcinogenic and mutagenic properties. The topical herbal medicinal products Kytta-Salbe f and Kytta-Plasma f contain a PA-free liquid extract from comfrey root as active substance. The aim of this study was to demonstrate the absence of genotoxic effects of this special extract in the bacterial reverse mutation assay (Ames test). Briefly, comfrey root liquid extract was investigated for its ability to induce gene mutations in Salmonella typhimurium strains TA 98, TA 100, TA 102, TA 1535 and TA 1537 with and without metabolic activation using the mammalian microsomal fraction S9 mix. Reference mutagens were used to check the validity of the experiments. Comfrey root fluid extract showed no biologically relevant increases in revertant colony numbers of any of the five tester strains, neither in the presence nor in the absence of metabolic activation. In conclusion, the comfrey root fluid extract contained in Kytta-Salbe f and Kytta-Plasma f was not mutagenic in the bacterial reverse mutation assay. PMID:19827020

  18. Inhibitory activity of Salvadora persica extracts against oral bacterial strains associated with periodontitis: An in-vitro study

    PubMed Central

    Amir Alireza, Rasouli Ghahroudi; Afsaneh, Rezaei; Seied Hosein, Mohseni Salehifard; Siamak, Yaghoobee; Afshin, Khorsand; Zeinab, Kadkhoda; Mahvash, Moosavi Jazi; Amir Reza, Rokn

    2014-01-01

    Aims The use of natural plant extracts in pharmacology, medicine and dental hygiene has found a growing interest in modern scientific research. Salvadora persica is a natural tree whose fibrous branches have been approved by the World Health Organization for oral hygiene. Periodontitis is a highly prevalent adult gingival disease that leads to bone destruction and connective tissue attachment loss. The aim of this research was assessment the antimicrobial activities of methanolic extract of Salvadora persica (miswak) on isolated strains from the oral fluid. Methods In practical section, 50 female university students (21.4 ± 1 year) participated in the study. Based on examination by a periodontist, they were grouped into (Group I, n = 21) and (Group II, n = 29) i.e. with and without periodontitis respectively. Their un-stimulated saliva samples were obtained in sterile tubes. While three bacterial genera, Staphylococcus, Streptococcus and Lactobacillus were identified in all subjects, Enterococcus and Escherichia were only detected in Group I. Results A statistically significant difference in colonization levels between the two groups was observed. The effect of methanolic extract of S. persica against oral bacterial strains isolated from saliva was investigated using agar disc diffusion and microdilution methods. Although methanolic extract of S. persica was effective on growth inhibition of all strains, it was significantly more effective on Gram positive bacteria than Gram negative ones. Conclusions Effective substances present in S. persica extracts, exhibit a broad range of antibacterial activity and affect almost all bacterial species regardless of the Gram-staining nature. PMID:25737914

  19. Characterising the Canine Oral Microbiome by Direct Sequencing of Reverse-Transcribed rRNA Molecules.

    PubMed

    McDonald, James E; Larsen, Niels; Pennington, Andrea; Connolly, John; Wallis, Corrin; Rooks, David J; Hall, Neil; McCarthy, Alan J; Allison, Heather E

    2016-01-01

    PCR amplification and sequencing of phylogenetic markers, primarily Small Sub-Unit ribosomal RNA (SSU rRNA) genes, has been the paradigm for defining the taxonomic composition of microbiomes. However, 'universal' SSU rRNA gene PCR primer sets are likely to miss much of the diversity therein. We sequenced a library comprising purified and reverse-transcribed SSU rRNA (RT-SSU rRNA) molecules from the canine oral microbiome and compared it to a general bacterial 16S rRNA gene PCR amplicon library generated from the same biological sample. In addition, we have developed BIONmeta, a novel, open-source, computer package for the processing and taxonomic classification of the randomly fragmented RT-SSU rRNA reads produced. Direct RT-SSU rRNA sequencing revealed that 16S rRNA molecules belonging to the bacterial phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Spirochaetes, were most abundant in the canine oral microbiome (92.5% of total bacterial SSU rRNA). The direct rRNA sequencing approach detected greater taxonomic diversity (1 additional phylum, 2 classes, 1 order, 10 families and 61 genera) when compared with general bacterial 16S rRNA amplicons from the same sample, simultaneously provided SSU rRNA gene inventories of Bacteria, Archaea and Eukarya, and detected significant numbers of sequences not recognised by 'universal' primer sets. Proteobacteria and Spirochaetes were found to be under-represented by PCR-based analysis of the microbiome, and this was due to primer mismatches and taxon-specific variations in amplification efficiency, validated by qPCR analysis of 16S rRNA amplicons from a mock community. This demonstrated the veracity of direct RT-SSU rRNA sequencing for molecular microbial ecology. PMID:27276347

  20. Characterising the Canine Oral Microbiome by Direct Sequencing of Reverse-Transcribed rRNA Molecules

    PubMed Central

    McDonald, James E.; Larsen, Niels; Pennington, Andrea; Connolly, John; Wallis, Corrin; Rooks, David J.; Hall, Neil; McCarthy, Alan J.; Allison, Heather E.

    2016-01-01

    PCR amplification and sequencing of phylogenetic markers, primarily Small Sub-Unit ribosomal RNA (SSU rRNA) genes, has been the paradigm for defining the taxonomic composition of microbiomes. However, ‘universal’ SSU rRNA gene PCR primer sets are likely to miss much of the diversity therein. We sequenced a library comprising purified and reverse-transcribed SSU rRNA (RT-SSU rRNA) molecules from the canine oral microbiome and compared it to a general bacterial 16S rRNA gene PCR amplicon library generated from the same biological sample. In addition, we have developed BIONmeta, a novel, open-source, computer package for the processing and taxonomic classification of the randomly fragmented RT-SSU rRNA reads produced. Direct RT-SSU rRNA sequencing revealed that 16S rRNA molecules belonging to the bacterial phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Spirochaetes, were most abundant in the canine oral microbiome (92.5% of total bacterial SSU rRNA). The direct rRNA sequencing approach detected greater taxonomic diversity (1 additional phylum, 2 classes, 1 order, 10 families and 61 genera) when compared with general bacterial 16S rRNA amplicons from the same sample, simultaneously provided SSU rRNA gene inventories of Bacteria, Archaea and Eukarya, and detected significant numbers of sequences not recognised by ‘universal’ primer sets. Proteobacteria and Spirochaetes were found to be under-represented by PCR-based analysis of the microbiome, and this was due to primer mismatches and taxon-specific variations in amplification efficiency, validated by qPCR analysis of 16S rRNA amplicons from a mock community. This demonstrated the veracity of direct RT-SSU rRNA sequencing for molecular microbial ecology. PMID:27276347

  1. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis.

    PubMed

    Nonejuie, Poochit; Trial, Rachelle M; Newton, Gerald L; Lamsa, Anne; Ranmali Perera, Varahenage; Aguilar, Julieta; Liu, Wei-Ting; Dorrestein, Pieter C; Pogliano, Joe; Pogliano, Kit

    2016-05-01

    Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities.

  2. Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh

    PubMed Central

    Ullah, M. Obayed; Haque, Mahmuda; Urmi, Kaniz Fatima; Zulfiker, Abu Hasanat Md.; Anita, Elichea Synthi; Begum, Momtaj; Hamid, Kaiser

    2013-01-01

    Objective To investigate the antibacterial and cytotoxic activity of fourteen different edible vegetables methanolic extract from Bangladesh. Methods The antibacterial activity was evaluated using disc diffusion assay method against 12 bacteria (both gram positive and gram negative). The plant extracts were also screened for cytotoxic activity using the brine shrimp lethality bioassay method and the lethal concentrations (LC50) were determined at 95% confidence intervals by analyzing the data on a computer loaded with “Finney Programme”. Results All the vegetable extracts showed low to elevated levels of antibacterial activity against most of the tested strains (zone of inhibition=5-28 mm). The most active extract against all bacterial strains was from Xanthium indicum which showed remarkable antibacterial activity having the diameter of growth inhibition zone ranging from 12 to 28 mm followed by Alternanthera sessilis (zone of inhibition=6-21 mm). All extracts exhibited considerable general toxicity towards brine shrimps. The LC50 value of the tested extracts was within the range of 8.447 to 60.323 µg/mL with respect to the positive control (vincristine sulphate) which was 0.91 µg/mL. Among all studied extracts, Xanthium indicum displayed the highest cytotoxic effect with LC50 value of 8.447 µg/mL. Conclusions The results of the present investigation suggest that most of the studied plants are potentially good source of antibacterial and anticancer agents. PMID:23570009

  3. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay

    PubMed Central

    Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul

    2016-01-01

    ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have

  4. Selective Enhancement of Systemic Th1 Immunity in Immunologically Immature Rats with an Orally Administered Bacterial Extract

    PubMed Central

    Bowman, L. M.; Holt, P. G.

    2001-01-01

    Infant rats primed during the first week of life with soluble antigen displayed adult-equivalent levels of T-helper 2 (Th2)-dependent immunological memory development as revealed by production of secondary immunoglobulin G1 (IgG1) antibody responses to subsequent challenge, but in contrast to adults failed to prime for Th1-dependent IgG2b responses. We demonstrate that this Th2 bias in immune function can be redressed by oral administration to neonates of a bacterial extract (Broncho-Vaxom OM-85) comprising lyophilized fractions of several common respiratory tract bacterial pathogens. Animals given OM-85 displayed a selective upregulation in primary and secondary IgG2b responses, accompanied by increased gamma interferon and decreased interleukin-4 production (both antigen specific and polyclonal), and increased capacity for development of Th1-dependent delayed hypersensitivity to the challenge antigen. We hypothesize that the bacterial extract functions via enhancement of the process of postnatal maturation of Th1 function, which is normally driven by stimuli from the gastrointestinal commensal microflora. PMID:11349036

  5. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    PubMed

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  6. Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

    PubMed Central

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. PMID:25565273

  7. Simplified extraction of bisphenols from bacterial culture suspensions and solid matrices.

    PubMed

    Im, Jeongdae; Yip, Dan; Lee, Jaejin; Löffler, Frank E

    2016-07-01

    We demonstrate the utility of a simple and fast methanol extraction method that achieves similar bisphenols recovery efficiencies from microbial culture suspensions and sediment material than more laborious and costly extraction procedures. The methanol extraction method may have broad application for the rapid analysis of hydrophobic compounds in biodegradation studies. PMID:27179438

  8. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing.

    PubMed

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4-76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  9. Identification of the Microbiota in Carious Dentin Lesions Using 16S rRNA Gene Sequencing

    PubMed Central

    Obata, Junko; Takeshita, Toru; Shibata, Yukie; Yamanaka, Wataru; Unemori, Masako; Akamine, Akifumi; Yamashita, Yoshihisa

    2014-01-01

    While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating. PMID:25083880

  10. Evaluation of the Effect of Green Tea Extract on Mouth Bacterial Activity in the Presence of Propylene Glycol

    PubMed Central

    Moghbel, Abdolhossein; Farjzadeh, Ahmad; Aghel, Nasrin; Agheli, Homaun; Raisi, Nafiseh

    2012-01-01

    Background Compounds present in green tea have proved to inhibit the growth and activity of bacteria associated with infections. Objectives To assess the effects of green tea leaves extract in presence of propylene glycol on the aerobic mouth bacteria load. Materials and Methods Saliva of 25 volunteer girl students aging 20-25 years were selected and evaluated by a mouthwash sample containing 1% tannin, as the most effective antibacterial complex in green tea. Comparative studies were also conducted between green tea mouthwashes containing 1% tannin and a similar sample with 10% propylene glycol added during extraction. This comparison was applied for a chlorhexidine 0.2% sample as a chemical mouthwash brand, too. Results There was a meaningful difference between the green tea mouthwashes containing 10% propylene glycol and the simple green tea extract (P < 0.05). Significant difference was also seen between the herbal and chemical mouthwashes (P < 0.05). The extract 1% tannin containing 10% propylene glycol reduced the aerobic mouth bacterial load of the student salvia about 64 percent. The pH monotonousness in different days and temperatures approved the stability of tannin in liquid water medium. Conclusions Using green tea extract as a herbal mouthwash is safe and harmless specially for children and pregnant women. This result led us to suppose that green tea may prevent plaque formation on teeth, coming over halitosis due to mouth infection, too. These effects need to be approved in an in vivo trial as a second study. PMID:24624155

  11. Immunoglobulin isotype isolated from human placental extract does not interfere in complement-mediated bacterial opsonization within the wound milieu

    PubMed Central

    Sharma, Kanika; Bhattacharyya, Debasish

    2015-01-01

    The wound healing potency of an aqueous extract of placenta can be evaluated through the presence of numerous regulatory components. The presence of glycans was detected by thin layer chromatography and fluorophore-assisted carbohydrate electrophoresis. Mass spectrometric analysis revealed the existence of multiple fragments of immunoglobulin G (IgG). IgG was present in the extract at a concentration of 25.2 ± 3.97 μg/ml. IgG possesses anti-complementary activity by diverting the complement activation from target surface. Thus, effect of placental IgG on complement–bacteria interaction was investigated through classical and alternative pathway and the preparation was ascertained to be safe with respect to their interference in the process of bacterial opsonization. PMID:25984442

  12. First experience of a multicenter external quality assessment of molecular 16S rRNA gene detection in bone and joint infections.

    PubMed

    Plouzeau, Chloé; Bémer, Pascale; Valentin, Anne Sophie; Héry-Arnaud, Geneviève; Tandé, Didier; Jolivet-Gougeon, Anne; Vincent, Pascal; Kempf, Marie; Lemarié, Carole; Guinard, Jérôme; Bret, Laurent; Cognée, Anne Sophie; Gibaud, Sophie; Burucoa, Christophe; Corvec, Stéphane

    2015-02-01

    The objective of this study was to assess the performance of seven French laboratories for 16S rRNA gene detection by real-time PCR in the diagnosis of bone and joint infection (BJI) to validate a large multicenter study. External quality control (QC) was required owing to the differences in extraction procedures and the molecular equipment used in the different laboratories. Three proficiency sets were organized, including four bacterial DNA extracts and four bead mill-pretreated osteoarticular specimens. Extraction volumes, 16S rRNA gene primers, and sequencing interpretation rules were standardized. In order to assess each laboratory's ability to achieve the best results, scores were assigned, and each QC series was classified as optimal, acceptable, or to be improved. A total of 168 QCs were sent, and 160 responses were analyzed. The expected results were obtained for 93.8%, with the same proportion for extracts (75/80) and clinical specimens (75/80). For the specimens, there was no significant difference between manual and automated extraction. This QC demonstrated the ability to achieve good and homogeneous results using the same 16S rRNA gene PCR with different equipment and validates the possibility of high-quality multicenter studies using molecular diagnosis for BJI.

  13. First Experience of a Multicenter External Quality Assessment of Molecular 16S rRNA Gene Detection in Bone and Joint Infections

    PubMed Central

    Bémer, Pascale; Valentin, Anne Sophie; Héry-Arnaud, Geneviève; Tandé, Didier; Jolivet-Gougeon, Anne; Vincent, Pascal; Kempf, Marie; Lemarié, Carole; Guinard, Jérôme; Bret, Laurent; Cognée, Anne Sophie; Gibaud, Sophie; Burucoa, Christophe; Corvec, Stéphane

    2014-01-01

    The objective of this study was to assess the performance of seven French laboratories for 16S rRNA gene detection by real-time PCR in the diagnosis of bone and joint infection (BJI) to validate a large multicenter study. External quality control (QC) was required owing to the differences in extraction procedures and the molecular equipment used in the different laboratories. Three proficiency sets were organized, including four bacterial DNA extracts and four bead mill-pretreated osteoarticular specimens. Extraction volumes, 16S rRNA gene primers, and sequencing interpretation rules were standardized. In order to assess each laboratory's ability to achieve the best results, scores were assigned, and each QC series was classified as optimal, acceptable, or to be improved. A total of 168 QCs were sent, and 160 responses were analyzed. The expected results were obtained for 93.8%, with the same proportion for extracts (75/80) and clinical specimens (75/80). For the specimens, there was no significant difference between manual and automated extraction. This QC demonstrated the ability to achieve good and homogeneous results using the same 16S rRNA gene PCR with different equipment and validates the possibility of high-quality multicenter studies using molecular diagnosis for BJI. PMID:25411177

  14. First experience of a multicenter external quality assessment of molecular 16S rRNA gene detection in bone and joint infections.

    PubMed

    Plouzeau, Chloé; Bémer, Pascale; Valentin, Anne Sophie; Héry-Arnaud, Geneviève; Tandé, Didier; Jolivet-Gougeon, Anne; Vincent, Pascal; Kempf, Marie; Lemarié, Carole; Guinard, Jérôme; Bret, Laurent; Cognée, Anne Sophie; Gibaud, Sophie; Burucoa, Christophe; Corvec, Stéphane

    2015-02-01

    The objective of this study was to assess the performance of seven French laboratories for 16S rRNA gene detection by real-time PCR in the diagnosis of bone and joint infection (BJI) to validate a large multicenter study. External quality control (QC) was required owing to the differences in extraction procedures and the molecular equipment used in the different laboratories. Three proficiency sets were organized, including four bacterial DNA extracts and four bead mill-pretreated osteoarticular specimens. Extraction volumes, 16S rRNA gene primers, and sequencing interpretation rules were standardized. In order to assess each laboratory's ability to achieve the best results, scores were assigned, and each QC series was classified as optimal, acceptable, or to be improved. A total of 168 QCs were sent, and 160 responses were analyzed. The expected results were obtained for 93.8%, with the same proportion for extracts (75/80) and clinical specimens (75/80). For the specimens, there was no significant difference between manual and automated extraction. This QC demonstrated the ability to achieve good and homogeneous results using the same 16S rRNA gene PCR with different equipment and validates the possibility of high-quality multicenter studies using molecular diagnosis for BJI. PMID:25411177

  15. Phylogenetic Differences in Attached and Free-Living Bacterial Communities in a Temperate Coastal Lagoon during Summer, Revealed via High-Throughput 16S rRNA Gene Sequencing

    PubMed Central

    Mohit, Vani; Archambault, Philippe; Toupoint, Nicolas

    2014-01-01

    Most of what is known about coastal free-living and attached bacterial diversity is based on open coasts, with high particulate and nutrient riverine supply, terrestrial runoffs, and anthropogenic activities. The Magdalen Islands in the Gulf of St. Lawrence (Canada) are dominated by shallow lagoons with small, relatively pristine catchments and no freshwater input apart from rain. Such conditions provided an opportunity to investigate coastal free-living and attached marine bacterial diversity in the absence of confounding effects of steep freshwater gradients. We found significant differences between the two communities and marked temporal patterns in both. Taxonomic richness and diversity were greater in the attached than in the free-living community, increasing over summer, especially within the least abundant bacterial phyla. The highest number of reads fell within the SAR 11 clade (Pelagibacter, Alphaproteobacteria), which dominated free-living communities. The attached communities had deeper phylum-level diversity than the free-living fraction. Distance-based redundancy analysis indicated that the particulate organic matter (POM) concentration was the main variable separating early and late summer samples with salinity and temperature changes also significantly correlated to bacterial community structure. Our approach using high-throughput sequencing detected differences in free-living versus attached bacteria in the absence of riverine input, in keeping with the concept that marine attached communities are distinct from cooccurring free-living taxa. This diversity likely reflects the diverse microhabitats of available particles, implying that the total bacterial diversity in coastal systems is linked to particle supply and variability, with implications for understanding microbial biodiversity in marine systems. PMID:24463966

  16. Illumina Amplicon Sequencing of 16S rRNA Tag Reveals Bacterial Community Development in the Rhizosphere of Apple Nurseries at a Replant Disease Site and a New Planting Site

    PubMed Central

    Sun, Jian; Zhang, Qiang; Zhou, Jia; Wei, Qinping

    2014-01-01

    We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant) and a new planting site (NewPlant) in Beijing. Dwarfing apple nurseries of ‘Fuji’/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil) and from the new planting site (NewSoil) was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant). More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria). The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition. PMID:25360786

  17. Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes

    PubMed Central

    Martín-Rodríguez, Alberto J.; Reyes, Fernando; Martín, Jesús; Pérez-Yépez, Juan; León-Barrios, Milagros; Couttolenc, Alan; Espinoza, César; Trigos, Ángel; Martín, Víctor S.; Norte, Manuel; Fernández, José J.

    2014-01-01

    In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi. PMID:25415350

  18. Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes.

    PubMed

    Martín-Rodríguez, Alberto J; Reyes, Fernando; Martín, Jesús; Pérez-Yépez, Juan; León-Barrios, Milagros; Couttolenc, Alan; Espinoza, César; Trigos, Angel; Martín, Víctor S; Norte, Manuel; Fernández, José J

    2014-11-19

    In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL-1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.

  19. Reverse transcription and polymerase chain reaction amplification of rRNA for detection of Helicobacter species.

    PubMed

    Engstrand, L; Nguyen, A M; Graham, D Y; el-Zaatari, F A

    1992-09-01

    Sequence data on Helicobacter pylori 16S rRNA were used to select two 22-base oligonucleotide primers for use in a polymerase chain reaction (PCR) for detection of H. pylori. H. pylori cells were treated with lysis buffer, boiled, and chloroform extracted. Reverse transcription of rRNA was followed by PCR amplification (RT-PCR) of the synthesized cDNA and 16S rRNA gene. The amplified PCR products were analyzed by agarose gel electrophoresis and Southern blotting. Using ethidium bromide-stained agarose gels, we were able to detect the expected 500-bp DNA fragment from as few as two H. pylori organisms per reaction. The specificity of the RT-PCR assay was tested with 27 clinical isolates and related reference strains; although the number of bacterial cells used per reaction was 10(5)-fold greater than the number of H. pylori organisms used, amplification was detected only with bacteria in the same genus, H. cinaedi and H. mustelae. Ten H. pylori organisms per biopsy specimen were detected on agarose gels when organisms were added to samples prepared from a processed colon biopsy sample. RT-PCR results were consistent with urea breath test and culture results in 14 of 15 gastric biopsy specimens; the specificity was 100%. RT-PCR of rRNA from H. pylori increased the sensitivity of pathogen detection at least 25- to 50-fold compared with that of previous PCR assays. This low level of detection by RT-PCR assay may prove to be well suited for verifying eradication following therapy. PMID:1383268

  20. Estimating Bacterial Diversity for Ecological Studies: Methods, Metrics, and Assumptions

    PubMed Central

    Birtel, Julia; Walser, Jean-Claude; Pichon, Samuel; Bürgmann, Helmut; Matthews, Blake

    2015-01-01

    Methods to estimate microbial diversity have developed rapidly in an effort to understand the distribution and diversity of microorganisms in natural environments. For bacterial communities, the 16S rRNA gene is the phylogenetic marker gene of choice, but most studies select only a specific region of the 16S rRNA to estimate bacterial diversity. Whereas biases derived from from DNA extraction, primer choice and PCR amplification are well documented, we here address how the choice of variable region can influence a wide range of standard ecological metrics, such as species richness, phylogenetic diversity, β-diversity and rank-abundance distributions. We have used Illumina paired-end sequencing to estimate the bacterial diversity of 20 natural lakes across Switzerland derived from three trimmed variable 16S rRNA regions (V3, V4, V5). Species richness, phylogenetic diversity, community composition, β-diversity, and rank-abundance distributions differed significantly between 16S rRNA regions. Overall, patterns of diversity quantified by the V3 and V5 regions were more similar to one another than those assessed by the V4 region. Similar results were obtained when analyzing the datasets with different sequence similarity thresholds used during sequences clustering and when the same analysis was used on a reference dataset of sequences from the Greengenes database. In addition we also measured species richness from the same lake samples using ARISA Fingerprinting, but did not find a strong relationship between species richness estimated by Illumina and ARISA. We conclude that the selection of 16S rRNA region significantly influences the estimation of bacterial diversity and species distributions and that caution is warranted when comparing data from different variable regions as well as when using different sequencing techniques. PMID:25915756

  1. Secondary Metabolites Control the Associated Bacterial Communities of Saprophytic Basidiomycotina Fungi.

    PubMed

    de Carvalho, Maira Peres; Türck, Patrick; Abraham, Wolf-Rainer

    2015-01-01

    Fungi grow under humid conditions and are, therefore, prone to biofilm infections. A 16S rRNA fingerprint analysis was performed on 49 sporocarps of Basidiomycotina in order to determine whether they are able to control these biofilms. Ninety-five bacterial phylotypes, comprising 4 phyla and 10 families, were identified. While ectomycorrhizal fungi harbored the highest bacterial diversity, saprophytic fungi showed little or no association with bacteria. Seven fungal species were screened for antimicrobial and antibiofilm activities. Biofilm formation and bacterial growth was inhibited by extracts obtained from saprophytic fungi, which confirmed the hypothesis that many fungi modulate biofilm colonization on their sporocarps. PMID:25904019

  2. Secondary Metabolites Control the Associated Bacterial Communities of Saprophytic Basidiomycotina Fungi

    PubMed Central

    de Carvalho, Maira Peres; Türck, Patrick; Abraham, Wolf-Rainer

    2015-01-01

    Fungi grow under humid conditions and are, therefore, prone to biofilm infections. A 16S rRNA fingerprint analysis was performed on 49 sporocarps of Basidiomycotina in order to determine whether they are able to control these biofilms. Ninety-five bacterial phylotypes, comprising 4 phyla and 10 families, were identified. While ectomycorrhizal fungi harbored the highest bacterial diversity, saprophytic fungi showed little or no association with bacteria. Seven fungal species were screened for antimicrobial and antibiofilm activities. Biofilm formation and bacterial growth was inhibited by extracts obtained from saprophytic fungi, which confirmed the hypothesis that many fungi modulate biofilm colonization on their sporocarps. PMID:25904019

  3. A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material.

    PubMed

    Millar, B C; Jiru, X; Moore, J E; Earle, J A

    2000-10-01

    This study investigated the various commercially available kits and 'in-house' methods to extract DNA from Gram-negative and Gram-positive bacteria, yeast and fungal agents in commonly employed blood culture material. The main methods investigated were as follows; Qiagen QIAmp Blood kit, Roche high PCR template preparation kit, Puregene DNA extraction kit, boiling, glass beads/sonication and wash/alkali/heat lysis. The results indicated that a simple wash/alkali/heat lysis method was the most sensitive, reproducible, simple and cost-effective extraction method. This was the only method which removed any PCR inhibitors and inherent DNA which existed in virgin BacT/Alert aerobic, anaerobic and paediatric blood culture material. Contaminating microbial DNA from Lactococcus lactis or Bacillus coagulans was identified in all batches of BacT/Alert FAN aerobic blood culture material examined.

  4. Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen.

    PubMed

    Farag, Mohamed A; Al-Mahdy, Dalia A; Salah El Dine, Riham; Fahmy, Sherifa; Yassin, Aymen; Porzel, Andrea; Brandt, Wolfgang

    2015-06-01

    Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc-zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity-guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5-dihydroxy-4-methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5-9 mg/ml), with 3,5-dihydroxy-4-methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure-activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids.

  5. Structure-Activity Relationships of Antimicrobial Gallic Acid Derivatives from Pomegranate and Acacia Fruit Extracts against Potato Bacterial Wilt Pathogen.

    PubMed

    Farag, Mohamed A; Al-Mahdy, Dalia A; Salah El Dine, Riham; Fahmy, Sherifa; Yassin, Aymen; Porzel, Andrea; Brandt, Wolfgang

    2015-06-01

    Bacterial wilts of potato, tomato, pepper, and or eggplant caused by Ralstonia solanacearum are among the most serious plant diseases worldwide. In this study, the issue of developing bactericidal agents from natural sources against R. solanacearum derived from plant extracts was addressed. Extracts prepared from 25 plant species with antiseptic relevance in Egyptian folk medicine were screened for their antimicrobial properties against the potato pathogen R. solancearum by using the disc-zone inhibition assay and microtitre plate dilution method. Plants exhibiting notable antimicrobial activities against the tested pathogen include extracts from Acacia arabica and Punica granatum. Bioactivity-guided fractionation of A. arabica and P. granatum resulted in the isolation of bioactive compounds 3,5-dihydroxy-4-methoxybenzoic acid and gallic acid, in addition to epicatechin. All isolates displayed significant antimicrobial activities against R. solanacearum (MIC values 0.5-9 mg/ml), with 3,5-dihydroxy-4-methoxybenzoic acid being the most effective one with a MIC value of 0.47 mg/ml. We further performed a structure-activity relationship (SAR) study for the inhibition of R. solanacearum growth by ten natural, structurally related benzoic acids. PMID:26080741

  6. Effect of solvent and extraction methods on the bacterial mutagenicity of sidestream cigarette smoke

    SciTech Connect

    Morin, R.S.; Tulis, J.J.; Claxton, L.D.

    1987-01-01

    The mutagenic activity of sidestream cigarette-smoke particles was estimated by testing sidestream cigarette-smoke particles that had been collected under controlled burning conditions in the laboratory. Two different extraction methods (Soxhlet and ultrasonic agitation) and 3 different solvents (dichloromethane, methanol, and acetone) were compared for their efficiencies in the extraction of compounds from sidestream cigarette-smoke particles that are mutagenic in the Ames test. The mutagenic activity of the sidestream smoke particles was estimated to be 15,000-20,000 revertants per cigarette in TA98 with metabolic activation and 12,000-17,000 revertants per cigarette in TA100 without metabolic activation.

  7. Illumina sequencing of the V4 hypervariable region 16S rRNA gene reveals extensive changes in bacterial communities in the cecum following carbohydrate oral infusion and development of early-stage acute laminitis in the horse.

    PubMed

    Moreau, Michael M; Eades, Susan C; Reinemeyer, Craig R; Fugaro, Michael N; Onishi, Janet C

    2014-01-31

    In the equine carbohydrate overload model of acute laminitis, disease progression is associated with changes in bacteria found in the cecum. To date, research has focused on changes in specific Gram-positive bacteria in this portion of the intestinal tract. Metagenomic methods are now available making it possible to interrogate microbial communities using animal protocols that sufficiently power a study. In this study, the microbiota in cecal fluid collected from control, non-laminitic horses (n=8) and from horses with early-stage acute laminitis induced with either oligofructan (n=6) or cornstarch (n=6) were profiled. The microbiota were identified based on sequencing the V4 hypervariable region of the 16S rRNA gene. The results of the study show that the relative abundance of Lactobacillus sp. and Streptococcus sp. increased significantly (p<0.05) following OF and CS infusion. Other significant changes included an increase (p<0.05) in relative abundance of Veillonella sp. and Serratia sp., two potentially pathogenic, Gram-negative bacteria. Significant decreases in the relative abundance of presumptive normal flora were detected as well. Although changes in cecal microbiota described in this communication are from a pilot study, it is hypothesized that an overgrowth of pathogenic Gram-negative bacteria develops and contributes to enterocolitis, pyrexia and lameness in the carbohydrate overload model of acute laminitis. PMID:24355533

  8. Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar.

    PubMed

    Jolley, K A; Maiden, M C

    2013-01-01

    Whole genome sequence (WGS) data are increasingly used to characterise bacterial pathogens. These data provide detailed information on the genotypes and likely phenotypes of aetiological agents, enabling the relationships of samples from potential disease outbreaks to be established precisely. However, the generation of increasing quantities of sequence data does not, in itself, resolve the problems that many microbiological typing methods have addressed over the last 100 years or so; indeed, providing large volumes of unstructured data can confuse rather than resolve these issues. Here we review the nascent field of storage of WGS data for clinical application and show how curated sequence-based typing schemes on websites have generated an infrastructure that can exploit WGS for bacterial typing efficiently. We review the tools that have been implemented within the PubMLST website to extract clinically useful, strain-characterisation information that can be provided to physicians and public health professionals in a timely, concise and understandable way. These data can be used to inform medical decisions such as how to treat a patient, whether to instigate public health action, and what action might be appropriate. The information is compatible both with previous sequence-based typing data and also with data obtained in the absence of WGS, providing a flexible infrastructure for WGS-based clinical microbiology. PMID:23369391

  9. Detection and identification of Legionella species in hospital water supplies through Polymerase Chain Reaction (16S rRNA)

    PubMed Central

    2014-01-01

    Legionella spp. are important waterborne pathogens that are normally transmitted through aerosols. The present work was conducted to investigate the presence of Legionella spp. and its common species in hospital water supplies. Considering the limitations of culture method, polymerase chain reaction (PCR) assays were developed to detect the gene 16S rRNA irrespective of the bacterial serotype. Four well-established DNA extraction protocols (freeze & thaw and phenol-chloroform as two manual protocols and two commercial kits) were tested and evaluated to release DNA from bacterial cells. A total of 45 samples were collected from seven distinct hospitals’ sites during a period of 10 months. The PCR assay was used to amplify a 654-bp fragment of the 16S rRNA gene. Legionella were detected in 13 samples (28.9%) by all of the methods applied for DNA extraction. Significant differences were noted in the yield of extracted nucleic acids. Legionella were not detected in any of the samples when DNA extraction by freeze & thaw was used. Excluding this method and comparing manual protocol with commercial kits, Kappa coefficient was calculated as 0.619 with p < 0.05. Although no meaningful differences were found between the kits, DNA extraction with Bioneer kit exhibited a higher sensitivity than classical Qiagen. Showerheads and cold-water taps were the most and least contaminated sources with 55.5 and 9 percent positive samples, respectively. Moreover two positive samples were identified for species by DNA sequencing and submitted to the Gene Bank database with accession Nos. FJ480932 and FJ480933. The results obtained showed that despite the advantages of molecular assays in Legionella tracing in environmental sources, the use of optimised DNA extraction methods is critical. PMID:24860661

  10. Detection and identification of Legionella species in hospital water supplies through Polymerase Chain Reaction (16S rRNA).

    PubMed

    Rafiee, Mohammad; Jahangiri-Rad, Mahsa; Hajjaran, Homa; Mesdaghinia, Alireza; Hajaghazadeh, Mohammad

    2014-01-01

    Legionella spp. are important waterborne pathogens that are normally transmitted through aerosols. The present work was conducted to investigate the presence of Legionella spp. and its common species in hospital water supplies. Considering the limitations of culture method, polymerase chain reaction (PCR) assays were developed to detect the gene 16S rRNA irrespective of the bacterial serotype. Four well-established DNA extraction protocols (freeze & thaw and phenol-chloroform as two manual protocols and two commercial kits) were tested and evaluated to release DNA from bacterial cells. A total of 45 samples were collected from seven distinct hospitals' sites during a period of 10 months. The PCR assay was used to amplify a 654-bp fragment of the 16S rRNA gene. Legionella were detected in 13 samples (28.9%) by all of the methods applied for DNA extraction. Significant differences were noted in the yield of extracted nucleic acids. Legionella were not detected in any of the samples when DNA extraction by freeze & thaw was used. Excluding this method and comparing manual protocol with commercial kits, Kappa coefficient was calculated as 0.619 with p < 0.05. Although no meaningful differences were found between the kits, DNA extraction with Bioneer kit exhibited a higher sensitivity than classical Qiagen. Showerheads and cold-water taps were the most and least contaminated sources with 55.5 and 9 percent positive samples, respectively. Moreover two positive samples were identified for species by DNA sequencing and submitted to the Gene Bank database with accession Nos. FJ480932 and FJ480933. The results obtained showed that despite the advantages of molecular assays in Legionella tracing in environmental sources, the use of optimised DNA extraction methods is critical. PMID:24860661

  11. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens.

    PubMed

    Bakkiyaraj, Dhamodharan; Nandhini, Janarthanam Rathna; Malathy, Balakumar; Pandian, Shunmugiah Karutha

    2013-09-01

    Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75 μg ml(-1)) and biofilm formation at lower concentrations (<40 μg ml(-1)) which warrants further investigation of the potential of ellagic acid or peel powders of pomegranate for the treatment of human ailments.

  12. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens.

    PubMed

    Bakkiyaraj, Dhamodharan; Nandhini, Janarthanam Rathna; Malathy, Balakumar; Pandian, Shunmugiah Karutha

    2013-09-01

    Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75 μg ml(-1)) and biofilm formation at lower concentrations (<40 μg ml(-1)) which warrants further investigation of the potential of ellagic acid or peel powders of pomegranate for the treatment of human ailments. PMID:23906229

  13. An optimized method for the extraction of bacterial mRNA from plant roots infected with Escherichia coli O157:H7

    PubMed Central

    Holmes, Ashleigh; Birse, Louise; Jackson, Robert W.; Holden, Nicola J.

    2014-01-01

    Analysis of microbial gene expression during host colonization provides valuable information on the nature of interaction, beneficial or pathogenic, and the adaptive processes involved. Isolation of bacterial mRNA for in planta analysis can be challenging where host nucleic acid may dominate the preparation, or inhibitory compounds affect downstream analysis, e.g., quantitative reverse transcriptase PCR (qPCR), microarray, or RNA-seq. The goal of this work was to optimize the isolation of bacterial mRNA of food-borne pathogens from living plants. Reported methods for recovery of phytopathogen-infected plant material, using hot phenol extraction and high concentration of bacterial inoculation or large amounts of infected tissues, were found to be inappropriate for plant roots inoculated with Escherichia coli O157:H7. The bacterial RNA yields were too low and increased plant material resulted in a dominance of plant RNA in the sample. To improve the yield of bacterial RNA and reduce the number of plants required, an optimized method was developed which combines bead beating with directed bacterial lysis using SDS and lysozyme. Inhibitory plant compounds, such as phenolics and polysaccharides, were counteracted with the addition of high-molecular-weight polyethylene glycol and hexadecyltrimethyl ammonium bromide. The new method increased the total yield of bacterial mRNA substantially and allowed assessment of gene expression by qPCR. This method can be applied to other bacterial species associated with plant roots, and also in the wider context of food safety. PMID:25018749

  14. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media

    PubMed Central

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-01-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001–1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media. PMID:25997013

  15. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media.

    PubMed

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-07-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001-1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media.

  16. NMR studies of a bacterial cell culture medium (LB broth): cyclic nucleotides in yeast extracts.

    PubMed

    Rayner, M H; Sadler, P J; Scawen, M D

    1990-03-01

    The composition of LB broth (tryptone, yeast extract and NaCl) was investigated by 1H,31P-NMR spectroscopy, FPLC and gel electrophoresis. An unexpected finding was the high level of 2'3'-cyclic nucleotides, detected by characteristic 31P-NMR resonances in the region 20-21 ppm, originating from the yeast component. 31P-NMR resonances for cyclic nucleotides were observed during the autolysis of Saccharomyces cerevisiae cells, and in model reactions of RNase with RNA.

  17. In vitro screening of mucus and solvent extracts of Eisenia foetida against human bacterial and fungal pathogens.

    PubMed

    Andleeb, Saiqa; Ejaz, Mubashir; Awan, Uzma Azeem; Ali, Shaukat; Kiyani, Ayesha; Shafique, Irsa; Zafar, Atiya

    2016-05-01

    Earthworms are macro invertebrate and have been widely used as therapeutic drugs for thousands of years. In the current research, experiments viz., the antibacterial, antifungal and antioxidant activity of mucus and solvent extracts of Eisenia foetida were conducted to investigate for the first time in Pakistan against human infectious pathogens. Antimicrobial activity of E. foetida against human pathogens underwent investigation through an agar disc diffusion method while an ABTS(•+) free radical scavenging method assessed the antioxidant activity. The percentage of bacterial and fungal growth was analyzed statistically with One-Way Analysis of Variance (ANOVA). Results showed that the mucus IV of E. foetida produced a strong potent antibacterial and antifungal activity. Pseudomonas aeruginosa exhibited the highest inhibition zone (33.67±1.53 mm), followed by Klebsiella pneumonia (30.33±1.53mm), Penicillium notatum (30±0.051), Escherichia coli (29±1 mm), Candida albicans (28.33±0.54 mm), Staphylococcus aureus (27±1mm), Serratia marcescens (25.33±0.58 mm), Aspergillus flavus (25.33±0.58 mm), Staphylococcus epidermidis (24.33±0.58 mm), Streptococcus pyogenes (21.67±1.53 mm), and Aspergillus niger (20.67±0.53 mm). Mucus IV of E. foetida also showed the highest antioxidant activity (99%). The results clearly indicate that the mucus and solvent extracts contain effective antimicrobial properties and bioactive compounds to inhibit the growth of infectious pathogens. We conclude that mucus extracts of earthworm have significant level of antimicrobial and antioxidant activities and in future could be potentially used against various infectious pathogens. PMID:27166541

  18. Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against the mosquito vectors.

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Prasanna Kumar, Kanagarajan; Panneerselvam, Chellasamy; Mahesh Kumar, Palanisamy; Amerasan, Duraisamy; Subramaniam, Jayapal; Vincent, Savariar

    2012-08-01

    Calotropis gigantea leaf extract and Bacillus thuringiensis were tested first to fourth-instar larvae and pupae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. Calotropis gigantea leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder 500 g of the leaf was extracted with 1.5 L of organic solvents of methanol for 8 h using a Soxhlet apparatus and filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; no mortality was observed in the control group. For Calotropis gigantea, the median lethal concentration values (LC(50)) observed for the larvicidal and pupicidal activities against mosquito vector species Anopheles stephensi I to IV larval instars and pupae were 73.77, 89.64, 121.69, 155.49, and 213.79 ppm; Aedes aegypti values were 92.27, 106.60, 136.48, 164.01, and 202.56 ppm; and Culex quinquefasciatus values were 104.66, 127.71, 173.75, 251.65, and 314.70 ppm, respectively. For B. thuringiensis, the LC(50) values of I to IV larval instars and pupae of Anopheles stephensi were 37.24, 45.41, 57.82, 80.09, and 98.34 ppm; Aedes aegypti values were 42.38, 51.90, 71.02, 96.17, and 121.59 ppm; and Culex quinquefasciatus values were 55.85, 68.07, 94.11, 113.35, and 133.87 ppm, respectively. The study proved that the methanol leaf extract of Calotropis gigantea and bacterial insecticide B. thuringiensis has mosquitocidal property and was evaluated as target species of mosquito vectors. This is an ideal ecofriendly approach for the control of vector control programs.

  19. Analysis of 23S rRNA genes in metagenomes - a case study from the Global Ocean Sampling Expedition.

    PubMed

    Yilmaz, Pelin; Kottmann, Renzo; Pruesse, Elmar; Quast, Christian; Glöckner, Frank Oliver

    2011-09-01

    As an evolutionary marker, 23S ribosomal RNA (rRNA) offers more diagnostic sequence stretches and greater sequence variation than 16S rRNA. However, 23S rRNA is still not as widely used. Based on 80 metagenome samples from the Global Ocean Sampling (GOS) Expedition, the usefulness and taxonomic resolution of 23S rRNA were compared to those of 16S rRNA. Since 23S rRNA is approximately twice as large as 16S rRNA, twice as many 23S rRNA gene fragments were retrieved from the GOS reads than 16S rRNA gene fragments, with 23S rRNA gene fragments being generally about 100bp longer. Datasets for 16S and 23S rRNA sequences revealed similar relative abundances for major marine bacterial and archaeal taxa. However, 16S rRNA sequences had a better taxonomic resolution due to their significantly larger reference database. Reevaluation of the specificity of previously published PCR amplification primers and group specific fluorescence in situ hybridization probes on this metagenomic set of non-amplified 23S rRNA sequences revealed that out of 16 primers investigated, only two had more than 90% target group coverage. Evaluations of two probes, BET42a and GAM42a, were in accordance with previous evaluations, with a discrepancy in the target group coverage of the GAM42a probe when evaluated against the GOS metagenomic dataset.

  20. Protective Effect of Polygonum orientale L. Extracts against Clavibater michiganense subsp. sepedonicum, the Causal Agent of Bacterial Ring Rot of Potato

    PubMed Central

    Cai, Jin; Xie, Shulian; Feng, Jia; Wang, Feipeng; Xu, Qiufeng

    2013-01-01

    The Polygonum orientale L. extracts were investigated for antibacterial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causal agent of a serious disease called bacterial ring rot of potato. The results showed that the leaf extracts of P. orientale had significantly (p<0.05) greater antibacterial activity against C. michiganense subsp. sepedonicum than root, stem, flower extracts in vitro. According to the results of single factor experiments and L273(13) orthogonal experiments, optimum extraction conditions were A1B3C1, extraction time 6 h, temperature 80°C, solid to liquid ratio 1∶10 (g:mL). The highest (p<0.05) antibacterial activity was observed when pH was 5, excluding the effect of control. The extracts were stable under ultraviolet (UV). In vivo analysis revealed that 50 mg/mL of P. orientale leaf extracts was effective in controlling decay. Under field conditions, 50 mg/mL of P. orientale leaf extracts also improved growth parameters (whole plant length, shoot length, root length, plant fresh weight, shoot fresh weight, root fresh weight, dry weight, and number of leaves), in the 2010 and 2011 two growing seasons. Further solvent partition assays showed that the most active compounds were in the petroleum ether fractionation. Transmission electron microscopy (TEM) showed drastic ultrastructural changes caused by petroleum ether fractionation, including bacterial deformation, electron-dense particles, formation of vacuoles and lack of cytoplasmic materials. These results indicated that P. orientale extracts have strong antibacterial activity against C. michiganense subsp. sepedonicum and a promising effect in control of bacterial ring rot of potato disease. PMID:23861908

  1. How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles

    PubMed Central

    Kaden, Rene; Krolla-Sidenstein, Peter

    2015-01-01

    A DNA extraction that comprises the DNA of all available taxa in an ecosystem is an essential step in population analysis, especially for next generation sequencing applications. Many nanoparticles as well as naturally occurring clay minerals contain charged surfaces or edges that capture negatively charged DNA molecules after cell lysis within DNA extraction. Depending on the methodology of DNA extraction, this phenomenon causes a shift in detection of microbial taxa in ecosystems and a possible misinterpretation of microbial interactions. With the aim to describe microbial interactions and the bio-geo-chemical reactions during a clay alteration experiment, several methods for the detection of a high number of microbial taxa were examined in this study. Altogether, 13 different methods of commercially available DNA extraction kits provided by seven companies as well as the classical phenol-chloroform DNA extraction were compared. The amount and the quality of nucleic acid extracts were determined and compared to the amplifiable amount of DNA. The 16S rRNA gene fragments of several taxa were separated using denaturing gradient gel electrophoresis (DGGE) to determine the number of different species and sequenced to get the information about what kind of species the microbial population consists of. A total number of 13 species was detected in the system. Up to nine taxa could be detected with commercially available DNA extraction kits while phenol-chloroform extraction lead to three detected species. In this paper, we describe how to combine several DNA extraction methods for the investigation of microbial community structures in clay. PMID:27682112

  2. How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles

    PubMed Central

    Kaden, Rene; Krolla-Sidenstein, Peter

    2015-01-01

    A DNA extraction that comprises the DNA of all available taxa in an ecosystem is an essential step in population analysis, especially for next generation sequencing applications. Many nanoparticles as well as naturally occurring clay minerals contain charged surfaces or edges that capture negatively charged DNA molecules after cell lysis within DNA extraction. Depending on the methodology of DNA extraction, this phenomenon causes a shift in detection of microbial taxa in ecosystems and a possible misinterpretation of microbial interactions. With the aim to describe microbial interactions and the bio-geo-chemical reactions during a clay alteration experiment, several methods for the detection of a high number of microbial taxa were examined in this study. Altogether, 13 different methods of commercially available DNA extraction kits provided by seven companies as well as the classical phenol-chloroform DNA extraction were compared. The amount and the quality of nucleic acid extracts were determined and compared to the amplifiable amount of DNA. The 16S rRNA gene fragments of several taxa were separated using denaturing gradient gel electrophoresis (DGGE) to determine the number of different species and sequenced to get the information about what kind of species the microbial population consists of. A total number of 13 species was detected in the system. Up to nine taxa could be detected with commercially available DNA extraction kits while phenol-chloroform extraction lead to three detected species. In this paper, we describe how to combine several DNA extraction methods for the investigation of microbial community structures in clay.

  3. Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste.

    PubMed

    Maciel, B M; Santos, A C F; Dias, J C T; Vidal, R O; Dias, R J C; Gross, E; Cascardo, J C M; Rezende, R P

    2009-03-31

    Landfarm soil is used to bioremediate oil wastes from petrochemical industries. We developed a simplified protocol for microbial DNA extraction of tropical landfarm soil using only direct lysis of macerated material. Two samples of tropical landfarm soil from a Brazilian refinery were analyzed by this protocol (one consisted of crude oil-contaminated soil; the other was continuously enriched for nine months with petroleum). The soil samples were lysed by maceration with liquid nitrogen, eliminating the need for detergents, organic solvents and enzymatic cell lysis. Then, the DNA from the lysed soil sample was extracted using phenol-chloroform-isoamyl alcohol or guanidium isothiocyanate, giving high DNA yields (more than 1 micro g DNA/g soil) from both soil types. This protocol compared favorably with an established method of DNA template preparation that included mechanical, chemical and enzymatic treatment for cell lysis. The efficiency of this extraction protocol was confirmed by polymerase chain reaction amplification of the 16S rRNA gene, denaturing gradient gel electrophoresis and cloning assays. Fifty-one different clones were obtained; their sequences were classified into at least seven different phyla of the Eubacteria group (Proteobacteria - alpha, gamma and delta, Chloroflexi, Actinobacteria, Acidobac teria, Planctomycetes, Bacteroidetes, and Firmicutes). Forty percent of the sequences could not be classified into these phyla, demonstrating the genetic diversity of this microbial community. Only eight isolates had sequences similar to known sequences of 16S rRNA of cultivable organisms or of known environmental isolates and therefore could be identified to the genus level. This method of DNA extraction is a useful tool for analysis of the bacteria responsible for petroleum degradation in contaminated environments.

  4. Protective potential of the methanol extract of Macrothelypteris oligophlebia rhizomes for chronic non-bacterial prostatitis in rats.

    PubMed

    Han, Pan; Lai, Yong Ji; Chen, Jing; Zhang, Xue Nong; Chen, Jing Lou; Yang, Xian; Xue, Ping Ping; Ruan, Jin Lan

    2016-07-01

    The protective potential of the methanol extract of Macrothelypteris oligophlebia rhizomes (MMO) for chronic non-bacterial prostatitis (CNP) in rats was investigated in the present study. Carrageenan-induced CNP in rats was established. Fifty rats were randomly divided into sham-operated (sham-ope) group, model group, positive control group (Cernilton at a dose of 148mg/kg body weight) and two MMO-treated groups (MMO at doses of 600mg/kg and 300 mg/kg body weight). The anti-prostatitis effect was evaluated by prostate index, the levels of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2), and histopathological examination. After 20 days of administration, MMO could significantly decrease prostate index and the levels of IL-10, TNF-α COX-2 and PGE2 in serum and could improve the prostate morphology in comparison with the model group. In summary, these results suggest that MMO possesses protective effects on prostate, which might be beneficial to further development for the treatment of CNP. PMID:27393434

  5. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.

    PubMed

    Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour S; Alkhedhairy, Abdulaziz A; Musarrat, Javed

    2016-06-15

    ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers. PMID:27031596

  6. Novel Approach to Quantitative Detection of Specific rRNA in a Microbial Community, Using Catalytic DNA

    PubMed Central

    Suenaga, Hikaru; Liu, Rui; Shiramasa, Yuko; Kanagawa, Takahiro

    2005-01-01

    We developed a novel method for the quantitative detection of the 16S rRNA of a specific bacterial species in the microbial community by using deoxyribozyme (DNAzyme), which possesses the catalytic function to cleave RNA in a sequence-specific manner. A mixture of heterogeneous 16S rRNA containing the target 16S rRNA was incubated with a species-specific DNAzyme. The cleaved target 16S rRNA was separated from the intact 16S rRNA by electrophoresis, and then their amounts were compared for the quantitative detection of target 16S rRNA. This method was used to determine the abundance of the 16S rRNA of a filamentous bacterium, Sphaerotilus natans, in activated sludge, which is a microbial mixture used in wastewater treatment systems. The result indicated that this DNAzyme-based approach would be applicable to actual microbial communities. PMID:16085888

  7. Application of Locked Nucleic Acid (LNA) Oligonucleotide–PCR Clamping Technique to Selectively PCR Amplify the SSU rRNA Genes of Bacteria in Investigating the Plant-Associated Community Structures

    PubMed Central

    Ikenaga, Makoto; Sakai, Masao

    2014-01-01

    The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide–PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3′ end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide–PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes. PMID:25030190

  8. Application of Locked Nucleic Acid (LNA) oligonucleotide-PCR clamping technique to selectively PCR amplify the SSU rRNA genes of bacteria in investigating the plant-associated community structures.

    PubMed

    Ikenaga, Makoto; Sakai, Masao

    2014-09-17

    The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide-PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3' end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide-PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes.

  9. Tools for Characterizing Bacterial Protein Synthesis Inhibitors

    PubMed Central

    Orelle, Cédric; Carlson, Skylar; Kaushal, Bindiya; Almutairi, Mashal M.; Liu, Haipeng; Ochabowicz, Anna; Quan, Selwyn; Pham, Van Cuong; Squires, Catherine L.; Murphy, Brian T.

    2013-01-01

    Many antibiotics inhibit the growth of sensitive bacteria by interfering with ribosome function. However, discovery of new protein synthesis inhibitors is curbed by the lack of facile techniques capable of readily identifying antibiotic target sites and modes of action. Furthermore, the frequent rediscovery of known antibiotic scaffolds, especially in natural product extracts, is time-consuming and expensive and diverts resources that could be used toward the isolation of novel lead molecules. In order to avoid these pitfalls and improve the process of dereplication of chemically complex extracts, we designed a two-pronged approach for the characterization of inhibitors of protein synthesis (ChIPS) that is suitable for the rapid identification of the site and mode of action on the bacterial ribosome. First, we engineered antibiotic-hypersensitive Escherichia coli strains that contain only one rRNA operon. These strains are used for the rapid isolation of resistance mutants in which rRNA mutations identify the site of the antibiotic action. Second, we show that patterns of drug-induced ribosome stalling on mRNA, monitored by primer extension, can be used to elucidate the mode of antibiotic action. These analyses can be performed within a few days and provide a rapid and efficient approach for identifying the site and mode of action of translation inhibitors targeting the bacterial ribosome. Both techniques were validated using a bacterial strain whose culture extract, composed of unknown metabolites, exhibited protein synthesis inhibitory activity; we were able to rapidly detect the presence of the antibiotic chloramphenicol. PMID:24041905

  10. Office space bacterial abundance and diversity in three metropolitan areas.

    PubMed

    Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009). PMID:22666400

  11. Office space bacterial abundance and diversity in three metropolitan areas.

    PubMed

    Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009).

  12. Extracts of brown seaweeds can attenuate the bacterial lipopolysaccharide-induced pro-inflammatory response in the porcine colon ex vivo.

    PubMed

    Bahar, B; O'Doherty, J V; Hayes, M; Sweeney, T

    2012-12-01

    Bioactive compound-rich brown seaweeds are demonstrated to have numerous health benefits including anti-microbial and immunomodulatory bioactivities in the pig intestine. In this study, the immunomodulating effects of extracts of brown seaweed (Ascophyllum nodosum and Fucus serratus) were evaluated on the porcine colon using a bacterial lipopolysaccharide (LPS) ex vivo model. Approximately 1.5 × 1.5 cm of pig colon (n = 6) was stripped of its overlying muscle layer and incubated in 1 mL Dulbecco's Modified Eagle Medium containing bacterial LPS (10 μg) and seaweed extracts (1 mg). Gene expression of interleukin-8 (IL-8) and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNFA) were measured using quantitative real time PCR. In contrast to the low level of expression of IL-8, IL-6, and TNFA genes in the colonic tissue at 0 h, LPS treatment increased (P < 0.05) the expression of IL-8, IL-6, and TNFA genes to 2.38 ± 0.86, 1.90 ± 0.66, and 1.90 ± 0.57 fold, respectively. This pro-inflammatory response induced by the LPS was suppressed by the extracts of Ascophyllum. Ascophyllum extract reduced (P < 0.05) the expression of IL-8, IL-6, and TNFA genes to 0.99 ± 0.53, 0.75 ± 0.33, and 1.01 ± 0.17 fold, and Fucus extract reduced (P < 0.05) the expression of the corresponding genes to 0.70 ± 0.32, 0.69 ± 0.38, and 1.15 ± 0.25 fold, respectively. It is concluded that the extracts of Ascophyllum and Fucus seaweeds have potential to suppress the pro-inflammatory response induced by the bacterial LPS in the pig colon. PMID:23365280

  13. Deleterious Effect of p-Cresol on Human Colonic Epithelial Cells Prevented by Proanthocyanidin-Containing Polyphenol Extracts from Fruits and Proanthocyanidin Bacterial Metabolites.

    PubMed

    Wong, Ximena; Carrasco-Pozo, Catalina; Escobar, Elizabeth; Navarrete, Paola; Blachier, Franςois; Andriamihaja, Mireille; Lan, Annaig; Tomé, Daniel; Cires, Marı́a José; Pastene, Edgar; Gotteland, Martin

    2016-05-11

    The protective effect of proanthocyanidin-containing polyphenol extracts from apples, avocados, cranberries, grapes, or proanthocyanidin microbial metabolites was evaluated in colonic epithelial cells exposed to p-cresol, a deleterious compound produced by the colonic microbiota from l-tyrosine. In HT29 Glc(-/+) cells, p-cresol significantly increased LDH leakage and decreased ATP contents, whereas in Caco-2 cell monolayers, it significantly decreased the transepithelial electrical resistance and increased the paracellular transport of FITC-dextran. The alterations induced by p-cresol in HT29 Glc(-/+) cells were prevented by the extracts from cranberries and avocados, whereas they became worse by extracts from apples and grapes. The proanthocyanidin bacterial metabolites decreased LDH leakage, ameliorating cell viability without improving intracellular ATP. All of the polyphenol extracts and proanthocyanidin bacterial metabolites prevented the p-cresol-induced alterations of barrier function. These results suggest that proanthocyanidin-containing polyphenol extracts and proanthocyanidin metabolites likely contribute to the protection of the colonic mucosa against the deleterious effects of p-cresol. PMID:27039931

  14. Bacterial clearance, heterophil function, and hematological parameters of transport-stressed turkey poults supplemented with dietary yeast extract.

    PubMed

    Huff, G R; Huff, W E; Farnell, M B; Rath, N C; Solis de Los Santos, F; Donoghue, A M

    2010-03-01

    Yeast extracts (YE) contain biological response modifiers that may be useful as alternatives to antibiotics for controlling pathogens in poultry production and mitigating the deleterious effects of production stressors. The objective of the present study was to determine the ability of a commercial dietary YE (Alphamune) to modulate the immune response in male turkey poults challenged with Escherichia coli and subjected to transport stress. Alphamune was added to turkey poult diets at 0, 500, or 1,000 g/ton. Poults were challenged by air sac injection with 60 cfu of E. coli at 1 wk of age. At 3 wk of age, these challenged birds were subjected to transport stress and birds were bled and necropsied the following morning. Blood cell numbers and percentages, hematological parameters, and clinical chemistry values were determined. Oxidative burst activity of isolated heterophils was measured using stimulation with phorbol myristate acetate and a 2',7'-dichlorofluorescein diacetate assay. Data were analyzed using GLM and least squares means procedures of the SAS program. The numbers and percentages of heterophils in peripheral blood were increased and their oxidative burst activity was stimulated by YE. The stress challenge dramatically increased oxidative burst and this increase was significantly modulated by YE treatment. Serum levels of calcium, phosphorus, and triglycerides were decreased and uric acid levels, erythrocyte numbers, hemoglobin, and hematocrit were increased by YE supplementation. Bacteria were isolated from the air sac and liver of a lower percentage of birds provided with YE. These results suggest that dietary YE has potential as a nonantibiotic alternative for decreasing bacterial pathogens in turkey production. PMID:20181859

  15. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts.

    PubMed

    Lueders, Tillmann; Friedrich, Michael W

    2003-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis is a widely used method for profiling microbial community structure in different habitats by targeting small-subunit (SSU) rRNA and also functional marker genes. It is not known, however, whether relative gene frequencies of individual community members are adequately represented in post-PCR amplicon frequencies as shown by T-RFLP. In this study, precisely defined artificial template mixtures containing genomic DNA of four different methanogens in various ratios were prepared for subsequent T-RFLP analysis. PCR amplicons were generated from defined mixtures targeting not only the SSU rRNA but also the methyl-coenzyme M reductase (mcrA/mrtA) genes of methanogens. Relative amplicon frequencies of microorganisms were quantified by comparing fluorescence intensities of characteristic terminal restriction fragments. SSU ribosomal DNA (rDNA) template ratios in defined template mixtures of the four-membered community were recovered absolutely by PCR-T-RFLP analysis, which demonstrates that the T-RFLP analysis evaluated can give a quantitative view of the template pool. SSU rDNA-targeted T-RFLP analysis of a natural community was found to be highly reproducible, independent of PCR annealing temperature, and unaffected by increasing PCR cycle numbers. Ratios of mcrA-targeted T-RFLP analysis were biased, most likely by PCR selection due to the degeneracy of the primers used. Consequently, for microbial community analyses, each primer system used should be evaluated carefully for possible PCR bias. In fact, such bias can be detected by using T-RFLP analysis as a tool for the precise quantification of the PCR product pool.

  16. The yield and quality of cellular and bacterial DNA extracts from human oral rinse samples are variably affected by the cell lysis methodology.

    PubMed

    Sohrabi, Mohsen; Nair, Raj G; Samaranayake, Lakshman P; Zhang, Li; Zulfiker, Abu Hasanat Md; Ahmetagic, Adnan; Good, David; Wei, Ming Q

    2016-03-01

    Recent culture-independent studies have enabled detailed mapping of human microbiome that has not been hitherto achievable by culture-based methods. DNA extraction is a key element of bacterial culture-independent studies that critically impacts on the outcome of the detected microbial profile. Despite the variations in DNA extraction methods described in the literature, no standardized technique is available for the purpose of microbiome profiling. Hence, standardization of DNA extraction methods is urgently needed to yield comparable data from different studies. We examined the effect of eight different cell lysis protocols on the yield and quality of the extracted DNA from oral rinse samples. These samples were exposed to cell lysis techniques based on enzymatic, mechanical, and a combination of enzymatic-mechanical methods. The outcome measures evaluated were total bacterial population, Firmicutes levels and human DNA contamination (in terms of surrogate GAPDH levels). We noted that all three parameters were significantly affected by the method of cell lysis employed. Although the highest yield of gDNA was obtained using lysozyme-achromopeptidase method, the lysozyme-zirconium beads method yielded the peak quantity of total bacterial DNA and Firmicutes with a lower degree of GAPDH contamination compared with the other methods. Taken together our data clearly points to an urgent need for a consensus, standardized DNA extraction technique to evaluate the oral microbiome using oral rinse samples. Further, if Firmicutes levels are the focus of investigation in oral rinse microbiome analyses then the lysozyme-zirconium bead method would be the method of choice in preference to others. PMID:26812577

  17. Evaluation of extracts of Anthocleista djalonensis, Nauclea latifolia and Uvaria afzalii for activity against bacterial isolates from cases of non-gonococcal urethritis.

    PubMed

    Okoli, A S; Iroegbu, C U

    2004-05-01

    Whole root preparations of three Nigerian medicinal plants, Anthocleista djalonensis, Nauclea latifolia and Uvaria afzalii, used traditionally in combination treatment of sexually transmitted diseases (STD), were extracted by maceration in ethanol, cold and hot water, respectively. The extracts were tested, by agar diffusion and macrobroth dilution methods, for activity against five strains of Staphylococcus aureus and two of Escherichia coli isolated from cases of STD and or urethritis. Four typed bacterial strains, S aureus ATCC 12600, Bacillus subtilis ATCC 6051, Pseudomonas aeruginosa ATCC 10145 and Escherichia coli ATCC 117755 were included as reference organisms. Ethanolic and cold-water extracts of Anthocliesta djalonensis exhibited activity against 9 and 7, respectively, of the 11 test organisms. They were bacteriostatic at minimum inhibitory concentrations (MIC) to the Gram positive strains but bactericidal to the Gram negative strains. Similar crude extracts of Uvaria afzalii showed bactericidal activity restricted to Gram positive (Staphylococcus aureus and Bacillus subtilis) strains. Nauclea latifolia extracts were bacteriostatic to both Gram positive and Gram negative strains. No test strain was susceptible to the hot water extracts of Nauclea latifolia but five and seven strains, were respectively susceptible to similar extracts of Anthocliesta djalonensis and Uvaria afzalii. Of the seven column chromatographic fractions of the ethanolic extract of Uvaria afzalii, F(ua-1) exhibited a bactericidal activity restricted to the Gram negative Escherichia coli strains, which were not susceptible to the crude extract. Fractions, F(ua-2), F(ua-3) and F(ua-4), like the crude extract, were bactericidal against the Gram positive strains only. Thus, partial purification seems to broaden the spectrum of activity and generally improve the potency of Uvaria afzalii. These results apparently justify the use of the three plants in treatment of STD. PMID:15099860

  18. A yeast transcription system for the 5S rRNA gene.

    PubMed Central

    van Keulen, H; Thomas, D Y

    1982-01-01

    A cell-free extract of yeast nuclei that can specifically transcribe cloned yeast 5S rRNA genes has been developed. Optima for transcription of 5S rDNA were determined and conditions of extract preparation leading to reproducible activities and specificities established. The major in vitro product has the same size and oligonucleotide composition as in vivo 5S rRNA. The in vitro transcription extract does not transcribe yeast tRNA genes. The extract does increase the transcription of tRNA genes packaged in chromatin. Images PMID:7145700

  19. A mucoadhesive polymer extracted from tamarind seed improves the intraocular penetration and efficacy of rufloxacin in topical treatment of experimental bacterial keratitis.

    PubMed

    Ghelardi, Emilia; Tavanti, Arianna; Davini, Paola; Celandroni, Francesco; Salvetti, Sara; Parisio, Eva; Boldrini, Enrico; Senesi, Sonia; Campa, Mario

    2004-09-01

    Bacterial keratitis is a serious infectious ocular disease requiring prompt treatment to prevent frequent and severe visual disabilities. Standard treatment of bacterial keratitis includes topical administration of concentrated antibiotic solutions repeated at frequent intervals in order to reach sufficiently high drug levels in the corneal tissue to inhibit bacterial growth. However, this regimen has been associated with toxicity to the corneal epithelium and requires patient hospitalization. In the present study, a mucoadhesive polymer extracted from tamarind seeds was used for ocular delivery of 0.3% rufloxacin in the treatment of experimental Pseudomonas aeruginosa and Staphylococcus aureus keratitis in rabbits. The polysaccharide significantly increased the intra-aqueous penetration of rufloxacin in both infected and uninfected eyes. Rufloxacin delivered by the polysaccharide reduced P. aeruginosa and S. aureus in the cornea at a higher rate than that obtained by rufloxacin alone. In particular, use of the polysaccharide allowed a substantial reduction of S. aureus in the cornea to be achieved even when the time interval between drug administrations was extended. These results suggest that the tamarind seed polysaccharide prolongs the precorneal residence times of antibiotics and enhances drug accumulation in the cornea, probably by reducing the washout of topically administered drugs. The tamarind seed polysaccharide appears to be a promising candidate as a vehicle for the topical treatment of bacterial keratitis.

  20. Effects of adding a concentrated pomegranate-residue extract to the ration of lactating cows on in vivo digestibility and profile of rumen bacterial population.

    PubMed

    Jami, E; Shabtay, A; Nikbachat, M; Yosef, E; Miron, J; Mizrahi, I

    2012-10-01

    This study characterizes the effects of concentrated pomegranate-peel extract (CPE) addition to the TMR at levels of 1, 2, or 4% on voluntary intake, in vivo digestibility, milk yield and composition, and profile of rumen bacterial and archaeal populations in lactating Holstein cows. Supplementation of CPE significantly affected the abundance of methanogenic archaea and specific ruminal bacterial species related to cellulolytic activities and soluble sugar and lactic acid fermentation, as revealed by real-time PCR quantification. Furthermore, CPE supplementation had a significant dose-dependent effect on the whole ruminal bacterial community, as determined by automated ribosomal intergenic spacer analysis. These changes were accompanied by a significant increase in digestibility of dry matter, crude protein, and neutral detergent fiber, as well as milk and energy-corrected milk yields in cows fed the 4% CPE supplement. These results suggest that CPE supplementation significantly affects the rumen bacterial communities, which in turn may be related to a beneficial effect on dairy cow performance. PMID:22863105

  1. Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar.

    PubMed

    Liang, Jingang; Sun, Shi; Ji, Jun; Wu, Haiying; Meng, Fang; Zhang, Mingrong; Zheng, Xiaobo; Wu, Cunxiang; Zhang, Zhengguang

    2014-01-01

    Previous studies have shown that methionine from root exudates affects the rhizosphere bacterial population involved in soil nitrogen fixation. A transgenic line of Zigongdongdou soybean cultivar (ZD91) that expresses Arabidopsis cystathionine γ-synthase resulting in an increased methionine production was examined for its influence to the rhizosphere bacterial population. Using 16S rRNA gene-based pyrosequencing analysis of the V4 region and DNA extracted from bacterial consortia collected from the rhizosphere of soybean plants grown in an agricultural field at the pod-setting stage, we characterized the populational structure of the bacterial community involved. In total, 87,267 sequences (approximately 10,908 per sample) were analyzed. We found that Acidobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes, Gemmatimonadetes, Firmicutes, and Verrucomicrobia constitute the dominant taxonomic groups in either the ZD91 transgenic line or parental cultivar ZD, and that there was no statistically significant difference in the rhizosphere bacterial community structure between the two cultivars.

  2. Multiple DNA Extractions Coupled with Stable-Isotope Probing of Anthracene-Degrading Bacteria in Contaminated Soil▿†

    PubMed Central

    Jones, Maiysha D.; Singleton, David R.; Sun, Wei; Aitken, Michael D.

    2011-01-01

    In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the 13C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-13C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from 13C-enriched DNA and were designated “anthracene group 1.” Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP. PMID:21398486

  3. Target-specific capture enhances sensitivity of electrochemical detection of bacterial pathogens.

    PubMed

    Patel, Mayank; Gonzalez, Rodrigo; Halford, Colin; Lewinski, Michael A; Landaw, Elliot M; Churchill, Bernard M; Haake, David A

    2011-12-01

    We report the concentration and purification of bacterial 16S rRNA by the use of a biotinylated DNA target-specific capture (TSC) probe. For both cultivated bacterial and urine specimens from urinary tract infection patients, TSC resulted in a 5- to 8-fold improvement in the sensitivity of bacterial detection in a 16S rRNA electrochemical sensor assay.

  4. Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid.

    PubMed

    Wu, Dan; Wu, Xiao-Dong; You, Xue-Fu; Ma, Xiao-Feng; Tian, Wei-Xi

    2010-01-01

    It is important to develop new antibiotics aimed at novel targets. The investigation found that the leaf extracts from five maples (Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge collected in Denmark, Canada and China) and their component tannic acid displayed antibacterial ability against 24 standard bacteria strains with the minimum inhibitory concentration of 0.3-8.0 mg/mL. Unlike the standard antibiotic levofloxacin (LFX), these samples inhibited Gram-positive bacteria more effectively than they inhibited Gram-negative bacteria. These samples effectively inhibited two antidrug bacterial strains. The results show that these samples inhibit bacteria by a different mechanism from LFX. These samples potently inhibited b-ketoacyl-ACP reductase (FabG), which is an important enzyme in bacterial fatty acid synthesis. Tannic acid showed the strongest inhibition on FabG with a half inhibition concentration of 0.78 microM (0.81 microg/mL). Furthermore, tannic acid and two maple leaf extracts showed time-dependent irreversible inhibition of FabG. These three samples also exhibited better inhibition on bacteria. It is suggested that FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect.

  5. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  6. Real-Time Quantitative Broad-Range PCR Assay for Detection of the 16S rRNA Gene Followed by Sequencing for Species Identification

    PubMed Central

    Zucol, Franziska; Ammann, Roland A.; Berger, Christoph; Aebi, Christoph; Altwegg, Martin; Niggli, Felix K.; Nadal, David

    2006-01-01

    Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of ≤102 CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples. PMID:16891488

  7. Establishment of a high content assay for the identification and characterisation of bioactivities in crude bacterial extracts that interfere with the eukaryotic cell cycle.

    PubMed

    Jensen, Nickels A; Gerth, Klaus; Grotjohann, Tim; Kapp, Dieter; Keck, Matthias; Niehaus, Karsten

    2009-03-10

    High content microscopy as a screening tool to identify bioactive agents has provided researchers with the ability to characterise biological activities at the level of single cells. Here, we describe the development and the application of a high content screening assay for the identification and characterisation of cytostatic bioactivities from Myxobacteria extracts. In an automated microscopy assay Sf9 insect cells were visualised utilising the stains bisbenzimide Hoechst 33342, calcein AM, and propidium iodide. Imaging data were processed by the ScanR Analysis-software to determine the ploidy and vitality of each cell and to quantify cell populations. More than 98% of the Sf9 cells were viable and the culture consisted of diploid ( approximately 30%), tetraploid ( approximately 60%), polyploidic (<10%) and apoptotic (<5%) cells. Treatment with the reference substances blasticidin, colchicine, paclitaxel, and cytochalasin D induced changes in ploidy and vitality, which were characteristic for the respective bioactive substance. Furthermore, crude extracts from the chivosazole producing Myxobacterium Sorangium cellulosum So ce56 induced an increase of polyploid cells and a decrease in total cell count, while a mutant producing nearly no chivosazole triggered none of these effects. Purified chivosazole induced the same effects as the wild type extract. Similar effects have been observed for the reference compound cytochalasin D. On the basis of this assay, crude extracts of ten different Myxobacteria cultures were screened. Three extracts exhibited strong cytotoxic activities, further five extracts induced weak changes in the ploidy distribution, and two extracts showed no detectable effect within the assay. Therefore, this robust assay provides the ability to discover and characterise cytotoxic and cytostatic bioactivities in crude bacterial extracts. PMID:19111838

  8. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-02-01

    The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.

  9. The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial phatogens

    PubMed Central

    2014-01-01

    Background In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Additionally, inhibition of biofilm formation of both odonto- and periodonto-pathogenic bacteria and detachment from preformed biofilms have been described for this compound. Further purification of mushroom extract has been recently achieved and a sub-fraction (i.e. # 5) has been identified as containing the majority of the mentioned biological activities. The aim of this study was to characterise the bacterial receptors for the purified mushroom sub-fraction #5 in order to better elucidate the mode of action of this compound when interfering with bacterial adhesion to host surfaces or with bacteria-bacteria interactions in the biofilm state. Methods Candidate bacterial molecules to act as target of this compound were bacterial surface molecules involved in cell adhesion and biofilm formation, and, thus, we have considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans, and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia. Results Fifteen S. mutans CWPs and TA were capable of binding sub-fraction #5, while LTA did not. As far as P. intermedia is concerned, we show that five OMPs interact with sub-fraction # 5. Capacity of binding to P. intermedia LPS was also studied but in this case negative results were obtained. Conclusions Binding sub-fraction # 5 to surface molecules of S. mutans or P. intermedia may result in inactivation of their physiological functions. As a whole, these results indicate, at molecular level, the bacterial surface alterations affecting adhesion and biofim formation. For these antimicrobial properties, the compound may find use in daily oral hygiene. PMID:24564835

  10. Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem Resistant Escherichia coli.

    PubMed

    Thakur, Pallavi; Chawla, Raman; Narula, Alka; Goel, Rajeev; Arora, Rajesh; Sharma, Rakesh Kumar

    2016-06-01

    Expression of a multitude of virulence factors by multi-drug resistant microbial strains, e.g., Carbapenem Resistant Escherichia coli (Family: Enterobacteriaceae; Class: Gammaproteobacteria), is responsible for resistance against beta-lactam antibiotics. Hemolysin production and induction of hemagglutination by bacterial surface receptors inflicts direct cytotoxicity by destroying host phagocytic and epithelial cells. We have previously reported that Berberis aristata, Camellia sinensis, Cyperus rotundus Holarrhena antidysenterica and Andrographis paniculata are promising herbal leads for targeting Carbapenem resistant Escherichia coli. These herbal leads were analyzed for their anti-hemolytic potential by employing spectrophotometric assay of hemoglobin liberation. Anti-hemagglutination potential of the extracts was assessed by employing qualitative assay of visible RBC aggregate formation. Camellia sinensis (PTRC-31911-A) exhibited anti-hemolytic potential of 73.97 ± 0.03%, followed by Holarrhena antidysenterica (PTRC-8111-A) i.e., 68.32 ± 0.05%, Berberis aristata (PTRC-2111-A) i.e., 60.26 ± 0.05% and Cyperus rotundus (PTRC-31811-A) i.e., 53.76 ± 0.03%. Comprehensive, visual analysis of hemagglutination inhibition revealed that only Berberis aristata (PTRC-2111-A) and Camellia sinensis (PTRC-31911-A) exhibited anti-hemagglutination activity. However, Andrographis paniculata (PTRC-11611-A) exhibited none of the inhibitory activities. Furthermore, the pair wise correlation analysis of the tested activities with quantitative phytochemical descriptors revealed that an increased content of alkaloid; flavonoids; polyphenols, and decreased content of saponins supported both the activities. Additionally, flow cytometry revealed that cell membrane structures of CRE were damaged by extracts of Berberis aristata (PTRC-2111-A) and Camellia sinensis (PTRC-31911-A) at their respective Minimum Inhibitory Concentrations, thereby confirming noteworthy antibacterial

  11. [Anti-bacterial activity of extracts from fungi collected from mangrove Rhizophora mangle (Rhizophoraceae) roots in Venezuela].

    PubMed

    Castillo-Machalskis, Isabel; D'Armas, Haydelba; Malaver, Nora; Núñez, Maximiano

    2007-01-01

    The antibacterial activity of marine fungi extracts was evaluated by a test of efficiency. The fungi were previously inoculated in Malt Agar (EMA) extract with 50% of seawater and growth for 60 days. Triplicate antibiograms were carried out with the extracts. An ANOVA I with a posteriori Duncan test were applied to the diameters of inhibition zones. The extracts of Aspergillus ochraceus 3MCMC3 and Penicillium citrinum (14) 4MCMC16 present wide spectral antibacterial properties, inhibiting 100% and 80% of the developing germs, especially Pseudomonas aeruginosa 9027. The extract of Penicillium (1) 3MLLC5 had the highest efficiency on this strain; P. aeruginosa 9027 and Escherichia coli 10536 were the most sensitive germs when treated with these extracts. These marine fungi can be an important source of antibacterial secondary metabolites. PMID:19086381

  12. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions. PMID:26691594

  13. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions.

  14. 5S rRNA and ribosome.

    PubMed

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  15. Bacterial clearance, heterophil function, and hematological parameters of transport stressed turkey poults supplemented with dietary yeast extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeast extracts contain biological response modifiers that may be useful as alternatives to antibiotics for controlling pathogens in poultry production and mitigating the deleterious effects of production stressors. A standardized yeast extract feed supplement, Alphamune™ (YE), was added to turkey po...

  16. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract--an agro-industry waste.

    PubMed

    Rani, Mahadevaswamy Usha; Rastogi, Navin K; Appaiah, K A Anu

    2011-07-01

    During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5- 8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5- 2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

  17. Effect of Dietary Supplementation with a Saccharomyces cerevisiae Mannan Oligosaccharide on the Bacterial Community Structure of Broiler Cecal Contents▿†

    PubMed Central

    Corrigan, A.; Horgan, K.; Clipson, N.; Murphy, R. A.

    2011-01-01

    This study investigated the effects of dietary supplementation with a prebiotic mannan oligosaccharide (MOS) on broiler performance, bacterial community structure, and phylogenetic populations of cecal contents. Bird performance data were collected, and cecal samples were extracted from randomly caught poults from each treatment group every 7 days from hatching to the age of 42 days. Weight gain, feed consumption, and feed efficiency ratios did not differ significantly between groups. Automated ribosomal intergenic spacer analysis (ARISA) of the bacterial communities in birds receiving MOS-supplemented diets indicated that dietary supplementation with MOS at either of 2 levels significantly altered the bacterial community structure from that of the control group on all sample days. The phylogenetic identities of bacteria contained within the cecum were determined by constructing a 16S rRNA gene clone library. A total of 594 partial 16S rRNA gene sequences from the cecal contents were analyzed and compared for the three dietary treatments. The dominant bacteria of the cecum belonged to three phyla, Firmicutes, Bacteroidetes, and Proteobacteria; of these, Firmicutes were the most dominant in all treatment groups. Statistical analysis of the bacterial 16S rRNA gene clone libraries showed that the compositions of the clone libraries from broilers receiving MOS-supplemented diets were, in most cases, significantly different from that of the control group. It can be concluded that in this trial MOS supplementation significantly altered the cecal bacterial community structure. PMID:21803917

  18. Comparison of six commercial kits to extract bacterial chromosome and plasmid DNA for MiSeq sequencing

    PubMed Central

    Becker, Laura; Steglich, Matthias; Fuchs, Stephan; Werner, Guido; Nübel, Ulrich

    2016-01-01

    We compared commercial kits for extraction of genomic DNA from the Gram-negative bacterium Klebsiella pneumoniae for subsequent Miseq sequencing. Purification of DNA was based on matrix binding (silica or anion exchange resin) or differential precipitation (salting out), respectively. The choice of extraction kit had little effect on sequencing quality and coverage across drastically different replicons, except for an apparent depletion of small plasmids (<5 kb) during precipitation-based extractions. Sequencing coverage provided copy-number estimates for small plasmids that were consistently higher than those from quantitative real-time PCR. PMID:27312200

  19. Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods.

    PubMed

    Kim, Yi-Seul; Kim, Min-Cheol; Kwon, Soon-Wo; Kim, Soo-Jin; Park, In-Cheol; Ka, Jong-Ok; Weon, Hang-Yeon

    2011-06-01

    Despite the importance of meju as a raw material used to make Korean soy sauce (ganjang) and soybean paste (doenjang), little is known about the bacterial diversity of Korean meju. In this study, the bacterial communities in meju were examined using both culture-dependent and independent methods in order to evaluate the diversity of the bacterial population. Analyses of the 16S rRNA gene sequences of the bacterial strains isolated from meju samples showed that the dominant species were related to members of the genera Bacillus, Enterococcus, and Pediococcus. The community DNAs extracted from nine different meju samples were analyzed by barcoded pyrosequencing method targeting of the V1 to V3 hypervariable regions of the 16S rRNA gene. In total, 132,374 sequences, with an average read length of 468 bp, were assigned to several phyla, with Firmicutes (93.6%) representing the predominant phylum, followed by Proteobacteria (4.5%) and Bacteroidetes (0.8%). Other phyla accounted for less than 1% of the total bacterial sequences. Most of the Firmicutes were Bacillus and lactic acid bacteria, mainly represented by members of the genera Enterococcus, Lactococcus, and Leuconostoc, whose ratio varied among different samples. In conclusion, this study indicated that the bacterial communities in meju were very diverse and a complex microbial consortium containing various microorganisms got involved in meju fermentation than we expected before.

  20. Benthic bacterial diversity in submerged sinkhole ecosystems.

    PubMed

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  1. Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq.

    PubMed

    Yi, Hana; Cho, Yong-Joon; Won, Sungho; Lee, Jong-Eun; Jin Yu, Hyung; Kim, Sujin; Schroth, Gary P; Luo, Shujun; Chun, Jongsik

    2011-11-01

    Next-generation sequencing has great potential for application in bacterial transcriptomics. However, unlike eukaryotes, bacteria have no clear mechanism to select mRNAs over rRNAs; therefore, rRNA removal is a critical step in sequencing-based transcriptomics. Duplex-specific nuclease (DSN) is an enzyme that, at high temperatures, degrades duplex DNA in preference to single-stranded DNA. DSN treatment has been successfully used to normalize the relative transcript abundance in mRNA-enriched cDNA libraries from eukaryotic organisms. In this study, we demonstrate the utility of this method to remove rRNA from prokaryotic total RNA. We evaluated the efficacy of DSN to remove rRNA by comparing it with the conventional subtractive hybridization (Hyb) method. Illumina deep sequencing was performed to obtain transcriptomes from Escherichia coli grown under four growth conditions. The results clearly showed that our DSN treatment was more efficient at removing rRNA than the Hyb method was, while preserving the original relative abundance of mRNA species in bacterial cells. Therefore, we propose that, for bacterial mRNA-seq experiments, DSN treatment should be preferred to Hyb-based methods.

  2. A combined cultivation and cultivation-independent approach shows high bacterial diversity in water-miscible metalworking fluids.

    PubMed

    Lodders, Nicole; Kämpfer, Peter

    2012-06-01

    Ten metalworking fluids (MWF) and seven water preparation basis samples (WPB) were taken from five industrial plants in Germany. Total cells (TCC) and colony forming units (CFU) were counted, strains were isolated and their 16S rRNA gene was sequenced. Additionally, DNA was extracted directly from the samples, and clone libraries of 16S rRNA genes were built and gene sequenced. TCC ranged from 7.6×10(4) TCC/mL MWF to 1.6×10(8) TCC/mL MWF, and from 4.6×10(2) TCC/mL WPB to 7.8×10(7) TCC/mL WPB. The CFU showed similar but often lower results. A total of 70 isolates and 732 clones were 16S rRNA gene sequenced and all isolates, as well as 183 of the nearly full length 16S rRNA of these clones, were gene sequenced. A total of 98 different genera were detected in all 17 samples. The number of genera within each sample varied highly, with 1-22 genera per sample. The dominant genera in MWF were Leucobacter, Desemzia, Sphingomonas and Wautersiella. From these, only Sphingomonas was detected in WPB as well. This study showed that MWF can harbour a high bacterial diversity, which differs significantly from the bacterial flora of the corresponding WPB. PMID:22609341

  3. Power Analysis for Real-Time PCR Quantification of Genes in Activated Sludge and Analysis of the Variability Introduced by DNA Extraction

    PubMed Central

    Dionisi, Hebe M.; Harms, Gerda; Layton, Alice C.; Gregory, Igrid R.; Parker, Jack; Hawkins, Shawn A.; Robinson, Kevin G.; Sayler, Gary S.

    2003-01-01

    The aims of this study were to determine the power of discrimination of the real-time PCR assay for monitoring fluctuations in microbial populations within activated sludge and to identify sample processing points where methodological changes are needed to minimize the variability in target quantification. DNA was extracted using a commercially available kit from mixed liquor samples taken from the aeration tank of four bench-scale activated-sludge reactors operating at 2-, 5-, 10-, and 20-day solid retention times, with mixed-liquor volatile suspended solid (MLVSS) values ranging from 260 to 2,610 mg/liter. Real-time PCR assays for bacterial and Nitrospira 16S rRNA genes were chosen because they represent, respectively, a highly abundant and a less-abundant bacterial target subject to clustering within the activated sludge matrix. The mean coefficient of variation in DNA yields (measured as microgram of DNA per milligram of MLVSS) in triplicate extractions of 12 different samples was 12.2%. Based on power analyses, the variability associated with DNA extraction had a small impact on the overall variability of the real-time PCR assay. Instead, a larger variability was associated with the PCR assay. The less-abundant target (Nitrospira 16S rRNA gene) had more variability than the highly abundant target (bacterial 16S rRNA gene), and samples from the lower-biomass reactors had more variability than samples from the higher-biomass reactors. Power analysis of real-time PCR assays indicated that three to five samples were necessary to detect a twofold increase in bacterial 16S rRNA genes, whereas three to five samples were required to detect a fivefold increase in Nitrospira 16S rRNA genes. PMID:14602618

  4. Direct 5S rRNA Assay for Monitoring Mixed-Culture Bioprocesses

    PubMed Central

    Stoner, D. L.; Browning, C. K.; Bulmer, D. K.; Ward, T. E.; MacDonell, M. T.

    1996-01-01

    This study demonstrates the efficacy of a direct 5S rRNA assay for the characterization of mixed microbial populations by using as an example the bacteria associated with acidic mining environments. The direct 5S rRNA assay described herein represents a nonselective, direct molecular method for monitoring and characterizing the predominant, metabolically active members of a microbial population. The foundation of the assay is high-resolution denaturing gradient gel electrophoresis (DGGE), which is used to separate 5S rRNA species extracted from collected biomass. Separation is based on the unique migration behavior of each 5S rRNA species during electrophoresis in denaturing gradient gels. With mixtures of RNA extracted from laboratory cultures, the upper practical limit for detection in the current experimental system has been estimated to be greater than 15 different species. With this method, the resolution was demonstrated to be effective at least to the species level. The strength of this approach was demonstrated by the ability to discriminate between Thiobacillus ferrooxidans ATCC 19859 and Thiobacillus thiooxidans ATCC 8085, two very closely related species. Migration patterns for the 5S rRNA from members of the genus Thiobacillus were readily distinguishable from those of the genera Acidiphilium and Leptospirillum. In conclusion, the 5S rRNA assay represents a powerful method by which the structure of a microbial population within acidic environments can be assessed. PMID:16535333

  5. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity.

    PubMed

    Yasir, Muhammad; Aslam, Zubair; Kim, Seon Won; Lee, Seon-Woo; Jeon, Che Ok; Chung, Young Ryun

    2009-10-01

    Bacterial communities and chitinase gene diversity of vermicompost (VC) were investigated to clarify the influence of earthworms on the inhibition of plant pathogenic fungi in VC. The spore germination of Fusarium moniliforme was reduced in VC aqueous extracts prepared from paper sludge and dairy sludge (fresh sludge, FS). The bacterial communities were examined by culture-dependent and -independent analyses. Unique clones selected from 16S rRNA libraries of FS and VC on the basis of restriction fragment length polymorphism (RFLP) fell into the major lineages of the domain bacteria Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria and Firmicutes. Among culture isolates, Actinobacteria dominated in VC, while almost equal numbers of Actinobacteria and Proteobacteria were present in FS. Analysis of chitinolytic isolates and chitinase gene diversity revealed that chitinolytic bacterial communities were enriched in VC. Populations of bacteria that inhibited plant fungal pathogens were higher in VC than in FS and particularly chitinolytic isolates were most active against the target fungi.

  6. Integrated DNA and RNA extraction and purification on an automated microfluidic cassette from bacterial and viral pathogens causing community-acquired lower respiratory tract infections.

    PubMed

    Van Heirstraeten, Liesbet; Spang, Peter; Schwind, Carmen; Drese, Klaus S; Ritzi-Lehnert, Marion; Nieto, Benjamin; Camps, Marta; Landgraf, Bryan; Guasch, Francesc; Corbera, Antoni Homs; Samitier, Josep; Goossens, Herman; Malhotra-Kumar, Surbhi; Roeser, Tina

    2014-05-01

    In this paper, we describe the development of an automated sample preparation procedure for etiological agents of community-acquired lower respiratory tract infections (CA-LRTI). The consecutive assay steps, including sample re-suspension, pre-treatment, lysis, nucleic acid purification, and concentration, were integrated into a microfluidic lab-on-a-chip (LOC) cassette that is operated hands-free by a demonstrator setup, providing fluidic and valve actuation. The performance of the assay was evaluated on viral and Gram-positive and Gram-negative bacterial broth cultures previously sampled using a nasopharyngeal swab. Sample preparation on the microfluidic cassette resulted in higher or similar concentrations of pure bacterial DNA or viral RNA compared to manual benchtop experiments. The miniaturization and integration of the complete sample preparation procedure, to extract purified nucleic acids from real samples of CA-LRTI pathogens to, and above, lab quality and efficiency, represent important steps towards its application in a point-of-care test (POCT) for rapid diagnosis of CA-LRTI. PMID:24615272

  7. Taxonomy of bacterial fish pathogens

    PubMed Central

    2011-01-01

    Bacterial taxonomy has progressed from reliance on highly artificial culture-dependent techniques involving the study of phenotype (including morphological, biochemical and physiological data) to the modern applications of molecular biology, most recently 16S rRNA gene sequencing, which gives an insight into evolutionary pathways (= phylogenetics). The latter is applicable to culture-independent approaches, and has led directly to the recognition of new uncultured bacterial groups, i.e. "Candidatus", which have been associated as the cause of some fish diseases, including rainbow trout summer enteritic syndrome. One immediate benefit is that 16S rRNA gene sequencing has led to increased confidence in the accuracy of names allocated to bacterial pathogens. This is in marked contrast to the previous dominance of phenotyping, and identifications, which have been subsequently challenged in the light of 16S rRNA gene sequencing. To date, there has been some fluidity over the names of bacterial fish pathogens, with some, for example Vibrio anguillarum, being divided into two separate entities (V. anguillarum and V. ordalii). Others have been combined, for example V. carchariae, V. harveyi and V. trachuri as V. harveyi. Confusion may result with some organisms recognized by more than one name; V. anguillarum was reclassified as Beneckea and Listonella, with Vibrio and Listonella persisting in the scientific literature. Notwithstanding, modern methods have permitted real progress in the understanding of the taxonomic relationships of many bacterial fish pathogens. PMID:21314902

  8. Taxonomy of bacterial fish pathogens.

    PubMed

    Austin, Brian

    2011-02-02

    Bacterial taxonomy has progressed from reliance on highly artificial culture-dependent techniques involving the study of phenotype (including morphological, biochemical and physiological data) to the modern applications of molecular biology, most recently 16S rRNA gene sequencing, which gives an insight into evolutionary pathways (= phylogenetics). The latter is applicable to culture-independent approaches, and has led directly to the recognition of new uncultured bacterial groups, i.e. "Candidatus", which have been associated as the cause of some fish diseases, including rainbow trout summer enteritic syndrome. One immediate benefit is that 16S rRNA gene sequencing has led to increased confidence in the accuracy of names allocated to bacterial pathogens. This is in marked contrast to the previous dominance of phenotyping, and identifications, which have been subsequently challenged in the light of 16S rRNA gene sequencing. To date, there has been some fluidity over the names of bacterial fish pathogens, with some, for example Vibrio anguillarum, being divided into two separate entities (V. anguillarum and V. ordalii). Others have been combined, for example V. carchariae, V. harveyi and V. trachuri as V. harveyi. Confusion may result with some organisms recognized by more than one name; V. anguillarum was reclassified as Beneckea and Listonella, with Vibrio and Listonella persisting in the scientific literature. Notwithstanding, modern methods have permitted real progress in the understanding of the taxonomic relationships of many bacterial fish pathogens.

  9. Anti-Bacterial effect of Aqueous Garlic Extract (AGE) determined by Disc Diffusion Method against Escherichia coli.

    PubMed

    Saha, S; Saha, S K; Hossain, M A; Paul, S K; Gomes, R R; Imtiaz, M; Islam, M M; Nahar, H; Begum, S A; Mirza, T T

    2016-01-01

    The study was performed to determine the antibacterial effect of aqueous extract of garlic (Allium sativum) against standard strain of Escherichia coli ATCC 25922. An interventional study was conducted in Department of Pharmacology and Therapeutics in collaboration with Department of Microbiology, Mymensingh Medical College, Mymensingh. Antibacterial effect of AGE was determined by disc diffusion method. Sensitivity of AGE determined in disc diffusion and the zone of inhibition (ZOI) was 4 mm, 10 mm and 20 mm at 25 μg/10 μl, 50 μg/10 μl and 100 μg/10 μl concentrations respectively. From the findings it is clearly determined the extract has definite antibacterial effect upon Escherichia coli. Further studies are required to detect and isolate the active ingredients present in the Garlic extract as well as detail steps of mechanism responsible for antibacterial effect. Then their effects against the studied organism should be studied in vivo separately and its toxicity profile should also be taken into account.

  10. Anti-Bacterial effect of Aqueous Garlic Extract (AGE) determined by Disc Diffusion Method against Escherichia coli.

    PubMed

    Saha, S; Saha, S K; Hossain, M A; Paul, S K; Gomes, R R; Imtiaz, M; Islam, M M; Nahar, H; Begum, S A; Mirza, T T

    2016-01-01

    The study was performed to determine the antibacterial effect of aqueous extract of garlic (Allium sativum) against standard strain of Escherichia coli ATCC 25922. An interventional study was conducted in Department of Pharmacology and Therapeutics in collaboration with Department of Microbiology, Mymensingh Medical College, Mymensingh. Antibacterial effect of AGE was determined by disc diffusion method. Sensitivity of AGE determined in disc diffusion and the zone of inhibition (ZOI) was 4 mm, 10 mm and 20 mm at 25 μg/10 μl, 50 μg/10 μl and 100 μg/10 μl concentrations respectively. From the findings it is clearly determined the extract has definite antibacterial effect upon Escherichia coli. Further studies are required to detect and isolate the active ingredients present in the Garlic extract as well as detail steps of mechanism responsible for antibacterial effect. Then their effects against the studied organism should be studied in vivo separately and its toxicity profile should also be taken into account. PMID:26931244

  11. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA.

    PubMed

    Turlapati, Swathi A; Minocha, Rakesh; Bhiravarasa, Premsai S; Tisa, Louis S; Thomas, William K; Minocha, Subhash C

    2013-02-01

    At the Harvard Forest, Petersham, MA, the impact of 20 years of annual ammonium nitrate application to the mixed hardwood stand on soil bacterial communities was studied using 16S rRNA genes pyrosequencing. Amplification of 16S rRNA genes was done using DNA extracted from 30 soil samples (three treatments × two horizons × five subplots) collected from untreated (control), low N-amended (50 kg ha(-1) year(-1)) and high N-amended (150 kg ha(-1) year(-1)) plots. A total of 1.3 million sequences were processed using qiime. Although Acidobacteria represented the most abundant phylum based on the number of sequences, Proteobacteria were the most diverse in terms of operational taxonomic units (OTUs). UniFrac analyses revealed that the bacterial communities differed significantly among soil horizons and treatments. Microsite variability among the five subplots was also evident. Nonmetric multidimensional scaling ordination of normalized OTU data followed by permutational manova further confirmed these observations. Richness indicators and indicator species analyses revealed higher bacterial diversity associated with N amendment. Differences in bacterial diversity and community composition associated with the N treatments were also observed at lower phylogenetic levels. Only 28-35% of the 6 936 total OTUs identified were common to three treatments, while the rest were specific to one treatment or common to two.

  12. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA.

    PubMed

    Turlapati, Swathi A; Minocha, Rakesh; Bhiravarasa, Premsai S; Tisa, Louis S; Thomas, William K; Minocha, Subhash C

    2013-02-01

    At the Harvard Forest, Petersham, MA, the impact of 20 years of annual ammonium nitrate application to the mixed hardwood stand on soil bacterial communities was studied using 16S rRNA genes pyrosequencing. Amplification of 16S rRNA genes was done using DNA extracted from 30 soil samples (three treatments × two horizons × five subplots) collected from untreated (control), low N-amended (50 kg ha(-1) year(-1)) and high N-amended (150 kg ha(-1) year(-1)) plots. A total of 1.3 million sequences were processed using qiime. Although Acidobacteria represented the most abundant phylum based on the number of sequences, Proteobacteria were the most diverse in terms of operational taxonomic units (OTUs). UniFrac analyses revealed that the bacterial communities differed significantly among soil horizons and treatments. Microsite variability among the five subplots was also evident. Nonmetric multidimensional scaling ordination of normalized OTU data followed by permutational manova further confirmed these observations. Richness indicators and indicator species analyses revealed higher bacterial diversity associated with N amendment. Differences in bacterial diversity and community composition associated with the N treatments were also observed at lower phylogenetic levels. Only 28-35% of the 6 936 total OTUs identified were common to three treatments, while the rest were specific to one treatment or common to two. PMID:22974374

  13. Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of Panax ginseng.

    PubMed

    Ying, Yi Xin; Ding, Wan Long; Li, Yong

    2012-12-01

    A culture-independent approach was used to evaluate the bacterial community in rhizospheric and nonrhizospheric soil in which Panax ginseng had grown for 3 years. For each sample, soil was randomly collected from multiple sampling points and mixed thoroughly before genomic DNA extraction. Universal primers 27f and 1492r were used to amplify 16S rRNA genes. Clone libraries were constructed using the amplified 16S rRNA genes, and 192 white clones were chosen for further sequencing. After digestion with restriction endonuclease, 44 operational taxonomic units (OTUs) were generated for rhizospheric and 21 OTUs for nonrhizospheric soils, and the clones of each OTU were sequenced. Blast analysis showed that bacillus, acidobacteria, and proteobacteria were the dominant populations in rhizospheric soil, and proteobacteria were dominant in nonrhizospheric soil. Phylogenetic results showed that bacillus and acidobacteria were clustered into the group of uncultured bacteria in rhizospheric soil; however, proteobacteria were the unique dominant in nonrhizospheric soil.

  14. Changes in cytokine and nitric oxide secretion by rat alveolar macrophages after oral administration of bacterial extracts.

    PubMed Central

    Broug-Holub, E; Persoons, J H; Schornagel, K; Kraal, G

    1995-01-01

    Oral administration of the bacterial immunomodulator Broncho-Vaxom (OM-85), a lysate of eight bacteria strains commonly causing respiratory disease, has been shown to enhance the host defence of the respiratory tract. In this study we examined the effect of orally administered (in vivo) OM-85 on stimulus-induced cytokine and nitric oxide secretion by rat alveolar macrophages in vitro. The results show that alveolar macrophages isolated from OM-85-treated rats secreted significantly more nitric oxide, tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta upon in vitro stimulation with lipopolysaccharide (LPS), whereas, in contrast, LPS-induced IL-6 secretion was significantly lower. The observed effects of in vivo OM-85 treatment on stimulus-induced cytokine secretion in vitro are not due to a direct effect of OM-85 on the cells, because in vitro incubation of alveolar macrophages with OM-85 did not result in altered activity, nor did direct intratracheal instillation of OM-85 in the lungs of rats result in altered alveolar macrophage activity in vitro. It is hypothesized that oral administration of OM-85 leads to priming of alveolar macrophages in such a way that immune responses are non-specifically enhanced upon stimulation. The therapeutic action of OM-85 may therefore result from an enhanced clearance of infectious bacteria from the respiratory tract due to increased alveolar macrophage activity. PMID:7648713

  15. ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

    PubMed Central

    Kooken, Jennifer; Fox, Karen; Fox, Alvin; Wunschel, David

    2014-01-01

    Staphylococcal strains (CoNS) were speciated in this study. Digests of proteins released from whole cells were converted to tryptic peptides for analysis. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS, Orbitrap) was employed for peptide analysis. Data analysis was performed employing the open-source software X!Tandem which uses sequenced genomes to generate a virtual peptide database for comparison to experimental data. The search database was modified to include the genomes of the 11 Staphylococcus species most commonly isolated from man. The number of total peptides matching each protein along with the number of peptides specifically matching to the homologue (or homologues) for strains of the same species were assesed. Any peptides not matching to the species examined were considered conflict peptides. The proteins typically identified with the largest percentage of sequence coverage, number of matched peptides and number of peptides corresponding to only the correct species were elongation factor Tu (EF Tu) and enolase (Enol). Additional proteins with consistently observed peptides as well as peptides matching only homologues from the same species were citrate synthase (CS) and 1-pyrroline-5-carboxylate dehydrogenase (1P5CD). Protein markers, previously identified from gel slices, (aconitate hydratase and oxoglutarate dehydrogenase) were found to provide low confidence scores when employing whole cell digests. The methodological approach described here provides a simple yet elegant way of identification of staphylococci. However, perhaps more importantly the technology should be applicable universally for identification of any bacterial species. PMID:23994725

  16. Membrane Interaction of Antimicrobial Peptides Using E. coli Lipid Extract as Model Bacterial Cell Membranes and SFG Spectroscopy

    PubMed Central

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-01-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/E. coli polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. PMID:25707312

  17. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.

    PubMed

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-04-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties.

  18. Czech ethanol-free propolis extract displays inhibitory activity against a broad spectrum of bacterial and fungal pathogens.

    PubMed

    Netíková, Ladislava; Bogusch, Petr; Heneberg, Petr

    2013-09-01

    Propolis acts primarily as a biocide against invasive bacteria and fungi in the hive, suggesting its potential for industrial applications. In food application, propolis is considered as a chemical preservative in meat products, extending shelf life of frozen meat and other food. The mechanism of action is still unclear due to the synergy of multiple compounds contained in propolis and due to parallel targeting of multiple pathways within each affected organism. Here, we examined the antimicrobial properties of dimethylsulfoxide (DMSO) Czech propolis extract. Until recently, DMSO was only rarely used in the propolis studies, although the other solvents tested (mostly ethanol) may significantly affect the observed inhibitory effects, notwithstanding the antimicrobial effects of ethanol itself. Here, we provide results of zone inhibition tests against Aspergillus fumigatus, Microsporum gypseum, Microsporum canis, Candida albicans, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis. Although we determined inhibitory effects against all the microorganisms tested, the dose-dependent response curves were not similar to each other. While inhibitory effects against C. albicans or S. aureus were strictly dose-dependent, responses of M. gypseum and E. faecalis displayed plateau across the broad range of concentrations tested. Interestingly, response of E. coli revealed the double-peak dose-dependent curve, and responses of M. canis and L. monocytogenes decreased at the highest concentrations tested. Suggested is evaluation of DMSO propolis extracts in experimental treatment of human and veterinary infections, preferably in multitherapy with antibiotics.

  19. Czech ethanol-free propolis extract displays inhibitory activity against a broad spectrum of bacterial and fungal pathogens.

    PubMed

    Netíková, Ladislava; Bogusch, Petr; Heneberg, Petr

    2013-09-01

    Propolis acts primarily as a biocide against invasive bacteria and fungi in the hive, suggesting its potential for industrial applications. In food application, propolis is considered as a chemical preservative in meat products, extending shelf life of frozen meat and other food. The mechanism of action is still unclear due to the synergy of multiple compounds contained in propolis and due to parallel targeting of multiple pathways within each affected organism. Here, we examined the antimicrobial properties of dimethylsulfoxide (DMSO) Czech propolis extract. Until recently, DMSO was only rarely used in the propolis studies, although the other solvents tested (mostly ethanol) may significantly affect the observed inhibitory effects, notwithstanding the antimicrobial effects of ethanol itself. Here, we provide results of zone inhibition tests against Aspergillus fumigatus, Microsporum gypseum, Microsporum canis, Candida albicans, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis. Although we determined inhibitory effects against all the microorganisms tested, the dose-dependent response curves were not similar to each other. While inhibitory effects against C. albicans or S. aureus were strictly dose-dependent, responses of M. gypseum and E. faecalis displayed plateau across the broad range of concentrations tested. Interestingly, response of E. coli revealed the double-peak dose-dependent curve, and responses of M. canis and L. monocytogenes decreased at the highest concentrations tested. Suggested is evaluation of DMSO propolis extracts in experimental treatment of human and veterinary infections, preferably in multitherapy with antibiotics. PMID:23915150

  20. Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin.

    PubMed

    Jacobsen, C S; Rasmussen, O F

    1992-08-01

    A new method for the extraction of bacterial DNA from soil has been developed. Soil samples of 50 g were dispersed, and bacteria were released by use of a cation-exchange resin; subsequently, bacteria were separated from soil particles by low-speed centrifugation and lysed with lysozyme and ionic detergent, and the DNA was then purified by CsCl-ethidium bromide equilibrium density centrifugation. The extracted DNA was of high molecular weight and sufficiently pure for restriction enzyme digestion, DNA-DNA hybridization, and amplification by the polymerase chain reaction. The advantages of the new method are that the separation of bacteria from soil is considerably faster than by repeated blending, more samples can be handled, and furthermore no aerosols are formed during separation. Also, we investigated whether the CsCl-ethidium bromide equilibrium density centrifugation could be replaced by purification using Gene-Clean. However, this method produced DNAs which were insufficiently pure for several types of analysis. The new method was used to study survival of a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading Pseudomonas cepacia DBO1 (pRO101) in unamended soil and in soil amended with 2,4-D. We found that the degrading strain, irrespective of inoculation level, was able to grow to the same high numbers in soil amended with 2,4-D, while the strain in nonamended soil were maintained at the inoculation level. Detection based on DNA extraction and subsequent dot blot DNA-DNA hybridization was in accordance with detection by plating on selective medium. PMID:16348750

  1. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Adavallan, K.; Krishnakumar, N.

    2014-06-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.

  2. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence

    PubMed Central

    Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  3. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method. PMID:26808495

  4. Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

    PubMed

    Hao, Huijing; Liang, Junrong; Duan, Ran; Chen, Yuhuang; Liu, Chang; Xiao, Yuchun; Li, Xu; Su, Mingming; Jing, Huaiqi; Wang, Xin

    2016-01-01

    API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.

  5. Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures.

    PubMed

    Bajaj, Mini; Freiberg, Andrea; Winter, Josef; Xu, Youmei; Gallert, Claudia

    2015-11-01

    Extraction of chitin from mechanically pre-purified shrimp shells can be achieved by successive NaOH/HCl treatment, protease/HCl treatment or by environmentally friendly fermentation with proteolytic/lactic acid bacteria (LAB). For the last mentioned alternative, scale-up of shrimp shell chitin purification was investigated in 0.25 L (F1), 10 L (F2), and 300 L (F3) fermenters using an anaerobic, chitinase-deficient, proteolytic enrichment culture from ground meat for deproteination and a mixed culture of LAB from bio-yoghurt for decalcification. Protein removal in F1, F2, and F3 proceeded in parallel within 40 h at an efficiency of 89-91 %. Between 85 and 90 % of the calcit was removed from the shells by LAB in another 40 h in F1, F2, and F3. After deproteination of shrimp shells in F3, spent fermentation liquor was re-used for a next batch of 30-kg shrimp shells in F4 (300 L) which eliminated 85.5 % protein. The purity of the resulting chitin was comparable in F1, F2, F3, and F4. Viscosities of chitosan, obtained after chitin deacetylation and of chitin, prepared biologically or chemically in the laboratory, were much higher than those of commercially available chitin and chitosan.

  6. Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures.

    PubMed

    Bajaj, Mini; Freiberg, Andrea; Winter, Josef; Xu, Youmei; Gallert, Claudia

    2015-11-01

    Extraction of chitin from mechanically pre-purified shrimp shells can be achieved by successive NaOH/HCl treatment, protease/HCl treatment or by environmentally friendly fermentation with proteolytic/lactic acid bacteria (LAB). For the last mentioned alternative, scale-up of shrimp shell chitin purification was investigated in 0.25 L (F1), 10 L (F2), and 300 L (F3) fermenters using an anaerobic, chitinase-deficient, proteolytic enrichment culture from ground meat for deproteination and a mixed culture of LAB from bio-yoghurt for decalcification. Protein removal in F1, F2, and F3 proceeded in parallel within 40 h at an efficiency of 89-91 %. Between 85 and 90 % of the calcit was removed from the shells by LAB in another 40 h in F1, F2, and F3. After deproteination of shrimp shells in F3, spent fermentation liquor was re-used for a next batch of 30-kg shrimp shells in F4 (300 L) which eliminated 85.5 % protein. The purity of the resulting chitin was comparable in F1, F2, F3, and F4. Viscosities of chitosan, obtained after chitin deacetylation and of chitin, prepared biologically or chemically in the laboratory, were much higher than those of commercially available chitin and chitosan. PMID:26227412

  7. The Majority of In Vitro Macrophage Activation Exhibited by Extracts of Some Immune Enhancing Botanicals is Due to Bacterial Lipoproteins and Lipopolysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified potent monocyte/macrophage activating bacterial lipoproteins within commonly used immune enhancing botanicals such as Echinacea, American ginseng and alfalfa sprouts. These bacterial lipoproteins, along with lipopolysaccharides, were substantially more potent than other bacteriall...

  8. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  9. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    PubMed Central

    Simón-Soro, Aurea; Guillen-Navarro, Miriam; Mira, Alex

    2014-01-01

    Background Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design Non-cavitated enamel caries lesions (n=15) and dentin caries lesions samples (n=12) were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci detected confirms that they

  10. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    PubMed Central

    Ross, Steve W.; Brooke, Sandra D.

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community. PMID:27703865

  11. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens.

    PubMed

    Jeon, Hyunbum; Park, Soyoung; Choi, Jiyoung; Jeong, Gilsang; Lee, Sang-Beom; Choi, Youngcheol; Lee, Sung-Jae

    2011-05-01

    As it is known that food waste can be reduced by the larvae of Hermetia illucens (Black soldier fly, BSF), the scientific and commercial value of BSF larvae has increased recently. We hypothesised that the ability of catabolic degradation by BSF larvae might be due to intestinal microorganisms. Herein, we analysed the bacterial communities in the gut of BSF larvae by pyrosequencing of extracting intestinal metagenomic DNA from larvae that had been fed three different diets. The 16S rRNA sequencing results produced 9737, 9723 and 5985 PCR products from larval samples fed food waste, cooked rice and calf forage, respectively. A BLAST search using the EzTaxon program showed that the bacterial community in the gut of larvae fed three different diets was mainly composed of the four phyla with dissimilar proportions. Although the composition of the bacterial communities depended on the different nutrient sources, the identified bacterial strains in the gut of BSF larvae represented unique bacterial species that were unlike the intestinal microflora of other insects. Thus, our study analysed the structure of the bacterial communities in the gut of BSF larvae after three different feedings and assessed the application of particular bacteria for the efficient degradation of organic compounds.

  12. Activities and Prevalence of Proteobacteria Members Colonizing Echinacea purpurea Fully Account for Macrophage Activation Exhibited by Extracts of This Botanical.

    PubMed

    Haron, Mona H; Tyler, Heather L; Pugh, Nirmal D; Moraes, Rita M; Maddox, Victor L; Jackson, Colin R; Pasco, David S

    2016-09-01

    Evidence supports the theory that bacterial communities colonizing Echinacea purpurea contribute to the innate immune enhancing activity of this botanical. Previously, we reported that only about half of the variation in in vitro monocyte stimulating activity exhibited by E. purpurea extracts could be accounted for by total bacterial load within the plant material. In the current study, we test the hypothesis that the type of bacteria, in addition to bacterial load, is necessary to fully account for extract activity. Bacterial community composition within commercial and freshly harvested (wild and cultivated) E. purpurea aerial samples was determined using high-throughput 16S rRNA gene pyrosequencing. Bacterial isolates representing 38 different taxa identified to be present within E. purpurea were acquired, and the activity exhibited by the extracts of these isolates varied by over 8000-fold. Members of the Proteobacteria exhibited the highest potency for in vitro macrophage activation and were the most predominant taxa. Furthermore, the mean activity exhibited by the Echinacea extracts could be solely accounted for by the activities and prevalence of Proteobacteria members comprising the plant-associated bacterial community. The efficacy of E. purpurea material for use against respiratory infections may be determined by the Proteobacterial community composition of this plant, since ingestion of bacteria (probiotics) is reported to have a protective effect against this health condition.

  13. Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany.

    PubMed

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G

    2012-05-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.

  14. Analysis of Structure and Composition of Bacterial Core Communities in Mature Drinking Water Biofilms and Bulk Water of a Citywide Network in Germany

    PubMed Central

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid

    2012-01-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373

  15. Eukaryotic 5S rRNA biogenesis

    PubMed Central

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  16. Effects on enteric methane production and bacterial and archaeal communities by the addition of cashew nut shell extract or glycerol-an in vitro evaluation.

    PubMed

    Danielsson, Rebecca; Werner-Omazic, Anna; Ramin, Mohammad; Schnürer, Anna; Griinari, Mikko; Dicksved, Johan; Bertilsson, Jan

    2014-09-01

    The objective of the study was to evaluate the effect of cashew nut shell extract (CNSE) and glycerol (purity >99%) on enteric methane (CH4) production and microbial communities in an automated gas in vitro system. Microbial communities from the in vitro system were compared with samples from the donor cows, in vivo. Inoculated rumen fluid was mixed with a diet with a 60:40 forage:concentrate ratio and, in total, 5 different treatments were set up: 5mg of CNSE (CNSE-L), 10mg of CNSE (CNSE-H), 15mmol of glycerol/L (glycerol-L), and 30mmol of glycerol/L (glycerol-H), and a control without feed additive. Gas samples were taken at 2, 4, 8, 24, 32, and 48h of incubation, and the CH4 concentration was measured. Samples of rumen fluid were taken for volatile fatty acid analysis and for microbial sequence analyses after 8, 24, and 48h of incubation. In vivo rumen samples from the cows were taken 2h after the morning feeding at 3 consecutive days to compare the in vitro system with in vivo conditions. The gas data and data from microbial sequence analysis (454 sequencing) were analyzed using a mixed model and principal components analysis. These analyses illustrated that CH4 production was reduced with the CNSE treatment, by 8 and 18%, respectively, for the L and H concentration. Glycerol instead increased CH4 production by 8 and 12%, respectively, for the L and H concentration. The inhibition with CNSE could be due to the observed shift in bacterial population, possibly resulting in decreased production of hydrogen or formate, the methanogenic substrates. Alternatively the response could be explained by a shift in the methanogenic community. In the glycerol treatments, no main differences in bacterial or archaeal population were detected compared with the in vivo control. Thus, the increase in CH4 production may be explained by the increase in substrate in the in vitro system. The reduced CH4 production in vitro with CNSE suggests that CNSE can be a promising inhibitor of

  17. Effects on enteric methane production and bacterial and archaeal communities by the addition of cashew nut shell extract or glycerol-an in vitro evaluation.

    PubMed

    Danielsson, Rebecca; Werner-Omazic, Anna; Ramin, Mohammad; Schnürer, Anna; Griinari, Mikko; Dicksved, Johan; Bertilsson, Jan

    2014-09-01

    The objective of the study was to evaluate the effect of cashew nut shell extract (CNSE) and glycerol (purity >99%) on enteric methane (CH4) production and microbial communities in an automated gas in vitro system. Microbial communities from the in vitro system were compared with samples from the donor cows, in vivo. Inoculated rumen fluid was mixed with a diet with a 60:40 forage:concentrate ratio and, in total, 5 different treatments were set up: 5mg of CNSE (CNSE-L), 10mg of CNSE (CNSE-H), 15mmol of glycerol/L (glycerol-L), and 30mmol of glycerol/L (glycerol-H), and a control without feed additive. Gas samples were taken at 2, 4, 8, 24, 32, and 48h of incubation, and the CH4 concentration was measured. Samples of rumen fluid were taken for volatile fatty acid analysis and for microbial sequence analyses after 8, 24, and 48h of incubation. In vivo rumen samples from the cows were taken 2h after the morning feeding at 3 consecutive days to compare the in vitro system with in vivo conditions. The gas data and data from microbial sequence analysis (454 sequencing) were analyzed using a mixed model and principal components analysis. These analyses illustrated that CH4 production was reduced with the CNSE treatment, by 8 and 18%, respectively, for the L and H concentration. Glycerol instead increased CH4 production by 8 and 12%, respectively, for the L and H concentration. The inhibition with CNSE could be due to the observed shift in bacterial population, possibly resulting in decreased production of hydrogen or formate, the methanogenic substrates. Alternatively the response could be explained by a shift in the methanogenic community. In the glycerol treatments, no main differences in bacterial or archaeal population were detected compared with the in vivo control. Thus, the increase in CH4 production may be explained by the increase in substrate in the in vitro system. The reduced CH4 production in vitro with CNSE suggests that CNSE can be a promising inhibitor of

  18. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    SciTech Connect

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  19. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DOE PAGES

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less

  20. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    PubMed Central

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  1. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Beman, J. Michael; Carolan, Molly T.

    2013-10-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  2. Survival of free-living Acholeplasma in aerated pig manure slurry revealed by 13C-labeled bacterial biomass probing

    PubMed Central

    Hanajima, Dai; Aoyagi, Tomo; Hori, Tomoyuki

    2015-01-01

    Many studies have been performed on microbial community succession and/or predominant taxa during the composting process; however, the ecophysiological roles of microorganisms are not well understood because microbial community structures are highly diverse and dynamic. Bacteria are the most important contributors to the organic-waste decomposition process, while decayed bacterial cells can serve as readily digested substrates for other microbial populations. In this study, we investigated the active bacterial species responsible for the assimilation of dead bacterial cells and their components in aerated pig manure slurry by using 13C-labeled bacterial biomass probing. After 3 days of forced aeration, 13C-labeled and unlabeled dead Escherichia coli cell suspensions were added to the slurry. The suspensions contained 13C-labeled and unlabeled bacterial cell components, possibly including the cell wall and membrane, as well as intracellular materials. RNA extracted from each slurry sample 2 h after addition of E. coli suspension was density-resolved by isopycnic centrifugation and analyzed by terminal restriction fragment length polymorphism, followed by cloning and sequencing of bacterial 16S rRNA genes. In the heavy isotopically labeled RNA fraction, the predominant 13C-assimilating population was identified as belonging to the genus Acholeplasma, which was not detected in control heavy RNA. Acholeplasma spp. have limited biosynthetic capabilities and possess a wide variety of transporters, resulting in their metabolic dependence on external carbon and energy sources. The prevalence of Acholeplasma spp. was further confirmed in aerated pig manure slurry from four different pig farms by pyrosequencing of 16S rRNA genes; their relative abundance was ∼4.4%. Free-living Acholeplasma spp. had a competitive advantage for utilizing dead bacterial cells and their components more rapidly relative to other microbial populations, thus allowing the survival and prevalence

  3. Direct 5S rRNA assay for monitoring mixed-culture bioprocesses

    SciTech Connect

    Stoner, D.L.; Bulmer, D.K.; Ward, T.E.

    1996-06-01

    This study demonstrates the efficacy of a direct 5S rRNA assay for the characterization of mixed microbial populations by using as an example the bacteria associated with acidic mining environments. The direct 5S rRNA assay described herein represents a nonselective, direct molecular method for monitoring and characterizing the predominant, metabolically active members of a microbial population. The foundation of the assay is high-resolution denaturing gradient gel electrophoresis in denaturing gradient gel electrophoresis (DGGE), which is used to separate 5S rRNA species during electrophoresis in denaturing gradient gels. With mixtures of RNA extracted from laboratory cultures, the upper practical limit for detection in the current experimental system has been estimated to be greater than 15 different species. With this method, the resolution was demonstrated to be effective at least to the species level. The strength of this approach was demonstrated by the ability to discriminate between Thiobacillus ferrooxidans ATCC 19859 and Thiobacillus thiooxidans ATCC 8085, two very closely related species. Migration patterns for the 5S rRNA from members of the genus Thiobacillus were readily distinguishable from those of the general Acidiphilium and Leptospirillum. In conclusion, the 5S rRNA assay represents a powerful method by which the structure of a microbial population within acidic environments can be assessed. 40 refs., 12 figs., 1 tab.

  4. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes

    PubMed Central

    Zhang, Yanming; Ji, Peifeng; Wang, Jinfeng; Zhao, Fangqing

    2016-01-01

    16S rRNA amplicon analysis and shotgun metagenome sequencing are two main culture-independent strategies to explore the genetic landscape of various microbial communities. Recently, numerous studies have employed these two approaches together, but downstream data analyses were performed separately, which always generated incongruent or conflict signals on both taxonomic and functional classifications. Here we propose a novel approach, RiboFR-Seq (Ribosomal RNA gene flanking region sequencing), for capturing both ribosomal RNA variable regions and their flanking protein-coding genes simultaneously. Through extensive testing on clonal bacterial strain, salivary microbiome and bacterial epibionts of marine kelp, we demonstrated that RiboFR-Seq could detect the vast majority of bacteria not only in well-studied microbiomes but also in novel communities with limited reference genomes. Combined with classical amplicon sequencing and shotgun metagenome sequencing, RiboFR-Seq can link the annotations of 16S rRNA and metagenomic contigs to make a consensus classification. By recognizing almost all 16S rRNA copies, the RiboFR-seq approach can effectively reduce the taxonomic abundance bias resulted from 16S rRNA copy number variation. We believe that RiboFR-Seq, which provides an integrated view of 16S rRNA profiles and metagenomes, will help us better understand diverse microbial communities. PMID:26984526

  5. Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk.

    PubMed

    Rasolofo, Eric Andriamahery; St-Gelais, Daniel; LaPointe, Gisele; Roy, Denis

    2010-03-31

    Spoilage bacteria in milk are controlled by treatments such as thermization, microfiltration and addition of carbon dioxide. However, little information is known about the changes in microbial communities during subsequent cold storage of treated milk. Culture-dependent methods and a direct molecular approach combining 16S rRNA gene clone libraries and quantitative PCR (Q-PCR) were applied to obtain a better overview of the structure and the dynamics of milk microbiota. Raw milk samples were treated by the addition of carbon dioxide (CO(2)), thermization (TH) or microfiltration (MF) and stored at 4 degrees C or 8 degrees C up to 7d. Untreated milk (UT) was used as a control. Psychrotrophic and staphylococci bacteria were enumerated in the milk samples by culture methods. For the molecular approach, DNA was extracted from milk samples and 16S rRNA gene was amplified by PCR with universal primers prior to cloning. The Q-PCR method was used to evaluate the dynamics of dominant bacterial species revealed by clone library analysis of 16S rRNA gene. Comparison of the 16S rRNA gene sequence indicated that the two most abundant operational taxonomic units (OTU), determined at 97% identity, belonged to the class Gammaproteobacteria (40.3% of the 1415 sequences) and Bacilli (40%). Dominant bacterial species in UT, CO(2) and TH milk samples at day 3 were affiliated with Staphylococcus, Streptococcus, Clostridia, Aerococcus, Facklamia, Corynebacterium, Acinetobacter and Trichococcus. Dominant bacterial species detected in MF milk were Stenotrophomonas, Pseudomonas and Delftia, while Pseudomonas species dominated the bacterial population of UT, CO(2) and MF milk samples at day 7. Staphylococcus and Delftia were the dominant bacterial species in thermized milk. Q-PCR results showed that populations of S. aureus, A. viridans, A. calcoaceticus, C. variabile and S. uberis were stable during 7d of storage at 4 degrees C. Populations of P. fluorescens, S. uberis and total bacteria

  6. Genotoxicity evaluation of Guibi-Tang extract using an in vitro bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus test

    PubMed Central

    2014-01-01

    Background Guibi-Tang is a traditional herbal prescription made from 12 different herbs that is used in the treatment of amnesia and poor memory. Methods In the present study, we evaluated the acute oral toxicity and genotoxic potential of Guibi-Tang water extract (GBT) at doses up to 2000 μg/plate an using a bacterial reverse mutation test (Ames test) with Salmonella typhimurium strains TA100, TA1535, TA98, and TA1537, and Escherichia coli strain WP2uvrA. Acute toxicity and genotoxic potential were measured in the presence and absence of an exogenous source of metabolic activation, in an in vitro chromosome aberration assay with Chinese hamster lung (CHL) cells, and in an in vivo micronucleus test using ICR mice bone marrow as recommended by the Korean Food and Drug Administration. An acute oral toxicity test of GBT was performed in Sprague Dawley rats. The Ames test showed that GBT did not induce gene mutations in S. typhimurium or in E. coli in the presence or absence of S9 activation. Results GBT did not significantly increase the number of structural aberrations in CHL cells with or without S9 activation. The oral administration of GBT at a dose of up to 2000 mg/kg caused no significant increase in the number of micronucleated polychromatic erythrocytes or in the mean ratio of polychromatic to total erythrocytes. Conclusions However, as we did not identify the components of GBT responsible for these effects, other assays are needed to confirm its genotoxicity. PMID:24985139

  7. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    PubMed

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  8. Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †

    PubMed Central

    Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643

  9. Direct PCR amplification of the 16S rRNA gene from single microbial cells isolated from an Antarctic iceberg using laser microdissection microscopy

    NASA Astrophysics Data System (ADS)

    Yanagihara, Katsuhiko; Niki, Hironori; Baba, Tomoya

    2011-09-01

    Here, we describe a technique that allows the genetic linage analysis of 16S rRNA genes in bacteria observed under a microscope. The technique includes the isolation of microbial cells using a laser microdissection microscope, lysis of the cells, and amplification of the 16S rRNA genes in the isolated cells without interference by bacterial DNA contamination from the experimental environment or reagents. Using this technique, we successfully determined 15 16S rRNA gene sequences in cells isolated from an Antarctic iceberg. These sequences showed 94%-100% identity to their closest strains, which included bacteria that occur in aqueous, marine, and soil environments.

  10. Bacterial diversity in a deep-subsurface clay environment.

    PubMed Central

    Boivin-Jahns, V; Ruimy, R; Bianchi, A; Daumas, S; Christen, R

    1996-01-01

    The presence of bacteria in a deep clay sediment was analyzed in a 20-m-long core horizontally drilled from a mine gallery at a depth of 224 m in the Boom clay formation (Mol, Belgium). This clay deposit is the result of a marine sedimentary process that occurred 35 million years ago. Bacterial activities were estimated by measuring respiration on [14C]glucose. Using the same samples, universal primers for the genes coding for eubacterial 16S rRNA were used to amplify extracted DNA. PCR products were then cloned, sequenced, and analyzed by molecular phylogeny. Our data showed a decrease in bacterial densities as a function of distance from the gallery, with few bacteria detectable by culture at more than 80 cm from the gallery wall. PCR experiments showed the presence of bacteria in all samples, and phylogenetic analyses were then used to tentatively identify these organisms. Because of low bacterial densities in deep clay samples, direct counts and enumeration of viable bacteria on diverse culture media remained negative. All experiments, both cultures and PCR, demonstrated the difficulty of analyzing samples that contain only a few poorly active bacteria as it is difficult to avoid a small contamination by active bacteria during sampling. Since the porosity of the Boom clay formation is less than the expected size of bacteria, it is possible that some of the bacteria present in this 35-million-year-old deep clay deposit derive from cells initially trapped during the sedimentation process. PMID:8795233

  11. The Role of 16S rRNA Gene Sequencing in Confirmation of Suspected Neonatal Sepsis.

    PubMed

    El Gawhary, Somaia; El-Anany, Mervat; Hassan, Reem; Ali, Doaa; El Gameel, El Qassem

    2016-02-01

    Different molecular assays for the detection of bacterial DNA in the peripheral blood represented a diagnostic tool for neonatal sepsis. We targeted to evaluate the role of 16S rRNA gene sequencing to screen for bacteremia to confirm suspected neonatal sepsis (NS) and compare with risk factors and septic screen testing. Sixty-two neonates with suspected NS were enrolled. White blood cells count, I/T ratio, C-reactive protein, blood culture and 16S rRNA sequencing were performed. Blood culture was positive in 26% of cases, and PCR was positive in 26% of cases. Evaluation of PCR for the diagnosis of NS showed sensitivity 62.5%, specificity 86.9%, PPV 62.5%, NPV 86.9% and accuracy of 79.7%. 16S rRNA PCR increased the sensitivity of detecting bacterial DNA in newborns with signs of sepsis from 26 to 35.4%, and its use can be limited to cases with the most significant risk factors and positive septic screen.

  12. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis.

    PubMed

    Bahl, Martin Iain; Bergström, Anders; Licht, Tine Rask

    2012-04-01

    Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study, DNA was extracted either directly or following freeze storage of three homogenized human fecal samples using three different extraction methods. No consistent differences were observed in DNA yields between extractions on fresh and frozen samples; however, differences were observed between extraction methods. Quantitative PCR analysis was subsequently performed on all DNA samples using six different primer pairs targeting 16S rRNA genes of significant bacterial groups, and the community composition was evaluated by comparing specific ratios of the calculated abundances. In seven of nine cases, the Firmicutes to Bacteroidetes 16S rRNA gene ratio was significantly higher in fecal samples that had been frozen compared to identical samples that had not. This effect was further supported by qPCR analysis of bacterial groups within these two phyla. The results demonstrate that storage conditions of fecal samples may adversely affect the determined Firmicutes to Bacteroidetes ratio, which is a frequently used biomarker in gut microbiology.

  13. Metagenomic 16s rRNA investigation of microbial communities in the Black Sea estuaries in South-West of Ukraine.

    PubMed

    Bobrova, Oleksandra; Kristoffersen, Jon Bent; Oulas, Anastasis; Ivanytsia, Volodymyr

    2016-01-01

    The Black Sea estuaries represent interfaces of the sea and river environments. Microorganisms that inhabit estuarine water play an integral role in all biochemical processes that occur there and form unique ecosystems. There are many estuaries located in the Southern-Western part of Ukraine and some of them are already separated from the sea. The aim of this research was to determine the composition of microbial communities in the Khadzhibey, Dniester and Sukhyi estuaries by metagenomic 16S rDNA analysis. This study is the first complex analysis of estuarine microbiota based on isolation of total DNA from a biome that was further subjected to sequencing. DNA was extracted from water samples and sequenced on the Illumina Miseq platform using primers to the V4 variable region of the 16S rRNA gene. Computer analysis of the obtained raw sequences was done with QIIME (Quantitative Insights Into Microbial Ecology) software. As the outcome, 57970 nucleotide sequences were retrieved. Bioinformatic analysis of bacterial community in the studied samples demonstrated a high taxonomic diversity of Prokaryotes at above genus level. It was shown that majority of 16S rDNA bacterial sequences detected in the estuarine samples belonged to phyla Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, Planctomycetes. The Khadhzibey estuary was dominated by the Proteobacteria phylum, while Dniester and Sukhyi estuaries were characterized by dominance of Cyanobacteria. The differences in bacterial populations between the Khadzhibey, Dniester and Sukhyi estuaries were demonstrated through the Beta-diversity analysis. It showed that the Khadzhibey estuary's microbial community significantly varies from the Sukhyi and Dniester estuaries. The majority of identified bacterial species is known as typical inhabitants of marine environments, however, for 2.5% of microbial population members in the studied estuaries no relatives were determined.

  14. Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection.

    PubMed

    Zhang, Chenyu; Kuspa, Adam

    2009-01-01

    Bacterial pathogens employ a variety of survival strategies when they invade eukaryotic cells. The amoeba Dictyostelium discoideum is used as a model host to study the pathogenic mechanisms that Legionella pneumophila, the causative agent of Legionnaire's disease, uses to kill eukaryotic cells. Here we show that the infection of D. discoideum by L. pneumophila results in a decrease in mitochondrial messenger RNAs, beginning more than 8 hours prior to detectable host cell death. These changes can be mimicked by hydrogen peroxide treatment, but not by other cytotoxic agents. The mitochondrial large subunit ribosomal RNA (LSU rRNA) is also cleaved at three specific sites during the course of infection. Two LSU rRNA fragments appear first, followed by smaller fragments produced by additional cleavage events. The initial LSU rRNA cleavage site is predicted to be on the surface of the large subunit of the mitochondrial ribosome, while two secondary sites map to the predicted interface with the small subunit. No LSU rRNA cleavage was observed after exposure of D. discoideum to hydrogen peroxide, or other cytotoxic chemicals that kill cells in a variety of ways. Functional L. pneumophila type II and type IV secretion systems are required for the cleavage, establishing a correlation between the pathogenesis of L. pneumophila and D. discoideum LSU rRNA destruction. LSU rRNA cleavage was not observed in L. pneumophila infections of Acanthamoeba castellanii or human U937 cells, suggesting that L. pneumophila uses distinct mechanisms to interrupt metabolism in different hosts. Thus, L. pneumophila infection of D. discoideum results in dramatic decrease of mitochondrial RNAs, and in the specific cleavage of mitochondrial rRNA. The predicted location of the cleavage sites on the mitochondrial ribosome suggests that rRNA destruction is initiated by a specific sequence of events. These findings suggest that L. pneumophila specifically disrupts mitochondrial protein synthesis in D

  15. Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil.

    PubMed

    Han, Ping; Li, Meng; Gu, Ji-Dong

    2013-10-01

    Repetitive extraction of DNAs from surface sediments of a coastal wetland in Mai Po Nature Reserve (MP) of Hong Kong and surface Baijiang soils from a rice paddy (RP) in Northeast China was conducted to compare the microbial diversity in this study. Community structures of ammonia/ammonium-oxidizing microorganisms in these samples were analyzed by PCR-DGGE technique. The diversity and abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing (anammox) bacteria were also analyzed based on archaeal and bacterial ammonia monooxygenase subunit A encoding (amoA) and anammox bacterial 16S rRNA genes, respectively. DGGE profiles of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes showed a similar pattern among all five repetitively extracted DNA fractions from both MP and RP, except the anammox bacteria in RP, indicating a more diverse anammox community retrieved in the second to the fifth fractions than the first one. Both soil and marine group AOA were detected while soil and coastal group AOB and Scalindua-anammox bacteria were dominant in MP. Soil group AOA and marine group AOB were dominant in RP, while both Scalindua and Kuenenia species were detected in RP. Pearson correlation analysis showed that the abundance of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes was significantly correlated with the DNA concentrations of the five DNA fractions from MP, but not from RP (except the archaeal amoA gene). Results suggest that anammox bacteria diversity may be biased by insufficient DNA extraction of rice paddy soil samples. PMID:23974369

  16. Increased 5S rRNA oxidation in Alzheimer's disease.

    PubMed

    Ding, Qunxing; Zhu, Haiyan; Zhang, Bing; Soriano, Augusto; Burns, Roxanne; Markesbery, William R

    2012-01-01

    It is widely accepted that oxidative stress is involved in neurodegenerative disorders such as Alzheimer's disease (AD). Ribosomal RNA (rRNA) is one of the most abundant molecules in most cells and is affected by oxidative stress in the human brain. Previous data have indicated that total rRNA levels were decreased in the brains of subjects with AD and mild cognitive impairment concomitant with an increase in rRNA oxidation. In addition, level of 5S rRNA, one of the essential components of the ribosome complex, was significantly lower in the inferior parietal lobule (IP) brain area of subjects with AD compared with control subjects. To further evaluate the alteration of 5S rRNA in neurodegenerative human brains, multiple brain regions from both AD and age-matched control subjects were used in this study, including IP, superior and middle temporal gyro, temporal pole, and cerebellum. Different molecular pools including 5S rRNA integrated into ribosome complexes, free 5S rRNA, cytoplasmic 5S rRNA, and nuclear 5S rRNA were studied. Free 5S rRNA levels were significantly decreased in the temporal pole region of AD subjects and the oxidation of ribosome-integrated and free 5S rRNA was significantly increased in multiple brain regions in AD subjects compared with controls. Moreover, a greater amount of oxidized 5S rRNA was detected in the cytoplasm and nucleus of AD subjects compared with controls. These results suggest that the increased oxidation of 5S rRNA, especially the oxidation of free 5S rRNA, may be involved in the neurodegeneration observed in AD.

  17. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    PubMed

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  18. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    PubMed

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  19. Bacterial diversity within the planktonic community of an artesian water supply.

    PubMed

    Ball, Christopher L; Crawford, Ronald L

    2006-03-01

    Culture and molecular methods were used to describe the planktonic bacterial diversity of an artesian water supply in rural Latah County, Idaho, within the drainage of a small perennial stream, Thorn Creek. The surrounding depth to groundwater at this location is thought to be significant (>100 m), and this transitional zone (basalt-granite) of the Palouse aquifer system is little studied. The water produced by this artesian source is consistent even in years of drought and is of high quality, both mineralogically and microbiologically. A culture-based analysis using 30 media types and four incubation temperatures demonstrated that several metabolic types were present in the water. 16S rRNA gene fragments amplified from the DNA of pooled cultured cells and from the DNA extracted from 1 L of the source water were compared using denaturing gradient gel electrophoresis. The results indicated that the two DNA samples did not have similar 16S rRNA gene compositions and that several uncultured phyla were present in the community DNA sample. These results indicated that large-scale culturing did not accurately represent the structure planktonic community. 16S rRNA gene sequences from 17 different genera were obtained from the community DNA sample; the most abundant were similar to Rhodoferax, Rhodobacter, and Polaromonas species. Sequences related to the Proteo bacteria, Bacteroidetes/Chlorobi, Firmicutes, and Acidobacterium/Fibrobacter divisions were also detected.

  20. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood.

    PubMed

    Hervé, Vincent; Ketter, Elodie; Pierrat, Jean-Claude; Gelhaye, Eric; Frey-Klett, Pascale

    2016-01-01

    Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities.

  1. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood

    PubMed Central

    Hervé, Vincent; Ketter, Elodie; Pierrat, Jean-Claude; Gelhaye, Eric; Frey-Klett, Pascale

    2016-01-01

    Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities. PMID:26824755

  2. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood.

    PubMed

    Hervé, Vincent; Ketter, Elodie; Pierrat, Jean-Claude; Gelhaye, Eric; Frey-Klett, Pascale

    2016-01-01

    Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities. PMID:26824755

  3. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats.

    PubMed

    Yergeau, Etienne; Newsham, Kevin K; Pearce, David A; Kowalchuk, George A

    2007-11-01

    Although soil-borne bacteria represent the world's greatest source of biological diversity, it is not well understood whether extreme environmental conditions, such as those found in Antarctic habitats, result in reduced soil-borne microbial diversity. To address this issue, patterns of bacterial diversity were studied in soils sampled along a > 3200 km southern polar transect spanning a gradient of increased climate severity over 27 degrees of latitude. Vegetated and fell-field plots were sampled at the Falkland (51 degrees S), South Georgia (54 degrees S), Signy (60 degrees S) and Anchorage Islands (67 degrees S), while bare frost-sorted soil polygons were examined at Fossil Bluff (71 degrees S), Mars Oasis (72 degrees S), Coal Nunatak (72 degrees S) and the Ellsworth Mountains (78 degrees S). Bacterial 16S rRNA gene sequences were recovered subsequent to direct DNA extraction from soil, polymerase chain reaction amplification and cloning. Although bacterial diversity was observed to decline with increased latitude, habitat-specific patterns appeared to also be important. Namely, a negative relationship was found between bacterial diversity and latitude for fell-field soils, but no such pattern was observed for vegetated sites. The Mars Oasis site, previously identified as a biodiversity hotspot within this region, proved exceptional within the study transect, with unusually high bacterial diversity. In independent analyses, geographical distance and vegetation cover were found to significantly influence bacterial community composition. These results provide insight into the factors shaping the composition of bacterial communities in Antarctic terrestrial habitats and support the notion that bacterial diversity declines with increased climatic severity.

  4. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats.

    PubMed

    Yergeau, Etienne; Newsham, Kevin K; Pearce, David A; Kowalchuk, George A

    2007-11-01

    Although soil-borne bacteria represent the world's greatest source of biological diversity, it is not well understood whether extreme environmental conditions, such as those found in Antarctic habitats, result in reduced soil-borne microbial diversity. To address this issue, patterns of bacterial diversity were studied in soils sampled along a > 3200 km southern polar transect spanning a gradient of increased climate severity over 27 degrees of latitude. Vegetated and fell-field plots were sampled at the Falkland (51 degrees S), South Georgia (54 degrees S), Signy (60 degrees S) and Anchorage Islands (67 degrees S), while bare frost-sorted soil polygons were examined at Fossil Bluff (71 degrees S), Mars Oasis (72 degrees S), Coal Nunatak (72 degrees S) and the Ellsworth Mountains (78 degrees S). Bacterial 16S rRNA gene sequences were recovered subsequent to direct DNA extraction from soil, polymerase chain reaction amplification and cloning. Although bacterial diversity was observed to decline with increased latitude, habitat-specific patterns appeared to also be important. Namely, a negative relationship was found between bacterial diversity and latitude for fell-field soils, but no such pattern was observed for vegetated sites. The Mars Oasis site, previously identified as a biodiversity hotspot within this region, proved exceptional within the study transect, with unusually high bacterial diversity. In independent analyses, geographical distance and vegetation cover were found to significantly influence bacterial community composition. These results provide insight into the factors shaping the composition of bacterial communities in Antarctic terrestrial habitats and support the notion that bacterial diversity declines with increased climatic severity. PMID:17922752

  5. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  6. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences. PMID:25523504

  7. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.

  8. Common 5S rRNA variants are likely to be accepted in many sequence contexts

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; D'Souza, Lisa M.; Lee, Youn-Hyung; Fox, George E.

    2003-01-01

    Over evolutionary time RNA sequences which are successfully fixed in a population are selected from among those that satisfy the structural and chemical requirements imposed by the function of the RNA. These sequences together comprise the structure space of the RNA. In principle, a comprehensive understanding of RNA structure and function would make it possible to enumerate which specific RNA sequences belong to a particular structure space and which do not. We are using bacterial 5S rRNA as a model system to attempt to identify principles that can be used to predict which sequences do or do not belong to the 5S rRNA structure space. One promising idea is the very intuitive notion that frequently seen sequence changes in an aligned data set of naturally occurring 5S rRNAs would be widely accepted in many other 5S rRNA sequence contexts. To test this hypothesis, we first developed well-defined operational definitions for a Vibrio region of the 5S rRNA structure space and what is meant by a highly variable position. Fourteen sequence variants (10 point changes and 4 base-pair changes) were identified in this way, which, by the hypothesis, would be expected to incorporate successfully in any of the known sequences in the Vibrio region. All 14 of these changes were constructed and separately introduced into the Vibrio proteolyticus 5S rRNA sequence where they are not normally found. Each variant was evaluated for its ability to function as a valid 5S rRNA in an E. coli cellular context. It was found that 93% (13/14) of the variants tested are likely valid 5S rRNAs in this context. In addition, seven variants were constructed that, although present in the Vibrio region, did not meet the stringent criteria for a highly variable position. In this case, 86% (6/7) are likely valid. As a control we also examined seven variants that are seldom or never seen in the Vibrio region of 5S rRNA sequence space. In this case only two of seven were found to be potentially valid. The

  9. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico.

    PubMed

    López, Miguel A; Zavala-Díaz de la Serna, F Javier; Jan-Roblero, Janet; Romero, Juan M; Hernández-Rodríguez, César

    2006-10-01

    The aim of this study was to assess the bacterial diversity associated with a corrosive biofilm in a steel pipeline from the Gulf of Mexico used to inject marine water into the oil reservoir. Several aerobic and heterotrophic bacteria were isolated and identified by 16S rRNA gene sequence analysis. Metagenomic DNA was also extracted to perform a denaturing gradient gel electrophoresis analysis of ribosomal genes and to construct a 16S rRNA gene metagenomic library. Denaturing gradient gel electrophoresis profiles and ribosomal libraries exhibited a limited bacterial diversity. Most of the species detected in the ribosomal library or isolated from the pipeline were assigned to Proteobacteria (Halomonas spp., Idiomarina spp., Marinobacter aquaeolei, Thalassospira sp., Silicibacter sp. and Chromohalobacter sp.) and Bacilli (Bacillus spp. and Exiguobacterium spp.). This is the first report that associates some of these bacteria with a corrosive biofilm. It is relevant that no sulfate-reducing bacteria were isolated or detected by a PCR-based method. The diversity and relative abundance of bacteria from water pipeline biofilms may contribute to an understanding of the complexity and mechanisms of metal corrosion during marine water injection in oil secondary recovery.

  10. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  11. Binding site for Xenopus ribosomal protein L5 and accompanying structural changes in 5S rRNA.

    PubMed

    Scripture, J Benjamin; Huber, Paul W

    2011-05-10

    The structure of the eukaryotic L5-5S rRNA complex was investigated in protection and interference experiments and is compared with the corresponding structure (L18-5S rRNA) in the Haloarcula marismortui 50S subunit. In close correspondence with the archaeal structure, the contact sites for the eukaryotic ribosomal protein are located primarily in helix III and loop C and secondarily in loop A and helix V. While the former is unique to L5, the latter is also a critical contact site for transcription factor IIIA (TFIIIA), accounting for the mutually exclusive binding of these two proteins to 5S RNA. The binding of L5 causes structural changes in loops B and C that expose nucleotides that contact the Xenopus L11 ortholog in H. marismortui. This induced change in the structure of the RNA reveals the origins of the cooperative binding to 5S rRNA that has been observed for the bacterial counterparts of these proteins. The native structure of helix IV and loop D antagonizes binding of L5, indicating that this region of the RNA is dynamic and also influenced by the protein. Examination of the crystal structures of Thermus thermophilus ribosomes in the pre- and post-translocation states identified changes in loop D and in the surrounding region of 23S rRNA that support the proposal that 5S rRNA acts to transmit information between different functional domains of the large subunit.

  12. [Strategy of selecting 16S rRNA hypervariable regions for metagenome-phylogenetic marker genes based analysis].

    PubMed

    Zhang, Jun-yi; Zhu, Bing-chuan; Xu, Chao; Ding, Xiao; Li, Jun-feng; Zhang, Xue-gong; Lu, Zu-hong

    2015-11-01

    The advent of next generation sequencing technology enables parallel analysis of the whole microbial community from multiple samples. Particularly, sequencing 16S rRNA hypervariable tags has become the most efficient and cost-effective method for assessing microbial diversity. Due to its short read length of the 2nd-generation sequencing methods that cannot cover the full 16S rRNA genomic region, specific hypervariable regions or V-regions must be selected to act as the proxy. Over the past decade, selection of V-regions has not been consistent in assessing microbial diversity. Here we evaluated the current strategies of selecting 16S rRNA hypervariable regions for surveying microbial diversity. The environmental condition was considered as one of the important factors for selection of 16S rRNA hypervariable regions. We suggested that a pilot study to test different V-regions is required in bacterial diversity studies based on 16S rRNA genes.

  13. Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations.

    PubMed

    Bonaïti, Catherine; Parayre, Sandrine; Irlinger, Françoise

    2006-03-15

    Cheese microorganisms, such as bacteria and fungi, constitute a complex ecosystem that plays a central role in cheeses ripening. The molecular study of cheese microbial diversity and activity is essential but the extraction of high quality nucleic acid may be problematic: the cheese samples are characterised by a strong buffering capacity which negatively influenced the yield of the extracted rRNA. The objective of this study is to develop an effective method for the direct and simultaneous isolation of yeast and bacterial ribosomal RNA and genomic DNA from the same cheese samples. DNA isolation was based on a protocol used for nucleic acids isolation from anaerobic digestor, without preliminary washing step with the combined use of the action of chaotropic agent (acid guanidinium thiocyanate), detergents (SDS, N-lauroylsarcosine), chelating agent (EDTA) and a mechanical method (bead beating system). The DNA purification was carried out by two washing steps of phenol-chloroform. RNA was isolated successfully after the second acid extraction step by recovering it from the phenolic phase of the first acid extraction. The novel method yielded pure preparation of undegraded RNA accessible for reverse transcription-PCR. The extraction protocol of genomic DNA and rRNA was applicable to complex ecosystem of different cheese matrices.

  14. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit

    PubMed Central

    Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik

    2016-01-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612

  15. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit.

    PubMed

    Song, Yu-Rim; Choi, Min-Seon; Choi, Geun-Won; Park, Il-Kwon; Oh, Chang-Sik

    2016-08-01

    Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker disease in kiwifruit. Antibacterial activity of plant essential oils (PEOs) originating from 49 plant species were tested against Psa by a vapor diffusion and a liquid culture assays. The five PEOs from Pimenta racemosa, P. dioica, Melaleuca linariifolia, M. cajuputii, and Cinnamomum cassia efficiently inhibited Psa growth by either assays. Among their major components, estragole, eugenol, and methyl eugenol showed significant antibacterial activity by only the liquid culture assay, while cinnamaldehyde exhibited antibacterial activity by both assays. The minimum inhibitory concentrations (MICs) of estragole and cinnamaldehyde by the liquid culture assay were 1,250 and 2,500 ppm, respectively. The MIC of cinnamaldehyde by the vapor diffusion assay was 5,000 ppm. Based on the formation of clear zones or the decrease of optical density caused by these compounds, they might kill the bacterial cells and this feature might be useful for managing the bacterial canker disease in kiwifruit. PMID:27493612

  16. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  17. Use of 16S rRNA Sequencing for Identification of Actinobacillus ureae Isolated from a Cerebrospinal Fluid Sample

    PubMed Central

    Whitelaw, A. C.; Shankland, I. M.; Elisha, B. G.

    2002-01-01

    Actinobacillus ureae, previously Pasteurella ureae, has on rare occasions been described as a cause of human infection. Owing to its rarity, it may not be easily identified in clinical microbiology laboratories by standard tests. This report describes a patient with acute bacterial meningitis due to A. ureae. The identity of the isolate was determined by means of DNA sequence analysis of a portion of the 16S rRNA gene. PMID:11825992

  18. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv.

    PubMed

    Mengoni, Alessio; Pini, Francesco; Huang, Li-Nan; Shu, Wen-Sheng; Bazzicalupo, Marco

    2009-10-01

    Bacteria associated with tissues of metal-hyperaccumulating plants are of great interest due to the multiple roles they may play with respect to plant growth and resistance to heavy metals. The variability of bacterial communities associated with plant tissues of three populations of Alyssum bertolonii, a Ni hyperaccumulator endemic of serpentine outcrops of Central Italy, was investigated. Terminal-restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes was applied to DNA extracted from leaf tissues of 30 individual plants from three geographically separated serpentine outcrops. Moreover, T-RFLP fingerprinting was also performed on DNA extracted from the same soils from which the plants were collected. Fifty-nine unique terminal-restriction fragments (TRFs) were identified, with more than half of the taxonomically interpreted TRFs assigned to Alpha- and Gamma-Proteobacteria and Clostridia. Data were then used to define the extent of variation of bacterial communities due to single plants or to plant populations. Results indicated a very high plant-by-plant variation of leaf-associated community (more than 93% of total variance observed). However, a core (numerically small) of plant-specific TRFs was found. This work demonstrates that plant-associated bacterial communities represent a large reservoir of biodiversity and that the high variability existing between plants, even from the same population, should be taken into account in future studies on association between bacteria and metal-hyperaccumulating plants. PMID:19479304

  19. Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria.

    PubMed

    Schabereiter-Gurtner, Claudia; Lubitz, Werner; Rölleke, Sabine

    2003-02-01

    Ticks play an important role in the transmission of arthropod-borne diseases of viral, protozoal and bacterial origin. The present article describes a molecular-biological based method, which facilitated the broad-range analyses of bacterial communities in ixodid ticks (Ixodes ricinus). DNA was extracted both from single ticks and pooled adult ticks. Eubacterial 16S rRNA gene fragments (16S rDNA) were amplified by polymerase chain reaction (PCR) with broad-range ribosomal primers. Sequences spanning the hypervariable V3 region of the 16S rDNA and representing individual bacterial taxons were separated by denaturing gradient gel electrophoresis (DGGE). For phylogenetic identification, DGGE bands were exised, cloned and sequenced. In addition, we set up a 16S rDNA clone library which was screened by DGGE. Sequences were compared with sequences of known bacteria listed in the GenBank database. A number of bacteria were affiliated with the genera Rickettsia, Bartonella, and Borrelia, which are known to be pathogenic and transmitted by ticks. Two sequences were related to the yet to be cultivated Haemobartonella. To our knowledge, Haemobartonella has never been directly detected in I. ricinus. In addition, members of the genera Staphylococcus, Rhodococcus, Pseudomonas, and Moraxella were detected, which have not been identified in ticks so far. Two bacteria were most closely related to a rickettsial endosymbiont of an Acanthamoeba sp., and to an endosymbiont (Legionellaceae, Coxiella group) of the microarthropod Folsomia candida. The results prove that 16S rDNA genotyping in combination with DGGE analysis is a promising approach for the detection and identification of bacteria infecting ticks, regardless of whether these bacteria are fastidious, obligate intracellular or noncultivable.

  20. An empirical analysis of mt 16S rRNA covarion-like evolution in insects: site-specific rate variation is clustered and frequently detected.

    PubMed

    Misof, B; Anderson, C L; Buckley, T R; Erpenbeck, D; Rickert, A; Misof, K

    2002-10-01

    The structural and functional analysis of rRNA molecules has attracted considerable scientific interest. Empirical studies have demonstrated that sequence variation is not directly translated into modifications of rRNA secondary structure. Obviously, the maintenance of secondary structure and sequence variation are in part governed by different selection regimes. The nature of those selection regimes still remains quite elusive. The analysis of individual bacterial models cannot adequately explore this topic. Therefore, we used primary sequence data and secondary structures of a mitochondrial 16S rRNA fragment of 558 insect species from 15 monophyletic groups to study patterns of sequence variation, and variation of secondary structure. Using simulation studies to establish significance levels of change, we found that despite conservation of secondary structure, the location of sequence variation within the conserved rRNA structure changes significantly between groups of insects. Despite our conservative estimation procedure we found significant site-specific rate changes at 56 sites out of 184. Additionally, site-specific rate variation is somewhat clustered in certain helices. Both results confirm what has been predicted from an application of non-stationary maximum likelihood models to rRNA sequences. Clearly, constraints on sequence variation evolve and leave footprints in the form of evolutionary plasticity in rRNA sequences. Here, we show that a better understanding of the evolution of rRNA sequences can be obtained by integrating both phylogenetic and structural information.

  1. Genetic reconstruction of protozoan rRNA decoding sites provides a rationale for paromomycin activity against Leishmania and Trypanosoma.

    PubMed

    Hobbie, Sven N; Kaiser, Marcel; Schmidt, Sebastian; Shcherbakov, Dmitri; Janusic, Tanja; Brun, Reto; Böttger, Erik C

    2011-05-01

    Aminoglycoside antibiotics target the ribosomal decoding A-site and are active against a broad spectrum of bacteria. These compounds bind to a highly conserved stem-loop-stem structure in helix 44 of bacterial 16S rRNA. One particular aminoglycoside, paromomycin, also shows potent antiprotozoal activity and is used for the treatment of parasitic infections, e.g. by Leishmania spp. The precise drug target is, however, unclear; in particular whether aminoglycoside antibiotics target the cytosolic and/or the mitochondrial protozoan ribosome. To establish an experimental model for the study of protozoan decoding-site function, we constructed bacterial chimeric ribosomes where the central part of bacterial 16S rRNA helix 44 has been replaced by the corresponding Leishmania and Trypanosoma rRNA sequences. Relating the results from in-vitro ribosomal assays to that of in-vivo aminoglycoside activity against Trypanosoma brucei, as assessed in cell cultures and in a mouse model of infection, we conclude that aminoglycosides affect cytosolic translation while the mitochondrial ribosome of trypanosomes is not a target for aminoglycoside antibiotics.

  2. Microbial community of salt crystals processed from Mediterranean seawater based on 16S rRNA analysis.

    PubMed

    Baati, Houda; Guermazi, Sonda; Gharsallah, Neji; Sghir, Abdelghani; Ammar, Emna

    2010-01-01

    Phylogenetic analysis of 16S rRNA was used to investigate for the first time the structure of the microbial community that inhabits salt crystals retrieved from the bottom of a solar saltern, located in the coastal area of the Mediterranean Sea (Sfax, Tunisia). This community lives in an extremely salty environment of 250-310 g/L total dissolved salt. A total of 78 bacterial 16S rRNA clone sequences making up to 21 operational taxonomic units (OTUs), determined by the DOTUR program to 97% sequence similarity, was analyzed. These OTUs were affiliated to Bacteroidetes (71.4% of OTUs), and gamma-Proteobacteria and alpha-Proteobacteria (equally represented by 14.2% of the OTUs observed). The archaeal community composition appeared more diverse with 68 clones, resulting in 44 OTUs, all affiliated with the Euryarchaeota phylum. Of the bacterial and archaeal clones showing <97% 16S rRNA sequence identity with sequences in public databases, 47.6% and 84.1% respectively were novel clones. Both rarefaction curves and diversity measurements (Simpson, Shannon-Weaver, Chao) showed a more diverse archaeal than bacterial community at the Tunisian solar saltern pond. The analysis of an increasing clone's number may reveal additional local diversity. PMID:20130693

  3. Bacteria evade immune recognition via TLR13 and binding of their 23S rRNA by MLS antibiotics by the same mechanisms

    PubMed Central

    Hochrein, Hubertus; Kirschning, Carsten J.

    2013-01-01

    The immune system recognizes pathogens and other danger by means of pattern recognition receptors. Recently, we have demonstrated that the orphan Toll-like receptor 13 (TLR13) senses a defined sequence of the bacterial rRNA and that bacteria use specific mechanisms to evade macrolide lincosamide streptogramin (MLS) antibiotics detection via TLR13. PMID:23802068

  4. Salinity is the major factor influencing the sediment bacterial communities in a Mediterranean lagoonal complex (Amvrakikos Gulf, Ionian Sea).

    PubMed

    Pavloudi, Christina; Oulas, Anastasis; Vasileiadou, Katerina; Sarropoulou, Elena; Kotoulas, Georgios; Arvanitidis, Christos

    2016-08-01

    Lagoons are naturally enriched habitats, with unstable environmental conditions caused by their confinement, shallow depth and state of saprobity. The frequent fluctuations of the abiotic variables cause severe changes in the abundance and distribution of biota. This relationship has been studied extensively for the macrofaunal communities, but not sufficiently so for the bacterial ones. The aim of the present study was to explore the biodiversity patterns of bacterial assemblages and to examine whether these patterns are associated with biogeographic and environmental factors. For this purpose, sediment samples were collected from five lagoons located in the Amvrakikos Gulf (Ionian Sea, Western Greece). DNA was extracted from the sediment and was further processed through 16S rRNA pyrosequencing. The results of this exploratory study imply that salinity is the environmental factor best correlated with the bacterial community pattern, which has also been suggested in similar studies but for macrofaunal community patterns. In addition, the bacterial community of the brackish lagoons is differentiated from that of the brackish-marine lagoons. The findings of this study indicate that the studied lagoons have distinct bacterial communities. PMID:26831186

  5. Salinity is the major factor influencing the sediment bacterial communities in a Mediterranean lagoonal complex (Amvrakikos Gulf, Ionian Sea).

    PubMed

    Pavloudi, Christina; Oulas, Anastasis; Vasileiadou, Katerina; Sarropoulou, Elena; Kotoulas, Georgios; Arvanitidis, Christos

    2016-08-01

    Lagoons are naturally enriched habitats, with unstable environmental conditions caused by their confinement, shallow depth and state of saprobity. The frequent fluctuations of the abiotic variables cause severe changes in the abundance and distribution of biota. This relationship has been studied extensively for the macrofaunal communities, but not sufficiently so for the bacterial ones. The aim of the present study was to explore the biodiversity patterns of bacterial assemblages and to examine whether these patterns are associated with biogeographic and environmental factors. For this purpose, sediment samples were collected from five lagoons located in the Amvrakikos Gulf (Ionian Sea, Western Greece). DNA was extracted from the sediment and was further processed through 16S rRNA pyrosequencing. The results of this exploratory study imply that salinity is the environmental factor best correlated with the bacterial community pattern, which has also been suggested in similar studies but for macrofaunal community patterns. In addition, the bacterial community of the brackish lagoons is differentiated from that of the brackish-marine lagoons. The findings of this study indicate that the studied lagoons have distinct bacterial communities.

  6. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients.

    PubMed

    Frémont, Marc; Coomans, Danny; Massart, Sebastien; De Meirleir, Kenny

    2013-08-01

    Human intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Intestinal dysfunction is a frequent complaint in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, and previous reports suggest that dysbiosis, i.e. the overgrowth of abnormal populations of bacteria in the gut, is linked to the pathogenesis of the disease. We used high-throughput 16S rRNA gene sequencing to investigate the presence of specific alterations in the gut microbiota of ME/CFS patients from Belgium and Norway. 43 ME/CFS patients and 36 healthy controls were included in the study. Bacterial DNA was extracted from stool samples, PCR amplification was performed on 16S rRNA gene regions, and PCR amplicons were sequenced using Roche FLX 454 sequencer. The composition of the gut microbiota was found to differ between Belgian controls and Norwegian controls: Norwegians showed higher percentages of specific Firmicutes populations (Roseburia, Holdemania) and lower proportions of most Bacteroidetes genera. A highly significant separation could be achieved between Norwegian controls and Norwegian patients: patients presented increased proportions of Lactonifactor and Alistipes, as well as a decrease in several Firmicutes populations. In Belgian subjects the patient/control separation was less pronounced, however some abnormalities observed in Norwegian patients were also found in Belgian patients. These results show that intestinal microbiota is altered in ME/CFS. High-throughput sequencing is a useful tool to diagnose dysbiosis in patients and could help designing treatments based on gut microbiota modulation (antibiotics, pre and probiotics supplementation).

  7. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  8. Evaluation of Methods for the Extraction and Purification of DNA from the Human Microbiome

    PubMed Central

    Yuan, Sanqing; Cohen, Dora B.; Ravel, Jacques; Abdo, Zaid; Forney, Larry J.

    2012-01-01

    Background DNA extraction is an essential step in all cultivation-independent approaches to characterize microbial diversity, including that associated with the human body. A fundamental challenge in using these approaches has been to isolate DNA that is representative of the microbial community sampled. Methodology/Principal Findings In this study, we statistically evaluated six commonly used DNA extraction procedures using eleven human-associated bacterial species and a mock community that contained equal numbers of those eleven species. These methods were compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly representation of microbial diversity. The analysis of 16S rRNA gene sequences from a mock community showed that the observed species abundances were significantly different from the expected species abundances for all six DNA extraction methods used. Conclusions/Significance Protocols that included bead beating and/or mutanolysin produced significantly better bacterial community structure representation than methods without both of them. The reproducibility of all six methods was similar, and results from different experimenters and different times were in good agreement. Based on the evaluations done it appears that DNA extraction procedures for bacterial community analysis of human associated samples should include bead beating and/or mutanolysin to effectively lyse cells. PMID:22457796

  9. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification.

    PubMed

    O'Neill, B; Grossman, J; Tsai, M T; Gomes, J E; Lehmann, J; Peterson, J; Neves, E; Thies, J E

    2009-07-01

    Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols. PMID:19381712

  10. Identification of nine sequence types of the 16S rRNA genes of Campylobacter jejuni subsp. jejuni isolated from broilers

    PubMed Central

    Hansson, Ingrid; Persson, Marianne; Svensson, Linda; Engvall, Eva Olsson; Johansson, Karl-Erik

    2008-01-01

    Background Campylobacter is the most commonly reported bacterial cause of enteritis in humans in the EU Member States and other industrialized countries. One significant source of infection is broilers and consumption of undercooked broiler meat. Campylobacter jejuni is the Campylobacter sp. predominantly found in infected humans and colonized broilers. Sequence analysis of the 16S rRNA gene is very useful for identification of bacteria to genus and species level. The objectives in this study were to determine the degree of intraspecific variation in the 16S rRNA genes of C. jejuni and C. coli and to determine whether the 16S rRNA sequence types correlated with genotypes generated by PFGE analysis of SmaI restricted genomic DNA of the strains. Methods The 16S rRNA genes of 45 strains of C. jejuni and two C. coli strains isolated from broilers were sequenced and compared with 16S rRNA sequences retrieved from the Ribosomal Database Project or GenBank. The strains were also genotyped by PFGE after digestion with SmaI. Results Sequence analyses of the 16S rRNA genes revealed nine sequence types of the Campylobacter strains and the similarities between the different sequence types were in the range 99.6–99.9%. The number of nucleotide substitutions varied between one and six among the nine 16S rRNA sequence types. One of the nine 16S rRNA sequence profiles was common to 12 of the strains from our study and two of these were identified as Campylobacter coli by PCR/REA. The other 10 strains were identified as Campylobacter jejuni. Five of the nine sequence types were also found among the Campylobacter sequences deposited in GenBank. The three 16S rRNA genes in the analysed strains were identical within each individual strain for all 47 strains. Conclusion C. jejuni and C. coli seem to lack polymorphisms in their 16S rRNA gene, but phylogenetic analysis based on 16S rRNA sequences was not always sufficient for differentiation between C. jejuni and C. coli. The strains

  11. Comparison of Boiling and Robotics Automation Method in DNA Extraction for Metagenomic Sequencing of Human Oral Microbes.

    PubMed

    Yamagishi, Junya; Sato, Yukuto; Shinozaki, Natsuko; Ye, Bin; Tsuboi, Akito; Nagasaki, Masao; Yamashita, Riu

    2016-01-01

    The rapid improvement of next-generation sequencing performance now enables us to analyze huge sample sets with more than ten thousand specimens. However, DNA extraction can still be a limiting step in such metagenomic approaches. In this study, we analyzed human oral microbes to compare the performance of three DNA extraction methods: PowerSoil (a method widely used in this field), QIAsymphony (a robotics method), and a simple boiling method. Dental plaque was initially collected from three volunteers in the pilot study and then expanded to 12 volunteers in the follow-up study. Bacterial flora was estimated by sequencing the V4 region of 16S rRNA following species-level profiling. Our results indicate that the efficiency of PowerSoil and QIAsymphony was comparable to the boiling method. Therefore, the boiling method may be a promising alternative because of its simplicity, cost effectiveness, and short handling time. Moreover, this method was reliable for estimating bacterial species and could be used in the future to examine the correlation between oral flora and health status. Despite this, differences in the efficiency of DNA extraction for various bacterial species were observed among the three methods. Based on these findings, there is no "gold standard" for DNA extraction. In future, we suggest that the DNA extraction method should be selected on a case-by-case basis considering the aims and specimens of the study. PMID:27104353

  12. Comparison of Boiling and Robotics Automation Method in DNA Extraction for Metagenomic Sequencing of Human Oral Microbes

    PubMed Central

    Shinozaki, Natsuko; Ye, Bin; Tsuboi, Akito; Nagasaki, Masao; Yamashita, Riu

    2016-01-01

    The rapid improvement of next-generation sequencing performance now enables us to analyze huge sample sets with more than ten thousand specimens. However, DNA extraction can still be a limiting step in such metagenomic approaches. In this study, we analyzed human oral microbes to compare the performance of three DNA extraction methods: PowerSoil (a method widely used in this field), QIAsymphony (a robotics method), and a simple boiling method. Dental plaque was initially collected from three volunteers in the pilot study and then expanded to 12 volunteers in the follow-up study. Bacterial flora was estimated by sequencing the V4 region of 16S rRNA following species-level profiling. Our results indicate that the efficiency of PowerSoil and QIAsymphony was comparable to the boiling method. Therefore, the boiling method may be a promising alternative because of its simplicity, cost effectiveness, and short handling time. Moreover, this method was reliable for estimating bacterial species and could be used in the future to examine the correlation between oral flora and health status. Despite this, differences in the efficiency of DNA extraction for various bacterial species were observed among the three methods. Based on these findings, there is no “gold standard” for DNA extraction. In future, we suggest that the DNA extraction method should be selected on a case-by-case basis considering the aims and specimens of the study. PMID:27104353

  13. Standardized ginger (Zingiber officinale) extract reduces bacterial load and suppresses acute and chronic inflammation in Mongolian gerbils infected with cagA+Helicobacter pylori

    PubMed Central

    Gaus, Kristen; Huang, Yue; Israel, Dawn A.; Pendland, Susan L.; Adeniyi, Bolanle A.; Mahady, Gail B.

    2010-01-01

    Previous investigations demonstrated that a standardized extract of ginger rhizome inhibited the growth of Helicobacter pylori in vitro with a minimum inhibitory concentration in the range 0.78 to 12.5 μg/mL. In the present work, the extract was tested in a rodent model of H. pylori-induced disease, the Mongolian gerbil, to examine the effects of the extract on both prevention and eradication of infection. The extract was administered to Mongolian gerbils at a daily dose of 100 mg/kg body weight in rations either 3 weeks prior to infection or 6 weeks post-infection. Treatment with the standardized ginger extract reduced H. pylori load as compared with controls and significantly (P<0.05) reduced both acute and chronic muscosal and submucosal inflammation, cryptitis, as well as epithelial cell degeneration and erosion induced by H. pylori. Importantly, the extract did not increase morbidity or mortality. Further investigations of the mechanism demonstrated that the ginger extract inhibited the activity of cyclooxygenase-2, with 50% inhibitory concentration (IC50) of 8.5 μg/mL in vitro, inhibited the nuclear factor-κB transcriptional response in kBZ Jurkat cells (human T lymphocytes) with an IC50 of 24.6 μg/mL, and significantly inhibited the release of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α from lipopolysaccharide-stimulated human peripheral blood mononuclear cells with IC50 values of 3.89, 7.7, 8.5, and 8.37 μg/mL, respectively. These results suggest ginger extracts may be useful for development as agents to reduce H. pylori-induced inflammation and as for gastric cancer chemoprevention. PMID:20376296

  14. Bead Array Direct rRNA Capture Assay (rCapA) for Amplification Free Speciation of Mycobacterium Cultures

    PubMed Central

    de Ronde, Hans; González Alonso, Paula; van Soolingen, Dick; Klatser, Paul R.; Anthony, Richard M.

    2012-01-01

    Mycobacterium cultures, from patients suspected of tuberculosis or nontuberculous mycobacteria (NTM) infection, need to be identified. It is most critical to identify cultures belonging to the Mycobacterium tuberculosis complex, but also important to recognize clinically irrelevant or important NTM to allow appropriate patient management. Identification of M. tuberculosis can be achieved by a simple and cheap lateral flow assay, but identification of other Mycobacterium spp. generally requires more complex molecular methods. Here we demonstrate that a paramagnetic liquid bead array method can be used to capture mycobacterial rRNA in crude lysates of positive cultures and use a robust reader to identify the species in a direct and sensitive manner. We developed an array composed of paramagnetic beads coupled to oligonucleotides to capture 16 rRNA from eight specific Mycobacterium species and a single secondary biotinilated reporter probe to allow the captured rRNA to be detected. A ninth less specific bead and its associated reporter probe, designed to capture 23S rRNA from mycobacteria and related genera, is included as an internal control to confirm the presence of bacterial rRNA from a GC rich Gram variable genera. Using this rRNA capture assay (rCapA) with the array developed we were already able to confirm the presence of members of the M. tuberculosis complex and to discriminate a range of NTM species. This approach is not based on DNA amplification and therefore does not require precautions to avoid amplicon contamination. Moreover, the new generation of stable and cost effective liquid bead readers provides the necessary multiplexing potential to develop a robust and highly discriminatory assay. PMID:22396779

  15. Seasonal dynamics of bacterioplankton community structure in a eutrophic lake as determined by 5S rRNA analysis.

    PubMed

    Höfle, M G; Haas, H; Dominik, K

    1999-07-01

    Community structure of bacterioplankton was studied during the major growth season for phytoplankton (April to October) in the epilimnion of a temperate eutrophic lake (Lake Plusssee, northern Germany) by using comparative 5S rRNA analysis. Estimates of the relative abundances of single taxonomic groups were made on the basis of the amounts of single 5S rRNA bands obtained after high-resolution electrophoresis of RNA directly from the bacterioplankton. Full-sequence analysis of single environmental 5S rRNAs enabled the identification of single taxonomic groups of bacteria. Comparison of partial 5S rRNA sequences allowed the detection of changes of single taxa over time. Overall, the whole bacterioplankton community showed two to eight abundant (>4% of the total 5S rRNA) taxa. A distinctive seasonal succession was observed in the taxonomic structure of this pelagic community. A rather-stable community structure, with seven to eight different taxonomic units, was observed beginning in April during the spring phytoplankton bloom. A strong reduction in this diversity occurred at the beginning of the clear-water phase (early May), when only two to four abundant taxa were observed, with one taxon dominating (up to 72% of the total 5S rRNA). The community structure during summer stagnation (June and July) was characterized by frequent changes of different dominating taxa. During late summer, a dinoflagellate bloom (Ceratium hirudinella) occurred, with Comamonas acidovorans (beta-subclass of the class Proteobacteria) becoming the dominant bacterial species (average abundance of 43% of the total 5S rRNA). Finally, the seasonal dynamics of the community structure of bacterioplankton were compared with the abundances of other major groups of the aquatic food web, such as phyto- and zooplankton, revealing that strong grazing pressure by zooplankton can reduce microbial diversity substantially in pelagic environments.

  16. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds

    PubMed Central

    Adewumi, Gbenga A.; Oguntoyinbo, Folarin A.; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2013-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S–23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life. PMID:23316189

  17. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    PubMed

    Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2012-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life.

  18. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    PubMed

    Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2012-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life. PMID:23316189

  19. Evaluation of MolYsis™ Complete5 DNA Extraction Method for Detecting Staphylococcus aureus DNA from Whole Blood in a Sepsis Model Using PCR/Pyrosequencing

    PubMed Central

    McCann, Chase D.; Jordan, Jeanne A.

    2014-01-01

    Bacterial bloodstream infections (BSI) and ensuing sepsis are important causes of morbidity and mortality. Early diagnosis and rapid treatment with appropriate antibiotics are vital for improving outcome. Nucleic acid amplification of bacteria directly from whole blood has the potential of providing a faster means of diagnosing BSI than automated blood culture. However, effective DNA extraction of commonly low levels of bacterial target from whole blood is critical for this approach to be successful. This study compared the Molzyme MolYsis™ Complete5 DNA extraction method to a previously described organic bead-based method for use with whole blood. A well-characterized S. aureus-induced pneumonia model of sepsis in canines was used to provide clinically relevant whole blood samples. DNA extracts were assessed for purity and concentration and analyzed for bacterial rRNA gene targets using PCR and sequence-based identification. Both extraction methods yielded relatively pure DNA with median A260/280 absorbance ratios of 1.71 (MolYsis™) and 1.97 (bead-based). The organic bead-based extraction method yielded significantly higher average DNA concentrations (P <0.05) at each time point throughout the experiment, closely correlating with changes observed in white blood cell (WBC) concentrations during this same time period, while DNA concentrations of the MolYsis™ extracts closely mirrored quantitative blood culture results. Overall, S. aureus DNA was detected from whole blood samples in 70.7% (58/82) of MolYsis™ DNA extracts, and in 59.8% (49/82) of organic bead-based extracts, with peak detection rates seen at 48 h for both MolYsis™ (87.0%) and organic bead-based (82.6%) methods. In summary, the MolYsis™ Complete5 DNA extraction kit proved to be the more effective method for isolating bacterial DNA directly from extracts made from whole blood. PMID:24503182

  20. Coamplification of eukaryotic DNA with 16S rRNA gene-based PCR primers: possible consequences for population fingerprinting of complex microbial communities.

    PubMed

    Huys, Geert; Vanhoutte, Tom; Joossens, Marie; Mahious, Amal S; De Brandt, Evie; Vermeire, Severine; Swings, Jean

    2008-06-01

    The main aim of this study was to evaluate the specificity of three commonly used 16S rRNA gene-based polymerase chain reaction (PCR) primer sets for bacterial community analysis of samples contaminated with eukaryotic DNA. The specificity of primer sets targeting the V3, V3-V5, and V6-V8 hypervariable regions of the 16S rRNA gene was investigated in silico and by community fingerprinting of human and fish intestinal samples. Both in silico and PCR-based analysis revealed cross-reactivity of the V3 and V3-V5 primers with the 18S rRNA gene of human and sturgeon. The consequences of this primer anomaly were illustrated by denaturing gradient gel electrophoresis (DGGE) profiling of microbial communities in human feces and mixed gut of Siberian sturgeon. DGGE profiling indicated that the cross-reactivity of 16S rRNA gene primers with nontarget eukaryotic DNA might lead to an overestimation of bacterial biodiversity. This study has confirmed previous sporadic indications in literature indicating that several commonly applied 16S rRNA gene primer sets lack specificity toward bacteria in the presence of eukaryotic DNA. The phenomenon of cross-reactivity is a potential source of systematic error in all biodiversity studies where no subsequent analysis of individual community amplicons by cloning and sequencing is performed.

  1. Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes.

    PubMed

    Roller, C; Ludwig, W; Schleifer, K H

    1992-06-01

    An insertion of about 100 bases within the central part of the 23S rRNA genes was found to be a phylogenetic marker for the bacterial line of descent of Gram-positive bacteria with a high DNA G + C content. The insertion was present in 23S rRNA genes of 64 strains representing the major phylogenetic groups of Gram-positive bacteria with a high DNA G+C content, whereas it was not found in 23S rRNA genes of 55 (eu)bacteria representing Gram-positive bacteria with a low DNA G + C content and all other known (eu)bacterial phyla. The presence of the insertion could be easily demonstrated by comparative gel electrophoretic analysis of in vitro-amplified 23S rDNA fragments, which contained the insertion. The nucleotide sequences of the amplified fragments were determined and sequence similarities of at least 44% were found. The overall similarity values are lower than those of 16S and 23S rRNA sequences of the particular organism. Northern hybridization experiments indicated the presence of the insertion within the mature 23S rRNA of Corynebacterium glutamicum.

  2. A randomized, double-blind, placebo-controlled trial to assess the bacterial anti-adhesion effects of cranberry extract beverages.

    PubMed

    Kaspar, Kerrie L; Howell, Amy B; Khoo, Christina

    2015-04-01

    In this study, we examined the ex vivo urinary anti-adhesion activity of low-calorie cranberry extract beverages in both a pilot study (n = 10) and a randomized, double-blind, placebo controlled clinical trial (n = 59). In the pilot study, subjects consumed a cranberry extract beverage (CEB) or a cranberry extract and juice beverage (CEJB), compared to placebo. Both cranberry beverages utilized a standardized cranberry extract powder at a level equivalent to low-calorie cranberry juice cocktail (LCJC) on a PAC content basis. Clean-catch urine samples collected at baseline and post intervention were tested for anti-adhesion activity utilizing a mannose-resistant human red blood cell hemagglutination assay specific for P-fimbriated E. coli. Results from the pilot study indicated that ex vivo anti-adhesion activity for both cranberry treatments were higher (p < 0.05) than placebo. In the clinical trial, we compared CEJB to LCJC and a placebo beverage. Post-consumption urine from both cranberry treatment groups showed significantly higher (p < 0.05) anti-adhesion activity compared to placebo. There were no differences observed in anti-adhesion activity between CJEB and LCJC, indicating similar bioactivity. Therefore, acute beverage consumption of cranberry extract and/or juice provides ex vivo anti-adhesion activity, which may help to improve urinary tract health. PMID:25723356

  3. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  4. Chronic bacterial prostatitis: efficacy of short-lasting antibiotic therapy with prulifloxacin (Unidrox®) in association with saw palmetto extract, lactobacillus sporogens and arbutin (Lactorepens®)

    PubMed Central

    2014-01-01

    Background Bacterial prostatitis (BP) is a common condition accounting responsible for about 5-10% of all prostatitis cases; chronic bacterial prostatitis (CBP) classified as type II, are less common but is a condition that significantly hampers the quality of life, (QoL) because not only is it a physical condition but also a psychological distress. Commonly patients are treated with antibiotics alone, and in particular fluoroquinolones are suggested by the European Urology guidelines. This approach, although recommended, may not be enough. Thus, a multimodal approach to the prolonged antibiotic therapy may be helpful. Methods 210 patients affected by chronic bacterial prostatitis were enrolled in the study. All patients were positive to Meares-Stamey test and symptoms duration was > 3 months. The purpose of the study was to evaluate the efficacy of a long lasting therapy with a fluoroquinolone in association with a nutraceutical supplement (prulifloxacin 600 mg for 21 days and an association of Serenoa repens 320 mg, Lactobacillus Sporogens 200 mg, Arbutin 100 mg for 30 days). Patients were randomized in two groups (A and B) receiving respectively antibiotic alone and an association of antibiotic plus supplement. Results Biological recurrence at 2 months in Group A was observed in 21 patients (27.6%) and in Group B in 6 patients (7.8%). Uropathogens found at the first follow-up were for the majority Gram – (E. coli and Enterobacter spp.). A statistically significant difference was found at the time of the follow-up between Group A and B in the NIH-CPSI questionnaire score, symptoms evidence and serum PSA. Conclusions Broad band, short-lasting antibiotic therapy in association with a nutritional supplement (serenoa repens, lactobacillus sporogens and arbutin) show better control and recurrence rate on patients affected by chronic bacterial prostatitits in comparison with antibiotic treatment alone. Trial registration NCT02130713 Date of trial

  5. Antibacterial activity of aqueous extract of pomegranate peel against Pseudomonas stutzeri isolated from poultry meat.

    PubMed

    Devatkal, Suresh K; Jaiswal, Parnita; Jha, Shyam N; Bharadwaj, Rishi; Viswas, K N

    2013-06-01

    In this study antibacterial activity of pomegranate peel (PPE) was evaluated against bacteria isolated from poultry meat. The bacteria were identified using 16S rRNA gene and DNA sequencing. Results of molecular characterization showed that the bacteria isolated were having 100% homology with the Pseudomonas stutzeri strain CTSP36 and further analysis showed that sample sequence clustered with the P. stutzeri strain CTSP36. Antibacterial activity of PPE was demonstrated by clear zone of inhibition in plates inoculated with extract. The diameter of inhibition zones were significantly (p < 0.05) higher in PPE as compared to standard antibiotic discs used (tetracycline, vancomycin and streptomycin). Results of broth dilution assay also revealed that PPE at 1%, 5% and 10% were effective in inhibiting bacterial growth in test plates. Further, a decrease in the growth of bacterial cells and a gradual decline in protein content of bacterial cells were also observed when bacterial culture was grown with different concentration of PPE along with a control. These results showed the potential application of pomegranate peel extract as antibacterial agent against P. stutzeri.

  6. Antibacterial activity of aqueous extract of pomegranate peel against Pseudomonas stutzeri isolated from poultry meat.

    PubMed

    Devatkal, Suresh K; Jaiswal, Parnita; Jha, Shyam N; Bharadwaj, Rishi; Viswas, K N

    2013-06-01

    In this study antibacterial activity of pomegranate peel (PPE) was evaluated against bacteria isolated from poultry meat. The bacteria were identified using 16S rRNA gene and DNA sequencing. Results of molecular characterization showed that the bacteria isolated were having 100% homology with the Pseudomonas stutzeri strain CTSP36 and further analysis showed that sample sequence clustered with the P. stutzeri strain CTSP36. Antibacterial activity of PPE was demonstrated by clear zone of inhibition in plates inoculated with extract. The diameter of inhibition zones were significantly (p < 0.05) higher in PPE as compared to standard antibiotic discs used (tetracycline, vancomycin and streptomycin). Results of broth dilution assay also revealed that PPE at 1%, 5% and 10% were effective in inhibiting bacterial growth in test plates. Further, a decrease in the growth of bacterial cells and a gradual decline in protein content of bacterial cells were also observed when bacterial culture was grown with different concentration of PPE along with a control. These results showed the potential application of pomegranate peel extract as antibacterial agent against P. stutzeri. PMID:24425952

  7. rRNA operons and genome size of 'Candidatus Liberibacter americanus', a bacterium associated with citrus huanglongbing in Brazil.

    PubMed

    Wulff, N A; Eveillard, S; Foissac, X; Ayres, A J; Bové, J-M

    2009-08-01

    Huanglongbing is one of the most severe diseases of citrus worldwide and is associated with 'Candidatus (Ca.) Liberibacter africanus' in Africa, 'Ca. Liberibacter asiaticus' in Asia and the Americas (Brazil, USA and Cuba) and 'Ca. Liberibacter americanus' (Lam) in Brazil. In the absence of axenic cultures, genetic information on liberibacters is scarce. The sequences of the entire 23S rRNA and 5S rRNA genes from Lam have now been obtained, using a consensus primer designed on known tRNAMet sequences of rhizobia. The size of the Lam genome was determined by PFGE, using Lam-infected periwinkle plants for bacterial enrichment, and was found to be close to 1.31 Mbp. In order to determine the number of ribosomal operons on the Lam genome, probes designed to detect the 16S rRNA gene and the 3' end of the 23S rRNA gene were developed and used for Southern hybridization with I-CeuI-treated genomic DNA. Our results suggest that there are three ribosomal operons in a circular genome. Lam is the first liberibacter species for which such data are available.

  8. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates

    PubMed Central

    Bar-Yaacov, Dan; Frumkin, Idan; Yashiro, Yuka; Schlesinger, Orr; Bieri, Philipp; Greber, Basil; Ban, Nenad; Zarivach, Raz; Alfonta, Lital; Pilpel, Yitzhak; Suzuki, Tsutomu; Mishmar, Dan

    2016-01-01

    The mitochondrial ribosome, which translates all mitochondrial DNA (mtDNA)-encoded proteins, should be tightly regulated pre- and post-transcriptionally. Recently, we found RNA-DNA differences (RDDs) at human mitochondrial 16S (large) rRNA position 947 that were indicative of post-transcriptional modification. Here, we show that these 16S rRNA RDDs result from a 1-methyladenosine (m1A) modification introduced by TRMT61B, thus being the first vertebrate methyltransferase that modifies both tRNA and rRNAs. m1A947 is conserved in humans and all vertebrates having adenine at the corresponding mtDNA position (90% of vertebrates). However, this mtDNA base is a thymine in 10% of the vertebrates and a guanine in the 23S rRNA of 95% of bacteria, suggesting alternative evolutionary solutions. m1A, uridine, or guanine may stabilize the local structure of mitochondrial and bacterial ribosomes. Experimental assessment of genome-edited Escherichia coli showed that unmodified adenine caused impaired protein synthesis and growth. Our findings revealed a conserved mechanism of rRNA modification that has been selected instead of DNA mutations to enable proper mitochondrial ribosome function. PMID:27631568

  9. 16S rRNA partial gene sequencing for the differentiation and molecular subtyping of Listeria species.

    PubMed

    Hellberg, Rosalee S; Martin, Keely G; Keys, Ashley L; Haney, Christopher J; Shen, Yuelian; Smiley, R Derike

    2013-12-01

    Use of 16S rRNA partial gene sequencing within the regulatory workflow could greatly reduce the time and labor needed for confirmation and subtyping of Listeria monocytogenes. The goal of this study was to build a 16S rRNA partial gene reference library for Listeria spp. and investigate the potential for 16S rRNA molecular subtyping. A total of 86 isolates of Listeria representing L. innocua, L. seeligeri, L. welshimeri, and L. monocytogenes were obtained for use in building the custom library. Seven non-Listeria species and three additional strains of Listeria were obtained for use in exclusivity and food spiking tests. Isolates were sequenced for the partial 16S rRNA gene using the MicroSeq ID 500 Bacterial Identification Kit (Applied Biosystems). High-quality sequences were obtained for 84 of the custom library isolates and 23 unique 16S sequence types were discovered for use in molecular subtyping. All of the exclusivity strains were negative for Listeria and the three Listeria strains used in food spiking were consistently recovered and correctly identified at the species level. The spiking results also allowed for differentiation beyond the species level, as 87% of replicates for one strain and 100% of replicates for the other two strains consistently matched the same 16S type.

  10. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates.

    PubMed

    Bar-Yaacov, Dan; Frumkin, Idan; Yashiro, Yuka; Chujo, Takeshi; Ishigami, Yuma; Chemla, Yonatan; Blumberg, Amit; Schlesinger, Orr; Bieri, Philipp; Greber, Basil; Ban, Nenad; Zarivach, Raz; Alfonta, Lital; Pilpel, Yitzhak; Suzuki, Tsutomu; Mishmar, Dan

    2016-09-01

    The mitochondrial ribosome, which translates all mitochondrial DNA (mtDNA)-encoded proteins, should be tightly regulated pre- and post-transcriptionally. Recently, we found RNA-DNA differences (RDDs) at human mitochondrial 16S (large) rRNA position 947 that were indicative of post-transcriptional modification. Here, we show that these 16S rRNA RDDs result from a 1-methyladenosine (m1A) modification introduced by TRMT61B, thus being the first vertebrate methyltransferase that modifies both tRNA and rRNAs. m1A947 is conserved in humans and all vertebrates having adenine at the corresponding mtDNA position (90% of vertebrates). However, this mtDNA base is a thymine in 10% of the vertebrates and a guanine in the 23S rRNA of 95% of bacteria, suggesting alternative evolutionary solutions. m1A, uridine, or guanine may stabilize the local structure of mitochondrial and bacterial ribosomes. Experimental assessment of genome-edited Escherichia coli showed that unmodified adenine caused impaired protein synthesis and growth. Our findings revealed a conserved mechanism of rRNA modification that has been selected instead of DNA mutations to enable proper mitochondrial ribosome function. PMID:27631568

  11. Bacterial Keratitis

    MedlinePlus

    ... very quickly, and if left untreated, can cause blindness. The bacteria usually responsible for this type of ... to intense ultraviolet radiation exposure, e.g. snow blindness or welder's arc eye). Next Bacterial Keratitis Symptoms ...

  12. Comparison of Solution Conformations and Stabilities of Modified Helix 69 rRNA Analogues from Bacteria and Human†

    PubMed Central

    Sumita, Minako; Jiang, Jun; SantaLucia, John; Chow, Christine S.

    2012-01-01

    The helix 69 (H69) region of the large subunit (28S) rRNA of H. sapiens contains five pseudouridine (Ψ) residues out of 19 total nucleotides, three of which are highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine in double-stranded (stem) regions. These results were compared with previous hairpin (stem plus single-stranded loop) studies in order to understand the contributions of the loop sequences to H69 structure and stability. The role of a loop nucleotide substitution from an A in bacteria (position 1918 in E. coli 23S rRNA) to a G in eukaryotes (position 3734 in H. sapiens 28S rRNA) was examined. Thermodynamic parameters for the duplex RNAs were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by circular dichroism spectroscopy. The overall folded structure of human H69 appears to be similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved; however, our results reveal subtle differences in structure and stability between the bacterial and human H69 RNAs in both the stem and loop regions. These findings may be significant with respect to H69 as a potential drug target site. PMID:21858779

  13. Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions.

    PubMed

    Bortolini, Cristian; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo

    2016-11-01

    The quality of chocolate is influenced by several parameters, one of which is bacterial diversity during fermentation and drying; a crucial factor for the generation of the optimal cocoa flavor precursors. Our understanding of the bacterial populations involved in chocolate fermentation can be improved by the use of high-throughput sequencing technologies (HTS), combined with PCR amplification of the 16S rRNA subunit. Here, we have conducted a high-throughput assessment of bacterial diversity in four processed samples of cocoa beans from different geographic origins. As part of this study, we also assessed whether different DNA extraction methods could affect the quality of our data. The dynamics of microbial populations were analyzed postharvest (fermentation and sun drying) and shipment, before entry to the industrial process. A total of 691,867 high quality sequences were obtained by Illumina MiSeq sequencing of the two bacterial 16S rRNA hypervariable regions, V3 and V4, following paired-read assembly of the raw reads. Manual curation of the 16S database allowed us to assign the correct taxonomic classifications, at species level, for 83.8% of those reads. This approach revealed a limited biodiversity and population dynamics for both the lactic acid bacteria (LAB) and acetic acid bacteria (AAB), both of which are key players during the acetification and lactic acid fermentation phases. Among the LAB, the most abundant species were Lactobacillus fermentum, Enterococcus casseliflavus, Weissella paramesenteroides, and Lactobacillus plantarum/paraplantarum. Among the AAB, Acetobacter syzygii, was most abundant, then Acetobacter senegalensis and Acetobacter pasteriuanus. Our results indicate that HTS approach has the ability to provide a comprehensive view of the cocoa bean microbiota at the species level.

  14. Spatial Changes in the Bacterial Community Structure along a Vertical Oxygen Gradient in Flooded Paddy Soil Cores

    PubMed Central

    Lüdemann, Heiner; Arth, Inko; Liesack, Werner

    2000-01-01

    Molecular ecology techniques were applied to assess changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Microsensor measurements showed that oxygen was depleted from 140 μM at the floodwater/soil interface to nondetectable amounts at a depth of approximately 2.0 mm and below. Bacterial 16S rRNA gene (rDNA)-based community fingerprint patterns were obtained from 200-μm-thick soil slices of both the oxic and anoxic zones by using the T-RFLP (terminal restriction fragment length polymorphism) technique. The fingerprints revealed a tremendous shift in the community patterns in correlation to the oxygen depletion measured with depth. 16S rDNA clone sequences recovered from the oxic or anoxic zone directly corresponded to those terminal restriction fragments which were highly characteristic of the respective zone. Comparative sequence analysis of these clones identified members of the α and β subclasses of Proteobacteria as the abundant populations in the oxic zone. In contrast, members of clostridial cluster I were determined to be the predominant bacterial group in the oxygen-depleted soil. The extraction of total RNA followed by reverse transcription-PCR of the bacterial 16S rRNA and T-RFLP analysis resulted for both oxic and anoxic zones of flooded soil cores in community fingerprint patterns similar to those obtained by the rDNA-based analysis. This finding suggests that the microbial groups detected on the rDNA level are the metabolically active populations within the oxic and anoxic soil slices examined. PMID:10653747

  15. Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions.

    PubMed

    Bortolini, Cristian; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo

    2016-11-01

    The quality of chocolate is influenced by several parameters, one of which is bacterial diversity during fermentation and drying; a crucial factor for the generation of the optimal cocoa flavor precursors. Our understanding of the bacterial populations involved in chocolate fermentation can be improved by the use of high-throughput sequencing technologies (HTS), combined with PCR amplification of the 16S rRNA subunit. Here, we have conducted a high-throughput assessment of bacterial diversity in four processed samples of cocoa beans from different geographic origins. As part of this study, we also assessed whether different DNA extraction methods could affect the quality of our data. The dynamics of microbial populations were analyzed postharvest (fermentation and sun drying) and shipment, before entry to the industrial process. A total of 691,867 high quality sequences were obtained by Illumina MiSeq sequencing of the two bacterial 16S rRNA hypervariable regions, V3 and V4, following paired-read assembly of the raw reads. Manual curation of the 16S database allowed us to assign the correct taxonomic classifications, at species level, for 83.8% of those reads. This approach revealed a limited biodiversity and population dynamics for both the lactic acid bacteria (LAB) and acetic acid bacteria (AAB), both of which are key players during the acetification and lactic acid fermentation phases. Among the LAB, the most abundant species were Lactobacillus fermentum, Enterococcus casseliflavus, Weissella paramesenteroides, and Lactobacillus plantarum/paraplantarum. Among the AAB, Acetobacter syzygii, was most abundant, then Acetobacter senegalensis and Acetobacter pasteriuanus. Our results indicate that HTS approach has the ability to provide a comprehensive view of the cocoa bean microbiota at the species level. PMID:27458718

  16. Promoter of the Mycoplasma pneumoniae rRNA operon.

    PubMed Central

    Hyman, H C; Gafny, R; Glaser, G; Razin, S

    1988-01-01

    RNA transcripts starting from the 5' end of the single Mycoplasma pneumoniae rRNA operon were analyzed by several methods. By primer extension analysis a start site was found 62 nucleotides upstream from the start site of the 16S rRNA. This site was preceded by a putative Pribnow box; however, a defined -35 recognition region was absent. The cloned rRNA operon was transcribed in vitro by using purified RNA polymerase of Escherichia coli. A single start site could be demonstrated within a few nucleotides of the start site found by primer extension analysis of M. pneumoniae transcripts. When fragments from the cloned operon were used as hybridization probes, S1 nuclease mapping yielded a single transcript extending approximately 193 nucleotides upstream from the 16S rRNA start site. The region surrounding this endpoint did not resemble any known promoter sequence. Dot blot hybridization of M. pneumoniae RNA to three oligonucleotides consisting of nucleotides -5 to -21, -38 to -54, and -112 to -132 (from the start of the 16S rRNA gene) indicated that most rRNA transcripts were processed at the stem site preceding the 16S rRNA gene. The majority of the longer precursor transcripts, extending beyond this point, did not extend further upstream to an oligonucleotide consisting of nucleotides -112 to -132. It was concluded that transcription of the rRNA operon of M. pneumoniae is initiated by a single promoter. The nucleotide sequence of the region is presented. Images PMID:2838465

  17. Effects of a dietary yeast extract on hematological parameters, heterophil function, and bacterial clearance in turkey poults challenged with Escherichia coli and subjected to transport stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop nutritional methods for controlling pathogens in poultry production. A standardized yeast extract supplement, Alphamune™ (YE), was added to turkey poult diets. Male poults were challenged by air sac injection with 60 cfu of E. coli at 1 week of age. At 3 weeks of age chal...

  18. Sequence requirements for maturation of the 5' terminus of human 18 S rRNA in vitro.

    PubMed

    Yu, Y T; Nilsen, T W

    1992-05-01

    Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s). PMID:1577760

  19. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach

    PubMed Central

    Van Puyvelde, Sandra; De Block, Tessa; Maltha, Jessica; Palpouguini, Lompo; Tahita, Marc; Tinto, Halidou; Jacobs, Jan; Deborggraeve, Stijn

    2016-01-01

    Background Bacterial bloodstream infection (bBSI) is one of the leading causes of death in critically ill patients and accurate diagnosis is therefore crucial. We here report a 16S metagenomics approach for diagnosing and understanding bBSI. Methodology/Principal Findings The proof-of-concept was delivered in 75 children (median age 15 months) with severe febrile illness in Burkina Faso. Standard blood culture and malaria testing were conducted at the time of hospital admission. 16S metagenomics testing was done retrospectively and in duplicate on the blood of all patients. Total DNA was extracted from the blood and the V3–V4 regions of the bacterial 16S rRNA genes were amplified by PCR and deep sequenced on an Illumina MiSeq sequencer. Paired reads were curated, taxonomically labeled, and filtered. Blood culture diagnosed bBSI in 12 patients, but this number increased to 22 patients when combining blood culture and 16S metagenomics results. In addition to superior sensitivity compared to standard blood culture, 16S metagenomics revealed important novel insights into the nature of bBSI. Patients with acute malaria or recovering from malaria had a 7-fold higher risk of presenting polymicrobial bloodstream infections compared to patients with no recent malaria diagnosis (p-value = 0.046). Malaria is known to affect epithelial gut function and may thus facilitate bacterial translocation from the intestinal lumen to the blood. Importantly, patients with such polymicrobial blood infections showed a 9-fold higher risk factor for not surviving their febrile illness (p-value = 0.030). Conclusions/Significance Our data demonstrate that 16S metagenomics is a powerful approach for the diagnosis and understanding of bBSI. This proof-of-concept study also showed that appropriate control samples are crucial to detect background signals due to environmental contamination. PMID:26927306

  20. Comparative analysis of bacterial community composition in bulk tank raw milk by culture-dependent and culture-independent methods using the viability dye propidium monoazide.

    PubMed

    Weber, Mareike; Geißert, Janina; Kruse, Myriam; Lipski, André

    2014-11-01

    Microbial diversity of 3 raw milk samples after 72 h of storage at 4 °C in a bulk tank was analyzed by culture-dependent and -independent methods. The culture-dependent approach was based on the isolation of bacteria on complex and selective media, chemotaxonomic differentiation of isolates, and subsequent identification by 16S rRNA gene sequencing. The culture-independent approach included the treatment of raw milk with the dye propidium monoazide before direct DNA extraction by mechanic and enzymatic cell lysis approaches, and cloning and sequencing of the 16S rRNA genes. The selective detection of viable bacteria improved the comparability between bacterial compositions of raw milk based on culture-dependent and -independent methods, which was the major objective of this study. Several bacterial species of the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were detected by the culture-dependent method, whereas mainly bacteria of the phylum Proteobacteria as well as low proportions of the phyla Bacteroidetes and Actinobacteria were detected by the culture-independent method. This led to the conclusion that the phylum Firmicutes was strongly discriminated by the culture-independent approach. Generally, species richness detected by the culture-dependent method was higher than that detected by the culture-independent method for all samples. However, few taxa could be detected solely by the direct DNA-based method. In conclusion, the combination of culture-dependent and -independent methods led to the detection of the highest bacterial diversity for the raw milk samples analyzed. It was shown that DNA extraction from raw milk as the essential step in culture-independent methods causes the discrimination of taxa by incomplete cell lysis. Treatment of raw milk with the viability dye propidium monoazide was optimized for the application in raw milk without former removal of milk ingredients and proved to be a suitable tool to ensure comparability

  1. In-Vitro, Anti-Bacterial Activities of Aqueous Extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo Against Gram Positive and Gram Negative Bacteria

    PubMed Central

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; shirazi, Mohammad khabaz; Khan, Saeed Ahmad

    2013-01-01

    Objective: Evaluations of the in-vitro anti-bacterial activities of aqueous extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and Shilajita mumiyo against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) and gram-negative bacteria (Escherichia coli, klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) are reasonable since these ethnomedicinal plants have been used in Persian folk medicine for treating skin diseases, venereal diseases, respiratory problems and nervous disorders for ages. Methods: The well diffusion method (KB testing) with a concentration of 250 μg/disc was used for evaluating the minimal inhibitory concentrations (MIC). Maximum synergistic effects of different combinations of components were also observed. Results: A particular combination of Acacia catechu (L.F.) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo extracts possesses an outstanding anti-bacterial activity. It's inhibiting effect on microorganisms is significant when compared to the control group (P< 0.05). Staphylococcus aureus was the most sensitive microorganism. The highest antibacterial activity against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) or gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Proteus mirabilis and Pseudomonas aeruginosa) was exerted by formula number 2 (Table1). Conclusion: The results reveal the presence of antibacterial activities of Acacia catechu, Castanea sativa husk, Ephedra sp. and Mumiyo against gram-positive and gram-negative bacteria. Synergistic effects in a combined formula, especially in formula number 2 (ASLANⓇ) can lead to potential sources of new antiseptic agents for treatment of acute or chronic skin ulcers. These results considering the significant antibacterial effect of the present formulation, support ethno-pharmacological uses against diarrheal and venereal diseases and demonstrate use of these plants to treat

  2. Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition.

    PubMed

    Kerfahi, Dorsaf; Tripathi, Binu M; Singh, Dharmesh; Kim, Hyoki; Lee, Sujin; Lee, Junghoon; Adams, Jonathan M

    2015-01-01

    Carbon nanotubes (CNTs) are widely used in industry, but their environmental impacts on soil microbial communities are poorly known. In this paper, we compare the effect of both raw and acid treated or functionalized (fCNTs) multi-walled carbon nanotubes (MWCNTs) on soil bacterial communities, applying different concentrations of MWCNTs (0 µg/g, 50 µg/g, 500 µg/g and 5000 µg/g) to a soil microcosm system. Soil DNA was extracted at 0, 2 and 8 weeks and the V3 region of the 16S rRNA gene was PCR-amplified and sequenced using paired-end Illumina bar-coded sequencing. The results show that bacterial diversity was not affected by either type of MWCNT. However, overall soil bacterial community composition, as illustrated by NMDS, was affected only by fMWCNT at high concentrations. This effect, detectable at 2 weeks, remained equally strong by 8 weeks. In the case of fMWCNTs, overall changes in relative abundance of the dominant phyla were also found. The stronger effect of fMWCNTs could be explained by their intrinsically acidic nature, as the soil pH was lower at higher concentrations of fMWCNTs. Overall, this study suggests that fMWCNTs may at least temporarily alter microbial community composition on the timescale of at least weeks to months. It appears, by contrast, that raw MWCNTs do not affect soil microbial community composition.

  3. Short-term effects of amoxicillin on bacterial communities in manured soil.

    PubMed

    Binh, Chu Thi Thanh; Heuer, Holger; Gomes, Newton C Marcial; Kotzerke, Anja; Fulle, Melanie; Wilke, Bernd-Michael; Schloter, Michael; Smalla, Kornelia

    2007-12-01

    Antibiotic-resistant bacteria, nutrients and antibiotics that enter the soil by means of manure may enhance the proportion of bacteria displaying antibiotic resistance among soil bacteria and may affect bacterial community structure and function. To investigate the effect of manure and amoxicillin added to manure on soil bacterial communities, microcosm experiments were performed with two soil types and the following treatments: (1) nontreated, (2) manure-treated, (3) treated with manure supplemented with 10 mg amoxicillin kg(-1) soil and (4) treated with manure supplemented with 100 mg amoxicillin kg(-1) soil, with four replicates per treatment. Manure significantly increased the total CFU count and the amoxicillin-resistant CFU count of both soil types. However, only the soil with a history of manure treatment showed a significant increase in the relative number of amoxicillin-resistant bacteria as a result of amoxicillin amendment. The majority of plasmids exogenously isolated from soil originated from soil treated with amoxicillin-supplemented manure. All 16 characterized plasmids carried the bla-TEM gene, and 10 of them belonged to the IncN group. The bla-TEM gene was detected in DNA directly extracted from soil by dot-blot hybridization of PCR amplicons and showed an increased abundance in soil samples treated with manure. Molecular fingerprint analysis of 16S rRNA gene fragments amplified from soil DNA revealed significant effects of manure and amoxicillin on the bacterial community of both soils. PMID:17991020

  4. Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition.

    PubMed

    Kerfahi, Dorsaf; Tripathi, Binu M; Singh, Dharmesh; Kim, Hyoki; Lee, Sujin; Lee, Junghoon; Adams, Jonathan M

    2015-01-01

    Carbon nanotubes (CNTs) are widely used in industry, but their environmental impacts on soil microbial communities are poorly known. In this paper, we compare the effect of both raw and acid treated or functionalized (fCNTs) multi-walled carbon nanotubes (MWCNTs) on soil bacterial communities, applying different concentrations of MWCNTs (0 µg/g, 50 µg/g, 500 µg/g and 5000 µg/g) to a soil microcosm system. Soil DNA was extracted at 0, 2 and 8 weeks and the V3 region of the 16S rRNA gene was PCR-amplified and sequenced using paired-end Illumina bar-coded sequencing. The results show that bacterial diversity was not affected by either type of MWCNT. However, overall soil bacterial community composition, as illustrated by NMDS, was affected only by fMWCNT at high concentrations. This effect, detectable at 2 weeks, remained equally strong by 8 weeks. In the case of fMWCNTs, overall changes in relative abundance of the dominant phyla were also found. The stronger effect of fMWCNTs could be explained by their intrinsically acidic nature, as the soil pH was lower at higher concentrations of fMWCNTs. Overall, this study suggests that fMWCNTs may at least temporarily alter microbial community composition on the timescale of at least weeks to months. It appears, by contrast, that raw MWCNTs do not affect soil microbial community composition. PMID:25825905

  5. Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment.

    PubMed

    Esham; Ye; Moran

    2000-12-01

    Bacterial isolates were obtained from enrichment cultures containing humic substances extracted from estuarine water using an XAD-8 resin. Eighteen isolates were chosen for phylogenetic and physiological characterization based on numerical importance in serial dilutions of the enrichment culture and unique colony morphology. Partial sequences of the 16S rRNA genes indicated that six of the isolates were associated with the alpha subclass of Proteobacteria, three with the gamma-Proteobacteria, and nine with the Gram-positive bacteria. Ten isolates degraded at least one (and up to six) selected aromatic single-ring compounds. Six isolates showed ability to degrade [(14)C]humic substances derived from the dominant salt marsh grass in the estuary from which they were isolated (Spartina alterniflora), mineralizing 0.4-1.1% of the humic substances over 4 weeks. A mixture of all 18 isolates did not degrade humic substances significantly faster than any of the individual strains, however, and no isolate degraded humic substances to the same extent as the natural marine bacterial community (3.0%). Similar studies with a radiolabeled synthetic lignin ([beta-(14)C]dehydropolymerisate) showed measurable levels of degradation by all 18 bacteria (3.0-8.8% in 4 weeks), but mineralization levels were again lower than that observed for the natural marine bacterial community (28.2%). Metabolic capabilities of the 18 isolates were highly variable and generally did not map to phylogenetic affiliation.

  6. Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting

    PubMed Central

    Guo, Yan; Zhang, Jinliang; Yan, Yongfeng; Wu, Jian; Zhu, Nengwu; Deng, Changyan

    2015-01-01

    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and subsequent sub-cloning and sequencing were used in this study to analyze the molecular phylogenetic diversity and spatial distribution of bacterial communities in different spatial locations during the cooling stage of composted swine manure. Total microbial DNA was extracted, and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, RFLP-screened, and sequenced. A total of 420 positive clones were classified by RFLP and near-full-length 16S rDNA sequences. Approximately 48 operational taxonomic units (OTUs) were found among 139 positive clones from the superstratum sample; 26 among 149 were from the middle-level sample and 35 among 132 were from the substrate sample. Thermobifida fusca was common in the superstratum layer of the pile. Some Bacillus spp. were remarkable in the middle-level layer, and Clostridium sp. was dominant in the substrate layer. Among 109 OTUs, 99 displayed homology with those in the GenBank database. Ten OTUs were not closely related to any known species. The superstratum sample had the highest microbial diversity, and different and distinct bacterial communities were detected in the three different layers. This study demonstrated the spatial characteristics of the microbial community distribution in the cooling stage of swine manure compost. PMID:25925066

  7. Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans

    NASA Technical Reports Server (NTRS)

    Jurtshuk, R. J.; Blick, M.; Bresser, J.; Fox, G. E.; Jurtshuk, P. Jr

    1992-01-01

    A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.

  8. Assessing the effects of salmon farming seabed enrichment using bacterial community diversity and high-throughput sequencing.

    PubMed

    Dowle, Eddy; Pochon, Xavier; Keeley, Nigel; Wood, Susanna A

    2015-08-01

    Aquaculture is an extremely valuable and rapidly expanding sector of the seafood industry. The sediment below active aquaculture farms receives inputs of organic matter from uneaten food and faecal material and this has led to concerns related to environmental sustainability. The impacts of organic enrichment on macrobenthic infauna are well characterized; however, much less is known about effect on bacterial communities. In this study, sediment, macrobenthic infauna samples and environmental data were collected along an enrichment gradient radiating out from a Chinook salmon (Oncorhynchus tshawytscha) farm (Marlborough Sounds; New Zealand). DNA and RNA were extracted and 16S rRNA metabarcodes from bacterial communities characterized using high-throughput sequencing. Desulfobacterales dominated at the cage (DNA and RNA), and at sites 50 m (DNA and RNA) and 150 m (RNA) from the farm. In contrast, unclassified bacteria from the class Gammaproteobacteria were the most abundant taxa at control sites (625 and 4000 m). Pronounced differences among DNA and RNA samples occurred at the cage site where Desulfobacterales abundance was markedly higher in RNA samples. There were strong correlations between shifts in bacterial communities and total organic matter and redox. This suggests that bacterial composition is strongly influenced by organic enrichment, a trait that may make them useful for assessing impacts associated with aquaculture farms. PMID:26207046

  9. Diversity and biogeography of bacterial assemblages in surface sediments across the San Pedro Basin, Southern California Borderlands.

    PubMed

    Hewson, Ian; Jacobson Meyers, Myrna E; Fuhrman, Jed A

    2007-04-01

    Sediment bacteria play important roles in the biogeochemistry of ocean sediments; however, factors influencing assemblage composition have not been extensively studied. We examined extractable sediment bacterial abundance, the composition of bacterial assemblages using a high-throughput molecular fingerprinting approach, and several sediment biogeochemical parameters (organic matter content and alkaline phosphatase activity), along a 35 km transect from Point Fermin, Southern California, to Santa Catalina Island, across the approximately 900-m-deep San Pedro Basin. Automated rRNA intergenic spacer analysis (ARISA) demonstrated that in two spatially isolated shallow (approximately < 60 m, on opposite sides of the channel) sediment environments, assemblages were more similar to each other than to deeper communities. Distinct communities existed in deeper and shallower sediments, and stations within the deep basin over 2 km apart contained remarkably similar assemblage fingerprints. The relative contribution to total amplified DNA fluorescence of operational taxonomic units (OTUs) was significantly correlated to that of other OTUs in few comparisons (2.7% of total), i.e. few bacterial types were found together or apart consistently. The relative proportions within assemblages of only a few OTU were significantly correlated to measured physicochemical parameters (organic matter content and wet/dry weight ratio of sediments) or enzyme (alkaline phosphatase) activities. A low percentage of shared OTU between shallow and deep sediments, and the presence of similar, but spatially isolated assemblages suggests that bacterial OTU may be widely dispersed over scales of a few kilometres, but that environmental conditions select for particular assemblages.

  10. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis

    PubMed Central

    Wong, Adam C-N; Chaston, John M; Douglas, Angela E

    2013-01-01

    The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans. PMID:23719154

  11. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis.

    PubMed

    Wong, Adam C-N; Chaston, John M; Douglas, Angela E

    2013-10-01

    The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans.

  12. Bacterial rheotaxis

    PubMed Central

    Marcos; Fu, Henry C.; Powers, Thomas R.; Stocker, Roman

    2012-01-01

    The motility of organisms is often directed in response to environmental stimuli. Rheotaxis is the directed movement resulting from fluid velocity gradients, long studied in fish, aquatic invertebrates, and spermatozoa. Using carefully controlled microfluidic flows, we show that rheotaxis also occurs in bacteria. Excellent quantitative agreement between experiments with Bacillus subtilis and a mathematical model reveals that bacterial rheotaxis is a purely physical phenomenon, in contrast to fish rheotaxis but in the same way as sperm rheotaxis. This previously unrecognized bacterial taxis results from a subtle interplay between velocity gradients and the helical shape of flagella, which together generate a torque that alters a bacterium's swimming direction. Because this torque is independent of the presence of a nearby surface, bacterial rheotaxis is not limited to the immediate neighborhood of liquid–solid interfaces, but also takes place in the bulk fluid. We predict that rheotaxis occurs in a wide range of bacterial habitats, from the natural environment to the human body, and can interfere with chemotaxis, suggesting that the fitness benefit conferred by bacterial motility may be sharply reduced in some hydrodynamic conditions. PMID:22411815

  13. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    PubMed Central

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2015-01-01

    Phosphate solubilizing bacteria (PSB) can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang) oil palm field (University Putra Malaysia). Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer) in an oil palm field. PMID:25632387

  14. Development of a novel long-range 16S rRNA universal primer set for metagenomic analysis of gastrointestinal microbiota in newborn infants.

    PubMed

    Ku, Hye-Jin; Lee, Ju-Hoon

    2014-06-28

    Metagenomic analysis of the human intestinal microbiota has extended our understanding of the role of these bacteria in improving human intestinal health; however, a number of reports have shown that current total fecal DNA extraction methods and 16S rRNA universal primer sets could affect the species coverage and resolution of these analyses. Here, we improved the extraction method for total DNA from human fecal samples by optimization of the lysis buffer, boiling time (10 min), and bead-beating time (0 min). In addition, we developed a new longrange 16S rRNA universal PCR primer set targeting the V6 to V9 regions with a 580 bp DNA product length. This new 16S rRNA primer set was evaluated by comparison with two previously developed 16S rRNA universal primer sets and showed high species coverage and resolution. The optimized total fecal DNA extraction method and newly designed long-range 16S rRNA universal primer set will be useful for the highly accurate metagenomic analysis of adult and infant intestinal microbiota with minimization of any bias.

  15. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring.

    PubMed

    Vierheilig, J; Savio, D; Ley, R E; Mach, R L; Farnleitner, A H; Reischer, G H

    2015-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multi-compartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems. PMID:26606090

  16. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring.

    PubMed

    Vierheilig, J; Savio, D; Ley, R E; Mach, R L; Farnleitner, A H; Reischer, G H

    2015-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multi-compartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems.

  17. Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing.

    PubMed

    Pajarillo, Edward Alain B; Chae, Jong Pyo; Balolong, Marilen P; Kim, Hyeun Bum; Seo, Kang-Seok; Kang, Dae-Kyung

    2015-04-01

    This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level). Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs.

  18. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon.

    PubMed

    Hernández, Marcela; Dumont, Marc G; Yuan, Quan; Conrad, Ralf

    2015-03-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with (13)CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with (13)C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the "Spartobacteria" and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  19. Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon

    PubMed Central

    Hernández, Marcela; Yuan, Quan; Conrad, Ralf

    2015-01-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with 13CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with 13C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the “Spartobacteria” and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  20. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis)

    PubMed Central

    Gruninger, Robert J.; McAllister, Tim A.; Forster, Robert J.

    2016-01-01

    The North American Beaver (Castor canadensis) is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2%) and Firmicutes (47.6%). The feaces was also dominated by OTUs from Bacteroidetes (36.8%) and Firmicutes (58.9%). The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver. PMID:27227334

  1. Assessment of bacterial diversity in selected Philippine fermented food products through PCR-DGGE.

    PubMed

    Dalmacio, L M M; Angeles, A K J; Larcia, L L H; Balolong, M P; Estacio, R C

    2011-12-01

    The bacterial population in several Philippine fermented food preparations was assessed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the 16S rRNA gene (16S rDNA). Genomic DNA was isolated directly from alamang (fermented shrimp paste), burong isda (fermented fish and rice), burong hipon (fermented shrimp and rice), burong mustasa (fermented mustard leaves), tuba (sugar cane wine), suka (vinegar) and sinamak (spiced vinegar) using one of two protocols, namely - MoBio DNA Extraction Kit procedure and a cetyltrimethylammonium bromide-based method. Samples recalcitrant to both methods underwent enrichment in three culture broths prior to DNA isolation. Isolated DNA was amplified using nested primer pairs targeting the bacterial 16S rDNA. PCR products were subjected to DGGE to elucidate the bacterial diversity in each fermented food. 16S rDNA sequence analyses revealed that lactic acid bacteria (LAB) and acetic acid bacteria (AAB) were dominant in the food samples. The LAB identified were Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus panis, Lactobacillus pontis and Weissella cibaria. Identified AAB were Acetobacter pomorum, Acetobacter ghanensis, Acetobacter orientalis, and Acetobacter pasteurianus. Among these, L. fermentum, L. plantarum and W. cibaria are established probiotic bacteria, while L. panis and L. pontis are potential probiotic bacteria. This finding would increase the appeal and significance of local fermented foods to consumers. Furthermore, the majority of the identified bacteria in the study have not been reported before in culture-dependent studies of similar food preparations. As such, some of the bacterial 16S rDNA obtained were cloned to have an initial partial bacterial 16S rDNA library for Philippine fermented foods. PMID:22146687

  2. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.

    PubMed

    Jong, Tony; Parry, David L

    2004-04-01

    Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be

  3. Comparison of two approaches for the classification of 16S rRNA gene sequences.

    PubMed

    Chatellier, Sonia; Mugnier, Nathalie; Allard, Françoise; Bonnaud, Bertrand; Collin, Valérie; van Belkum, Alex; Veyrieras, Jean-Baptiste; Emler, Stefan

    2014-10-01

    The use of 16S rRNA gene sequences for microbial identification in clinical microbiology is accepted widely, and requires databases and algorithms. We compared a new research database containing curated 16S rRNA gene sequences in combination with the lca (lowest common ancestor) algorithm (RDB-LCA) to a commercially available 16S rDNA Centroid approach. We used 1025 bacterial isolates characterized by biochemistry, matrix-assisted laser desorption/ionization time-of-flight MS and 16S rDNA sequencing. Nearly 80 % of isolates were identified unambiguously at the species level by both classification platforms used. The remaining isolates were mostly identified correctly at the genus level due to the limited resolution of 16S rDNA sequencing. Discrepancies between both 16S rDNA platforms were due to differences in database content and the algorithm used, and could amount to up to 10.5 %. Up to 1.4 % of the analyses were found to be inconclusive. It is important to realize that despite the overall good performance of the pipelines for analysis, some inconclusive results remain that require additional in-depth analysis performed using supplementary methods.

  4. 16S rRNA gene phylogenesis of culturable predominant bacteria from diseased Apostichopus japonicus (Holothuroidea, Echinodermata)

    NASA Astrophysics Data System (ADS)

    Ma, Haiyan; Jiang, Guoliang; Wu, Zhiqiang; Wang, Xin

    2009-06-01

    Cultured Apostichopus japonicus in China suffers from a kind of skin ulceration disease that has caused severe economic loss in recent years. The disease, pathogens of which are supposed to be bacteria by most researchers, is highly infectious and can often cause all individuals in the same culture pool to die in a very short time. The 16S rRNA gene phylogenesis of the culturable bacteria from the lesions of diseased individuals was conducted to study the biodiversity of the bacterial communities in the lesions and to identify probable pathogen(s) associated with this kind of disease. S. japonica samples were selected from a hatchery located in the eastern part of Qingdao, China. Bacterial universal primers GM5F and DS907R were used to amplify the 16S rRNA gene of bacteria colonies, and touchdown PCR was performed to amplify the target sequences. The results suggest that γ- proteobacteria (Alteromonadales and Vibrionales) of CFB group, many strains of which have been also determined as pathogens in other marine species, are the predominant bacterial genera of the diseased Apostichopus japonicus individuals.

  5. Influence of commonly used primer systems on automated ribosomal intergenic spacer analysis of bacterial communities in environmental samples.

    PubMed

    Purahong, Witoon; Stempfhuber, Barbara; Lentendu, Guillaume; Francioli, Davide; Reitz, Thomas; Buscot, François; Schloter, Michael; Krüger, Dirk

    2015-01-01

    Due to the high diversity of bacteria in many ecosystems, their slow generation times, specific but mostly unknown nutrient requirements and syntrophic interactions, isolation based approaches in microbial ecology mostly fail to describe microbial community structure. Thus, cultivation independent techniques, which rely on directly extracted nucleic acids from the environment, are a well-used alternative. For example, bacterial automated ribosomal intergenic spacer analysis (B-ARISA) is one of the widely used methods for fingerprinting bacterial communities after PCR-based amplification of selected regions of the operon coding for rRNA genes using community DNA. However, B-ARISA alone does not provide any taxonomic information and the results may be severely biased in relation to the primer set selection. Furthermore, amplified DNA stemming from mitochondrial or chloroplast templates might strongly bias the obtained fingerprints. In this study, we determined the applicability of three different B-ARISA primer sets to the study of bacterial communities. The results from in silico analysis harnessing publicly available sequence databases showed that all three primer sets tested are specific to bacteria but only two primers sets assure high bacterial taxa coverage (1406f/23Sr and ITSF/ITSReub). Considering the study of bacteria in a plant interface, the primer set ITSF/ITSReub was found to amplify (in silico) sequences of some important crop species such as Sorghum bicolor and Zea mays. Bacterial genera and plant species potentially amplified by different primer sets are given. These data were confirmed when DNA extracted from soil and plant samples were analyzed. The presented information could be useful when interpreting existing B-ARISA results and planning B-ARISA experiments, especially when plant DNA can be expected. PMID:25749323

  6. A bacterial enrichment study and overview of the extractable lipids from paleosols in the Dry Valleys, Antarctica: implications for future Mars reconnaissance.

    PubMed

    Hart, Kris M; Szpak, Michal T; Mahaney, William C; Dohm, James M; Jordan, Sean F; Frazer, Andrew R; Allen, Christopher C R; Kelleher, Brian P

    2011-05-01

    The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.

  7. A Bacterial Enrichment Study and Overview of the Extractable Lipids from Paleosols in the Dry Valleys, Antarctica: Implications for Future Mars Reconnaissance

    NASA Astrophysics Data System (ADS)

    Hart, Kris M.; Szpak, Michal T.; Mahaney, William C.; Dohm, James M.; Jordan, Sean F.; Frazer, Andrew R.; Allen, Christopher C. R.; Kelleher, Brian P.

    2011-05-01

    The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography-mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.

  8. A bacterial enrichment study and overview of the extractable lipids from paleosols in the Dry Valleys, Antarctica: implications for future Mars reconnaissance.

    PubMed

    Hart, Kris M; Szpak, Michal T; Mahaney, William C; Dohm, James M; Jordan, Sean F; Frazer, Andrew R; Allen, Christopher C R; Kelleher, Brian P

    2011-05-01

    The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life. PMID:21545270

  9. 16S rRNA amplicon sequencing dataset for conventionalized and conventionally raised zebrafish larvae.

    PubMed

    Davis, Daniel J; Bryda, Elizabeth C; Gillespie, Catherine H; Ericsson, Aaron C

    2016-09-01

    Data presented here contains metagenomic analysis regarding the sequential conventionalization of germ-free zebrafish embryos. Zebrafish embryos that underwent a germ-free sterilization process immediately after fertilization were promptly exposed to and raised to larval stage in conventional fish water. At 6 days postfertilization (dpf), these "conventionalized" larvae were compared to zebrafish larvae that were raised in conventional fish water never undergoing the initial sterilization process. Bacterial 16S rRNA amplicon sequencing was performed on DNA isolated from homogenates of the larvae revealing distinct microbiota variations between the two groups. The dataset described here is also related to the research article entitled "Microbial modulation of behavior and stress responses in zebrafish larvae" (Davis et al., 2016) [1]. PMID:27508247

  10. A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife

    PubMed Central

    Razzauti, Maria; Galan, Maxime; Bernard, Maria; Maman, Sarah; Klopp, Christophe; Charbonnel, Nathalie; Vayssier-Taussat, Muriel; Eloit, Marc; Cosson, Jean-François

    2015-01-01

    Background Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq) and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations. Methodology/Principal Findings We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq). In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454). In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles. Conclusions/Significance We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each

  11. Molecular diversity of drinking water bacterial communities using 16S rRNA gene sequence analyses

    EPA Science Inventory

    Our understanding of the microbial community structure of drinking water distribution system has relied on culture-based methods. However, recent studies have suggested that the majority of bacteria inhabiting distribution systems are unable to grow on artificial media. The goal ...

  12. Phylogenetic diversity of ultraplankton plastid small-subunit rRNA genes recovered in environmental nucleic acid samples from the Pacific and Atlantic coasts of the United States.

    PubMed

    Rappé, M S; Suzuki, M T; Vergin, K L; Giovannoni, S J

    1998-01-01

    The scope of marine phytoplankton diversity is uncertain in many respects because, like bacteria, these organisms sometimes lack defining morphological characteristics and can be a challenge to grow in culture. Here, we report the recovery of phylogenetically diverse plastid small-subunit (SSU) rRNA gene (rDNA) clones from natural plankton populations collected in the Pacific Ocean off the mouth of Yaquina Bay, Oreg. (OCS clones), and from the eastern continental shelf of the United States off Cape Hatteras, N.C. (OM clones). SSU rRNA gene clone libraries were prepared by amplifying rDNAs from nucleic acids isolated from plankton samples and cloning them into plasmid vectors. The PCR primers used for amplification reactions were designed to be specific for bacterial SSU rRNA genes; however, plastid genes have a common phylogenetic origin with bacteria and were common in both SSU rRNA gene clone libraries. A combination of restriction fragment length polymorphism analyses, nucleic acid sequencing, and taxon-specific oligonucleotide probe hybridizations revealed that 54 of the 116 OCS gene clones were of plastid origin. Collectively, clones from the OCS and OM libraries formed at least eight unique lineages within the plastid radiation, including gene lineages related to the classes Bacillariophyceae, Cryptophyceae, Prymnesiophyceae, Chrysophyceae, and Prasinophyceae; for a number of unique clones, no close phylogenetic neighbors could be identified with confidence. Only a group of two OCS rRNA gene clones showed close identity to the plastid SSU rRNA gene sequence of a cultured organism [Emiliania huxleyi (Lohmann) Hay and Mohler; 99.8% similar]. The remaining clones could not be identified to the genus or species level. Although cryptic species are not as prevalent among phytoplankton as they are among their bacterial counterparts, this genetic survey nonetheless uncovered significant new information about phytoplankton diversity. PMID:9435081

  13. Quantitative Northern Blot Analysis of Mammalian rRNA Processing.

    PubMed

    Wang, Minshi; Pestov, Dimitri G

    2016-01-01

    Assembly of eukaryotic ribosomes is an elaborate biosynthetic process that begins in the nucleolus and requires hundreds of cellular factors. Analysis of rRNA processing has been instrumental for studying the mechanisms of ribosome biogenesis and effects of stress conditions on the molecular milieu of the nucleolus. Here, we describe the quantitative analysis of the steady-state levels of rRNA precursors, applicable to studies in mammalian cells and other organisms. We include protocols for gel electrophoresis and northern blotting of rRNA precursors using procedures optimized for the large size of these RNAs. We also describe the ratio analysis of multiple precursors, a technique that facilitates the accurate assessment of changes in the efficiency of individual pre-rRNA processing steps. PMID:27576717

  14. Use of Pyrosequencing of 16S rRNA Fragments to Differentiate between Bacteria Responsible for Neonatal Sepsis

    PubMed Central

    Jordan, Jeanne A.; Butchko, Allyson R.; Beth Durso, Mary

    2005-01-01

    Infants admitted to neonatal intensive care units for suspicion of bacterial sepsis receive at least two broad-spectrum antibiotics for a minimum of 48 to 72 hours to cover both gram-positive and gram-negative organisms while awaiting blood culture results. On average, bacterial growth becomes detectable within 12 to 24 hours, with an additional 24 to 48 hours required for identification. We have previously described using a 16S rRNA PCR assay for screening neonatal blood for bacterial DNA. Combining PCR with DNA sequencing could prove a faster means of detecting bacteria than culture-based identification. If successful, antibiotic therapy could be appropriately tailored sooner, thus sparing infants the administration of unnecessary antibiotics. Our goal was to assess the potential of pyrosequencing to differentiate between bacteria commonly associated with neonatal sepsis. To begin, full-length sequencing of the 380-bp 16S rRNA amplicons from representative bacteria was conducted (ABI 3100) and several databases queried. These included Staphylococcus sp., Streptococcus sp., Listeria sp., and numerous gram-negative rods. The sequences from clinical isolates were identical to those present in the published databases for the same bacteria. As a result, an informative 15 bases within the 380-bp amplicon was targeted for pyrosequencing following enrichment culture and PCR amplification. A total of 643 bacterial isolates commonly associated with neonatal sepsis, and 15 PCR-positive, culture-positive neonatal whole blood samples were analyzed by pyrosequencing. Results of DNA sequencing and culture identification were compared. In summary, we were successful at using PCR and pyrosequencing together to accurately differentiate between highly diverse bacterial groups. PMID:15681481

  15. The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes.

    PubMed

    Mougey, E B; O'Reilly, M; Osheim, Y; Miller, O L; Beyer, A; Sollner-Webb, B

    1993-08-01

    When spread chromatin is visualized by electron microscopy, active rRNA genes have a characteristic Christmas tree appearance: From a DNA "trunk" extend closely packed "branches" of nascent transcripts whose ends are decorated with terminal "balls." These terminal balls have been known for more than two decades, are shown in most biology textbooks, and are reported in hundreds of papers, yet their nature has remained elusive. Here, we show that a rRNA-processing signal in the 5'-external transcribed spacer (ETS) of the Xenopus laevis ribosomal primary transcript forms a large, processing-related complex with factors of the Xenopus oocyte, analogous to 5' ETS processing complexes found in other vertebrate cell types. Using mutant rRNA genes, we find that the same rRNA residues are required for this biochemically defined complex formation and for terminal ball formation, analyzed electron microscopically after injection of these cloned genes into Xenopus oocytes. This, plus other presented evidence, implies that rRNA terminal balls in Xenopus, and by inference, also in the multitude of other species where they have been observed, are the ultrastructural visualization of an evolutionarily conserved 5' ETS processing complex that forms on the nascent rRNA.

  16. Control of rRNA transcription in Escherichia coli.

    PubMed Central

    Condon, C; Squires, C; Squires, C L

    1995-01-01

    The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response. PMID:8531889

  17. Structural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria

    PubMed Central

    Macmaster, Rachel; Zelinskaya, Natalia; Savic, Miloje; Rankin, C. Robert; Conn, Graeme L.

    2010-01-01

    X-ray crystal structures were determined of the broad-spectrum aminoglycoside-resistance A1408 16S rRNA methyltransferases KamB and NpmA, from the aminoglycoside-producer Streptoalloteichus tenebrarius and human pathogenic Escherichia coli, respectively. Consistent with their common function, both are Class I methyltransferases with additional highly conserved structural motifs that embellish the core SAM-binding fold. In overall structure, the A1408 rRNA methyltransferase were found to be most similar to a second family of Class I methyltransferases of distinct substrate specificity (m7G46 tRNA). Critical residues for A1408 rRNA methyltransferase activity were experimentally defined using protein mutagenesis and bacterial growth assays with kanamycin. Essential residues for SAM coenzyme binding and an extended protein surface that likely interacts with the 30S ribosomal subunit were thus revealed. The structures also suggest potential mechanisms of A1408 target nucleotide selection and positioning. We propose that a dynamic extended loop structure that is positioned adjacent to both the bound SAM and a functionally critical structural motif may mediate concerted conformational changes in rRNA and protein that underpin the specificity of target selection and activation of methyltransferase activity. These new structures provide important new insights that may provide a starting point for strategies to inhibit these emerging causes of pathogenic bacterial resistance to aminoglycosides. PMID:20639535

  18. A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq

    PubMed Central

    Darling, Aaron E.

    2016-01-01

    Background The bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision. Results We describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. Conclusions This method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution. PMID:27688981

  19. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns*

    PubMed Central

    Atherly, Todd; Ziemer, Cherie J

    2014-01-01

    One-hundred-and-three isolates of Bacteroides ovatus,B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade. PMID:24532571

  20. Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns.

    PubMed

    Atherly, Todd; Ziemer, Cherie J

    2014-04-01

    One-hundred-and-three isolates of Bacteroides ovatus, B. thetaiotaomicron, and B. xylanisolvens were recovered from cow, goat, human, and pig fecal enrichments with cellulose or xylan/pectin. Isolates were compared using 16S rRNA gene sequencing, repetitive sequence-based polymerase chain reaction (rep-PCR), and phenotypic microarrays. Analysis of 16S rRNA gene sequences revealed high sequence identity in these Bacteroides; with distinct phylogenetic groupings by bacterial species but not host origin. Phenotypic microarray analysis demonstrated these Bacteroides shared the ability to utilize many of the same carbon substrates, without differences due to species or host origin, indicative of their broad carbohydrate fermentation abilities. Limited nitrogen substrates were utilized; in addition to ammonia, guanine, and xanthine, purine derivatives were utilized by most isolates followed by a few amino sugars. Only rep-PCR analysis demonstrated host-specific patterns, indicating that genomic changes due to coevolution with host did not occur by mutation in the 16S rRNA gene or by a gain or loss of carbohydrate utilization genes within these Bacteroides. This is the first report to indicate that host-associated genomic differences are outside of 16S rRNA gene and carbohydrate utilization genes and suggest conservation of specific bacterial species with the same functionality across mammalian hosts for this Bacteroidetes clade.

  1. A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq

    PubMed Central

    Darling, Aaron E.

    2016-01-01

    Background The bacterial 16S rRNA gene has historically been used in defining bacterial taxonomy and phylogeny. However, there are currently no high-throughput methods to sequence full-length 16S rRNA genes present in a sample with precision. Results We describe a method for sequencing near full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform and test it using DNA from human skin swab samples. Proof of principle of the approach is demonstrated, with the generation of 1,604 sequences greater than 1,300 nt from a single Nano MiSeq run, with accuracy estimated to be 100-fold higher than standard Illumina reads. The reads were chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. Conclusions This method could be scaled up to generate many thousands of sequences per MiSeq run and could be applied to other sequencing platforms. This has great potential for populating databases with high quality, near full-length 16S rRNA gene sequences from under-represented taxa and environments and facilitates analyses of microbial communities at higher resolution.

  2. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota

    PubMed Central

    Ellegaard, Kirsten M.; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities. PMID:27708630

  3. Phylogenetic mapping of bacterial morphology

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Fox, G. E.

    1998-01-01

    The availability of a meaningful molecular phylogeny for bacteria provides a context for examining the historical significance of various developments in bacterial evolution. Herein, the classical morphological descriptions of selected members of the domain Bacteria are mapped upon the genealogical ancestry deduced from comparison of small-subunit rRNA sequences. For the species examined in this study, a distinct pattern emerges which indicates that the coccus shape has arisen and accumulated independently multiple times in separate lineages and typically survived as a persistent end-state morphology. At least two other morphologies persist but have evolved only once. This study demonstrates that although bacterial morphology is not useful in defining bacterial phylogeny, it is remarkably consistent with that phylogeny once it is known. An examination of the experimental evidence available for morphogenesis as well as microbial fossil evidence corroborates these findings. It is proposed that the accumulation of persistent morphologies is a result of the biophysical properties of peptidoglycan and their genetic control, and that an evolved body-plan strategy based on peptidoglycan may have been a fate-sealing step in the evolution of Bacteria. More generally, this study illustrates that significant evolutionary insights can be obtained by examining biological and biochemical data in the context of a reliable phylogenetic structure.

  4. Effect of elevated tropospheric ozone on the structure of bacterial communities inhabiting the rhizosphere of herbaceous plants native to Germany.

    PubMed

    Dohrmann, Anja B; Tebbe, Christoph C

    2005-12-01

    Current elevated concentrations of ozone in the atmosphere, as they are observed during summer seasons, can cause severe effects on plant vegetation. This study was initiated to analyze whether ozone-stressed plants also transfer signals below ground and thereby alter the bacterial community composition in their rhizospheres. Herbaceous plants, native to Germany, with tolerance (Anthoxanthum odoratum, Achillea millefolium, Poa pratensis, Rumex acetosa, and Veronica chamaedrys) and sensitivity (Matricaria chamomilla, Sonchus asper, and Tanacetum vulgare) to ozone, raised in the greenhouse, were exposed in open-top chambers to two different ozone regimes, i.e., "summer stress" and a normal ozone background. DNA of bacterial cells from the rhizospheres was directly extracted, and partial sequences of the 16S rRNA genes were PCR amplified with primers targeting the following phylogenetic groups: Bacteria, alpha-Proteobacteria, Actinobacteria, and Pseudomonas, respectively. The diversity of the amplified products was analyzed by genetic profiling based on single-strand conformation polymorphism (SSCP). Neither the tolerant nor the sensitive plants, the latter with visible above-ground damage, showed ozone-induced differences in any of the SSCP profiles, with the single exception of Actinobacteria-targeted profiles from S. asper. To increase the stress, S. asper was germinated and raised in the continuous presence of an elevated level of ozone. SSCP profiles with Bacteria-specific primers combined with gene probe hybridizations indicated an ozone-related increase in a Xanthomonas-related 16S rRNA gene and a decrease in the respective gene from the plant plastids. The fact that only this latter unrealistic scenario caused a detectable effect demonstrated that ozone stress has a surprisingly small effect on the structural diversity of the bacterial community in rhizospheres.

  5. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  6. Selective phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments.

    PubMed

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76 degrees C) and river water (14 degrees C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82 degrees C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84 degrees C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84 degrees C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.

  7. Selective phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments.

    PubMed

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76 degrees C) and river water (14 degrees C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82 degrees C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84 degrees C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84 degrees C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  8. Diversity of the bacterial community in Myanmar traditional salted fish yegyo ngapi.

    PubMed

    Kobayashi, Takeshi; Taguchi, Chihiro; Kida, Kakeru; Matsuda, Hiroko; Terahara, Takeshi; Imada, Chiaki; Moe, Nant Kay Thwe; Thwe, Su Myo

    2016-10-01

    The distribution and characterization of bacteria including lactic acid bacteria (LAB) in the traditional and popular salted fish yegyo ngapi in Myanmar were studied to clarify the contribution of these bacteria to the curing and ripening of this product. Samples of yegyo ngapi purchased from a market in Yangon were used. Most of the isolates obtained using de Man, Rogosa and Sharpe medium containing 10 % NaCl were identified as coccoid LAB on the basis of their basic phenotypic characteristics. From the results of 16S rRNA gene sequencing and PCR-restriction fragment length polymorphism analysis of this gene, most of the isolates were identified as the halophilic LAB Tetragenococcus muriaticus. Analyses of the 16S rRNA gene based on the clone library using DNA extracted from salted fish products were also performed. The results of these molecular-analysis-based techniques showed that spore-forming and non-spore-forming anaerobic bacteria including the genera Clostridium and Halanaerobium in addition to T. muriaticus were also frequently found in bacterial communities. These findings suggest that the anaerobic condition during curing and ripening resulted in bacterial communities composed of strictly anaerobic bacteria and halophilic LAB, and that these bacteria might also contribute to the manufacturing processes of this product. In addition, DNA sequences similar to that of Clostridium botulinum were found in the clone library analysis. Therefore, despite no reports of botulism poisoning from the region where the samples were taken, closer surveillance should be carried out from the viewpoint of food safety. PMID:27565776

  9. Evaluation of bacterial diversity recovered from petroleum samples using different physical matrices.

    PubMed

    Dellagnezze, Bruna Martins; Vasconcellos, Suzan Pantaroto de; Melo, Itamar Soares de; Santos Neto, Eugênio Vaz Dos; Oliveira, Valéria Maia de

    2016-01-01

    Unraveling the microbial diversity and its complexity in petroleum reservoir environments has been a challenge throughout the years. Despite the techniques developed in order to improve methodologies involving DNA extraction from crude oil, microbial enrichments using different culture conditions can be applied as a way to increase the recovery of DNA from environments with low cellular density for further microbiological analyses. This work aimed at the evaluation of different matrices (arenite, shale and polyurethane foam) as support materials for microbial growth and biofilm formation in enrichments using a biodegraded petroleum sample as inoculum in sulfate reducing condition. Subsequent microbial diversity characterization was carried out using Scanning Electronic Microscopy (SEM), Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene libraries in order to compare the microbial biomass yield, DNA recovery efficiency and diversity among the enrichments. The DNA from microbial communities in petroleum enrichments was purified according to a protocol established in this work and used for 16S rRNA amplification with bacterial generic primers. The PCR products were cloned, and positive clones were screened by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Sequencing and phylogenetic analyses revealed that the bacterial community was mostly represented by members of the genera Petrotoga, Bacillus, Pseudomonas, Geobacillus and Rahnella. The use of different support materials in the enrichments yielded an increase in microbial biomass and biofilm formation, indicating that these materials may be employed for efficient biomass recovery from petroleum reservoir samples. Nonetheless, the most diverse microbiota were recovered from the biodegraded petroleum sample using polyurethane foam cubes as support material. PMID:27282730

  10. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Larsen, N.; Woese, C. R.

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred