Sample records for bacterial secondary production

  1. Bacterial secondary production on vascular plant detritus: relationships to detritus composition and degradation rate.

    PubMed Central

    Moran, M A; Hodson, R E

    1989-01-01

    Bacterial production at the expense of vascular plant detritus was measured for three emergent plant species (Juncus effusus, Panicum hemitomon, and Typha latifolia) degrading in the littoral zone of a thermally impacted lake. Bacterial secondary production, measured as tritiated thymidine incorporation into DNA, ranged from 0.01 to 0.81 microgram of bacterial C mg of detritus-1 day-1. The three plant species differed with respect to the amount of bacterial productivity they supported per milligram of detritus, in accordance with the predicted biodegradability of the plant material based on initial nitrogen content, lignin content, and C/N ratio. Bacterial production also varied throughout the 22 weeks of in situ decomposition and was positively related to the nitrogen content and lignin content of the remaining detritus, as well as to the temperature of the lake water. Over time, production was negatively related to the C/N ratio and cellulose content of the degrading plant material. Bacterial production on degrading plant material was also calculated on the basis of plant surface area and ranged from 0.17 to 1.98 micrograms of bacterial C cm-2 day-1. Surface area-based calculations did not correlate well with either initial plant composition or changing composition of the remaining detritus during decomposition. The rate of bacterial detritus degradation, calculated from measured production of surface-attached bacteria, was much lower than the actual rate of weight loss of plant material. This discrepancy may be attributable to the importance of nonbacterial organisms in the degradation and loss of plant material from litterbags or to the microbially mediated solubilization of particulate material prior to bacterial utilization, or both. PMID:2802603

  2. Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities.

    PubMed

    Pham, Hoang Nam; Michalet, Serge; Bodillis, Josselin; Nguyen, Tien Dat; Nguyen, Thi Kieu Oanh; Le, Thi Phuong Quynh; Haddad, Mohamed; Nazaret, Sylvie; Dijoux-Franca, Marie-Geneviève

    2017-07-01

    Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.

  3. Merging chemical ecology with bacterial genome mining for secondary metabolite discovery.

    PubMed

    Vizcaino, Maria I; Guo, Xun; Crawford, Jason M

    2014-02-01

    The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host-bacteria interactions.

  4. Global biogeographic sampling of bacterial secondary metabolism

    PubMed Central

    Charlop-Powers, Zachary; Owen, Jeremy G; Reddy, Boojala Vijay B; Ternei, Melinda A; Guimarães, Denise O; de Frias, Ulysses A; Pupo, Monica T; Seepe, Prudy; Feng, Zhiyang; Brady, Sean F

    2015-01-01

    Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites. Our data indicate a correlation between two factors, geographic distance and biome-type, and the biosynthetic diversity found in soil environments. By assigning reads to known gene clusters we identify hotspots of biomedically relevant biosynthetic diversity. These observations not only provide new insights into the natural world, they also provide a road map for guiding future natural products discovery efforts. DOI: http://dx.doi.org/10.7554/eLife.05048.001 PMID:25599565

  5. A comprehensive review of glycosylated bacterial natural products

    PubMed Central

    Elshahawi, Sherif I.; Shaaban, Khaled A.; Kharel, Madan K.

    2015-01-01

    A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts. PMID:25735878

  6. Production and purification of anti-bacterial biometabolite from wild-type Lactobacillus, isolated from fermented bamboo shoot: future suggestions and a proposed system for secondary metabolite onsite recovery during continuous fermentation.

    PubMed

    Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C

    2015-02-01

    Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.

  7. Engineering microbial hosts for production of bacterial natural products.

    PubMed

    Zhang, Mingzi M; Wang, Yajie; Ang, Ee Lui; Zhao, Huimin

    2016-08-27

    Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.

  8. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  9. High level bacterial contamination of secondary school students' mobile phones.

    PubMed

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-06-01

    While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students' mobile phones. Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline ( tet A, tet B, tet M), erythromycin ( erm B) and sulphonamide ( sul 1) resistance genes was assessed. We found a high median bacterial count on secondary school students' mobile phones (10.5 CFU/cm 2 ) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes ( Staphylococcus aureus , Acinetobacter spp. , Pseudomonas spp., Bacillus cereus and Neisseria flavescens ) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner's gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Quantitative study methods revealed high level bacterial contamination of secondary school students' mobile phones.

  10. High level bacterial contamination of secondary school students’ mobile phones

    PubMed Central

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-01-01

    Introduction While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students’ mobile phones. Methods Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline (tetA, tetB, tetM), erythromycin (ermB) and sulphonamide (sul1) resistance genes was assessed. Results We found a high median bacterial count on secondary school students’ mobile phones (10.5 CFU/cm2) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes (Staphylococcus aureus, Acinetobacter spp., Pseudomonas spp., Bacillus cereus and Neisseria flavescens) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner’s gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Conclusion Quantitative study methods revealed high level bacterial contamination of secondary school students’ mobile phones. PMID:28626737

  11. The Role of Viral, Host, and Secondary Bacterial Factors in Influenza Pathogenesis

    PubMed Central

    Kash, John C.; Taubenberger, Jeffery K.

    2016-01-01

    Influenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death. Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation. The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors. Host factors that enhance risk of severe influenza disease include underlying comorbidities, such as cardiac and respiratory disease, immunosuppression, and pregnancy. Viral parameters enhancing disease risk include polymerase mutations associated with host switch and adaptation, viral proteins that modulate immune and antiviral responses, and virulence factors that increase disease severity, which can be especially prominent in pandemic viruses and some zoonotic influenza viruses causing human infections. Influenza viral infections result in damage to the respiratory epithelium that facilitates secondary infection with common bacterial pneumopathogens and can lead to secondary bacterial pneumonias that greatly contribute to respiratory distress, enhanced morbidity, and death. Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza. PMID:25747532

  12. Bacterial overgrowth and methane production in children with encopresis.

    PubMed

    Leiby, Alycia; Mehta, Devendra; Gopalareddy, Vani; Jackson-Walker, Susan; Horvath, Karoly

    2010-05-01

    To assess the prevalence of small intestinal bacterial overgrowth (SIBO) and methane production in children with encopresis. Radiographic fecal impaction (FI) scores were assessed in children with secondary, retentive encopresis and compared with the breath test results. Breath tests with hypoosmotic lactulose solution were performed in both the study patients (n = 50) and gastrointestinal control subjects (n = 39) groups. The FI scores were significantly higher in the patients with encopresis who were methane producers (P < .01). SIBO was diagnosed in 21 of 50 (42%) patients with encopresis and 9 of 39 (23%) of control subjects (P = .06). Methane was produced in 56% of the patients with encopresis versus 23.1% of the control subjects in the gastrointestinal group (P < .01). Fasting methane level was elevated in 48% versus 10.3 %, respectively (P < .01). Children with FI and encopresis had a higher prevalence of SIBO, elevated basal methane levels, and higher methane production. Methane production was associated with more severe colonic impaction. Further study is needed to determine whether methane production is a primary or secondary factor in the pathogenesis of SIBO and encopresis.

  13. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    PubMed

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  14. Bacterial symbionts and natural products

    PubMed Central

    Crawford, Jason M.; Clardy, Jon

    2011-01-01

    The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses. In the last ten years, a series of shocking revelations – the molecular equivalents of a reality TV show’s uncovering the true parents of a well known individual or a deeply hidden family secret – altered the study of genetically encoded small molecules, natural products for short. These revelations all involved natural products produced by bacterial symbionts, and while details differed, two main plot lines emerged: parentage, in which the real producers of well known natural products with medical potential were not the organisms from which they were originally discovered, and hidden relationships, in which bacterially produced small molecules turned out to be the unsuspected regulators of complex interactions. For chemists, these studies led to new molecules, new biosynthetic pathways, and an understanding of the biological functions these molecules fulfill. PMID:21594283

  15. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    PubMed

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  16. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    PubMed Central

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  17. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    PubMed Central

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  18. Bacterial cellulose as an example product for sustainable production and consumption.

    PubMed

    Jang, Woo Dae; Hwang, Ji Hyeon; Kim, Hyun Uk; Ryu, Jae Yong; Lee, Sang Yup

    2017-09-01

    Life cycle of bacterial cellulose. Sustainable production and consumption of bio-based products are showcased using bacterial cellulose as an example. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite ({gamma}-FeOOH) and the formation of secondary mineralization products.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Gorski, C. A.; Scherer, M. M.

    Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust; however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (i) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ii) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (iii) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearingmore » secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. 'Fast' Fe(II) production kinetics [19-24 mM Fe(II) d-1] were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having 'low' cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with 'high' cell numbers exhibited comparatively slow Fe(II) production kinetics [1.8-4.0 mM Fe(II) d-1] and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction.« less

  20. Implementation of secondary bacterial culture testing of platelets to mitigate residual risk of septic transfusion reactions.

    PubMed

    Bloch, Evan M; Marshall, Christi E; Boyd, Joan S; Shifflett, Lisa; Tobian, Aaron A R; Gehrie, Eric A; Ness, Paul M

    2018-04-01

    Bacterial contamination of platelets remains a major transfusion-associated risk despite long-standing safety measures in the United States. We evaluated an approach using secondary bacterial culture (SBC) to contend with residual risk of bacterial contamination. Phased implementation of SBC was initiated in October 2016 for platelets (all apheresis collected) received at our institution from the blood donor center (Day 3 post collection). Platelet products were sampled aseptically (5 mL inoculated into an aerobic bottle [BacT/ALERT BPA, BioMerieux, Inc.]) by the blood bank staff upon receipt, using a sterile connection device and sampling kit. The platelet sample was inoculated into an aerobic blood culture bottle and incubated at 35°C for 3 days. The cost of SBC was calculated on the basis of consumables and labor costs at time of implementation. In the 13 months following implementation (October 6, 2016, to November 30, 2017), 23,044/24,653 (93.47%) platelet products underwent SBC. A total of eight positive cultures were detected (incidence 1 in 2881 platelet products), seven of which were positive within 24 hours of SBC. Coagulase negative Staphyloccus spp. were identified in four cases. Five of the eight cases were probable true positive (repeat reactive) and interdicted (cost per averted case was US$77,935). The remaining three cases were indeterminate. No septic transfusion reactions were reported during the observation period. We demonstrate the feasibility of SBC of apheresis platelets to mitigate bacterial risk. SBC is lower cost than alternative measures (e.g., pathogen reduction and point-of-release testing) and can be integrated into workflow at hospital transfusion services. © 2018 AABB.

  1. Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring.

    PubMed

    Morelli, Lidia; Andreasen, Sune Zoëga; Jendresen, Christian Bille; Nielsen, Alex Toftgaard; Emnéus, Jenny; Zór, Kinga; Boisen, Anja

    2017-11-20

    During the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min -1 flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield. The obtained data showed good correlation with HPLC analysis.

  2. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract

    PubMed Central

    Pasquali, Christian; Salami, Olawale; Taneja, Manisha; Gollwitzer, Eva S.; Trompette, Aurelien; Pattaroni, Céline; Yadava, Koshika; Bauer, Jacques; Marsland, Benjamin J.

    2014-01-01

    Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae. PMID:25593914

  3. Secondary Bacterial Infections Associated with Influenza Pandemics

    PubMed Central

    Morris, Denise E.; Cleary, David W.; Clarke, Stuart C.

    2017-01-01

    Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012). Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic. PMID:28690590

  4. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  5. Effects of bacterial secondary symbionts on host plant use in pea aphids

    PubMed Central

    McLean, A. H. C.; van Asch, M.; Ferrari, J.; Godfray, H. C. J.

    2011-01-01

    Aphids possess several facultative bacterial symbionts that have important effects on their hosts' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species. PMID:20843842

  6. The effects of light, primary production, and temperature on bacterial production at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Viviani, D. A.; Church, M. J.

    2016-02-01

    In the open oceans, bacterial metabolism is responsible for a large fraction of the movement of reduced carbon through these ecosystems. While broad meta-analyses suggest that factors such as temperature or primary production control rates of bacterial production over large geographic scales, to date little is known about how these factors influence variability in bacterial production in the open sea. Here we present two years of measurements of 3H-leucine incorporation, a proxy for bacterial production, at the open ocean field site of the Hawaii Ocean Time-series, Station ALOHA (22° 45'N, 158° 00'W). By examining 3H-leucine incorporation over monthly, daily, and hourly scales, this work provides insight into processes controlling bacterial growth in this persistently oligotrophic habitat. Rates of 3H-leucine incorporation were consistently 60% greater when measured in the light than in the dark, highlighting the importance of sunlight in fueling bacterial metabolism in this ecosystem. Over diel time scales, rates of 3H-leucine incorporation were quasi-sinusoidal, with rates in the light higher near midday, while rates in the dark were greatest after sunset. Depth-integrated (0 -125 m) rates of 3H-leucine incorporation in both light and dark were more variable ( 5- and 4-fold, respectively) than coincident measurements of primary production ( 2-fold). On average, rates of bacterial production averaged 2 and 4% of primary production (in the dark and light, respectively). At near-monthly time scales, rates of 3H-leucine incorporation in both light and dark were significantly related to temperature. Our results suggest that in the subtropical oligotrophic Pacific, bacterial production appears decoupled from primary production as a result of seasonal-scale variations in temperature and light.

  7. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica.

    PubMed

    Grossmann, S; Dieckmann, G S

    1994-08-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick ice, bacterial secondary production exceeded primary production of microalgae.

  8. Application of the [3H]Leucine Incorporation Technique for Quantification of Bacterial Secondary Production Associated with Decaying Wetland Plant Litter

    PubMed Central

    Gillies, Jane E.; Kuehn, Kevin A.; Francoeur, Steven N.; Neely, Robert K.

    2006-01-01

    The radiolabeled leucine incorporation technique for quantifying rates of bacterial production has increased in popularity since its original description for bacterioplankton communities. Prior studies addressing incorporation conditions (e.g., substrate saturation) for bacterial communities in other habitats, such as decaying plant litter, have reported a wide range of final leucine concentrations (400 nM to 50 μM) required to achieve saturation-level uptake. We assessed the application of the [3H]leucine incorporation procedure for measuring bacterial production on decaying wetland plant litter. Substrate saturation experiments (nine concentrations, 10 nM to 50 μM final leucine concentration) were conducted on three dates for microbial communities colonizing the submerged litter of three emergent plant species (Typha angustifolia, Schoenoplectus validus, and Phragmites australis). A modified [3H]leucine protocol was developed by coupling previously described incubation and alkaline extraction protocols with microdialysis (500 molecular weight cutoff membrane) of the final radiolabeled protein extract. The incorporation of [3H]leucine into protein exhibited a biphasic saturation curve, with lower apparent Km values ranging from 400 nM to 4.2 μM depending on the plant species studied. Upper apparent Km values ranged from 1.3 to 59 μM. These results suggest differential uptake by litter-associated microbial assemblages, with the lower apparent Km values possibly representing bacterial uptake and higher apparent Km values representing a combination of both bacterial and nonbacterial (e.g., eukaryotic) uptake. PMID:16957215

  9. Production of bacterial cellulose from alternate feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  10. Production of Bacterial Cellulose from Alternate Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  11. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products.

    PubMed

    Zarins-Tutt, Joseph Scott; Barberi, Tania Triscari; Gao, Hong; Mearns-Spragg, Andrew; Zhang, Lixin; Newman, David J; Goss, Rebecca Jane Miriam

    2016-01-01

    Covering: up to 2015. Over the centuries, microbial secondary metabolites have played a central role in the treatment of human diseases and have revolutionised the pharmaceutical industry. With the increasing number of sequenced microbial genomes revealing a plethora of novel biosynthetic genes, natural product drug discovery is entering an exciting second golden age. Here, we provide a concise overview as an introductory guide to the main methods employed to unlock or up-regulate these so called 'cryptic', 'silent' and 'orphan' gene clusters, and increase the production of the encoded natural product. With a predominant focus on bacterial natural products we will discuss the importance of the bioinformatics approach for genome mining, the use of first different and simple culturing techniques and then the application of genetic engineering to unlock the microbial treasure trove.

  12. Secondary lead production in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J.S.S.; Lim, C.L.

    1988-04-01

    In the absence of a lead producers' association in Malaysia and the continued presence of illegal operators whose activities are confined to remelting of cable scraps and/or smelting of battery scraps using a shaft furnace, this paper relies heavily on the information obtained from Metal Reclamation Industries, Sdn. Bhd. -the only modern integrated lead smelter in the country. Consequently, the authors can only present a semiquantitative and general paper on secondary lead production in Malaysia covering the following areas: history; secondary lead smelting; raw material; products; quality control; pollution controls; and future of secondary lead production in Malaysia. They concludemore » that if Malaysia is to become a major secondary lead producer in the Asian region, the industry must: (1) import raw materials in the form of scrapped batteries; (2) develop or acquire new technology; (3) cope with changing pollution regulations, and (4) develop technical skills and efficient quality controls to meet new challenges. 2 figures, 3 tables.« less

  13. Effects of Pb Smelting on the Soil Bacterial Community near a Secondary Lead Plant.

    PubMed

    Luo, Zhanbin; Ma, Jing; Chen, Fu; Li, Xiaoxiao; Zhang, Shaoliang

    2018-05-20

    Secondary lead smelting is a widespread industrial activity which has exacerbated Pb or Cd contamination of soil and water across the world. Soil physicochemical properties, soil enzyme activities, heavy metal concentrations, and bacterial diversity near a secondary lead plant in Xuzhou, China were examined in this study. The results showed that secondary lead smelting activities influenced nearby soils. Soil acidification decreased one order of magnitude, with a mean value of 7.3. Soil organic matter also showed a downward trend, while potassium and nitrogen appeared to accumulate. Soil urease and protease activity increased in samples with greater heavy metal pollution, but overall the soil microbial biodiversity decreased. Soil heavy metal concentration-especially Pb and Cd-greatly exceeded the concentrations of Chinese Environmental Quality Standard for Soils (GB 15618-1995). Some environmental factors-such as pH, organic matter, enzyme activity, and the concentration of heavy metals-significantly affected bacterial diversity: compared with the control site, the Chao1 estimator decreased about 50%, while the Shannon diversity index dropped approximately 20%. Moreover, some genera have significant relationships with heavy metal concentration-such as Ramlibacter with Zn and Steroidobacter with Cd-which might act as bio-indicators for soil remediation. These results will provide a new insight in the future for reclaiming soil contaminants caused by secondary lead smelting.

  14. Fibrinous pericarditis secondary to bacterial infection in a cat.

    PubMed

    Tagawa, Michihito; Kurashima, Chihiro; Shimbo, Genya; Omura, Hiroshi; Koyama, Kenji; Horiuchi, Noriyuki; Kobayashi, Yoshiyasu; Kawamoto, Keiko; Miyahara, Kazuro

    2017-06-10

    A three-year-old spayed domestic short-haired cat presented for evaluation of weight loss, cardiomegaly and pleural effusion. Echocardiographic examination demonstrated a thickened pericardium with mild pericardial effusion and a large volume of pleural effusion characterized by exudate. Although the cat was treated with antibiotics, the clinical symptoms did not improve. The cat developed dyspnea and died on day 7. Necropsy revealed a large amount of modified transudates ascites, pleural effusion and markedly dilated pericardium. Histopathological examination revealed severe exudation of fibrin and granulation tissue in a thick layer of the epicardium. The cat was diagnosed with fibrinous pericarditis secondary to bacterial infection.

  15. Contribution of Vaccine-Induced Immunity toward either the HA or the NA Component of Influenza Viruses Limits Secondary Bacterial Complications▿

    PubMed Central

    Huber, Victor C.; Peltola, Ville; Iverson, Amy R.; McCullers, Jonathan A.

    2010-01-01

    Secondary bacterial infections contribute to morbidity and mortality from influenza. Vaccine effectiveness is typically assessed using prevention of influenza, not secondary infections, as an endpoint. We vaccinated mice with formalin-inactivated influenza virus vaccine preparations containing disparate HA and NA proteins and demonstrated an ability to induce the appropriate anti-HA and anti-NA immune profiles. Protection from both primary viral and secondary bacterial infection was demonstrated with vaccine-induced immunity directed toward either the HA or the NA. This finding suggests that immunity toward the NA component of the virion is desirable and should be considered in generation of influenza vaccines. PMID:20130054

  16. Premedication with Clarithromycin Is Effective against Secondary Bacterial Pneumonia during Influenza Virus Infection in a Pulmonary Emphysema Mouse Model.

    PubMed

    Harada, Tatsuhiko; Ishimatsu, Yuji; Hara, Atsuko; Morita, Towako; Nakashima, Shota; Kakugawa, Tomoyuki; Sakamoto, Noriho; Kosai, Kosuke; Izumikawa, Koichi; Yanagihara, Katsunori; Mukae, Hiroshi; Kohno, Shigeru

    2016-09-01

    Secondary bacterial pneumonia (SBP) during influenza increases the severity of chronic obstructive pulmonary disease (COPD) and its associated mortality. Macrolide antibiotics, including clarithromycin (CAM), are potential treatments for a variety of chronic respiratory diseases owing to their pharmacological activities, in addition to antimicrobial action. We examined the efficacy of CAM for the treatment of SBP after influenza infection in COPD. Specifically, we evaluated the effect of CAM in elastase-induced emphysema mice that were inoculated with influenza virus (strain A/PR8/34) and subsequently infected with macrolide-resistant Streptococcus pneumoniae CAM was administered to the emphysema mice 4 days prior to influenza virus inoculation. Premedication with CAM improved pathologic responses and bacterial load 2 days after S. pneumoniae inoculation. Survival rates were higher in emphysema mice than control mice. While CAM premedication did not affect viral titers or exert antibacterial activity against S. pneumoniae in the lungs, it enhanced host defense and reduced inflammation, as evidenced by the significant reductions in total cell and neutrophil counts and interferon (IFN)-γ levels in bronchoalveolar lavage fluid and lung homogenates. These results suggest that CAM protects against SBP during influenza in elastase-induced emphysema mice by reducing IFN-γ production, thus enhancing immunity to SBP, and by decreasing neutrophil infiltration into the lung to prevent injury. Accordingly, CAM may be an effective strategy to prevent secondary bacterial pneumonia in COPD patients in areas in which vaccines are inaccessible or limited. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. [Synthetic biology toward microbial secondary metabolites and pharmaceuticals].

    PubMed

    Wu, Lin-Zhuan; Hong, Bin

    2013-02-01

    Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.

  18. Bacterial and primary production in the pelagic zone of the Kara Sea

    NASA Astrophysics Data System (ADS)

    Sazhin, A. F.; Romanova, N. D.; Mosharov, S. A.

    2010-10-01

    Data on the bacterial and primary production, which were obtained simultaneously for the same water samples, are presented for three regions of the Kara Sea. The samples were collected for the transect westwards of the Yamal Peninsula, along the St. Anna Trough, and the transect in Ob Bay. Direct counts of the DAPI-stained bacterial cells were performed. The bacterial production and grazing rates were determined using a direct method when metabolic inhibitors vancomycin and penicillin were added. The primary production rates were estimated using the 14C method. The average primary production was 112.6, 58.5, and 28.7 mg C m-2 day-1, and the bacterial production was 12.8, 48.9, and 81.6 mg C m-2 day-1 along the Yamal Peninsula, the St. Anna Trough, and Ob Bay, respectively. The average bacterial carbon demand was 34.6, 134.5, and 220.4 mg C m-2 day-1 for these regions, respectively. The data obtained lead us to conclude that the phytoplankton-synthesized organic matter is generally insufficient to satisfy the bacterial carbon demand and may be completely assimilated via the heterotrophic processes in the marine ecosystems. Therefore, the bacterial activity and, consequently, the amount of the synthesized biomass (i.e., the production) both depend directly on the phytoplankton’s condition and activity. We consider these relationships to be characteristics of the Kara Sea’s biota.

  19. Bacterial and primary production in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Børsheim, Knut Yngve

    2017-12-01

    Bacterial production rates were measured in water profiles collected in the Greenland Sea and adjacent areas. Hydrography and nutrients throughout the water column were measured along 75°N from 12°W to 10°E at 20 km distance intervals. Net primary production rates from satellite sensed data were compared with literature values from 14C incubations and used for regional and seasonal comparisons. Maximum bacterial production rates were associated with the region close to the edge of the East Greenland current, and the rates decreased gradually towards the center of the Greenland Sea central gyre. Integrated over the upper 20 m the maximum bacterial production rate was 17.9 mmol C m- 2 day- 1, and east of the center of the gyre the average integrated rate was 4.6 mmol C m- 2 day- 1. It is hypothesized that high bacterial production rates in the western Greenland Sea were sustained by organic material carried from the Arctic Ocean by the East Greenland Current. The depth profiles of nitrate and phosphate were very similar both sides of the Arctic front, with 2% higher values between 500 m and 2000 m in the Arctic domain, and a N/P ratio of 13.6. The N/Si ratio varied by depth and region, with increasing silicate depletion from 1500 m depth to the surface. The rate of depletion from 1500 m depth to surface in the Atlantic domain was twice as high as in the Arctic domain. Net primary production rates in the area between the edge of the East Greenland current and the center of the Greenland Sea gyre was 96 mmol C m- 2 day- 1 at the time of the expedition in 2006, and 78 mmol C m- 2 day- 1 east of the center including the Atlantic domain. Annual net primary production estimated from satellite data in the Greenland Sea increased substantially in the period between 2003 and 2016, and the rate of increase was lowest close to the East Greenland Current.

  20. Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations.

    PubMed

    Singanayagam, Aran; Glanville, Nicholas; Girkin, Jason L; Ching, Yee Man; Marcellini, Andrea; Porter, James D; Toussaint, Marie; Walton, Ross P; Finney, Lydia J; Aniscenko, Julia; Zhu, Jie; Trujillo-Torralbo, Maria-Belen; Calderazzo, Maria Adelaide; Grainge, Chris; Loo, Su-Ling; Veerati, Punnam Chander; Pathinayake, Prabuddha S; Nichol, Kristy S; Reid, Andrew T; James, Phillip L; Solari, Roberto; Wark, Peter A B; Knight, Darryl A; Moffatt, Miriam F; Cookson, William O; Edwards, Michael R; Mallia, Patrick; Bartlett, Nathan W; Johnston, Sebastian L

    2018-06-08

    Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-β reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/β receptor (IFNAR1 -/- ) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-β therapy may protect.

  1. A panorama of bacterial inulinases: Production, purification, characterization and industrial applications.

    PubMed

    Singh, Ram Sarup; Chauhan, Kanika; Kennedy, John F

    2017-03-01

    Inulinases are important hydrolysing enzymes which specifically act on β-2, 1 linkages of inulin to produce fructose or fructooligosaccharides. Fungi, yeasts and bacteria are the potent microbial sources of inulinases. The data on bacterial inulinases is scarce as compared to other microbial sources. Inulinases yield from bacteria is very less as compared to fungal and yeast sources of inulinases. Submerged fermentation (SmF) is the method of choice for the production of inulinases from bacterial sources. Moreover, inulin is a potent substrate for the production of inulinases in SmF. Many bacterial inulinases have been reported to display magnificent environment abiding features and variability in their biophysical and biochemical properties. These properties have attracted intention of many researchers towards exploring adverse ecological niches for more distinctive inulinase producing bacterial strains. Inulinases are substantially important in current biotechnological era due to their numerous industrial applications. High fructose syrup and fructooligosaccharides are two major industrial applications of inulinases. Additionally, there are many reports on the production of various metabolites like citric acid, lactic acid, ethanol, biofuels, butanediol etc. using mixed cultures of inulinase producing organisms with other microorganisms. The present review mainly envisages inulinase producing bacterial sources, inulinase production, purification, characterization and their applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation.

    PubMed

    Wakefield, Jennifer; Hassan, Hossam M; Jaspars, Marcel; Ebel, Rainer; Rateb, Mostafa E

    2017-01-01

    The frequent re-isolation of known compounds is one of the major challenges in drug discovery. Many biosynthetic genes are not expressed under standard culture conditions, thus limiting the chemical diversity of microbial compounds that can be obtained through fermentation. On the other hand, the competition during co-cultivation of two or more different microorganisms in most cases leads to an enhanced production of constitutively present compounds or an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain under different fermentation conditions. Herein, we report the dual induction of newly detected bacterial and fungal metabolites by the co-cultivation of the marine-derived fungal isolate Aspergillus fumigatus MR2012 and two hyper-arid desert bacterial isolates Streptomyces leeuwenhoekii strain C34 and strain C58. Co-cultivation of the fungal isolate MR2012 with the bacterial strain C34 led to the production of luteoride D, a new luteoride derivative and pseurotin G, a new pseurotin derivative in addition to the production of terezine D and 11- O -methylpseurotin A which were not traced before from this fungal strain under different fermentation conditions. In addition to the previously detected metabolites in strain C34, the lasso peptide chaxapeptin was isolated under co-culture conditions. The gene cluster for the latter compound had been identified through genome scanning, but it had never been detected before in the axenic culture of strain C34. Furthermore, when the fungus MR2012 was co-cultivated with the bacterial strain C58, the main producer of chaxapeptin, the titre of this metabolite was doubled, while additionally the bacterial metabolite pentalenic acid was detected and isolated for the first time from this strain, whereas the major fungal metabolites that were produced under axenic culture were suppressed. Finally, fermentation of the MR2012 by itself led to the isolation of the new diketopiperazine

  3. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.

  4. Initiation of secondary ice production in clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia C.; Hoose, Corinna; Kiselev, Alexei; Leisner, Thomas; Nenes, Athanasios

    2018-02-01

    Disparities between the measured concentrations of ice-nucleating particles (INPs) and in-cloud ice crystal number concentrations (ICNCs) have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms - rime splintering, frozen droplet shattering, and ice-ice collisional breakup - with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice), thermodynamic limitations, and the impact of parametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates (NINP(lim)) as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the phasedness of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice-ice collisional breakup is the only process for which a meaningful NINP(lim) exists (0.002 up to 0.15 L-1). For droplet shattering and rime splintering, a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values of NINP(lim) here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.

  5. Production and Status of Bacterial Cellulose in Biomedical Engineering

    PubMed Central

    Moniri, Mona; Boroumand Moghaddam, Amin; Abdul Rahim, Raha; Bin Ariff, Arbakariya; Zuhainis Saad, Wan; Navaderi, Mohammad; Mohamad, Rosfarizan

    2017-01-01

    Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.

  6. Current approaches toward production of secondary plant metabolites

    PubMed Central

    Hussain, Md. Sarfaraj; Fareed, Sheeba; Ansari, Saba; Rahman, Md. Akhlaquer; Ahmad, Iffat Zareen; Saeed, Mohd.

    2012-01-01

    Plants are the tremendous source for the discovery of new products with medicinal importance in drug development. Today several distinct chemicals derived from plants are important drugs, which are currently used in one or more countries in the world. Secondary metabolites are economically important as drugs, flavor and fragrances, dye and pigments, pesticides, and food additives. Many of the drugs sold today are simple synthetic modifications or copies of the naturally obtained substances. The evolving commercial importance of secondary metabolites has in recent years resulted in a great interest in secondary metabolism, particularly in the possibility of altering the production of bioactive plant metabolites by means of tissue culture technology. Plant cell and tissue culture technologies can be established routinely under sterile conditions from explants, such as plant leaves, stems, roots, and meristems for both the ways for multiplication and extraction of secondary metabolites. In vitro production of secondary metabolite in plant cell suspension cultures has been reported from various medicinal plants, and bioreactors are the key step for their commercial production. Based on this lime light, the present review is aimed to cover phytotherapeutic application and recent advancement for the production of some important plant pharmaceuticals. PMID:22368394

  7. Assessing in silico the recruitment and functional spectrum of bacterial enzymes from secondary metabolism.

    PubMed

    Veprinskiy, Valery; Heizinger, Leonhard; Plach, Maximilian G; Merkl, Rainer

    2017-01-26

    Microbes, plants, and fungi synthesize an enormous number of metabolites exhibiting rich chemical diversity. For a high-level classification, metabolism is subdivided into primary (PM) and secondary (SM) metabolism. SM products are often not essential for survival of the organism and it is generally assumed that SM enzymes stem from PM homologs. We wanted to assess evolutionary relationships and function of bona fide bacterial PM and SM enzymes. Thus, we analyzed the content of 1010 biosynthetic gene clusters (BGCs) from the MIBiG dataset; the encoded bacterial enzymes served as representatives of SM. The content of 15 bacterial genomes known not to harbor BGCs served as a representation of PM. Enzymes were categorized on their EC number and for these enzyme functions, frequencies were determined. The comparison of PM/SM frequencies indicates a certain preference for hydrolases (EC class 3) and ligases (EC class 6) in PM and of oxidoreductases (EC class 1) and lyases (EC class 4) in SM. Based on BLAST searches, we determined pairs of PM/SM homologs and their functional diversity. Oxidoreductases, transferases (EC class 2), lyases and isomerases (EC class 5) form a tightly interlinked network indicating that many protein folds can accommodate different functions in PM and SM. In contrast, the functional diversity of hydrolases and especially ligases is significantly limited in PM and SM. For the most direct comparison of PM/SM homologs, we restricted for each BGC the search to the content of the genome it comes from. For each homologous hit, the contribution of the genomic neighborhood to metabolic pathways was summarized in BGC-specific html-pages that are interlinked with KEGG; this dataset can be downloaded from https://www.bioinf.ur.de . Only few reaction chemistries are overrepresented in bacterial SM and at least 55% of the enzymatic functions present in BGCs possess PM homologs. Many SM enzymes arose in PM and Nature utilized the evolvability of enzymes

  8. Evaluation of bacterial flora during the ripening of Kedong sufu, a typical Chinese traditional bacteria-fermented soybean product.

    PubMed

    Feng, Zhen; Gao, Wei; Ren, Dan; Chen, Xi; Li, Juan-juan

    2013-04-01

    Kedong sufu is a typical bacteria-fermented sufu in China. Isolation and identification of the autochthonous bacteria involved would allow the design of specific starters for this speciality. The purpose of the present study was to evaluate the bacterial flora during the ripening of Kedong sufu using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and culturing. In terms of bacterial diversity, 22 strains were isolated and identified and 27 strains were detected by DGGE. Regarding bacterial dynamics, the results of culturing and PCR-DGGE exhibited a similar trend towards dominant strains. Throughout the fermentation of sufu, Enterococcus avium, Enterococcus faecalis and Staphylococcus carnosus were the dominant microflora, while the secondary microflora comprised Leuconostoc mesenteroides, Staphylococcus saprophyticus, Streptococcus lutetiensis, Kocuria rosea, Kocuria kristinae, Bacillus pumilus, Bacillus cereus and Bacillus subtilis. This study is the first to reveal the bacterial flora during the ripening of Kedong sufu using both culture-dependent and culture-independent methods. This information will help in the design of autochthonous starter cultures for the production of Kedong sufu with desirable characteristic sensory profiles and shorter ripening times. © 2012 Society of Chemical Industry.

  9. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro.

    PubMed

    Joch, M; Mrázek, J; Skřivanová, E; Čermák, L; Marounek, M

    2018-04-29

    In this study, the effects of seven pure plant secondary metabolites (PSMs) on rumen fermentation, methane (CH 4 ) production and rumen bacterial community composition were determined. Two in vitro trials were conducted. In trial 1, nine concentrations of 8-hydroxyquinoline, α-terpineol, camphor, bornyl acetate, α-pinene, thymoquinone and thymol were incubated on separate days using in vitro 24-hr batch incubations. All compounds tested demonstrated the ability to alter rumen fermentation parameters and decrease CH 4 production. However, effective concentrations differed among individual PSMs. The lowest concentrations that reduced (p < .05) CH 4 production were as follows: 8 mg/L of 8-hydroxyquinoline, 120 mg/L of thymoquinone, 240 mg/L of thymol and 480 mg/L of α-terpineol, camphor, bornyl acetate and α-pinene. These concentrations were selected for use in trial 2. In trial 2, PSMs were incubated in one run. Methane was decreased (p < .05) by all PSMs at selected concentrations. However, only 8-hydroxyquinoline, bornyl acetate and thymoquinone decreased (p < .05) CH 4 relative to volatile fatty acids (VFAs). Based on denaturing gradient gel electrophoresis analysis, different PSMs changed the composition of bacterial communities to different extents. As revealed by Ion Torrent sequencing, the effects of PSMs on relative abundance were most pronounced in the predominant families, especially in Lachnospiraceae, Succinivibrionaceae, Prevotellaceae, unclassified Clostridiales and Ruminococcaceae. The CH 4 production was correlated negatively (-.72; p < .05) with relative abundance of Succinivibrionaceae and positively with relative abundance of Ruminococcaceae (.86; p < .05). In summary, this study identified three pure PSMs (8hydroxyquinoline, bornyl acetate and thymoquinone) with potentially promising effects on rumen CH 4 production. The PSMs tested in this study demonstrated considerable impact on rumen bacterial communities even at the lowest

  10. Measuring spatial variation in secondary production and food quality using a common consumer approach in Lake Erie

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Evans, Mary Anne; Schaeffer, Jeff; Wynne, Timothy; Bartsch, Michelle; Bartsch, Lynn; Nelson, J. C.; Vallazza, Jon M.

    2016-01-01

    Lake Erie is a large lake straddling the border of the U.S. and Canada that has become increasingly eutrophic in recent years. Eutrophication is particularly focused in the shallow western basin. The western basin of Lake Erie is hydrodynamically similar to a large estuary, with riverine inputs from the Detroit and Maumee Rivers mixing together and creating gradients in chemical and physical conditions. This study was driven by two questions: How does secondary production and food quality for consumers vary across this large mixing zone? and Are there correlations between cyanobacterial abundance and secondary production or food quality for consumers? Measuring spatial and temporal variation in secondary production and food quality is difficult for a variety of logistical reasons, so here a common consumer approach was used. In a common consumer approach, individuals of a single species are raised under similar conditions until placed in the field across environmental gradients of interest. After some period of exposure, the response of that common consumer is measured to provide an index of spatial variation in conditions. Here, a freshwater mussel (Lampsilis siliquoidea) was deployed at 32 locations that spanned habitat types and a gradient in cyanobacterial abundance in the western basin of Lake Erie to measure spatial variation in growth (an index of secondary production) and fatty acid (FA) content (an index of food quality). We found secondary production was highest within the Maumee rivermouth and lowest in the open waters of the lake. Mussel tissues in the Maumee rivermouth also included more eicosapentaenoic and docosapentaenoic fatty acids (EPA and DPA, respectively), but fewer bacterial FAs, suggesting more algae at the base of the food web in the Maumee rivermouth compared to open lake sites. The satellite-derived estimate of cyanobacterial abundance was not correlated to secondary production, but was positively related to EPA and DPA content in the

  11. Anti-Biofilm Performance of Three Natural Products against Initial Bacterial Attachment

    PubMed Central

    Salta, Maria; Wharton, Julian A.; Dennington, Simon P.; Stoodley, Paul; Stokes, Keith R.

    2013-01-01

    Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment) and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement). This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+)-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Bioassays were developed using quantitative imaging and fluorescent labelling to test the natural products over a range of concentrations against initial bacterial attachment. All natural products affected bacterial attachment; however, juglone demonstrated the best anti-biofilm performance against both bacterial species at a concentration range between 5–20 ppm. In addition, for the first time, a dose-dependent inhibition (hormetic) response was observed for natural products against marine biofilm forming bacteria. PMID:24192819

  12. Biogenic amine formation and bacterial contribution in Natto products.

    PubMed

    Kim, Bitna; Byun, Bo Young; Mah, Jae-Hyung

    2012-12-01

    Twenty-one Natto products currently distributed in Korea were analysed for biogenic amine contents and tested to determine physicochemical and bacterial contributions to biogenic amine formation. Among them, nine products (about 43%) had β-phenylethylamine or tyramine contents greater than the toxic dose (30mg/kg and 100mg/kg, respectively) of each amine, although no products showed total amounts of biogenic amines above the harmful level (1000mg/kg), which indicates that the amounts of biogenic amines in some Natto products are not within the safe level for human health. From four different Natto products, that contained noticeable levels of β-phenylethylamine and tyramine, 80 bacterial strains were isolated. All the strains were identified to be Bacillus subtilis and highly capable of producing β-phenylethylamine and tyramine. Therefore, it seems likely that the remarkable contents of β-phenylethylamine and tyramine in Natto predominantly resulted from the strains highly capable of producing those amines present in the food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  14. Anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues for methane production.

    PubMed

    Li, Guixia; Zhong, Weizhang; Wang, Rui; Chen, Jiaqi; Li, Zaixing

    2017-08-01

    Optimum anaerobic conditions of cephalosporin bacterial residues after thermal-alkaline pretreatment were determined by orthogonal experiments. And through biochemical methane potential tests (BMPs) for cephalosporin bacterial residues, the ability for bacterial degradation of cephalosporin was also evaluated. The thermal-alkaline pretreatment with the optimum values of 6% NaOH at 105 °C for 15 min significantly improved digestion performance. With the thermal-alkaline pretreatment, the specific methane yield of the pretreated cephalosporin bacterial residue increased by 254.79% compared with that of the un-pretreated cephalosporin bacterial residue. The results showed that anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues could be one of the options for efficient methane production and waste treatment. This work investigates the thermal-alkaline pretreatment of cephalosporin bacterial residues, which can increase their methane yield by 254.79% compared with no pretreatment. The digestion performance is significantly improved under the condition of 6% NaOH at 105 °C for 15 min. The results show that anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues could be one of the options for efficient methane production and waste treatment.

  15. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology.

    PubMed

    Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A

    2017-01-01

    Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these "singleton" BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus's metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized

  16. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    PubMed

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  17. Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor.

    PubMed

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    2007-04-01

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  18. Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  19. Shifts of live bacterial community in secondary effluent by chlorine disinfection revealed by Miseq high-throughput sequencing combined with propidium monoazide treatment.

    PubMed

    Pang, Yu-Chen; Xi, Jin-Ying; Xu, Yang; Huo, Zheng-Yang; Hu, Hong-Ying

    2016-07-01

    Chlorine disinfection is a commonly used disinfection process in wastewater treatment, but its effects on the indigenous bacterial community in treated wastewater have not been fully elucidated. In this study, secondary effluent samples collected in four wastewater treatment plants (WWTPs) were selected for chlorine disinfection. Shifts in the bacterial community compositions in secondary effluent samples upon chlorine disinfection, both immediately and after 24 h of storage, were investigated using Illumina MiSeq sequencing combined with propidium monoazide (PMA) treatment. The results showed that the phylum Proteobacteria was sensitive to chlorine, with the relative proportions of Proteobacteria decreased from 39.2 to 75.9 % in secondary effluent samples to 7.5 to 62.2 % immediately after chlorine disinfection. The phylogenetic analysis indicated that the most dominant genera belonging to Proteobacteria were sensitive to chlorine. In contrast, the phyla Firmicutes and Planctomycetes showed a certain resistance to chlorine, with their relative proportions increasing from 5.1 to 23.1 % and 0.8 to 9.3 % to 11.3 to 44.6 % and 1.5 to 13.3 %, respectively. Most dominant genera belonging to Firmicutes showed resistance to chlorine. A significant reduction in the richness and diversity of the bacterial community was observed after 24 h of storage of chlorinated secondary effluent. During the 24-h storage process, the relative proportions of most dominant phyla shifted in reverse from the changes induced by chlorine disinfection. Overall, chlorine disinfection not only changes the bacterial community compositions immediately after the disinfection process but also exerts further impacts over a longer period (24 h).

  20. Secondary lead production in Malaysia

    NASA Astrophysics Data System (ADS)

    Phillips, M. J.; Lim, S. S.

    The increase in the number of vehicles and, subsequently, the volume of batteries made by manufacturers in Malaysia have seen a dramatic rise in lead demand over the last five years. Without any lead mines, the only source of lead in Malaysia has been from the recycling of lead/acid batteries. Metal Reclamation (Industries) has commenced the design of a new and advanced secondary lead plant at West Port, Malaysia to meet the increasing demand for lead and the increasingly stringent environmental regulations. The plant is designed to produce up to 75 000 t of lead and lead alloys per year. The plant will also produce, as by-products: polypropylene chips, wallboard-grade gypsum, non-leachable slag for use in construction. A discussion of the process and the products from the new secondary smelter is outlined.

  1. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    PubMed Central

    Schmidt, Ruth; Köberl, Martina; Mostafa, Amr; Ramadan, Elshahat M.; Monschein, Marlene; Jensen, Kenneth B.; Bauer, Rudolf; Berg, Gabriele

    2014-01-01

    Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14) from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18) already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as to influence the plant metabolome. PMID:24600444

  2. RAPA: a novel in vitro method to evaluate anti-bacterial skin cleansing products.

    PubMed

    Ansari, S A; Gafur, R B; Jones, K; Espada, L A; Polefka, T G

    2010-04-01

    Development of efficacious anti-bacterial skin cleansing products has been limited by the availability of a pre-clinical (in vitro) method to predict clinical efficacy adequately. We report a simple and rapid method, designated as rapid agar plate assay (RAPA), that uses the bacteriological agar surface as a surrogate substrate for skin and combines elements of two widely used in vivo (clinical) methods (Agar Patch and Cup Scrub). To simulate the washing of the human hand or forearm skin with the test product, trypticase soy agar plates were directly washed with the test product and rinsed under running tap water. After air-drying the washed plates, test bacteria (Staphylococcus aureus or Escherichia coli) were applied and the plates were incubated at 37 degrees C for 18-24 h. Using S. aureus as the test organism, anti-bacterial bar soap containing triclocarbanilide showed a strong linear relationship (R(2) = 0.97) between bacterial dose and their per cent reduction. A similar dose-response relationship (R(2) = 0.96) was observed for anti-bacterial liquid hand soap against E. coli. RAPA was able to distinguish between anti-bacterial products based on the nature and level of actives in them. In limited comparative tests, results obtained by RAPA were comparable with the results obtained by clinical agar patch and clinical cup scrub methods. In conclusion, RAPA provides a simple, rugged and reproducible in vitro method for testing the relative efficacy of anti-bacterial skin cleansing products with a likelihood of comparable clinical efficacy. Further testing is warranted to improve the clinical predictability of this method.

  3. Seasonal Bacterial Production in a Dimictic Lake as Measured by Increases in Cell Numbers and Thymidine Incorporation

    PubMed Central

    Lovell, Charles R.; Konopka, Allan

    1985-01-01

    Rates of primary and bacterial production in Little Crooked Lake were calculated from the rates of incorporation of H14CO3− and [methyl-3H]thymidine, respectively. Growth rates of bacteria in diluted natural samples were determined for epilimnetic and metalimnetic bacterial populations during the summers of 1982 and 1983. Exponential growth was observed in these diluted samples, with increases in cell numbers of 30 to 250%. No lag was observed in bacterial growth in 14 of 16 experiments. Correlation of bacterial growth rates to corresponding rates of thymidine incorporation by natural samples produced a conversion factor of 2.2 × 1018 cells produced per mole of thymidine incorporated. The mass of the average bacterial cell in the lake was 1.40 × 10−14 ± 0.05 × 10−14 g of C cell−1. Doubling times of natural bacteria calculated from thymidine incorporation rates and in situ cell numbers ranged from 0.35 to 12.00 days (median, 1.50 days). Bacterial production amounted to 66.7 g of C m−2 from April through September, accounting for 29.4% of total (primary plus bacterial) production during this period. The vertical and seasonal distribution of bacterial production in Little Crooked Lake was strongly influenced by the distribution of primary production. From April through September 1983, the depth of maximum bacterial production rates in the water column was related to the depth of high rates of primary production. On a seasonal basis, primary production increased steadily from May through September, and bacterial production increased from May through August and then decreased in September. PMID:16346743

  4. Bacterial Populations Associated with Smokeless Tobacco Products

    PubMed Central

    Han, Jing; Sanad, Yasser M.; Deck, Joanna; Sutherland, John B.; Li, Zhong; Walters, Matthew J.; Duran, Norma; Holman, Matthew R.

    2016-01-01

    ABSTRACT There are an estimated 8 million users of smokeless tobacco products (STPs) in the United States, and yet limited data on microbial populations within these products exist. To better understand the potential microbiological risks associated with STP use, a study was conducted to provide a baseline microbiological profile of STPs. A total of 90 samples, representing 15 common STPs, were purchased in metropolitan areas in Little Rock, AR, and Washington, DC, in November 2012, March 2013, and July 2013. Bacterial populations were evaluated using culture, pyrosequencing, and denaturing gradient gel electrophoresis (DGGE). Moist-snuff products exhibited higher levels of bacteria (average of 1.05 × 106 CFU/g STP) and diversity of bacterial populations than snus (average of 8.33 × 101 CFU/g STP) and some chewing tobacco products (average of 2.54 × 105 CFU/g STP). The most common species identified by culturing were Bacillus pumilus, B. licheniformis, B. safensis, and B. subtilis, followed by members of the genera Oceanobacillus, Staphylococcus, and Tetragenococcus. Pyrosequencing analyses of the 16S rRNA genes identified the genera Tetragenococcus, Carnobacterium, Lactobacillus, Geobacillus, Bacillus, and Staphylococcus as the predominant taxa. Several species identified are of possible concern due to their potential to cause opportunistic infections and reported abilities to reduce nitrates to nitrites, which may be an important step in the formation of carcinogenic tobacco-specific N′-nitrosamines. This report provides a microbiological baseline to help fill knowledge gaps associated with microbiological risks of STPs and to inform potential regulations regarding manufacture and testing of STPs. IMPORTANCE It is estimated that there 8 million users of smokeless tobacco products (STPs) in the United States; however, there are limited data on microbial populations that exist within these products. The current study was undertaken to better understand the

  5. Postviral Complications: Bacterial Pneumonia.

    PubMed

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  6. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers.

    PubMed

    Berggren, M; Ström, L; Laudon, H; Karlsson, J; Jonsson, A; Giesler, R; Bergström, A-K; Jansson, M

    2010-07-01

    Carbon of terrestrial origin often makes up a significant share of consumer biomass in unproductive lake ecosystems. However, the mechanisms for terrestrial support of lake secondary production are largely unclear. By using a modelling approach, we show that terrestrial export of dissolved labile low molecular weight carbon (LMWC) compounds supported 80% (34-95%), 54% (19-90%) and 23% (7-45%) of the secondary production by bacteria, protozoa and metazoa, respectively, in a 7-km(2) boreal lake (conservative to liberal estimates in brackets). Bacterial growth on LMWC was of similar magnitude as that of primary production (PP), and grazing on bacteria effectively channelled the LMWC carbon to higher trophic levels. We suggest that rapid turnover of forest LMWC pools enables continuous export of fresh photosynthates and other labile metabolites to aquatic systems, and that substantial transfer of LMWC from terrestrial sources to lake consumers can occur within a few days. Sequestration of LMWC of terrestrial origin, thus, helps explain high shares of terrestrial carbon in lake organisms and implies that lake food webs can be closely dependent on recent terrestrial PP.

  7. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples.

    PubMed

    Goacher, Robyn E; Braham, Erick J; Michienzi, Courtney L; Flick, Robert M; Yakunin, Alexander F; Master, Emma R

    2017-12-29

    The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion. © 2017 Scandinavian Plant Physiology Society.

  8. Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia

    PubMed Central

    Song, Joon Y.; Cheong, Hee J.; Heo, Jung Y.; Noh, Ji Y.; Yong, Hwan S.; Kim, Yoon K.; Kang, Eun Y.; Choi, Won S.; Jo, Yu M.; Kim, Woo J.

    2011-01-01

    Please cite this paper as: Song et al. (2011). Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia. Influenza and Other Respiratory Viruses 5(6), e535–e543. Background  Although influenza virus usually involves the upper respiratory tract, pneumonia was seen more frequently with the 2009 pandemic influenza A/H1N1 than with seasonal influenza. Methods  From September 1, 2009, to January 31, 2010, a specialized clinic for patients (aged ≥15 years) with ILI was operated in Korea University Guro Hospital. RT‐PCR assay was performed to diagnose 2009 pandemic influenza A/H1N1. A retrospective case–case–control study was performed to determine the predictive factors for influenza pneumonia and to discriminate concomitant/secondary bacterial pneumonia from primary influenza pneumonia during the 2009–2010 pandemic. Results  During the study period, the proportions of fatal cases and pneumonia development were 0·12% and 1·59%, respectively. Patients with pneumonic influenza were less likely to have nasal symptoms and extra‐pulmonary symptoms (myalgia, headache, and diarrhea) compared to patients with non‐pneumonic influenza. Crackle was audible in just about half of the patients with pneumonic influenza (38·5% of patients with primary influenza pneumonia and 53·3% of patients with concomitant/secondary bacterial pneumonia). Procalcitonin, C‐reactive protein (CRP), and lactate dehydrogenase were markedly increased in patients with influenza pneumonia. Furthermore, procalcitonin (cutoff value 0·35 ng/ml, sensitivity 81·8%, and specificity 66·7%) and CRP (cutoff value 86·5 mg/IU, sensitivity 81·8%, and specificity 59·3%) were discriminative between patients with concomitant/secondary bacterial pneumonia and patients with primary influenza pneumonia. Conclusions  Considering the subtle manifestations of 2009 pandemic

  9. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    PubMed

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications

    PubMed Central

    Narsing Rao, Manik Prabhu; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications. PMID:28690593

  11. Secondary Products (Markets, Competition, and Technological Improvements)

    Treesearch

    Philip A. Araman

    1988-01-01

    Competitiveness, imports, exports, and technological improvements--these are issues facing secondary wood-product manufacturers. The major problems focus on increasing foreign imports and the inability of U.S. industries to repell the imports. How and where should we, as researchers, allocate our efforts to enhance the competitiveness of secondary forest industries in...

  12. Cost-effective production of bacterial cellulose using acidic food industry by-products.

    PubMed

    Revin, Victor; Liyaskina, Elena; Nazarkina, Maria; Bogatyreva, Alena; Shchankin, Mikhail

    2018-03-13

    To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil.

    PubMed

    Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas

    2013-10-01

    The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites

  14. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    PubMed

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific

    NASA Astrophysics Data System (ADS)

    Sherry, Nelson D.; Boyd, Philip W.; Sugimoto, Kugako; Harrison, Paul J.

    1999-11-01

    Heterotrophic bacterial biomass, production, and respiration rates were measured during winter, spring, and summer in the subarctic NE Pacific from September 1995 to June 1997. Sampling took place on six cruises at five hydrographic stations along the east/west line-P transect from slope waters at P4 (1200 m depth) to the open-ocean waters at Ocean Station Papa (OSP) (4250 m depth). Interannual variability was small relative to seasonal and spatial variability. Biomass, derived from cell counts (assuming 20 fg C cell -1), was ca. 12 μg C l -1 in the winter and increased to 20-35 μg C l -1 in the spring and summer all along line-P. Bacterial production from [ 3H]-thymidine and [ 14C]-leucine incorporation rates was lowest in the winter (ca. 0.5 μg C l -1 d -1) with little spatial variability. Production increased 10-fold in spring at P4 (to ca. 4.5 μg C l -1 d -1). In contrast, only a 2-fold increase in bacterial production was observed over this period at the more oceanic stations. Rates of production in late summer were highest over the annual cycle at all stations ranging from ca. 6 at P4 to ca. 2 μg C l -1 d -1 at OSP. Bacterial (<1 μm size fraction) respiration, measured from dark-bottle O 2 consumption over 24 or 48 h, was <10 μg C l -1 d -1 during the winter and spring. Respiration rates increased >10-fold to ca. 100 μg C l -1 d -1 at P4 in the summer, but, interestingly, did not increase from spring to summer at the more oceanic stations. Thus bacterial growth efficiency, defined as production/(production+respiration), decreased in the spring westwards from the slope waters (P4) to the open-ocean (OSP), but increased westwards in the summer. Bacterial production was highly correlated with temperature at OSP ( r2=0.88) and less so at P4 ( r2=0.50). The observed temporal and spatial trends presented in this study suggest that seasonal changes in bacterial biomass were greatly affected by changes in loss processes, that bacterial biomass is regulated by

  16. Bacterial community changes in an industrial algae production system.

    PubMed

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  17. Method for Bacterial Growth and Ammonia Production and Effect of Inhibitory Substances in Disposable Absorbent Hygiene Products.

    PubMed

    Forsgren-Brusk, Ulla; Yhlen, Birgitta; Blomqvist, Marie; Larsson, Peter

    The purpose of this study was to evaluate a pragmatic laboratory method to provide a technique for developing incontinence products better able to reduce malodor when used in the clinical setting. Bacterial growth and bacterially formed ammonia in disposable absorbent incontinence products was measured by adding synthetic urine inoculated with bacteria to test samples cut from the crotch area of the product. The inhibitory effect's of low pH (4.5 and 4.9) and 3 antimicrobial substances-chlorhexidine, polyhexamethylene biguanide (PHMB), and thymol-at 2 concentrations each, were studied. From the initial inocula of 3.3 log colony-forming units per milliliter (cfu/mL) at baseline, the bacterial growth of the references increased to 5.0 to 6.0 log cfu/mL at 6 hours for Escherichia coli, Proteus mirabilis, and Enterococcus faecalis. At 12 hours there was a further increase to 7.0 to 8.9 log cfu/mL. Adjusting the pH of the superabsorbent in the incontinence product from 6.0 to pH 4.5 and pH 4.9 significantly (P < .05) inhibited the bacterial growth rates, in most cases, both at 6 and 12 hours. The effect was most pronounced at pH 4.5. Chlorhexidine had significant (P < .05) inhibitory effect on E. coli and E. faecalis, and at 12 hours also on P. mirabilis. For PHMB and thymol the results varied. At 6 hours, the ammonia concentration in the references (pH 6.0) was 200 to 300 ppm and it was 1500 to 1600 ppm at 8 hours. At pH 4.5, no or little ammonia production was measured at 6 and 8 hours. At pH 4.9, there was a significant reduction (P < .01). Chlorhexidine and PHMB exerted a significant (P < .01 or P < .001) inhibitory effect on ammonia production at both concentrations and at 6 and 8 hours. Thymol 0.003% and 0.03% showed inhibitory effect at both 6 hours (P < .01 or P < .001) and at 8 hours (P < .05 or P < .001). The method described in this study can be used to compare the ability of various disposable absorbent products to inhibit bacterial growth and ammonia

  18. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine.

    PubMed

    Chin-Leo, G; Kirchman, D L

    1988-08-01

    We examined the simultaneous incorporation of [H]thymidine and [C]leucine to obtain two independent indices of bacterial production (DNA and protein syntheses) in a single incubation. Incorporation rates of leucine estimated by the dual-label method were generally higher than those obtained by the single-label method, but the differences were small (dual/single = 1.1 +/- 0.2 [mean +/- standard deviation]) and were probably due to the presence of labeled leucyl-tRNA in the cold trichloroacetic acid-insoluble fraction. There were no significant differences in thymidine incorporation between dual- and single-label incubations (dual/ single = 1.03 +/- 0.13). Addition of the two substrates in relatively large amounts (25 nM) did not apparently increase bacterial activity during short incubations (<5 h). With the dual-label method we found that thymidine and leucine incorporation rates covaried over depth profiles of the Chesapeake Bay. Estimates of bacterial production based on thymidine and leucine differed by less than 25%. Although the need for appropriate conversion factors has not been eliminated, the dual-label approach can be used to examine the variation in bacterial production while ensuring that the observed variation in incorporation rates is due to real changes in bacterial production rather than changes in conversion factors or introduction of other artifacts.

  19. Bacterial symbionts and natural products.

    PubMed

    Crawford, Jason M; Clardy, Jon

    2011-07-21

    The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses.

  20. Bacterial and fungal composition profiling of microbial based cleaning products.

    PubMed

    Subasinghe, R M; Samarajeewa, A D; Meier, M; Coleman, G; Clouthier, H; Crosthwait, J; Tayabali, A F; Scroggins, R; Shwed, P S; Beaudette, L A

    2018-06-01

    Microbial based cleaning products (MBCPs) are a new generation of cleaning products that are gaining greater use in household, institutional, and industrial settings. Little is known about the exact microbial composition of these products because they are not identified in detail on product labels and formulations are often proprietary. To gain a better understanding of their microbial and fungal composition towards risk assessment, the cultivable microorganisms and rDNA was surveyed for microbial content in five different MBCPs manufactured and sold in North America. Individual bacterial and fungal colonies were identified by ribosequencing and fatty acid methyl ester (FAME) gas chromatography. Metagenomic DNA (mDNA) corresponding to each of the products was subjected to amplification and short read sequencing of seven of the variable regions of the bacterial 16S ribosomal DNA. Taken together, the cultivable microorganism and rDNA survey analyses showed that three of the products were simple mixtures of Bacillus species. The two other products featured a mixture of cultivable fungi with Bacilli, and by rDNA survey analysis, they featured greater microbial complexity. This study improves our understanding of the microbial composition of several MBCPs towards a more comprehensive risk assessment. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria.

    PubMed

    Tyc, Olaf; Song, Chunxu; Dickschat, Jeroen S; Vos, Michiel; Garbeva, Paolina

    2017-04-01

    The rich diversity of secondary metabolites produced by soil bacteria has been appreciated for over a century, and advances in chemical analysis and genome sequencing continue to greatly advance our understanding of this biochemical complexity. However, we are just at the beginning of understanding the physicochemical properties of bacterial metabolites, the factors that govern their production and ecological roles. Interspecific interactions and competitor sensing are among the main biotic factors affecting the production of bacterial secondary metabolites. Many soil bacteria produce both volatile and soluble compounds. In contrast to soluble compounds, volatile organic compounds can diffuse easily through air- and gas-filled pores in the soil and likely play an important role in long-distance microbial interactions. In this review we provide an overview of the most important soluble and volatile classes of secondary metabolites produced by soil bacteria, their ecological roles, and their possible synergistic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.

    PubMed

    Shulse, Christine N; Allen, Eric E

    2011-01-01

    Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.

  3. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings.

    PubMed

    Tennert, Christian; Fuhrmann, Maximilian; Wittmer, Annette; Karygianni, Lamprini; Altenburger, Markus J; Pelz, Klaus; Hellwig, Elmar; Al-Ahmad, Ali

    2014-05-01

    The aim of the present study was to analyze the microbiota of primary and secondary/persistent endodontic infections of patients undergoing endodontic treatment with respect to clinical and radiographic findings. Samples from the root canals of 21 German patients were taken using 3 sequential sterile paper points. In the case of a root canal filling, gutta-percha was removed with sterile files, and samples were taken using sterile paper points. The samples were plated, and microorganisms were then isolated and identified morphologically by biochemical analysis and sequencing the 16S rRNA genes of isolated microorganisms. In 12 of 21 root canals, 33 different species could be isolated. Six (50%) of the cases with isolated microorganisms were primary, and 6 (50%) cases were endodontic infections associated with root-filled teeth. Twelve of the isolated species were facultative anaerobic and 21 obligate anaerobic. Monomicrobial infections were found for Enterococcus faecalis and Actinomyces viscosus. E. faecalis was most frequently isolated in secondary endodontic infections (33%). Moraxella osloensis was isolated from a secondary endodontic infection that had an insufficient root canal filling accompanied by a mild sensation of pain. A new bacterial composition compromising Atopobium rimae, Anaerococcus prevotii, Pseudoramibacter alactolyticus, Dialister invisus, and Fusobacterium nucleatum was recovered from teeth with chronic apical abscesses. New bacterial combinations were found and correlated to clinical and radiographic findings, particularly to chronic apical abscesses. M. osloensis was detected in root canals for the second time and only in German patients. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.

    PubMed

    Servais, P

    1995-03-01

    In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.

  5. The innate immune rheostat: influence on lung inflammatory disease and secondary bacterial pneumonia.

    PubMed

    Hussell, Tracy; Cavanagh, Mary M

    2009-08-01

    The activity of innate immunity is not simply dictated by the presence of an antigen but also by the balance between negative regulatory and immune potentiator pathways. Even in the absence of antigen, innate immunity can 'inflame' if negative regulators are absent. This resting state is adaptable and dictated by environmental influences, host genetics and past infection history. A return to homoeostasis post inflammation may therefore not leave the tissue in an identical state to that prior to the inflammatory event. This adaptability makes us all unique and also explains the variable outcome experienced by a diverse population to the same inflammatory stimulus. Using murine models we have identified that influenza virus causes a long-term modification of the lung microenvironment by a de-sensitization to bacterial products and an increase in the myeloid negative regulator CD200R (CD200 receptor). These two events prevent subsequent inflammatory damage while the lung is healing, but also they may predispose to bacterial colonization of the lower respiratory tract should regulatory mechanisms overshoot. In the extreme, this leads to bacterial pneumonia, sepsis and death. A deeper understanding of the consequences arising from innate immune cell alteration during influenza infection and the subsequent development of bacterial complications has important implications for future drug development.

  6. Estimating Bacterial Production in Marine Waters from the Simultaneous Incorporation of Thymidine and Leucine

    PubMed Central

    Chin-Leo, Gerardo; Kirchman, David L.

    1988-01-01

    We examined the simultaneous incorporation of [3H]thymidine and [14C]leucine to obtain two independent indices of bacterial production (DNA and protein syntheses) in a single incubation. Incorporation rates of leucine estimated by the dual-label method were generally higher than those obtained by the single-label method, but the differences were small (dual/single = 1.1 ± 0.2 [mean ± standard deviation]) and were probably due to the presence of labeled leucyl-tRNA in the cold trichloroacetic acid-insoluble fraction. There were no significant differences in thymidine incorporation between dual- and single-label incubations (dual/ single = 1.03 ± 0.13). Addition of the two substrates in relatively large amounts (25 nM) did not apparently increase bacterial activity during short incubations (<5 h). With the dual-label method we found that thymidine and leucine incorporation rates covaried over depth profiles of the Chesapeake Bay. Estimates of bacterial production based on thymidine and leucine differed by less than 25%. Although the need for appropriate conversion factors has not been eliminated, the dual-label approach can be used to examine the variation in bacterial production while ensuring that the observed variation in incorporation rates is due to real changes in bacterial production rather than changes in conversion factors or introduction of other artifacts. PMID:16347706

  7. Overview of systematic reviews assessing the evidence for shorter versus longer duration antibiotic treatment for bacterial infections in secondary care.

    PubMed

    Onakpoya, Igho J; Walker, A Sarah; Tan, Pui S; Spencer, Elizabeth A; Gbinigie, Oghenekome A; Cook, Johanna; Llewelyn, Martin J; Butler, Christopher C

    2018-01-01

    Our objective was to assess the clinical effectiveness of shorter versus longer duration antibiotics for treatment of bacterial infections in adults and children in secondary care settings, using the evidence from published systematic reviews. We conducted electronic searches in MEDLINE, Embase, Cochrane, and Cinahl. Our primary outcome was clinical resolution. The quality of included reviews was assessed using the AMSTAR criteria, and the quality of the evidence was rated using the GRADE criteria. We included 6 systematic reviews (n = 3,162). Four reviews were rated high quality, and two of moderate quality. In adults, there was no difference between shorter versus longer duration in clinical resolution rates for peritonitis (RR 1.03, 95% CI 0.98 to 1.09, I2 = 0%), ventilator-associated pneumonia (RR 0.93; 95% CI 0.81 to 1.08, I2 = 24%), or acute pyelonephritis and septic UTI (clinical failure: RR 1.00, 95% CI 0.46 to 2.18). The quality of the evidence was very low to moderate. In children, there was no difference in clinical resolution rates for pneumonia (RR 0.98, 95% CI 0.91 to 1.04, I2 = 48%), pyelonephritis (RR 0.95, 95% CI 0.88 to 1.04) and confirmed bacterial meningitis (RR 1.02, 95% CI 0.93 to 1.11, I2 = 0%). The quality of the evidence was low to moderate. In conclusion, there is currently a limited body of evidence to clearly assess the clinical benefits of shorter versus longer duration antibiotics in secondary care. High quality trials assessing strategies to shorten antibiotic treatment duration for bacterial infections in secondary care settings should now be a priority.

  8. Overview of systematic reviews assessing the evidence for shorter versus longer duration antibiotic treatment for bacterial infections in secondary care

    PubMed Central

    Walker, A. Sarah; Tan, Pui S.; Spencer, Elizabeth A.; Gbinigie, Oghenekome A.; Cook, Johanna; Llewelyn, Martin J.; Butler, Christopher C.

    2018-01-01

    Our objective was to assess the clinical effectiveness of shorter versus longer duration antibiotics for treatment of bacterial infections in adults and children in secondary care settings, using the evidence from published systematic reviews. We conducted electronic searches in MEDLINE, Embase, Cochrane, and Cinahl. Our primary outcome was clinical resolution. The quality of included reviews was assessed using the AMSTAR criteria, and the quality of the evidence was rated using the GRADE criteria. We included 6 systematic reviews (n = 3,162). Four reviews were rated high quality, and two of moderate quality. In adults, there was no difference between shorter versus longer duration in clinical resolution rates for peritonitis (RR 1.03, 95% CI 0.98 to 1.09, I2 = 0%), ventilator-associated pneumonia (RR 0.93; 95% CI 0.81 to 1.08, I2 = 24%), or acute pyelonephritis and septic UTI (clinical failure: RR 1.00, 95% CI 0.46 to 2.18). The quality of the evidence was very low to moderate. In children, there was no difference in clinical resolution rates for pneumonia (RR 0.98, 95% CI 0.91 to 1.04, I2 = 48%), pyelonephritis (RR 0.95, 95% CI 0.88 to 1.04) and confirmed bacterial meningitis (RR 1.02, 95% CI 0.93 to 1.11, I2 = 0%). The quality of the evidence was low to moderate. In conclusion, there is currently a limited body of evidence to clearly assess the clinical benefits of shorter versus longer duration antibiotics in secondary care. High quality trials assessing strategies to shorten antibiotic treatment duration for bacterial infections in secondary care settings should now be a priority. PMID:29590188

  9. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes.

    PubMed

    Ye, N-F; Lü, F; Shao, L-M; Godon, J-J; He, P-J

    2007-10-01

    To estimate the effect of pH on the structures of bacterial community during fermentation of vegetable wastes and to investigate the relationship between bacterial community dynamics and product distribution. The bacterial communities in five batch tests controlled at different pH values [uncontrolled (about pH 4), 5, 6, 7 and 8] were monitored by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP). The two fingerprinting methods provided consistent results and principal component analysis indicated a close similarity of bacterial community at pH 7 and 8 in addition to those at pH 4-6. This clustering also corresponded to dominant metabolic pathway. Thus, pH 7-8 shifted from alcohol-forming to acid-forming, especially butyric acid, whereas both alcohol-forming and acid-forming dominated at pH 5-6, and at pH 4, fermentation was inhibited. Shannon-weaver index was calculated to analyse the DGGE profiles, which revealed that the bacterial diversities at pH 7 and 8 were the highest while those at pH 5 and 4 (uncontrolled) were the lowest. According to sequencing results of the bands excised from DGGE gels, lactic acid bacteria and Clostridium sp. were predominant at all pH values, but varieties in species were observed as pH changed and time prolonged. The bacterial community during fermentation was materially influenced by pH and the diverse product distribution was related to the shift of different bacterial population. The study reveals that the impact of pH on fermentation product distribution is implemented primarily by changes of bacterial community. It also provides information about the comparison of two fingerprinting methods, DGGE and SSCP.

  10. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin.

    PubMed

    Bettarel, Y; Amblard, C; Sime-Ngando, T; Carrias, J-F; Sargos, D; Garabétian, F; Lavandier, P

    2003-02-01

    Abundances of different compartments of the microbial loop (i.e., viruses, heterotrophic bacteria, nonpigmented nanoflagellates, and pigmented nanoflagellates), bacterial heterotrophic production (BHP), viral lysis, and potential flagellate grazing impacts on the bacterial assemblages were estimated during a short-term study (24 h) conducted in June 1998 in the epilimnion (5 m) and metalimnion (10 m) of a moderate-altitude oligomesotrophic lake (Lake Pavin, France). Viral and bacterial abundances were higher in the metalimnion than in the epilimnion, whereas pigmented and nonpigmented nanoflagellates were more numerous in the epilimnion. The control of the BHP due to viral lysis (determined by examination of viral-containing bacteria using a transmission electron microscope) was significantly higher in the meta- (range = 6.0-33.7%, mean = 15.6%) than in the epilimnion (3.5-10.3%, 6.4%). The same was for the losses of BHP from the potential predation by nanoflagellates which ranged from 0.5 to 115.4% (mean = 38.7%) in the epilimnion, and from 0.7 to 97.5% (mean = 66.7%) in the metalimnion. Finally, estimated viral mediated mortality rates from the percentage of visibly infected cells and potential nanoflagellate grazing rates based on assumed clearance rates suggest that flagellates consumed a larger proportion of bacterial production than was lost to viral lysis.

  11. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  12. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE PAGES

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...

    2016-11-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  13. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    PubMed

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  14. Production of Phloroglucinol, a Platform Chemical, in Arabidopsis using a Bacterial Gene.

    PubMed

    Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N

    2016-12-07

    Phloroglucinol (1,3,5-trihydroxybenzene; PG) and its derivatives are phenolic compounds that are used for various industrial applications. Current methods to synthesize PG are not sustainable due to the requirement for carbon-based precursors and co-production of toxic byproducts. Here, we describe a more sustainable production of PG using plants expressing a native bacterial or a codon-optimized synthetic PhlD targeted to either the cytosol or chloroplasts. Transgenic lines were analyzed for the production of PG using gas and liquid chromatography coupled to mass spectroscopy. Phloroglucinol was produced in all transgenic lines and the line with the highest PhlD transcript level showed the most accumulation of PG. Over 80% of the produced PG was glycosylated to phlorin. Arabidopsis leaves have the machinery to glycosylate PG to form phlorin, which can be hydrolyzed enzymatically to produce PG. Furthermore, the metabolic profile of plants with PhlD in either the cytosol or chloroplasts was altered. Our results provide evidence that plants can be engineered to produce PG using a bacterial gene. Phytoproduction of PG using a bacterial gene paves the way for further genetic manipulations to enhance the level of PG with implications for the commercial production of this important platform chemical in plants.

  15. Small-molecule elicitation of microbial secondary metabolites.

    PubMed

    Pettit, Robin K

    2011-07-01

    Microbial natural products continue to be an unparalleled resource for pharmaceutical lead discovery, but the rediscovery rate is high. Bacterial and fungal sequencing studies indicate that the biosynthetic potential of many strains is much greater than that observed by fermentation. Prodding the expression of such silent (cryptic) pathways will allow us to maximize the chemical diversity available from microorganisms. Cryptic metabolic pathways can be accessed in the laboratory using molecular or cultivation-based approaches. A targeted approach related to cultivation-based methods is the application of small-molecule elicitors to specifically affect transcription of secondary metabolite gene clusters. With the isolation of the novel secondary metabolites lunalides A and B, oxylipins, cladochromes F and G, nygerone A, chaetoglobosin-542, -540 and -510, sphaerolone, dihydrosphaerolone, mutolide and pestalone, and the enhanced production of known secondary metabolites like penicillin and bacitracin, chemical elicitation is proving to be an effective way to augment natural product libraries. © 2010 The Authors. Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. The in situ bacterial production of fluorescent organic matter; an investigation at a species level.

    PubMed

    Fox, B G; Thorn, R M S; Anesio, A M; Reynolds, D M

    2017-11-15

    Aquatic dissolved organic matter (DOM) plays an essential role in biogeochemical cycling and transport of organic matter throughout the hydrological continuum. To characterise microbially-derived organic matter (OM) from common environmental microorganisms (Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa), excitation-emission matrix (EEM) fluorescence spectroscopy was employed. This work shows that bacterial organisms can produce fluorescent organic matter (FOM) in situ and, furthermore, that the production of FOM differs at a bacterial species level. This production can be attributed to structural biological compounds, specific functional proteins (e.g. pyoverdine production by P. aeruginosa), and/or metabolic by-products. Bacterial growth curve data demonstrates that the production of FOM is fundamentally related to microbial metabolism. For example, the majority of Peak T fluorescence (> 75%) is shown to be intracellular in origin, as a result of the building of proteins for growth and metabolism. This underpins the use of Peak T as a measure of microbial activity, as opposed to bacterial enumeration as has been previously suggested. This study shows that different bacterial species produce a range of FOM that has historically been attributed to high molecular weight allochthonous material or the degradation of terrestrial FOM. We provide definitive evidence that, in fact, it can be produced by microbes within a model system (autochthonous), providing new insights into the possible origin of allochthonous and autochthonous organic material present in aquatic systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Isotopomers as a method for differentiating between bacterial and fungal production of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Sutka, R. L.; Adams, G.; Ostrom, N.; Ostrom, P.

    2007-12-01

    In order to study the importance of fungi to nitrous oxide (N2O) production in the environment it is critical to have a non-intrusive method for differentiating between fungal and bacterial N2O production. Site preference (SP), the difference in d15N between the central and outer N atoms in N2O, has been used to differentiate between bacterial nitrification and denitrification. In this study we compare the SP, d15N and d18O of N2O produced by the two best-studied fungal denitrifiers, Fusarium oxysporum and Cylindrocarpon tonkinense, to data from our previous bacterial studies. Both d18O and SP values remained fairly constant during the course of nitrite reduction which likely reflects isotopic exchange with water in the case of d18O and conservative behavior in SP that has been observed previously (Sutka et al., 2006). We observed a wide range of fractionation factors for fungal denitrification, -74.7 to -6.6 ‰, and non-linear behavior indicating that fractionation was controlled by more than one step. We interpret the small degree of fractionation as reflecting fractionation during diffusion and the more negative values as being controlled by enzymatic fractionation. Data from this and our previous study of bacterial production (Sutka et al., 2006) reveals that N2O produced via nitrification by fungi can be differentiated from N2O produced by bacterial denitrification primarily on the basis of d18O. The site preference of N2O produced by F. oxysporum and C. tonkinense was 37.1 ± 2.5 ‰ and 36.9 ± 2.8 ‰, respectively. These results indicate that isotopomers can be used as a basis for differentiating bacterial and fungal denitrification. Our work further reveals the role that fungal and bacterial nitric oxide reductases have in determining site preference during N2O production.

  18. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams.

    PubMed

    Adams, Heather E; Crump, Byron C; Kling, George W

    2010-05-01

    The impact of temperature on bacterial activity and community composition was investigated in arctic lakes and streams in northern Alaska. Aquatic bacterial communities incubated at different temperatures had different rates of production, as measured by (14)C-leucine uptake, indicating that populations within the communities had different temperature optima. Samples from Toolik Lake inlet and outlet were collected at water temperatures of 14.2 degrees C and 15.9 degrees C, respectively, and subsamples incubated at temperatures ranging from 6 degrees C to 20 degrees C. After 5 days, productivity rates varied from 0.5 to approximately 13.7 microg C l(-1) day(-1) and two distinct activity optima appeared at 12 degrees C and 20 degrees C. At these optima, activity was 2- to 11-fold higher than at other incubation temperatures. The presence of two temperature optima indicates psychrophilic and psychrotolerant bacteria dominate under different conditions. Community fingerprinting via denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes showed strong shifts in the composition of communities driven more by temperature than by differences in dissolved organic matter source; e.g. four and seven unique operational taxonomic units (OTUs) were found only at 2 degrees C and 25 degrees C, respectively, and not found at other incubation temperatures after 5 days. The impact of temperature on bacteria is complex, influencing both bacterial productivity and community composition. Path analysis of measurements of 24 streams and lakes sampled across a catchment 12 times in 4 years indicates variable timing and strength of correlation between temperature and bacterial production, possibly due to bacterial community differences between sites. As indicated by both field and laboratory experiments, shifts in dominant community members can occur on ecologically relevant time scales (days), and have important implications for understanding the relationship of bacterial

  19. Supplementing Blends of Sugars, Amino Acids, and Secondary Metabolites to the Diet of Termites (Reticulitermes flavipes) Drive Distinct Gut Bacterial Communities.

    PubMed

    Huang, Xing-Feng; Chaparro, Jacqueline M; Reardon, Kenneth F; Judd, Timothy M; Vivanco, Jorge M

    2016-10-01

    Although it is well known that diet is one of the major modulators of the gut microbiome, how the major components of diet shape the gut microbial community is not well understood. Here, we developed a simple system that allows the investigation of the impact of given compounds as supplements of the diet on the termite gut microbiome. The 16S rRNA pyrosequencing analysis revealed that feeding termites different blends of sugars and amino acids did not majorly impact gut community composition; however, ingestion of blends of secondary metabolites caused shifts in gut bacterial community composition. The supplementation of sugars and amino acids reduced the richness significantly, and sugars alone increased the evenness of the gut bacterial community significantly. Secondary metabolites created the most dramatic effects on the microbial community, potentially overriding the effect of other types of compounds. Furthermore, some microbial groups were stimulated specifically by particular groups of compounds. For instance, termites fed with secondary metabolites contained more Firmicutes and Spirochaetes compared to the other treatments. In conclusion, our results suggest that the termite (Reticulitermes flavipes) can be used as a simple and effective system to test the effects of particular chemical compounds in modulating the gut microbiome.

  20. Th2 Allergic Immune Response to Inhaled Fungal Antigens is Modulated By TLR-4-Independent Bacterial Products

    PubMed Central

    Allard, Jenna B.; Rinaldi, Lisa; Wargo, Matt; Allen, Gilman; Akira, Shizuo; Uematsu, Satoshi; Poynter, Matthew E.; Hogan, Deborah A.; Rincon, Mercedes; Whittaker, Laurie A.

    2009-01-01

    SUMMARY Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well know triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4-independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the host's adaptive immune response, and potentially impact the development of allergic airway disease to environmental fungal antigens. PMID:19224641

  1. Secondary successional trajectories of structural and catabolic bacterial communities in oil-polluted soil planted with hybrid poplar.

    PubMed

    Mukherjee, Shinjini; Sipilä, Timo; Pulkkinen, Pertti; Yrjälä, Kim

    2015-02-01

    Poplars have widely been used for rhizoremediation of a broad range of organic contaminants for the past two decades. Still, there is a knowledge gap regarding the rhizosphere-associated bacterial communities of poplars and their dynamics during the remediation process. It is envisaged that a detailed understanding of rhizosphere-associated microbial populations will greatly contribute to a better design and implementation of rhizoremediation. To investigate the long-term succession of structural and catabolic bacterial communities in oil-polluted soil planted with hybrid poplar, we carried out a 2-year field study. Hybrid aspen (Populus tremula × Populus tremuloides) seedlings were planted in polluted soil excavated from an accidental oil-spill site. Vegetated and un-vegetated soil samples were collected for microbial community analyses at seven different time points during the course of 2 years and sampling time points were chosen to cover the seasonal variation in the boreal climate zone. Bacterial community structure was accessed by means of 16S rRNA gene amplicon pyrosequencing, whereas catabolic diversity was monitored by pyrosequencing of alkane hydroxylase and extradiol dioxygenase genes. We observed a clear succession of bacterial communities on both structural and functional levels from early to late-phase communities. Sphingomonas type extradiol dioxygenases and alkane hydroxylase homologs of Rhodococcus clearly dominated the early-phase communities. The high-dominance/low-diversity functional gene communities underwent a transition to low-dominance/high-diversity communities in the late phase. These results pointed towards increased catabolic capacities and a change from specialist to generalist strategy of bacterial communities during the course of secondary succession. © 2014 John Wiley & Sons Ltd.

  2. Bacterial dynamics during yearlong spontaneous fermentation for production of ngari, a dry fermented fish product of Northeast India.

    PubMed

    Devi, Khunjamayum Romapati; Deka, Manab; Jeyaram, Kumaraswamy

    2015-04-16

    Ngari is the most popular traditionally processed non-salted fish product, prepared from sun-dried small cyprinid fish Puntius sophore (Ham.) in Manipur state of Northeast India. The microbial involvement in ngari production remained uncertain due to its low moisture content and yearlong incubation in anaerobically sealed earthen pots without any significant change in total microbial count. The culture-independent PCR-DGGE analysis used during this study confirmed a drastic bacterial community structural change in comparison to its raw material. To understand the bacterial dynamics during this dry fermentation, time series samples collected over a period of nine months through destructive sampling from two indigenous ngari production centres were analysed by using both culture-dependent and culture-independent molecular methods. A total of 210 bacteria isolated from the samples were identified by amplified ribosomal DNA restriction analysis (ARDRA) based grouping and 16S rRNA gene sequence similarity analysis. The dominant bacteria were Staphylococcus cohnii subsp. cohnii (38.0%), Tetragenococcus halophilus subsp. flandriensis (16.8%), a novel phylotype related to Lactobacillus pobuzihii (7.2%), Enterococcus faecium (7.2%), Bacillus indicus (6.3%) and Staphylococcus carnosus (3.8%). Distinct bacterial dynamics with the emergence of T. halophilus at third month (10(6)CFU/g), L. pobuzihii at sixth month (10(6)CFU/g), S. carnosus at three to six months (10(4)CFU/g) and B. indicus at six to nine months (10(5)CFU/g) in both the production centres was observed during ngari fermentation. However, the other two dominant bacteria S. cohnii and E. faecium were isolated throughout the fermentation with the population of 10(6)CFU/g and 10(4)CFU/g respectively. Culture-independent PCR-DGGE analysis further showed the presence of additional species, in which Kocuria halotolerans and Macrococcus caseolyticus disappeared during fermentation while Clostridium irregulare and

  3. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    PubMed

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production.

  4. Dynamic bacterial and fungal microbiomes during sweet sorghum ensiling impact bioethanol production.

    PubMed

    Gallagher, Daniella; Parker, David; Allen, Damian J; Tsesmetzis, Nicolas

    2018-05-23

    Significant low-cost biofuel production volumes could be achieved from commercial-scale silage by redirecting lactic acid fermentation to ethanol production. A temporal metagenomic analysis on ensiled sweet sorghum inoculated with an ethanologenic yeast has been conducted to understand the underlying microbial processes during bioethanol production. Individual silage buckets approximating silage piles were prepared with freshly harvested material and supplemented with ethanologenic yeast, sulfuric acid or both. The ensiling progress was assessed using high performance liquid chromatography, microbial taxonomic identification and abundance. The combined treatment with Saccharomyces and acid led to a steady reduction of bacterial abundance and microbial diversity with Lactobacillus becoming the dominant genus during the late timepoints. Furthermore, the addition of acid to inhibit bacterial growth hindered Saccharomyces ability to compete with native yeasts like Candida. Knowledge of the response of the in-situ microbial community to the various treatments during ensiling will help improve current methodologies for bioethanol production. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.

    PubMed

    Medema, Marnix H; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    2011-07-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org.

  6. Alcohol Fuel Production for Vocational Students: Secondary, Postsecondary.

    ERIC Educational Resources Information Center

    Green, C. Paul; Burkhalter, Wayne

    In order to help bring about the potential for alcohol production by the farming community, Navarro College (Texas) has developed this curriculum for secondary and postsecondary levels in alcohol fuel production. The alcohol fuel curriculum consists of five modules for use in practical hands-on vocational programs. The curriculum is designed to…

  7. Bioactive Oligosaccharide Natural Products

    PubMed Central

    McCranie, Emilianne K.; Bachmann, Brian O.

    2016-01-01

    Oligosaccharide natural products target a wide spectrum of biological processes including disruption of cell wall biosynthesis, interference of bacterial translation, and inhibition of human α-amylase. Correspondingly, oligosaccharides possess potential for development as treatments of such diverse diseases as bacterial infections and type II diabetes. Despite their potent and selective activities and potential clinical relevance, isolated bioactive secondary metabolic oligosaccharides are less prevalent than other classes of natural products and their biosynthesis has received comparatively less attention. This review highlights the unique modes of action and biosynthesis of four classes of bioactive oligosaccharides: the orthosomycins, moenomycins, saccharomicins, and acarviostatins. PMID:24883430

  8. Selective Enhancement of Systemic Th1 Immunity in Immunologically Immature Rats with an Orally Administered Bacterial Extract

    PubMed Central

    Bowman, L. M.; Holt, P. G.

    2001-01-01

    Infant rats primed during the first week of life with soluble antigen displayed adult-equivalent levels of T-helper 2 (Th2)-dependent immunological memory development as revealed by production of secondary immunoglobulin G1 (IgG1) antibody responses to subsequent challenge, but in contrast to adults failed to prime for Th1-dependent IgG2b responses. We demonstrate that this Th2 bias in immune function can be redressed by oral administration to neonates of a bacterial extract (Broncho-Vaxom OM-85) comprising lyophilized fractions of several common respiratory tract bacterial pathogens. Animals given OM-85 displayed a selective upregulation in primary and secondary IgG2b responses, accompanied by increased gamma interferon and decreased interleukin-4 production (both antigen specific and polyclonal), and increased capacity for development of Th1-dependent delayed hypersensitivity to the challenge antigen. We hypothesize that the bacterial extract functions via enhancement of the process of postnatal maturation of Th1 function, which is normally driven by stimuli from the gastrointestinal commensal microflora. PMID:11349036

  9. Proceedings of Symposium on Utilization of Waste Glass in Secondary Products

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Papers are reported which were presented at the conference on waste glass recovery and re-use in secondary products. The uses considered include: road surfacing, asphaltic concretes, road construction, terrazzo, cement concrete, pozzolan, glass wool, glass-polymer composites, and tiles. Problems of recycling glass in remote areas, and the economics and markets for secondary glass products are discussed.

  10. Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash.

    PubMed

    Rosenkranz, Theresa; Kidd, Petra; Puschenreiter, Markus

    2018-03-01

    Waste incineration bottom ash is considered a secondary resource for valuable trace elements (TE), which is currently neglected in most European countries. Phytomining could potentially recover valuable TE from such waste materials but is still at an exploratory stage with many challenges. The use of bioaugmentation to improve plant growth and TE accumulation of metal-tolerant high biomass plants growing on waste incineration bottom ash was evaluated. Bacterial strains that were previously isolated from rhizosphere, roots and contaminated soil were selected according to their plant growth promoting characteristics and tolerance to the bottom ash substrate. Those selected bacterial strains were tested for their beneficial effects on Nicotiana tabacum and Salix smithiana with regards to phytomining. The rhizobacterial strain Rhodococcus erythropolis P30 enhanced the shoot dry weight of N. tabacum by on average 57% compared to the control plants. Several bacterial inoculants enhanced biomass production and the nutritional status of S. smithiana. Moreover, those bacterial strains previously described to enhance biomass production of N. tabacum and members of the Salicaceae on TE-contaminated soils, also enhanced biomass production of these species on bottom ash. However, bacterial inoculants could not enhance trace element accumulation in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Properties and applications of undecylprodigiosin and other bacterial prodigiosins.

    PubMed

    Stankovic, Nada; Senerovic, Lidija; Ilic-Tomic, Tatjana; Vasiljevic, Branka; Nikodinovic-Runic, Jasmina

    2014-05-01

    The growing demand to fulfill the needs of present-day medicine in terms of novel effective molecules has lead to reexamining some of the old and known bacterial secondary metabolites. Bacterial prodigiosins (prodiginines) have a long history of being re markable multipurpose compounds, best examined for their anticancer and antimalarial activities. Production of prodigiosin in the most common producer strain Serratia marcescens has been described in great detail. However, few reports have discussed the ecophysiological roles of these molecules in the producing strains, as well as their antibiotic and UV-protective properties. This review describes recent advances in the production process, biosynthesis, properties, and applications of bacterial prodigiosins. Special emphasis is put on undecylprodigiosin which has generally been a less studied member of the prodigiosin family. In addition, it has been suggested that proteins involved in undecylprodigiosin synthesis, RedG and RedH, could be a useful addition to the biocatalytic toolbox being able to mediate regio- and stereoselective oxidative cyclization. Judging by the number of recent references (216 for the 2007-2013 period), it has become clear that undecylprodigiosin and other bacterial prodigiosins still hold surprises in terms of valuable properties and applicative potential to medical and other industrial fields and that they still deserve continuing research curiosity.

  12. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Wesley Ray

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in manymore » other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon

  13. Production and Reutilization of Fluorescent Dissolved Organic Matter by a Marine Bacterial Strain, Alteromonas macleodii

    PubMed Central

    Goto, Shuji; Tada, Yuya; Suzuki, Koji; Yamashita, Youhei

    2017-01-01

    The recalcitrant fraction of marine dissolved organic matter (DOM) plays an important role in carbon storage on the earth’s surface. Bacterial production of recalcitrant DOM (RDOM) has been proposed as a carbon sequestration process. It is still unclear whether bacterial physiology can affect RDOM production. In this study, we conducted a batch culture using the marine bacterial isolate Alteromonas macleodii, a ubiquitous gammaproteobacterium, to evaluate the linkage between bacterial growth and DOM production. Glucose (1 mmol C L-1) was used as the sole carbon source, and the bacterial number, the DOM concentration in terms of carbon, and the excitation–emission matrices (EEMs) of DOM were monitored during the 168-h incubation. The incubation period was partitioned into the exponential growth (0–24 h) and stationary phases (24–168 h) based on the growth curve. Although the DOM concentration decreased during the exponential growth phase due to glucose consumption, it remained stable during the stationary phase, corresponding to approximately 4% of the initial glucose in terms of carbon. Distinct fluorophores were not evident in the EEMs at the beginning of the incubation, but DOM produced by the strain exhibited five fluorescent peaks during exponential growth. Two fluorescent peaks were similar to protein-like fluorophores, while the others could be categorized as humic-like fluorophores. All fluorophores increased during the exponential growth phase. The tryptophan-like fluorophore decreased during the stationary phase, suggesting that the strain reused the large exopolymer. The tyrosine-like fluorophore seemed to be stable during the stationary phase, implying that the production of tyrosine-containing small peptides through the degradation of exopolymers was correlated with the reutilization of the tyrosine-like fluorophore. Two humic-like fluorophores that showed emission maxima at the longer wavelength (525 nm) increased during the stationary phase

  14. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis

    PubMed Central

    Tyx, Robert E.; Stanfill, Stephen B.; Keong, Lisa M.; Rivera, Angel J.; Satten, Glen A.; Watson, Clifford H.

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products. PMID:26784944

  15. Production of bacterial cellulose and enzyme from waste fiber sludge

    PubMed Central

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  16. A Novel Platform for Evaluating the Environmental Impacts on Bacterial Cellulose Production.

    PubMed

    Basu, Anindya; Vadanan, Sundaravadanam Vishnu; Lim, Sierin

    2018-04-10

    Bacterial cellulose (BC) is a biocompatible material with versatile applications. However, its large-scale production is challenged by the limited biological knowledge of the bacteria. The advent of synthetic biology has lead the way to the development of BC producing microbes as a novel chassis. Hence, investigation on optimal growth conditions for BC production and understanding of the fundamental biological processes are imperative. In this study, we report a novel analytical platform that can be used for studying the biology and optimizing growth conditions of cellulose producing bacteria. The platform is based on surface growth pattern of the organism and allows us to confirm that cellulose fibrils produced by the bacteria play a pivotal role towards their chemotaxis. The platform efficiently determines the impacts of different growth conditions on cellulose production and is translatable to static culture conditions. The analytical platform provides a means for fundamental biological studies of bacteria chemotaxis as well as systematic approach towards rational design and development of scalable bioprocessing strategies for industrial production of bacterial cellulose.

  17. Impact of School Staff Health on Work Productivity in Secondary Schools in Massachusetts

    ERIC Educational Resources Information Center

    Alker, Heather J.; Wang, Monica L.; Pbert, Lori; Thorsen, Nancy; Lemon, Stephenie C.

    2015-01-01

    Background: Healthy, productive employees are an integral part of school health programs. There have been few assessments of work productivity among secondary school staff. This study describes the frequency of 3 common health risk factors--obesity, depressive symptoms, and smoking--and their impact on work productivity in secondary school…

  18. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production.

    PubMed

    Marathe, Nachiket P; Shetty, Sudarshan A; Shouche, Yogesh S; Larsson, D G Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  19. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production

    PubMed Central

    Shouche, Yogesh S.; Larsson, D. G. Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  20. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism.

    PubMed

    Craney, Arryn; Ozimok, Cory; Pimentel-Elardo, Sheila Marie; Capretta, Alfredo; Nodwell, Justin R

    2012-08-24

    Bacterially produced secondary metabolites are used as antibiotics, anticancer drugs, and for many other medicinal applications. The mechanisms that limit the production of these molecules in the laboratory are not well understood, and this has impeded the discovery of many important compounds. We have identified small molecules that remodel the yields of secondary metabolites in many actinomycetes and show that one set of these molecules does so by inhibiting fatty acid biosynthesis. This demonstrates a particularly intimate relationship between this primary metabolic pathway and secondary metabolism and suggests an approach to enhance the yields of metabolites for discovery and biochemical characterization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Use of Natural Antimicrobial Peptides and Bacterial Biopolymers for Cultured Pearl Production

    PubMed Central

    Simon-Colin, Christelle; Gueguen, Yannick; Bachere, Evelyne; Kouzayha, Achraf; Saulnier, Denis; Gayet, Nicolas; Guezennec, Jean

    2015-01-01

    Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L) with two bacterial exopolysaccharides (0.5% w/w) acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures. PMID:26110895

  2. Phage bacteriolysis, protistan bacterivory potential, and bacterial production in a freshwater reservoir: coupling with temperature.

    PubMed

    Pradeep Ram, A S; Boucher, D; Sime-Ngando, T; Debroas, D; Romagoux, J C

    2005-07-01

    Phage abundance and infection of bacterioplankton were studied from March to November 2003 in the Sep Reservoir (Massif Central, France), together with temperature, chlorophyll, bacteria (abundance and production), and heterotrophic nanoflagellates (abundance and potential bacterivory). Virus abundance (VA) ranged from 0.6 to 13 x 10(10) viruses l(-1), exceeding bacterial abundance (BA) approximately sixfold on average. In terms of carbon, viruses corresponded to up to 25% of bacterial biomass. A multiple regression model indicated that BA was the best predictor for VA (R(2) = 0.75). The frequency of infected bacteria (estimated from the percentage of visibly infected cells) varied from 1% to 32% and was best explained by a combination of temperature (R(2) = 0.20) and bacterial production (R(2) = 0.25). Viruses and flagellates contributed about equally to bacterial mortality. Both factors destroyed 55% of bacterial production, with a shift from phage bacteriolysis in early spring to protistan bacterivory in late summer. The vertical differences in most of the biological variables were not significant, contrasting with the seasonal differences (i.e., spring vs. summer-autumn). All biological variables under study were indeed significantly coupled to temperature. We regarded this to be the consequence of the enhanced discharge of the reservoir in 2003 (compared to previous years). This substantially weakened the stability and the thermal inertia of the water column, thereby establishing temperature as a stronger forcing factor in setting the conditions for optimal metabolic activity of microbial communities.

  3. Pyrosequencing analysis for characterization of bacterial diversity in a soil as affected by integrated livestock-cotton production systems

    USDA-ARS?s Scientific Manuscript database

    Impacts of integrated livestock-crop production systems compared to specialized systems on soil bacterial diversity have not been well documented. We used a bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) method to evaluate bacterial diversity of a clay loam soil (Fine, mixed, thermic To...

  4. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs)

    PubMed Central

    Ipcho, Simon; Sundelin, Thomas; Erbs, Gitte; Kistler, H. Corby; Newman, Mari-Anne; Olsson, Stefan

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals. PMID:27172188

  5. Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail.

    PubMed

    Geeraerts, Wim; Pothakos, Vasileios; De Vuyst, Luc; Leroy, Frédéric

    2017-08-01

    Pork-based cooked products, such as cooked hams, are economically valuable foods that are vulnerable to bacterial spoilage, even when applying cooling and modified atmosphere packaging (MAP). Besides a common presence of Brochothrix thermosphacta, their microbiota are usually dominated by lactic acid bacteria (LAB). Yet, the exact LAB species diversity can differ considerably among products. In this study, 42 sliced cooked pork samples were acquired from three different Belgian supermarkets to map their bacterial heterogeneity. The community compositions of the dominant bacterial species were established by analysing a total of 702 isolates from selective agar media by (GTG) 5 -PCR fingerprinting followed by gene sequencing. Most of the isolates belonged to the genera Carnobacterium, Lactobacillus, and Leuconostoc, with Leuconostoc carnosum and Leuconostoc gelidum subsp. gelidum being the most dominant members. The diversity of the dominant bacterial species varied when comparing samples from different production facilities and, in some cases, even within the same product types. Although LAB consistently dominated the microbiota of sliced cooked pork products in the Belgian market, results indicated that bacterial diversity needs to be addressed on the level of product composition and batch variation. Dedicated studies will be needed to substantiate potential links between such variability and microbial composition. For instance, the fact that higher levels of lactobacilli were associated with the presence of potassium lactate (E326) may be suggestive of selective pressure but needs to be validated, as this finding referred to a single product only. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Performance of improved bacterial cellulose application in the production of functional paper.

    PubMed

    Basta, A H; El-Saied, H

    2009-12-01

    The purpose of this work was to study the feasibility of producing economic flame retardant bacterial cellulose (BC) and evaluating its behaviour in paper production. This type of BC was prepared by Gluconacetobacter subsp. xylinus and substituting the glucose in the cultivation medium by glucose phosphate as a carbon source; as well as using corn steep liquor as a nitrogen source. The investigated processing technique did not dispose any toxic chemicals that pollute the surroundings or cause unacceptable effluents, making the process environmentally safe. The fire retardant behaviour of the investigated BC has been studied by non-isothermal thermogravimetric analysis (TGA & DTGA). The activation energy of each degradation stage and the order of degradation were estimated using the Coats-Redfern equation and the least square method. Strength, optical properties, and thermogravimetric analysis of BC-phosphate added paper sheets were also tested. The study confirmed that the use of glucose phosphate along with glucose was significant in the high yield production of phosphate containing bacterial cellulose (PCBC1); more so than the use of glucose phosphate alone (PCBC2). Incorporating 5% of the PCBC with wood pulp during paper sheet formation was found to significantly improve kaolin retention, strength, and fire resistance properties as compared to paper sheets produced from incorporating bacterial cellulose (BC). This modified BC is a valuable product for the preparation of specialized paper, in addition to its function as a fillers aid.

  7. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  8. Marketing Agricultural Products. Curriculum Guide Developed for Secondary and Post Secondary Agriculture Programs.

    ERIC Educational Resources Information Center

    Miller, W. Wade; And Others

    This curriculum guide can be used by secondary and postsecondary agriculture instructors for a semester course in marketing agricultural products or individual units can be incorporated in other courses. The curriculum guide consists of six units of study made up of two to eight lessons each. The units cover the following topics: (1) marketing…

  9. Bacterial production and their role in the removal of dissolved organic matter from tributaries of drinking water reservoirs.

    PubMed

    Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg

    2016-04-01

    Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Use of secondary-treated wastewater for the production of Muriellopsis sp.

    PubMed

    Gómez, C; Escudero, R; Morales, M M; Figueroa, F L; Fernández-Sevilla, J M; Acién, F G

    2013-03-01

    In this paper, the use of secondary-treated wastewater as the culture medium for the production of Muriellopsis sp. microalgal biomass is analyzed. Using this wastewater, a maximum biomass productivity of 0.5 g l(-1) day(-1) was measured, it being only 38 % lower than that achieved using the standard culture medium. Due to the low nitrogen content of secondary-treated wastewater, cultures produced in a medium containing a high percentage of it become nitrate-limited, thus the quantum yield reduces by up to 0.38 g E(-1)--this compares to 0.67 g E(-1) when using a standard culture medium. On the other hand, nitrate limitation enhances the accumulation of lipids and carbohydrates, with values measured at 33 and 66 % dry weight, respectively. It was also demonstrated that secondary-treated wastewater does not have any toxic effect on the growth of Muriellopsis sp. in spite of nitrogen being in the form of ammonium rather than in nitrate. Moreover, the secondary-treated wastewater was depurated when used to produce Muriellopsis sp., with the outlet biological oxygen demand and chemical oxygen demand being lower than at the inlet; the nitrate and phosphate concentrations were zero. Therefore, Muriellopsis sp. production using secondary-treated wastewater allows a reduction in the process cost by decreasing freshwater and fertilizer use, as well as by depurating the water, thus greatly enhancing process sustainability.

  11. Randomized-controlled trial of rifaximin versus norfloxacin for secondary prophylaxis of spontaneous bacterial peritonitis.

    PubMed

    Elfert, Asem; Abo Ali, Lobna; Soliman, Samah; Ibrahim, Shimaa; Abd-Elsalam, Sherief

    2016-12-01

    Spontaneous bacterial peritonitis (SBP) is a serious complication of liver cirrhosis with a high recurrence rate and a marked increase in mortality. Norfloxacin is used widely for the secondary prophylaxis of SBP; however, its extensive long-term use has led to an increase in the incidence of quinolone-resistant and Gram-positive SBP. Rifaximin is a nonabsorbable broad-spectrum antibiotic and does not appear to promote emergence of resistance. The aim of this study was to compare the safety and efficacy of rifaximin versus norfloxacin for the secondary prevention of SBP in patients with liver cirrhosis and ascites. Two hundred and sixty two cirrhotic patients with ascites and a previous episode of SBP were assigned randomly to receive either 1200 mg rifaximin or 400 mg of norfloxacin daily for 6 months. All patients were monitored clinically each month and with ascitic fluid examination at the end of 2 and 6 months if not clinically suspected of recurrence earlier. Recurrence of SBP was significantly lower in the rifaximin group (3.88 vs. 14.13%) compared with the norfloxacin group (P=0.04). The mortality rate was significantly decreased in the rifaximin group (13.74 vs. 24.43%) compared with the norfloxacin group (P=0.044). The causes of death between the two groups did not show a significant difference (P=0.377), but encephalopathy-related deaths were three folds higher in the norfloxacin group. There was a significant decrease in the side effects in the rifaximin group versus the norfloxacin group (P=0.033). Rifaximin was more effective than norfloxacin in the secondary prevention of SBP. Encephalopathy-related mortality and side effects were fewer in the rifaximin group.

  12. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima.

    PubMed

    Herfort, Lydie; Crump, Byron C; Fortunato, Caroline S; McCue, Lee Ann; Campbell, Victoria; Simon, Holly M; Baptista, António M; Zuber, Peter

    2017-12-01

    Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production ( 3 H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1-24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2-3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the

  13. Luffa sponge offsets the negative effects of aeration on bacterial cellulose production.

    PubMed

    Krusong, W; Kerdpiboon, S; Pornpukdeewattana, S; Jindaprasert, A

    2016-12-01

    To offset the negative effects of aeration on bacterial cellulose (BC) production by acetic acid bacteria using enmeshed cellulose microfibrils (CM) on luffa sponge matrices (LSM). The CM were enmeshed on LSM (LSM-CM). The optimal amount of LSM-CM was determined for BC production under aerated conditions. Without LSM-CM, no BC was produced in seven out of nine production cycles at the highest aeration rate (9 l min -1 ). However, with 0·5% LSM-CM and an aeration rate of 3 l min -1 , a satisfactory oxygen transfer coefficient was achieved, and also a good yield of BC (5·24 g l -1 ). Moreover, the LSM-CM was able to be recycled through nine consecutive BC production cycles. The highest BC yields (from 5·8 ± 0·4 to 6·6 ± 0·4 g l -1 ) were associated with high bacterial biomass and this was confirmed by scanning electron microscopy. We confirm that LSM-CM works well as a starter. Microenvironments low in dissolved oxygen within the matrices of LSM-CM are important for BC production under aeration conditions. The LSM-CM provides a microenvironment which offsets the negative effects of aeration on BC production. A sustainable, economic process for mass BC production is described using recycled LSM-CM with aeration. © 2016 The Society for Applied Microbiology.

  14. Associations between cyanobacteria and indices of secondary production in the western basin of Lake Erie

    USGS Publications Warehouse

    Larson, James H.; Evans, Mary Anne; Kennedy, Robert J.; Bailey, Sean; Loftin, Keith A.; Laughrey, Zachary; Femmer, Robin; Schaeffer, Jeff; Richardson, William B.; Wynne, Timothy; Nelson, J. C.; Duris, Joseph W.

    2018-01-01

    Large lakes provide a variety of ecological services to surrounding cities and communities. Many of these services are supported by ecological processes that are threatened by the increasing prevalence of cyanobacterial blooms which occur as aquatic ecosystems experience cultural eutrophication. Over the past 10 yr, Lake Erie experienced cyanobacterial blooms of increasing severity and frequency, which have resulted in impaired drinking water for the surrounding communities. Cyanobacterial blooms may impact ecological processes that support other services, but many of these impacts have not been documented. Secondary production (production of primary consumers) is an important process that supports economically important higher trophic levels. Cyanobacterial blooms may influence secondary production because cyanobacteria are a poor‐quality food resource and cyanotoxins may be harmful to consumers. Over 3 yr at 34 sites across the western basin of Lake Erie, we measured three indices of secondary production that focus on the dominant bivalve taxa: (1) growth of a native unionid mussel, (2) the size of young‐of‐year dreissenid mussels, and (3) the mass of colonizing animals on a Hester‐Dendy sampler. Associations between these indices and cyanobacterial data were estimated to assess whether cyanobacteria are associated with variation in secondary production in the western basin of Lake Erie. The results suggest cyanobacterial abundance alone is only weakly associated with secondary production, but that cyanotoxins have a larger effect on secondary production. Given recurring late‐summer cyanobacterial blooms, this impact on secondary production has the potential to undermine Lake Erie's ability to sustain important ecosystem services.

  15. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  16. Heterotrophic bacterial production and metabolic balance during the VAHINE mesocosm experiment in the New Caledonia lagoon

    NASA Astrophysics Data System (ADS)

    Van Wambeke, F.; Pfreundt, U.; Barani, A.; Berthelot, H.; Moutin, T.; Rodier, M.; Hess, W. R.; Bonnet, S.

    2015-12-01

    N2 fixation fuels ~ 50 % of new primary production in the oligotrophic South Pacific Ocean. The VAHINE mesocosm experiment designed to track the fate of diazotroph derived nitrogen (DDN) in the New Caledonia lagoon. Here, we examined the temporal dynamics of heterotrophic bacterial production during this experiment. Three replicate large-volume (~ 50 m3) mesocosms were deployed and were intentionally fertilized with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. We specifically examined relationships between N2 fixation rates and primary production, determined bacterial growth efficiency and established carbon budgets of the system from the DIP fertilization to the end of the experiment (days 5-23). Heterotrophic bacterioplankton production (BP) and alkaline phosphatase activity (APA) were statistically higher during the second phase of the experiment (P2: days 15-23), when chlorophyll biomass started to increase compared to the first phase (P1: days 5-14). Among autotrophs, Synechococcus abundances increased during P2, possibly related to its capacity to assimilate leucine and to produce alkaline phosphatase. Bacterial growth efficiency based on the carbon budget was notably higher than generally cited for oligotrophic environments (27-43 %), possibly due to a high representation of proteorhodopsin-containing organisms within the picoplanctonic community. The carbon budget showed that the main fate of gross primary production (particulate + dissolved) was respiration (67 %), and export through sedimentation (17 %). BP was highly correlated with particulate primary production and chlorophyll biomass during both phases of the experiment but slightly correlated, and only during P2 phase, with N2 fixation rates. Our results suggest that most of the DDN reached the heterotrophic bacterial community through indirect processes, like mortality, lysis and grazing.

  17. Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies.

    PubMed

    Vandeweyer, D; Crauwels, S; Lievens, B; Van Campenhout, L

    2017-11-16

    Despite the continuing development of new insect-derived food products, microbial research on edible insects and insect-based foods is still very limited. The goal of this study was to increase the knowledge on the microbial quality of edible insects by comparing the bacterial community composition of mealworms (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from several production cycles and rearing companies. Remarkable differences in the bacterial community composition were found between different mealworm rearing companies and mealworm production cycles from the same company. In comparison with mealworms, the bacterial community composition of the investigated crickets was more similar among different companies, and was highly similar between both cricket species investigated. Mealworm communities were dominated by Spiroplasma and Erwinia species, while crickets were abundantly colonised by (Para)bacteroides species. With respect to food safety, only a few operational taxonomic units could be associated with potential human pathogens such as Cronobacter or spoilage bacteria such as Pseudomonas. In summary, our results implicate that at least for cricket rearing, production cycles of constant and good quality in terms of bacterial composition can be obtained by different rearing companies. For mealworms however, more variation in terms of microbial quality occurs between companies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Identification of bacterial contaminants from calcium carbonate filler production lines and an evaluation of biocide based decontamination procedures.

    PubMed

    Odić, Duško; Prah, Jana; Avguštin, Gorazd

    2017-04-01

    The aim of this study was to analyze the bacterial community in the production line of a calcium carbonate filler production company and to investigate possible causes for bacterial presence. Throughout 2012, 24 carbonate slurry and six groundwater samples were analyzed. Pseudomonas and Microbacterium were the most frequent contaminants in the slurry, whereas Pseudomonas and Brevundimonas dominated the groundwater samples. Of the 43 different bacterial strains isolated, only five were found both in the slurry and the groundwater, indicating that the latter was not a major source of contamination. The efficacy of 54 commercial biocidal formulations was tested against an artificial bacterial consortium composed of selected slurry isolates. A formulation containing 7.5-15% (v v -1 ) bronopol and 1.0-2.5% (v v -1 ) [chloroisothiazolinone (CIT) + methylisothiazolinone (MIT)] exhibited the highest efficacy. Of the possible causes for bacterial presence, sporogenesis and biocide adsorption to carbonate particles were found to be less probable compared to bacterial adsorption to particles, and the acquisition of resistance to biocides.

  19. Contribution of dinitrogen fixation to bacterial and primary productivity in the Gulf of Aqaba (Red Sea)

    NASA Astrophysics Data System (ADS)

    Rahav, E.; Herut, B.; Mulholland, M. R.; Voß, B.; Stazic, D.; Steglich, C.; Hess, W. R.; Berman-Frank, I.

    2013-06-01

    We evaluated the seasonal contribution of heterotrophic and autotrophic diazotrophy to the total dinitrogen (N2) fixation in a representative pelagic station in the northern Gulf of Aqaba in early spring when the water column was mixed and during summer under full thermal stratification. N2 fixation rates were low during the mixed period (˜ 0.1 nmol N L-1 d-1) and were significantly coupled with both primary and bacterial productivity. During the stratified period N2 fixation rates were four-fold higher (˜ 0.4 nmol N L-1 d-1) and were significantly correlated solely with bacterial productivity. Furthermore, while experimental enrichment of seawater by phosphorus (P) enhanced bacterial productivity and N2 fixation rates during both seasons primary productivity was stimulated by P only in the early spring. Metatranscriptomic analyses from the stratified period identified the major diazotrophic contributors as related to heterotrophic prokaryotes from the Euryarchaeota and Desulfobacterales (Deltaproteobacteria) or Chlorobiales (Chlorobia). Moreover, during this season, experimental amendments to seawater applying a combination of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a mixture of amino acids increased both bacterial productivity and N2 fixation rates. Our findings from the northern Gulf of Aqaba indicate a~shift in the diazotrophic community from phototrophic and heterotrophic populations, including small blooms of the cyanobacterium Trichodesmium, in winter/early spring, to predominantly heterotrophic diazotrophs in summer that may be both P and carbon limited as the additions of P and amino acids illustrated.

  20. Effects of carbon dioxide on metabolite production and bacterial communities during kimchi fermentation.

    PubMed

    Park, Doo Hyun

    2018-04-24

    Bacterial communities and metabolites in kimchi fermented under conventional conditions (CC) compared to CO 2 -rich environments (CO 2 ) were analyzed. After a 20-day fermentation, lactic and acetic acid productions were 54 and 69 mM under CC, and 19 and 12 mM under CO 2 , respectively. The final pH of kimchi fermented under CC (CC-fermenting) and CO 2 (CO 2 -fermenting) were 4.1 and 4.7, respectively. For bacterial communities, OTU and Chao1 indices were both 35 in fresh kimchi, 10 and 15 in CC-fermenting kimchi, and 8 and 24 in CO 2 -fermenting kimchi, respectively. Shannon and Simpson indices were 3.47 and 0.93 in fresh kimchi, 1.87-0.06 and 0.46-0.01 in CC-fermenting kimchi, and 1.65-0.44 and 0.63-0.12 in CO 2 -fermenting kimchi, respectively. Non-lactic acid bacteria were eliminated in fermenting kimchi after 12 days under CC and 6 days under CO 2 . I conclude that carbon dioxide can alter bacterial communities, reduce metabolite production, and improve fermented kimchi quality.

  1. Species selection in secondary wood products: implications for product design and promotion

    Treesearch

    Matthew S. Bumgardner; Scott A. Bowe; Scott A. Bowe

    2002-01-01

    This study investigated the perceptions that people have of several commercially important wood species and determined if word-based and specimen-based evaluations differed. Such knowledge can help secondary wood manufacturers better understand their products and develop more effective design concepts and promotional messages. A sample of more than 250 undergraduate...

  2. A Consistent and Predictable Commercial Broiler Chicken Bacterial Microbiota in Antibiotic-Free Production Displays Strong Correlations with Performance.

    PubMed

    Johnson, Timothy J; Youmans, Bonnie P; Noll, Sally; Cardona, Carol; Evans, Nicholas P; Karnezos, T Peter; Ngunjiri, John M; Abundo, Michael C; Lee, Chang-Won

    2018-06-15

    Defining the baseline bacterial microbiome is critical to understanding its relationship with health and disease. In broiler chickens, the core microbiome and its possible relationships with health and disease have been difficult to define, due to high variability between birds and flocks. Presented here are data from a large, comprehensive microbiota-based study in commercial broilers. The primary goals of this study included understanding what constitutes the core bacterial microbiota in the broiler gastrointestinal, respiratory, and barn environments; how these core players change across age, geography, and time; and which bacterial taxa correlate with enhanced bird performance in antibiotic-free flocks. Using 2,309 samples from 37 different commercial flocks within a vertically integrated broiler system and metadata from these and an additional 512 flocks within that system, the baseline bacterial microbiota was defined using 16S rRNA gene sequencing. The effects of age, sample type, flock, and successive flock cycles were compared, and results indicate a consistent, predictable, age-dependent bacterial microbiota, irrespective of flock. The tracheal bacterial microbiota of broilers was comprehensively defined, and Lactobacillus was the dominant bacterial taxon in the trachea. Numerous bacterial taxa were identified, which were strongly correlated with broiler chicken performance across multiple tissues. While many positively correlated taxa were identified, negatively associated potential pathogens were also identified in the absence of clinical disease, indicating that subclinical dynamics occur that impact performance. Overall, this work provides necessary baseline data for the development of effective antibiotic alternatives, such as probiotics, for sustainable poultry production. IMPORTANCE Multidrug-resistant bacterial pathogens are perhaps the greatest medical challenge we will face in the 21st century and beyond. Antibiotics are necessary in animal

  3. Methane production and small intestinal bacterial overgrowth in children living in a slum.

    PubMed

    Mello, Carolina Santos; Tahan, Soraia; Melli, Lígia Cristina F L; Rodrigues, Mirian Silva do Carmo; de Mello, Ricardo Martin Pereira; Scaletsky, Isabel Cristina Affonso; de Morais, Mauro Batista

    2012-11-07

    To analyze small intestinal bacterial overgrowth in school-aged children and the relationship between hydrogen and methane production in breath tests. This transversal study included 85 children residing in a slum and 43 children from a private school, all aged between 6 and 10 years, in Osasco, Brazil. For characterization of the groups, data regarding the socioeconomic status and basic housing sanitary conditions were collected. Anthropometric data was obtained in children from both groups. All children completed the hydrogen (H(2)) and methane (CH(4)) breath test in order to assess small intestinal bacterial overgrowth (SIBO). SIBO was diagnosed when there was an increase in H(2) ≥ 20 ppm or CH(4) ≥ 10 ppm with regard to the fasting value until 60 min after lactulose ingestion. Children from the slum group had worse living conditions and lower nutritional indices than children from the private school. SIBO was found in 30.9% (26/84) of the children from the slum group and in 2.4% (1/41) from the private school group (P = 0.0007). Greater hydrogen production in the small intestine was observed in children from the slum group when compared to children from the private school (P = 0.007). A higher concentration of hydrogen in the small intestine (P < 0.001) and in the colon (P < 0.001) was observed among the children from the slum group with SIBO when compared to children from the slum group without SIBO. Methane production was observed in 63.1% (53/84) of the children from the slum group and in 19.5% (8/41) of the children from the private school group (P < 0.0001). Methane production was observed in 38/58 (65.5%) of the children without SIBO and in 15/26 (57.7%) of the children with SIBO from the slum. Colonic production of hydrogen was lower in methane-producing children (P = 0.017). Children who live in inadequate environmental conditions are at risk of bacterial overgrowth and methane production. Hydrogen is a substrate for methane production in the colon.

  4. Strontium Incorporation Into Calcite Generated by Bacterial Ureolysis

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; Ingram, J. A.; Cortez, M. M.; Redden, G. D.; Smith, R. W.

    2002-12-01

    Strontium incorporation into calcite generated by bacterial ureolytic activity was investigated as part of a larger effort to evaluate the use of in situ urea hydrolysis for accelerating co-precipitation of trace metals and radionuclides in contaminated aquifers. 90Sr, a uranium fission product with a half-life of 29 years, is a significant subsurface contaminant at several Department of Energy facilities and could be immobilized using this remediation strategy. Experiments were conducted in a medium designed to simulate the groundwater of the Snake River Plain Aquifer in eastern Idaho, amended with strontium. Initially the solution was undersaturated with respect to calcite. As a model ureolytic organism, we used Bacillus pasteurii, a well-characterized bacterium known for high urease activity and previously shown to induce calcite precipitation in urea-amended medium. To gain information on the effect of the bacterial surfaces, we also looked at precipitation in the presence of a bacterial species that did not hydrolyze urea, as well as in the absence of bacteria. In the absence of bacterial ureolysis, carbonate precipitation was induced by addition of ammonium carbonate. All products were identified as calcite by X-ray diffraction. Strontium uptake was observed in all cases, but was greatest in the system including bacterial ureolysis. Sputter depth element profiling by time-of-flight secondary ion mass spectrometry (TOF-SIMS) confirmed this finding, showing highest Sr:Ca ratios in the bacterially generated calcite throughout the depth (~350 nm) investigated. Environmental Scanning Electron Microscopy (ESEM) of the solids revealed regular crystals containing the outlines of embedded or entombed bacterial cells, suggesting that calcite precipitated directly on the cell surfaces when present. Analysis by X-ray Absorption Near Edge Spectroscopy (XANES) indicated that in both the biotically and abiotically generated calcites the Sr was incorporated into the calcite

  5. Role of water-soluble polysaccharides in bacterial cellulose production.

    PubMed

    Ishida, Takehiko; Mitarai, Makoto; Sugano, Yasushi; Shoda, Makoto

    2003-08-20

    Acetobacter xylinum BPR2001 produces water-insoluble bacterial cellulose (BC) and a water-soluble polysaccharide called acetan in corn steep liquor-fructose medium. Acetobacter xylinum EP1, which is incapable of acetan production was derived by disrupting the aceA gene of BPR2001. The BC production by EP1 (2.88 g/L) was lower than that by BPR2001 (4.6 g/L) in baffled-flask culture. When purified acetan or agar was added to the medium from the start of cultivation, the BC production by EP1 was enhanced and the final BC yield of EP1 was almost the same as that of BPR2001. A similar improvement of BC production by EP1 by the addition of agar was also confirmed by cultivation in a 50-L airlift reactor. From these results, the role of acetan in BC production is associated with the increase in the viscosity of the culture medium which may hinder coagulation of BC and cells in the culture, thereby accelerating the growth of BPR2001 and BC production by BPR2001. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 474-478, 2003.

  6. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.; Weschler, Charles J.

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which reacts rapidly with organics, leading to the formation of other potentially toxic air pollutants. Indoor reactive chemistry involving the nitrate radical and cleaning-product constituents is also of concern, since it produces organic nitrates as well as some of the same oxidation products generated by ozone and hydroxyl radicals. Few studies have directly addressed the indoor concentrations of TACs that might result from primary emissions or secondary pollutant formation following the use of cleaning agents and air fresheners. In this paper, we combine direct empirical evidence with the basic principles of indoor pollutant behavior and with information from relevant studies, to analyze and critically assess air pollutant exposures resulting from the use of cleaning products and air fresheners. Attention is focused on compounds that are listed as HAPs, TACs or Proposition 65 carcinogens/reproductive toxicants and compounds that can readily react to generate secondary pollutants. The toxicity of many of these secondary pollutants has yet to be evaluated. The inhalation

  7. Impact of bacterial DMS production on [DMS/P] under ocean acidification (KOSMOS_2.0): insights from the subtropics.

    NASA Astrophysics Data System (ADS)

    Suffrian, K.; Posman, K.; Matrai, P.; Countway, P. D.; Archer, S. D.

    2016-02-01

    Marine dimethyl sulfide (DMS), a ubiquitous atmospheric trace gas, comprises the largest source of sulphur to the atmosphere. So far, temperate and high-latitude ocean acidification (OA) mesocosm experiments point to a decrease of this precursor for cloud condensation nuclei, leading to fewer clouds, and resulting in an increased radiative force. To our knowledge no experiments have yet been carried out which address multiple forcings (temperature and pCO2) in the subtropics. We thus joined the 55-day KOSMOS large mesocosm experiment on Gran Canaria to investigate if the observed decrease could be global. As subtropical and tropical oceans comprise a large proportion of the world's oceans, we were i.a. interested if 1) increasing ocean acidification in a subtropical environment would also decrease [DMS], and if 2) bacterial DMS production could explain a large part of potential decreases. Here we focus on the first phase (day 1-23), showing the impact of OA on [DMS] and [DMSP] (dimethylsulfoniopropionate). Bacteria are thought to be the main DMS producers, so we used 35S-DMSP as a tracer to investigate the impact of bacterial DMS production on observed [DMS] decreases correlated with increasing OA. [DMS] showed a strong inverse correlation with [H+] (-50% vs. ambient control). [DMSPp] (-37%) and [DMSPd] (-20%) also decreased with increasing [H+]. Our results support findings from higher latitude mesocosm experiments, thus suggesting the effect might be global. Bacterial DMS production rates, their rate constants, and yields during the peak in [DMS] were negatively correlated with [H+] on single days, while gross DMS-production was high enough to support observed [DMS] increases. Bacterial DMSP uptake rates and DMS production rates were not correlated with [H+] on any other day. Bacterial effects alone are thus not enough to explain observed changes in standing stocks. We will further explore the results by normalizing to bacterial protein production, cell abundance

  8. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a substituted...

  9. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a substituted...

  10. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research.

    PubMed

    Sato, Fumihiko; Kumagai, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed.

  11. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  12. Bacterial antisense RNAs are mainly the product of transcriptional noise.

    PubMed

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I; Serrano, Luis; Lluch-Senar, Maria

    2016-03-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome.

  13. Bacterial natural product biosynthetic domain composition in soil correlates with changes in latitude on a continent-wide scale.

    PubMed

    Lemetre, Christophe; Maniko, Jeffrey; Charlop-Powers, Zachary; Sparrow, Ben; Lowe, Andrew J; Brady, Sean F

    2017-10-31

    Although bacterial bioactive metabolites have been one of the most prolific sources of lead structures for the development of small-molecule therapeutics, very little is known about the environmental factors associated with changes in secondary metabolism across natural environments. Large-scale sequencing of environmental microbiomes has the potential to shed light on the richness of bacterial biosynthetic diversity hidden in the environment, how it varies from one environment to the next, and what environmental factors correlate with changes in biosynthetic diversity. In this study, the sequencing of PCR amplicons generated using primers targeting either ketosynthase domains from polyketide biosynthesis or adenylation domains from nonribosomal peptide biosynthesis was used to assess biosynthetic domain composition and richness in soils collected across the Australian continent. Using environmental variables collected at each soil site, we looked for environmental factors that correlated with either high overall domain richness or changes in the domain composition. Among the environmental variables we measured, changes in biosynthetic domain composition correlate most closely with changes in latitude and to a lesser extent changes in pH. Although it is unclear at this time the exact mix of factors that may drive the relationship between biosynthetic domain composition and latitude, from a practical perspective the identification of a latitudinal basis for differences in soil metagenome biosynthetic domain compositions should help guide future natural product discovery efforts. Published under the PNAS license.

  14. Bioaugmentation of Hydrogenispora ethanolica LX-B affects hydrogen production through altering indigenous bacterial community structure.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Shi, Xiaoshuang; He, Shuai; Wang, Lin; Dai, Meng; Qiu, Yanling; Dang, Xiaoxiao

    2016-07-01

    Bioaugmentation can facilitate hydrogen production from complex organic substrates, but it still is unknown how indigenous microbial communities respond to the added bacteria. Here, using a Hydrogenispora ethanolica LX-B (named as LX-B) bioaugmentation experiments, the distribution of metabolites and the responses of indigenous bacterial communities were investigated via batch cultivation (BC) and repeated batch cultivation (RBC). In BC the LX-B/sludge ratio of 0.12 achieved substantial high hydrogen yield, which was over twice that of control. In RBC one-time bioaugmentation and repeated batch bioaugmentation of LX-B resulted in the hydrogen yield that was average 1.2-fold and 0.8-fold higher than that in control, respectively. This improved hydrogen production performance mainly benefited from a shift in composition of the indigenous bacterial community caused by LX-B bioaugmentation. The findings represented an important step in understanding the relationship between bioaugmentation, a shift in bacterial communities, and altered bioreactor performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  16. Farm Laboratory Aids Post-Secondary Instruction in Agricultural Production

    ERIC Educational Resources Information Center

    Statler, Larry L.; Juhl, R. J.

    1970-01-01

    Reports a farm laboratory of 1500 swine, 40 beef cattle, 52 sheep, a 300-crop acres, and a full line of leased new farm machinery for post-secondary agricultural production students. A student board of directors manages the demonstration farm. (DM)

  17. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  18. Use of the [(14)C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton.

    PubMed

    Fischer, H; Pusch, M

    1999-10-01

    Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [(14)C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 microM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 microM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined.

  19. Use of the [14C]Leucine Incorporation Technique To Measure Bacterial Production in River Sediments and the Epiphyton

    PubMed Central

    Fischer, Helmut; Pusch, Martin

    1999-01-01

    Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [14C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 μM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 μM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined. PMID:10508068

  20. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus.

    PubMed

    Wu, Jyh-Ming; Liu, Ren-Han

    2012-09-01

    Thin stillage (TS), a wastewater from rice wine distillery can well sustain the growth of Gluconacetobacter xylinus for production of bacterial cellulose (BC). When used as a supplement to the traditional BC production medium (Hestrin and Schramm medium), the enhancement of BC production increased with the amount of TS supplemented in a static culture of G. xylinus. When TS was employed to replace distilled water for preparing HS medium (100%TS-HS medium), the BC production in this 100%TS-HS medium was enhanced 2.5-fold to a concentration of 10.38 g/l with sugar to BC conversion yield of 57% after 7 days cultivation. The cost-free TS as a supplement in BC production medium not only can greatly enhance the BC production, but also can effectively dispose the nuisance wastewater of rice wine distillery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Impacts of maintenance dredged material disposal on macrobenthic structure and secondary productivity.

    PubMed

    Bolam, S G; Barry, J; Bolam, T; Mason, C; Rumney, H S; Thain, J E; Law, R J

    2011-10-01

    The results of a monitoring programme to assess the spatial impacts associated with ongoing dredged material disposal activity at a dispersive, coastal disposal site (southwest UK) are described. Benthic impacts were assessed using benthic community structure and secondary productivity estimates. Analyses of univariate indices (including secondary production) and multivariate community structure revealed differences between stations inside and those outside the disposal site were minimal. Generally, stations within and outside the disposal site were characterised by the same species. Regression models indicated that the variability in biological structure and secondary production was predominantly accounted for by natural variables (e.g., depth, sediment granulometry) with only a small amount of residual variability being due to contaminant variables. Thus, the elevated levels of certain contaminants in the vicinity of the disposal area were not sufficient to result in significant ecological or ecotoxicological changes. We ascribe such findings partly to the dispersive nature of the disposal site. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Bacterial antisense RNAs are mainly the product of transcriptional noise

    PubMed Central

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I.; Serrano, Luis; Lluch-Senar, Maria

    2016-01-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  3. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Sherr, Barry F.; Sherr, Evelyn B.

    2003-04-01

    Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997-September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ˜3.3 nM O 2 h -1 and a carbon demand of ˜4.5 gC m -2. Increase in 0-50 m integrated stocks of DO during summer implied a net community production of ˜20 gC m -2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O 2 h -1) compared to summer (35.3±24.8 nM O 2 h -1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ˜10-fold, and the cell-specific rate of leucine incorporation ˜5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l -1 h -1 during winter and 5.1±3.1 ngC l -1 h -1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m -3 d -1 in winter and 7.8±5.5 mgC m -3 d -1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m -3 d -1 in winter and 1.3±0.7 mgC m -3 d -1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.

  4. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions.

    PubMed

    Römling, Ute; Galperin, Michael Y

    2015-09-01

    Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits - which differ among various taxa - affect the enzymatic activity and product yield in vivo by modulating (i) the expression of the biosynthesis apparatus, (ii) the export of the nascent β-D-glucan polymer to the cell surface, and (iii) the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of resulting biofilms, which is particularly important for the interactions of bacteria with higher organisms - leading to rhizosphere colonization and modulating the virulence of cellulose-producing bacterial pathogens inside and outside of host cells. We review the organization of four principal types of cellulose synthase operon found in various bacterial genomes, identify additional bcs genes that encode components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms and in the choice between acute infection and persistence in the host. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    PubMed Central

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  6. Strategies for cost-effective and enhanced production of bacterial cellulose.

    PubMed

    Islam, Mazhar Ul; Ullah, Muhammad Wajid; Khan, Shaukat; Shah, Nasrullah; Park, Joong Kon

    2017-09-01

    Bacterial cellulose (BC) has received substantial attention because of its high purity, mechanical strength, crystallinity, liquid-absorbing capabilities, biocompatibility, and biodegradability etc. These properties allow BC to be used in various fields, especially in industries producing medical, electronic, and food products etc. A major discrepancy associated with BC is its high production cost, usually much higher than the plant cellulose. To address this limitations, researchers have developed several strategies for enhanced production of BC including the designing of advanced reactors and utilization of various carbon sources. Another promising approach is the production of BC from waste materials such as food, industrial, agricultural, and brewery wastes etc. which not only reduces the overall BC production cost but is also environment-friendly. Besides, exploration of novel and efficient BC producing microbial strains provides impressive boost to the BC production processes. To this end, development of genetically engineered microbial strains has proven useful for enhanced BC production. In this review, we have summarized major efforts to enhance BC production in order to make it a cost-effective biopolymer. This review can be of interest to researchers investigating strategies for enhanced BC production, as well as companies exploring pilot projects to scale up BC production for industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bacterial production in the water column of small streams highly depends on terrestrial dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert

    2016-04-01

    In the recent years it has become clear that the largest part of the terrestrial dissolved organic carbon (DOC) pool is removed on the way from the land to the ocean. Yet it is still unclear, where in the freshwater systems terrestrial DOC is actually taken up, and for streams DOC uptake was assumed to happen mostly at the stream bottom (benthic zone). However, a recent monitoring study implies that water column but not benthic bacteria are strongly affected by the amount and composition of DOM entering streams from the terrestrial zone. We conducted an experiment to compare the reaction of the bacterial production and heterotrophic uptake in the water column and the benthic zone to a standardized source of terrestrial DOC (leaf leachate from Beech litter). In detail, we sampled gravel and water from eight streams with a gradient in stream size and land use. For each stream four different treatments were incubated at 16°C for three days and each stream: filtered stream water with gravel stones (representing benthic zone bacteria) or unfiltered stream water (representing water column bacteria), both either with (n = 5) or, without (n = 3) leaf leachate. We found that the bacterial uptake of leaf litter DOC was higher for the benthic zone likely due to the higher bacterial production compared to the water column. In contrast, the bacterial production per amount of leaf leachate DOC taken up was significantly higher for the bacteria in the water column than for those in the benthic zone. This clearly indicates a higher growth efficiency with the leaf leachate DOC for the bacteria in the water column than in the benthic zone. We found a high variability for the growth efficiency in the water column, which was best explained by a negative correlation of the DOC demand with stream width (R² = 0.86, linear correlation of log-transformed data). This was not the case for the benthic zone bacteria (R² = 0.02). This implies that water column bacteria in very small streams

  8. Methane production and small intestinal bacterial overgrowth in children living in a slum

    PubMed Central

    Mello, Carolina Santos; Tahan, Soraia; Melli, Lígia Cristina FL; Rodrigues, Mirian Silva do Carmo; de Mello, Ricardo Martin Pereira; Scaletsky, Isabel Cristina Affonso; de Morais, Mauro Batista

    2012-01-01

    AIM: To analyze small intestinal bacterial overgrowth in school-aged children and the relationship between hydrogen and methane production in breath tests. METHODS: This transversal study included 85 children residing in a slum and 43 children from a private school, all aged between 6 and 10 years, in Osasco, Brazil. For characterization of the groups, data regarding the socioeconomic status and basic housing sanitary conditions were collected. Anthropometric data was obtained in children from both groups. All children completed the hydrogen (H2) and methane (CH4) breath test in order to assess small intestinal bacterial overgrowth (SIBO). SIBO was diagnosed when there was an increase in H2 ≥ 20 ppm or CH4 ≥ 10 ppm with regard to the fasting value until 60 min after lactulose ingestion. RESULTS: Children from the slum group had worse living conditions and lower nutritional indices than children from the private school. SIBO was found in 30.9% (26/84) of the children from the slum group and in 2.4% (1/41) from the private school group (P = 0.0007). Greater hydrogen production in the small intestine was observed in children from the slum group when compared to children from the private school (P = 0.007). A higher concentration of hydrogen in the small intestine (P < 0.001) and in the colon (P < 0.001) was observed among the children from the slum group with SIBO when compared to children from the slum group without SIBO. Methane production was observed in 63.1% (53/84) of the children from the slum group and in 19.5% (8/41) of the children from the private school group (P < 0.0001). Methane production was observed in 38/58 (65.5%) of the children without SIBO and in 15/26 (57.7%) of the children with SIBO from the slum. Colonic production of hydrogen was lower in methane-producing children (P = 0.017). CONCLUSION: Children who live in inadequate environmental conditions are at risk of bacterial overgrowth and methane production. Hydrogen is a substrate for

  9. In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology

    PubMed Central

    Hariri, Benjamin M.; Payne, Sakeena J.; Chen, Bei; Mansfield, Corrine; Doghramji, Laurel J.; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Niv, Masha Y.

    2016-01-01

    Background: T2R bitter taste receptors play a crucial role in sinonasal innate immunity by upregulating mucociliary clearance and nitric oxide (NO) production in response to bitter gram-negative quorum-sensing molecules in the airway surface liquid. Previous studies showed that phytochemical flavonoid metabolites, known as anthocyanidins, taste bitter and have antibacterial effects. Our objectives were to examine the effects of anthocyanidins on NO production by human sinonasal epithelial cells and ciliary beat frequency, and their impact on common sinonasal pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods: Ciliary beat frequency and NO production were measured by using digital imaging of differentiated air-liquid interface cultures prepared from primary human cells isolated from residual surgical material. Plate-based assays were used to determine the effects of anthocyanidins on bacterial swimming and swarming motility. Biofilm formation and planktonic growth were also assessed. Results: Anthocyanidin compounds triggered epithelial cells to produce NO but not through T2R receptors. However, anthocyanidins did not impact ciliary beat frequency. Furthermore, they did not reduce biofilm formation or planktonic growth of P. aeruginosa. In S. aureus, they did not reduce planktonic growth, and only one compound had minimal antibiofilm effects. The anthocyanidin delphinidin and anthocyanin keracyanin were found to promote bacterial swimming, whereas anthocyanidin cyanidin and flavonoid myricetin did not. No compounds that were tested inhibited bacterial swarming. Conclusion: Results of this study indicated that, although anthocyanidins may elicited an innate immune NO response from human cells, they do not cause an increase in ciliary beating and they may also cause a pathogenicity-enhancing effect in P. aeruginosa. Additional studies are necessary to understand how this would affect the use of anthocyanidins as therapeutics. This study emphasized the

  10. Investigating alternative strategies for managing bacterial angular leaf spot in strawberry nursery production

    USDA-ARS?s Scientific Manuscript database

    The focus of this article is to discuss some of the approaches we have tested for managing the bacterial pathogen Xanthomonas fragariae in infected strawberry nursery stock. X. fragariae causes angular leaf spot (ALS) in strawberry. The pathogen is transmitted to production fields almost exclusively...

  11. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy.

    PubMed

    Lo, Yung-Chung; Bai, Ming-Der; Chen, Wen-Ming; Chang, Jo-Shu

    2008-11-01

    In this study, cellulose hydrolysis activity of two mixed bacterial consortia (NS and QS) was investigated. Combination of NS culture and BHM medium exhibited better hydrolytic activity under the optimal condition of 35 degrees C, initial pH 7.0, and 100rpm agitation. The NS culture could hydrolyze carboxymethyl cellulose (CMC), rice husk, bagasse and filter paper, among which CMC gave the best hydrolysis performance. The CMC hydrolysis efficiency increased with increasing CMC concentration from 5 to 50g/l. With a CMC concentration of 10g/l, the total reducing sugar (RS) production and the RS producing rate reached 5531.0mg/l and 92.9mg/l/h, respectively. Furthermore, seven H2-producing bacterial isolates (mainly Clostridium species) were used to convert the cellulose hydrolysate into H2 energy. With an initial RS concentration of 0.8g/l, the H2 production and yield was approximately 23.8ml/l and 1.21mmol H2/g RS (0.097mmol H2/g cellulose), respectively.

  12. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species.

    PubMed

    Challis, Gregory L; Hopwood, David A

    2003-11-25

    In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace? We argue that synergy or contingency in the action of individual metabolites against biological competitors may, in some cases, be a powerful driving force for the evolution of multiple secondary metabolite production. This argument is illustrated with examples of the coproduction of synergistically acting antibiotics and contingently acting siderophores: two well-known classes of secondary metabolite. We focus, in particular, on the coproduction of beta-lactam antibiotics and beta-lactamase inhibitors, the coproduction of type A and type B streptogramins, and the coregulated production and independent uptake of structurally distinct siderophores by species of Streptomyces. Possible mechanisms for the evolution of multiple synergistic and contingent metabolite production in Streptomyces species are discussed. It is concluded that the production by Streptomyces species of two or more secondary metabolites that act synergistically or contingently against biological competitors may be far more common than has previously been recognized, and that synergy and contingency may be common driving forces for the evolution of multiple secondary metabolite production by these sessile saprophytes.

  13. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species

    PubMed Central

    Challis, Gregory L.; Hopwood, David A.

    2003-01-01

    In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace? We argue that synergy or contingency in the action of individual metabolites against biological competitors may, in some cases, be a powerful driving force for the evolution of multiple secondary metabolite production. This argument is illustrated with examples of the coproduction of synergistically acting antibiotics and contingently acting siderophores: two well-known classes of secondary metabolite. We focus, in particular, on the coproduction of β-lactam antibiotics and β-lactamase inhibitors, the coproduction of type A and type B streptogramins, and the coregulated production and independent uptake of structurally distinct siderophores by species of Streptomyces. Possible mechanisms for the evolution of multiple synergistic and contingent metabolite production in Streptomyces species are discussed. It is concluded that the production by Streptomyces species of two or more secondary metabolites that act synergistically or contingently against biological competitors may be far more common than has previously been recognized, and that synergy and contingency may be common driving forces for the evolution of multiple secondary metabolite production by these sessile saprophytes. PMID:12970466

  14. Impact of school staff health on work productivity in secondary schools in Massachusetts.

    PubMed

    Alker, Heather J; Wang, Monica L; Pbert, Lori; Thorsen, Nancy; Lemon, Stephenie C

    2015-06-01

    Healthy, productive employees are an integral part of school health programs. There have been few assessments of work productivity among secondary school staff. This study describes the frequency of 3 common health risk factors--obesity, depressive symptoms, and smoking--and their impact on work productivity in secondary school employees. Employees of secondary schools in Massachusetts (N = 630) participated in a longitudinal weight gain prevention intervention study. Assessment completed at baseline, 1-year and 2-year follow-up included survey assessments of health risk factors as well as measurements for height, weight, and body mass index (BMI). The survey also included a depression inventory and Work Limitations Questionnaire. Data analysis included multivariate mixed effect models to identify productivity differences in relation to BMI, depressive symptoms, and smoking in this population stratified by position type (teacher and other school staff). The sample included 361 teachers and 269 other school staff. Obesity, depressive symptoms, and smoking were significantly associated with work productivity, including workdays missed because of health concerns (absenteeism) and decreases in on-the-job productivity because of health concerns (presenteeism). Three common health conditions, namely obesity, depressive symptoms, and smoking, adversely affect the productivity of high school employees. © 2015, American School Health Association.

  15. Reduction of bacterial volatile sulfur compound production by licoricidin and licorisoflavan A from licorice.

    PubMed

    Tanabe, Shin-ichi; Desjardins, Jacynthe; Bergeron, Chantal; Gafner, Stefan; Villinski, Jacquelyn R; Grenier, Daniel

    2012-03-01

    Halitosis affects a large proportion of the population and is, in most cases, caused by the production of volatile sulfur compounds (VSCs), particularly methyl mercaptan and hydrogen sulfide, by specific bacterial species colonizing the oral cavity. In this study, a supercritical extract of Chinese licorice (Glycyrrhiza uralensis), and its major isoflavans, licoricidin and licorisoflavan A, were investigated for their effect on growth, VSC production and protease activity of Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei, which have been associated with halitosis. The effects of licorice extract, licoricidin, and licorisoflavan A on VSC production in a saliva model were also tested. We first showed that licoricidin and licorisoflavan A, and to a lesser extent the licorice extract, were effective in inhibiting the growth of all three bacterial species, with minimal inhibitory concentrations in the range of 2-80 µg ml(-1). The licorice extract and the two isolates licoricidin and licorisoflavan A, were able to dose-dependently reduce VSC production by P. gingivalis, Prev. intermedia, and S. moorei as well as by a human saliva model. Although the extract and isolates did not inhibit the proteolytic activity of bacteria, they blocked the conversion of cysteine into hydrogen sulfide by Prev. intermedia. Lastly, the deodorizing effects of the licorice extract, licoricidin, and licorisoflavan A were demonstrated, as they can neutralize P. gingivalis-derived VSCs. Licorisoflavan A (10 µg ml(-1)) was found to be the most effective by reducing VSC levels by 50%. Within the limitations of this study, it can be concluded that a licorice supercritical extract and its major isoflavans (licoricidin and licorisoflavan A) represent natural ingredients with a potential for reducing bacterial VSC production and therefore for controlling halitosis.

  16. Seasonality of primary and secondary production in an Arctic river

    NASA Astrophysics Data System (ADS)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  17. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    PubMed

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, R.W.; Porter, K.G.

    Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenical) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with (/sup 3/H)thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence ofmore » the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. The authors recommended that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors.« less

  19. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production.

    PubMed

    Robertsen, Helene Lunde; Weber, Tilmann; Kim, Hyun Uk; Lee, Sang Yup

    2018-01-01

    Streptomycetes are known for their inherent ability to produce pharmaceutically relevant secondary metabolites. Discovery of medically useful, yet novel compounds has become a great challenge due to frequent rediscovery of known compounds and a consequent decline in the number of relevant clinical trials in the last decades. A paradigm shift took place when the first whole genome sequences of streptomycetes became available, from which silent or "cryptic" biosynthetic gene clusters (BGCs) were discovered. Cryptic BGCs reveal a so far untapped potential of the microorganisms for the production of novel compounds, which has spurred new efforts in understanding the complex regulation between primary and secondary metabolism. This new trend has been accompanied with development of new computational resources (genome and compound mining tools), generation of various high-quality omics data, establishment of molecular tools, and other strain engineering strategies. They all come together to enable systems metabolic engineering of streptomycetes, allowing more systematic and efficient strain development. In this review, the authors present recent progresses within systems metabolic engineering of streptomycetes for uncovering their hidden potential to produce novel compounds and for the improved production of secondary metabolites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors.

    PubMed

    Batkhishig, Dashdavaa; Bilguun, Khurelbaatar; Enkhbayar, Purevjav; Miyashita, Hiroki; Kretsinger, Robert H; Matsushima, Norio

    2018-06-01

    Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20-30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs-DSSP-PPII, PROSS, SEGNO, and XTLSSTR-and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.

  1. Media and growth conditions for induction of secondary metabolite production.

    PubMed

    Frisvad, Jens C

    2012-01-01

    Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi.

  2. The POPOP4 library and codes for preparing secondary gamma-ray production cross sections

    NASA Technical Reports Server (NTRS)

    Ford, W. E., III

    1972-01-01

    The POPOP4 code for converting secondary gamma ray yield data to multigroup secondary gamma ray production cross sections and the POPOP4 library of secondary gamma ray yield data are described. Recent results of the testing of uranium and iron data sets from the POPOP4 library are given. The data sets were tested by comparing calculated secondary gamma ray pulse height spectra measured at the ORNL TSR-II reactor.

  3. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications.

    PubMed

    da Silva, Ronivaldo Rodrigues

    2017-09-01

    Submerged and solid-state bioprocesses have been extensively explored worldwide and employed in a number of important studies dealing with microbial cultivation for the production of enzymes. The development of these production technologies has facilitated the generation of new enzyme-based products with applications in pharmaceuticals, food, bioactive peptides, and basic research studies, among others. The applicability of microorganisms in biotechnology is potentiated because of their various advantages, including large-scale production, short time of cultivation, and ease of handling. Currently, several studies are being conducted to search for new microbial peptidases with peculiar biochemical properties for industrial applications. Bioprospecting, being an important prerequisite for research and biotechnological development, is based on exploring the microbial diversity for enzyme production. Limited information is available on the production of specific proteolytic enzymes from bacterial and fungal species, especially on the subgroups threonine and glutamic peptidases, and the seventh catalytic type, nonhydrolytic asparagine peptide lyase. This gap in information motivated the present study about these unique biocatalysts. In this study, the biochemical and biotechnological aspects of the seven catalytic types of proteolytic enzymes, namely aspartyl, cysteine, serine, metallo, glutamic, and threonine peptidase, and asparagine peptide lyase, are summarized, with an emphasis on new studies, production, catalysis, and application of these enzymes.

  4. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens.

    PubMed

    Rehman, Habib Ur; Vahjen, Wilfried; Awad, Wageha A; Zentek, Jürgen

    2007-10-01

    The gastrointestinal tract is a dynamic ecosystem containing a complex microbial community. In this paper, the indigenous intestinal bacteria and the microbial fermentation profile particularly short chain fatty acids (SCFA), lactate, and ammonia concentrations are reviewed. The intestinal bacterial composition changes with age. The bacterial density of the small intestine increases with age and comprises of lactobacilli, streptococci, enterobacteria, fusobacteria and eubacteria. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium spp., Clostridium spp., Lactobacillus spp., Fusobacterium spp. and Bacteroides) are predominating caecal bacteria in young broilers. Data from culture-based studies showed that bifidobacteria could not be isolated from young birds, but were recovered from four-week-old broilers. Caecal lactobacilli accounted for 1.5-24% of the caecal bacteria. Gene sequencing of caecal DNA extracts showed that the majority of bacteria belonged to Clostridiaceae. Intestinal bacterial community is influenced by the dietary ingredients, nutrient levels and physical structure of feed. SCFA and other metabolic products are affected by diet formulation and age. Additional studies are required to know the bacterial metabolic activities together with the community analysis of the intestinal bacteria. Feed composition and processing have great potential to influence the activities of intestinal bacteria towards a desired direction in order to support animal health, well-being and microbial safety of broiler meat.

  5. Novel approach for the use of dairy industry wastes for bacterial growth media production.

    PubMed

    Kasmi, Mariam; Elleuch, Lobna; Dahmeni, Ameni; Hamdi, Moktar; Trabelsi, Ismail; Snoussi, Mejdi

    2018-04-15

    This work proposes a novel approach for the reuse and the recovery of dairy wastes valuable components. Thermal coagulation was performed for dairy effluents and the main responsible fraction for the organic matter content (protein and fat) was separated. Dairy curds were prepared for the formulation of bacterial growth media. Protein, sugar, fat and fatty acids contents have been assessed. Samples treated at 100 °C exhibited marked improvement in terms of protein (25-50%) recovery compared to those treated at 80 °C. Fatty acid analysis revealed the presence of unsaturated fatty acids (mainly oleic acid) that are essential to promote Lactobacillus growth. Previously isolated and identified bacterial strains from dairy wastes (Lactobacillus paracasei, Lactobacillus plantarum, Lactococcus lactis and Lactobacillus brevis) were investigated for their ability to grow on the formulated media. All the tested lactic acid bacteria exhibited greater bacterial growth on the formulated media supplemented with glucose only or with both glucose and yeast extract compared to the control media. By reference to the commercial growth medium, the productivity ratio of the supplemented bactofugate (B) and decreaming (D) formulated media exceeded 0.6 for L. paracasei culture. Whereas, the productivity ratio of the supplemented B medium was greater than 1 compared to the control medium for all the tested strains. As for the supplemented D medium, its productivity ratio was greater than 1 compared to the control medium for both L. paracasei and L. plantarum strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. [Spontaneous bacterial peritonitis].

    PubMed

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  7. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  8. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production.

    PubMed

    Lemmer, Kimberly C; Zhang, Weiping; Langer, Samantha J; Dohnalkova, Alice C; Hu, Dehong; Lemke, Rachelle A; Piotrowski, Jeff S; Orr, Galya; Noguera, Daniel R; Donohue, Timothy J

    2017-05-23

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation in Rhodobacter sphaeroides By screening an R. sphaeroides Tn 5 mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCE This paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be

  9. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE PAGES

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; ...

    2017-05-23

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  10. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains.

    PubMed

    Rohde, Christine; Resch, Grégory; Pirnay, Jean-Paul; Blasdel, Bob G; Debarbieux, Laurent; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Almeida, Gabriel Magno de Freitas; Makalatia, Khatuna; Malik, Danish J; Mašlaňová, Ivana; Merabishvili, Maia; Pantucek, Roman; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-04-05

    Phage therapy is increasingly put forward as a "new" potential tool in the fight against antibiotic resistant infections. During the "Centennial Celebration of Bacteriophage Research" conference in Tbilisi, Georgia on 26-29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.

  11. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains

    PubMed Central

    Rohde, Christine; Resch, Grégory; Blasdel, Bob G.; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Makalatia, Khatuna; Malik, Danish J.; Mašlaňová, Ivana; Merabishvili, Maia; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-01-01

    Phage therapy is increasingly put forward as a “new” potential tool in the fight against antibiotic resistant infections. During the “Centennial Celebration of Bacteriophage Research” conference in Tbilisi, Georgia on 26–29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application. PMID:29621199

  12. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    PubMed Central

    van Agtmaal, Maaike; van Os, Gera J.; Hol, W.H. Gera; Hundscheid, Maria P.J.; Runia, Willemien T.; Hordijk, Cornelis A.; de Boer, Wietse

    2015-01-01

    There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD), a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi, and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs) and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are supporting the

  13. Secondary metabolism in simulated microgravity: beta-lactam production by Streptomyces clavuligerus

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    Rotating bioreactors designed at NASA's Johnson Space Center were used to simulate a microgravity environment in which to study secondary metabolism. The system examined was beta-lactam antibiotic production by Streptomyces clavuligerus. Both growth and beta-lactam production occurred in simulated microgravity. Stimulatory effects of phosphate and L-lysine, previously detected in normal gravity, also occurred in simulated microgravity. The degree of beta-lactam antibiotic production was markedly inhibited by simulated microgravity.

  14. Establishing the Secondary Metabolite Profile of the Marine Fungus: Tolypocladium geodes sp. MF458 and Subsequent Optimisation of Bioactive Secondary Metabolite Production

    PubMed Central

    Kebede, Bethlehem; Wrigley, Stephen K.; Prashar, Anjali; Rahlff, Janina; Wolf, Markus; Reinshagen, Jeanette; Gribbon, Philip; Imhoff, Johannes F.; Silber, Johanna; Labes, Antje; Ellinger, Bernhard

    2017-01-01

    As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A (1), efrapeptin D (2), pyridoxatin (3), terricolin A (4), malettinins B and E (5 and 6), and tolypocladenols A1/A2 (8), we identified a new secondary metabolite which we termed tolypocladenol C (7). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E (5 and 6) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields. PMID:28333084

  15. Light-Stimulated Bacterial Production and Amino Acid Assimilation by Cyanobacteria and Other Microbes in the North Atlantic Ocean▿

    PubMed Central

    Michelou, Vanessa K.; Cottrell, Matthew T.; Kirchman, David L.

    2007-01-01

    We examined the contribution of photoheterotrophic microbes—those capable of light-mediated assimilation of organic compounds—to bacterial production and amino acid assimilation along a transect from Florida to Iceland from 28 May to 9 July 2005. Bacterial production (leucine incorporation at a 20 nM final concentration) was on average 30% higher in light than in dark-incubated samples, but the effect varied greatly (3% to 60%). To further characterize this light effect, we examined the abundance of potential photoheterotrophs and measured their contribution to bacterial production and amino acid assimilation (0.5 nM addition) using flow cytometry. Prochlorococcus and Synechococcus were abundant in surface waters where light-dependent leucine incorporation was observed, whereas aerobic anoxygenic phototrophic bacteria were abundant but did not correlate with the light effect. The per-cell assimilation rates of Prochlorococcus and Synechococcus were comparable to or higher than those of other prokaryotes, especially in the light. Picoeukaryotes also took up leucine (20 nM) and other amino acids (0.5 nM), but rates normalized to biovolume were much lower than those of prokaryotes. Prochlorococcus was responsible for 80% of light-stimulated bacterial production and amino acid assimilation in surface waters south of the Azores, while Synechococcus accounted for on average 12% of total assimilation. However, nearly 40% of the light-stimulated leucine assimilation was not accounted for by these groups, suggesting that assimilation by other microbes is also affected by light. Our results clarify the contribution of cyanobacteria to photoheterotrophy and highlight the potential role of other photoheterotrophs in biomass production and dissolved-organic-matter assimilation. PMID:17630296

  16. Enhancement in secondary particulate matter production due to mountain trapping

    NASA Astrophysics Data System (ADS)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  17. Application of Recombinant Factor C Reagent for the Detection of Bacterial Endotoxins in Pharmaceutical Products.

    PubMed

    Bolden, Jay; Smith, Kelly

    2017-01-01

    Recombinant Factor C (rFC) is non-animal-derived reagent used to detect bacterial endotoxins in pharmaceutical products. Despite the fact that the reagent was first commercially available nearly 15 years ago, the broad use of rFC in pharmaceutical industry has long been lagging, presumably due to historical single-source supplier concerns and the lack of inclusion in worldwide pharmacopeias. Commercial rFC reagents are now available from multiple manufacturers, thus single sourcing is no longer an issue. We report here the successful validation of several pharmaceutical products by an end-point florescence-based endotoxin method using the rFC reagent. The method is equivalent or superior to the compendia bacterial endotoxins test method. Based on the comparability data and extenuating circumstances, the incorporation of the end point fluorescence technique and rFC reagent in global compendia bacterial endotoxins test chapters is desired and warranted. LAY ABSTRACT: Public health has been protected for over 30 years with the use of a purified blood product of the horseshoe crab, limulus amebocyte lysate. More recently, this blood product can be produced in biotech manufacturing processes, which reduces potential impacts to the horseshoe crab and related species dependent upon the crab, for example, migrating shorebirds. The pharmaceutical industry has been slow to adopt the use of this reagent, Recombinant Factor C (rFC), for various reasons. We evaluated the use of rFC across many pharmaceutical products, and in other feasibility demonstration experiments, and found rFC to be a suitable alternative to the animal-derived limulus amebocyte lysate. Incorporation of rFC and its analytical method into national testing standards would provide an equivalent or better test while continuing to maintain patient safety for those who depend on medicines and while securing pharmaceutical supply chains. In addition, widespread use of this method would benefit existing animal

  18. Identifying Productive Resources in Secondary School Students' Discourse about Energy

    ERIC Educational Resources Information Center

    Harrer, Benedikt

    2013-01-01

    A growing program of research in science education acknowledges the beginnings of disciplinary reasoning in students' ideas and seeks to inform instruction that responds productively to these disciplinary progenitors in the moment to foster their development into sophisticated scientific practice. This dissertation examines secondary school…

  19. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    PubMed Central

    Mansson, Maria; Gram, Lone; Larsen, Thomas O.

    2011-01-01

    Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation. PMID:22131950

  20. Mass production of bacterial communities adapted to the degradation of volatile organic compounds (TEX).

    PubMed

    Lapertot, Miléna; Seignez, Chantal; Ebrahimi, Sirous; Delorme, Sandrine; Peringer, Paul

    2007-06-01

    This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kg(DW)m(-3) d(-1) and 0.59 g(DW)g (C) (-1) , respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.

  1. Exposure to bacterial products lipopolysaccharide and flagellin and hepatocellular carcinoma: a nested case-control study.

    PubMed

    Fedirko, Veronika; Tran, Hao Quang; Gewirtz, Andrew T; Stepien, Magdalena; Trichopoulou, Antonia; Aleksandrova, Krasimira; Olsen, Anja; Tjønneland, Anne; Overvad, Kim; Carbonnel, Franck; Boutron-Ruault, Marie-Christine; Severi, Gianluca; Kühn, Tilman; Kaaks, Rudolf; Boeing, Heiner; Bamia, Christina; Lagiou, Pagona; Grioni, Sara; Panico, Salvatore; Palli, Domenico; Tumino, Rosario; Naccarati, Alessio; Peeters, Petra H; Bueno-de-Mesquita, H B; Weiderpass, Elisabete; Castaño, José María Huerta; Barricarte, Aurelio; Sánchez, María-José; Dorronsoro, Miren; Quirós, J Ramón; Agudo, Antonio; Sjöberg, Klas; Ohlsson, Bodil; Hemmingsson, Oskar; Werner, Mårten; Bradbury, Kathryn E; Khaw, Kay-Tee; Wareham, Nick; Tsilidis, Konstantinos K; Aune, Dagfinn; Scalbert, Augustin; Romieu, Isabelle; Riboli, Elio; Jenab, Mazda

    2017-04-04

    Leakage of bacterial products across the gut barrier may play a role in liver diseases which often precede the development of liver cancer. However, human studies, particularly from prospective settings, are lacking. We used a case-control study design nested within a large prospective cohort to assess the association between circulating levels of anti-lipopolysaccharide (LPS) and anti-flagellin immunoglobulin A (IgA) and G (IgG) (reflecting long-term exposures to LPS and flagellin, respectively) and risk of hepatocellular carcinoma. A total of 139 men and women diagnosed with hepatocellular carcinoma between 1992 and 2010 were matched to 139 control subjects. Multivariable rate ratios (RRs), including adjustment for potential confounders, hepatitis B/C positivity, and degree of liver dysfunction, were calculated with conditional logistic regression. Antibody response to LPS and flagellin was associated with a statistically significant increase in the risk of hepatocellular carcinoma (highest vs. lowest quartile: RR = 11.76, 95% confidence interval = 1.70-81.40; P trend  = 0.021). This finding did not vary substantially by time from enrollment to diagnosis, and did not change after adjustment for chronic infection with hepatitis B and C viruses. These novel findings, based on exposures up to several years prior to diagnosis, support a role for gut-derived bacterial products in hepatocellular carcinoma development. Further study into the role of gut barrier failure and exposure to bacterial products in liver diseases is warranted.

  2. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    PubMed Central

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-01-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed. PMID:12232364

  3. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    PubMed

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-10-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed.

  4. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations.

    PubMed

    Kim, Bohwa; Praveenkumar, Ramasamy; Lee, Jiye; Nam, Bora; Kim, Dong-Myung; Lee, Kyubock; Lee, Young-Chul; Oh, You-Kwan

    2016-11-01

    Improving lipid productivity and preventing overgrowth of contaminating bacteria are critical issues relevant to the commercialization of the mixotrophic microalgae cultivation process. In this paper, we report the use of magnesium aminoclay (MgAC) nanoparticles for enhanced lipid production from oleaginous Chlorella sp. KR-1 with simultaneous control of KR-1-associated bacterial growth in mixotrophic cultures with glucose as the model substrate. Addition of 0.01-0.1g/L MgAC promoted microalgal biomass production better than the MgAC-less control, via differential biocidal effects on microalgal and bacterial cells (the latter being more sensitive to MgAC's bio-toxicity than the former). The inhibition effect of MgAC on co-existing bacteria was, as based on density-gradient-gel-electrophoresis (DGGE) analysis, largely dosage-dependent and species-specific. MgAC also, by inducing an oxidative stress environment, increased both the cell size and lipid content of KR-1, resulting in a considerable, ∼25% improvement of mixotrophic algal lipid productivity (to ∼410mgFAME/L/d) compared with the untreated control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Using Natural Products to Treat Resistant and Persistent Bacterial Infections

    NASA Astrophysics Data System (ADS)

    Deering, Robert W.

    Antimicrobial resistance is a growing threat to human health both worldwide and in the United States. Most concerning is the emergence of multi-drug resistant (MDR) bacterial pathogens, especially the 'ESKAPE' pathogens for which treatment options are dwindling. To complicate the problem, approvals of antibiotic drugs are extremely low and many research and development efforts in the pharmaceutical industry have ceased, leaving little certainty that critical new antibiotics are nearing the clinic. New antibiotics are needed to continue treating these evolving infections. In addition to antibiotics, approaches that aim to inhibit or prevent antimicrobial resistance could be useful. Also, studies that improve our understanding of bacterial pathophysiology could lead to new therapies for infectious disease. Natural products, especially those from the microbial world, have been invaluable as resources for new antibacterial compounds and as insights into bacterial physiology. The goal of this dissertation is to find new ways to treat resistant bacterial infections and learn more about the pathophysiology of these bacteria. Investigations of natural products to find molecules able to be used as new antibiotics or to modulate resistance and other parts of bacterial physiology are crucial aspects of the included studies. The first included study, which is reported in chapter two, details a chemical investigation of a marine Pseudoalteromonas sp. Purification efforts of the microbial metabolites were guided by testing against a resistance nodulation of cell division model of efflux pumps expressed in E. coli. These pumps play an important role in the resistance of MDR Gram negative pathogens such as Pseudomonas aeruginosa and Enterobacteriaceae. Through this process, 3,4-dibromopyrrole-2,5-dione was identified as a potent inhibitor of the RND efflux pumps and showed synergistic effects against the E. coli strain with common antibiotics including fluoroquinolones, beta

  6. Production of microbial secondary metabolites: regulation by the carbon source.

    PubMed

    Ruiz, Beatriz; Chávez, Adán; Forero, Angela; García-Huante, Yolanda; Romero, Alba; Sánchez, Mauricio; Rocha, Diana; Sánchez, Brenda; Rodríguez-Sanoja, Romina; Sánchez, Sergio; Langley, Elizabeth

    2010-05-01

    Microbial secondary metabolites are low molecular mass products, not essential for growth of the producing cultures, but very important for human health. They include antibiotics, antitumor agents, cholesterol-lowering drugs, and others. They have unusual structures and are usually formed during the late growth phase of the producing microorganisms. Its synthesis can be influenced greatly by manipulating the type and concentration of the nutrients formulating the culture media. Among these nutrients, the effect of the carbon sources has been the subject of continuous studies for both, industry and research groups. Different mechanisms have been described in bacteria and fungi to explain the negative carbon catabolite effects on secondary metabolite production. Their knowledge and manipulation have been useful either for setting fermentation conditions or for strain improvement. During the last years, important advances have been reported on these mechanisms at the biochemical and molecular levels. The aim of the present review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.

  7. Evidence against a bacterial endotoxin masking effect in biologic drug products by limulus amebocyte lysate detection.

    PubMed

    Bolden, Jay S; Claerbout, Mark E; Miner, Matthew K; Murphy, Marie A; Smith, Kelly R; Warburton, Rob E

    2014-01-01

    The inability to detect endotoxin using compendia methods is a potential safety concern for patients due to the lack of endotoxin removal capabilities at the fill-finish stage in typical aseptic biologic drug product manufacturing. We have successfully demonstrated endotoxin challenge study recovery methodology using mammalian cell-produced biologic drug products and drug substances in citrate, histidine, phosphate, and sodium acetate buffer formulations containing polysorbate, challenged with an endotoxin analyte, for up to 6 months of storage. Successful recovery was similarly demonstrated for a preserved, peptide-containing drug product formulation. To isolate a potential masking-or low-endotoxin recovery-source, additional studies were performed to evaluate factors including product manufacturing contact surfaces, drug product matrix with and without polysorbate, individual matrix components, protein concentration, reagent suppliers, an orthogonal test method, and storage conditions. In all cases, acceptable recoveries were observed. Bacterial endotoxin is known to be chemically stable at physiological conditions. Purified endotoxin in aqueous conditions is likely to self-aggregate or bind to surfaces. Neither the nature of, nor the storage conditions of, the studied formulation matrices were shown experimentally to render the challenge endotoxin biologically inactive. The results highlight the importance of appropriate study design in assessing the recovery of endotoxins. Bacterial endotoxin is a Gram-negative bacterial cell wall component that is harmful to humans at threshold concentrations, and it is not expected to be in aseptically-produced pharmaceutical medicines. It has been suggested that endotoxin cannot be detected over time in certain biopharmaceutical drug product formulations containing citrate, phosphate, and polysorbate components via an unknown masking mechanism. We have generated and present data here that indicate that endotoxin can be

  8. Test for bacterial resistance build-up against plasma treatment

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. L.; Shimizu, T.; Schmidt, H.-U.; Li, Y.-F.; Morfill, G. E.; Isbary, G.

    2012-07-01

    It is well known that the evolution of resistance of microorganisms to a range of different antibiotics presents a major problem in the control of infectious diseases. Accordingly, new bactericidal ‘agents’ are in great demand. Using a cold atmospheric pressure (CAP) plasma dispenser operated with ambient air, a more than five orders of magnitude inactivation or reduction of Methicillin-resistant Staphylococcus aureus (MRSA; resistant against a large number of the tested antibiotics) was obtained in less than 10 s. This makes CAP the most promising candidate for combating nosocomial (hospital-induced) infections. To test for the occurrence and development of bacterial resistance against such plasmas, experiments with Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Enterococcus mundtii) were performed. The aim was to determine quantitative limits for primary (naturally) or secondary (acquired) resistance against the plasma treatment. Our results show that E. coli and E. mundtii possess no primary resistance against the plasma treatment. By generating four generations of bacteria for every strain, where the survivors of the plasma treatment were used for the production of the next generation, a lower limit to secondary resistance was obtained. Our results indicate that CAP technology could contribute to the control of infections in hospitals, in outpatient care and in disaster situations, providing a new, fast and efficient broad-band disinfection technology that is not constrained by bacterial resistance mechanisms.

  9. Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis - a systematic review and meta-analysis.

    PubMed

    Beez, Thomas; Steiger, Hans-Jakob; Etminan, Nima

    2017-12-07

    The effectiveness of pharmacological strategies exclusively targeting secondary brain damage (SBD) following ischemic stroke, aneurysmal subarachnoid hemorrhage, aSAH, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and bacterial meningitis is unclear. This meta-analysis studied the effect of SBD targeted treatment on clinical outcome across the pathological entities. Randomized, controlled, double-blinded trials on aforementioned entities with 'death' as endpoint were identified. Effect sizes were analyzed and expressed as pooled risk ratio (RR) estimates with 95% confidence intervals (CI). 123 studies fulfilled the criteria, with data on 66,561 patients. In the pooled analysis, there was a minor reduction of mortality for aSAH [RR 0.93 (95% CI:0.85-1.02)], ICH [RR 0.92 (95% CI:0.82-1.03)] and bacterial meningitis [RR 0.86 (95% CI:0.68-1.09)]. No reduction of mortality was found for ischemic stroke [RR 1.05 (95% CI:1.00-1.11)] and TBI [RR 1.03 (95% CI:0.93-1.15)]. Additional analysis of "poor outcome" as endpoint gave similar results. Subgroup analysis with respect to effector mechanisms showed a tendency towards a reduced mortality for the effector mechanism category "oxidative metabolism/stress" for aSAH with a risk ratio of 0.86 [95% CI: 0.73-1.00]. Regarding specific medications, a statistically significant reduction of mortality and poor outcome was confirmed only for nimodipine for aSAH and dexamethasone for bacterial meningitis. Our results show that only a few selected SBD directed medications are likely to reduce the rate of death and poor outcome following aSAH, and bacterial meningitis, while no convincing evidence could be found for the usefulness of SBD directed medications in ischemic stroke, ICH and TBI. However, a subtle effect on good or excellent outcome might remain undetected. These results should lead to a new perspective of secondary reactions following cerebral injury. These processes should not be seen as suicide mechanisms

  10. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis.

    PubMed

    Ola, Antonius R B; Thomy, Dhana; Lai, Daowan; Brötz-Oesterhelt, Heike; Proksch, Peter

    2013-11-22

    Coculturing the fungal endophyte Fusarium tricinctum with the bacterium Bacillus subtilis 168 trpC2 on solid rice medium resulted in an up to 78-fold increase in the accumulation in constitutively present secondary metabolites that included lateropyrone (5), cyclic depsipeptides of the enniatin type (6-8), and the lipopeptide fusaristatin A (9). In addition, four compounds (1-4) including (-)-citreoisocoumarin (2) as well as three new natural products (1, 3, and 4) were not present in discrete fungal and bacterial controls and only detected in the cocultures. The new compounds were identified as macrocarpon C (1), 2-(carboxymethylamino)benzoic acid (3), and (-)-citreoisocoumarinol (4) by analysis of the 1D and 2D NMR and HRMS data. Enniatins B1 (7) and A1 (8), whose production was particularly enhanced, inhibited the growth of the cocultivated B. subtilis strain with minimal inhibitory concentrations (MICs) of 16 and 8 μg/mL, respectively, and were also active against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis with MIC values in the range 2-8 μg/mL. In addition, lateropyrone (5), which was constitutively present in F. tricinctum, displayed good antibacterial activity against B. subtilis, S. aureus, S. pneumoniae, and E. faecalis, with MIC values ranging from 2 to 8 μg/mL. All active compounds were equally effective against a multiresistant clinical isolate of S. aureus and a susceptible reference strain of the same species.

  11. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria

    PubMed Central

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.

    2009-01-01

    Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814

  12. Indoor secondary pollutants from household product emissions in the presence of ozone: A bench-scale chamber study.

    PubMed

    Destaillats, Hugo; Lunden, Melissa M; Singer, Brett C; Coleman, Beverly K; Hodgson, Alfred T; Weschler, Charles J; Nazaroff, William W

    2006-07-15

    Ozone-driven chemistry is a source of indoor secondary pollutants of potential health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields for most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid, and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of secondary particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10(5) molecules cm(-3) were determined by an indirect method. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate chamber study, we exposed the dry residue of two products to ozone and observed the formation of gas-phase and particle-phase secondary oxidation products.

  13. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  14. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    NASA Astrophysics Data System (ADS)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  15. Comparison of Asian porcine high fever disease isolates of porcine reproductive and respiratory syndrome virus to United States isolates for their ability to cause disease and secondary bacterial infection in swine

    USDA-ARS?s Scientific Manuscript database

    Epidemiologic data from Asian outbreaks of highly-pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) suggest that disease severity was associated with both the virulence of the PRRSV isolates and secondary bacterial infections. Previous reports have indicated that U.S. isola...

  16. Potato suberin induces differentiation and secondary metabolism in the genus Streptomyces.

    PubMed

    Lerat, Sylvain; Forest, Martin; Lauzier, Annie; Grondin, Gilles; Lacelle, Serge; Beaulieu, Carole

    2012-01-01

    Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces, with emphasis on S. scabiei. Streptomyces scabiei, S. acidiscabies, S. avermitilis, S. coelicolor and S. melanosporofaciens were grown both in the presence and absence of suberin. In all species tested, the presence of the plant polymer induced the production of aerial hyphae and enhanced resistance to mechanical lysis. The presence of suberin in liquid minimal medium also induced the synthesis of typical secondary metabolites in S. scabiei and S. acidiscabies (thaxtomin A), S. coelicolor (actinorhodin) and S. melanosporofaciens (geldanamycin). In S. scabiei, the presence of suberin modified the fatty acid composition of the bacterial membrane, which translated into higher membrane fluidity. Moreover, suberin also induced thickening of the bacterial cell wall. The present data indicate that suberin hastens cellular differentiation and triggers the onset of secondary metabolism in the genus Streptomyces.

  17. Recombinant Plants Provide a New Approach to the Production of Bacterial Polysaccharide for Vaccines

    PubMed Central

    Smith, Claire M.; Fry, Stephen C.; Gough, Kevin C.; Patel, Alexandra J. F.; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S.; Andrew, Peter W.

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections. PMID:24498433

  18. Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility, and predation.

    PubMed

    Volz, Carsten; Kegler, Carsten; Müller, Rolf

    2012-11-21

    Motile predatory Myxobacteria are producers of multiple secondary metabolites and, on starvation, undergo concerted cellular differentiation to form multicellular fruiting bodies. These abilities demand myxobacterial genomes to encode sophisticated regulatory networks that are not satisfactorily understood. Here, we present two bacterial enhancer binding proteins (bEBPs) encoded in Myxococcus xanthus acting as direct regulators of secondary metabolites intriguingly exhibiting activating and inhibitory effects. Elucidation of a regulon for each bEBP enabled us to unravel their role in myxococcal development, predation, and motility. Interestingly, both bEBPs are able to interact by forming a hetero-oligomeric complex. Our findings represent an alternative mode of operation of bEBPs, which are currently thought to enhance promoter activity by acting as homo-oligomers. Furthermore, a direct link between secondary metabolite gene expression and predation, motility, and cellular development could be shown for the first time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Copper effects on bacterial activity of estuarine silty sediments

    NASA Astrophysics Data System (ADS)

    Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda

    2007-07-01

    Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and

  20. Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA).

    PubMed

    Davis, James P; Struchtemeyer, Christopher G; Elshahed, Mostafa S

    2012-11-01

    We monitored the bacterial communities in the gas-water separator and water storage tank of two newly drilled natural gas wells in the Barnett Shale in north central Texas, using a 16S rRNA gene pyrosequencing approach over a period of 6 months. Overall, the communities were composed mainly of moderately halophilic and halotolerant members of the phyla Firmicutes and Proteobacteria (classes Βeta-, Gamma-, and Epsilonproteobacteria) in both wells at all sampling times and locations. Many of the observed lineages were encountered in prior investigations of microbial communities from various fossil fluid formations and production facilities. In all of the samples, multiple H(2)S-producing lineages were encountered; belonging to the sulfate- and sulfur-reducing class Deltaproteobacteria, order Clostridiales, and phylum Synergistetes, as well as the thiosulfate-reducing order Halanaerobiales. The bacterial communities from the separator and tank samples bore little resemblance to the bacterial communities in the drilling mud and hydraulic-fracture waters that were used to drill these wells, suggesting the in situ development of the unique bacterial communities in such well components was in response to the prevalent geochemical conditions present. Conversely, comparison of the bacterial communities on temporal and spatial scales suggested the establishment of a core microbial community in each sampled location. The results provide the first overview of bacterial dynamics and colonization patterns in newly drilled, thermogenic natural gas wells and highlights patterns of spatial and temporal variability observed in bacterial communities in natural gas production facilities.

  1. Sequential Formation and Accumulation of Primary and Secondary Shunt Metabolic Products in Claviceps purpurea1

    PubMed Central

    Taber, W. A.

    1964-01-01

    The fungus Claviceps purpurea was grown on a rich and a limited nutrient medium such that alkaloid was produced after 8 days on the former medium and after 3 days on the latter medium. Cultures grown on both were assayed for the primary shunt metabolic products, polyols, trehalose, lipids, ribonucleic acid, and polyphosphate, and the secondary metabolic product, ergot alkaloid. Although differing considerably in composition, the two media nevertheless allowed formation of both primary and secondary shunt products. In both instances, however, the secondary product, ergot alkaloid, did not form until formation and accumulation of the primary products had ceased and the mycelial content of these products was actually decreasing. In both instances, alkaloid formation took place after the total dry weight of the mycelium had begun to decrease but while the dry weight of the residual, or structural portion of the mycelium, was either constant or increasing. The dilution of labeling in mannitol isolated from mycelia grown on rich medium containing 1,6-C14-labeled mannitol was 2.2. Thus, about half of the mycelial mannitol was actually mannitol which had been taken up directly from the medium. PMID:14199021

  2. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately uponmore » mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.« less

  3. In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites.

    PubMed

    Gonçalves, Sandra; Romano, Anabela

    2013-01-01

    Lavenders (Lavandula spp., Lamiaceae) are aromatic ornamental plants that are used widely in the food, perfume and pharmaceutical industries. The large-scale production of lavenders requires efficient in vitro propagation techniques to avoid the overexploitation of natural populations and to allow the application of biotechnology-based approaches for plant improvement and the production of valuable secondary metabolites. In this review we discuss micropropagation methods that have been developed in several lavender species, mainly based on meristem proliferation and organogenesis. Specific requirements during stages of micropropagation (establishment, shoot multiplication, root induction and acclimatization) and requisites for plant regeneration trough organogenesis, as an important step for the implementation of plant improvement programs, were revised. We also discuss different methods for the in vitro production of valuable secondary metabolites, focusing on the prospects for highly scalable cultures to meet the market demand for lavender-derived products. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Crystalline lens dislocation secondary to bacterial endogenous endophthalmitis.

    PubMed

    Sangave, Amit; Komati, Rahul; Weinmann, Allison; Samuel, Linoj; Desai, Uday

    2017-09-01

    To present an unusual case of endogenous endophthalmitis secondary to Group A streptococcus (GAS) that resulted in dislocation of the crystalline lens. An immunocompetent 51-year-old man presented to the emergency room (ER) with upper respiratory infection (URI) symptoms and painful right eye. He was diagnosed with URI and viral conjunctivitis and discharged on oral azithromycin and polytrim eyedrops. He returned to the ER 30 h later with sepsis and findings consistent with endophthalmitis, including light perception only vision. Ophthalmology was consulted at this time and an emergent vitreous tap and injection was performed. Both blood and vitreous cultures grew an atypical non-hemolytic variant of GAS ( Streptococcus pyogenes ). The primary source of infection was presumed to be secondary to pharyngitis or cutaneous dissemination. Final vision in the affected eye was no light perception, likely from a combination of anterior segment scarring, posterior segment damage, and hypotony. Interestingly, head computed tomography (CT) at the initial ER presentation showed normal lens position, but repeat CT at re-presentation revealed posterior dislocation of the lens. Endophthalmitis secondary to GAS has been sparsely reported in the literature, and this case highlights a unique clinical presentation. We suspect that this atypical non-hemolytic strain may have evaded detection on initial pharyngeal cultures. Additionally, we hypothesize that GAS-mediated protease release resulted in breakdown of the zonular fibers and subsequent lens dislocation. Ophthalmologists should be aware of GAS and its devastating intraocular manifestations.

  5. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees.

    PubMed

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2017-02-23

    The plant microbiome represents one of the key determinants of plant health and productivity by providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens, and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the bacterial microbiome present in different plant microenvironments and especially the relationship between below-ground and above-ground communities has remained elusive. In this work, we addressed hypotheses regarding microbiome niche differentiation and structural stability of the bacterial communities within different ecological plant niches. We sampled the rhizosphere soil, root, stem, and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) and applied 16S rRNA amplicon pyrosequencing to unravel the bacterial communities associated with the different plant habitats. We found that the structural variability of rhizosphere microbiomes in field-grown poplar trees (P. tremula × P. alba) is much lower than that of the endosphere microbiomes. Furthermore, our data not only confirm microbiome niche differentiation reports at the rhizosphere soil-root interface but also clearly show additional fine-tuning and adaptation of the endosphere microbiome in the stem and leaf compartment. Each plant compartment represents an unique ecological niche for the bacterial communities. Finally, we identified the core bacterial microbiome associated with the different ecological niches of Populus. Understanding the complex host-microbe interactions of Populus could provide the basis for the exploitation of the eukaryote-prokaryote associations in phytoremediation applications, sustainable crop production (bio-energy efficiency), and/or the production of secondary metabolites.

  6. Contribution of heterotrophic bacterial production to the carbon budget of the river Seine (France).

    PubMed

    Servais, P; Garnier, J

    1993-01-01

    Bacterial activity was measured in the river Seine by two methods, (3)H-thymidine incorporation into DNA and (3)H-leucine incorporation into proteins. Both incorporation rates are characterized by low values upstream of Paris, a large increase just downstream of the outfall of the Achères treatment plant effluents, and then decreasing values further downstream. The covariation of both activities is demonstrated by the constancy of the molar ratio (leucine to thymidine incorporation rate) in the range of 6 to 8 for all the samples, except in the perturbed area where it is higher (15 to 35). These high values of molar ratio are linked to the introduction into the river of large sized bacteria ([Symbol: see text]1 µm) with higher incorporation rates per cell or biomass unit than the small autochthonous bacteria (< 1 µm). Growth rates of large bacteria were on average 3.7 times higher than those of small bacteria. Bacterial production was calculated with experimentally determined conversion factors (0.5 × 10(18) cells per mole of thymidine incorporated and 900 gC per mole of leucine incorporated) and by taking into account the activity of both size classes of bacteria measured through fractionation experiments (post-incubation filtration). Production estimated in the perturbed area downstream of Ach6res was very high, up to 60 µgC liter(-1)h(-1) in the summer. Carbon consumption by bacteria in the area perturbed by the Ach6res effluents was calculated assuming a growth yield of 0.2 and compared to the load of biodegradable organic matter discharged by the treatment plant. In summer, an additional supply of organic matter is required to account for the intense bacterial activity, suggesting the importance of phytoplankton production in the carbon budget.

  7. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    PubMed

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  8. Bacterial volatiles attract gravid secondary screwworms (Diptera: Calliphoridae)

    USDA-ARS?s Scientific Manuscript database

    Bovine blood inoculated and incubated with bacteria was tested to determine if adults of secondary screwworm, Cochliomyia macellaria (F.), would respond to the volatiles produced and oviposit on the incubated substrates. Five species of gram-negative coliform (Enterobacteriaceae) bacteria (Klebsiell...

  9. Messing with Bacterial Quorum Sensing

    PubMed Central

    González, Juan E.; Keshavan, Neela D.

    2006-01-01

    Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria. PMID:17158701

  10. Lincomycin at Subinhibitory Concentrations Potentiates Secondary Metabolite Production by Streptomyces spp.

    PubMed

    Imai, Yu; Sato, Seizo; Tanaka, Yukinori; Ochi, Kozo; Hosaka, Takeshi

    2015-06-01

    Antibiotics have either bactericidal or bacteriostatic activity. However, they also induce considerable gene expression in bacteria when used at subinhibitory concentrations (below the MIC). We found that lincomycin, which inhibits protein synthesis by binding to the ribosomes of Gram-positive bacteria, was effective for inducing the expression of genes involved in secondary metabolism in Streptomyces strains when added to medium at subinhibitory concentrations. In Streptomyces coelicolor A3(2), lincomycin at 1/10 of its MIC markedly increased the expression of the pathway-specific regulatory gene actII-ORF4 in the blue-pigmented antibiotic actinorhodin (ACT) biosynthetic gene cluster, which resulted in ACT overproduction. Intriguingly, S. lividans 1326 grown in the presence of lincomycin at a subinhibitory concentration (1/12 or 1/3 of its MIC) produced abundant antibacterial compounds that were not detected in cells grown in lincomycin-free medium. Bioassay and mass spectrometry analysis revealed that some antibacterial compounds were novel congeners of calcium-dependent antibiotics. Our results indicate that lincomycin at subinhibitory concentrations potentiates the production of secondary metabolites in Streptomyces strains and suggest that activating these strains by utilizing the dose-response effects of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. In addition to these findings, we also report that lincomycin used at concentrations for markedly increased ACT production resulted in alteration of the cytoplasmic protein (FoF1 ATP synthase α and β subunits, etc.) profile and increased intracellular ATP levels. A fundamental mechanism for these unique phenomena is also discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml -1 to 38.80 ± 1.35 μg ml -1 . We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  12. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure.

    PubMed

    Danielsson, Rebecca; Dicksved, Johan; Sun, Li; Gonda, Horacio; Müller, Bettina; Schnürer, Anna; Bertilsson, Jan

    2017-01-01

    Methane (CH 4 ) is produced as an end product from feed fermentation in the rumen. Yield of CH 4 varies between individuals despite identical feeding conditions. To get a better understanding of factors behind the individual variation, 73 dairy cows given the same feed but differing in CH 4 emissions were investigated with focus on fiber digestion, fermentation end products and bacterial and archaeal composition. In total 21 cows (12 Holstein, 9 Swedish Red) identified as persistent low, medium or high CH 4 emitters over a 3 month period were furthermore chosen for analysis of microbial community structure in rumen fluid. This was assessed by sequencing the V4 region of 16S rRNA gene and by quantitative qPCR of targeted Methanobrevibacter groups. The results showed a positive correlation between low CH 4 emitters and higher abundance of Methanobrevibacter ruminantium clade. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) level of bacteria showed two distinct clusters ( P < 0.01) that were related to CH 4 production. One cluster was associated with low CH 4 production (referred to as cluster L) whereas the other cluster was associated with high CH 4 production (cluster H) and the medium emitters occurred in both clusters. The differences between clusters were primarily linked to differential abundances of certain OTUs belonging to Prevotella . Moreover, several OTUs belonging to the family Succinivibrionaceae were dominant in samples belonging to cluster L. Fermentation pattern of volatile fatty acids showed that proportion of propionate was higher in cluster L, while proportion of butyrate was higher in cluster H. No difference was found in milk production or organic matter digestibility between cows. Cows in cluster L had lower CH 4 /kg energy corrected milk (ECM) compared to cows in cluster H, 8.3 compared to 9.7 g CH 4 /kg ECM, showing that low CH 4 cows utilized the feed more efficient for milk production which might indicate a more

  13. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure

    PubMed Central

    Danielsson, Rebecca; Dicksved, Johan; Sun, Li; Gonda, Horacio; Müller, Bettina; Schnürer, Anna; Bertilsson, Jan

    2017-01-01

    Methane (CH4) is produced as an end product from feed fermentation in the rumen. Yield of CH4 varies between individuals despite identical feeding conditions. To get a better understanding of factors behind the individual variation, 73 dairy cows given the same feed but differing in CH4 emissions were investigated with focus on fiber digestion, fermentation end products and bacterial and archaeal composition. In total 21 cows (12 Holstein, 9 Swedish Red) identified as persistent low, medium or high CH4 emitters over a 3 month period were furthermore chosen for analysis of microbial community structure in rumen fluid. This was assessed by sequencing the V4 region of 16S rRNA gene and by quantitative qPCR of targeted Methanobrevibacter groups. The results showed a positive correlation between low CH4 emitters and higher abundance of Methanobrevibacter ruminantium clade. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) level of bacteria showed two distinct clusters (P < 0.01) that were related to CH4 production. One cluster was associated with low CH4 production (referred to as cluster L) whereas the other cluster was associated with high CH4 production (cluster H) and the medium emitters occurred in both clusters. The differences between clusters were primarily linked to differential abundances of certain OTUs belonging to Prevotella. Moreover, several OTUs belonging to the family Succinivibrionaceae were dominant in samples belonging to cluster L. Fermentation pattern of volatile fatty acids showed that proportion of propionate was higher in cluster L, while proportion of butyrate was higher in cluster H. No difference was found in milk production or organic matter digestibility between cows. Cows in cluster L had lower CH4/kg energy corrected milk (ECM) compared to cows in cluster H, 8.3 compared to 9.7 g CH4/kg ECM, showing that low CH4 cows utilized the feed more efficient for milk production which might indicate a more efficient microbial

  14. Effect of partially replacing a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows.

    PubMed

    Castillo-Lopez, E; Moats, J; Aluthge, N D; Ramirez Ramirez, H A; Christensen, D A; Mutsvangwa, T; Penner, G B; Fernando, S C

    2018-01-01

    The effects of partial replacement of a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows were evaluated. Treatments fed were CONT, a normal diet that included barley silage, alfalfa hay and a barley-based concentrate that contained no flaxseed or faba beans; FLAX, inclusion of a nonextruded flaxseed-based product containing 55·0% flaxseed, 37·8% field peas and 6·9% alfalfa; EXT, similar to FLAX, but the product was extruded and EXTT, similar to FLAX, but product was extruded and field peas were replaced by high-tannin faba beans. The rumen bacterial population was evaluated by utilizing 16S rRNA gene sequencing. Most abundant phyla, families and genera were unaffected. However, some taxa were affected; for example, unsaturated fatty acid content was negatively correlated with Clostridiaceae, and tannin content was negatively correlated with BS11 and Paraprevotellaceae. Predominant rumen bacterial taxa were not affected, but the abundance of some taxa found in lower proportions shifted, possibly due to sensitivity to unsaturated fatty acids or tannins. Flaxseed-based products were effective for partially replacing barley-based concentrate in rations of lactating dairy cows. No negative effects of these products were observed on the abundance of predominant rumen bacterial taxa, with only minor shifts in less abundant bacteria. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  15. Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky Mountain streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2003-01-01

    Secondary production estimates from several Rocky Mountain streams were used to test hypotheses about the effects of chronic metal contamination on insect populations and ecosystem processes. Quantitative samples of chemistry, habitat, and benthic insects were collected monthly during the ice-free period (May-November) from five 2nd- to 3rd-order streams that varied primarily in Zn contamination. Secondary production was estimated for the 19 dominant taxa using increment-summation, size-frequency, and P/B methods. Uncertainty was estimated by bootstrapping estimates of mean abundance, biomass, and cohort production intervals. Secondary production of metal-sensitive Heptageniidae (Rhithrogena robusta, Cinygmula spp., and Epeorus longimanus) was lower in lightly to moderately contaminated streams than in reference streams. Experiments were done to determine whether herbivore growth was influenced by food quality in contaminated streams. Growth estimates from field and microcosm experiments revealed that low mayfly production in contaminated streams was caused mostly by reduced population abundances. Production of predatory stoneflies was also lower in contaminated streams than reference streams. Estimates of the trophic basis of production revealed that, although the relative contribution to community production from various food sources was similar among streams, total production attributable to algae and animal prey declined in contaminated streams. Much of the reduction in herbivory in contaminated streams was the result of lower production of heptageniids, especially R. robusta. Assemblage and taxon-specific estimates of secondary production were sensitive to variation in metal contamination and indicated that relatively low metal concentrations may have ecosystem-wide consequences for energy flow.

  16. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  17. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media.

    PubMed

    Jozala, Angela Faustino; Pértile, Renata Aparecida Nedel; dos Santos, Carolina Alves; de Carvalho Santos-Ebinuma, Valéria; Seckler, Marcelo Martins; Gama, Francisco Miguel; Pessoa, Adalberto

    2015-02-01

    Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield-60 mg/mL-was achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost.

  18. A Guide to Flammable Products and Ignition Sources for Secondary Schools.

    ERIC Educational Resources Information Center

    Consumer Product Safety Commission, Washington, DC.

    This guide is intended as a resource manual and activity source book for secondary school teachers, librarians, administrators, curriculum planners, and teacher educators for teaching proper methods for selecting, using, maintaining, and disposing of flammable products and ignition sources. Particular emphasis is placed on methods for including…

  19. The Effect of Various Oral Hygiene Products on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Viswanath, S.; Aggrawal, A.; Vazirani, S.

    2017-12-01

    In this experiment, we tested the antimicrobial effectiveness of six different oral hygiene products. We used three natural cleansing products (coconut oil, sea salt, and baking soda), as well as three synthetic products, which were the Colgate toothpaste varieties of sensitivity, cavity protection, and whitening. We mixed water with each of the products to create a paste that could be uniformly applied to the surface of a disc. We then dipped the discs into the solutions and placed them in petri dishes that were pre-treated with bacterial cells. After 72 hours, we measured the area around the disc that was bacteria-free, which is known as the zone of inhibition. This experiment was repeated twice, with one petri dish per product for each trial, and two different types of agar. We were surprised to discover that almost all the products had no zone of inhibition, with bacteria growing throughout the petri dish, and to the disc. The only cleaning product that showed a significant antibacterial result was the Colgate sensitivity toothpaste. During the two trials, the sensitivity toothpaste had a zone of inhibition of 14.8 cm2 and 8.7 cm2, respectively. Coconut oil was the only other product to have a measurable zone of inhibition with an area of 0.3 cm2. We concluded that only the sensitivity toothpaste was effective in killing bacteria, perhaps due to its different hygienic goal of protecting the tooth's nerves. This toothpaste contains ingredients called potassium nitrate and strontium chloride, which blocks tubules in the dentin, the hard, bony tissue beneath the enamel. Sensitivity toothpaste strengthens the tooth, by blocking decaying substances such as oral bacteria (Knights, 2014).

  20. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  1. Effect of growth conditions on extracellular products (ECPs) of Aeromonas hydrophila.

    PubMed

    Di Pietro, A; Picerno, I; Scoglio, M E

    2004-01-01

    Owing to the significant role in gastrointestinal illness of A. hydrophila, frequently detected in various raw and ready-to eat foods, its pathogenetic mechanisms are particularly studied. In this paper we report the results obtained studying in vitro the effect of O2 tension and inoculum age on the extra cellular products (ECPs) of seven strains food-borne isolated and cultured at 37 degrees. The considered factors influenced markedly bacterial growth as well as ECPs production and the more notable differences were detected among 15 hours old strains let grown slowly shaking (15SH), that showed the highest bacterial yield, and 24 h old strains cultured statically (24ST), whose haemolysin and cytotoxin production was favoured. Wilcoxon test shows as, in these latter conditions, the strains needed short time to adapt the haemolysin and cytotoxin production. The oxygen tension reduction, extending the replication time, induces the bacterial metabolism toward secondary products, as verified by Spearman test applied to ECPs indexes. The increased production per cell of virulence-associated factors could be responsible of gastrointestinal disorders caused by food-borne A. hydrophila strains, even without a massive gut colonization, especially when immunocompromised individuals ingest contaminated foods.

  2. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia.

    PubMed

    Berg, Johanna; Zscheppang, Katja; Fatykhova, Diana; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Eggeling, Stephan; Schimek, Maria; Gruber, Achim D; Suttorp, Norbert; Hippenstiel, Stefan; Hocke, Andreas C

    2017-07-01

    The severity and lethality of influenza A virus (IAV) infections is frequently aggravated by secondary bacterial pneumonia. However, the mechanisms in human lung tissue that provoke this increase in fatality are unknown and therapeutic immune modulatory options are lacking.We established a human lung ex vivo co-infection model to investigate innate immune related mechanisms contributing to the susceptibility of secondary pneumococcal pneumonia.We revealed that type I and III interferon (IFN) inhibits Streptococcus pneumoniae -induced interleukin (IL)-1β release. The lack of IL-1β resulted in the repression of bacterially induced granulocyte-macrophage colony-stimulating factor (GM-CSF) liberation. Specific inhibition of IFN receptor I and III-associated tyrosine kinase 2 (Tyk2) completely restored the S. pneumoniae -induced IL-1β-GM-CSF axis, leading to a reduction of bacterial growth. A preceding IAV infection of the human alveolus leads to a type I and III IFN-dependent blockade of the early cytokines IL-1β and GM-CSF, which are key for orchestrating an adequate innate immune response against bacteria. Their virally induced suppression may result in impaired bacterial clearance and alveolar repair.Pharmacological inhibition of Tyk2 might be a new treatment option to sustain beneficial endogenous GM-CSF levels in IAV-associated secondary bacterial pneumonia. Copyright ©ERS 2017.

  3. Treatment of acute bacterial rhinosinusitis caused by antimicrobial-resistant Streptococcus pneumoniae.

    PubMed

    Anon, Jack B

    2004-08-02

    Acute bacterial rhinosinusitis (ABRS) is a secondary bacterial infection of the nose and paranasal sinuses, usually preceded by a viral upper respiratory infection or allergy, with symptoms that have not improved after 10 days or that have worsened after 5 to 7 days. Streptococcus pneumoniae and Haemophilus influenzae are the most common causes of ABRS in adults. Increasing rates of antimicrobial resistance among S. pneumoniae and beta-lactamase production among H. influenzae are formidable challenges to the successful treatment of infections caused by these organisms. To this end, various formulations of amoxicillin-clavulanate have been developed, the most recent of which is pharmacokinetically enhanced and provides a total daily dose of 4,000 mg of amoxicillin and 250 mg of clavulanate. This formulation has been shown to be safe and effective in the treatment of infections caused by penicillin-resistant S. pneumoniae (minimum inhibitory concentration 2 microg/mL); the clavulanate component provides adequate coverage of beta-lactamase-producing pathogens.

  4. Species specificity of symbiosis and secondary metabolism in ascidians.

    PubMed

    Tianero, Ma Diarey B; Kwan, Jason C; Wyche, Thomas P; Presson, Angela P; Koch, Michael; Barrows, Louis R; Bugni, Tim S; Schmidt, Eric W

    2015-03-01

    Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these 'chemical symbioses'. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R=-0.037, P-value=0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread. Location-specific metabolites consist largely of lipids, which may reflect differences in water temperature. By contrast, species-specific bacteria are mostly abundant sequenced components of the microbiomes and include secondary metabolite producers as major components. Species-specific chemicals are dominated by secondary metabolites. Together with previous analyses that focused on single ascidian species or symbiont type, these results reveal fundamental properties of secondary metabolic symbiosis. Different ascidian species have established associations with many different bacterial symbionts, including those known to produce toxic chemicals. This implies a strong selection for this property and the independent origin of secondary metabolite-based associations in different ascidian species. The analysis here streamlines the connection of secondary metabolite to producing bacterium, enabling further biological and

  5. Patulin and secondary metabolite production by marine-derived Penicillium strains.

    PubMed

    Vansteelandt, Marieke; Kerzaon, Isabelle; Blanchet, Elodie; Fossi Tankoua, Olivia; Robiou Du Pont, Thibaut; Joubert, Yolaine; Monteau, Fabrice; Le Bizec, Bruno; Frisvad, Jens C; Pouchus, Yves François; Grovel, Olivier

    2012-09-01

    Genus Penicillium represents an important fungal group regarding to its mycotoxin production. Secondary metabolomes of eight marine-derived strains belonging to subgenera Furcatum and Penicillium were investigated using dereplication by liquid chromatography (LC)-Diode Array Detector (DAD)-mass spectrometry (MS)/MS. Each strain was grown on six different culture media to enhance the number of observable metabolites. Thirty-two secondary metabolites were detected in crude extracts with twenty first observations for studied species. Patulin, a major mycotoxin, was classically detected in extracts of Penicillium expansum, and was also isolated from Penicillium antarcticum cultures, whose secondary metabolome is still to be done. These detections constituted the first descriptions of patulin in marine strains of Penicillium, highlighting the risk for shellfish and their consumers due to the presence of these fungi in shellfish farming areas. Patulin induced acute neurotoxicity on Diptera larvae, indicating the interest of this bioassay as an additional tool for detection of this major mycotoxin in crude extracts. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion.

    PubMed

    Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-09-01

    Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management.

  7. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

    NASA Astrophysics Data System (ADS)

    Sempels, Wouter; de Dier, Raf; Mizuno, Hideaki; Hofkens, Johan; Vermant, Jan

    2013-04-01

    The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

  8. Turbulence production due to secondary vortex cutting in a turbine rotor

    NASA Astrophysics Data System (ADS)

    Binder, A.

    1985-10-01

    Measurements of the unsteady flow field near and within a turbine rotor were made by means of a Laser-2-Focus velocimeter. The testing was performed in a single-stage cold-air turbine at part-load and near-design conditions. Random unsteadiness and flow angle results indicate that the secondary vortices of the stator break down after being cut and deformed by the rotor blades. A quantitative comparison shows that some of the energy contained in these secondary vortices is thereby converted into turbulence energy in the front part of the rotor. An attempt is made to explain this turbulence energy production as caused by the vortex breakdown.

  9. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria.

    PubMed

    Teasdale, Margaret E; Liu, Jiayuan; Wallace, Joselynn; Akhlaghi, Fatemeh; Rowley, David C

    2009-02-01

    Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 microg/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding.

  10. Archaeal and Bacterial Community Structure in an Anaerobic Digestion Reactor (Lagoon Type) Used for Biogas Production at a Pig Farm.

    PubMed

    Pampillón-González, Liliana; Ortiz-Cornejo, Nadia L; Luna-Guido, Marco; Dendooven, Luc; Navarro-Noya, Yendi E

    2017-01-01

    Biogas production from animal waste is an economically viable way to reduce environmental pollution and produce valuable products, i.e., methane and a nutrient-rich organic waste product. An anaerobic digestion reactor for biogas production from pig waste was sampled at the entrance, middle (digestion chamber), and exit of a digester, while the bacterial and archaeal community structure was studied by 16S rRNA gene metagenomics. The number of bacterial operational taxonomic units (OTU)-97% was 3-7 times larger than that of archaeal ones. Bacteria and Archaea found in feces of animals (e.g., Clostridiaceae, Lachnospiraceae, Ruminococcaceae, Methanosarcina, Methanolobus, Methanosaeta, and Methanospirillum) dominated the entrance of the digester. The digestion chamber was dominated by anaerobic sugar-fermenting OP9 bacteria and the syntrophic bacteria Candidatus Cloacamonas (Waste Water of Evry 1; WWE1). The methanogens dominant in the digestion chamber were the acetoclastic Methanosaeta and the hydrogenothrophic Methanoculleus and Methanospirillum. Similar bacterial and archaeal groups that dominated in the middle of the digestion chamber were found in the waste that left the digester. Predicted functions associated with degradation of xenobiotic compounds were significantly different between the sampling locations. The microbial community found in an anaerobic digestion reactor loaded with pig manure contained microorganisms with biochemical capacities related to the 4 phases of methane production. © 2017 S. Karger AG, Basel.

  11. The Microbial Food Web in the Recently Flooded Sep Reservoir: Diel Fluctuations in Bacterial Biomass and Metabolic Activity in Relation to Phytoplankton and Flagellate Grazers.

    PubMed

    Jugnia, L.-B.; Tadonléké, R.D.; Sime-Ngando, T.; Devaux, J.

    2000-12-01

    The spatial distribution of the bacterial biomass and production and of potential heterotrophic activity (PHA) were measured every 4 h between 23 July (10:00 h) and 25 July (10:00 h) 1997 in a recently flooded oligo-mesotrophic reservoir (the Sep Reservoir, Puy-de-Dôme, France), in relation to temperature, the phytoplankton biomass and production, and the abundance of heterotrophic flagellates. The temperature varied slightly with time during the study, but the well-established thermal stratification agreed well with vertical distribution of the biological variables that were measured. Only the bacterial production and the PHA showed significant diel changes (t-test, p <0.05), with maxima at 18:00 h and minima at 02:00 h. A significant positive relation was found between bacterial abundance and that of heterotrophic flagellates, which, rather than being an association related to the thermal stratification of the water column, was considered to reflect a trophic relation between these two communities. A carbon balance analysis suggested that at least 30% of the C from primary production measured during the sampling period was used by bacteria, and that 42% of this secondary production, or 6% of the primary production, would be used for the development of the heterotrophic flagellates present. We conclude that the bacterioplankton forms, at least occasionally, an important source of carbon for higher trophic levels, and reject the hypothesis that bacterial production in the Sep Reservoir depends exclusively on organic matter of allochthonous origin.

  12. Production of peptone from boso fish (Oxyeleotris marmorata) for bacterial growth medium

    NASA Astrophysics Data System (ADS)

    Priatni, S.; Kosasih, W.; Budiwati, T. A.; Ratnaningrum, D.

    2017-03-01

    Underutilized Oxyeleotris marmorata fish is abundant and widespread in Indonesia. The study aimed to use O. marmorata fish for peptone production using papain from dried latex of papaya fruit. The peptone was applied as nitrogen sources for bacterial growth. The resulted peptone was optimized at 50-65°C for 5-8 hr, using 0.1% of papain at pH 6.0. Characterization of peptone was based on the soluble protein content, N-amino content, % degree hydrolysis (DH), SDS PAGE profile and growth of bacteria Escherichia coli and Staphylococcus aureus. The results indicated that the optimum condition for hydrolysis was at 50°C for 7 hr (p < 0.05). Fish peptone soluble protein content was of 8.6 mg/mL, α-amino was 0.59%, and AN/TN 5.47%. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS PAGE) profile of peptone showed a major band with molecular weight between 17-28 kDa. Fish peptone effectiveness for E. coli and S. aureus growth was similar with commercial bacterial peptone.

  13. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.

    PubMed

    Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P

    2009-07-31

    In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be

  14. Culture-independent bacterial community analysis of the salty-fermented fish paste products of Thailand and Laos.

    PubMed

    Marui, Junichiro; Boulom, Sayvisene; Panthavee, Wanchai; Momma, Mari; Kusumoto, Ken-Ichi; Nakahara, Kazuhiko; Saito, Masayoshi

    2015-01-01

    A bacterial community analysis, using a culture-independent method (polymerase chain reaction-denaturing gradient gel electrophoresis), detected 17 species of bacteria including species of the genera Tetragenococcus, Lactobacillus, Pediococcus, Weissella Halanaerobium, Clostridium, and Sphingomonas in a traditional salty-fermented fish paste known as pla-ra or pa-daek in Thailand and Laos, which is used as a storage-stable multi-purpose seasoning. The representative genus of lactic acid bacteria seemed to vary in the 10 products collected from Thailand and Laos. Tetragenococci were common in products from central Thailand and Vientiane in Laos which had salinities of not less than 11% and pH values ranging from 5.6 to 6.1. However, lactobacilli were common in products from northern Thailand which had the lowest salinities (8.3-8.6%) and pH values (4.5-4.8) of all the samples examined. Two Lactobacillus and one Tetragenococcus species were detected in one product from northeastern Thailand containing 10% salt. These results suggest that salinity in pla-ra/pa-daek is an important determinant of the representative genus of lactic acid bacteria such as, Tetragenococcus or Lactobacillus. Additionally, differences in the acidity between these two groups seemed to be related to the production of d-/l-lactic acid in the lactic acid bacteria in each product. This is the first study to report a correlation between bacterial community structure and taste components in pla-ra/pa-daek products from various regions. This scientific work on a traditional fermented food will be useful in helping local producers meet differing consumer preferences in various regions.

  15. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values.

    PubMed

    Cheng, Weixiao; Chen, Hong; Yan, ShuHai; Su, Jianqiang

    2014-09-01

    Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.

  16. Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase▿†

    PubMed Central

    Nawabi, Parwez; Bauer, Stefan; Kyrpides, Nikos; Lykidis, Athanasios

    2011-01-01

    The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis. PMID:21926202

  17. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    NASA Astrophysics Data System (ADS)

    Singer, Brett C.; Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Lunden, Melissa M.; Weschler, Charles J.; Nazaroff, William W.

    This study investigated the formation of secondary pollutants resulting from household product use in the presence of ozone. Experiments were conducted in a 50-m 3 chamber simulating a residential room. The chamber was operated at conditions relevant to US residences in polluted areas during warm-weather seasons: an air exchange rate of 1.0 h -1 and an inlet ozone concentration of approximately 120 ppb, when included. Three products were used in separate experiments. An orange oil-based degreaser and a pine oil-based general-purpose cleaner were used for surface cleaning applications. A plug-in scented-oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs was of similar magnitude to homogeneous reaction with continuously emitted constituents. Formaldehyde generation resulted from product use with ozone present, increasing indoor levels by the order of 10 ppb. Cleaning product use in the presence of ozone generated substantial fine particle concentrations (more than 100 μg m -3) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods.

  18. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts.

    PubMed

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Martinez, Ignacio Juarez; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadam; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-06-05

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.

  19. Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism

    PubMed Central

    Khalil, Zeinab G.; Kalansuriya, Pabasara; Capon, Robert J.

    2014-01-01

    We report on a preliminary investigation of the use the Gram-negative bacterial cell wall constituent lipopolysaccharide (LPS) as a natural chemical cue to stimulate and alter the expression of fungal secondary metabolism. Integrated high-throughput micro-cultivation and micro-analysis methods determined that 6 of 40 (15%) of fungi tested responded to an optimal exposure to LPS (0.6 ng/mL) by activating, enhancing or accelerating secondary metabolite production. To explore the possible mechanisms behind this effect, we employed light and fluorescent microscopy in conjunction with a nitric oxide (NO)-sensitive fluorescent dye and an NO scavenger to provide evidence that LPS stimulation of fungal secondary metabolism coincided with LPS activation of NO. Several case studies demonstrated that LPS stimulation can be scaled from single microplate well (1.5 mL) to preparative (>400 mL) scale cultures. For example, LPS treatment of Penicillium sp. (ACM-4616) enhanced pseurotin A and activated pseurotin A1 and pseurotin A2 biosynthesis, whereas LPS treatment of Aspergillus sp. (CMB-M81F) substantially accelerated and enhanced the biosynthesis of shornephine A and a series of biosynthetically related ardeemins and activated production of neoasterriquinone. As an indication of broader potential, we provide evidence that cultures of Penicillium sp. (CMB-TF0411), Aspergillus niger (ACM-4993F), Rhizopus oryzae (ACM-165F) and Thanatephorus cucumeris (ACM-194F) were responsive to LPS stimulation, the latter two examples being particular noteworthy as neither are known to produce secondary metabolites. Our results encourage the view that LPS stimulation can be used as a valuable tool to expand the molecular discovery potential of fungal strains that either have been exhaustively studied by or are unresponsive to traditional culture methodology. PMID:25379339

  20. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    PubMed Central

    Frisvad, Jens C.; Kocev, Dragi; Džeroski, Sašo; Gunde-Cimerman, Nina

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone. PMID:28036382

  1. Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production.

    PubMed

    Shasmita; Rai, Manoj K; Naik, Soumendra K

    2017-12-26

    Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and

  2. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism.

    PubMed

    Silva, Manuel T

    2010-11-01

    Triggering of phagocyte apoptosis is a major virulence mechanism used by some successful bacterial pathogens. A central issue in the apoptotic death context is that fully developed apoptosis results in necrotic cell autolysis (secondary necrosis) with release of harmful cell components. In multicellular animals, this occurs when apoptosing cells are not removed by scavengers, mainly macrophages. Secondary necrotic lysis of neutrophils and macrophages may occur in infection when extensive phagocyte apoptosis is induced by bacterial cytotoxins and removal of apoptosing phagocytes is defective because the apoptotic process exceeds the available scavenging capacity or targets macrophages directly. Induction of phagocyte secondary necrosis is an important pathogenic mechanism, as it combines the pathogen evasion from phagocyte antimicrobial activities and the release of highly cytotoxic molecules, particularly of neutrophil origin, such as neutrophil elastase. This pathogenicity mechanism therefore promotes the unrestricted multiplication of the pathogen and contributes directly to the pathology of several necrotizing infections, where extensive apoptosis and necrosis of macrophages and neutrophils are present. Here, examples of necrotizing infectious diseases, where phagocyte secondary necrosis is implicated, are reviewed.

  3. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    PubMed

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  4. Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process

    PubMed Central

    Lopez-Echartea, Eglantina; Macek, Tomas; Demnerova, Katerina; Uhlik, Ondrej

    2016-01-01

    Pentachlorophenol (PCP) is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants’ degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants. PMID:27869691

  5. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3

    PubMed Central

    Yasmin, Sumera; Hafeez, Fauzia Y.; Mirza, Muhammad S.; Rasul, Maria; Arshad, Hafiz M. I.; Zubair, Muhammad; Iqbal, Mazhar

    2017-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is widely prevalent and causes Bacterial Leaf Blight (BLB) in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693). This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin), rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs) as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM) used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The results provide

  6. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    PubMed Central

    Basiliko, Nathan; Henry, Kevin; Gupta, Varun; Moore, Tim R.; Driscoll, Brian T.; Dunfield, Peter F.

    2013-01-01

    Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  7. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  8. Light Conditions Affect the Measurement of Oceanic Bacterial Production via Leucine Uptake

    PubMed Central

    Morán, Xosé Anxelu G.; Massana, Ramon; Gasol, Josep M.

    2001-01-01

    The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surfacemost samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 μmol of photons m−2 s−1 evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles. PMID:11525969

  9. Culture-independent bacterial community analysis of the salty-fermented fish paste products of Thailand and Laos

    PubMed Central

    MARUI, Junichiro; BOULOM, Sayvisene; PANTHAVEE, Wanchai; MOMMA, Mari; KUSUMOTO, Ken-Ichi; NAKAHARA, Kazuhiko; SAITO, Masayoshi

    2015-01-01

    A bacterial community analysis, using a culture-independent method (polymerase chain reaction-denaturing gradient gel electrophoresis), detected 17 species of bacteria including species of the genera Tetragenococcus, Lactobacillus, Pediococcus, Weissella Halanaerobium, Clostridium, and Sphingomonas in a traditional salty-fermented fish paste known as pla-ra or pa-daek in Thailand and Laos, which is used as a storage-stable multi-purpose seasoning. The representative genus of lactic acid bacteria seemed to vary in the 10 products collected from Thailand and Laos. Tetragenococci were common in products from central Thailand and Vientiane in Laos which had salinities of not less than 11% and pH values ranging from 5.6 to 6.1. However, lactobacilli were common in products from northern Thailand which had the lowest salinities (8.3–8.6%) and pH values (4.5–4.8) of all the samples examined. Two Lactobacillus and one Tetragenococcus species were detected in one product from northeastern Thailand containing 10% salt. These results suggest that salinity in pla-ra/pa-daek is an important determinant of the representative genus of lactic acid bacteria such as, Tetragenococcus or Lactobacillus. Additionally, differences in the acidity between these two groups seemed to be related to the production of d-/l-lactic acid in the lactic acid bacteria in each product. This is the first study to report a correlation between bacterial community structure and taste components in pla-ra/pa-daek products from various regions. This scientific work on a traditional fermented food will be useful in helping local producers meet differing consumer preferences in various regions. PMID:25918672

  10. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  11. Isotope Effects Associated with N2O Production By Fungal and Bacterial Nitric Oxide Reductases: Implications for Tracing Microbial Production Pathways

    NASA Astrophysics Data System (ADS)

    Ostrom, N. E.; Yang, H.; Gandhi, H.; Hegg, E. L.

    2014-12-01

    Site preference (SP), the difference in δ15N between the central (α) and outer (β) N atoms in N2O, has emerged as a conservative tracer of microbial N2O production. The key advantages of SP relative to bulk isotopes are (1) that it is independent of the isotope composition of the substrates of nitrification and denitrification and (2) has not been shown to exhibit fractionation during production. In pure microbial culture distinct SP values for N2O production from bacterial denitrification, including nitrifier-denitrification (-10 to 0 ‰), relative to hydroxylamine oxidation and fungal denitrification (33-37 ‰) provide a promising basis to resolve production pathways. In this study, we determined the δ15N, δ18O, δ15Nα, and δ15Nβ of N2O generated by purified fungal (P450nor) and bacterial nitric oxide reductases. The isotope values were used to calculate SP values, enrichment factors (e), and kinetic isotope effects (KIEs). Both O and Nα displayed normal isotope effects during enzymatic NO reduction by the P450nor with e values of -25.7‰ (KIE = 1.0264) and -12.6‰ (KIE = 1.0127), respectively. However, bulk nitrogen (average δ15N of Nα and Nβ) and Nβ exhibited inverse isotope effects with e values of 14.0‰ (KIE = 0.9862) and 36.1‰ (KIE = 0.9651), respectively. The observed inverse isotope effect in δ15Nβ is consistent with reversible binding of the first NO in the P450nor reaction mechanism. Experiments with bacterial nitric oxide reductase are ongoing, however, preliminary data indicates a inverse isotope effect in the α and β positions and a normal isotope effect in δ18O. In contrast to the constant SP observed during N2O production observed in microbial cultures, the SP measured for purified P450nor was not constant, increasing from ~15‰ to ~29‰ during the course of the reaction. Our results clearly indicate that fractionation of SP during N2O production by P450nor is not zero, and that SP values higher and lower than the

  12. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    PubMed

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  13. Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil.

    PubMed

    Bissoli, Lorena B; Bernardino, Angelo F

    2018-01-01

    Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil.

  14. Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil

    PubMed Central

    Bissoli, Lorena B.

    2018-01-01

    Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil. PMID:29507833

  15. Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements

    PubMed Central

    Pérez, María Teresa; Hörtnagl, Paul; Sommaruga, Ruben

    2010-01-01

    We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria-positive cells, whereas only 15–43% of Bacteria-positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by < 10% of Betaproteobacteria and by < 1% of the R-BT subgroup that dominated this bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells. PMID:19725866

  16. The Cell Wall Integrity Signaling Pathway and Its Involvement in Secondary Metabolite Production.

    PubMed

    Valiante, Vito

    2017-12-06

    The fungal cell wall is the external and first layer that fungi use to interact with the environment. Every stress signal, before being translated into an appropriate stress response, needs to overtake this layer. Many signaling pathways are involved in translating stress signals, but the cell wall integrity (CWI) signaling pathway is the one responsible for the maintenance and biosynthesis of the fungal cell wall. In fungi, the CWI signal is composed of a mitogen-activated protein kinase (MAPK) module. After the start of the phosphorylation cascade, the CWI signal induces the expression of cell-wall-related genes. However, the function of the CWI signal is not merely the activation of cell wall biosynthesis, but also the regulation of expression and production of specific molecules that are used by fungi to better compete in the environment. These molecules are normally defined as secondary metabolites or natural products. This review is focused on secondary metabolites affected by the CWI signal pathway with a special focus on relevant natural products such as melanins, mycotoxins, and antibacterial compounds.

  17. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    PubMed

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    NASA Astrophysics Data System (ADS)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  19. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Shi, Mingzi; Cao, Zhenyu; Lu, Qian; Yang, Tianxue; Fan, Yuying; Wei, Zimin

    2018-01-01

    Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Soil bacterial community response to vegetation succession after fencing in the grassland of China.

    PubMed

    Zeng, Quanchao; An, Shaoshan; Liu, Yang

    2017-12-31

    Natural succession is an important process in terrestrial system, playing an important role in enhancing soil quality and plant diversity. Soil bacteria is the linkage between soil and plant, has an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems, driving the decomposition of soil organic matter and plant litter. However, the role of soil bacteria in the secondary succession has not been well understood, particularly in the degraded soil of Loess Plateau. In this study, we investigated soil nutrients and soil bacterial community during the secondary succession after a long-term fencing in the grassland, in the Yuwu Mountain, northwest China. The chronosequence included 1year, 12years, 20years and 30years. The soil bacterial community composition was determined by the Illumina HiSeq sequencing method. The data showed that soil bacterial diversity had no significant changes along the chronosequence, but soil bacterial community compositions significantly changed. Proteobacteria, Acidobacteria and Actinobacteria were the main phyla in all the samples across succession. With the accumulation of soil organic matter and nutrients, the relative abundance of Actinobacteria decreased, whereas Proteobacteria increased. These shifts may be caused by the increase of the available nutrients across the secondary succession. In the younger sites, soils were dominated by oligotrophic groups, whereas soil in the late-succession site were dominated by copiotrophic groups, indicating the dependence of soil bacterial community composition on the contents of soil available nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bacterial infections and hepatic encephalopathy in liver cirrhosis-prophylaxis and treatment.

    PubMed

    Piotrowski, Damian; Boroń-Kaczmarska, Anna

    2017-09-01

    Infections are common among patients with liver cirrhosis. They occur more often in cirrhotic patient groups than in the general population and result in higher mortality. One reason for this phenomenon is bacterial translocation from the intestinal lumen that occurs as a consequence of intestinal bacterial overgrowth, increased permeability and decreased motility. The most common infections in cirrhotic patients are spontaneous bacterial peritonitis and urinary tract infections, followed by pneumonia, skin and soft tissue infections. Intestinal bacterial overgrowth is also responsible for hyperammonemia, which leads to hepatic encephalopathy. All of these complications make this group of patients at high risk for mortality. The role of antibiotics in liver cirrhosis is to treat and in some cases to prevent the development of infectious complications. Based on our current knowledge, antibiotic prophylaxis should be administered to patients with gastrointestinal hemorrhage, low ascitic fluid protein concentration combined with liver or renal failure, and spontaneous bacterial peritonitis as a secondary prophylaxis, as well as after hepatic encephalopathy episodes (also as a secondary prophylaxis). In some cases, the use of non-antibiotic prophylaxis can also be considered. Current knowledge of the treatment of infections allows the choice of a preferred antibiotic for empiric therapy depending on the infection location and whether the source of the disease is nosocomial or community-acquired. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  2. Effect of inorganic salts on bacterial omega-3 PUFA production.

    PubMed

    Abd Elrazak, Ahmed; Ward, Alan C; Glassey, Jarka

    2017-03-16

    The increasing demand of omega-3 in the market and the challenges facing its conventional supplies led to an increasing interest to microbial omega-3 sources. This research concentrates on the statistical role of some metal ions on the biosynthesis and productivity of eicosapentaenoic acid (essential omega-3 element) in bacterial isolate, Shewanella 717. A Plackett-Burman design was applied to screen the main effect of all metal salts entrenched in the artificial sea water medium components. Four salts, in particular, in addition to the interaction among them were highlighted as having a statistically significant effect upon the growth and/or eicosapentaenoic acid production. A subsequent central composite design was performed to determine the exact optimum concentration of each of the chosen variables which was found to be 2.5, 1.8, 1.2, and 23 g/l, for Na 2 HPO 4 , MgSO 4 , KCl, and NaCl, respectively. All the experiments were performed with the minimal amount of carbon and nitrogen to eliminate any potential masking effect. A bioreactor batch run was operated and the ion uptake was monitored, using EDAX® electron microscopy, concluding that the process of microbial omega-3 production could be a phosphate-limited process. Optimizing the concentration of the tested metal ions led to a remarkable increase in the omega-3 productivity resulted in a 30, 9, and 10 times increase in yield, concentration, and percentage to the total fatty acids, respectively, even though the carbon and nitrogen were kept constant all over the research work.

  3. Exploring Informal Mathematical Products of Low Achievers at the Secondary School Level

    ERIC Educational Resources Information Center

    Karsenty, Ronnie; Arcavi, Abraham; Hadas, Nurit

    2007-01-01

    This article examines the notion of informal mathematical products, in the specific context of teaching mathematics to low achieving students at the secondary school level. The complex and relative nature of this notion is illustrated and some of its characteristics are suggested. These include the use of ad-hoc strategies, mental calculations,…

  4. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction

    PubMed Central

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J. Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd_Allah, Elsayed Fathi

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion. PMID:29023528

  5. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    PubMed

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  6. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  7. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.

    PubMed

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F

    2011-08-02

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.

  8. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins.

    PubMed

    Cuccui, Jon; Wren, Brendan

    2015-03-01

    Glycosylation or the modification of a cellular component with a carbohydrate moiety has been demonstrated in all three domains of life as a basic post-translational process important in a range of biological processes. This review will focus on the latest studies attempting to exploit bacterial N-linked protein glycosylation for glycobiotechnological applications including glycoconjugate vaccine and humanised glycoprotein production. The challenges that remain for these approaches to reach full biotechnological maturity will be discussed. Oligosaccharyltransferase-dependent N-linked glycosylation can be exploited to make glycoconjugate vaccines against bacterial pathogens. Few technical limitations remain, but it is likely that the technologies developed will soon be considered a cost-effective and flexible alternative to current chemical-based methods of vaccine production. Some highlights from current glycoconjugate vaccines developed using this in-vivo production system include a vaccine against Shigella dysenteriae O1 that has passed phase 1 clinical trials, a vaccine against the tier 1 pathogen Francisella tularensis that has shown efficacy in mice and a vaccine against Staphylococcus aureus serotypes 5 and 8. Generation of humanised glycoproteins within bacteria was considered impossible due to the distinct nature of glycan modification in eukaryotes and prokaryotes. We describe the method used to overcome this conundrum to allow engineering of a eukaryotic pentasaccharide core sugar modification within Escherichia coli. This core was assembled by combining the function of the initiating transferase WecA, several Alg genes from Saccharomyces cerevisiae and the oligosaccharyltransferase function of the Campylobacter jejuni PglB. Further exploitation of a cytoplasmic N-linked glycosylation system found in Actinobacillus pleuropneumoniae where the central enzyme is known as N-linking glycosyltransferase has overcome some of the limitations demonstrated by the

  9. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    PubMed

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bioreactor production of secondary metabolites from cell cultures of periwinkle and sandalwood.

    PubMed

    Valluri, Jagan V

    2009-01-01

    A bench-top bioreactor allowing continuous extraction of secondary metabolites is designed for Catharanthus roseus L. (G.) Don (periwinkle) and Santalum album L. (sandalwood) plant cell suspensions. Periwinkle cell cultures are exposed to biotic elicitors (Aspergillus niger, crude chitin) and abiotic elicitors (mannitol, methyl jasmonate) to induce alkaloid production. Whereas most of the biotic elicitors are effective when added on day 15 of culture, the abiotic elicitors are effective when added on day 20. The use of trans-cinnamic acid, an inhibitor of phenylalanine ammonia lyase (PAL) activity, results in significant increase in the alkaloid production of periwinkle cell cultures. Exposure of the cells to mannitol-induced osmotic stress produced marked increment in the total alkaloid production. When biotic and abiotic stress treatments are applied sequentially, an additive effect in alkaloid accumulation is observed. Although no essential oils are detected, secondary metabolites in the form of phenolics are produced by the sandalwood cell cultures in the bioreactor environment. The use of morphologic modification such as organ cultures and transformed cultures is believed to be required for both production and storage of essential oil constituents in sandalwood. The present chapter demonstrates that periwinkle and sandalwood cell suspensions could be developed and successfully cultured in a modified air-lift bioreactor. The exploitation of variant cell strains and biotransformation of added precursors can certainly improve the use of periwinkle and sandalwood cell cultures for the bioproduction of desired compounds.

  11. 7 CFR 58.135 - Bacterial estimate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Milk § 58.135 Bacterial estimate. (a) Methods of Testing. Milk shall be tested for bacterial estimate...

  12. [Secondary productivity of macrobenthos in mangrove and salt marsh in Gaoqiao of Zhanjiang, Guangdong Province of South China].

    PubMed

    Cai, Li-Zhe; Xu, Peng; Fu, Su-Jing; Peng, Xin; Cao, Jing; Chen, Xin-Wei; Wu, Chen; Liu, Sha

    2012-04-01

    In order to understand the secondary productivity of macrobenthos in different botanic habitats in intertidal zone in Gaoqiao of Zhanjiang, the Brey's empirical formula was applied to calculate the secondary productivity based on the investigations in the habitats of Sonneratia apetala, Aegiceras corniculatum, Sporobolus virginicus, and Bruguiera conjugate in four seasons, 2010. The secondary productivity of the macrobenthos in the habitats in four seasons was averagely 11.77 g AFDM x m(-2) x a(-1), being the highest in S. apetala habitat (18.16 g AFDM x m(-2) x a(-1)), followed by in A. corniculatum habitat (17.67 g AFDM x m(-2) x a(-1)), S. virginicus habitat (8.34 g AFDM x m(-2) x a(-1)), and B. conjugate habitat (2.92 g AFDM x m(-2) x a(-1)). The P/B ratio of the macrobenthos was the highest in B. conjugate habitat (2.38), followed by in S. virginicus, S. virginicus, and A. corniculatum habitats, with the values of 1.23, 0.99, and 0.48, respectively. The differences in the secondary productivity and P/B ratio of the macrobenthos among the four botanic habitats were mainly related to the sediment total organic carbon, food type, and macrobenthos individual size.

  13. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

    PubMed

    Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong

    2016-12-01

    Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not

  14. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    PubMed

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  15. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    PubMed

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  16. Bacterial contamination of ex vivo processed PBPC products under clean room conditions.

    PubMed

    Ritter, Markus; Schwedler, Joachim; Beyer, Jörg; Movassaghi, Kamran; Mutters, Reinier; Neubauer, Andreas; Schwella, Nimrod

    2003-11-01

    Patients undergoing high-dose radio- and/or chemotherapy and autologous or allogeneic PBPC transplantation are at high risk for infections owing to profound immunosuppression. In this study, the rate of microbial contamination of ex vivo processed PBPC products was analyzed, comparing preparation under clean room conditions to standard laboratory conditions. After implementation of good manufacturing practice conditions in the two participating institutions, the microbial contamination rate of 366 PBPC harvests from 198 patients was determined under certified clean room conditions (Group A) from 2000 until 2002. To investigate influence of improved environmental conditions along with other parameters, this set of samples was compared with a historical control set of 1413 PBPC products, which have been processed ex vivo under a clean bench in a regular laboratory room and were harvested from 626 patients (Group B) from 1989 until 2000. In Group B microbial contamination was found in 74 PBPC products (5.2%) from 57 patients. In Group A microbial growth was detected in 3 leukapheresis products (0.8%) from 3 patients. After exclusion of PBPC products, which were probably contaminated before manipulation, statistical analysis showed a significant difference (chi2= 10.339; p < 0.001). These data suggest an impact of clean room conditions on the bacterial contamination rate of PBPC products. To identify confounding variables, variables like technique of leukapheresis, culture methodology, and microbial colonization of central venous catheters were taken into account. Further variables might be identified in following studies.

  17. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  18. Condensed tannins affect bacterial and fungal microbiomes and mycotoxin production during ensiling and upon aerobic exposure.

    PubMed

    Peng, Kai; Jin, Long; Niu, Yan D; Huang, Qianqian; McAllister, Tim A; Yang, Hee Eun; Denise, Hubert; Xu, Zhongjun; Acharya, Surya; Wang, Shunxi; Wang, Yuxi

    2017-12-15

    Purple prairie clover (PPC; Dalea purpurea Vent.) containing 84.5 g/kg DM of condensed tannin (CT) was ensiled without (Control) or with polyethylene glycol (PEG) for 76 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics were determined and bacterial and fungal communities were assessed using metagenomic sequencing. Addition of PEG that deactivated CT at ensiling increased ( P < 0.05∼0.001) soluble N, non-protein N, lactic acid, total volatile fatty acids, ammonia N, deoxynivalenol (DON) and ochratoxin A (OTA), but decreased ( P < 0.001) pH and water soluble carbohydrates. Concentration of DON and OTA increased ( P < 0.001) for both silages with the extent of increase being greater for Control than for PEG treated silage during aerobic exposure. The PEG treated silage exhibited higher ( P < 0.01∼0.001) copy numbers of total bacteria, Lactobacillus , yeasts and fungi than Control. Addition of PEG decreased ( P < 0.01) bacterial diversity during both ensiling and aerobic exposure, whereas it increased ( P < 0.05) fungal diversity during aerobic exposure. Addition of PEG at ensiling increased ( P < 0.05) abundances of Lactobacillus and Pediococcus , but decreased ( P < 0.01) abundances of Lactococcus and Leuconostoc Filamentous fungi were found in the microbiome at ensiling and after aerobic exposure, whereas the Bacillus were the dominate bacteria after aerobic exposure. In conclusion, CT decreased protein degradation and improved aerobic stability of silage. These desirable outcomes likely reflect the ability of PPC CT to inhibit those microorganisms involved in lowering silage quality and in the production of mycotoxins. IMPORTANCE The present study reports the effects of condensed tannins on the complex microbial communities involved in ensiling and aerobic exposure of purple prairie clover. This study documents the ability of condensed tannins to lower mycotoxin production and associated microbiome. Taxonomic bacterial

  19. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites.

    PubMed

    Omura, S; Ikeda, H; Ishikawa, J; Hanamoto, A; Takahashi, C; Shinose, M; Takahashi, Y; Horikawa, H; Nakazawa, H; Osonoe, T; Kikuchi, H; Shiba, T; Sakaki, Y; Hattori, M

    2001-10-09

    Streptomyces avermitilis is a soil bacterium that carries out not only a complex morphological differentiation but also the production of secondary metabolites, one of which, avermectin, is commercially important in human and veterinary medicine. The major interest in this genus Streptomyces is the diversity of its production of secondary metabolites as an industrial microorganism. A major factor in its prominence as a producer of the variety of secondary metabolites is its possession of several metabolic pathways for biosynthesis. Here we report sequence analysis of S. avermitilis, covering 99% of its genome. At least 8.7 million base pairs exist in the linear chromosome; this is the largest bacterial genome sequence, and it provides insights into the intrinsic diversity of the production of the secondary metabolites of Streptomyces. Twenty-five kinds of secondary metabolite gene clusters were found in the genome of S. avermitilis. Four of them are concerned with the biosyntheses of melanin pigments, in which two clusters encode tyrosinase and its cofactor, another two encode an ochronotic pigment derived from homogentiginic acid, and another polyketide-derived melanin. The gene clusters for carotenoid and siderophore biosyntheses are composed of seven and five genes, respectively. There are eight kinds of gene clusters for type-I polyketide compound biosyntheses, and two clusters are involved in the biosyntheses of type-II polyketide-derived compounds. Furthermore, a polyketide synthase that resembles phloroglucinol synthase was detected. Eight clusters are involved in the biosyntheses of peptide compounds that are synthesized by nonribosomal peptide synthetases. These secondary metabolite clusters are widely located in the genome but half of them are near both ends of the genome. The total length of these clusters occupies about 6.4% of the genome.

  20. Proteomics as a Quality Control Tool of Pharmaceutical Probiotic Bacterial Lysate Products

    PubMed Central

    Klein, Günter; Schanstra, Joost P.; Hoffmann, Janosch; Mischak, Harald; Siwy, Justyna; Zimmermann, Kurt

    2013-01-01

    Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots. PMID

  1. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps

    PubMed Central

    Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624

  2. Mining Metatranscriptomic Data of a Cyanobacterial Bloom for Patterns of Secondary Metabolism Gene Expression

    NASA Astrophysics Data System (ADS)

    Penn, K.; Wang, J.; Thompson, J. R.

    2012-12-01

    The secondary metabolism of bacterial cells produces small molecules that can have both medicinal properties and toxigenic effects. This study focuses on mining metatranscriptomes from a tropical eutrophic water reservoir in Singapore experiencing a cyanobacterial Harmful Algal Bloom dominated by Microcystis, to identify the types of secondary metabolites genes being expressed and by what taxa. A phylogenomic approach as implemented in the online tool Natural Product Domain Seeker (NaPDoS) was used. NaPDoS was recently developed to classify ketosynthase and condensation domains from polyketide synthases and non-ribosomal peptide synthetases, respectively, to provide insight into potential types of pathway products. Water samples from the reservoir were collected six times over a day/night cycle. Total RNA was extracted and subjected to ribosomal depletion followed by cDNA synthesis and next-generation Illumina DNA sequencing, generating 493,468 to 678,064 95-101 base pairs post-quality control reads per sample. Evidence for expression of PKS and NRPS type genes based on identification of a ketosynthase and condensation domains are present in all time points. KS domains fall into to two main phylogenetic groups, type I and type II, within the type II group of domains are domains for fatty acid biosynthesis (fab), which is considered a part of primary metabolism. Type I KS domains are part of the classic PKS natural product biosynthetic genes that make things such as antibiotics and other toxins such as microcystin. 2849 KS domains were detected in the combined reservoir samples, of these 1141 were likely from fatty acid biosynthesis and 1708 were related to secondary metabolism type KS domains. The most abundant KS domains (485) besides the fab genes are closely related to a KS domain that is not currently experimentally linked to a known secondary metabolite but the domain is found in four Microcystis genomes along with two other species of cyanobacteria. The three

  3. Secondary aerosol production from agricultural gas precursors

    USDA-ARS?s Scientific Manuscript database

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Increasing evidence from both laboratory and field work suggests that not only does ammonia produce secondary particulate matter, but some volatile org...

  4. Detergent-compatible bacterial amylases.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  5. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    PubMed Central

    Cheng, Kuan-Chen; Catchmark, Jeff M; Demirci, Ali

    2009-01-01

    Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS) were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC) production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L) that was 2.5-fold greater than the control (2.82 g/L). The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93%) and similar crystal size (5.2 nm) to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to the control BC. The

  6. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples of...

  7. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples of...

  8. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples of...

  9. The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa.

    PubMed

    Troppens, Danielle M; Chu, Meiling; Holcombe, Lucy J; Gleeson, Olive; O'Gara, Fergal; Read, Nick D; Morrissey, John P

    2013-07-01

    The bacterial secondary metabolite 2,4-diacetylphloroglucinol (DAPG) is of interest as an active ingredient of biological control strains of Pseudomonas fluorescens and as a potential lead pharmaceutical molecule because of its capacity to inhibit growth of diverse microbial and non-microbial cells. The mechanism by which this occurs is unknown and in this study the filamentous fungus Neurospora crassa was used as a model to investigate the effects of DAPG on a eukaryotic cell. Colony growth, conidial germination and cell fusion assays confirmed the inhibitory nature of DAPG towards N. crassa. A number of different fluorescent dyes and fluorescent protein reporters were used to assess the effects of DAPG treatment on mitochondrial and other cellular functions. DAPG treatment led to changes in mitochondrial morphology, and rapid loss of mitochondrial membrane potential. These effects are likely to be responsible for the toxicity of DAPG. It was also found that DAPG treatment caused extracellular calcium to be taken up by conidial germlings leading to a transient increase in cytosolic free Ca(2+) with a distinct concentration dependent Ca(2+) signature. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  11. Central nervous system infection with Staphylococcus intermedius secondary to retrobulbar abscessation in a dog.

    PubMed

    Oliver, James A C; Llabrés-Diaz, Francisco J; Gould, David J; Powell, Roger M

    2009-01-01

    In this report, we describe a case of retrobulbar abscessation in a dog that was initially diagnosed as masticatory myositis and treated with immunosuppressive doses of corticosteroids. Secondary bacterial infection of the central nervous system (CNS) occurred and was definitively diagnosed by the analysis and culture of the cerebrospinal fluid. This is the first time that retrobulbar infection has been definitively shown to result in secondary bacterial infection of the CNS in the dog and highlights the importance of ruling out infectious causes of retrobulbar disease before assuming and treating for an immune-mediated etiology.

  12. Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids.

    PubMed

    Ryu, Byung-Gon; Kim, Jungmin; Han, Jong-In; Yang, Ji-Won

    2017-02-01

    This study examined the feasibility of using an algal-bacterial process for removal of phenol and NH 4 + -N from differently diluted coke wastewater with simultaneous production of biomass. Under illumination, microalgal-bacterial (MSB) cultures performed complete phenol degradation at all dilutions of coke wastewater while sole microalgal culture (MSA) degraded a maximum of 27.3% of phenol (initial concentration: 24.0mgL -1 ) from 5-fold diluted wastewater. Furthermore, the MSB culture had the highest rate of NH 4 + -N removal (8.3mgL -1 d -1 ) and fatty acid production (20mgL -1 d -1 ) which were 2.3- and 1.5-fold higher than those observed in the MSA cultures, probably due to decreases in toxic organic pollutants. Multivariate analyses indicated that co-cultivation of activated sludge was directly correlated with the elevated removals of phenol and NH 4 + -N. In the presence of sludge, adequate dilution of the coke wastewater can maximize the effect of bacteria on NH 4 + -N removal and biomass production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bacterial detection of platelets: current problems and possible resolutions.

    PubMed

    Blajchman, Morris A; Beckers, Erik A M; Dickmeiss, Ebbe; Lin, Lilly; Moore, Gillian; Muylle, Ludo

    2005-10-01

    The greatest transfusion-transmitted disease risk facing a transfusion recipient is that of bacterial sepsis. The prevalence of bacterial contamination in platelets and red blood cells is approximately 1 in 3,000 units transfused. The available data indicate that transfusion-associated sepsis develops after 1 in 25,000 platelet transfusions and 1 in 250,000 red blood cell transfusions. One of the most widely used strategies for decreasing bacterial sepsis risk is bacterial detection. A roundtable meeting of experts was convened during the XXVIII Annual Congress of the International Society of Blood Transfusion (Edinburgh, UK, July 2004) to provide a forum for experts to share their experiences in the routine bacterial detection of platelet products. This article summarizes the presentations, discussions, and recommendations of the panel. The data presented indicate that some of the current bacterial screening technology is useful for blocking the issuance of platelet units that contain relatively high levels of contaminating bacteria. Platelet units are usually released based on a test-negative status, which often become test-positive only upon longer storage. These data thus suggest that bacterial screening may not prevent all transfusion-transmitted bacterial infections. Two transfusion-transmitted case reports further highlighted the limitation of the routine bacterial screening of platelet products. It was felt that newer technologies, such as pathogen inactivation, may represent a more reliable process, with a higher level of safety. The panel thus recommended that the Transfusion Medicine community may need to change its thinking (paradigm) about bacterial detection, toward the possibility of the pathogen inactivation of blood products, to deal with the bacterial contamination issue. It was suggested, where permitted by regulatory agencies, that blood centers should consider adopting first-generation pathogen inactivation systems as a more effective approach

  14. Growth of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Warren, Mya; Hwa, Terence

    2013-03-01

    On hard agar gel, there is insufficient surface hydration for bacteria to swim or swarm. Instead, growth occurs in colonies of close-packed cells, which expand purely due to repulsive interactions: individual bacteria push each other out of the way through the force of their growth. In this way, bacterial colonies represent a new type of ``active'' granular matter. In this study, we investigate the physical, biochemical, and genetic elements that determine the static and dynamic aspects of this mode of bacterial growth for E. coli. We characterize the process of colony expansion empirically, and use discrete and continuum models to examine the extent to which our observations can be explained by the growth characteristics of non-communicating cells, coupled together by physical forces, nutrients, and waste products. Our results challenge the commonly accepted modes of bacterial colony growth and provide insight into sources of growth limitation in crowded bacterial communities.

  15. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).

    PubMed

    Hirao, A; Ehlers, R-U

    2009-08-01

    The rhabditid nematodes Steinernema carpocapsae and Steinernema feltiae are used in biological control of insect pests. Mass production is done in liquid culture media pre-incubated with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, before nematode dauer juveniles (DJs) are inoculated. As a response to food signals produced by the bacterial symbionts, the DJs exit from the developmentally arrested dauer stage (they recover development) and grow to adults, which produce DJ offspring. Variable DJ recovery after inoculation often causes process failure due to non-synchronous population development and low numbers of adult nematodes. This contribution investigated the influence of the bacterial cell density on DJ recovery and development to adults. At higher density of 10(10) bacterial cells ml(-1), a higher percentage of DJ recovery was induced, and adults occurred earlier in both Steinernema spp. than at lower density of 10(9) and 10(8) cells ml(-1). Xenorhabdus symbionts produce phase variants. Recovery in bacteria-free supernatants was lower than in supernatants containing bacterial cells for both primary and secondary phase Xenorhabdus spp. and lower in secondary than in primary phase supernatants or cell suspensions. In general, recovery was lower for Steinernema feltiae and the time at which 50% of the population had recovered after exposure to the food signal was longer (RT(50) = 17.1 h) than for Steinernema carpocapsae (RT(50) = 6.6 h). Whereas >90% S. carpocapsae DJs recovered in hemolymph serum of the lepidopteran insect Galleria mellonella, recovery of S. feltiae only reached 31%. Penetration into a host insect prior to exposure to the insect's food signal did not enhance DJ recovery. Consequences for liquid culture mass production of the nematodes and differences between species of the genera Steinernema and Heterorhabditis are discussed.

  16. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B₁ production by Aspergillus flavus under different environmental and nutritional regimes.

    PubMed

    Al-Saad, Labeed A; Al-Badran, Adnan I; Al-Jumayli, Sami A; Magan, Naresh; Rodríguez, Alicia

    2016-01-18

    The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35°C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice.

    PubMed

    Lee, Benjamin; Robinson, Keven M; McHugh, Kevin J; Scheller, Erich V; Mandalapu, Sivanarayana; Chen, Chen; Di, Y Peter; Clay, Michelle E; Enelow, Richard I; Dubin, Patricia J; Alcorn, John F

    2015-07-15

    Suppression of type 17 immunity by type I interferon (IFN) during influenza A infection has been shown to enhance susceptibility to secondary bacterial pneumonia. Although this mechanism has been described in coinfection with gram-positive bacteria, it is unclear whether similar mechanisms may impair lung defense against gram-negative infections. Furthermore, precise delineation of the duration of type I IFN-associated susceptibility to bacterial infection remains underexplored. Therefore, we investigated the effects of preceding influenza A virus infection on subsequent challenge with the gram-negative bacteria Escherichia coli or Pseudomonas aeruginosa and the temporal association between IFN expression with susceptibility to Staphylococcus aureus challenge in a mouse model of influenza and bacterial coinfection. Here we demonstrate that preceding influenza A virus led to increased lung E. coli and P. aeruginosa bacterial burden, which was associated with suppression of type 17 immunity and attenuation of antimicrobial peptide expression. Enhanced susceptibility to S. aureus coinfection ceased at day 14 of influenza infection, when influenza-associated type I IFN levels had returned to baseline levels, further suggesting a key role for type I IFN in coinfection pathogenesis. These findings further implicate type I IFN-associated suppression of type 17 immunity and antimicrobial peptide production as a conserved mechanism for enhanced susceptibility to both gram-positive and gram-negative bacterial coinfection during influenza infection. Copyright © 2015 the American Physiological Society.

  18. Study on clinical effect and immunologic mechanism of infants capillary bronchitis secondary bronchial asthma treated with bacterial lysates Broncho-Vaxom.

    PubMed

    Han, R-F; Li, H-Y; Wang, J-W; Cong, X-J

    2016-05-01

    To study the clinical effects and immunologic mechanism of infant capillary bronchitis secondary bronchial asthma treated with bacterial lysates (Broncho-Vaxom OM-85BV). Between February 2013 and February 2014, 136 infant capillary bronchitis secondary bronchial asthma cases were chosen. This research was approved by Ethics Committee in our hospital and obtained the informed consent right from patients and guardians. Patients were divided into the control group (n = 62) and the observation group (n = 74) using random number table method. Patients in the control group were treated with normal glucocorticoid atomizing inhalation, aminophylline and antibiotic treatment. In the observation group besides the abovementioned treatment, we added Broncho-Vaxom OM-85BV, qd po for 10 days continuously and quitted it for 20 days. This continued for a total of 3 months. Follow-ups were set for about one year to compare the effects. The onset frequency and duration of capillary bronchitis and asthma in observation group declined remarkably compared with control group and the differences were statistically significant (p < 0.05). The level of IL-17 and IL-4 in the observation group decreased significantly, whereas, the level of IL-10 and IFN- γ increased considerably. Differences were all statistically significant (p < 0.05). Peripheral blood CD4+ T lymphocytes in the observation group patients expressed lower levels of nicotinic acetylcholine receptors α7 (α7nAChR) compared to the control group. Then difference was statistically significant (p < 0.05). Broncho-Vaxom OM-85BV reduced the onset of infant capillary bronchitis secondary bronchial asthma, relating to the reduced inflammation reaction. It also regulated the immunologic function of Th1/Th2, and lowered the α7nAChR level.

  19. Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production

    PubMed Central

    Okeke, Chiamaka A.; Ezekiel, Chibundu N.; Nwangburuka, Cyril C.; Sulyok, Michael; Ezeamagu, Cajethan O.; Adeleke, Rasheed A.; Dike, Stanley K.; Krska, Rudolf

    2015-01-01

    Bacterial diversity and community structure of two maize varieties (white and yellow) during fermentation/steeping for ogi production, and the influence of spontaneous fermentation on mycotoxin reduction in the gruel were studied. A total of 142 bacterial isolates obtained at 24–96 h intervals were preliminarily identified by conventional microbiological methods while 60 selected isolates were clustered into 39 OTUs consisting of 15 species, 10 genera, and 3 phyla by 16S rRNA sequence analysis. Lactic acid bacteria constituted about 63% of all isolated bacteria and the genus Pediococcus dominated (white maize = 84.8%; yellow maize = 74.4%). Pediococcus acidilactici and Lactobacillus paraplantarum were found at all steeping intervals of white and yellow maize, respectively, while P. claussenii was present only at the climax stage of steeping white maize. In both maize varieties, P. pentosaceus was found at 24–72 h. Mycotoxin concentrations (μg/kg) in the unsteeped grains were: white maize (aflatoxin B1 = 0.60; citrinin = 85.8; cyclopiazonic acid = 23.5; fumonisins (B1/B2/B3) = 68.4–483; zearalenone = 3.3) and yellow maize (aflatoxins (B1/B2/M1) = 22.7–513; citrinin = 16,800; cyclopiazonic acid = 247; fumonisins (B1/B2/B3) = 252–1,586; zearalenone = 205). Mycotoxins in both maize varieties were significantly (p < 0.05) reduced across steeping periods. This study reports for the first time: (a) the association of L. paraplantarum, P. acidilactici, and P. claussenii with ogi production from maize, (b) citrinin occurrence in Nigerian maize and ogi, and (c) aflatoxin M1, citrinin and cyclopiazonic acid degradation/loss due to fermentation in traditional cereal-based fermented food. PMID:26697001

  20. Pairwise amino acid secondary structural propensities

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.

  1. On the Complex Coupling Between the Production of Ozone and Secondary Organic Aerosol in Polluted Urban Regions

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Stockwell, W. R.; Morris, V. R.; Fitzgerald, R. M.

    2016-12-01

    The major photochemical processes that produce ozone and aerosols are coupled together strongly in the polluted urban atmosphere. Aerosols are either directly emitted or formed through the same kind of chemistry that leads to the production of ozone. The aerosols produced through atmospheric chemistry are known as secondary aerosols and they may be composed of inorganic (nitrates, sulfates) or organic compounds. Wind blown dust and soot are two examples of primary aerosols. The component of secondary inorganic aerosols includes compounds such as ammonium nitrate, ammonium bisulfate and ammonium sulfate. Secondary organic aerosols are a very important component of PM with strong implications for health. The formation of secondary organic aerosol is linked with ozone photochemistry through the reactions of volatile organic compounds (VOC). The oxidation of VOC produces radicals that convert nitric oxide to nitrogen dioxide that photolyze to produce ozone. Larger VOC (those with more carbon atoms) undergo a number of oxidation cycles that add oxygen atoms to large organic molecules. The vapor pressure of many of these highly oxidized compounds is sufficiently low that they condense to produce secondary organic aerosols. The Community Multi-scale Air Quality model (CMAQ) and other chemical simulations have been made to quantify the relationship between varying emissions of VOC and NOx and the production of inorganic and secondary organic aerosols. The results from this analysis will be presented.

  2. Corticosteroids for Bacterial Keratitis

    PubMed Central

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  3. Culture-independent discovery of natural products from soil metagenomes.

    PubMed

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.

  4. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering.

    PubMed

    Keskin, Zalike; Sendemir Urkmez, Aylin; Hames, E Esin

    2017-06-01

    As it is known that bacterial cellulose (BC) is a biocompatible and natural biopolymer due to which it has a large set of biomedical applications. But still it lacks some desired properties, which limits its uses in many other applications. Therefore, the properties of BC need to be boosted up to an acceptable level. Here in this study for the first time, a new natural nanocomposite was produced by the incorporating keratin (isolated from human hair) to the BC (produced by Acetobacter xylinum) to enhance dermal fibroblast cells' attachment. Two different approaches were used in BC based nanocomposite production: in situ and post modifications. BC/keratin nanocomposites were characterized using SEM, FTIR, EDX, XRD, DSC and XPS analyses. Both production methods have yielded successful results for production of BC based nanocomposite-containing keratin. In vitro cell culture experiments performed with human skin keratinocytes and human skin fibroblast cells indicate the potential of the novel BC/keratin nanocomposites for use in skin tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  6. Production of bacterial cellulose using different carbon sources and culture media.

    PubMed

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-06

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Characterizing bacterial communities in paper production-troublemakers revealed.

    PubMed

    Zumsteg, Anita; Urwyler, Simon K; Glaubitz, Joachim

    2017-08-01

    Biofilm formation is a major cause of reduced paper quality and increased down time during paper manufacturing. This study uses Illumina next-generation sequencing to identify the microbial populations causing quality issues due to their presence in biofilms and slimes. The paper defects investigated contained traces of the films and/or slime of mainly two genera, Tepidimonas and Chryseobacterium. The Tepidimonas spp. found contributed on average 68% to the total bacterial population. Both genera have been described previously to be associated with biofilms in paper mills. There was indication that Tepidimonas spp. were present as compact biofilm in the head box of one paper machine and was filtered out by the paper web during production. On the other hand Tepidimonas spp. were also present to a large extent in the press and white waters of two nonproblematic paper machines. Therefore, the mere presence of a known biofilm producer alone is not sufficient to cause slimes and therefore paper defects and other critical factors are additionally at play. For instance, we identified Acidovorax sp., which is an early colonizer of paper machines, exhibiting the ability to form extracellular DNA matrices for attachment and biofilm formation. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. The use of genomics and chemistry to screen for secondary metabolites in bacillus spp. biocontrol organisms

    USDA-ARS?s Scientific Manuscript database

    Recent advances in DNA sequencing technologies have revolutionized the way we study bacterial biological control strains. These advances have provided the ability to rapidily characterize the secondary metabolite potential of these bacterial strains. A variety of bioinformatics tools have been devel...

  9. The Effects of Vaccination and Immunity on Bacterial Infection Dynamics In Vivo

    PubMed Central

    Coward, Chris; Restif, Olivier; Dybowski, Richard; Grant, Andrew J.; Maskell, Duncan J.; Mastroeni, Pietro

    2014-01-01

    Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body. PMID:25233077

  10. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application.

    PubMed

    Riya, Shohei; Takeuchi, Yuki; Zhou, Sheng; Terada, Akihiko; Hosomi, Masaaki

    2017-06-01

    A pulse of nitrous oxide (N 2 O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N 2 O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N 2 O flux was observed following floodwater disappearance after the addition of NH 4 + , with a corresponding increase in the concentrations of NO 3 - and dissolved N 2 O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO 3 - induced the expression of nirK gene and caused a concomitant increase in N 2 O production. These findings suggest that NO 3 - production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N 2 O production.

  11. Isolation of cell-free bacterial inclusion bodies.

    PubMed

    Rodríguez-Carmona, Escarlata; Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Villaverde, Antonio; García-Fruitós, Elena

    2010-09-17

    Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10⁻¹ cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.

  12. Aerobic bacterial flora of addled raptor eggs in Saskatchewan.

    PubMed

    Houston, C S; Saunders, J R; Crawford, R D

    1997-04-01

    In south-central Saskatchewan, Canada, in 1986, 1987 and 1989, the aerobic bacterial flora was evaluated from 75 unhatched raptor eggs of three species: 42 of the Swainson's hawk (Buteo Swainsoni), 21 of the ferruginous hawk (Buteo regalis), and 12 of the great horned owl (Bubo virginianus). In addled Swainson's hawk eggs, the most common bacterial genera were Enterobacter (18 eggs), Escherichia (12), and Streptococcus (10). Seven great horned owl eggs and six ferruginous hawk eggs also contained Escherichia coli. Salmonella spp. were not isolated. These bacteria were interpreted as secondary contaminants and not the primary cause of reproductive failure.

  13. A novel production process for optically pure L-lactic acid from kitchen refuse using a bacterial consortium at high temperatures.

    PubMed

    Tashiro, Yukihiro; Matsumoto, Hiroko; Miyamoto, Hirokuni; Okugawa, Yuki; Pramod, Poudel; Miyamoto, Hisashi; Sakai, Kenji

    2013-10-01

    We investigated L-lactic acid production in static batch fermentation of kitchen refuse using a bacterial consortium from marine-animal-resource (MAR) composts at temperatures ranging from 30 to 65 °C. At relatively low temperatures butyric acid accumulated, whereas at higher temperatures L-lactic acid was produced. In particular, fermentation at 50 °C produced 34.5 g L(-1) L-lactic acid with 90% lactic acid selectivity and 100% optical purity. Denaturing gradient gel electrophoresis indicated that dominant bacteria present in the original MAR composts diminished rapidly and Bacillus coagulans strains became the dominant contributors to L-lactic acid production at 45, 50 and 55 °C. This is the first report of the achievement of 100% optical purity of L-lactic acid using a bacterial consortium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in; Kuroda, Kenichi, E-mail: kkuroda@umich.edu

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probablemore » location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.« less

  15. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi

    NASA Astrophysics Data System (ADS)

    Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah

    2017-12-01

    The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.

  16. A Straightforward Approach for 3D Bacterial Printing

    PubMed Central

    2017-01-01

    Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials. PMID:28225616

  17. A Straightforward Approach for 3D Bacterial Printing.

    PubMed

    Lehner, Benjamin A E; Schmieden, Dominik T; Meyer, Anne S

    2017-07-21

    Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials.

  18. Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production.

    PubMed

    Abd El Razak, Ahmed; Ward, Alan C; Glassey, Jarka

    2014-02-01

    Water samples from three different environments including Mid Atlantic Ridge, Red Sea and Mediterranean Sea were screened in order to isolate new polyunsaturated fatty acids (PUFAs) bacterial producers especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Two hundred and fifty-one isolates were screened for PUFA production and among them the highest number of producers was isolated from the Mid-Atlantic Ridge followed by the Red Sea while no producers were found in the Mediterranean Sea samples. The screening strategy included a simple colourimetric method followed by a confirmation via GC/MS. Among the tested producers, an isolate named 66 was found to be a potentially high PUFA producer producing relatively high levels of EPA in particular. A Plackett-Burman statistical design of experiments was applied to screen a wide number of media components identifying glycerol and whey as components of a production medium. The potential low-cost production medium was optimised by applying a response surface methodology to obtain the highest productivity converting industrial by-products into value-added products. The maximum achieved productivity of EPA was 20 mg/g, 45 mg/l, representing 11% of the total fatty acids, which is approximately five times more than the amount produced prior to optimisation. The production medium composition was 10.79 g/l whey and 6.87 g/l glycerol. To our knowledge, this is the first investigation of potential bacteria PUFA producers from Mediterranean and Red Seas providing an evaluation of a colourimetric screening method as means of rapid screening of a large number of isolates.

  19. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    PubMed

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes

  20. The role of respiratory viruses in the etiology of bacterial pneumonia

    PubMed Central

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-01-01

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. PMID:26884414

  1. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites.

    PubMed

    Song, Ju Yeon; Yoo, Young Ji; Lim, Si-Kyu; Cha, Sun Ho; Kim, Ji-Eun; Roe, Jung-Hye; Kim, Jihyun F; Yoon, Yeo Joon

    2016-02-10

    Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community.

    PubMed

    Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis

    2017-10-01

    Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.

  3. Estimating consumer willingness to pay a price premium for Alaska secondary wood products.

    Treesearch

    Geoffrey H. Donovan; David L. Nicholls

    2003-01-01

    Dichotomous choice contingent valuation survey techniques were used to estimate mean willingness to pay (WTP) a price premium for made-in-Alaska secondary wood products. Respondents were asked to compare two superficially identical end tables, one made in China and one made in Alaska. The surveys were administered at home shows in Anchorage, Fairbanks, and Sitka in...

  4. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection

    NASA Astrophysics Data System (ADS)

    Kewcharoenwong, Chidchamai; Rinchai, Darawan; Utispan, Kusumawadee; Suwannasaen, Duangchan; Bancroft, Gregory J.; Ato, Manabu; Lertmemongkolchai, Ganjana

    2013-11-01

    Type 2 diabetes mellitus is a major risk factor for melioidosis, which is caused by Burkholderia pseudomallei. Our previous study has shown that polymorphonuclear neutrophils (PMNs) from diabetic subjects exhibited decreased functions in response to B. pseudomallei. Here we investigated the mechanisms regulating cytokine secretion of PMNs from diabetic patients which might contribute to patient susceptibility to bacterial infections. Purified PMNs from diabetic patients who had been treated with glibenclamide (an ATP-sensitive potassium channel blocker for anti-diabetes therapy), showed reduction of interleukin (IL)-1β and IL-8 secretion when exposed to B. pseudomallei. Additionally, reduction of these pro-inflammatory cytokines occurred when PMNs from diabetic patients were treated in vitro with glibenclamide. These findings suggest that glibenclamide might be responsible for the increased susceptibility of diabetic patients, with poor glycemic control, to bacterial infections as a result of its effect on reducing IL-1β production by PMNs.

  5. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China.

    PubMed

    Xun, Weibing; Zhao, Jun; Xue, Chao; Zhang, Guishan; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-06-01

    Different fertilization managements of red soil, a kind of Ferralic Cambisol, strongly affected the soil properties and associated microbial communities. The association of the soil microbial community and functionality with long-term fertilization management in the unique low-productivity red soil ecosystem is important for both soil microbial ecology and agricultural production. Here, 454 pyrosequencing analysis of 16S recombinant ribonucleic acid genes and GeoChip4-NimbleGen-based functional gene analysis were used to study the soil bacterial community composition and functional genes involved in soil organic carbon degradation. Long-term nitrogen-containing chemical fertilization-induced soil acidification and fertility decline and significantly altered the soil bacterial community, whereas long-term organic fertilization and fallow management improved the soil quality and maintained the bacterial diversity. Short-term quicklime remediation of the acidified soils did not change the bacterial communities. Organic fertilization and fallow management supported eutrophic ecosystems, in which copiotrophic taxa increased in relative abundance and have a higher intensity of labile-C-degrading genes. However, long-term nitrogen-containing chemical fertilization treatments supported oligotrophic ecosystems, in which oligotrophic taxa increased in relative abundance and have a higher intensity of recalcitrant-C-degrading genes but a lower intensity of labile-C-degrading genes. Quicklime application increased the relative abundance of copiotrophic taxa and crop production, although these effects were utterly inadequate. This study provides insights into the interaction of soil bacterial communities, soil functionality and long-term fertilization management in the red soil ecosystem; these insights are important for improving the fertility of unique low-productivity red soil. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation

    USDA-ARS?s Scientific Manuscript database

    Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grin...

  7. Production of added value bacterial lipids through valorisation of hydrocarbon-contaminated cork waste.

    PubMed

    Castro, A R; Guimarães, M; Oliveira, J V; Pereira, M A

    2017-12-15

    This work demonstrates that cork used as oil-spill sorbents, contaminated with liquid hydrocarbons, herein demonstrated with hexadecane, can be biologically treated by Rhodococcus opacus B4 with concomitant lipids production. R. opacus B4 consumed up to 96% of hexadecane (C16) impregnated in natural and regranulated cork sorbents after 48h incubation, producing 0.59±0.06g of triacylglycerol (TAG) g -1 of C16 consumed with a TAG content of 0.60±0.06gg -1 of cellular dry weight (CDW) and 0.54±0.05g TAG g -1 of C16 consumed with a TAG content of 0.77±0.04gg -1 (CDW), respectively. TAG was mainly composed by fatty acids of 16 and 18 carbon chains demonstrating the feasibility of using it as raw material for biodiesel production. In addition, the obtained lipid-rich biomass (whole cells) can be used for biomethane production, at a yield of 0.4L CH 4 g -1 (CDW). The obtained results support a novel approach for management of oil-spill contaminated cork sorbents through its valorisation by producing bacterial lipids, which can be used as feedstocks for biofuels production. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Iris abscess as an unusual presentation of endogenous endophthalmitis in a patient with bacterial endocarditis.

    PubMed

    Ramonas, Krista M; Freilich, Benjamin D

    2003-02-01

    To report the clinical findings and management of a case of endogenous endophthalmitis in a patient with bacterial endocarditis presenting with a septic metastasis to the iris. Observational case report. Review of clinical findings and treatment. A 37-year-old intravenous drug user hospitalized with bacterial endocarditis secondary to methicillin-sensitive Staphylococcus aureus bacteremia presented with a painful red left eye, hypopyon, and iris abscess. Roth spots were noted in the fundus of the right eye. Aqueous culture was positive for methicillin-sensitive S aureus. The patient was treated with intravitreal, topical, and intravenous antibiotics. The hypopyon and iris abscess resolved within 2 weeks, and the patient achieved a final visual acuity of 20/25 in the left eye. Septic metastasis to the iris is a rare occurrence. To our knowledge this is the first reported case of an iris abscess secondary to bacterial endocarditis.

  9. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design.

    PubMed

    Bae, Sangok; Shoda, Makoto

    2005-04-05

    Culture conditions in a jar fermentor for bacterial cellulose (BC) production from A. xylinum BPR2001 were optimized by statistical analysis using Box-Behnken design. Response surface methodology was used to predict the levels of the factors, fructose (X1), corn steep liquor (CSL) (X2), dissolved oxygen (DO) (X3), and agar concentration (X4). Total 27 experimental runs by combination of each factor were carried out in a 10-L jar fermentor, and a three-dimensional response surface was generated to determine the effect of the factors and to find out the optimum concentration of each factor for maximum BC production and BC yield. The fructose and agar concentration highly influenced the BC production and BC yield. However, the optimum conditions according to changes in CSL and DO concentrations were predicted at almost central values of tested ranges. The predicted results showed that BC production was 14.3 g/L under the condition of 4.99% fructose, 2.85% CSL, 28.33% DO, and 0.38% agar concentration. On the other hand, BC yield was predicted in 0.34 g/g under the condition of 3.63% fructose, 2.90% CSL, 31.14% DO, and 0.42% agar concentration. Under optimized culture conditions, improvement of BC production and BC yield were experimentally confirmed, which increased 76% and 57%, respectively, compared to BC production and BC yield before optimizing the culture conditions. Copyright (c) 2005 Wiley Periodicals, Inc.

  10. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures.

    PubMed

    Omar, Basma; Abou-Shanab, Reda; El-Gammal, Maie; Fotidis, Ioannis A; Kougias, Panagiotis G; Zhang, Yifeng; Angelidaki, Irini

    2018-05-29

    A novel biological process to upgrade biogas was developed and optimised during the current study. In this process, CO 2 in the biogas and externally provided H 2 were fermented under mesophilic conditions to volatile fatty acids (VFAs), which are building blocks of higher-value biofuels. Meanwhile, the biogas was upgraded to biomethane (CH 4 >95%), which can be used as a vehicle fuel or injected into the natural gas grid. To establish an efficient fermentative microbial platform, a thermal (at two different temperatures of 70 °C and 90 °C) and a chemical pretreatment method using 2-bromoethanesulfonate were investigated initially to inhibit methanogenesis and enrich the acetogenic bacterial inoculum. Subsequently, the effect of different H 2 :CO 2 ratios on the efficiency of biogas upgrading and production of VFAs were further explored. The composition of the microbial community under different treatment methods and gas ratios has also been unravelled using 16S rRNA analysis. The chemical treatment of the inoculum had successfully blocked the activity of methanogens and enhanced the VFAs production, especially acetate. The chemical treatment led to a significantly better acetate production (291 mg HAc/L) compared to the thermal treatment. Based upon 16S rRNA gene sequencing, it was found that H 2 -utilizing methanogens were the dominant species in the thermally treated inoculum, while a significantly lower abundance of methanogens was observed in the chemically treated inoculum. The highest biogas content (96% (v/v)) and acetate production were achieved for 2H 2 :1CO 2 ratio (v/v), with Acetoanaerobium noterae, as the dominant homoacetogenic hydrogen scavenger. Results from the present study can pave the way towards more development with respect to microorganisms and conditions for high efficient VFAs production and biogas upgrading. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. MemStar: a one-shot Escherichia coli-based approach for high-level bacterial membrane protein production.

    PubMed

    Lee, Chiara; Kang, Hae Joo; Hjelm, Anna; Qureshi, Abdul Aziz; Nji, Emmanuel; Choudhury, Hassanul; Beis, Konstantinos; de Gier, Jan-Willem; Drew, David

    2014-10-16

    Optimising membrane protein production yields in Escherichiacoli can be time- and resource-consuming. Here, we present a simple and effective Membrane protein Single shot amplification recipe: MemStar. This one-shot amplification recipe is based on the E. coli strain Lemo21(DE3), the PASM-5052 auto-induction medium and, contradictorily, an IPTG induction step. Using MemStar, production yields for most bacterial membrane proteins tested were improved to reach an average of 5 mg L(-1) per OD600 unit, which is significantly higher than yields obtained with other common production strategies. With MemStar, we have been able to obtain new structural information for several transporters, including the sodium/proton antiporter NapA. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.

    PubMed

    Ceccato-Antonini, Sandra Regina

    2018-05-25

    Ethanol bio-production in Brazil has some unique characteristics that inevitably lead to bacterial contamination, which results in the production of organic acids and biofilms and flocculation that impair the fermentation yield by affecting yeast viability and diverting sugars to metabolites other than ethanol. The ethanol-producing units commonly give an acid treatment to the cells after each fermentative cycle to decrease the bacterial number, which is not always effective. An alternative strategy must be employed to avoid bacterial multiplication but must be compatible with economic, health and environmental aspects. This review analyzes the issue of bacterial contamination in sugarcane-based fuel ethanol fermentation, and the potential strategies that may be utilized to control bacterial growth besides acid treatment and antibiotics. We have emphasized the efficiency and suitability of chemical products other than acids and those derived from natural sources in industrial conditions. In addition, we have also presented bacteriocins, bacteriophages, and beneficial bacteria as non-conventional antimicrobial agents to mitigate bacterial contamination in the bioethanol industry.

  13. Bacterial enzymes involved in lignin degradation.

    PubMed

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-10-20

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes

    PubMed Central

    Piao, Hailan; Hawley, Erik; Kopf, Scott; DeScenzo, Richard; Sealock, Steven; Henick-Kling, Thomas; Hess, Matthias

    2015-01-01

    Grapes harbor complex microbial communities. It is well known that yeasts, typically Saccharomyces cerevisiae, and bacteria, commonly the lactic acid fermenting Oenococcus oeni, work sequentially during primary and secondary wine fermentation. In addition to these main players, several microbes, often with undesirable effects on wine quality, have been found in grapes and during wine fermentation. However, still little is known about the dynamics of the microbial community during the fermentation process. In previous studies culture dependent methods were applied to detect and identify microbial organisms associated with grapes and grape products, which resulted in a picture that neglected the non-culturable fraction of the microbes. To obtain a more complete picture of how microbial communities change during grape fermentation and how different fermentation techniques might affect the microbial community composition, we employed next-generation sequencing (NGS)—a culture-independent method. A better understanding of the microbial dynamics and their effect on the final product is of great importance to help winemakers produce wine styles of consistent and high quality. In this study, we focused on the bacterial community dynamics during wine vinification by amplifying and sequencing the hypervariable V1–V3 region of the 16S rRNA gene—a phylogenetic marker gene that is ubiquitous within prokaryotes. Bacterial communities and their temporal succession was observed for communities associated with organically and conventionally produced wines. In addition, we analyzed the chemical characteristics of the grape musts during the organic and conventional fermentation process. These analyses revealed distinct bacterial population with specific temporal changes as well as different chemical profiles for the organically and conventionally produced wines. In summary these results suggest a possible correlation between the temporal succession of the bacterial population

  15. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.

    PubMed

    Nielsen, M S; Frisvad, J C; Nielsen, P V

    1998-06-30

    The influence of fungal starter cultures on growth and secondary metabolite production of fungal contaminants associated with cheese was studied on laboratory media and Camembert cheese. Isolates of the species Penicillium nalgiovense, P. camemberti, P. roqueforti and Geotrichum candidum were used as fungal starters. The species P. commune, P. caseifulvum, P. verrucosum, P. discolor, P. solitum, P. coprophilum and Aspergillus versicolor were selected as contaminants. The fungal starters showed different competitive ability on laboratory media and Camembert cheese. The presence of the Penicillium species, especially P. nalgiovense, showed an inhibitory effect on the growth of the fungal contaminants on laboratory media. G. candidum caused a significant inhibition of the fungal contaminants on Camembert cheese. The results indicate that G. candidum plays an important role in competition with undesirable microorganisms in mould fermented cheeses. Among the starters, P. nalgiovense caused the largest reduction in secondary metabolite production of the fungal contaminants on the laboratory medium. On Camembert cheese no significant changes in metabolite production of the fungal contaminants was observed in the presence of the starters.

  16. Productive Activity in the Curriculum: Changing the Literate Bias of Secondary Schools in Tanzania.

    ERIC Educational Resources Information Center

    Saunders, Murray

    1982-01-01

    Analyzes Tanzania's efforts to modify the secondary curriculum by unifying academics and productive work. Teachers have not adopted the new approach. The author suggests that teachers' reactions are affected by the relationship between schools and the division of labor, difficulties of specifying what unity means, and problems of school…

  17. Quantitative PCR Method for Diagnosis of Citrus Bacterial Canker†

    PubMed Central

    Cubero, J.; Graham, J. H.; Gottwald, T. R.

    2001-01-01

    For diagnosis of citrus bacterial canker by PCR, an internal standard is employed to ensure the quality of the DNA extraction and that proper requisites exist for the amplification reaction. The ratio of PCR products from the internal standard and bacterial target is used to estimate the initial bacterial concentration in citrus tissues with lesions. PMID:11375206

  18. Virulence of Aeromonas hydrophila to channel catfish Ictalurus punctatus fingerlings in the presence and absence of bacterial extracellular products

    USDA-ARS?s Scientific Manuscript database

    Virulence of three 2009 West Alabama isolates (AL09-71, AL09-72, and AL09-73) of Aeromonas hydrophila in the presence or absence of extracellular products (ECP) from overnight bacterial culture to channel catfish fingerlings (4.6 +/- 1.3g) was investigated by both bath immersion and intraperitoneal ...

  19. Bacterial Production and Enzymatic Activities in Deep-Sea Sediments of the Pacific Ocean: Biogeochemical Implications of Different Temperature Constraints

    NASA Astrophysics Data System (ADS)

    Danovaro, R.; Corinaldesi, C.; dell'Anno, A.

    2002-12-01

    The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and

  20. Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX.

    PubMed

    Domröse, Andreas; Weihmann, Robin; Thies, Stephan; Jaeger, Karl-Erich; Drepper, Thomas; Loeschcke, Anita

    2017-12-01

    Microbial secondary metabolites represent a rich source of valuable compounds with a variety of applications in medicine or agriculture. Effective exploitation of this wealth of chemicals requires the functional expression of the respective biosynthetic genes in amenable heterologous hosts. We have previously established the TREX system which facilitates the transfer, integration and expression of biosynthetic gene clusters in various bacterial hosts. Here, we describe the yTREX system, a new tool adapted for one-step yeast recombinational cloning of gene clusters. We show that with yTREX, Pseudomonas putida secondary metabolite production strains can rapidly be constructed by random targeting of chromosomal promoters by Tn5 transposition. Feasibility of this approach was corroborated by prodigiosin production after yTREX cloning, transfer and expression of the respective biosynthesis genes from Serratia marcescens . Furthermore, the applicability of the system for effective pathway rerouting by gene cluster adaptation was demonstrated using the violacein biosynthesis gene cluster from Chromobacterium violaceum , producing pathway metabolites violacein, deoxyviolacein, prodeoxyviolacein, and deoxychromoviridans. Clones producing both prodigiosin and violaceins could be readily identified among clones obtained after random chromosomal integration by their strong color-phenotype. Finally, the addition of a promoter-less reporter gene enabled facile detection also of phenazine-producing clones after transfer of the respective phenazine-1-carboxylic acid biosynthesis genes from Pseudomonas aeruginosa . All compounds accumulated to substantial titers in the mg range. We thus corroborate here the suitability of P. putida for the biosynthesis of diverse natural products, and demonstrate that the yTREX system effectively enables the rapid generation of secondary metabolite producing bacteria by activation of heterologous gene clusters, applicable for natural compound

  1. Bacterial Diterpene Synthases: New Opportunities for Mechanistic Enzymology and Engineered Biosynthesis

    PubMed Central

    Smanski, Michael J.; Peterson, Ryan M.; Huang, Sheng-Xiong; Shen, Ben

    2012-01-01

    Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering. PMID:22445175

  2. A Mammalian Siderophore Synthesized by an Enzyme with a Bacterial Homologue Involved in Enterobactin Production

    PubMed Central

    Devireddy, Laxminarayana R.; Hart, Daniel O.; Goetz, David; Green, Michael R.

    2010-01-01

    SUMMARY Intracellular iron homeostasis is critical for survival and proliferation. Lipocalin 24p3 is an iron trafficking protein that binds iron through association with a bacterial siderophore, such as enterobactin, or a postulated mammalian siderophore. Here we show that the iron-binding moiety of the 24p3-associated mammalian siderophore is 2,5-dihydroxybenzoic acid (2,5-DHBA), which is similar to 2,3-DHBA, the iron-binding component of enterobactin. We find that the murine enzyme responsible for 2,5-DHBA synthesis is the homologue of bacterial EntA, which catalyzes 2,3-DHBA production during enterobactin biosynthesis. RNA interference-mediated knockdown of the murine homologue of EntA results in siderophore depletion. Mammalian cells lacking the siderophore accumulate abnormally high amounts of cytoplasmic iron, resulting in elevated levels of reactive oxygen species, whereas the mitochondria are iron deficient. Siderophore-depleted mammalian cells and zebrafish embryos fail to synthesize heme, an iron-dependent mitochondrial process. Our results reveal features of intracellular iron homeostasis that are conserved from bacteria through humans. PMID:20550936

  3. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    PubMed Central

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  4. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    PubMed

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  5. On-farm and postharvest processing sources of bacterial contamination to melon rinds.

    PubMed

    Gagliardi, J V; Millner, P D; Lester, G; Ingram, D

    2003-01-01

    Multistate and international foodborne illness outbreaks, particularly involving cantaloupe and often involving rare Salmonella spp., have increased dramatically over the past 13 years. This study assessed the sources and extent of melon rind contamination in production fields and at processing and packing facilities. In the spring of 1999, cantaloupe (Cucumis melo L. [reticulatus group] cv. Cruiser) sampled from two sites in the Rio Grande River Valley showed that postharvest-processed melon rinds often had greater plate counts of bacterial contaminants than field-fresh melons. Cantaloupe in the field had 2.5 to 3.5 log CFU g(-1) rind total coliforms by aerobic plate counts, whereas washed melons had 4.0 to 5.0 log CFU g(-1). In the fall of 1999, coliforms on honeydew melons (C. melo [inodorous group] cv. Honey Brew) ranged from 2.6 to 3.7 log CFU g(-1) after processing, and total and fecal coliforms and enterococci never fell below 2.5 log CFU g(-1). A hydrocooler at another site contaminated cantaloupe rinds with up to 3.4 log CFU g(-1) total and fecal enterococci; a secondary rinse with chlorinated water incompletely removed these bacteria. Sources of coliforms and enterococci were at high levels in melon production soils, especially in furrows that were flood irrigated, in standing water at one field, and in irrigation water at both sites. At one processing facility, wash water pumped from the Rio Grande River may not have been sufficiently disinfected prior to use. Because soil, irrigation water, and process water were potential sources of bacterial contamination, monitoring and management on-farm and at processing and packing facilities should focus on water quality as an important control point for growers and packers to reduce bacterial contamination on melon rinds.

  6. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    PubMed Central

    Brandt, Stephanie M.; Schneider, David S.

    2009-01-01

    Summary Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized the ovary in a previously undescribed manner; bacteria were found in the posterior of the ovary, adjacent to the lateral oviduct. This local infection in the ovary resulted in melanization and activation of the cellular immune response at the site of infection. PMID:17400292

  7. A Hybrid DNA Extraction Method for the Qualitative and Quantitative Assessment of Bacterial Communities from Poultry Production Samples

    PubMed Central

    Rothrock, Michael J.; Hiett, Kelli L.; Gamble, John; Caudill, Andrew C.; Cicconi-Hogan, Kellie M.; Caporaso, J. Gregory

    2014-01-01

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples. PMID:25548939

  8. Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope.

    PubMed

    Hasim, Sahar; Allison, David P; Mendez, Berlin; Farmer, Abigail T; Pelletier, Dale A; Retterer, Scott T; Campagna, Shawn R; Reynolds, Todd B; Doktycz, Mitchel J

    2018-01-01

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus -derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin's mode of action and a better understanding of its selectivity.

  9. Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors.

    PubMed

    Li, Ning; Ren, Aihui; Wang, Xiaoshuang; Fan, Xin; Zhao, Yong; Gao, George F; Cleary, Patrick; Wang, Beinan

    2015-01-06

    Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-β. Because TGF-β can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-β during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and α5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-β signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-β. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-β signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-β, leading to increased bacterial loading in the lungs. Our results suggest that TGF-β and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.

  10. Applications of bacterial cellulose and its composites in biomedicine.

    PubMed

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

  11. EMISSIONS OF TRACE PRODUCTS OF INCOMPLETE COMBUSTION FROM A PILOT-SCALE INCINERATOR SECONDARY COMBUSTION CHAMBER

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator equipped with a 73 kW secondary combustion chamber (SCC) to examine emissions of products of incomplete combustion (PICs) resulting from incineration of carbon tetrachloride (CCl4) and dichlorometh...

  12. Bacterial Degradation of Nitrogenous Energetic Compounds (NEC) in Coastal Waters and Sediments

    DTIC Science & Technology

    2008-09-10

    2006) Enzymatic immobilization of 2,4,6-trinitrotoluene (TNT) biodegradation products onto model humic substances. Enzyme Microbial Technol 39:1197...11 2.3 Heterotrophic bacterial production ...collected May 2006: A) Average (AVG) rates of TNT incorporation and bacterial production (μg C L-1 d-1); and, B) TNT incorporation normalized for

  13. Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios

    PubMed Central

    Gromek, Samantha M.; Suria, Andrea M.; Fullmer, Matthew S.; Garcia, Jillian L.; Gogarten, Johann Peter; Nyholm, Spencer V.; Balunas, Marcy J.

    2016-01-01

    Female members of many cephalopod species house a bacterial consortium in the accessory nidamental gland (ANG), part of the reproductive system. These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens, and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae) of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium. PMID:27660622

  14. Towards revealing the structure of bacterial inclusion bodies.

    PubMed

    Wang, Lei

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6-12 nm, they are comprised of residue-specific cross-beta structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies.

  15. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death.

    PubMed

    Philip, Naomi H; DeLaney, Alexandra; Peterson, Lance W; Santos-Marrero, Melanie; Grier, Jennifer T; Sun, Yan; Wynosky-Dolfi, Meghan A; Zwack, Erin E; Hu, Baofeng; Olsen, Tayla M; Rongvaux, Anthony; Pope, Scott D; López, Carolina B; Oberst, Andrew; Beiting, Daniel P; Henao-Mejia, Jorge; Brodsky, Igor E

    2016-10-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.

  16. Role of growth media and chemical enhancers in secondary metabolites production from Aspergillus carbonarius (NRL-369) and their pharmaceutical potentials.

    PubMed

    Khan, Abid Ali; Bacha, Nafess; Ahmad, Bashir; Cox, R J; Bakht, Jehan

    2016-07-01

    The present study investigates the effect of different growth media and chemical enhancer on silent genes in Aspergillus carbonarius (NRL-369) for secondary metabolites production and its in vitro biological activities. Results revealed that Aspergillus carbonarius (NRL-369) grown in Czapeak yeast extract broth medium produced more metabolites compared with other media. Chemical epigenetic modifiers (suberoyl-anilide hydroxamic acid (SAHA) and 5-azacytidine (5-AZA) at concentration of 15mM were effective for the expression of silent genes resulting in increased secondary metabolites production. Secondary metabolites extracted in ethyl acetate and fractionized in n-Hexane showed variable degree of growth inhibitions of the tested microorganisms. Similarly, these samples were also active against brine shrimps and Lemna.

  17. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    PubMed

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Empirical Leucine-to-Carbon Conversion Factors for Estimating Heterotrophic Bacterial Production: Seasonality and Predictability in a Temperate Coastal Ecosystem▿

    PubMed Central

    Calvo-Díaz, Alejandra; Morán, Xosé Anxelu G.

    2009-01-01

    Leucine-to-carbon conversion factors (CFs) are needed for converting substrate incorporation into biomass production of heterotrophic bacteria. During 2006 we performed 20 dilution experiments for determining the spatiotemporal variability of empirical CFs in temperate Atlantic coastal waters. Values (0.49 to 1.92 kg C mol Leu−1) showed maxima in autumn to early winter and minima in summer. Spatially averaged CFs were significantly negatively correlated with in situ leucine incorporation rates (r = −0.91) and positively correlated with phosphate concentrations (r = 0.76). These relationships, together with a strong positive covariation between cell-specific leucine incorporation rates and carbon contents (r = 0.85), were interpreted as a strategy to maximize survival through protein synthesis and low growth rates under nutrient limitation (low CFs) until favorable conditions stimulate cell division relative to protein synthesis (high CFs). A multiple regression with in situ leucine incorporation rates and cellular carbon contents explained 96% of CF variance in our ecosystem, suggesting their potential prediction from more easily measurable routine variables. The use of the theoretical CF of 1.55 kg C mol Leu−1 would have resulted in a serious overestimation (73%) of annual bacterial production rates. Our results emphasize the need for considering the temporal scale in CFs for bacterial production studies. PMID:19304821

  19. Conservation of mRNA secondary structures may filter out mutations in Escherichia coli evolution

    PubMed Central

    Chursov, Andrey; Frishman, Dmitrij; Shneider, Alexander

    2013-01-01

    Recent reports indicate that mutations in viral genomes tend to preserve RNA secondary structure, and those mutations that disrupt secondary structural elements may reduce gene expression levels, thereby serving as a functional knockout. In this article, we explore the conservation of secondary structures of mRNA coding regions, a previously unknown factor in bacterial evolution, by comparing the structural consequences of mutations in essential and nonessential Escherichia coli genes accumulated over 40 000 generations in the course of the ‘long-term evolution experiment’. We monitored the extent to which mutations influence minimum free energy (MFE) values, assuming that a substantial change in MFE is indicative of structural perturbation. Our principal finding is that purifying selection tends to eliminate those mutations in essential genes that lead to greater changes of MFE values and, therefore, may be more disruptive for the corresponding mRNA secondary structures. This effect implies that synonymous mutations disrupting mRNA secondary structures may directly affect the fitness of the organism. These results demonstrate that the need to maintain intact mRNA structures imposes additional evolutionary constraints on bacterial genomes, which go beyond preservation of structure and function of the encoded proteins. PMID:23783573

  20. Contribution of Progranulin to Protective Lung Immunity During Bacterial Pneumonia.

    PubMed

    Zou, Shan; Luo, Qin; Song, Zhixin; Zhang, Liping; Xia, Yun; Xu, Huajian; Xiang, Yu; Yin, Yibing; Cao, Ju

    2017-06-01

    Progranulin (PGRN) is an important immunomodulatory factor in a variety of inflammatory diseases. However, its role in pulmonary immunity against bacterial infection remains unknown. Pneumonia was induced in PGRN-deficient and normal wild-type mice using Pseudomonas aeruginosa or Staphylococcus aureus, and we assessed the effects of PGRN on survival, bacterial burden, cytokine and chemokine production, and pulmonary leukocyte recruitment after bacterial pneumonia. Patients with community-acquired pneumonia displayed elevated PGRN levels. Likewise, mice with Gram-negative and Gram-positive pneumonia had increased PGRN production in the lung and circulation. Progranulin deficiency led to increased bacterial growth and dissemination accompanied by enhanced lung injury and mortality in bacterial pneumonia, which was associated with impaired recruitment of macrophages and neutrophils in the lung. The reduced number of pulmonary macrophages and neutrophils observed in PGRN-deficient mice was related to a reduction of CCL2 and CXCL1 in the lungs after bacterial pneumonia. Importantly, therapeutic administration of PGRN improved mortality in severe bacterial pneumonia. This study supports a novel role for PGRN in pulmonary immunity and suggests that treatment with PGRN may be a viable therapy for bacterial pneumonia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Factors contributing to bacterial bulb rots of onion

    USDA-ARS?s Scientific Manuscript database

    The incidence of bacterial rots of onion bulbs is increasing and has become a serious problem for growers. This increase is likely due to a combination of factors, such as high bacterial populations in soils and irrigation water, heavy rains flooding production fields, higher temperatures, etc. It m...

  2. Glycerol as an additional carbon source for bacterial cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Agustin, Y. E.; Padmawijaya, K. S.; Rixwari, H. F.; Yuniharto, V. A. S.

    2018-03-01

    Bacterial cellulose, the fermentation result of Acetobacter xylinus can be produced when glycerol was used as an additional carbon source. In this research, bacterial cellulose produced in two different fermentation medium, Hestrin and Scharmm (HS) medium and HS medium with additional MgSO4. Concentration of glycerol that used in this research were 0%; 5%; 10%; and 15% (v/v). The optimum conditions of bacterial cellulose production on each experiment variations determined by characterization of the mechanical properties, including thickness, tensile strength and elongation. Fourier Transform Infra Red Spectroscopy (FTIR) revealed the characterization of bacterial cellulose. Results showed that the growth rate of bacterial cellulose in HS-MgSO4-glycerol medium was faster than in HS-glycerol medium. Increasing concentrations of glycerol will lower the value of tensile strength and elongation. Elongation test showed that the elongation bacterial cellulose (BC) with the addition of 4.95% (v/v) glycerol in the HS-MgSO4 medium is the highest elongation value. The optimum bacterial cellulose production was achieved when 4.95% (v/v) of glycerol added into HS-MgSO4 medium with stress at break of 116.885 MPa and 4.214% elongation.

  3. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    PubMed

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An overview of food safety and bacterial foodborne zoonoses in food production animals in the Caribbean region.

    PubMed

    Guerra, Maria Manuela Mendes; de Almeida, Andre M; Willingham, Arve Lee

    2016-08-01

    Foodborne diseases (FBDs) in the Caribbean have a high economic burden. Public health and tourism concerns rise along with the increasing number of cases and outbreaks registered over the last 20 years. Salmonella spp., Shigella spp., and Campylobacter spp. are the main bacteria associated with these incidents. In spite of undertaking limited surveillance on FBD in the region, records related to bacterial foodborne zoonoses in food-producing animals and their associated epidemiologic significance are poorly documented, giving rise to concerns about the importance of the livestock, food animal product sectors, and consumption patterns. In this review, we report the available published literature over the last 20 years on selected bacterial foodborne zoonoses in the Caribbean region and also address other food safety-related aspects (e.g., FBD food attribution, importance, surveillance), mainly aiming at recognizing data gaps and identifying possible research approaches in the animal health sector.

  5. Secondary metabolites in fungus-plant interactions

    PubMed Central

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  6. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    PubMed

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  7. Marine sponge alkaloids as a source of anti-bacterial adjuvants

    PubMed Central

    Melander, Roberta J.; Liu, Hong-bing; Stephens, Matthew D.; Bewley, Carole A.; Melander, Christian

    2018-01-01

    Novel approaches that do not rely upon developing microbicidal compounds are sorely needed to combat multidrug resistant (MDR) bacteria. The potential of marine secondary metabolites to serve as a source of non-traditional anti-bacterial agents is demonstrated by showing that pyrrole-imidazole alkaloids inhibit biofilm formation and suppress antibiotic resistance. PMID:27876320

  8. Bacteriophages and Bacterial Plant Diseases

    PubMed Central

    Buttimer, Colin; McAuliffe, Olivia; Ross, R. P.; Hill, Colin; O’Mahony, Jim; Coffey, Aidan

    2017-01-01

    Losses in crop yields due to disease need to be reduced in order to meet increasing global food demands associated with growth in the human population. There is a well-recognized need to develop new environmentally friendly control strategies to combat bacterial crop disease. Current control measures involving the use of traditional chemicals or antibiotics are losing their efficacy due to the natural development of bacterial resistance to these agents. In addition, there is an increasing awareness that their use is environmentally unfriendly. Bacteriophages, the viruses of bacteria, have received increased research interest in recent years as a realistic environmentally friendly means of controlling bacterial diseases. Their use presents a viable control measure for a number of destructive bacterial crop diseases, with some phage-based products already becoming available on the market. Phage biocontrol possesses advantages over chemical controls in that tailor-made phage cocktails can be adapted to target specific disease-causing bacteria. Unlike chemical control measures, phage mixtures can be easily adapted for bacterial resistance which may develop over time. In this review, we will examine the progress and challenges for phage-based disease biocontrol in food crops. PMID:28163700

  9. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    PubMed Central

    Lu, Liang; Wang, Jijie; Xu, Ying; Wang, Kailing; Hu, Yingwei; Tian, Renmao; Yang, Bo; Lai, Qiliang; Li, Yongxin; Zhang, Weipeng; Shao, Zongze; Lam, Henry; Qian, Pei-Yuan

    2014-01-01

    Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use. PMID:25298017

  10. Intermittent fasting promotes bacterial clearance and intestinal IgA production in Salmonella typhimurium-infected mice.

    PubMed

    Godínez-Victoria, M; Campos-Rodriguez, R; Rivera-Aguilar, V; Lara-Padilla, E; Pacheco-Yepez, J; Jarillo-Luna, R A; Drago-Serrano, M E

    2014-05-01

    The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, α- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-α and interferon-γ) and anti-inflammatory cytokine (transforming growth factor-β) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells. © 2014 John Wiley & Sons Ltd.

  11. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    PubMed Central

    Rassner, Sara M. E.; Anesio, Alexandre M.; Girdwood, Susan E.; Hell, Katherina; Gokul, Jarishma K.; Whitworth, David E.; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  12. Comparison and Validation of FLUKA and HZETRN as Tools for Investigating the Secondary Neutron Production in Large Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2015-01-01

    NASA's exploration goals are focused on deep space travel and Mars surface operations. To accomplish these goals, large structures will be necessary to transport crew and logistics in the initial stages, and NASA will need to keep the crew and the vehicle safe during transport and any surface activities. One of the major challenges of deep space travel is the space radiation environment and its impacts on the crew, the electronics, and the vehicle materials. The primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle. These interactions lead to some of the primary radiation being absorbed, being modified, or producing secondary radiation (primarily neutrons). With all vehicles, the high energy primary radiation is of most concern. However, with larger vehicles that have large shielding masses, there is more opportunity for secondary radiation production, and this secondary radiation can be significant enough to cause concern. When considering surface operations, there is also a secondary radiation source from the surface of the planet, known as albedo, with neutrons being one of the most significant species. Given new vehicle designs for deep space and Mars missions, the secondary radiation environment and the implications of that environment is currently not well understood. Thus, several studies are necessary to fill the knowledge gaps of this secondary radiation environment. In this paper, we put forth the initial steps to increasing our understanding of neutron production from large vehicles by comparing the neutron production resulting from our radiation transport codes and providing a preliminary validation of our results against flight data. This paper will review the details of these results and discuss the finer points of the analysis.

  13. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    PubMed

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  14. Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model.

    PubMed

    Maggini, Valentina; De Leo, Marinella; Mengoni, Alessio; Gallo, Eugenia Rosaria; Miceli, Elisangela; Reidel, Rose Vanessa Bandeira; Biffi, Sauro; Pistelli, Luisa; Fani, Renato; Firenzuoli, Fabio; Bogani, Patrizia

    2017-12-05

    The influence of the interaction(s) between the medicinal plant Echinacea purpurea (L.) Moench and its endophytic communities on the production of alkamides is investigated. To mimic the in vivo conditions, we have set up an infection model of axenic in vitro E. purpurea plants inoculated with a pool of bacterial strains isolated from the E. purpurea stems and leaves. Here we show different alkamide levels between control (not-inoculated) and inoculated plants, suggesting that the alkamide biosynthesis may be modulated by the bacterial infection. Then, we have analysed the branched-chain amino acids (BCCA) decarboxylase gene (GenBank Accession #LT593930; the enzymatic source for the amine moiety formation of the alkamides) expression patterns. The expression profile shows a higher expression level in the inoculated E. purpurea tissues than in the control ones. These results suggest that the plant-endophyte interaction can influence plant secondary metabolism affecting the therapeutic properties of E. purpurea.

  15. Assessment of bacterial inoculant formulated with Paraburkholderia tropica to enhance wheat productivity.

    PubMed

    Bernabeu, Pamela Romina; García, Sabrina Soledad; López, Ana Clara; Vio, Santiago Adolfo; Carrasco, Natalia; Boiardi, José Luis; Luna, María Flavia

    2018-05-25

    Paraburkholderia tropica is an endophytic nitrogen-fixing bacterium isolated from the rhizosphere, rhizoplane, and internal tissues of sugarcane and corn plants in different geographical regions. Other plant-growth-promoting abilities, such as phosphate solubilization and antifungal activity, have also been reported for this bacterium. With an aim at investigating the potential use of P. tropica as an inoculant for improving the performance of wheat crop, in this work we evaluated an experimental inoculant formulated with P. tropica MTo-293 with respect to root colonization, the practical aspects of its application, and the effects under field conditions when applied to wheat seeds. Bacterial colonization was monitored by culture dependent techniques and the wheat yield determined by quantifying the total grain production in two different seasons. Rhizoplane and endophytic colonization in wheat roots was achieved efficiently (on average, 8 and 4 log colony-forming units/g fresh weight, respectively) even at relatively low concentrations of viable bacteria in the inoculum under controlled conditions. P. tropica was compatible with a widely used fungicide, maintained viability for 48 h once applied to seeds, and was also able to colonize wheat roots efficiently. Furthermore, we were able to formulate an inoculant that maintained bacterial viability for relatively long time periods. Preliminary field assays were realized, and even though the average yields values for the inoculated treatments remained above the uninoculated ones, no significant effects of inoculation were detected with or without fertilization. The correct physiologic behavior of P. tropica suggests the necessity to continue with field experiments under different conditions.

  16. Differential signatures of bacterial and mammalian IMP dehydrogenase enzymes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R.; Evans, G.; Rotella, F.

    1999-06-01

    IMP dehydrogenase (IMPDH) is an essential enzyme of de novo guanine nucleotide synthesis. IMPDH inhibitors have clinical utility as antiviral, anticancer or immunosuppressive agents. The essential nature of this enzyme suggests its therapeutic applications may be extended to the development of antimicrobial agents. Bacterial IMPDH enzymes show bio- chemical and kinetic characteristics that are different than the mammalian IMPDH enzymes, suggesting IMPDH may be an attractive target for the development of antimicrobial agents. We suggest that the biochemical and kinetic differences between bacterial and mammalian enzymes are a consequence of the variance of specific, identifiable amino acid residues. Identification ofmore » these residues or combination of residues that impart this mammalian or bacterial enzyme signature is a prerequisite for the rational identification of agents that specifically target the bacterial enzyme. We used sequence alignments of IMPDH proteins to identify sequence signatures associated with bacterial or eukaryotic IMPDH enzymes. These selections were further refined to discern those likely to have a role in catalysis using information derived from the bacterial and mammalian IMPDH crystal structures and site-specific mutagenesis. Candidate bacterial sequence signatures identified by this process include regions involved in subunit interactions, the active site flap and the NAD binding region. Analysis of sequence alignments in these regions indicates a pattern of catalytic residues conserved in all enzymes and a secondary pattern of amino acid conservation associated with the major phylogenetic groups. Elucidation of the basis for this mammalian/bacterial IMPDH signature will provide insight into the catalytic mechanism of this enzyme and the foundation for the development of highly specific inhibitors.« less

  17. Metabolomics for secondary metabolite research.

    PubMed

    Breitling, Rainer; Ceniceros, Ana; Jankevics, Andris; Takano, Eriko

    2013-11-11

    Metabolomics, the global characterization of metabolite profiles, is becoming an increasingly powerful tool for research on secondary metabolite discovery and production. In this review we discuss examples of recent technological advances and biological applications of metabolomics in the search for chemical novelty and the engineered production of bioactive secondary metabolites.

  18. Bacterial membrane proteomics.

    PubMed

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  19. The relationship between rumen bacterial growth, intake of dry matter, digestible organic matter and volatile fatty acid production in buffalo (Bos bubalis) calves.

    PubMed

    Singh, U B; Verma, D N; Varma, A; Ranjhan, S K

    1977-11-01

    1. The production rates of bacteria in the rumen of buffalo (Bos bubalis) calves were estimated using an isotope-dilution technique. A series of fifteen experiments was done with animals given green maize and nine experiments with animals given cowpea (Vigna unguiculata). 2. The turnover time ranged from 205 to 567 min in the group given green maize and from 330 to 648 min in animals offered cowpea. The production rates of bacteria were (mean +/- SE; g/d) 145.77 +/- 7.240 and 237.09 +/- 11.847 in animals given green maize and cowpea respectively. 3. There was a significant correlation between bacterial production rates and dry matter intake, digestible organic matter and total volatile fatty acids formed in the rumen. 4. Regression equations obtained for the two foodstuffs were different suggesting that the bacterial growth rate may vary depending upon the quantity and quality of foodstuff digested and possibly the ratio nitrogen:energy of the foodstuff.

  20. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilbronn, L.; Iwata, Y.; Iwase,H.

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, withmore » the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.« less

  1. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  2. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGES

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  3. The effects of cadmium chloride on secondary metabolite production in Vitis vinifera cv. cell suspension cultures.

    PubMed

    Cetin, Emine Sema; Babalik, Zehra; Hallac-Turk, Filiz; Gokturk-Baydar, Nilgun

    2014-09-23

    Plant secondary metabolites are possess several biological activities such as anti-mutagenic, anti-carcinogenic, anti-aging, etc. Cell suspension culture is one of the most effective systems to produce secondary metabolites. It is possible to increase the phenolic compounds and tocopherols by using cell suspensions. Studies on tocopherols production by cell suspension cultures are seldom and generally focused on seed oil plants. Although fresh grape, grape seed, pomace and grape seed oil had tocopherols, with our best knowledge, there is no research on tocopherol accumulation in the grape cell suspension cultures. In this study, it was aimed to determine the effects of cadmium chloride treatments on secondary metabolite production in cell suspension cultures of grapevine. Cell suspensions initiated from callus belonging to petiole tissue was used as a plant material. Cadmium chloride was applied to cell suspension cultures in different concentration (1.0 mM and 1.5 mM) to enhance secondary metabolite (total phenolics, total flavanols, total flavonols, trans-resveratrol, and α-, β-, γ- δ-tocopherols) production. Cells were harvested at two days intervals until the 6th day of cultures. Amounts of total phenolics, total flavanols and total flavonols; trans-resveratrol and tocopherols (α-, β-, γ- and δ-tocopherols) and dry cell weights were determined in the harvested cells. Phenolic contents were significantly affected by the sampling time and cadmium concentrations. The highest values of total phenolic (168.82 mg/100 g), total flavanol (15.94 mg/100 g), total flavonol (14.73 mg/100 g) and trans-resveratrol (490.76 μg/100 g) were found in cells treated with 1.0 mM CdCl2 and harvested at day 2. Contents of tocopherols in the cells cultured in the presence of 1.0 mM CdCl2 gradually increased during the culture period and the highest values of α, β and γ tocopherols (145.61, 25.52 and 18.56 μg/100 g) were detected in the cell cultures collected at day 6

  4. Carbon cycling and net ecosystem production at an early stage of secondary succession in an abandoned coppice forest.

    PubMed

    Ohtsuka, Toshiyuki; Shizu, Yoko; Nishiwaki, Ai; Yashiro, Yuichiro; Koizumi, Hiroshi

    2010-07-01

    Secondary mixed forests are one of the dominant forest cover types in human-dominated temperate regions. However, our understanding of how secondary succession affects carbon cycling and carbon sequestration in these ecosystems is limited. We studied carbon cycling and net ecosystem production (NEP) over 4 years (2004-2008) in a cool-temperate deciduous forest at an early stage of secondary succession (18 years after clear-cutting). Net primary production of the 18-year-old forest in this study was 5.2 tC ha(-1 )year(-1), including below-ground coarse roots; this was partitioned into 2.5 tC ha(-1 )year(-1) biomass increment, 1.6 tC ha(-1 )year(-1) foliage litter, and 1.0 tC ha(-1 )year(-1) other woody detritus. The total amount of annual soil surface CO(2) efflux was 6.8 tC ha(-1 )year(-1), which included root respiration (1.9 tC ha(-1 )year(-1)) and heterotrophic respiration (RH) from soils (4.9 tC ha(-1 )year(-1)). The 18-year forest at this study site exhibited a great increase in biomass pool as a result of considerable total tree growth and low mortality of tree stems. In contrast, the soil organic matter (SOM) pool decreased markedly (-1.6 tC ha(-1 )year(-1)), although further study of below-ground detritus production and RH of SOM decomposition is needed. This young 18-year forest was a weak carbon sink (0.9 tC ha(-1 )year(-1)) at this stage of secondary succession. The NEP of this 18-year forest is likely to increase gradually because biomass increases with tree growth and with the improvement of the SOM pool through increasing litter and dead wood production with stand development.

  5. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    PubMed

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  6. Towards revealing the structure of bacterial inclusion bodies

    PubMed Central

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6–12 nm, they are comprised of residue-specific cross-β structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies. PMID:19806034

  7. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production.

    PubMed

    De La Torre, María; Martín-Sampedro, Raquel; Fillat, Úrsula; Eugenio, María E; Blánquez, Alba; Hernández, Manuel; Arias, María E; Ibarra, David

    2017-11-01

    This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.

  8. Financial Literacy of Secondary Students, and Its Place within Secondary Schools

    ERIC Educational Resources Information Center

    Neill, Alex; Berg, Melanie; Stevens, Liesje

    2014-01-01

    This report investigates the behaviour, attitudes and experiences of New Zealand secondary students with money and financial products. It also looks at financial literacy programmes in New Zealand secondary schools and explores barriers to the implementation of financial literacy teaching. The research was commissioned by the Commission for…

  9. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  10. The Research and Development of a Soluble Reactants and Products Secondary Battery System

    NASA Technical Reports Server (NTRS)

    Liu, C. C.

    1975-01-01

    A redox battery system which employs an aqueous dectrolyte is developed. Results are presented of the following experimental studies (1) measurement of the essential physical and chemical properties of the reactants and products; (2) evaluation of commerically available anion membranes as the cell separator, (3) determination of the composition and degradation mechanism of the anion membrane, and/or developing an anion membrane separator; and (4) evaluation of the performance of prototype secondary battery systems.

  11. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  12. Bacterial dynamics in a microphytobenthic biofilm: A tidal mesocosm approach

    NASA Astrophysics Data System (ADS)

    Agogué, Hélène; Mallet, Clarisse; Orvain, Francis; De Crignis, Margot; Mornet, Françoise; Dupuy, Christine

    2014-09-01

    In intertidal mudflats, during low tide exposure, microphytobenthos (MPB) migrate vertically through the surface sediment and form, with the heterotrophic bacteria, a transient biofilm. Inside this biofilm, multiple interactions exist between MPB and bacteria. These micro-organisms secrete a wide range of extracellular polymeric substances (EPS), which are major components of the biofilm matrix. In this study, we used a tidal mesocosm experiment in order to decipher the interactions of the MPB-EPS-bacteria complex within the biofilm. We tried to determine if the EPS could control bacterial activities and/or production and/or richness according to the age of the biofilm and to the immersion/emersion period. The dynamics of biomasses of MPB and prokaryotes, the bacterial production, the hydrolysis of predominating organic constituents in the dissolved organic carbon (DOC) pool (i.e., carbohydrates and polypeptides), and the bacterial structure were studied in relation to the different EPS fractions (carbohydrates and proteins: colloidal and bound) dynamics during 8 days. Our experiment had emphasized the influence of the environmental conditions (light, immersion/emersion) on the interactions within the biofilm and also on the effects on biofilm aging. Bacterial production was always inhibited by the bound EPS-carbohydrate, especially during low tide. Our results suggest that the concentration and composition of EPS had a major role in the bacterial/MPB interactions: these interactions can be either positive or negative in order to regulate the productive phases of MPB and bacteria.

  13. Chemosensation of Bacterial Secondary Metabolites Modulates Neuroendocrine Signaling and Behavior of C. elegans

    PubMed Central

    Meisel, Joshua D.; Panda, Oishika; Mahanti, Parag; Schroeder, Frank C.; Kim, Dennis H.

    2014-01-01

    Summary Discrimination among pathogenic and beneficial microbes is essential for host organism immunity and homeostasis. Here, we show that chemosensory detection of two secondary metabolites produced by Pseudomonas aeruginosa modulates a neuroendocrine signaling pathway that promotes avoidance behavior in the simple animal host Caenorhabditis elegans. Secondary metabolites phenazine-1-carboxamide and pyochelin activate a G protein-signaling pathway in the ASJ chemosensory neuron pair that induces expression of the neuromodulator DAF-7/TGF-β. DAF-7, in turn, activates a canonical TGF-β signaling pathway in adjacent interneurons to modulate aerotaxis behavior and promote avoidance of pathogenic P. aeruginosa. Our data provide a chemical, genetic, and neuronal basis for how the behavior and physiology of a simple animal host can be modified by the microbial environment, and suggest that secondary metabolites produced by microbes may provide environmental cues that contribute to pathogen recognition and host survival. PMID:25303524

  14. Environmental product declarations in accordance with EN 15804 and EN 16485 — How to account for primary energy of secondary resources?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achenbach, Hermann, E-mail: hermann.achenbach@thuenen.de; Diederichs, Stefan K.; Wenker, Jan L.

    As a core product category rule (PCR), EN 15804 defines rules for conducting the life cycle assessment (LCA) of building products in the context of environmental product declarations (EPDs). This European standard is complemented by EN 16485, which provides further guidance for specific aspects for the LCA of wood and wood-based construction products. For all life cycle stages under consideration, the renewable and non-renewable primary energy employed for energy generation or material use is accounted for. Furthermore, the inputs and outputs of secondary materials (SM), renewable secondary fuels (RSF) and non-renewable secondary fuels (NRSF) have to be reported. Especially inmore » the end-of life stage as well as in the production stage, the standards do not exactly rule the accounting method of the primary energy contained in SM, RSF and NRSF. As both standards leave room for interpretation, we wrote this discussion article to introduce this issue to the LCA community and to present our developed accounting specifications. In general, we consider EN 15804 and EN 16485 as helpful tools for the LCA of building products. We hope that our ideas on certain aspects contribute to a better understanding of the standards, possibly leading to further improvement in the course of the standardization process.« less

  15. Analysis of the Aspergillus flavus transcriptome reveals a key role of secondary metabolite production in isolate oxidative stress responses

    USDA-ARS?s Scientific Manuscript database

    The purpose of the production of secondary metabolites in fungi are various and include stress responses, competitive antimicrobial activity, and the elimination of toxic compounds. However, the purpose of the production of aflatoxin, a carcinogenic mycotoxin, by Aspergillus flavus, is unknown. Prev...

  16. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  17. Humus layer is the main locus of secondary SO4 production in boreal forests

    NASA Astrophysics Data System (ADS)

    Houle, Daniel; Marty, Charles; Duchesne, Louis; Gagnon, Christian

    2014-02-01

    Identifying the sources of S exported from catchments and the reactivity of the large soil organic S pool is crucial to understand the mid- or long-term response of forested catchments to decreasing atmospheric S deposition and global warming. Sulfur fluxes as well as S and O isotopes of SO4 were measured in precipitation, throughfall, soil solutions and streams at two boreal forest catchments respectively dominated by black spruce (BS) and balsam fir (BF) in Quebec, Canada. Overall, δ34S-SO4 signature showed relatively small variations among various solution types. However, at both sites, δ18O-SO4 in precipitation (averages of 10.5-11.1‰) was decreased by 3.5-3.6‰ in throughfall because of the production of secondary SO4 through oxidation of SO2 deposited on the canopy. Throughfall δ18O-SO4 was decreased by a further 5.4-6.6‰ in the solution leaving the humus layer which was attributed to the production of secondary SO4 under the action of soil microorganisms through the oxidation of organic S during which the S atom acquired O from water and gaseous O2 present in the soil. A mixing equation based on known isotopic signature of each source suggested that ˜67-81% of the S-SO4 leaving the catchments had interacted with the canopy and the humus layer. The stability of δ18O-SO4 in the mineral soil solution and in the stream of both sites, suggests that SO4 does not undergo reduction-oxidation cycles after its passage through the humus layer. Despite its huge size, the organic S reservoir within the mineral soil would be largely inert. Given the chemical nature of SO4 transformation in the canopy, the humus layer would be responsible for nearly 100% of the biological production of secondary SO4 in the whole watershed at both sites. Taking into account the substantial production of dissolved organic S in the humus layer further emphasizes the crucial importance of the latter in the S cycling of boreal forests.

  18. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes

    DOE PAGES

    Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; ...

    2016-11-29

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less

  19. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less

  20. Hygroscopicity of dicarbonyl-amine secondary organic aerosol products investigated with HTDMA

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; de Haan, D. O.

    2010-12-01

    Recent studies have shown the importance of amine-dicarbonyl chemistry as a secondary organic aerosol (SOA) formation pathway, producing imines, imidazoles, and N-containing oligomers. Preliminary work in our group has suggested that some of these products may be surface active. Therefore, the presence of these products may result in important changes to submicron particle hygroscopicity that affect aerosol scattering and cloud condensation nuclei (CCN) activity, especially in regions with significant amine-containing particles. To investigate their hygroscopicity, we have designed a hygroscopicity tandem differential mobility analyzer (HTDMA) system around a 300 L Teflon chamber that allows for longer humidification times needed for some organic aerosol components that are only slightly hygroscopic. This modification provides a range of residence times from 2.5 minutes up to 1 hour, unlike previously published systems that vary from 2-30 seconds. Using the modified hygroscopicity tandem differential mobility analyzer (HTDMA), we have measured the hygroscopic growth factor (HGF) of SOA formed from reactions of glyoxal (and methylglyoxal) with methylamine, ammonium sulfate, and several amino acids. Changes to inorganic aerosol HGF in response to the presence of SOA products are also investigated.

  1. Bacterial carbohydrate-degrading capacity in foal faeces: changes from birth to pre-weaning and the impact of maternal supplementation with fermented feed products.

    PubMed

    Faubladier, Céline; Julliand, Véronique; Danel, Justine; Philippeau, Christelle

    2013-09-28

    The present study aimed at (1) describing age-related changes in faecal bacterial functional groups involved in carbohydrate degradation and in their activities in foals (n 10) from birth (day (d) 0) to 6 months (d180) and (2) investigating the effect of maternal supplementation (five mares per treatment) from d - 45 to d60 with fermented feed products on response trends over time of the foal bacterial carbohydratedegrading capacity. Maternal supplementation with fermented feed products stimulated foal growth from d0 to d60 and had an impact on the establishment of some digestive bacterial groups and their activities in foals from d0 to d5 but not in the longer term. Irrespective of the maternal treatment, total bacteria, total anaerobic, lactate-utilising and amylolytic bacteria were established immediately after birth (P<0·05) and were active as shown by the significant increase in total volatile fatty acids. In the foals of supplemented mares, total anaerobes and lactate utilisers were established rapidly between d0 and d2 (P=0·021 and 0·066, respectively) and the increase in the percentage of propionate occurred earlier (P=0·013). Maternal supplementation had no effect on the establishment of fibrolytic bacteria and their activity. Cellulolytic bacteria and Fibrobacter succinogenes first appeared at d2 and d5, and increased progressively, reaching stable values at d30 and d60, respectively. From the second week of life, the increase in the molar percentage of acetate and the ratio (acetate + butyrate):propionate (P<0·05) suggested that fibrolytic activity had begun. From d60, only minor changes in bacterial composition and activities occurred, showing that the bacterial carbohydrate-degrading capacity was established at 2 months of age.

  2. Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.

    PubMed

    De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter

    2015-08-18

    Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment.

  3. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  4. Accelerator experiments on the contribution of secondary particles to the production of cosmogenic nuclides in meteorites

    NASA Technical Reports Server (NTRS)

    Dragovitsch, P.; Englert, P.

    1985-01-01

    Through the interaction of galactic cosmic particle radiation (GCR) a wide variety of cosmogenic nuclides is produced in meteorites. They provide historical information about the cosmic radiation and the bombarded meteorites. An important way to understand the production mechanisms of cosmogenic nuclides in meteorites is to gather information about the depth and size dependence of the build-up of Galactic Rays Cosmic-secondary particles within meteorites of different sizes and chemical compositions. Simulation experiments with meteorite models offer an alternative to direct observation providing a data basis to describe the development and action of the secondary cascade induced by the GCR in meteorites.

  5. Experimental Study on Application of Boron Mud Secondary Resource to Oxidized Pellets Production

    NASA Astrophysics Data System (ADS)

    Fu, Xiao-Jiao; Chu, Man-Sheng; Zhao, Jia-Qi; Chen, Shuang-Yin; Liu, Zheng-Gen; Wang, Si-Yuan

    2017-07-01

    In order to realize comprehensive and massive treatment of boron mud secondary resource, fundamental study on boron mud applied to oxidized pellets production as additive was carried out in the paper under laboratory conditions. The effects of boron mud on the performance of oxidized pellets were investigated systemically, and boron mud was combined with other boron-rich material innovatively. The results showed that, within certain limits, boron mud can improve properties of oxidized pellets. The bentonite content decreased to 0.3 % when adding 1.0 % boron mud additive and the pellets met blast furnace requirements. With the combination additive content 0.8 %, bentonite content can be further decreased to 0.2 %, and the pellets properties were better than base pellet. Therefore, it was an effective way to reduce environmental pollution and optimize blast furnace operation by developing boron mud secondary resource as pellets additive.

  6. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    DOE PAGES

    Hasim, Sahar; Allison, David P.; Mendez, Berlin; ...

    2018-02-14

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less

  7. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasim, Sahar; Allison, David P.; Mendez, Berlin

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less

  8. Is a Schools' Performance Related to Technical Change?--A Study on the Relationship between Innovations and Secondary School Productivity

    ERIC Educational Resources Information Center

    Haelermans, Carla; Blank, Jos L. T.

    2012-01-01

    This paper examines the relation between innovations and productivity in Dutch secondary schools. Innovation clusters are directly included in the production model. In order to correct for differences between schools, we add school type, region and year controls. The results indicate that process innovations, teacher professionalization…

  9. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Garneau, Marie-Ã. Ve; Roy, SéBastien; Lovejoy, Connie; Gratton, Yves; Vincent, Warwick F.

    2008-07-01

    The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment of a research platform in Franklin Bay (70°N, 126°W) and provided a unique seasonal record of bacterial dynamics in a coastal region of the Arctic Ocean. Our objectives were (1) to relate seasonal bacterial abundance (BA) and production (BP) to physico-chemical characteristics and (2) to quantify the annual bacterial carbon flux. BA was estimated by epifluorescence microscopy and BP was estimated from 3H-leucine and 3H-thymidine assays. Mean BA values for the water column ranged from 1.0 (December) to 6.8 × 105 cells mL-1 (July). Integral BP varied from 1 (February) to 80 mg C m-2 d-1 (July). During winter-spring, BP was uncorrelated with chlorophyll a (Chl a), but these variables were significantly correlated during summer-autumn (rs = 0.68, p < 0.001, N = 38), suggesting that BP was subject to bottom-up control by carbon supply. Integrated BP data showed three distinct periods: fall-winter, late winter-late spring, and summer. A baseline level of BB and BP was maintained throughout late winter-late spring despite the persistent cold and darkness, with irregular fluctuations that may be related to hydrodynamic events. During this period, BP rates were correlated with colored dissolved organic matter (CDOM) but not Chl a (rs BP.CDOM∣Chl a = 0.20, p < 0.05, N = 176). Annual BP was estimated as 6 g C m-2 a-1, implying a total BP of 4.8 × 1010 g C a-1 for the Franklin Bay region. These results show that bacterial processes continue throughout all seasons and make a large contribution to the total biological carbon flux in this coastal arctic ecosystem.

  10. Shifts in community size structure drive temperature invariance of secondary production in a stream-warming experiment.

    PubMed

    Nelson, Daniel; Benstead, Jonathan P; Huryn, Alexander D; Cross, Wyatt F; Hood, James M; Johnson, Philip W; Junker, James R; Gíslason, Gísli M; Ólafsson, Jón S

    2017-07-01

    A central question at the interface of food-web and climate change research is how secondary production, or the formation of heterotroph biomass over time, will respond to rising temperatures. The metabolic theory of ecology (MTE) hypothesizes the temperature-invariance of secondary production, driven by matched and opposed forces that reduce biomass of heterotrophs while increasing their biomass turnover rate (production : biomass, or P:B) with warming. To test this prediction at the whole community level, we used a geothermal heat exchanger to experimentally warm a stream in southwest Iceland by 3.8°C for two years. We quantified invertebrate community biomass, production, and P : B in the experimental stream and a reference stream for one year prior to warming and two years during warming. As predicted, warming had a neutral effect on community production, but this result was not driven by opposing effects on community biomass and P:B. Instead, warming had a positive effect on both the biomass and production of larger-bodied, slower-growing taxa (e.g., larval black flies, dipteran predators, snails) and a negative effect on small-bodied taxa with relatively high growth rates (e.g., ostracods, larval chironomids). We attribute these divergent responses to differences in thermal preference between small- vs. large-bodied taxa. Although metabolic demand vs. resource supply must ultimately constrain community production, our results highlight the potential for idiosyncratic community responses to warming, driven by variation in thermal preference and body size within regional species pools. © 2017 by the Ecological Society of America.

  11. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom.

    PubMed

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-09-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB.

  12. Addressing the risk of bacterial contamination in platelets: a hospital economic perspective.

    PubMed

    Li, Justin W; Brecher, Mark E; Jacobson, Jessica L; Harm, Sarah K; Chen, Dorothy; El-Gamil, Audrey; Dobson, Al; Mintz, Paul D

    2017-10-01

    Bacterially contaminated platelets (PLTs) remain a serious risk. The Food and Drug Administration has issued draft guidance recommending hospitals implement secondary testing or transfuse PLTs that have been treated with pathogen reduction technology (PRT). The cost implications of these approaches are not well understood. We modeled incurred costs when hospitals acquire, process, and transfuse PLTs that are PRT treated with INTERCEPT (Cerus Corp.) or secondary tested with the PLT PGD Test (Verax Biomedical). Hospitals will spend $221.27 (30.0%) more per PRT-treated apheresis PLT unit administered compared to a Zika-tested apheresis PLT unit that is irradiated and PGD tested in hospital. This difference is reflected in PRT PLT units having: 1) a higher hospital purchase price ($100.00 additional charge compared to an untreated PLT); 2) lower therapeutic effectiveness than untreated PLTs among hematologic-oncologic patients, which contributes to additional transfusions ($96.05); or 3) fewer PLT storage days, which contributes to higher outdating cost from expired PLTs ($67.87). Only a small portion of the incremental costs for PRT-treated PLTs are offset by costs that may be avoided, including primary bacterial culture, secondary bacterial testing ($26.65), hospital irradiation ($8.50), Zika testing ($4.47), and other costs ($3.03). The significantly higher cost of PRT-treated PLTs over PGD-tested PLTs should interest stakeholders. For hospitals that outdate PLTs, savings associated with expiration extension to 7 days by adding PGD testing will likely be substantially greater than the cost of implementing PGD-testing. Our findings might usefully inform a hospital's decision to select a particular blood safety approach. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  13. Production of secondary metabolites by some terverticillate penicillia on carbohydrate-rich and meat substrates.

    PubMed

    Núñez, Félix; Westphal, Carmen D; Bermúdez, Elena; Asensio, Miguel A

    2007-12-01

    Most terverticillate penicillia isolated from dry-cured meat products are toxigenic, but their ability to produce hazardous metabolites on meat-based substrates is not well known. The production of extrolites by selected terverticillate penicillia isolated from dry-cured ham has been studied on carbohydrate-rich media (malt extract agar, Czapek yeast autolysate agar, rice extract agar, and rice), meat extract triolein salt agar, and ham slices. Chloroform extracts from the selected strains grown on malt extract agar were toxic for the brine shrimp (Artemia salina) larvae and VERO cells at a concentration of 2 mg/ml, but 0.02 mg/ml produced no toxic effect. Analysis by high-pressure liquid chromatography (HPLC) coupled with photodiode array detection (DAD) or with mass spectrometry (MS) and an atmospheric pressure chemical ionization (APCI) source revealed different biologically active metabolites: cyclopiazonic acid and rugulovasine A from Penicillium commune; verrucosidin, anacine, puberuline, verrucofortine, and viridicatols from Penicillium polonicum; arisugacin and viridicatols from Penicillium echinulatum; and compactin and viridicatols from Penicillium solitum. Most of these metabolites, including the amino acid-derived compounds, were produced in the media containing high levels of carbohydrates. High concentrations of nitrogen compounds in the medium does not imply a greater production of the metabolites studied, not even those derived from the amino acids. However, molds growing on dry-cured ham are able to synthesize limited amounts of some secondary metabolites, a fact not previously reported. The combination of HPLC coupled with DAD and MS-APCI was useful for identification of closely related terverticillate Penicillium species from dry-cured ham. These techniques could be used to characterize the risk associated with the potential production of secondary metabolites in cured meats.

  14. Effects of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans.

    PubMed

    Wang, Yi; Lu, Zhenyu; Sun, Kunlai; Zhu, Weiming

    2011-01-01

    To obtain structurally novel and bioactive natural compounds from marine-derived microorganisms, the effect of high salt stress on secondary metabolite production in the marine-derived fungal strain, Spicaria elegans KLA-03, was investigated. The organism, which was isolated from marine sediment, produced different secondary metabolites when cultured in 3% and 10% saline conditions. Four characteristic metabolites, only produced in the 10% salinity culture, were isolated, and their structures were identified as (2E,2'Z)-3,3'-(6,6'-dihydroxybiphenyl-3,3'-diyl)diacrylic acid (1), aspulvinone E (2), aspochalasin E (3) and trichodermamide B (6), according to their 1D and 2D NMR spectra. Compound 1 is a new compound. High salt stress may therefore be a promising means to induce the production of new and chlorinated compounds in halotolerant fungi. Compound 1 showed moderate antibacterial activity against Pseudomonas aeruginosa and Escherichia coli with minimum inhibitory concentration (MIC) values of 0.038 and 0.767 mM, respectively.

  15. Phage selection for bacterial cheats leads to population decline

    PubMed Central

    Vasse, Marie; Torres-Barceló, Clara; Hochberg, Michael E.

    2015-01-01

    While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. PMID:26538598

  16. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  17. Ergonomics and safety in secondary wood processing

    Treesearch

    Rado Gazo; James D. McGlothlin; Yuehwern, Wiedenbeck, Jan Yih; Yuehwern Yih

    2002-01-01

    The main goal of the project was to initiate a pilot program in ergonomics for the secondary wood products industry. Case studies were conducted at three Midwest secondary wood product companies in 2000 and 2001.

  18. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurburg, Stephanie D.; Nunes, Inês; Stegen, James C.

    The response of bacterial communities to environmental change may affect local to global nutrient cycles; however the dynamics of these communities following disturbance are poorly understood, and are generally attributed to abiotic factors. Here, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days of recovery. Phylogenetic turnover patterns indicated that biotic interactions shaped the community during recovery, and that the disturbance imposed a strong selective pressure that persisted for up to 10 days, after which the importance of stochastic processes increased. Three successional stages were detected: a primary response (1-4more » days after disturbance) in which surviving taxa increased in abundance; a secondary response phase (10-29 days), during which community dynamics slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Soil bacterial communities, despite their extreme diversity and functional redundancy, respond to disturbances like many macroecological systems and exhibit path-dependent, autogenic dynamics during secondary succession.« less

  19. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    PubMed

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. © 2015 Institute of Food Technologists®

  20. Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production.

    PubMed

    Ushani, U; Kavitha, S; Johnson, M; Yeom, Ick Tae; Banu, J Rajesh

    2017-01-01

    In this study, surfactant dioctyl sodium sulphosuccinate (DOSS)-mediated immobilized bacterial pretreatment of waste activated sludge (WAS) was experimentally proved to be an efficient and economically feasible process for enhancing the biodegradability of WAS. The maximal floc disruption with negligible cell cleavage was achieved at surfactant dosage of 0.009 g/g SS. Results of the outcome of bacterial pretreatment of sludge biomass revealed that chemical oxygen demand (COD) solubilization for deflocculated (EPS removed-bacterially pretreated) sludge was 20 %, which was higher than that of flocculated (14 %) or control (5 %). The pretreatment was swift in deflocculated sludge with a rate constant of about 0.064 h -1 . Biochemical methane potential (BMP) assay resulted in significant methane yield at 0.24 gCOD/gCOD for deflocculated sludge. Economic assessment of the proposed method showed a net profit of about 57.39 USD/ton of sludge.

  1. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    PubMed

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  2. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.

    PubMed

    Hong, Feng; Guo, Xiang; Zhang, Shuo; Han, Shi-fen; Yang, Guang; Jönsson, Leif J

    2012-01-01

    Cotton-based waste textiles were explored as alternative feedstock for production of bacterial cellulose (BC) by Gluconacetobacter xylinus. The cellulosic fabrics were treated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). [AMIM]Cl caused 25% inactivation of cellulase activity at a concentration as low as of 0.02 g/mL and decreased BC production during fermentation when present in concentrations higher than 0.0005 g/mL. Therefore, removal of residual IL by washing with hot water was highly beneficial to enzymatic saccharification as well as BC production. IL-treated fabrics exhibited a 5-7-fold higher enzymatic hydrolysis rate and gave a seven times larger yield of fermentable sugars than untreated fabrics. BC from cotton cloth hydrolysate was obtained at an yield of 10.8 g/L which was 83% higher than that from the culture grown on glucose-based medium. The BC from G. xylinus grown on IL-treated fabric hydrolysate had a 79% higher tensile strength than BC from glucose-based culture medium which suggests that waste cotton pretreated with [AMIM]Cl has potential to serve as a high-quality carbon source for BC production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Urban aerosols harbor diverse and dynamic bacterial populations

    PubMed Central

    Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.

    2007-01-01

    Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744

  4. Activation of the Silent Secondary Metabolite Production by Introducing Neomycin-Resistance in a Marine-Derived Penicillium purpurogenum G59

    PubMed Central

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-01-01

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α,6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1–5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1–5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways. PMID:25913704

  5. Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59.

    PubMed

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-04-22

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1-5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1-5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.

  6. Biliary bacterial factors determine the path of gallstone formation.

    PubMed

    Stewart, Lygia; Grifiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2006-11-01

    Bacteria cause pigment gallstones and can act as a nidus for cholesterol gallstone formation. Bacterial factors that facilitate gallstone formation include beta-glucuronidase (bG), phospholipase (PhL), and slime. The current study sought to determine whether bacterial factors influence the path of gallstone formation. A total of 382 gallstones were cultured and/or examined using scanning electron microscopy (SEM). Bacteria were tested for bG and slime production. Gallstone composition was determined using infrared spectrography. Ca-palmitate presence documented bacterial PhL production. Groups were identified based upon bacterial factors present: slime and bGPhL (slime/bGPhL), bGPhL only, and slime only. Influence of bacterial stone-forming factors on gallstone composition and morphology was analyzed. Bacteria were present in 75% of pigment, 76% of mixed, and 20% of cholesterol stones. Gallstones with bGPhL producing bacteria contained more pigment (71% vs. 26%, P < .0001). The slime/bGPhL group was associated (79%) with pigment stones, bGPhL was associated (56%) with mixed stones, while slime (or none) only was associated (67%) with cholesterol stones (P < .031, all comparisons). Bacterial properties determined the path of gallstone formation. Bacteria that produced all stone-forming factors promoted pigment stone formation, while those that produced only bGPhL promoted mixed stone formation. Bacteria that only produced slime lacked the ability to generate pigment solids, and consequently were more common in the centers of cholesterol stones. This shows how bacterial characteristics may govern the process of gallstone formation.

  7. Biological evaluation of hyperforin and its hydrogenated analogue on bacterial growth and biofilm production.

    PubMed

    Schiavone, Brigida Immacolata Pia; Rosato, Antonio; Marilena, Muraglia; Gibbons, Simon; Bombardelli, Ezio; Verotta, Luisella; Franchini, Carlo; Corbo, Filomena

    2013-09-27

    Bacterial biofilms are organized communities of microorganisms, embedded in a self-produced matrix, growing on a biotic surface and resistant to many antimicrobial agents when associated with a medical device. These biofilms require the development of new strategies for the prevention and treatment of infectious disease, including the potential use of natural products. One interesting natural product example is Hypericum, a plant genus that contains species known to have antimicrobial properties. The major constituent of Hypericum perforatum is an unstable compound named hyperforin (1); for this reason it was not believed to play a significant role in the pharmacological effects. In this investigation a hydrogenated hyperforin analogue (2) was tested on several ATCC and clinical isolate strains, in their planktonic and biofilm form (Staphylococcus aureus, MRSA, and Enterococcus faecalis). Compound 2 was effective against planktonic and biofilm cultures, probably due to higher stability, showing the percentage of cells killed in the range from 45% to 52%. These results are noteworthy from the point of view of future development of these polyprenylated phloroglucinols as potential antibiotics.

  8. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus.

    PubMed

    Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Wang, Bo; Shi, Si-Lan; Chen, Xue-Fang; Lin, Xiao-Qing; Wang, Can; Luo, Jun; Chen, Xin-De

    2016-01-20

    In this study, lipid fermentation wastewater (fermentation broth after separation with yeast biomass) with high Chemical Oxygen Demand (COD) value of 25,591 mg/L was used as substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus for the first time. After 5 days of fermentation, the highest BC yield (0.659 g/L) was obtained. Both monosaccharide and polysaccharides present in lipid fermentation wastewater could be utilized by G. xylinus simultaneously during fermentation. By this bioconversion, 30.0% of COD could be removed after 10 days of fermentation and the remaining wastewater could be used for further BC fermentation. The crystallinity of BC samples in lipid fermentation wastewater increased gradually during fermentation but overall the environment of lipid fermentation wastewater showed small influence on BC structure by comparison with that in traditional HS medium by using FE-SEM, FTIR, and XRD. By this work, the possibility of using lipid fermentation wastewater containing low value carbohydrate polymer (extracellular polysaccharides) for high value carbohydrate polymer (BC) production was proven. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Amylase production potentials of bacterial isolates obtained from the gut of Oryctes rhinoceros larvae

    NASA Astrophysics Data System (ADS)

    Aryati, P. C.; Pangastuti, A.; Sari, S. L. A.

    2017-04-01

    Amylase is one of the main enzymes used in industry, such as food, detergent, textile, and pharmaceutical industry. Amylase can be produced by plants, animals, and microorganisms. However, bacterial and fungal amylases have dominated application in industries. This research was aimed to determine amylolytic activity of bacteria isolated from the gut of Oryctes rhinoceros larvae. Based on clear zone formation, 9 from 11 isolates showed amylolytic activity. Isolates with the widest clear zone, i.e Bacillus subtilis GOR1, Bacillus cereus GOR3, and Bacillus pumilus GOR2, were screened for amylolytic activity based on reduction sugar production. The result showed that Bacillus subtilis GOR1 was the most potential as amylase producer, showed by the widest clear zone 5.224 cm2 and highest reduction sugar production 0.0235 mg/ml. Highest amylase specific activity (0.1447 U/mg protein) was obtained at 60°C and pH 7. Amylase activity was stable for 3 hours at 60°C with residual activity respectively was 59.7%.

  10. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    PubMed Central

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  11. Agricultural and management practices and bacterial contamination in greenhouse versus open field lettuce production.

    PubMed

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-12-23

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards.

  12. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes.

    PubMed

    Hadjithomas, Michalis; Chen, I-Min A; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C; Ivanova, Natalia N

    2017-01-04

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Comprehensive separation of secondary metabolites in natural products by high-speed counter-current chromatography using a three-phase solvent system.

    PubMed

    Yanagida, Akio; Yamakawa, Yutaka; Noji, Ryoko; Oda, Ako; Shindo, Heisaburo; Ito, Yoichiro; Shibusawa, Yoichi

    2007-06-01

    High-speed counter-current chromatography (HSCCC) using the three-phase solvent system n-hexane-methyl acetate-acetonitrile-water at a volume ratio of 4:4:3:4 was applied to the comprehensive separation of secondary metabolites in several natural product extracts. A wide variety of secondary metabolites in each natural product was effectively extracted with the three-phase solvent system, and the filtered extract was directly submitted to the HSCCC separation using the same three-phase system. In the HSCCC profiles of crude natural drugs listed in the Japanese Pharmacopoeia, several physiologically active compounds were clearly separated from other components in the extracts. The HSCCC profiles of several tea products, each manufactured by a different process, clearly showed their compositional difference in main compounds such as catechins, caffeine, and pigments. These HSCCC profiles also provide useful information about hydrophobic diversity of whole components present in each natural product.

  14. Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G59.

    PubMed

    Chai, Yun-Jing; Cui, Cheng-Bin; Li, Chang-Wei; Wu, Chang-Jing; Tian, Cong-Kui; Hua, Wei

    2012-03-01

    A new approach to activate silent gene clusters for dormant secondary metabolite production has been developed by introducing gentamicin-resistance to an originally inactive, marine-derived fungal strain Penicillium purpurogenum G59. Upon treatment of the G59 spores with a high concentration of gentamicin in aqueous DMSO, a total of 181 mutants were obtained by single colony isolation. In contrast to the strain G59, the EtOAc extracts of nine mutant cultures showed inhibitory effects on K562 cells, indicating that the nine mutants had acquired capability to produce antitumor metabolites. This was evidenced by TLC and HPLC analysis of EtOAc extracts of G59 and the nine mutants. Further isolation and characterization demonstrated that four antitumor secondary metabolites, janthinone (1), fructigenine A (2), aspterric acid methyl ester (3) and citrinin (4), were newly produced by mutant 5-1-4 compared to the parent strain G59, and which were also not found in the secondary metabolites of other Penicillium purpurogenum strains. However, Compounds 1-4 inhibited the proliferation of K562 cells with inhibition rates of 34.6% (1), 60.8% (2), 31.7% (3) and 67.1% (4) at 100 μg/mL, respectively. The present study demonstrated the effectiveness of a simple, yet practical approach to activate the production of dormant fungal secondary metabolites by introducing acquired resistance to aminoglycoside antibiotics, which could be applied to the studies for eliciting dormant metabolic potential of fungi to obtain cryptic secondary metabolites.

  15. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  16. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  17. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams.

    PubMed

    Kamjunke, Norbert; Herzsprung, Peter; Neu, Thomas R

    2015-02-15

    Streams and rivers are important sites of organic carbon mineralization which is dependent on the land use within river catchments. Here we tested whether planktonic and epilithic biofilm bacteria differ in their response to the quality of dissolved organic carbon (DOC). Thus, planktonic and biofilm bacterial production was compared with patterns of DOC along a land-use gradient in the Bode catchment area (Germany). The freshness index of DOC was positively related to the proportion of agricultural area in the catchment. The humification index correlated with the proportion of forest area. Abundance and production of planktonic bacteria were lower in headwaters than at downstream sites. Planktonic production was weakly correlated to the total concentration of DOC but more strongly to quality-measures as revealed by spectra indexes, i.e. positively to the freshness index and negatively to the humification index. In contrast to planktonic bacteria, abundance and production of biofilm bacteria were independent of DOC quality. This finding may be explained by the association of biofilm bacteria with benthic algae and an extracellular matrix which represent additional substrate sources. The data show that planktonic bacteria seem to be regulated at a landscape scale controlled by land use, whereas biofilm bacteria are regulated at a biofilm matrix scale controlled by autochthonous production. Thus, the effects of catchment-scale land use changes on ecosystem processes are likely lower in small streams dominated by biofilm bacteria than in larger streams dominated by planktonic bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Evaluation of Bacterial Contamination of Clipper Blades in Small Animal Private Practice.

    PubMed

    Mount, Rebecca; Schick, Anthea E; Lewis, Thomas P; Newton, Heide M

    2016-01-01

    Nosocomial infections are a growing concern in veterinary hospitals, and identifying fomites is imperative to reducing the risk of pathogen transmission. In veterinary medicine, shaving of hair is necessary prior to many procedures. Contaminated clipper blades have been cited as potential fomites involved in the transmission of pathogens in veterinary and human medicine. The primary goal of this study was to evaluate bacterial contamination of clipper blades in veterinary practices. A secondary goal was to assess whether there was an association between bacterial contamination of clipper blades and clipper blade cleaning solutions, clipper blade cleaning protocols, clipper blade storage, and type of practice. Sixty clipper blades from 60 different practices were cultured. Information regarding blade cleaning solutions, protocols, and storage was collected from each practice. Fifty-one percent (31/60) of clipper blades sampled were contaminated with bacteria. Category of cleaning solutions had a significant association with bacterial contamination (P < 0.02). Cleaning frequency (P = 0.55), storage location (P = 0.26), and practice type (P = 0.06) had no significant association with bacterial contamination. This study documented bacterial contamination of clipper blades in veterinary practices, and clipper blades should be considered potential fomites.

  19. Identifying productive resources in secondary school students' discourse about energy

    NASA Astrophysics Data System (ADS)

    Harrer, Benedikt

    A growing program of research in science education acknowledges the beginnings of disciplinary reasoning in students' ideas and seeks to inform instruction that responds productively to these disciplinary progenitors in the moment to foster their development into sophisticated scientific practice. This dissertation examines secondary school students' ideas about energy for progenitors of disciplinary knowledge and practice. Previously, researchers argued that students' ideas about energy were constrained by stable and coherent conceptual structures that conflicted with an assumed unified scientific conception and therefore needed to be replaced. These researchers did not attend to the productive elements in students' ideas about energy. To analyze the disciplinary substance in students' ideas, a theoretical perspective was developed that extends Hammer and colleagues' resources framework. This elaboration allows for the identification of disciplinary productive resources---i.e., appropriately activated declarative and procedural pieces of knowledge---in individual students' utterances as well as in the interactions of multiple learners engaged in group learning activities. Using this framework, original interview transcripts from one of the most influential studies of students' ideas about energy (Watts, 1983. Some alternative views of energy. Physics Education, 18/5, 213-217) were analyzed. Disciplinary productive resources regarding the ontology of energy, indicators for energy, and mechanistic reasoning about energy were found to be activated by interviewed students. These valuable aspects were not recognized by the original author. An interpretive analysis of video recorded student-centered discourse in rural Maine middle schools was carried out to find cases of resource activation in classroom discussions. Several cases of disciplinary productive resources regarding the nature of energy and its forms as well as the construction of a mechanistic energy story

  20. Multi-parameter flow cytometry as a process analytical technology (PAT) approach for the assessment of bacterial ghost production.

    PubMed

    Langemann, Timo; Mayr, Ulrike Beate; Meitz, Andrea; Lubitz, Werner; Herwig, Christoph

    2016-01-01

    Flow cytometry (FCM) is a tool for the analysis of single-cell properties in a cell suspension. In this contribution, we present an improved FCM method for the assessment of E-lysis in Enterobacteriaceae. The result of the E-lysis process is empty bacterial envelopes-called bacterial ghosts (BGs)-that constitute potential products in the pharmaceutical field. BGs have reduced light scattering properties when compared with intact cells. In combination with viability information obtained from staining samples with the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylarbituric acid) trimethine oxonol (DiBAC4(3)), the presented method allows to differentiate between populations of viable cells, dead cells, and BGs. Using a second fluorescent dye RH414 as a membrane marker, non-cellular background was excluded from the data which greatly improved the quality of the results. Using true volumetric absolute counting, the FCM data correlated well with cell count data obtained from colony-forming units (CFU) for viable populations. Applicability of the method to several Enterobacteriaceae (different Escherichia coli strains, Salmonella typhimurium, Shigella flexneri 2a) could be shown. The method was validated as a resilient process analytical technology (PAT) tool for the assessment of E-lysis and for particle counting during 20-l batch processes for the production of Escherichia coli Nissle 1917 BGs.

  1. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa.

    PubMed

    Patra, Partha; Natarajan, K A

    2006-06-15

    Selective separation of pyrite and galena from mixture of the two minerals was achieved through interaction with cells and metabolic products from a culture of Paenibacillus polymyxa. Adsorption of cells and metabolic products onto minerals and electrokinetic studies of minerals after interaction with cells and metabolic products were carried out to examine the resulting surface modification on the mineral surfaces. Flocculation and flotation techniques were successfully applied in the selective separation of minerals after bacterial interaction. The effect of varying conditions for production of extracellular polysaccharides and protein provided an insight into the possible mechanism involved in microbially induced flocculation and flotation of pyrite and galena.

  2. Primary bacterial peritonitis in dogs and cats: 24 cases (1990-2006).

    PubMed

    Culp, William T N; Zeldis, Tracy E; Reese, Michael S; Drobatz, Kenneth J

    2009-04-01

    To determine clinical characteristics of primary bacterial peritonitis (infection of the peritoneal cavity with no identifiable intraperitoneal source of infection) and compare characteristics of primary and secondary peritonitis in dogs and cats. Retrospective case series. 24 (primary peritonitis) and 60 (secondary peritonitis) client-owned dogs and cats. Data from medical records of dogs and cats with primary and secondary peritonitis were reviewed for descriptive information regarding primary peritonitis and for comparison between the 2 forms of peritonitis. 15 dogs and 9 cats met inclusion criteria for primary peritonitis, and 49 dogs and 11 cats met inclusion criteria for secondary peritonitis. The most common historical findings in dogs and cats with primary and secondary peritonitis were lethargy, vomiting, and anorexia. Dogs with secondary peritonitis more often developed peritoneal exudates than those with primary peritonitis, and dogs with primary peritonitis were more often infected with gram-positive bacteria than those with secondary peritonitis. No difference in outcome was detected between all animals with primary versus secondary peritonitis; however, dogs with secondary peritonitis treated with surgery were more commonly discharged than those with primary peritonitis treated with surgery. Differences in primary and secondary peritonitis related to historical, physical examination, and clinical laboratory findings; bacteriologic findings; peritoneal effusion characteristics; and outcome were detected. However, larger case numbers are needed before alternative recommendations, such as avoidance of surgery, can be made.

  3. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilbronn, L.; Iwata, Y.; Murakami, T.

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity,more » with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.« less

  4. Bacterial diversity in water injection systems of Brazilian offshore oil platforms.

    PubMed

    Korenblum, Elisa; Valoni, Erika; Penna, Mônica; Seldin, Lucy

    2010-01-01

    Biogenic souring and microbial-influenced corrosion is a common scenario in water-flooded petroleum reservoirs. Water injection systems are continuously treated to control bacterial contamination, but some bacteria that cause souring and corrosion can persist even after different treatments have been applied. Our aim was to increase our knowledge of the bacterial communities that persist in the water injection systems of three offshore oil platforms in Brazil. To achieve this goal, we used a culture-independent molecular approach (16S ribosomal RNA gene clone libraries) to analyze seawater samples that had been subjected to different treatments. Phylogenetic analyses revealed that the bacterial communities from the different platforms were taxonomically different. A predominance of bacterial clones affiliated with Gammaproteobacteria, mostly belonging to the genus Marinobacter (60.7%), were observed in the platform A samples. Clones from platform B were mainly related to the genera Colwellia (37.9%) and Achromobacter (24.6%), whereas clones obtained from platform C were all related to unclassified bacteria. Canonical correspondence analyses showed that different treatments such as chlorination, deoxygenation, and biocide addition did not significantly influence the bacterial diversity in the platforms studied. Our results demonstrated that the injection water used in secondary oil recovery procedures contained potentially hazardous bacteria, which may ultimately cause souring and corrosion.

  5. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death

    PubMed Central

    Fan, Yanhua; Liu, Xi; Keyhani, Nemat O.; Tang, Guirong; Pei, Yan; Zhang, Wenwen; Tong, Sheng

    2017-01-01

    The regulatory network and biological functions of the fungal secondary metabolite oosporein have remained obscure. Beauveria bassiana has evolved the ability to parasitize insects and outcompete microbial challengers for assimilation of host nutrients. A novel zinc finger transcription factor, BbSmr1 (B. bassiana secondary metabolite regulator 1), was identified in a screen for oosporein overproduction. Deletion of Bbsmr1 resulted in up-regulation of the oosporein biosynthetic gene cluster (OpS genes) and constitutive oosporein production. Oosporein production was abolished in double mutants of Bbsmr1 and a second transcription factor, OpS3, within the oosporein gene cluster (ΔBbsmr1ΔOpS3), indicating that BbSmr1 acts as a negative regulator of OpS3 expression. Real-time quantitative PCR and a GFP promoter fusion construct of OpS1, the oosporein polyketide synthase, indicated that OpS1 is expressed mainly in insect cadavers at 24–48 h after death. Bacterial colony analysis in B. bassiana-infected insect hosts revealed increasing counts until host death, with a dramatic decrease (∼90%) after death that correlated with oosporein production. In vitro studies verified the inhibitory activity of oosporein against bacteria derived from insect cadavers. These results suggest that oosporein acts as an antimicrobial compound to limit microbial competition on B. bassiana-killed hosts, allowing the fungus to maximally use host nutrients to grow and sporulate on infected cadavers. PMID:28193896

  6. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death.

    PubMed

    Fan, Yanhua; Liu, Xi; Keyhani, Nemat O; Tang, Guirong; Pei, Yan; Zhang, Wenwen; Tong, Sheng

    2017-02-28

    The regulatory network and biological functions of the fungal secondary metabolite oosporein have remained obscure. Beauveria bassiana has evolved the ability to parasitize insects and outcompete microbial challengers for assimilation of host nutrients. A novel zinc finger transcription factor, BbSmr1 ( B. bassiana secondary metabolite regulator 1), was identified in a screen for oosporein overproduction. Deletion of Bbsmr1 resulted in up-regulation of the oosporein biosynthetic gene cluster ( OpS genes) and constitutive oosporein production. Oosporein production was abolished in double mutants of Bbsmr1 and a second transcription factor, OpS3 , within the oosporein gene cluster ( ΔBbsmr1ΔOpS3 ), indicating that BbSmr1 acts as a negative regulator of OpS3 expression. Real-time quantitative PCR and a GFP promoter fusion construct of OpS1 , the oosporein polyketide synthase, indicated that OpS1 is expressed mainly in insect cadavers at 24-48 h after death. Bacterial colony analysis in B. bassiana -infected insect hosts revealed increasing counts until host death, with a dramatic decrease (∼90%) after death that correlated with oosporein production. In vitro studies verified the inhibitory activity of oosporein against bacteria derived from insect cadavers. These results suggest that oosporein acts as an antimicrobial compound to limit microbial competition on B. bassiana -killed hosts, allowing the fungus to maximally use host nutrients to grow and sporulate on infected cadavers.

  7. A Comparison of Parameterizations of Secondary Organic Aerosol Production: Global Budget and Spatiotemporal Variability

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.

    2014-12-01

    Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.

  8. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.

    PubMed

    Negandhi, Karita; Laurion, Isabelle; Lovejoy, Connie

    2016-08-01

    One consequence of High Arctic permafrost thawing is the formation of small ponds, which release greenhouse gases (GHG) from stored carbon through microbial activity. Under a climate with higher summer air temperatures and longer ice-free seasons, sediments of shallow ponds are likely to become warmer, which could influence enzyme kinetics or select for less cryophilic microbes. There is little data on the direct temperature effects on GHG production and consumption or on microbial communities' composition in Arctic ponds. We investigated GHG production over 16 days at 4°C and 9°C in sediments collected from four thaw ponds. Consistent with an enzymatic response, production rates of CO2 and CH4 were significantly greater at higher temperatures, with Q10 varying from 1.2 to 2.5. The bacterial community composition from one pond was followed through the incubation by targeting the V6-V8 variable regions of the 16S rRNA gene and 16S rRNA. Several rare taxa detected from rRNA accounted for significant community compositional changes. At the higher temperature, the relative community contribution from Bacteroidetes decreased by 15% with compensating increases in Betaproteobacteria, Alphaproteobacteria, Firmicutes, Acidobacteria, Verrucomicrobia and Actinobacteria. The increase in experimental GHG production accompanied by changes in community indicates an additional factor to consider in sediment environments when evaluating future climate scenarios. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract--an agro-industry waste.

    PubMed

    Rani, Mahadevaswamy Usha; Rastogi, Navin K; Appaiah, K A Anu

    2011-07-01

    During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5- 8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5- 2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

  10. The role of respiratory viruses in the etiology of bacterial pneumonia: An ecological perspective.

    PubMed

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-02-15

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  11. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    PubMed

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The Articulation of Secondary and Post-Secondary Vocational Education Programs. Workshop Products.

    ERIC Educational Resources Information Center

    Keene State Coll., NH.

    As a result of the cooperative efforts in articulation by secondary/postsecondary instructor teams, six packages representing the occupational areas of child care, culinary arts, electronics, health occupations, power mechanics, and industrial welding were developed. Each package contains the following three components: a series of job titles…

  13. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios

    PubMed Central

    Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2016-01-01

    ABSTRACT Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2. The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4. RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria. The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia. Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic

  14. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios.

    PubMed

    Juottonen, Heli; Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2017-02-15

    Northern peatlands in general have high methane (CH 4 ) emissions, but individual peatlands show considerable variation as CH 4 sources. Particularly in nutrient-poor peatlands, CH 4 production can be low and exceeded by carbon dioxide (CO 2 ) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO 2 to CH 4 produced. After [ 13 C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH 4 and CO 2 The oligotrophic fen had lower CH 4 production but produced 3 to 59 times more CO 2 than CH 4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH 4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO 2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH 4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO 2 production in peatlands. Peatlands are major sources of the greenhouse gas methane (CH 4 ), yet in many peatlands, CO 2 production from unresolved anaerobic processes exceeds CH 4 production. Anaerobic

  15. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway.

    PubMed

    Podsiad, Amy; Standiford, Theodore J; Ballinger, Megan N; Eakin, Richard; Park, Pauline; Kunkel, Steven L; Moore, Bethany B; Bhan, Urvashi

    2016-03-01

    Postinfluenza bacterial pneumonia is associated with significant mortality and morbidity. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression posttranscriptionally. miR-155 has recently emerged as a crucial regulator of innate immunity and inflammatory responses and is induced in macrophages during infection. We hypothesized upregulation of miR-155 inhibits IL-17 and increases susceptibility to secondary bacterial pneumonia. Mice were challenged with 100 plaque-forming units H1N1 intranasally and were infected with 10(7) colony-forming units of MRSA intratracheally at day 5 postviral challenge. Lungs were harvested 24 h later, and expression of miR-155, IL-17, and IL-23 was measured by real-time RT-PCR. Induction of miR-155 was 3.6-fold higher in dual-infected lungs compared with single infection. miR-155(-/-) mice were protected with significantly lower (4-fold) bacterial burden and no differences in viral load, associated with robust induction of IL-23 and IL-17 (2.2- and 4.8-fold, respectively) postsequential challenge with virus and bacteria, compared with WT mice. Treatment with miR-155 antagomir improved lung bacterial clearance by 4.2-fold compared with control antagomir postsequential infection with virus and bacteria. Moreover, lung macrophages collected from patients with postviral bacterial pneumonia also had upregulation of miR-155 expression compared with healthy controls, consistent with observations in our murine model. This is the first demonstration that cellular miRNAs regulate postinfluenza immune response to subsequent bacterial challenge by suppressing the IL-17 pathway in the lung. Our findings suggest that antagonizing certain microRNA might serve as a potential therapeutic strategy against secondary bacterial infection. Copyright © 2016 the American Physiological Society.

  16. Estimation of lactic acid bacterial cell number by DNA quantification.

    PubMed

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2018-01-01

    Lactic acid bacteria are provided by fermented foods, beverages, medicines, and supplements. Because the beneficial effects of medicines and supplements containing functional lactic acid bacteria are related to the bacterial cell number, it is important to establish a simple method for estimating the total number of lactic acid bacterial cells in the products for quality control. Almost all of the lactic acid bacteria in the products are dead, however, making it difficult to estimate the total number of lactic acid bacterial cells in the products using a standard colony-counting method. Here we estimated the total lactic acid bacterial cell number in samples containing dead bacteria by quantifying the DNA. The number of viable Enterococcus faecalis 0831-07 cells decreased to less than 1 × 10 -8 by 15 min of heat treatment at 80°C. The amount of extracted DNA from heat-treated cells was 78% that of non-heated cells. The number of viable Lactobacillus paraplantarum 11-1 cells decreased to 1 × 10 -4 after 4 days culture. The amount of extracted DNA of the long-cultured cells, however, was maintained at 97%. These results suggest that cell number of lactic acid bacteria killed by heat-treatment or long-term culture can be estimated by DNA quantification.

  17. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    PubMed

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  18. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities

    PubMed Central

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems. PMID:23840423

  19. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Bacterially mediated mineralization of vaterite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos; Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Gonzalez-Muñoz, Maria Teresa; Rodriguez-Gallego, Manuel

    2007-03-01

    Myxococcus xanthus, a common soil bacterium, plays an active role in the formation of spheroidal vaterite. Bacterial production of CO 2 and NH 3 and the transformation of the NH 3 to NH4+ and OH -, thus increasing solution pH and carbonate alkalinity, set the physicochemical conditions (high supersaturation) leading to vaterite precipitation in the microenvironment around cells, and directly onto the surface of bacterial cells. In the latter case, fossilization of bacteria occurs. Vaterite crystals formed by aggregation of oriented nanocrystals with c-axis normal to the bacterial cell-wall, or to the core of the spherulite when bacteria were not encapsulated. While preferred orientation of vaterite c-axis appears to be determined by electrostatic affinity (ionotropic effect) between vaterite crystal (0001) planes and the negatively charged functional groups of organic molecules on the bacterium cell-wall or on extracellular polymeric substances (EPS), analysis of the changes in the culture medium chemistry as well as high resolution transmission electron microscopy (HRTEM) observations point to polymorph selection by physicochemical (kinetic) factors (high supersaturation) and stabilization by organics, both connected with bacterial activity. The latter is in agreement with inorganic precipitation of vaterite induced by NH 3 and CO 2 addition in the protein-rich sterile culture medium. Our results as well as recent studies on vaterite precipitation in the presence of different types of bacteria suggest that bacterially mediated vaterite precipitation is not strain-specific, and could be more common than previously thought.

  1. Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing

    PubMed Central

    Ortiz-Martínez, Sebastían; Silva, Andrea X.; Lavandero, Blas

    2018-01-01

    Bacterial endosymbionts that produce important phenotypic effects on their hosts are common among plant sap-sucking insects. Aphids have become a model system of insect-symbiont interactions. However, endosymbiont research has focused on a few aphid species, making it necessary to make greater efforts to other aphid species through different regions, in order to have a better understanding of the role of endosymbionts in aphids as a group. Aphid endosymbionts have frequently been studied by PCR-based techniques, using species-specific primers, nevertheless this approach may omit other non-target bacteria cohabiting a particular host species. Advances in high-throughput sequencing technologies are complementing our knowledge of microbial communities by allowing us the study of whole microbiome of different organisms. We used a 16S rRNA amplicon sequencing approach to study the microbiome of aphids in order to describe the bacterial community diversity in introduced populations of the cereal aphids, Sitobion avenae and Rhopalosiphum padi in Chile (South America). An absence of secondary endosymbionts and two common secondary endosymbionts of aphids were found in the aphids R. padi and S. avenae, respectively. Of those endosymbionts, Regiella insecticola was the dominant secondary endosymbiont among the aphid samples. In addition, the presence of a previously unidentified bacterial species closely related to a phytopathogenic Pseudomonad species was detected. We discuss these results in relation to the bacterial endosymbiont diversity found in other regions of the native and introduced range of S. avenae and R. padi. A similar endosymbiont diversity has been reported for both aphid species in their native range. However, variation in the secondary endosymbiont infection could be observed among the introduced and native populations of the aphid S. avenae, indicating that aphid-endosymbiont associations can vary across the geographic range of an aphid species. In

  2. Activation of the Dormant Secondary Metabolite Production by Introducing Gentamicin-Resistance in a Marine-Derived Penicillium purpurogenum G59

    PubMed Central

    Chai, Yun-Jing; Cui, Cheng-Bin; Li, Chang-Wei; Wu, Chang-Jing; Tian, Cong-Kui; Hua, Wei

    2012-01-01

    A new approach to activate silent gene clusters for dormant secondary metabolite production has been developed by introducing gentamicin-resistance to an originally inactive, marine-derived fungal strain Penicillium purpurogenum G59. Upon treatment of the G59 spores with a high concentration of gentamicin in aqueous DMSO, a total of 181 mutants were obtained by single colony isolation. In contrast to the strain G59, the EtOAc extracts of nine mutant cultures showed inhibitory effects on K562 cells, indicating that the nine mutants had acquired capability to produce antitumor metabolites. This was evidenced by TLC and HPLC analysis of EtOAc extracts of G59 and the nine mutants. Further isolation and characterization demonstrated that four antitumor secondary metabolites, janthinone (1), fructigenine A (2), aspterric acid methyl ester (3) and citrinin (4), were newly produced by mutant 5-1-4 compared to the parent strain G59, and which were also not found in the secondary metabolites of other Penicillium purpurogenum strains. However, Compounds 1–4 inhibited the proliferation of K562 cells with inhibition rates of 34.6% (1), 60.8% (2), 31.7% (3) and 67.1% (4) at 100 μg/mL, respectively. The present study demonstrated the effectiveness of a simple, yet practical approach to activate the production of dormant fungal secondary metabolites by introducing acquired resistance to aminoglycoside antibiotics, which could be applied to the studies for eliciting dormant metabolic potential of fungi to obtain cryptic secondary metabolites. PMID:22611354

  3. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    PubMed

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  4. Comparison of the structural basis for thermal stability between archaeal and bacterial proteins.

    PubMed

    Ding, Yanrui; Cai, Yujie; Han, Yonggang; Zhao, Bingqiang

    2012-01-01

    In this study, the structural basis for thermal stability in archaeal and bacterial proteins was investigated. There were many common factors that confer resistance to high temperature in both archaeal and bacterial proteins. These factors include increases in the Lys content, the bends and blanks of secondary structure, the Glu content of salt bridge; decreases in the number of main-side chain hydrogen bond and exposed surface area, and changes in the bends and blanks of amino acids. Certainly, the utilization of charged amino acids to form salt bridges is a primary factor. In both heat-resistant archaeal and bacterial proteins, most Glu and Asp participate in the formation of salt bridges. Other factors may influence either archaeal or bacterial protein thermostability, which includes the more frequent occurrence of shorter 3(10)-helices and increased hydrophobicity in heat-resistant archaeal proteins. However, there were increases in average helix length, the Glu content in salt bridges, temperature factors and decreases in the number of main-side chain hydrogen bonds, uncharged-uncharged hydrogen bonds, hydrophobicity, and buried and exposed polar surface area in heat-resistant bacterial proteins. Evidently, there are few similarities and many disparities between the heat-resistant mechanisms of archaeal and bacterial proteins.

  5. Formation of bacterial nanocells

    NASA Astrophysics Data System (ADS)

    Vainshtein, Mikhail; Kudryashova, Ekaterina; Suzina, Natalia; Ariskina, Elena; Voronkov, Vadim

    1998-07-01

    Existence of nanobacteria received increasing attention both in environmental microbiology/geomicro-biology and in medical microbiology. In order to study a production of nanoforms by typical bacterial cells. Effects of different physical factors were investigated. Treatment of bacterial cultures with microwave radiation, or culturing in field of electric current resulted in formation a few types of nanocells. The number and type of nanoforms were determined with type and dose of the treatment. The produced nanoforms were: i) globules, ii) clusters of the globules--probably produced by liaison, iii) nanocells coated with membrane. The viability of the globules is an object opened for doubts. The nanocells discovered multiplication and growth on solidified nutrient media. The authors suggest that formation of nanocells is a common response of bacteria to stress-actions produced by different agents.

  6. Soil bacterial community shifts associated with sugarcane straw removal

    NASA Astrophysics Data System (ADS)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  7. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis

    PubMed Central

    Molina-Ramírez, Carlos; Castro, Margarita; Osorio, Marlon; Torres-Taborda, Mabel; Gómez, Beatriz; Zuluaga, Robin; Gómez, Catalina; Gañán, Piedad; Rojas, Orlando J.; Castro, Cristina

    2017-01-01

    Bacterial cellulose (BC) is a polymer obtained by fermentation with microorganism of different genera. Recently, new producer species have been discovered, which require identification of the most important variables affecting cellulose production. In this work, the influence of different carbon sources in BC production by a novel low pH-resistant strain Komagataeibacter medellinensis was established. The Hestrin-Schramm culture medium was used as a reference and was compared to other media comprising glucose, fructose, and sucrose, used as carbon sources at three concentrations (1, 2, and 3% w/v). The BC yield and dynamics of carbon consumption were determined at given fermentation times during cellulose production. While the carbon source did not influence the BC structural characteristics, different production levels were determined: glucose > sucrose > fructose. These results highlight considerations to improve BC industrial production and to establish the BC property space for applications in different fields. PMID:28773001

  8. Bacterial endophytes enhance competition by invasive plants.

    PubMed

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  9. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  10. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  11. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

  12. Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides.

    PubMed

    Gharavi, E E; Chaimovich, H; Cucurull, E; Celli, C M; Tang, H; Wilson, W A; Gharavi, A E

    1999-01-01

    We previously induced pathogenic antibodies against anionic phospholipids (PL) in experimental animals by immunization with lipid-free purified human beta2glycoprotein I (beta2GPI). We hypothesized that antiphospholipid antibodies (aPL) are induced by in vivo binding of foreign beta2GPI to self-PL, thus forming an immunogenic complex against which aPL antibodies are produced. If this hypothesis is true, other PL-binding proteins that are products of ubiquitous viral/bacterial agents may also induce aPL. To test this hypothesis, groups of NIH/Swiss mice were immunized with synthetic peptides of viral and bacterial origin that share structural similarity with the putative PL-binding region of beta2GPI. Compared with the control groups, animals immunized with the peptides produced significantly higher levels of aPL and anti-beta2GPI antibodies. These findings demonstrate that some PL-binding viral and bacterial proteins function like beta2GPI in inducing aPL and anti-beta2GPI production, and are consistent with a role for such viral and bacterial proteins in inducing aPL antibody production in humans.

  13. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes.

    PubMed

    Subramani, Arun; Huang, Xiaofei; Hoek, Eric M V

    2009-08-01

    Nanofiltration (NF) and reverse osmosis (RO) membranes are commonly applied to produce highly purified water from municipal wastewater effluents. In these applications, biofouling limits overall process performance and increases the cost of operation. Initial bacteria adhesion onto a membrane surface is a critical early step in the overall process of membrane biofouling. However, adsorption of effluent organic matter onto the membrane may precede bacterial deposition and change membrane surface properties. Herein we employed direct microscopic observation to elucidate mechanisms governing bacterial cell deposition onto clean and organic-fouled NF and RO membranes. Bovine serum albumin (BSA) and alginic acid (AA) were used as models for protein and polysaccharide rich organic matter in secondary wastewater effluents. In all experiments, organic fouling increased membrane hydraulic resistance and salt rejection, in addition to interfacial hydrophilicity and roughness. Even though surface hydrophilicity increased, the rougher surfaces presented by organic-fouled membranes produced nano-scale features that promoted localized bacterial deposition. An extended DLVO analysis of bacterial cells and membrane surface properties suggested that bacterial deposition correlated most strongly with the Lewis acid-base free energy of adhesion and root mean square (RMS) roughness, whereas van der Waals and electrostatic free energies were weakly correlated. This was true for both clean and organic-fouled membranes. Bacterial deposition rates were clearly influenced by an antagonistic interplay between macroscopic surface hydrophilicity and nano-scale surface roughness.

  14. Multiple reservoirs contribute to intraoperative bacterial transmission.

    PubMed

    Loftus, Randy W; Brown, Jeremiah R; Koff, Matthew D; Reddy, Sundara; Heard, Stephen O; Patel, Hetal M; Fernandez, Patrick G; Beach, Michael L; Corwin, Howard L; Jensen, Jens T; Kispert, David; Huysman, Bridget; Dodds, Thomas M; Ruoff, Kathryn L; Yeager, Mark P

    2012-06-01

    Intraoperative stopcock contamination is a frequent event associated with increased patient mortality. In the current study we examined the relative contributions of anesthesia provider hands, the patient, and the patient environment to stopcock contamination. Our secondary aims were to identify risk factors for stopcock contamination and to examine the prior association of stopcock contamination with 30-day postoperative infection and mortality. Additional microbiological analyses were completed to determine the prevalence of bacterial pathogens within intraoperative bacterial reservoirs. Pulsed-field gel electrophoresis was used to assess the contribution of reservoir bacterial pathogens to 30-day postoperative infections. In a multicenter study, stopcock transmission events were observed in 274 operating rooms, with the first and second cases of the day in each operating room studied in series to identify within- and between-case transmission events. Reservoir bacterial cultures were obtained and compared with stopcock set isolates to determine the origin of stopcock contamination. Between-case transmission was defined by the isolation of 1 or more bacterial isolates from the stopcock set of a subsequent case (case 2) that were identical to reservoir isolates from the preceding case (case 1). Within-case transmission was defined by the isolation of 1 or more bacterial isolates from a stopcock set that were identical to bacterial reservoirs from the same case. Bacterial pathogens within these reservoirs were identified, and their potential contribution to postoperative infections was evaluated. All patients were followed for 30 days postoperatively for the development of infection and all-cause mortality. Stopcock contamination was detected in 23% (126 out of 548) of cases with 14 between-case and 30 within-case transmission events confirmed. All 3 reservoirs contributed to between-case (64% environment, 14% patient, and 21% provider) and within-case (47

  15. A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization in as a reproducible chicken meat model.

    PubMed

    Rouger, Amélie; Remenant, Benoit; Prévost, Hervé; Zagorec, Monique

    2017-04-17

    Influenced by production and storage processes and by seasonal changes the diversity of meat products microbiota can be very variable. Because microbiotas influence meat quality and safety, characterizing and understanding their dynamics during processing and storage is important for proposing innovative and efficient storage conditions. Challenge tests are usually performed using meat from the same batch, inoculated at high levels with one or few strains. Such experiments do not reflect the true microbial situation, and the global ecosystem is not taken into account. Our purpose was to constitute live stocks of chicken meat microbiotas to create standard and reproducible ecosystems. We searched for the best method to collect contaminating bacterial communities from chicken cuts to store as frozen aliquots. We tested several methods to extract DNA of these stored communities for subsequent PCR amplification. We determined the best moment to collect bacteria in sufficient amounts during the product shelf life. Results showed that the rinsing method associated to the use of Mobio DNA extraction kit was the most reliable method to collect bacteria and obtain DNA for subsequent PCR amplification. Then, 23 different chicken meat microbiotas were collected using this procedure. Microbiota aliquots were stored at -80°C without important loss of viability. Their characterization by cultural methods confirmed the large variability (richness and abundance) of bacterial communities present on chicken cuts. Four of these bacterial communities were used to estimate their ability to regrow on meat matrices. Challenge tests performed on sterile matrices showed that these microbiotas were successfully inoculated and could overgrow the natural microbiota of chicken meat. They can therefore be used for performing reproducible challenge tests mimicking a true meat ecosystem and enabling the possibility to test the influence of various processing or storage conditions on complex meat

  16. Bacterial contaminants from frozen puff pastry production process and their growth inhibition by antimicrobial substances from lactic acid bacteria.

    PubMed

    Rumjuankiat, Kittaporn; Keawsompong, Suttipun; Nitisinprasert, Sunee

    2017-05-01

    Seventy-five bacterial contaminants which still persisted to cleaning system from three puff pastry production lines (dough forming, layer and filling forming, and shock freezing) were identified using 16S rDNA as seven genera of Bacillus , Corynebacterium , Dermacoccus , Enterobacter , Klebsiella, Pseudomonas , and Staphylococcus with detection frequencies of 24.00, 2.66, 1.33, 37.33, 1.33, 2.66, and 30.66, respectively. Seventeen species were discovered while only 11 species Bacillus cereus, B. subtilis, B. pumilus, Corynebacterium striatum , Dermacoccus barathri , Enterobacter asburiae, Staphylococcus kloosii, S. haemolyticus, S. hominis, S. warneri , and S. aureus were detected at the end of production. Based on their abundance, the highest abundance of E. asburiae could be used as a biomarker for product quality. While a low abundance of the mesophile pathogen C. striatum , which causes respiratory and nervous infection and appeared only at the shock freezing step was firstly reported for its detection in bakery product. Six antimicrobial substances (AMSs) from lactic acid bacteria, FF1-4, FF1-7, PFUR-242, PFUR-255, PP-174, and nisin A were tested for their inhibition activities against the contaminants. The three most effective were FF1-7, PP-174, and nisin A exhibiting wide inhibition spectra of 88.00%, 85.33%, and 86.66%, respectively. The potential of a disinfectant solution containing 800 AU/ml of PP-174 and nisin A against the most resistant strains of Enterobacter , Staphylococcus , Bacillus and Klebsiella was determined on artificially contaminated conveyor belt coupons at 0, 4, 8, 12, and 16 hr. The survival levels of the test strains were below 1 log CFU/coupon at 0 hr. The results suggested that a combined solution of PP-174 and nisin A may be beneficial as a sanitizer to inhibit bacterial contaminants in the frozen puff pastry industry.

  17. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    NASA Astrophysics Data System (ADS)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  18. Bacterial diversity of oil palm Elaeis guineensis basal stems

    NASA Astrophysics Data System (ADS)

    Amran, Afzufira; Jangi, Mohd Sanusi; Aqma, Wan Syaidatul; Yusof, Nurul Yuziana Mohd; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    Oil palm, Elaeis guineensis is one of the major industrial production crops in Malaysia. Basal stem rot, caused by the white fungus, Ganoderma boninense, is a disease that reduces oil palm yields in most production areas of the world. Understanding of bacterial community that is associated with Ganoderma infection will shed light on how this bacterial community contributes toward the severity of the infection. In this preliminary study, we assessed the bacterial community that inhabit the basal stems of E. guineensis based on 16S rRNA gene as a marker using next generation sequencing platform. This result showed that a total of 84,372 operational taxonomic-units (OTUs) were identified within six samples analyzed. A total 55,049 OTUs were assigned to known taxonomy whereas 29,323 were unassigned. Cyanobacteria, Bacteroidetes, Firmicutes and Proteobacteria were the most abundant phyla found in all six samples and the unique taxonomy assigned for each infected and healthy samples were also identified. The findings from this study will further enhance our knowledge in the interaction of bacterial communities against Ganoderma infection within the oil palm host plant and for a better management of the basal stems rot disease.

  19. Immunomodulating effects of antibiotics used in the prophylaxis of bacterial infections in advanced cirrhosis

    PubMed Central

    Zapater, Pedro; González-Navajas, José Manuel; Such, José; Francés, Rubén

    2015-01-01

    The use of norfloxacin either as primary or secondary prophylaxis of bacterial infections in advanced cirrhosis has improved patient’s survival. This may be explained not only due to a significant decrease in the number of infections, but also because of a direct immunomodulatory effect. Selective intestinal decontamination with norfloxacin reduces translocation of either viable bacteria or bacteria-driven products from the intestinal lumen. In addition, norfloxacin directly modulates the systemic inflammatory response. The pro-inflammatory cytokine profile secreted by neutrophils from these patients shows a close, significant, and inverse correlation with serum norfloxacin levels. Similar effects have been described with other quinolones in different clinical conditions. Although the underlying mechanisms are not well defined for most of the antibiotics, the pathways triggered for norfloxacin to induce such immunomodulatory effects involve the down-regulation of pro-inflammatory inducible nitric oxide synthase, cyclooxygenase-2, and NF-κB and the up-regulation of heme-oxygenase 1 and IL-10 expression. The knowledge of these immunomodulatory effects, additional to their bactericidal role, improves our comprehension of the interaction between antibiotics and the cellular host response and offer new possibilities for the development of new therapeutic strategies to manage and prevent bacterial infections in cirrhosis. PMID:26556982

  20. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant.

    PubMed

    Narciso-da-Rocha, Carlos; Rocha, Jaqueline; Vaz-Moreira, Ivone; Lira, Felipe; Tamames, Javier; Henriques, Isabel; Martinez, José Luis; Manaia, Célia M

    2018-06-05

    Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, bla CTX-M , bla OXA-A , bla TEM , bla SHV , sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control. Copyright © 2018 Elsevier Ltd. All rights