Sample records for bacterial species belonging

  1. Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria.

    PubMed

    Bae, Kyung Sook; Kim, Mi Sun; Lee, Ji Hee; Kang, Joo Won; Kim, Dae In; Lee, Ji Hee; Seong, Chi Nam

    2016-12-01

    To understand the isolation and classification state of actinobacterial species with valid names for Korean indigenous isolates, isolation source, regional origin, and taxonomic affiliation of the isolates were studied. At the time of this writing, the phylum Actinobacteria consisted of only one class, Actinobacteria, including five subclasses, 10 orders, 56 families, and 330 genera. Moreover, new taxa of this phylum continue to be discovered. Korean actinobacterial species with a valid name has been reported from 1995 as Tsukamurella inchonensis isolated from a clinical specimen. In 1997, Streptomyces seoulensis was validated with the isolate from the natural Korean environment. Until Feb. 2016, 256 actinobacterial species with valid names originated from Korean territory were listed on LPSN. The species were affiliated with three subclasses (Acidimicrobidae, Actinobacteridae, and Rubrobacteridae), four orders (Acidimicrobiales, Actinomycetales, Bifidobacteriales, and Solirubrobacterales), 12 suborders, 36 families, and 93 genera. Most of the species belonged to the subclass Actinobacteridae, and almost of the members of this subclass were affiliated with the order Actinomycetales. A number of novel isolates belonged to the families Nocardioidaceae, Microbacteriaceae, Intrasporangiaceae, and Streptomycetaceae as well as the genera Nocardioides, Streptomyces, and Microbacterium. Twenty-six novel genera and one novel family, Motilibacteraceae, were created first with Korean indigenous isolates. Most of the Korean indigenous actionobacterial species were isolated from natural environments such as soil, seawater, tidal flat sediment, and fresh-water. A considerable number of species were isolated from artificial resources such as fermented foods, wastewater, compost, biofilm, and water-cooling systems or clinical specimens. Korean indigenous actinobacterial species were isolated from whole territory of Korea, and especially a large number of species were from Jeju

  2. Bacterial communities in the phylloplane of Prunus species.

    PubMed

    Jo, Yeonhwa; Cho, Jin Kyong; Choi, Hoseong; Chu, Hyosub; Lian, Sen; Cho, Won Kyong

    2015-04-01

    Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bacterial-biota dynamics of eight bryophyte species from different ecosystems

    PubMed Central

    Koua, Faisal Hammad Mekky; Kimbara, Kazuhide; Tani, Akio

    2014-01-01

    Despite the importance of bryophyte-associated microorganisms in various ecological aspects including their crucial roles in the soil-enrichment of organic mass and N2 fixation, nonetheless, little is known about the microbial diversity of the bryophyte phyllospheres (epi-/endophytes). To get insights into bacterial community structures and their dynamics on the bryophyte habitats in different ecosystems and their potential biological roles, we utilized the 16S rRNA gene PCR-DGGE and subsequent phylogenetic analyses to investigate the bacterial community of eight bryophyte species collected from three distinct ecosystems from western Japan. Forty-two bacterial species belonging to γ-proteobacteria and Firmicutes with 71.4% and 28.6%, respectively, were identified among 90 DGGE gel band population. These DGGE-bands were assigned to 13 different genera with obvious predomination the genus Clostridium with 21.4% from the total bacterial community. These analyses provide new insights into bryophyte-associated bacteria and their relations to the ecosystems. PMID:25737654

  4. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    PubMed Central

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  5. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.

  6. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    PubMed

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species

  7. Predominant bacterial species in subgingival plaque in dogs.

    PubMed

    Dahlén, G; Charalampakis, G; Abrahamsson, I; Bengtsson, L; Falsen, E

    2012-06-01

    The dog has been used extensively for experimental and microbiological studies on periodontitis and peri-implantitis without detailed knowledge about the predominant flora of the subgingival plaque. This study was designed to evaluate the predominant cultivable bacterial species in dogs and compare them phenotypically and genotypically with corresponding human species. Four subgingival samples were taken from two upper premolars in each of six Labrador retrievers. The samples from each dog were processed for anaerobic culture. From the samples of each dog, the five or six predominating bacteria based on colony morphology were selected and pure cultured. Each of the strains was characterized by Gram stain, anaerobic/aerobic growth and API-ZYM test. Eighteen strains showing clear-cut phenotypic differences were further classified based on DNA sequencing technology. Cross-reactions of DNA probes from human and dog strains were also tested against a panel of both human and dog bacterial species. Thirty-one strains in the dogs were isolated and characterized. They represented 21 different species, of which six belonged to the genus Porphyromonas. No species was found consistently in the predominant flora of all six dogs. Porphyromonas crevioricanis and Fusobacterium canifelinum were the two most prevalent species in predominant flora in dogs. DNA probes from human and dog species cross-reacted to some extent with related strains from humans and dogs; however, distinct exceptions were found. The predominant cultural subgingival flora in dogs shows great similarities with the subgingival bacteria from humans at the genus level, but distinct differences at the species level; however, a genetic relatedness could be disclosed for most strains investigated. © 2011 John Wiley & Sons A/S.

  8. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    PubMed

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Transcriptome Analysis of Scorpion Species Belonging to the Vaejovis Genus

    PubMed Central

    Quintero-Hernández, Verónica; Ramírez-Carreto, Santos; Romero-Gutiérrez, María Teresa; Valdez-Velázquez, Laura L.; Becerril, Baltazar; Possani, Lourival D.; Ortiz, Ernesto

    2015-01-01

    Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist’s attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family. PMID:25659089

  10. Transcriptome analysis of scorpion species belonging to the Vaejovis genus.

    PubMed

    Quintero-Hernández, Verónica; Ramírez-Carreto, Santos; Romero-Gutiérrez, María Teresa; Valdez-Velázquez, Laura L; Becerril, Baltazar; Possani, Lourival D; Ortiz, Ernesto

    2015-01-01

    Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist's attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family.

  11. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection

    PubMed Central

    Madsen, Anne Mette; Alwan, Taif; Ørberg, Anders; Uhrbrand, Katrine; Jørgensen, Marie Birk

    2016-01-01

    A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the

  12. Distinct antimicrobial peptide expression determines host species-specific bacterial associations

    PubMed Central

    Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian

    2013-01-01

    Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149

  13. Genomic and phenotypic characterization of Xanthomonas cynarae sp. nov., a new species that causes bacterial bract spot of artichoke (Cynara scolymus L.).

    PubMed

    Trébaol, G; Gardan, L; Manceau, C; Tanguy, J L; Tirilly, Y; Boury, S

    2000-07-01

    A bacterial disease of artichoke (Cynara scolymus L.) was first observed in 1954 in Brittany and the Loire Valley, France. This disease causes water-soaked spots on bracts and depreciates marketability of the harvest. Ten strains of the pathogen causing bacterial spot of artichoke, previously identified as a member of the genus Xanthomonas, were characterized and compared with type and pathotype strains of the 20 Xanthomonas species using a polyphasic study including both phenotypic and genomic methods. The ten strains presented general morphological, biochemical and physiological traits and G+C content characteristic of the genus Xanthomonas. Sequencing of the 165 rRNA gene confirmed that this bacterium belongs to the genus Xanthomonas, and more precisely to the Xanthomonas campestris core. DNA-DNA hybridization results showed that the strains that cause bacterial spot of artichoke were 92-100% related to the proposed type strain CFBP 4188T and constituted a discrete DNA homology group that was distinct from the 20 previously described Xanthomonas species. The results of numerical analysis were in accordance with DNA-DNA hybridization data. Strains causing the bacterial bract spot of artichoke exhibited consistent determinative biochemical characteristics, which distinguished them from the 20 other Xanthomonas species previously described. Furthermore, pathogenicity tests allowed specific identification of this new phytopathogenic bacterium. Thus, it is concluded that this bacterium is a new species belonging to the genus Xanthomonas, for which the name Xanthomonas cynarae is proposed. The type strain, CFBP 4188T, has been deposited in the Collection Française des Bactéries Phytopathogènes (CFBP).

  14. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  15. Investigation of bacterial resistance to the immune system response: cepacian depolymerisation by reactive oxygen species.

    PubMed

    Cuzzi, Bruno; Cescutti, Paola; Furlanis, Linda; Lagatolla, Cristina; Sturiale, Luisa; Garozzo, Domenico; Rizzo, Roberto

    2012-08-01

    Reactive oxygen species (ROS) are part of the weapons used by the immune system to kill and degrade infecting microorganisms. Bacteria can produce macromolecules, such as polysaccharides, that are able to scavenge ROS. Species belonging to the Burkholderia cepacia complex are involved in serious lung infection in cystic fibrosis patients and produce a characteristic polysaccharide, cepacian. The interaction between ROS and bacterial polysaccharides was first investigated by killing experiments, where bacteria cells were incubated with sodium hypochlorite (NaClO) with and without prior incubation with cepacian. The results showed that the polysaccharide had a protective effect towards bacterial cells. Cepacian was then treated with different concentrations of NaClO and the course of reactions was followed by means of capillary viscometry. The degradation products were characterised by size-exclusion chromatography, NMR and mass spectrometry. The results showed that hypochlorite depolymerised cepacian, removed side chains and O-acetyl groups, but did not cleave the glycosidic bond between glucuronic acid and rhamnose. The structure of some oligomers produced by NaClO oxidation is reported.

  16. Eradication of bacterial species via photosensitization

    NASA Astrophysics Data System (ADS)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1999-02-01

    Photosensitization and inactivation efficacy of three bacterial species: Prevotella nigrescens, Staphylococcus aureus and Escherichia coli have been investigated. Samples of Staphylococcus aureus and Escherichia coli were treated with the triphenylmethane dye malachite green isothiocyanate and exposed to light from a variety of continuous and pulsed light sauces at a wavelength of approximately 630 nm. Inactivation of the Gram-positive species Staphylococcus aureus was found to increase with radiation dose, whilst Gram-negative Escherichia coli was resistant to such treatment. Samples of the pigmented species Prevotella nigrescens were found to be inactivated by exposure to light alone. The mechanism of photosensitization and inactivation of Staphylococcus aureus with malachite green isothiocyanate is addressed. The possible roles of the excited triplet state of the photosensitizer, the involvement of molecular oxygen, and the bacterial cell wall are discussed. Photosensitization may provide a way of eliminating naturally pigmented species responsible for a variety of infections, including oral diseases such as gingivitis and periodontitis.

  17. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens.

    PubMed

    Ardizzoni, Andrea; Neglia, Rachele G; Baschieri, Maria C; Cermelli, Claudio; Caratozzolo, Manuela; Righi, Elena; Palmieri, Beniamino; Blasi, Elisabetta

    2011-10-01

    Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.

  18. Structural differences in the bacterial flagellar motor among bacterial species.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Morimoto, Yusuke V; Imada, Katsumi; Minamino, Tohru

    2017-01-01

    The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.

  19. Mitochondrial DNA Evidence Supports the Hypothesis that Triodontophorus Species Belong to Cyathostominae

    PubMed Central

    Gao, Yuan; Zhang, Yan; Yang, Xin; Qiu, Jian-Hua; Duan, Hong; Xu, Wen-Wen; Chang, Qiao-Cheng; Wang, Chun-Ren

    2017-01-01

    Equine strongyles, the significant nematode pathogens of horses, are characterized by high quantities and species abundance, but classification of this group of parasitic nematodes is debated. Mitochondrial (mt) genome DNA data are often used to address classification controversies. Thus, the objectives of this study were to determine the complete mt genomes of three Cyathostominae nematode species (Cyathostomum catinatum, Cylicostephanus minutus, and Poteriostomum imparidentatum) of horses and reconstruct the phylogenetic relationship of Strongylidae with other nematodes in Strongyloidea to test the hypothesis that Triodontophorus spp. belong to Cyathostominae using the mt genomes. The mt genomes of Cy. catinatum, Cs. minutus, and P. imparidentatum were 13,838, 13,826, and 13,817 bp in length, respectively. Complete mt nucleotide sequence comparison of all Strongylidae nematodes revealed that sequence identity ranged from 77.8 to 91.6%. The mt genome sequences of Triodontophorus species had relatively high identity with Cyathostominae nematodes, rather than Strongylus species of the same subfamily (Strongylinae). Comparative analyses of mt genome organization for Strongyloidea nematodes sequenced to date revealed that members of this superfamily possess identical gene arrangements. Phylogenetic analyses using mtDNA data indicated that the Triodontophorus species clustered with Cyathostominae species instead of Strongylus species. The present study first determined the complete mt genome sequences of Cy. catinatum, Cs. minutus, and P. imparidentatum, which will provide novel genetic markers for further studies of Strongylidae taxonomy, population genetics, and systematics. Importantly, sequence comparison and phylogenetic analyses based on mtDNA sequences supported the hypothesis that Triodontophorus belongs to Cyathostominae. PMID:28824575

  20. Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail.

    PubMed

    Geeraerts, Wim; Pothakos, Vasileios; De Vuyst, Luc; Leroy, Frédéric

    2017-08-01

    Pork-based cooked products, such as cooked hams, are economically valuable foods that are vulnerable to bacterial spoilage, even when applying cooling and modified atmosphere packaging (MAP). Besides a common presence of Brochothrix thermosphacta, their microbiota are usually dominated by lactic acid bacteria (LAB). Yet, the exact LAB species diversity can differ considerably among products. In this study, 42 sliced cooked pork samples were acquired from three different Belgian supermarkets to map their bacterial heterogeneity. The community compositions of the dominant bacterial species were established by analysing a total of 702 isolates from selective agar media by (GTG) 5 -PCR fingerprinting followed by gene sequencing. Most of the isolates belonged to the genera Carnobacterium, Lactobacillus, and Leuconostoc, with Leuconostoc carnosum and Leuconostoc gelidum subsp. gelidum being the most dominant members. The diversity of the dominant bacterial species varied when comparing samples from different production facilities and, in some cases, even within the same product types. Although LAB consistently dominated the microbiota of sliced cooked pork products in the Belgian market, results indicated that bacterial diversity needs to be addressed on the level of product composition and batch variation. Dedicated studies will be needed to substantiate potential links between such variability and microbial composition. For instance, the fact that higher levels of lactobacilli were associated with the presence of potassium lactate (E326) may be suggestive of selective pressure but needs to be validated, as this finding referred to a single product only. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    PubMed

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species.

    PubMed

    Singhal, Kopal; Khanna, Radhika; Mohanty, Sujata

    2017-06-01

    The present work aims to identify the microbial diversity associated with six Indian Drosophila species using next generation sequencing (NGS) technology and to discover the nature of their distribution across species and eco-geographic regions. Whole fly gDNA of six Drosophila species were used to generate sequences in an Illumina platform using NGS technology. De novo based assembled raw reads were blasted against the NR database of NCBI using BLASTn for identification of their bacterial loads. We have tried to include Drosophila species from different taxonomical groups and subgroups and from three different eco-climatic regions India; four species belong to Central India, while the rest two, D. melanogaster and D. ananassae, belong to West and South India to determine both their species-wise and region-wide distribution. We detected the presence of 33 bacterial genera across all six study species, predominated by the class Proteobacteria. Amongst all, D. melanogaster was found to be the most diverse by carrying around 85% of the bacterial diversity. Our findings infer both species-specific and environment-specific nature of the bacterial species inhabiting the Drosophila host. Though the present results are consistent with most of the earlier studies, they also remain incoherent with some. The present study outcome on the host-bacteria association and their species specific adaptation may provide some insight to understand the host-microbial interactions and the phenotypic implications of microbes on the host physiology. The knowledge gained may be importantly applied into the recent insect and pest population control strategy going to implement through gut microflora in India and abroad.

  3. On the core bacterial flora of Ixodes persulcatus (Taiga tick).

    PubMed

    Sui, Shuo; Yang, Yu; Sun, Yi; Wang, Xumin; Wang, Guoliang; Shan, Guangle; Wang, Jiancheng; Yu, Jun

    2017-01-01

    Ixodes persulcatus is a predominant hard tick species that transmits a wide range of human and animal pathogens. Since bacterial flora of the tick dwelling in the wild always vary according to their hosts and the environment, it is highly desirable that species-associated microbiomes are fully determined by using next-generation sequencing and based on comparative metagenomics. Here, we examine such metagenomic changes of I. persulcatus starting with samples collected from the wild ticks and followed by the reared animals under pathogen-free laboratory conditions over multiple generations. Based on high-coverage genomic sequences from three experimental groups-wild, reared for a single generation or R1, and reared for eight generations or R8 -we identify the core bacterial flora of I. persulcatus, which contains 70 species that belong to 69 genera of 8 phyla; such a core is from the R8 group, which is reduced from 4625 species belonging to 1153 genera of 29 phyla in the wild group. Our study provides a novel example of tick core bacterial flora acquired based on wild-to-reared comparison, which paves a way for future research on tick metagenomics and tick-borne disease pandemics.

  4. On the core bacterial flora of Ixodes persulcatus (Taiga tick)

    PubMed Central

    Sun, Yi; Wang, Xumin; Wang, Guoliang; Shan, Guangle; Wang, Jiancheng; Yu, Jun

    2017-01-01

    Ixodes persulcatus is a predominant hard tick species that transmits a wide range of human and animal pathogens. Since bacterial flora of the tick dwelling in the wild always vary according to their hosts and the environment, it is highly desirable that species-associated microbiomes are fully determined by using next-generation sequencing and based on comparative metagenomics. Here, we examine such metagenomic changes of I. persulcatus starting with samples collected from the wild ticks and followed by the reared animals under pathogen-free laboratory conditions over multiple generations. Based on high-coverage genomic sequences from three experimental groups–wild, reared for a single generation or R1, and reared for eight generations or R8 –we identify the core bacterial flora of I. persulcatus, which contains 70 species that belong to 69 genera of 8 phyla; such a core is from the R8 group, which is reduced from 4625 species belonging to 1153 genera of 29 phyla in the wild group. Our study provides a novel example of tick core bacterial flora acquired based on wild-to-reared comparison, which paves a way for future research on tick metagenomics and tick-borne disease pandemics. PMID:28692666

  5. The keystone species of Precambrian deep bedrock biosphere belong to Burkholderiales and Clostridiales

    NASA Astrophysics Data System (ADS)

    Purkamo, L.; Bomberg, M.; Kietäväinen, R.; Salavirta, H.; Nyyssönen, M.; Nuppunen-Puputti, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M.

    2015-11-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180-2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related OTUs form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteraceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed the keystone genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found from oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found from other deep Precambrian terrestrial bedrock environments.

  6. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin

    PubMed Central

    Stroman, David W; Mintun, Keri; Epstein, Arthur B; Brimer, Crystal M; Patel, Chirag R; Branch, James D; Najafi-Tagol, Kathryn

    2017-01-01

    Purpose To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl). Methods Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics. Results Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics. Conclusion The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid. PMID:28458509

  7. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  8. Four New Ladybug Species Belonging to Decadiomus Chapin (Coleoptera: Coccinellidae) from Puerto Rico.

    PubMed

    Segarra-Carmona, A E; Otero, M

    2014-12-01

    While searching for native natural enemies attacking invasive insect pests in Puerto Rico, we found four undescribed ladybug species belonging to the Caribbean ladybug genus Decadiomus Chapin. In this article, we describe the following species from Puerto Rico: Decadiomus seini n. sp., Decadiomus ramosi n. sp., Decadiomus hayuyai n. sp., and Decadiomus martorelli n. sp. Illustrations of the dorsal habitus, shape of prosternal carinae, and drawings of male and female genitalia are presented. We also present a key for Diomini of Puerto Rico and discuss their importance as potential biocontrol agents.

  9. Distinctive bacterial communities in the rhizoplane of four tropical tree species.

    PubMed

    Oh, Yoon Myung; Kim, Mincheol; Lee-Cruz, Larisa; Lai-Hoe, Ang; Go, Rusea; Ainuddin, N; Rahim, Raha Abdul; Shukor, Noraini; Adams, Jonathan M

    2012-11-01

    It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0-10 cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both

  10. Distribution of 10 periodontal bacterial species in children and adolescents over a 7-year period.

    PubMed

    Nakano, K; Miyamoto, E; Tamura, K; Nemoto, H; Fujita, K; Nomura, R; Ooshima, T

    2008-10-01

    There is scant information available regarding the distribution of periodontal bacterial species in children and adolescents over an extended period. The purpose of this study was to compare bacterial profiles in the same individuals over a period of 7 years. Twenty-six children and adolescents from whom dental plaque and saliva specimens were obtained during both the first (1999-2000) and second (2006-2007) periods, were analyzed. Bacterial DNA was extracted from each specimen and the presence of 10 periodontal bacterial species was determined using a PCR method, with a focus on the red complex species of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Subjects with red complex species in saliva specimens obtained during the second collection possessed a significantly higher number of total bacterial species than those without. The detection rate of the red complex species in the second collection period samples was significantly greater in subjects who had two or more species detected in samples taken during the first collection compared with the other subjects. Subjects possessing red complex species may be at possible risk for infection with a high number of periodontal bacterial species during adolescent and younger adult years.

  11. New bacterial species associated with chronic periodontitis.

    PubMed

    Kumar, P S; Griffen, A L; Barton, J A; Paster, B J; Moeschberger, M L; Leys, E J

    2003-05-01

    Recent investigations of the human subgingival oral flora based on ribosomal 16S cloning and sequencing have shown many of the bacterial species present to be novel species or phylotypes. The purpose of the present investigation was to identify potential periodontal pathogens among these newly identified species and phylotypes. Species-specific ribosomal 16S primers for PCR amplification were developed for detection of new species. Associations with chronic periodontitis were observed for several new species or phylotypes, including uncultivated clones D084 and BH017 from the Deferribacteres phylum, AU126 from the Bacteroidetes phylum, Megasphaera clone BB166, clone X112 from the OP11 phylum, and clone I025 from the TM7 phylum, and the named species Eubacterium saphenum, Porphyromonas endodontalis, Prevotella denticola, and Cryptobacterium curtum. Species or phylotypes more prevalent in periodontal health included two uncultivated phylotypes, clone W090 from the Deferribacteres phylum and clone BU063 from the Bacteroidetes, and named species Atopobium rimae and Atopobium parvulum.

  12. A new mathematical model of bacterial interactions in two-species oral biofilms

    PubMed Central

    Martin, Bénédicte; Tamanai-Shacoori, Zohreh; Bronsard, Julie; Ginguené, Franck; Meuric, Vincent

    2017-01-01

    Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions. PMID:28253369

  13. Prevalent bacterial species and novel phylotypes in advanced noma lesions.

    PubMed

    Paster, B J; Falkler Jr, W A; Enwonwu, C O; Idigbe, E O; Savage, K O; Levanos, V A; Tamer, M A; Ericson, R L; Lau, C N; Dewhirst, F E

    2002-06-01

    The purpose of this study was to determine the bacterial diversity in advanced noma lesions using culture-independent molecular methods. 16S ribosomal DNA bacterial genes from DNA isolated from advanced noma lesions of four Nigerian children were PCR amplified with universally conserved primers and spirochetal selective primers and cloned into Escherichia coli. Partial 16S rRNA sequences of approximately 500 bases from 212 cloned inserts were used initially to determine species identity or closest relatives by comparison with sequences of known species or phylotypes. Nearly complete sequences of approximately 1,500 bases were obtained for most of the potentially novel species. A total of 67 bacterial species or phylotypes were detected, 25 of which have not yet been grown in vitro. Nineteen of the species or phylotypes, including Propionibacterium acnes, Staphylococcus spp., and the opportunistic pathogens Stenotrophomonas maltophilia and Ochrobactrum anthropi were detected in more than one subject. Other known species that were detected included Achromobacter spp., Afipia spp., Brevundimonas diminuta, Capnocytophaga spp., Cardiobacterium sp., Eikenella corrodens, Fusobacterium spp., Gemella haemoylsans, and Neisseria spp. Phylotypes that were unique to noma infections included those in the genera Eubacterium, Flavobacterium, Kocuria, Microbacterium, and Porphyromonas and the related Streptococcus salivarius and genera Sphingomonas and TREPONEMA: Since advanced noma lesions are infections open to the environment, it was not surprising to detect species not commonly associated with the oral cavity, e.g., from soil. Several species previously implicated as putative pathogens of noma, such as spirochetes and Fusobacterium spp., were detected in at least one subject. However, due to the limited number of available noma subjects, it was not possible at this time to associate specific species with the disease.

  14. Microbial diversity in Frenulata (Siboglinidae, Polychaeta) species from mud volcanoes in the Gulf of Cadiz (NE Atlantic).

    PubMed

    Rodrigues, Clara F; Hilário, Ana; Cunha, Marina R; Weightman, Andrew J; Webster, Gordon

    2011-06-01

    Frenulates are a group of gutless marine annelids belonging to the Siboglinidae that are nutritionally dependent upon endosymbiotic bacteria. We have characterized the bacteria associated with several frenulate species from mud volcanoes in the Gulf of Cadiz by PCR-DGGE of bacterial 16S rRNA genes, coupled with analysis of 16S rRNA gene libraries. In addition to the primary symbiont, bacterial consortia (microflora) were found in all species analysed. Phylogenetic analyses indicate that the primary symbiont in most cases belongs to the Gammaproteobacteria and were related to thiotrophic and methanotrophic symbionts from other marine invertebrates, whereas members of the microflora were related to multiple bacterial phyla. This is the first molecular evidence of methanotrophic bacteria in at least one frenulate species. In addition, the occurrence of the same bacterial phylotype in different Frenulata species, from different depths and mud volcanoes suggests that there is no selection for specific symbionts and corroborates environmental acquisition as previously proposed for this group of siboglinids.

  15. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR.

    PubMed

    Lazzi, C; Rossetti, L; Zago, M; Neviani, E; Giraffa, G

    2004-01-01

    To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.

  16. Characterization of the Exopolysaccharide Produced by Salipiger mucosus A3T, a Halophilic Species Belonging to the Alphaproteobacteria, Isolated on the Spanish Mediterranean Seaboard

    PubMed Central

    Llamas, Inmaculada; Mata, Juan Antonio; Tallon, Richard; Bressollier, Philippe; Urdaci, María C.; Quesada, Emilia; Béjar, Victoria

    2010-01-01

    We have studied the exopolysaccharide produced by the type strain of Salipiger mucosus, a species of halophilic, EPS-producing (exopolysaccharide-producing) bacterium belonging to the Alphaproteobacteria. The strain, isolated on the Mediterranean seaboard, produced a polysaccharide, mainly during its exponential growth phase but also to a lesser extent during the stationary phase. Culture parameters influenced bacterial growth and EPS production. Yield was always directly related to the quantity of biomass in the culture. The polymer is a heteropolysaccharide with a molecular mass of 250 kDa and its components are glucose (19.7%, w/w), mannose (34%, w/w), galactose (32.9%, w/w) and fucose (13.4%, w/w). Fucose and fucose-rich oligosaccharides have applications in the fields of medicine and cosmetics. The chemical or enzymatic hydrolysis of fucose-rich polysaccharides offers a new efficient way to process fucose. The exopolysaccharide in question produces a solution of very low viscosity that shows pseudoplastic behavior and emulsifying activity on several hydrophobic substrates. It also has a high capacity for binding cations and incorporating considerable quantities of sulfates, this latter feature being very unusual in bacterial polysaccharides. PMID:20948906

  17. Taxonomic revision of Israeli snakes belonging to the Platyceps rhodorachis species complex (Reptilia: Squamata: Colubridae).

    PubMed

    Sinaiko, Guy; Magory-Cohen, Tali; Meiri, Shai; Dor, Roi

    2018-02-15

    The Platyceps rhodorachis species complex encompasses a widespread group of morphologically similar colubrid snakes. The number and identities of species from this complex in Israel have recently been debated. Studies from the previous decade concluded that there are two species in Israel and its vicinity (compared with one previously recognized), but their identity remained contested. We estimated the number of species and their taxonomic identity using morphological and molecular data. We found some evidence for clinal variation in many of the characters used to differentiate the species, and a great overlap in traits of putative species. Genetic data revealed very low sequence divergence, with all putative species being paraphyletic. Platyceps rogersi emerged as genetically closer to Platyceps saharicus rather than to its putative conspecific, P. karelini. The phylogenetic and taxonomic results thus indicate that the Israeli populations of the P. rhodorachis complex all belong to a single species, Platyceps saharicus (Schätti McCarthy 2004).

  18. The bacterial species definition in the genomic era

    PubMed Central

    Konstantinidis, Konstantinos T; Ramette, Alban; Tiedje, James M

    2006-01-01

    The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction. PMID:17062412

  19. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    PubMed

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated

  20. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  1. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  2. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  3. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    PubMed

    Sabree, Zakee L; Hansen, Allison K; Moran, Nancy A

    2012-01-01

    Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3): e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear.

  4. Detection of bacterial pathogens including potential new species in human head lice from Mali.

    PubMed

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S; Doumbo, Ogobara K; Raoult, Didier; Mediannikov, Oleg

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice.

  5. Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women

    PubMed Central

    Tamrakar, Renuka; Yamada, Takashi; Furuta, Itsuko; Cho, Kazutoshi; Morikawa, Mamoru; Yamada, Hideto; Sakuragi, Noriaki; Minakami, Hisanori

    2007-01-01

    Background Bacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women. Methods To examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any Lactobacillus, four Lactobacillus species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal Lactobacillus primer, Lactobacillus species-specific primers for L. crispatus, L. jensenii, L. gasseri, and L. iners, and BV-related bacterium-specific primers for BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Results The prevalences of L. crispatus, L. jensenii, and L. gasseri were significantly higher, while those of BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium were significantly lower in the normal group than in the BV group. Unlike other Lactobacillus species, the prevalence of L. iners did not differ between the three groups and women with L. iners were significantly more likely to have BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Linear regression analysis revealed associations of BVAB2 and Megasphaera with Nugent score, and multivariate regression analyses suggested a close relationship between Eggerthella-like bacterium and BV. Conclusion The BV-related bacteria, including BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of L. iners may be correlated with vaginal colonization by these BV-related bacteria. PMID:17986357

  6. Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species

    USGS Publications Warehouse

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C; Clostio, Rachel W; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  7. Plants of the fynbos biome harbour host species-specific bacterial communities.

    PubMed

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities.

    PubMed

    Scholz, Christian F P; Jensen, Anders

    2017-01-01

    The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

  9. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China.

    PubMed

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.

  10. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China

    PubMed Central

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments. PMID:27695084

  11. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov.

    PubMed

    Ambrožič Avguštin, Jerneja; Žgur Bertok, Darja; Kostanjšek, Rok; Avguštin, Gorazd

    2013-04-01

    A bacterial strain designated JA-1, related to Janthinobacterium lividum, was isolated from glacier ice samples from the island Spitsbergen in the Arctic. The strain was tested for phenotypic traits and the most prominent appeared to be the dark red brown to black pigmentation different from the violet pigment of Janthinobacterium, Chromobacterium and Iodobacter. Phylogenetic analysis based on 16S rRNA gene sequences and DNA-DNA hybridization tests showed that strain JA-1 belongs to the genus Janthinobacterium but represents a novel lineage distinct from the two known species of this genus, J. lividum and Janthinobacterium agaricidamnosum. The DNA G + C content of strain JA-1 was determined to be 62.3 mol %. The isolate is a psychrotrophic Gram negative bacterium, rod-shaped with rounded ends, containing intracellular inclusions and one polar flagellum. On the basis of the presented results strain JA-1 is proposed as the type strain of a novel species of the genus Janthinobacterium, for which the name Janthinobacterium svalbardensis sp. nov. is proposed (JA-1(T) = DSM 25734, ZIM B637).

  12. Streptococcus massiliensis in the human mouth: a phylogenetic approach for the inference of bacterial habitats.

    PubMed

    Póntigo, F; Silva, C; Moraga, M; Flores, S V

    2015-12-29

    Streptococcus is a diverse bacterial lineage. Species of this genus occupy a myriad of environments inside humans and other animals. Despite the elucidation of several of these habitats, many remain to be identified. Here, we explore a methodological approach to reveal unknown bacterial environments. Specifically, we inferred the phylogeny of the Mitis group by analyzing the sequences of eight genes. In addition, information regarding habitat use of species belonging to this group was obtained from the scientific literature. The oral cavity emerged as a potential, previously unknown, environment of Streptococcus massiliensis. This phylogeny-based prediction was confirmed by species-specific polymerase chain reaction (PCR) amplification. We propose employing a similar approach, i.e., use of bibliographic data and molecular phylogenetics as predictive methods, and species-specific PCR as confirmation, in order to reveal other unknown habitats in further bacterial taxa.

  13. A Small Number of Low-abundance Bacteria Dominate Plant Species-specific Responses during Rhizosphere Colonization

    PubMed Central

    Dawson, Wayne; Hör, Jens; Egert, Markus; van Kleunen, Mark; Pester, Michael

    2017-01-01

    Plant growth can be affected by soil bacteria. In turn, plants are known to influence soil bacteria through rhizodeposits and changes in abiotic conditions. We aimed to quantify the phylotype richness and relative abundance of rhizosphere bacteria that are actually influenced in a plant species-specific manner and to determine the role of the disproportionately large diversity of low-abundance bacteria belonging to the rare biosphere (<0.1 relative abundance) in this process. In addition, we aimed to determine whether plant phylogeny has an influence on the plant species-specific rhizosphere bacterial community. For this purpose, 19 herbaceous plant species from five different plant orders were grown in a common soil substrate. Bacterial communities in the initial soil substrate and the established rhizosphere soils were compared by 16S rRNA gene amplicon sequencing. Only a small number of bacterial operational taxonomic units (OTUs, 97% sequence identity) responded either positively (ca. 1%) or negatively (ca. 1%) to a specific plant species. On average, 91% of plant-specific positive response OTUs comprised bacteria belonging to the rare biosphere, highlighting that low-abundance populations are metabolically active in the rhizosphere. In addition, low-abundance OTUs were in terms of their summed relative abundance major drivers of the bacterial phyla composition across the rhizosphere of all tested plant species. However, no effect of plant phylogeny could be observed on the established rhizosphere bacterial communities, neither when considering differences in the overall established rhizosphere communities nor when considering plant species-specific responders only. Our study provides a quantitative assessment of the effect of plants on their rhizosphere bacteria across multiple plant orders. Plant species-specific effects on soil bacterial communities involved only 18–111 bacterial OTUs out of several 1000s; this minority may potentially impact plant growth

  14. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket

    PubMed Central

    Liu, Bo; Luo, Jin; Li, Wei; Long, Xiu-Feng; Zhang, Yu-Qin; Zeng, Zhi-Gang; Tian, Yong-Qiang

    2016-01-01

    A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T). PMID:26800121

  15. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species

    PubMed Central

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C.; Clostio, Rachel W.; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4–V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont. PMID:27092120

  16. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    PubMed Central

    Álvarez, Belén; Biosca, Elena G.

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field. PMID:28769942

  17. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    PubMed

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  18. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  19. Temporal changes in species interactions in simple aquatic bacterial communities

    PubMed Central

    2012-01-01

    Background Organisms modify their environment and in doing so change the quantity and possibly the quality of available resources. Due to the two-way relationship between organisms and their resource environment, and the complexity it brings to biological communities, measuring species interactions reliably in any biological system is a challenging task. As the resource environment changes, the intensity and even the sign of interactions may vary in time. We used Serratia marcescens and Novosphingobium capsulatum bacteria to study how the interaction between resource environment and organisms influence the growth of the bacterial species during circa 200 generations. We used a sterile-filtering method to measure how changes in resource environment are reflected in growth rates of the two species. Results Changes in the resource environment caused complex time and species composition-dependent effects on bacterial growth performance. Variation in the quality of the growth medium indicated existence of temporally fluctuating within-species facilitation and inhibition, and between-species asymmetric facilitation. Conclusions The interactions between the community members could not be fully predicted based only on the knowledge of the growth performance of each member in isolation. Growth dynamics in sterile-filtered samples of the conditioned growth medium can reveal both biologically meaningful changes in resource availability and temporally changing facilitative resource-mediated interactions between study species. This is the first study we are aware of where the filter-sterilization – growth assay method is applied to study the effect of long-term changes in the environment on species interactions. PMID:22984961

  20. Detection of bacterial pathogens including potential new species in human head lice from Mali

    PubMed Central

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S.; Doumbo, Ogobara K.; Raoult, Didier

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice. PMID:28931077

  1. Positive and negative associations between bacterial species in dental root canals.

    PubMed

    Gomes, B P; Drucker, D B; Lilley, J D

    1994-01-01

    Significant associations have been previously reported between certain pairs of bacterial species isolated from human dental root canals. The aim of this study was to examine microbiologically a more extensive series of cases, with particular reference to obligate anaerobes which accounted for 64% of total isolations. A total of 65 different species was isolated and individual root canals yielded a maximum of eleven bacterial species. Highly significant positive associations (p < 0.001) were found between Peptostreptococcus spp. and Prevotella spp., between Peptostreptococcus spp. and P. melaninogenica, between P. micros and Prevotella spp., P. micros and P. melaninogenica and between Prevotella spp. and Eubacterium spp., all with an ODDS ratio of > 9.0. In contrast, negative and highly significant associations (p < 0.01) were found only between the four species pairs: B. vulgatus/F. necrophorum, P. magnus/Bifidobacterium spp., B. gracilis/F. nucleatum and between B. gracilis/Fusobacterium spp.; all with an ODDS ratio of < 0.5. Some previously published associations were confirmed and some new associations were found, while some negative associations became apparent.

  2. Culturable endophytic bacterial communities associated with field-grown soybean.

    PubMed

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  3. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    NASA Astrophysics Data System (ADS)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  4. Historical perspective on the synonymization of the four major pest species belonging to the Bactrocera dorsalis species complex (Diptera, Tephritidae)

    PubMed Central

    Hee, Alvin K.W.; Wee, Suk-Ling; Nishida, Ritsuo; Ono, Hajime; Hendrichs, Jorge; Haymer, David S.; Tan, Keng-Hong

    2015-01-01

    Abstract An FAO/IAEA-sponsored coordinated research project on integrative taxonomy, involving close to 50 researchers from at least 20 countries, culminated in a significant breakthrough in the recognition that four major pest species, Bactrocera dorsalis, Bactrocera philippinensis, Bactrocera papayae and Bactrocera invadens, belong to the same biological species, Bactrocera dorsalis. The successful conclusion of this initiative is expected to significantly facilitate global agricultural trade, primarily through the lifting of quarantine restrictions that have long affected many countries, especially those in regions such as Asia and Africa that have large potential for fresh fruit and vegetable commodity exports. This work stems from two taxonomic studies: a revision in 1994 that significantly increased the number of described species in the Bactrocera dorsalis species complex; and the description in 2005 of Bactrocera invadens, then newly incursive in Africa. While taxonomically valid species, many biologists considered that these were different names for one biological species. Many disagreements confounded attempts to develop a solution for resolving this taxonomic issue, before the FAO/IAEA project commenced. Crucial to understanding the success of that initiative is an accounting of the historical events and perspectives leading up to the international, multidisciplinary collaborative efforts that successfully achieved the final synonymization. This review highlights the 21 year journey taken to achieve this outcome. PMID:26798266

  5. Host species shapes the co-occurrence patterns rather than diversity of stomach bacterial communities in pikas.

    PubMed

    Li, Huan; Li, Tongtong; Tu, Bo; Kou, Yongping; Li, Xiangzhen

    2017-07-01

    The mammalian stomach acts as an important barrier against ingested pathogens into the entire gastrointestinal tract, thereby playing a key role in host health. However, little is known regarding to the stomach microbial compositions in wild mammals and the factors that may influence the community compositions. Using high-throughput sequencing of the 16S rRNA gene, we characterized the stomach bacterial community compositions, diversity, and interactions in two common pika (Ochotona sp.) species in China, including Plateau pikas (Ochotona curzoniae) and Daurian pikas (Ochotona daurica) living in the Qinghai-Tibet Plateau and the Inner Mongolia Grassland, respectively. The bacterial communities can be divided into two distinct phylogenetic clusters. The most dominant bacteria in cluster I were unclassified bacteria. Cluster II was more diverse, predominantly consisting of Bacteroidetes, followed by unclassified bacteria, Firmicutes and Proteobacteria. Three dominant genera (Prevotella, Oscillospira, and Ruminococcus) in pika stomachs were significantly enriched in cluster II. In addition, seasons, host species, and sampling sites as well as body weight and sex had no significant impacts on the composition and diversity of pika stomach communities. Interestingly, Plateau pikas harbored a more complex bacterial network than Daurian pikas, and these two pika species showed different co-occurrence patterns. These results suggested that the pika stomach harbors a diverse but relatively stable and unique bacterial community, which is independent on host (host species, body weight, and sex) and measured environmental factors (sampling sites and seasons). Interestingly, host species shapes the microbial interactions rather than diversity of stomach bacterial communities in pikas, reflecting specific niche adaptation of stomach bacterial communities through species interactions.

  6. Massive Infection of Seabird Ticks with Bacterial Species Related to Coxiella burnetii

    PubMed Central

    Dietrich, Muriel; Lebarbenchon, Camille; Jaeger, Audrey; Le Rouzic, Céline; Bastien, Matthieu; Lagadec, Erwan; McCoy, Karen D.; Pascalis, Hervé; Le Corre, Matthieu; Dellagi, Koussay; Tortosa, Pablo

    2014-01-01

    Seabird ticks are known reservoirs of bacterial pathogens of medical importance; however, ticks parasitizing tropical seabirds have received less attention than their counterparts from temperate and subpolar regions. Recently, Rickettsia africae was described to infect seabird ticks of the western Indian Ocean and New Caledonia, constituting the only available data on bacterial pathogens associated with tropical seabird tick species. Here, we combined a pyrosequencing-based approach with a classical molecular analysis targeting bacteria of potential medical importance in order to describe the bacterial community in two tropical seabird ticks, Amblyomma loculosum and Carios (Ornithodoros) capensis. We also investigated the patterns of prevalence and host specificity within the biogeographical context of the western Indian Ocean islands. The bacterial community of the two tick species was characterized by a strong dominance of Coxiella and Rickettsia. Our data support a strict Coxiella-host tick specificity, a pattern resembling the one found for Rickettsia spp. in the same two seabird tick species. Both the high prevalence and stringent host tick specificity suggest that these bacteria may be tick symbionts with probable vertical transmission. Detailed studies of the pathogenicity of these bacteria will now be required to determine whether horizontal transmission can occur and to clarify their status as potential human pathogens. More generally, our results show that the combination of next generation sequencing with targeted detection/genotyping approaches proves to be efficient in poorly investigated fields where research can be considered to be starting from scratch. PMID:24657860

  7. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  8. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  9. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic.

    PubMed

    Singh, Purnima; Singh, Shiv M; Singh, Ram N; Naik, Simantini; Roy, Utpal; Srivastava, Alok; Bölter, Manfred

    2017-12-01

    Permafrost soils are unique habitats in polar environment and are of great ecological relevance. The present study focuses on the characterization of bacterial communities from permafrost profiles of Svalbard, Arctic. Counts of culturable bacteria range from 1.50 × 10 3 to 2.22 × 10 5 CFU g -1 , total bacterial numbers range from 1.14 × 10 5 to 5.52 × 10 5 cells g -1 soil. Bacterial isolates are identified through 16S rRNA gene sequencing. Arthrobacter and Pseudomonas are the most dominant genera, and A. sulfonivorans, A. bergeri, P. mandelii, and P. jessenii as the dominant species. Other species belong to genera Acinetobacter, Bacillus, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Rhodococcus, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus. To the best of our knowledge, genera Acinetobacter, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus are the first northernmost records from Arctic permafrost. The present study fills the knowledge gap of culturable bacterial communities and their chronological characterization from permafrost soils of Ny-Ålesund (79°N), Arctic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  11. MORPHOLOGICAL STUDIES OF SOME MARINE MASTOGLOIA (BACILLARIOPHYCEAE) BELONGING TO SECTION SULCATAE, INCLUDING THE DESCRIPTION OF NEW SPECIES.

    PubMed

    Pennesi, Chiara; Poulin, Michel; De Stefano, Mario; Romagnoli, Tiziana; Totti, Cecilia

    2012-10-01

    Epiphytic diatoms on seagrass and seaweed were collected from tropical (e.g., Siladen Island, Celebes Sea, Indonesia and Phú Bài, China Sea, Vietnam), subtropical (e.g., Sharm el-Sheikh, Red Sea, Egypt), and temperate regions (e.g., Patmos Island, Greece) in 2000, 2005, and 2006. Eight species of Mastogloia, belonging to the section Sulcatae, are described mainly through scanning electron microscopy, including two new species to science, M. oculoides and M. sergiana. These species show a differently shaped median depression on the external valve face between the raphe-sternum and the valve margin. Moreover, they lack a developed conopeum or pseudoconopeum, which covers the median depression in other species of the section Sulcatae. This study gives new insights on the ultrastructure of the Mastogloia's valves and provides an update of their current geographical distribution. © 2012 Phycological Society of America.

  12. Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild.

    PubMed

    Chou, Lee Yiung; Clarke, Charles M; Dykes, Gary A

    2014-10-01

    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.

  13. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing.

    PubMed

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2012-10-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.

  14. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  15. Impact of grassland management regimes on bacterial endophyte diversity differs with grass species.

    PubMed

    Wemheuer, F; Wemheuer, B; Kretzschmar, D; Pfeiffer, B; Herzog, S; Daniel, R; Vidal, S

    2016-04-01

    Most plant species are colonized by endophytic bacteria. Despite their importance for plant health and growth, the response of these bacteria to grassland management regimes is still not understood. Hence, we investigated the bacterial community structure in three agricultural important grass species Dactylis glomerata L., Festuca rubra L. and Lolium perenne L. with regard to fertilizer application and different mowing frequencies. For this purpose, above-ground plant material was collected from the Grassland Management Experiment (GrassMan) in Germany in September 2010 and 2011. DNA was extracted from surface-sterilized plant tissue and subjected to 16S rRNA gene PCRs. Endophytic community structures were assessed by denaturing gradient gel electrophoresis (DGGE)-based analysis of obtained PCR products. DGGE fingerprints revealed that fertilizer application significantly altered the endophytic communities in L. perenne and F. rubra but not in D. glomerata. Although no direct effect of mowing was observed, mowing frequencies in combination with fertilizer application had a significant impact on endophyte bacterial community structures. However, this effect was not observed for all three grass species in both years. Therefore, our results showed that management regimes changed the bacterial endophyte communities, but this effect was plant-specific and varied over time. Endophytic bacteria play an important role in plant health and growth. However, studies addressing the influence of grassland management regimes on these bacteria in above-ground plant parts are still missing. In this study, we present first evidence that fertilizer application significantly impacted bacterial community structures in three agricultural important grass species, whereas mowing had only a minor effect. Moreover, this effect was plant-specific and thus not visible for all grass species in each year. Consequently, this study sheds new light into the complex interaction of microbes and

  16. Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species.

    PubMed

    Khan, S Sudheer; Mukherjee, Amitava; Chandrasekaran, N

    2011-10-01

    Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of <0.5 M. A very less adsorption was observed at pH 9 and NaCl concentration >0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Bacterial species colonizing the vagina of healthy women are not associated with race.

    PubMed

    Beamer, May A; Austin, Michele N; Avolia, Hilary A; Meyn, Leslie A; Bunge, Katherine E; Hillier, Sharon L

    2017-06-01

    The vaginal microbiota of 36 white versus 25 black asymptomatic women were compared using both cultivation-dependent and -independent identification. Significant differences by race were found in colonization and density of bacterial species. However, exclusion of 12 women with bacterial vaginosis by Nugent criteria resulted in no significant differences by race. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata

    PubMed Central

    Campolo, Orlando; Medina, Raul F.; Palmeri, Vincenzo

    2018-01-01

    Microorganisms are acknowledged for their role in shaping insects’ evolution, life history and ecology. Previous studies have shown that microbial communities harbored within insects vary through ontogenetic development and among insects feeding on different host-plant species. In this study, we characterized the bacterial microbiota of the highly polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and when feeding on different host-plant species. Our results show that the bacterial microbiota hosted within the Mediterranean fruit fly differs among instars and host-plant species. Most of the bacteria harbored by the Mediterranean fruit fly belong to the phylum Proteobacteria, including genera of Alphaproteobacteria such as Acetobacter and Gluconobacter; Betaprotobacteria such as Burkholderia and Gammaproteobacteria such as Pseudomonas. PMID:29518170

  19. Bacterial succession during curing process of a skate (Dipturus batis) and isolation of novel strains.

    PubMed

    Reynisson, E; Thornór Marteinsson, V; Jónsdóttir, R; Magnússon, S H; Hreggvidsson, G O

    2012-08-01

    To study the succession of cultivated and uncultivated microbes during the traditional curing process of skate. The microbial diversity was evaluated by sequencing 16Sr RNA clone libraries and cultivation in variety of media from skate samples taken periodically during a 9-day curing process. A pH shift was observed (pH 6·64-9·27) with increasing trimethylamine (2·6 up to 75·6 mg N per 100 g) and total volatile nitrogen (TVN) (from 58·5 to 705·8 mg N per 100 g) but with relatively slow bacterial growth. Uncured skate was dominated by Oceanisphaera and Pseudoalteromonas genera but was substituted after curing by Photobacterium and Aliivibrio in the flesh and Pseudomonas on the skin. Almost 50% of the clone library is derived from putative undiscovered species. Cultivation and enrichment strategies resulted in isolation of putatively new species belonging to the genera Idiomarina, Rheinheimera, Oceanisphaera, Providencia and Pseudomonas. The most abundant genera able to hydrolyse urea to ammonia were Oceanisphaera, Psychrobacter, Pseudoalteromonas and isolates within the Pseudomonas genus. The curing process of skate is controlled and achieved by a dynamic bacterial community where the key players belong to Oceanisphaera, Pseudoalteromonas, Photobacterium, Aliivibrio and Pseudomonas. For the first time, the bacterial population developments in the curing process of skate are presented and demonstrate a reservoir of many yet undiscovered bacterial species. No Claim to Norwegian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections.

    PubMed

    Vickerman, M M; Brossard, K A; Funk, D B; Jesionowski, A M; Gill, S R

    2007-01-01

    Phylogenetic analysis of bacterial and archaeal 16S rRNA was used to examine polymicrobial communities within infected root canals of 20 symptomatic and 14 asymptomatic patients. Nucleotide sequences from approximately 750 clones amplified from each patient group with universal bacterial primers were matched to the Ribosomal Database Project II database. Phylotypes from 37 genera representing Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were identified. Results were compared to those obtained with species-specific primers designed to detect Prevotella intermedia, Porphyromonas gingivalis, Porphyromonas endodontalis, Peptostreptococcus micros, Enterococcus sp., Streptococcus sp., Fusobacterium nucleatum, Tannerella forsythensis and Treponema denticola. Since members of the domain Archaea have been implicated in the severity of periodontal disease, and a recent report confirms that archaea are present in endodontic infections, 16S archaeal primers were also used to detect which patients carried these prokaryotes, to determine if their presence correlated with severity of the clinical symptoms. A Methanobrevibacter oralis-like species was detected in one asymptomatic and one symptomatic patient. DNA from root canals of these two patients was further analysed using species-specific primers to determine bacterial cohabitants. Trep. denticola was detected in the asymptomatic but not the symptomatic patient. Conversely, Porph. endodontalis was found in the symptomatic but not the asymptomatic patient. All other species except enterococci were detected with the species-specific primers in both patients. These results confirm the presence of archaea in root canals and provide additional insights into the polymicrobial communities in endodontic infections associated with clinical symptoms.

  1. Effect of species, breed, and age on bacterial load in bovine and bubaline semen

    PubMed Central

    Sannat, Chandrahas; Nair, Ajit; Sahu, S. B.; Sahasrabudhe, S. A.; Kumar, Ashish; Gupta, Amit Kumar; Shende, R. K.

    2015-01-01

    Aim: The present study was conducted to investigate the effect of species, breed and age on bacterial load in fresh and frozen semen of Cattle and Buffalo bull. Materials and Methods: Present study covered 56 cow and 10 buffalo bulls stationed at Central Semen Station Anjora, Durg (Chhattisgarh). Impact of breeds on bacterial load in semen was assessed using six breeds of cattle viz. Sahiwal, Gir, Red Sindhi, Tharparkar, Jersey and Holstein Friesian (HF) cross. Cow bulls were categorized into four different groups based on their age (<4 years, 4-5 years, 5-6 years and > 6 years) to study variation among age groups. Bacterial load was measured in fresh and frozen semen samples from these bulls using the standard plate count (SPC) method and count was expressed as colony forming unit (CFU) per ml of semen. Results: Higher bacterial load was reported in fresh (2.36 × 104 ± 1943 CFU/ml) and frozen (1.00 × 10 ± 90 CFU/ml) semen of cow bulls as compared to buffalo bulls (1.95 × 104 ± 2882 and 7.75 × 102 ± 160 CFU/ml in fresh and frozen semen, respectively). Jersey bull showed significantly higher bacterial count (p < 0.05) both in fresh (4.07 × 104 ± 13927 CFU/ml) and frozen (1.92 × 103 ± 178 CFU/ml) semen followed by HF cross, Sahiwal, Gir, Red Sindhi and Tharparkar bull. Bulls aged < 4 years and more than 6 years yielded increased bacterial load in their semen. Although a minor variation was reported between species and among age groups, no significant differences were measured. Conclusion: Bacterial load in semen did not differ significantly between species and age groups; however significant variation was reported among different breeds. Bulls of Jersey breed showed significantly higher bacterial load in semen as compared to the crossbred and indigenous bull. PMID:27047115

  2. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  4. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    PubMed Central

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-01-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  5. Pseudomonas syringae pv. actinidiae (PSA) Isolates from Recent Bacterial Canker of Kiwifruit Outbreaks Belong to the Same Genetic Lineage

    PubMed Central

    Taratufolo, Maria C.; Cai, Rongman; Almeida, Nalvo F.; Goodman, Tokia; Guttman, David S.; Vinatzer, Boris A.; Balestra, Giorgio M.

    2012-01-01

    Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks. PMID:22590555

  6. Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility

    PubMed Central

    Whitten, Miranda M A; Davies, Charlotte E; Kim, Anita; Tlusty, Michael; Wootton, Emma C; Chistoserdov, Andrei; Rowley, Andrew F

    2014-01-01

    Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation. Culture-independent molecular techniques revealed diversity in the bacterial communities of cuticle biofilms both within and between the two lobster species, and identified three bacterial genera associated with shell lesions plus two putative beneficial bacterial species (detected exclusively in healthy cuticle or healing damaged cuticle). In an experimental aquarium shared between American and European lobsters, heterospecific transmission of potentially pathogenic bacteria appeared to be very limited; however, the claws of European lobsters were more likely to develop lesions when reared in the presence of American lobsters. Aquarium biofilms were also examined but revealed no candidate pathogens for environmental transmission. Aquimarina sp. ‘homaria’ (a potential pathogen associated with a severe epizootic form of shell disease) was detected at a much higher prevalence among American than European lobsters, but its presence correlated more with exacerbation of existing lesions rather than with lesion initiation. PMID:24817518

  7. The Truffle Microbiome: Species and Geography Effects on Bacteria Associated with Fruiting Bodies of Hypogeous Pezizales.

    PubMed

    Benucci, Gian Maria Niccolò; Bonito, Gregory M

    2016-07-01

    Fungi that produce their fruiting bodies underground within the soil profile are known commonly as truffles. Truffle fruiting bodies harbor a diverse but poorly understood microbial community of bacteria, yeasts, and filamentous fungi. In this study, we used next-generation 454 amplicon pyrosequencing of the V1 and V4 region of the bacterial 16S ribosomal DNA (rDNA) in order to characterize and compare effects of truffle species and geographic origin on the truffle microbiome. We compared truffle microbiomes of the glebal tissue for eight truffle species belonging to four distinct genera within the Pezizales: Tuber, Terfezia, Leucangium, and Kalapuya. The bacterial community within truffles was dominated by Proteobacteria, Bacterioides, Actinobacteria, and Firmicutes. Bacterial richness within truffles was quite low overall, with between 2-23 operational taxonomic units (OTUs). Notably, we found a single Bradyrhizobium OTU to be dominant within truffle species belonging to the genus Tuber, irrespective of geographic origin, but not in other truffle genera sampled. This study offers relevant insights into the truffle microbiome and raises questions concerning the recruitment and function of these fungal-associated bacteria consortia.

  8. Identification of different bacterial species in biofilms using confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  9. Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species

    PubMed Central

    Palange, Padmavali; Vaish, Ritu; Bhatti, Adnan Bashir; Kale, Vinod; Kandi, Maheshwar Reddy; Bhoomagiri, Mohan Rao

    2016-01-01

    Recently there have been reports of gram-positive cocci which are morphologically similar to both Staphylococci and the Micrococci. These bacteria have been identified as Kocuria species with the help of automated identification system and other molecular methods including 16S rRNA (ribosomal ribonucleic acid) evaluation. Kocuria belongs to the family Micrococcaceae which also includes Staphylococcus species and Micrococcus species. Isolation and clinical significance of these bacteria from human specimens warrant great caution as it does not necessarily confirm infection due to their ubiquitous presence, and as a normal flora of skin and mucous membranes in human and animals. Most clinical microbiology laboratories ignore such bacteria as laboratory and specimen contaminants. With increasing reports of infections associated with these bacteria, it is now important for clinical microbiologists to identify and enumerate the virulence and antibiotic susceptibility patterns of such bacteria and assist clinicians in improving the patient care and management. We review the occurrence and clinical significance of Kocuria species. PMID:27630804

  10. A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus).

    PubMed

    Contreras, M; Loeza, P D; Villegas, J; Farias, R; Santoyo, G

    2016-09-16

    The aim of this study was to explore the diversity of culturable bacterial communities residing in blackberry plants (Rubus fruticosus). Bacterial endophytes were isolated from plant roots, and their 16S rDNA sequences were amplified and sequenced. Our results show that the roots of R. fruticosus exhibit low colony forming units of bacterial endophytes per gram of fresh tissue (6 x 10 2 ± 0.5 x 10 2 ). We identified 41 endophytic bacterial species in R. fruticosus by BLAST homology search and a subsequent phylogenetic analysis, belonging to the classes Actinobacteria, Bacilli, Alfaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Predominantly, genera belonging the Proteobacteria (Burkholderia, 29.4%; Herbaspirillum, 10.7%; Pseudomonas, 4.9%; and Dyella, 3.9%), Firmicutes (Bacillus, 42.1%), and Actinobacteria (two isolates showing high identity with the Streptomyces genus, 1.9%) divisions were identified. Fifty percent of the bacterial endophytes produced the phytohormone indole-acetic acid (IAA), eleven of which exhibited higher IAA production (>5.8 mg/mL) compared to the plant growth-promoting strain, Pseudomonas fluorescens UM270. Additionally, the endophytic isolates exhibited protease activity (22%), produced siderophores (26.4%), and demonstrated antagonistic action (>50% inhibition of mycelial growth) against the grey mold phytopathogen Botrytis cinerea (3.9%). These results suggested that field-grown R. fruticosus plants contain bacterial endophytes within their tissues with the potential to promote plant growth and display antagonism towards plant pathogens.

  11. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe

    PubMed Central

    Skaljac, Marisa; Zanic, Katja; Puizina, Jasna; Lepen Pleic, Ivana; Ghanim, Murad

    2017-01-01

    Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia), which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar) Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium) known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies. PMID:29053633

  12. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe.

    PubMed

    Skaljac, Marisa; Kanakala, Surapathrudu; Zanic, Katja; Puizina, Jasna; Pleic, Ivana Lepen; Ghanim, Murad

    2017-10-20

    Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia), which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar) Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium) known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies.

  13. Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility.

    PubMed

    Whitten, Miranda M A; Davies, Charlotte E; Kim, Anita; Tlusty, Michael; Wootton, Emma C; Chistoserdov, Andrei; Rowley, Andrew F

    2014-06-01

    Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation. Culture-independent molecular techniques revealed diversity in the bacterial communities of cuticle biofilms both within and between the two lobster species, and identified three bacterial genera associated with shell lesions plus two putative beneficial bacterial species (detected exclusively in healthy cuticle or healing damaged cuticle). In an experimental aquarium shared between American and European lobsters, heterospecific transmission of potentially pathogenic bacteria appeared to be very limited; however, the claws of European lobsters were more likely to develop lesions when reared in the presence of American lobsters. Aquarium biofilms were also examined but revealed no candidate pathogens for environmental transmission. Aquimarina sp. 'homaria' (a potential pathogen associated with a severe epizootic form of shell disease) was detected at a much higher prevalence among American than European lobsters, but its presence correlated more with exacerbation of existing lesions rather than with lesion initiation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment

    PubMed Central

    Zerbe, Stefan

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P < 0.05) on 16S rRNA gene diversity revealed significant differences (P < 0.05) between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities. PMID:24995302

  15. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    PubMed Central

    Cabugao, Kristine G.; Timm, Collin M.; Carrell, Alyssa A.; Childs, Joanne; Lu, Tse-Yuan S.; Pelletier, Dale A.; Weston, David J.; Norby, Richard J.

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability (p-value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  16. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest.

    PubMed

    Cabugao, Kristine G; Timm, Collin M; Carrell, Alyssa A; Childs, Joanne; Lu, Tse-Yuan S; Pelletier, Dale A; Weston, David J; Norby, Richard J

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability ( p -value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  17. Identification of Erwinia species isolated from apples and pears by differential PCR.

    PubMed

    Gehring, I; Geider, K

    2012-04-01

    Many pathogenic and epiphytic bacteria isolated from apples and pears belong to the genus Erwinia; these include the species E. amylovora, E. pyrifoliae, E. billingiae, E. persicina, E. rhapontici and E. tasmaniensis. Identification and classification of freshly isolated bacterial species often requires tedious taxonomic procedures. To facilitate routine identification of Erwinia species, we have developed a PCR method based on species-specific oligonucleotides (SSOs) from the sequences of the housekeeping genes recA and gpd. Using species-specific primers that we report here, differentiation was done with conventional PCR (cPCR) and quantitative PCR (qPCR) applying two consecutive primer annealing temperatures. The specificity of the primers depends on terminal Single Nucleotide Polymorphisms (SNPs) that are characteristic for the target species. These PCR assays enabled us to distinguish eight Erwinia species, as well as to identify new Erwinia isolates from plant surfaces. When performed with mixed bacterial cultures, they only detected a single target species. This method is a novel approach to classify strains within the genus Erwinia by PCR and it can be used to confirm other diagnostic data, especially when specific PCR detection methods are not already available. The method may be applied to classify species within other bacterial genera. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  19. Identification of a novel Afipia species isolated from an Indian flying fox.

    PubMed

    Pickering, Brad S; Tyler, Shaun; Smith, Greg; Burton, Lynn; Li, Mingyi; Dallaire, André; Weingartl, Hana

    2015-01-01

    An old world fruit bat Pteropus giganteus, held in captivity and suffering from necrosis of its wing digits, failed to respond to antibiotic therapy and succumbed to the infection. Samples submitted to the National Centre for Foreign Animal Disease were tested for viral infection. Vero E6 cells exhibited minor but unique cytopathic effects on second blind passage, and full CPE by passage four. Utilizing an unbiased random amplification technique from cell culture supernatant, we identified a bacterium belonging to the Bradyrhizobiaceae. Purification of cell culture supernatant on TY media revealed a slow growing bacterial isolate. In this study using electron microscopy, 16S rRNA gene analysis and whole genome sequencing, we identify a novel bacterial species associated with the site of infection belonging to the genus Afipia. This genus of bacteria is very diverse, with only a limited number of species characterized. Afipia felis, previously described as the etiological agent to cause cat scratch disease, and Afipia septicemium, most recently shown to cause disease in humans, highlight the potential for members of this genus to form a branch of opportunistic pathogens within the Bradyrhizobiaceae. Increased utilization of next generation sequencing and genomics will aid in classifying additional members of this intriguing bacterial genera.

  20. Bacterial and fungal endophthalmitis in upper Egypt: related species and risk factors.

    PubMed

    Gharamah, A A; Moharram, A M; Ismail, M A; Al-Hussaini, A K

    2012-08-01

    To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  1. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  2. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  3. A maize resistance gene functions against bacterial streak disease in rice.

    PubMed

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  4. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    NASA Astrophysics Data System (ADS)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  5. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    PubMed

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  6. Distinct responses of bacterial communities to agricultural and urban impacts in temperate southern African estuaries

    NASA Astrophysics Data System (ADS)

    Matcher, G. F.; Froneman, P. W.; Meiklejohn, I.; Dorrington, R. A.

    2018-01-01

    Worldwide, estuaries are regarded as amongst the most ecologically threatened ecosystems and are increasingly being impacted by urban development, agricultural activities and reduced freshwater inflow. In this study, we examined the influence of different human activities on the diversity and structure of bacterial communities in the water column and sediment in three distinct, temperate permanently open estuarine systems within the same geographic region of southern Africa. The Kariega system is freshwater-deprived and is considered to be relatively pristine; the Kowie estuary is marine-dominated and impacted by urban development, while the Sundays system is fresh-water dominated and impacted by agricultural activity in its catchment. The bacterial communities in all three systems comprise predominantly heterotrophic species belonging to the Bacteroidetes and Proteobacteria phyla with little overlap between bacterioplankton and benthic bacterial communities at the species level. There was overlap between the operational taxonomic units (OTUs) of the Kowie and Kariega, both marine-influenced estuaries. However, lower species richness in the Kowie, likely reflects the impact of human settlements along the estuary. The dominant OTUs in the Sundays River system were distinct from those of the Kariega and Kowie estuaries with an overall decrease in species richness and evenness. This study provides an important snapshot into the microbial population structures of permanently open temperate estuarine systems and the influence of anthropogenic impacts on bacterial diversity and community structure.

  7. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    PubMed

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Exploring the plant-associated bacterial communities in Medicago sativa L

    PubMed Central

    2012-01-01

    Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important

  9. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  10. Prevalence of Corynebacterial 16S rRNA Sequences in Patients with Bacterial and “Nonbacterial” Prostatitis

    PubMed Central

    Tanner, Michael A.; Shoskes, Daniel; Shahed, Asha; Pace, Norman R.

    1999-01-01

    The etiology of chronic prostatitis syndromes in men is controversial, particularly when positive cultures for established uropathogens are lacking. Although identification of bacteria in prostatic fluid has relied on cultivation and microscopy, most microorganisms in the environment, including some human pathogens, are resistant to cultivation. We report here on an rRNA-based molecular phylogenetic approach to the identification of bacteria in prostate fluid from prostatitis patients. Positive bacterial signals were seen for 65% of patients with chronic prostatitis overall. Seven of 11 patients with bacterial signals but none of 6 patients without bacterial signals were cured with antibiotic-based therapy. Results indicate the occurrence in the prostate fluid of a wide spectrum of bacterial species representing several genera. Most rRNA genes were closely related to those of species belonging to the genera Corynebacterium, Staphylococcus, Peptostreptococcus, Streptococcus, and Escherichia. Unexpectedly, a wide diversity of Corynebacterium species was found in high proportion compared to the proportions of other bacterial species found. A subset of these 16S rRNA sequences represent those of undescribed species on the basis of their positions in phylogenetic trees. These uncharacterized organisms were not detected in control samples, suggesting that the organisms have a role in the disease or are the consequence of the disease. These studies show that microorganisms associated with prostatitis generally occur as complex microbial communities that differ between patients. The results also indicate that microbial communities distinct from those associated with prostatitis may occur at low levels in normal prostatic fluid. PMID:10325338

  11. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    PubMed

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Using PacBio sequencing to investigate the bacterial microbiota of traditional Buryatian cottage cheese and comparison with Italian and Kazakhstan artisanal cheeses.

    PubMed

    Jin, Hao; Mo, Lanxin; Pan, Lin; Hou, Qaingchaun; Li, Chuanjuan; Darima, Iaptueva; Yu, Jie

    2018-05-09

    Traditional fermented dairy foods including cottage cheese have been major components of the Buryatia diet for centuries. Buryatian cheeses have maintained not only their unique taste and flavor but also their rich natural lactic acid bacteria (LAB) content. However, relatively few studies have described their microbial communities or explored their potential to serve as LAB resources. In this study, the bacterial microbiota community of 7 traditional artisan cheeses produced by local Buryatian families was investigated using single-molecule, real-time sequencing. In addition, we compared the bacterial microbiota of the Buryatian cheese samples with data sets of cheeses from Kazakhstan and Italy. Furthermore, we isolated and preserved several LAB samples from Buryatian cheese. A total of 62 LAB strains (belonging to 6 genera and 14 species or subspecies) were isolated from 7 samples of Buryatian cheese. Full-length 16S rRNA sequencing of the microbiota revealed 145 species of 82 bacterial genera, belonging to 7 phyla. The most dominant species was Lactococcus lactis (43.89%). Data sets of cheeses from Italy and Kazakhstan were retrieved from public databases. Principal component analysis and multivariate ANOVA showed marked differences in the structure of the microbiota communities in the cheese data sets from the 3 regions. Linear discriminant analyses of the effect size identified 48 discriminant bacterial clades among the 3 groups, which might have contributed to the observed structural differences. Our results indicate that the bacterial communities of traditional artisan cheeses vary depending on geographic origin. In addition, we isolated novel and valuable LAB resources for the improvement of cottage cheese production. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium.

    PubMed

    Gardan, L; Dauga, C; Prior, P; Gillis, M; Saddler, G S

    2000-01-01

    The bacterial leaf-spot of anthurium emerged during the 1980s, in the French West Indies and Trinidad. This new bacterial disease is presently wide spread and constitutes a serious limiting factor for commercial anthurium production. Twenty-nine strains isolated from leaf-spots of naturally infected anthurium were characterized and compared with reference strains belonging to the Comamonadaceae family, the genera Ralstonia and Burkholderia, and representative fluorescent pseudomonads. From artificial inoculations 25 out of 29 strains were pathogenic on anthurium. Biochemical and physiological tests, fatty acid analysis, DNA-DNA hybridization, 16S rRNA gene sequence analysis, DNA-16S RNA hybridization were performed. The 25 pathogenic strains on anthurium were clustered in one phenon closely related to phytopathogenic strains of the genus Acidovorax. Anthurium strains were 79-99% (deltaTm range 0.2-1.6) related to the strain CFBP 3232 and constituted a discrete DNA homology group indicating that they belong to the same species. DNA-rRNA hybridization, 16S rRNA sequence and fatty acid analysis confirmed that this new species belongs to the beta-subclass of Proteobacteria and to rRNA superfamily III, to the family of Comamonadaceae and to the genus Acidovorax. The name Acidovorax anthurii is proposed for this new phytopathogenic bacterium. The type strain has been deposited in the Collection Française des Bactéries Phytopathogènes as CFBP 3232T.

  14. Bacterial community shift during the startup of a full-scale oxidation ditch treating sewage.

    PubMed

    Chen, Yajun; Ye, Lin; Zhao, Fuzheng; Xiao, Lin; Cheng, Shupei; Zhang, Xu-Xiang

    2016-10-06

    Oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%~48.4%) was the most dominant bacterial phylum in the OD system but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with Flavobacterium genus of exhibited remarkable decreasing trends, while bacterial species belonging to OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of bacterial community structure and the microbial ecology during the startup of full-scale wastewater treatment bioreactor.

  15. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  16. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  17. Inhibition of bacterial quorum sensing and biofilm formation by extracts of neotropical rainforest plants.

    PubMed

    Ta, Chieu Anh; Freundorfer, Marie; Mah, Thien-Fah; Otárola-Rojas, Marco; Garcia, Mario; Sanchez-Vindas, Pablo; Poveda, Luis; Maschek, J Alan; Baker, Bill J; Adonizio, Allison L; Downum, Kelsey; Durst, Tony; Arnason, John T

    2014-03-01

    Bacterial biofilms are responsible for many persistent infections by many clinically relevant pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Biofilms are much more resistant to conventional antibiotics than their planktonic counterparts. Quorum sensing, an intercellular communication system, controls pathogenesis and biofilm formation in most bacterial species. Quorum sensing provides an important pharmacological target since its inhibition does not provide a selective pressure for resistance. In this study, we investigated the quorum sensing and biofilm inhibitory activities of 126 plant extracts from 71 species collected from neotropical rainforests in Costa Rica. Quorum sensing and biofilm interference were assessed using a modified disc diffusion bioassay with Chromobacterium violaceum ATCC 12,472 and a spectrophotometric bioassay with Pseudomonas aeruginosa PA14, respectively. Species with significant anti-quorum sensing and/or anti-biofilm activities belonged to the Meliaceae, Melastomataceae, Lepidobotryaceae, Sapindaceae, and Simaroubaceae families. IC50 values ranged from 45 to 266 µg/mL. Extracts of these active species could lead to future development of botanical treatments for biofilm-associated infections. Georg Thieme Verlag KG Stuttgart · New York.

  18. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp.

    PubMed Central

    On, Stephen L. W.; Miller, William G.; Houf, Kurt; Fox, James G.; Vandamme, Peter

    2017-01-01

    Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the Epsilonproteobacteria have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of Campylobacteraceae and Helicobacteraceae. This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families Campylobacteraceae and Helicobacteraceae, thus including species in Campylobacter, Arcobacter, Helicobacter, and Wolinella. The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended. PMID:29034857

  19. Phytotoxic activity against Bromus tectorum for secondary metabolites of a seed-pathogenic Fusarium strain belonging to the F. tricinctum species complex

    Treesearch

    Marco Masi; Susan Meyer; Gennaro Pescitelli; Alessio Cimmino; Suzette Clement; Beth Peacock; Antonio Evidente

    2017-01-01

    The winter annual grass Bromus tectorum (cheatgrass) has become highly invasive in semiarid ecosystems of western North America. In these areas, a natural phenomenon, complete cheatgrass stand failure (‘die-off’), is apparently caused by a complex interaction among soilborne fungal pathogens. Several Fusarium strains belonging to the Fusarium tricinctum species complex...

  20. New Potential Pharmaceutical Applications of Hypericum Species.

    PubMed

    Marrelli, Mariangela; Statti, Giancarlo; Conforti, Filomena; Menichini, Francesco

    2016-01-01

    The genus Hypericum includes more than 450 species distributed in Europe, North America, North Africa and West Asia. These plants are widely used in folk medicine for the treatment of inflammation, bacterial and viral infections, burns and gastric disorders. The use for alleviating inflammation and promoting wound healing is well known for H. Perforatum L. (St. John's wort) and other species. Because of its pharmacological activity, H. perforatum L. is one of the most important species of this genus. This plant has been largely utilized for its efficacy in the treatment of mild to moderate depression. However, some other species have been utilized in traditional medicine and have been studied for their phytochemical composition and for their biological activities to date. Hypericum species contain biologically active secondary metabolites belonging to at least ten different classes, with prevalence of naphthodianthrones (hypericin and pseudohypericin), phloroglucinols (hyperforin), flavonoids (rutin, hyperoside, isoquercitrin, quercitrin, quercetin, amentoflavone) and phenylpropanoids (chlorogenic acid). However, great variations in contents have been reported for wild populations worldwide. The purpose of this review is to provide an overview of most recent studies about potential pharmaceutical applications of plants belonging to Hypericum genus. The most interesting isolated active principles and both in vitro and in vivo effects of Hypericum extracts are presented and discussed.

  1. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae)

    PubMed Central

    Zheng, Zhou; Wang, Dandan; He, Hong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the “filter chamber + conical segment” of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative

  2. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae).

    PubMed

    Zheng, Zhou; Wang, Dandan; He, Hong; Wei, Cong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the "filter chamber + conical segment" of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative for

  3. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population.

    PubMed

    Qi, Z; Cao, H; Jiang, H; Zhao, J; Tang, Z

    2016-01-01

    To use microarrays to detect 11 selected bacteria in infected root canals, revealing bacterial combinations that are associated with clinical symptoms and signs of primary endodontic infections in a Chinese population. DNA was extracted from 90 samples collected from the root canals of teeth with primary endodontic infections in a Chinese population, and the 16S rRNA gene was amplified by polymerase chain reaction (PCR). The PCR products were hybridized to microarrays containing specific oligonucleotide probes targeting 11 species, and the arrays were screened with a confocal laser scanner. Pearson's chi-squared test and cluster analysis were performed to investigate the associations between the bacterial combinations and clinical symptoms and signs using SAS 8.02. Seventy-seven samples (86%) yielded at least one of the 11 target species. Parvimonas micra (56%), Porphyromonas endodontalis (51%), Tannerella forsythia (48%), Prevotella intermedia (44%) and Porphyromonas gingivalis (37%) were the most prevalent taxa and were often concomitant. The following positive associations were found between the bacterial combinations and clinical features: P. endodontalis and T. forsythia with abscess; P. gingivalis and P. micra with sinus tract; P. gingivalis and P. endodontalis or P. micra and P. endodontalis with abscess and sinus tract; and the combination of P. endodontalis, P. micra, T. forsythia and P. gingivalis with sinus tract (P < 0.05). Various combinations of P. micra, P. endodontalis, T. forsythia and P. gingivalis may contribute to abscesses or sinus tracts of endodontic origin with bacterial synergism in a Chinese population. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Characterisation of the spoilage bacterial microbiota in oyster gills during storage at different temperatures.

    PubMed

    Chen, Huibin; Liu, Zhiyu; Wang, Meiying; Chen, Shaojun; Chen, Tuanwei

    2013-12-01

    The spoilage bacterial community in oyster gill was investigated during storage at 4, 10 and 20 °C. Aerobic plate counts and pH values were determined. Total bacterial DNA was extracted from oyster gill and bulk cells of plate count media. The major bacterial species during fresh or different temperatures storage were determined by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The initial aerobic plate count in oyster gill reached 6.70 log CFU g(-1). PCR-DGGE fingerprinting analysis of the 16S rRNA gene V3 region revealed that most of the strains in fresh oyster gill belonged to the genera Lactococcus and Enterobacter. The major spoilage bacteria at a storage temperature of 20 °C were Leuconostoc pseudomesenteroides, an uncultured bacterium, Cytophaga fermentans, Lactococcus lactis, Pseudoalteromonas sp., Enterococcus mundtii, Clostridium difficile and an uncultured Fusobacteria; those at 10 °C were Lactococcus spp., Lactobacillus curvatus, Weissella confusa and C. difficile; those at 4 °C were Lactococcus, Weissella, Enterobacter and Aeromonas. The other minor species were L. curvatus, Pseudomonas sp. and E. mundtii. Lactococcus spp. was the most common main spoilage bacteria in oyster gill during chilled storage. PCR-DGGE revealed the complexity of the bacterial microbiota and the major bacteria species in oyster gill for fresh and storage. © 2013 Society of Chemical Industry.

  5. Periodic Colony Formation by Bacterial Species Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Wakita, Jun-ichi; Shimada, Hirotoshi; Itoh, Hiroto; Matsuyama, Tohey; Matsushita, Mitsugu

    2001-03-01

    We have investigated the periodic colony growth of bacterial species Bacillus subtilis. A colony grows cyclically with the interface repeating an advance (migration phase) and a rest (consolidation phase) alternately on a surface of semi-solid agar plate under appropriate environmental conditions, resulting in a concentric ring-like colony. It was found from macroscopic observations that the characteristic quantities for the periodic growth such as the migration time, the consolidation time and the terrace spacing do not depend so much on nutrient concentration Cn, but do on agar concentration Ca. The consolidation time was a weakly increasing function of Ca, while the migration time and the terrace spacing were, respectively, weakly and strongly decreasing function of Ca. Overall, the cycle (migration-plus-consolidation) time seems to be constant, and does not depend so much on both Cn and Ca. Microscopically, bacterial cells inside the growing front of a colony keep increasing their population during both migration and consolidation phases. It was also confirmed that their secreting surfactant called surfactin does not affect their periodic growth qualitatively, i.e., mutant cells which cannot secrete surfactin produce a concentric ring-like colony. All these results suggest that the diffusion of the nutrient and the surfactin are irrelevant to their periodic growth.

  6. The in situ bacterial production of fluorescent organic matter; an investigation at a species level.

    PubMed

    Fox, B G; Thorn, R M S; Anesio, A M; Reynolds, D M

    2017-11-15

    Aquatic dissolved organic matter (DOM) plays an essential role in biogeochemical cycling and transport of organic matter throughout the hydrological continuum. To characterise microbially-derived organic matter (OM) from common environmental microorganisms (Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa), excitation-emission matrix (EEM) fluorescence spectroscopy was employed. This work shows that bacterial organisms can produce fluorescent organic matter (FOM) in situ and, furthermore, that the production of FOM differs at a bacterial species level. This production can be attributed to structural biological compounds, specific functional proteins (e.g. pyoverdine production by P. aeruginosa), and/or metabolic by-products. Bacterial growth curve data demonstrates that the production of FOM is fundamentally related to microbial metabolism. For example, the majority of Peak T fluorescence (> 75%) is shown to be intracellular in origin, as a result of the building of proteins for growth and metabolism. This underpins the use of Peak T as a measure of microbial activity, as opposed to bacterial enumeration as has been previously suggested. This study shows that different bacterial species produce a range of FOM that has historically been attributed to high molecular weight allochthonous material or the degradation of terrestrial FOM. We provide definitive evidence that, in fact, it can be produced by microbes within a model system (autochthonous), providing new insights into the possible origin of allochthonous and autochthonous organic material present in aquatic systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Identification and characterization of bacterial symbionts in three species of filth fly parasitoids.

    PubMed

    Betelman, Kfir; Caspi-Fluger, Ayelet; Shamir, Maayan; Chiel, Elad

    2017-09-01

    Facultative bacterial symbionts are widespread among insects and have diverse effects on their biology. Here, we focused on bacterial symbionts of three ecologically and economically important filth flies parasitoid species-Spalangia cameroni, Spalangia endius and Muscidifurax raptor. Both Spalangia species harbored a Sodalis bacterium that is closely related to Spalangia praecaptivus (a free-living bacterium) and to Sodalis symbionts of weevils. This is the only case of Sodalis infection in the important order Hymenoptera. We also found, for the first time in this parasitoid guild, a Rickettsia infecting the two Spalangia spp., albeit in much higher prevalence in S. cameroni. Molecular and phylogenetic analyses revealed that it is closely related to Rickettsia felis and other Rickettsia species from the 'transitional' group. All three parasitoid species harbored Wolbachia. Using multi-locus sequence typing, we found that M. raptor harbors a single Wolbachia strain whereas the Spalangia spp. have multiple strains. By controlled crossings, we found that Wolbachia infection in S. endius causes incomplete cytoplasmic incompatibility and increased longevity, thereby promoting Wolbachia's spread. In contrast, no effects of Wolbachia on the reproduction and longevity of M. raptor were found. This study underscores the diversity and nature of symbiotic interactions between microbes and insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage.

    PubMed

    Yue, Lifang; Lv, Hexin; Zhen, Jing; Jiang, Shengping; Jia, Shiru; Shen, Shigang; Gao, Lu; Dai, Yujie

    2016-04-28

    Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.

  9. A maize resistance gene functions against bacterial streak disease in rice

    PubMed Central

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease. PMID:16230639

  10. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    PubMed

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  11. Sugar Lego: gene composition of bacterial carbohydrate metabolism genomic loci.

    PubMed

    Kaznadzey, Anna; Shelyakin, Pavel; Gelfand, Mikhail S

    2017-11-25

    Bacterial carbohydrate metabolism is extremely diverse, since carbohydrates serve as a major energy source and are involved in a variety of cellular processes. Bacterial genes belonging to same metabolic pathway are often co-localized in the chromosome, but it is not a strict rule. Gene co-localization in linked to co-evolution and co-regulation. This study focuses on a large-scale analysis of bacterial genomic loci related to the carbohydrate metabolism. We demonstrate that only 53% of 148,000 studied genes from over six hundred bacterial genomes are co-localized in bacterial genomes with other carbohydrate metabolism genes, which points to a significant role of singleton genes. Co-localized genes form cassettes, ranging in size from two to fifteen genes. Two major factors influencing the cassette-forming tendency are gene function and bacterial phylogeny. We have obtained a comprehensive picture of co-localization preferences of genes for nineteen major carbohydrate metabolism functional classes, over two hundred gene orthologous clusters, and thirty bacterial classes, and characterized the cassette variety in size and content among different species, highlighting a significant role of short cassettes. The preference towards co-localization of carbohydrate metabolism genes varies between 40 and 76% for bacterial taxa. Analysis of frequently co-localized genes yielded forty-five significant pairwise links between genes belonging to different functional classes. The number of such links per class range from zero to eight, demonstrating varying preferences of respective genes towards a specific chromosomal neighborhood. Genes from eleven functional classes tend to co-localize with genes from the same class, indicating an important role of clustering of genes with similar functions. At that, in most cases such co-localization does not originate from local duplication events. Overall, we describe a complex web formed by evolutionary relationships of bacterial

  12. The Unculturables: targeted isolation of bacterial species associated with canine periodontal health or disease from dental plaque.

    PubMed

    Davis, Ian J; Bull, Christopher; Horsfall, Alexander; Morley, Ian; Harris, Stephen

    2014-08-01

    The current inability to culture the entirety of observed bacteria is well known and with the advent of ever more powerful molecular tools, that can survey bacterial communities at previously unattainable depth, the gap in our capacity to culture and define all of these species increases exponentially. This gap has essentially become the rate limiting step in determining how the knowledge of which species are present in a sample can be applied to understand the role of these species in an ecosystem or disease process. A case in point is periodontal disease, which is the most widespread oral disease in dogs. If untreated the disease results in significant pain, eventual loss of the dentition and potentially an increased risk of systemic diseases. Previous molecular based studies have identified the bacterial species associated with periodontal disease in dogs; however without cultured strains from many of these species it has not been possible to study whether they play a role in the disease process. Using a quantitative polymerase chain reaction (qPCR) directed approach a range of microbiological media were screened and optimized to enrich for previously uncultivated target species. A systematic screening methodology was then employed to isolate the species of interest. In cases where the target species were not cultivable in isolation, helper strains grown underneath a nitrocellulose membrane were used to provide the necessary growth factors. This guided media optimization approach enabled the purification of 14 species, 8 of which we had previously been unable to cultivate in isolation. It is also applicable to the targeted isolation of isolates from species that have previously been cultured (for example to study intra-species variation) as demonstrated by the successful isolation of 6 targeted isolates of already cultured species. To our knowledge this is the first time this combination of qPCR guided media optimization, strategic screening and helper strain

  13. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  14. Cheating fosters species co-existence in well-mixed bacterial communities

    PubMed Central

    Leinweber, Anne; Fredrik Inglis, R; Kümmerli, Rolf

    2017-01-01

    Explaining the enormous biodiversity observed in bacterial communities is challenging because ecological theory predicts that competition between species occupying the same niche should lead to the exclusion of less competitive community members. Competitive exclusion should be particularly strong when species compete for a single limiting resource or live in unstructured habitats that offer no refuge for weaker competitors. Here, we describe the ‘cheating effect’, a form of intra-specific competition that can counterbalance between-species competition, thereby fostering biodiversity in unstructured habitats. Using experimental communities consisting of the strong competitor Pseudomonas aeruginosa (PA) and its weaker counterpart Burkholderia cenocepacia (BC), we show that co-existence is impossible when the two species compete for a single limiting resource, iron. However, when introducing a PA cheating mutant, which specifically exploits the iron-scavenging siderophores produced by the PA wild type, we found that biodiversity was preserved under well-mixed conditions where PA cheats could outcompete the PA wild type. Cheating fosters biodiversity in our system because it creates strong intra-specific competition, which equalizes fitness differences between PA and BC. Our study identifies cheating – typically considered a destructive element – as a constructive force in shaping biodiversity. PMID:28060362

  15. Ten new species from the Patagonian Andes (Argentina and Chile), mostly belonging to a newly designated Stigmella purpurimaculae group (Lepidoptera: Nepticulidae).

    PubMed

    Stonis, Jonas R; Remeikis, Andrius; Davis, Donald R

    2014-11-25

    Ten new Stigmella Schrank species are described: Stigmella purpurimaculae Remeikis & Stonis, sp. nov., S. cana Remeikis & Stonis, sp. nov., S. truncata Remeikis & Stonis, sp. nov., S. sceptra Remeikis & Stonis, sp. nov., S. concreta Remeikis & Stonis, sp. nov., S. pseudoconcreta Remeikis & Stonis, sp. nov., S. quadrata Remeikis & Stonis, sp. nov. (all belonging to the newly designated S. purpurimaculae group), and S. semilactea Remeikis & Stonis, sp. nov., S. brutea Remeikis & Stonis, sp. nov., S. pseudodigitata Remeikis & Stonis, sp. nov. (not attributed to a species group) are described from the Andes (Patagonia: Argentina and Chile). For the species of the purpurimaculae group, a partial reduction of phallus, dentate cornuti, and strong development of utriculus (which can be equal or longer of the corpus bursae) are characteristic. Some of the species of the purpurimaculae group were collected near Nothofagus pumilio (Poepp. & Endl.) Krasser, Nothofagaceae, but there is still no confirmation that Nothofagus is a host-plant. All new Stigmella species are illustrated with photographs and drawings of the adults and genitalia.

  16. Ten new species of parasitic cyclopoid copepods (Crustacea) belonging to the families Bomolochidae, Philichthyidae, and Taeniacanthidae from marine fishes in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Il-Hoi; Moon, Seong Yong

    2013-12-01

    Ten new species of cyclopoid copepods are described as parasites of marine fishes from Korea. Three new species of the family Bomolochidae are described as gill parasites: Orbitacolax pteragogi n. sp. from Pteragogus flagellifer (Valenciennes), Orbitacolax trichiuri n. sp. from Trichurus lepturus Linnaeus, and Orbitacolax unguifer n. sp. from Evynnis japonica Tanaka. Four species of the genus Colobomatus Hesse, 1873 of the family Philichthyidae are described as internal parasites: Colobomatus unimanus n. sp. from Pseudolabrus eoethinus (Richardson), Colobomatus recticaudatus n. sp. from Halichoeres poecilopterus (Temminck and Schlegel), Colobomatus floridus n. sp. from Hapalogenys mucronatus (Eydoux and Souleyet), and Colobomatus orientalis n. sp. from Johnius grypotus (Richardson). Three new species of the family Taeniacanthidae, including a new species belonging to a new genus, are described as gill parasites: Taeniacanthus singularis n. sp. from Halieutaea fumosa Alcock, Triacanthus luteus n. gen. n. sp. from Odontamblyopus lacepedii (Temminck and Schlegel), and Umazuracola geminus n. sp. from Stephonolepis cirrhifer (Temminck and Schlegel).

  17. Novel Species of Non-Spore-Forming Bacteria

    NASA Technical Reports Server (NTRS)

    Briegel, Ariane; Osman, Shariff; Moissl, Christine; Hosoya,Naofumi; Venkateswaran, Kasthuri; Satomi, Masataka; Mayilraj, Shanmugam

    2008-01-01

    While cataloging cultivatable microbes from the airborne biological diversity of the atmosphere of the Regenerative Enclosed life-support Module Simulator (REMS) system at Marshall Space Flight Center, two strains that belong to one novel bacterial species were isolated. Based on 16S rRNA gene sequencing and the unique morphology and the taxonomic characteristics of these strains, it is shown that they belong to the family Intrasporangiaceae, related to the genus Tetrasphaera, with phylogenetic distances from any validly described species of the genus Tetrasphaera ranging from 96.71 to 97.76 percent. The fatty acid profile supported the affiliation of these novel strains to the genus Tetrasphaera except for the presence of higher concentrations of octadecenoic acid (C18:0) and cis-9-octadecenoic acid (C18:1), which discriminates these strains from other valid species. In addition, DNA-DNA hybridization studies indicate that these strains belong to a novel species that could be readily distinguished from its nearest neighbor, Tetrasphaera japonica AMC 5116T, with less than 20 percent DNA relatedness. Physiological and biochemical tests show few phenotypic dissimilarities, but genotypic analysis allowed the differentiation of these gelatin-liquefying strains from previously reported strains. The name Tetrasphaera remsis sp. Nov. is proposed with the type strain 3-M5-R-4(sup T) (=ATCC BAA-1496(sup T)=CIP 109413(sup T). The cells are Gram-positive, nonmotile, cocci, in tetrad arrangement and clusters. Spore formation is not observed. No species of Tetrashpaera has ever been isolated from airborne samples. Previous discoveries have come from soil and activated sludge samples. As other species of this genus have demonstrated enhanced biological phosphorus removal activity, further tests are required to determine if this newly discovered species would have bioremediation applications.

  18. Genetic diversity analysis of isolates belonging to the Photobacterium phosphoreum species group collected from salmon products using AFLP fingerprinting.

    PubMed

    Jérôme, Marc; Macé, Sabrina; Dousset, Xavier; Pot, Bruno; Joffraud, Jean-Jacques

    2016-01-18

    An accurate amplified fragment length polymorphism (AFLP) method, including three primer sets for the selective amplification step, was developed to display the phylogenetic position of Photobacterium isolates collected from salmon products. This method was efficient for discriminating the three species Photobacterium phosphoreum, Photobacterium iliopiscarium and Photobacterium kishitanii, until now indistinctly gathered in the P. phosphoreum species group known to be strongly responsible for seafood spoilage. The AFLP fingerprints enabled the isolates to be separated into two main clusters that, according to the type strains, were assigned to the two species P. phosphoreum and P. iliopiscarium. P. kishitanii was not found in the collection. The accuracy of the method was validated by using gyrB-gene sequencing and luxA-gene PCR amplification, which confirmed the species delineation. Most of the isolates of each species were clonally distinct and even those that were isolated from the same source showed some diversity. Moreover, this AFLP method may be an excellent tool for genotyping isolates in bacterial communities and for clarifying our knowledge of the role of the different members of the Photobacterium species group in seafood spoilage. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria▿

    PubMed Central

    Jordal, Peter Bruun; Dueholm, Morten Simonsen; Larsen, Poul; Petersen, Steen Vang; Enghild, Jan Johannes; Christiansen, Gunna; Højrup, Peter; Nielsen, Per Halkjær; Otzen, Daniel Erik

    2009-01-01

    Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope. PMID:19395568

  20. Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost.

    PubMed

    Charbonneau, David M; Meddeb-Mouelhi, Fatma; Boissinot, Maurice; Sirois, Marc; Beauregard, Marc

    2012-03-01

    Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60-65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.

  1. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  2. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less

  3. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  4. EXPLOSIVE RADIATION OF A BACTERIAL SPECIES GROUP

    PubMed Central

    Morlon, Hélène; Kemps, Brian D.; Plotkin, Joshua B.; Brisson, Dustin

    2013-01-01

    The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life. PMID:22834754

  5. Diversity of bacterial species in the nasal cavity of sheep in the highlands of Ethiopia and first report of Histophilus somni in the country.

    PubMed

    Tesfaye, Biruk; Sisay Tessema, Tesfaye; Tefera, Genene

    2013-06-01

    A study was conducted to isolate bacterial species/pathogens from the nasal cavity of apparently healthy and pneumonic sheep. Nasal swabs were collected aseptically, transported in tryptose soya broth and incubated for 24 h. Then, each swab was streaked onto chocolate and blood agar for culture. Bacterial species were identified following standard bacteriological procedures. Accordingly, a total of 1,556 bacteria were isolated from 960 nasal swabs collected from three different highland areas of Ethiopia, namely Debre Berhan, Asella, and Gimba. In Debre Berhan, 140 Mannheimia haemolytica, 81 Histophilus somni, 57 Staphylococcus species, and 52 Bibersteinia trehalosi were isolated. While from Gimba M. haemolytica, Staphylococcus, Streptococcus, and H. somni were isolated at rates of 25.2, 15.9, 11.4, and 5.9 %, respectively, of the total 647 bacterial species. In Asella from 352 bacterial species isolated, 93 (26.4 %) were M. haemolytica, 48 (13.6 %) were Staphylococcus species, 26 (7.4 %) were B. trehalosi, and 17 (4.8 %) H. somni were recognized. Further identification and characterization using BIOLOG identification system Enterococcus avium and Sphingomonas sanguinis were identified at 100 % probability, while, H. somni and Actinobacillus lignerisii were suggested by the system. The study showed that a variety of bacterial species colonize the nasal cavity of the Ethiopian highland sheep with variable proportion between healthy and pneumonic ones. To our knowledge, this is the first report on isolation of H. somni, an important pathogen in cattle, from the respiratory tract of a ruminant species in the country.

  6. Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host.

    PubMed

    Palomares-Rius, Juan E; Archidona-Yuste, Antonio; Cantalapiedra-Navarrete, Carolina; Prieto, Pilar; Castillo, Pablo

    2016-12-01

    Bacterial endosymbionts have been detected in some groups of plant-parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal-parasitic or free-living nematodes. This study was performed on a wide variety of plant-parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty-seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus 'Candidatus Xiphinematobacter' (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil-plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long-term evolutionary persistence between hosts and endosymbionts. © 2016 John Wiley & Sons Ltd.

  7. N-Acetyl-L-cysteine Effects on Multi-species Oral Biofilm Formation and Bacterial Ecology

    PubMed Central

    Rasmussen, Karin; Nikrad, Julia; Reilly, Cavan; Li, Yuping; Jones, Robert S.

    2015-01-01

    Future therapies for the treatment of dental decay have to consider the importance of preserving bacterial ecology while reducing biofilm adherence to teeth. A multi-species plaque derived (MSPD) biofilm model was used to assess how concentrations of N-acetyl-L-cysteine (0, 0.1%, 1%, 10%) affected the growth of complex oral biofilms. Biofilms were grown (n=96) for 24 hours on hydroxyapatite disks in BMM media with 0.5% sucrose. Bacterial viability and biomass formation was examined on each disk using a microtiter plate reader. In addition, fluorescence microscopy and Scanning Electron Microscopy was used to qualitatively examine the effect of NAC on bacterial biofilm aggregation, extracellular components, and bacterial morphology. The total biomass was significantly decreased after exposure of both 1% (from 0.48, with a 95% confidence interval of (0.44, 0.57) to 0.35, with confidence interval (0.31, 0.38)) and 10% NAC (0.14 with confidence interval (0.11, 0.17)). 16S rRNA amplicon sequencing analysis indicated that 1% NAC reduced biofilm adherence while preserving biofilm ecology. PMID:26518358

  8. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    PubMed

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  9. Efficiencies of Recovery of Bdellovibrios from Brackish- Water Environments by Using Various Bacterial Species as Prey

    PubMed Central

    Schoeffield, A. J.; Williams, H. N.

    1990-01-01

    A total of 44 bacterial species subdivided into 10 trial experiments have been used as prey for the recovery of bdellovibrios from samples of water from a brackish tidal pond and an aquarium saltwater tank. In an initial investigation, the recovery efficiency of each of the test bacterial species was compared with that of a designated standard prey, Vibrio parahaemolyticus P-5. The results revealed that in each case strain P-5 yielded an equal or significantly greater number of plaques of bdellovibrios than the test prey with but a single exception, strain CS5. In repeat experiments, CS5 yielded fewer plaques than P-5. To determine whether the use of multiple bacterial species compared with a single species as prey would increase the number of PFU of bdellovibrios recovered, material from plaques appearing on each of the test prey in the respective trials was sequentially subcultured onto two respective agar plates, the first containing as prey V. parahaemolyticus P-5 and the second containing the initial test organism. In nearly every case, subculture of plaques from lawns of the test prey to P-5 resulted in plaque formation. On the basis of the results, the use of several test prey and P-5 did not result in the recovery of any more bdellovibrio PFU than the use of P-5 alone. In this study, V. parahaemolyticus P-5 was observed to be the most efficient prey for the recovery of bdellovibrios from moderate salt water. PMID:16348096

  10. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    PubMed

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis , alpha-hemolytic streptococci, Staphylococcus hominis , coagulase-negative staphylococci, Leuconostoc mesenteroides , Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity) to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  11. Characterization of the spoilage potential of pure and mixed cultures of bacterial species isolated from tropical yellowfin tuna (Thunnus albacares).

    PubMed

    Silbande, A; Cornet, J; Cardinal, M; Chevalier, F; Rochefort, K; Smith-Ravin, J; Adenet, S; Leroi, F

    2018-02-01

    The spoilage potential of 28 bacterial strains isolated from spoiled raw yellowfin tuna was evaluated. Bacterial species were inoculated in irradiated tuna matrix. Chemical changes, bacterial growth and sensory quality were monitored during aerobic storage at 8°C. Pseudomonas spp., Enterobacter spp. and Escherichia hermanii had no spoiling effect. Brochothrix thermosphacta and Carnobacterium divergens/maltaromaticum developed moderate unpleasant odours. Hafnia paralvei and Serratia spp. released strong off-odours (pyrrolidine, sulphur/cabbage). No bacterial group (except H. paralvei) combined with Pseudomonas spp. deteriorated the sensory quality of tuna. When C. divergens/maltaromaticum was associated with H. paralvei or B. thermosphacta, the odour is close to the naturally contaminated tuna stored on the same conditions. The pH, total volatile basic nitrogen (TVBN) and trimethylamine (TMA) were not correlated with the spoilage. The bacterial species had a different impact on the sensory quality of the fish. The bacterial interactions lead to an enhancement or an inhibition of the spoilage potential and the bacterial growth. The specific spoilage organism (SSO) appears to be an association of lactic acid bacteria (LAB) with Enterobacteriaceae or B. thermosphacta. Pseudomonas, often dominant at the sensory rejection time, is not a good quality indicator. © 2017 The Society for Applied Microbiology.

  12. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    PubMed Central

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  13. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.

    PubMed

    Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F

    2010-01-01

    The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.

  14. Antarctic ice core samples: culturable bacterial diversity.

    PubMed

    Shivaji, Sisinthy; Begum, Zareena; Shiva Nageswara Rao, Singireesu Soma; Vishnu Vardhan Reddy, Puram V; Manasa, Poorna; Sailaja, Buddi; Prathiba, Mambatta S; Thamban, Meloth; Krishnan, Kottekkatu P; Singh, Shiv M; Srinivas, Tanuku N R

    2013-01-01

    Culturable bacterial abundance at 11 different depths of a 50.26 m ice core from the Tallaksenvarden Nunatak, Antarctica, varied from 0.02 to 5.8 × 10(3) CFU ml(-1) of the melt water. A total of 138 bacterial strains were recovered from the 11 different depths of the ice core. Based on 16S rRNA gene sequence analyses, the 138 isolates could be categorized into 25 phylotypes belonging to phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. All isolates had 16S rRNA sequences similar to previously determined sequences (97.2-100%). No correlation was observed in the distribution of the isolates at the various depths either at the phylum, genus or species level. The 25 phylotypes varied in growth temperature range, tolerance to NaCl, growth pH range and ability to produce eight different extracellular enzymes at either 4 or 18 °C. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a significant proportion of the total fatty acid composition. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Limitations to estimating bacterial cross-species transmission using genetic and genomic markers: inferences from simulation modeling

    PubMed Central

    Benavides, Julio A; Cross, Paul C; Luikart, Gordon; Creel, Scott

    2014-01-01

    Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced. PMID:25469159

  16. Species and Scale Dependence of Bacterial Motion Dynamics

    NASA Astrophysics Data System (ADS)

    Sund, N. L.; Yang, X.; Parashar, R.; Plymale, A.; Hu, D.; Kelly, R.; Scheibe, T. D.

    2017-12-01

    Many metal reducing bacteria are motile with their motion characteristics described by run-and-tumble behavior exhibiting series of flights (jumps) and waiting (residence) time spanning a wide range of values. Accurate models of motility allow for improved design and evaluation of in-situ bioremediation in the subsurface. While many bioremediation models neglect the motion of the bacteria, others treat motility using an advection dispersion equation, which assumes that the motion of the bacteria is Brownian.The assumption of Brownian motion to describe motility has enormous implications on predictive capabilities of bioremediation models, yet experimental evidence of this assumption is mixed [1][2][3]. We hypothesize that this is due to the species and scale dependence of the motion dynamics. We test our hypothesis by analyzing videos of motile bacteria of five different species in open domains. Trajectories of individual cells ranging from several seconds to few minutes in duration are extracted in neutral conditions (in the absence of any chemical gradient). The density of the bacteria is kept low so that the interaction between the bacteria is minimal. Preliminary results show a transition from Fickian (Brownian) to non-Fickian behavior for one species of bacteria (Pelosinus) and persistent Fickian behavior of another species (Geobacter).Figure: Video frames of motile bacteria with the last 10 seconds of their trajectories drawn in red. (left) Pelosinus and (right) Geobacter.[1] Ariel, Gil, et al. "Swarming bacteria migrate by Lévy Walk." Nature Communications 6 (2015).[2] Saragosti, Jonathan, Pascal Silberzan, and Axel Buguin. "Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis." PloS one 7.4 (2012): e35412.[3] Wu, Mingming, et al. "Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique." Applied and Environmental Microbiology 72.7 (2006): 4987-4994.

  17. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    PubMed

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  18. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge

    PubMed Central

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-01-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with 14C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with 13C6-glucose and 13C3-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with 13C-glucose and 13C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with 14C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high Km for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5–10 m). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta. PMID:21562600

  19. Plasmids foster diversification and adaptation of bacterial populations in soil.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives

    PubMed Central

    Schlaeppi, Klaus; Dombrowski, Nina; Oter, Ruben Garrido; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul

    2014-01-01

    Plants host at the contact zone with soil a distinctive root-associated bacterial microbiota believed to function in plant nutrition and health. We investigated the diversity of the root microbiota within a phylogenetic framework of hosts: three Arabidopsis thaliana ecotypes along with its sister species Arabidopsis halleri and Arabidopsis lyrata, as well as Cardamine hirsuta, which diverged from the former ∼35 Mya. We surveyed their microbiota under controlled environmental conditions and of A. thaliana and C. hirsuta in two natural habitats. Deep 16S rRNA gene profiling of root and corresponding soil samples identified a total of 237 quantifiable bacterial ribotypes, of which an average of 73 community members were enriched in roots. The composition of this root microbiota depends more on interactions with the environment than with host species. Interhost species microbiota diversity is largely quantitative and is greater between the three Arabidopsis species than the three A. thaliana ecotypes. Host species-specific microbiota were identified at the levels of individual community members, taxonomic groups, and whole root communities. Most of these signatures were observed in the phylogenetically distant C. hirsuta. However, the branching order of host phylogeny is incongruent with interspecies root microbiota diversity, indicating that host phylogenetic distance alone cannot explain root microbiota diversification. Our work reveals within 35 My of host divergence a largely conserved and taxonomically narrow root microbiota, which comprises stable community members belonging to the Actinomycetales, Burkholderiales, and Flavobacteriales. PMID:24379374

  1. Loofah sponges as reservoirs and vehicles in the transmission of potentially pathogenic bacterial species to human skin.

    PubMed Central

    Bottone, E J; Perez, A A; Oeser, J L

    1994-01-01

    Loofah sponges are natural products used as exfoliative beauty aids. As a consequence of tracing a case of Pseudomonas aeruginosa folliculitis to a contaminated loofah sponge, we assessed the role of loofah sponges in supporting the growth of a wide variety of bacterial species. Our data show growth enhancement of sterile loofah fragments for numerous gram-negative (Pseudomonas, Xanthomonas, and Klebsiella) and gram-positive (Enterococcus and group B Streptococcus) species of human and environmental origin. Furthermore, hydrated new, unused loofah sponges undergo a shift in bacterial flora from sparse colonies of Bacillus spp. and Staphylococcus epidermidis to a predominantly gram-negative flora. The growth-promoting potential of loofah sponges (and other exfoliatives) can be further augmented by desquamated epithelial cells entrapped in the loofah fibrous matrix. Therefore, as loofah sponges (and other exfoliatives) can serve as a reservoir and a vehicle for the transmission of potentially pathogenic species to the human skin, we recommend their decontamination with hypochlorite (10%) bleach at regular intervals. Images PMID:8150959

  2. Loofah sponges as reservoirs and vehicles in the transmission of potentially pathogenic bacterial species to human skin.

    PubMed

    Bottone, E J; Perez, A A; Oeser, J L

    1994-02-01

    Loofah sponges are natural products used as exfoliative beauty aids. As a consequence of tracing a case of Pseudomonas aeruginosa folliculitis to a contaminated loofah sponge, we assessed the role of loofah sponges in supporting the growth of a wide variety of bacterial species. Our data show growth enhancement of sterile loofah fragments for numerous gram-negative (Pseudomonas, Xanthomonas, and Klebsiella) and gram-positive (Enterococcus and group B Streptococcus) species of human and environmental origin. Furthermore, hydrated new, unused loofah sponges undergo a shift in bacterial flora from sparse colonies of Bacillus spp. and Staphylococcus epidermidis to a predominantly gram-negative flora. The growth-promoting potential of loofah sponges (and other exfoliatives) can be further augmented by desquamated epithelial cells entrapped in the loofah fibrous matrix. Therefore, as loofah sponges (and other exfoliatives) can serve as a reservoir and a vehicle for the transmission of potentially pathogenic species to the human skin, we recommend their decontamination with hypochlorite (10%) bleach at regular intervals.

  3. Combined chemical and physical transformation method with RbCl and sepiolite for the transformation of various bacterial species.

    PubMed

    Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun

    2017-04-01

    DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.

  4. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories.

    PubMed

    Woo, P C Y; Lau, S K P; Teng, J L L; Tse, H; Yuen, K-Y

    2008-10-01

    In the last decade, as a result of the widespread use of PCR and DNA sequencing, 16S rDNA sequencing has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in determining the duration of treatment and infection control procedures. With the use of 16S rDNA sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkongensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 16S rDNA sequencing into routine use in clinical microbiology laboratories is automation of the technology. The only step that can be automated at the moment is input of the 16S rDNA sequence of the bacterial isolate for identification into one of the software packages that will generate the result of the identity of the isolate on the basis of its sequence database. However

  5. Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea.

    PubMed

    Skaljac, M; Zanić, K; Hrnčić, S; Radonjić, S; Perović, T; Ghanim, M

    2013-02-01

    Several whitefly species (Hemiptera: Aleyrodidae) are cosmopolitan phloem-feeders that cause serious damage in numerous agricultural crops. All whitefly species harbor a primary bacterial symbiont and a diverse array of secondary symbionts which may influence several aspects of the insect's biology. We surveyed infections by secondary symbionts in Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood) and Siphoninus phillyreae (Haliday) from areas in the east cost of the Adriatic Sea. Both the Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) B. tabaci genetic groups were detected in Montenegro, whereas only the MED was confirmed in Croatia. Trialeurodes vaporariorum and S. phillyreae were found in all areas surveyed. MEAM1 and MED exhibited similarity to previously reported infections, while populations of T. vaporariorum from Montenegro harbored Rickettsia, Wolbachia and Cardinium in addition to previously reported Hamiltonella and Arsenopnohus. Siphoninus phillyreae harbored Hamiltonella, Wolbachia, Cardinium and Arsenophonus, with the latter appearing in two alleles. Multiple infections of all symbionts were common in the three insect species tested, with some reaching near fixation. Florescent in situ hybridization showed new localization patterns for Hamiltonella in S. phillyreae, and the morphology of the bacteriosome differed from that observed in other whitefly species. Our results show new infections with bacterial symbionts in the whitefly species studied. Infections with the same symbionts in reproductively isolated whitefly species confirm complex relationships between whiteflies and bacterial symbionts, and suggest possible horizontal transfer of some of these bacteria.

  6. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.

    PubMed

    Lixandru, Brînduşa-Elena; Drăcea, Nicoleta Olguţa; Dragomirescu, Cristiana Cerasella; Drăgulescu, Elena Carmina; Coldea, Ileana Luminiţa; Anton, Liliana; Dobre, Elena; Rovinaru, Camelia; Codiţă, Irina

    2010-01-01

    The currative properties of aromatic and medicinal plants have been recognized since ancient times and, more recently, the antimicrobial activity of plant essential oils has been used in several applications, including food preservation. The purpose of this study was to create directly comparable, quantitative data on the antimicrobial activity of some plant essential oils prepared in the National Institute of Research-Development for Chemistry and Petrochemistry, Bucharest to be used for the further development of food packaging technology, based on their antibacterial and antifungal activity. The essential oils extracted from thyme (Thymus vulgaris L.), basil (Ocimum basilicum L.), coriander (Coriandrum sativum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), fennel (Foeniculum vulgare L.), spearmint (Mentha spicata L.) and carraway (Carum carvi L.) were investigated for their antimicrobial activity against eleven different bacterial and three fungal strains belonging to species reported to be involved in food poisoning and/or food decay: S. aureus ATCC 25923, S. aureus ATCC 6538, S. aureus ATCC 25913, E. coli ATCC 25922, E. coli ATCC 35218, Salmonella enterica serovar Enteritidis Cantacuzino Institute Culture Collection (CICC) 10878, Listeria monocytogenes ATCC 19112, Bacillus cereus CIP 5127, Bacillus cereus ATCC 11778, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, Penicillium spp. CICC 251 and two E. coli and Salmonella enterica serovar Enteritidis clinical isolates. The majority of the tested essential oils exibited considerable inhibitory capacity against all the organisms tested, as supported by growth inhibition zone diameters, MICs and MBC's. Thyme, coriander and basil oils proved the best antibacterial activity, while thyme and spearmint oils better inhibited the fungal species.

  7. Biomimetic/Optical Sensors for Detecting Bacterial Species

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ksendzov, Alexander; Yen, Shiao-Pin; Ryan, Margaret; Lazazzera, Beth

    2006-01-01

    Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum-signaling compounds are acyl-homoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum. A sensor according to the proposal would include a specially formulated biomimetic film, made of a molecularly imprinted polymer (MIP), that would respond optically to the signaling compound of interest. The MIP film would be integrated directly onto an opticalwaveguide- based ring resonator for optical readout. Optically, the sensor would resemble the one described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. MIPs have been used before as molecular- recognition compounds, though not in the manner of the present proposal. Molecular imprinting is an approach to making molecularly selective cavities in a polymer matrix. These cavities function much as enzyme receptor sites: the chemical functionality and shape of a cavity in the polymer matrix cause the cavity to bind to specific molecules. An MIP matrix is made by polymerizing monomers in the presence of the compound of interest (template molecule). The polymer forms around the template. After the polymer solidifies, the template molecules are removed from the polymer matrix by decomplexing them from their binding sites and then dissolving them, leaving cavities that are matched to the template molecules in size, shape, and chemical functionality. The cavities thus become molecular-recognition sites

  8. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    PubMed

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  9. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation.

    PubMed

    Qin, Qi-Long; Xie, Bin-Bin; Yu, Yong; Shu, Yan-Li; Rong, Jin-Cheng; Zhang, Yan-Jiao; Zhao, Dian-Li; Chen, Xiu-Lan; Zhang, Xi-Ying; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-06-01

    To what extent the genomes of different species belonging to one genus can be diverse and the relationship between genomic differentiation and environmental factor remain unclear for oceanic bacteria. With many new bacterial genera and species being isolated from marine environments, this question warrants attention. In this study, we sequenced all the type strains of the published species of Glaciecola, a recently defined cold-adapted genus with species from diverse marine locations, to study the genomic diversity and cold-adaptation strategy in this genus.The genome size diverged widely from 3.08 to 5.96 Mb, which can be explained by massive gene gain and loss events. Horizontal gene transfer and new gene emergence contributed substantially to the genome size expansion. The genus Glaciecola had an open pan-genome. Comparative genomic research indicated that species of the genus Glaciecola had high diversity in genome size, gene content and genetic relatedness. This may be prevalent in marine bacterial genera considering the dynamic and complex environments of the ocean. Species of Glaciecola had some common genomic features related to cold adaptation, which enable them to thrive and play a role in biogeochemical cycle in the cold marine environments.

  10. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Genetic diversity and dynamics of bacterial and yeast strains associated to Spanish-style green table-olive fermentations in large manufacturing companies.

    PubMed

    Lucena-Padrós, Helena; Caballero-Guerrero, Belén; Maldonado-Barragán, Antonio; Ruiz-Barba, José Luis

    2014-11-03

    We have genotyped a total of 1045 microbial isolates obtained along the fermentation time of Spanish-style green table olives from the fermentation yards (patios) of two large manufacturing companies in the Province of Sevilla, south of Spain. Genotyping was carried out using RAPD-PCR fingerprinting. In general, isolates clustered well into the relevant phylogenetic dendrograms, forming separate groups in accordance to their species adscription. We could identify which bacterial and yeast genotypes (strains) persisted throughout the fermentation at each patio. Also, which of them were more adapted to any of the three stages, i.e. initial, middle and final, described for this food fermentation. A number of genotypes were found to be shared by both patios. Fifty seven of these belonged to five different bacterial species, i.e. Lactobacillus pentosus, Lactobacillus paracollinoides/collinoides, Lactobacillus rapi, Pediococcus ethanolidurans and Staphylococcus sp., although most of them (51) belonged to L. pentosus. Four yeast genotypes were also shared, belonging to the species Candida thaimueangensis, Saccharomyces cerevisiae and Hanseniaspora sp. Two genotypes of L. pentosus were found to be grouped with those of two strains used in commercially available starter cultures, one of them bacteriocinogenic, which were used up to three years before this study in these patios, demonstrating the persistence of selected strains in this environment. Biodiversity was assessed though different indexes, including richness, diversity and dominance. A statistically significant decrease in biodiversity between the initial and final stages of the fermentation was found in both patios. However, values of biodiversity indexes in the fermenters were very similar, and no significant differences were found in the total biodiversity between both patios. This study allowed us to identify a range of well adapted strains (genotypes), especially those belonging to the lactic acid bacteria

  12. A new Eastern Central Atlantic skate Raja parva sp. nov. (Rajoidei: Rajidae) belonging to the Raja miraletus species complex.

    PubMed

    Last, Peter R; Séret, Bernard

    2016-08-05

    An investigation of combined CO1 and NADH2 data for rajid skates referable to Raja miraletus provided evidence that populations ranging from southern Africa to the North-East Atlantic and Mediterranean Sea, once considered to represent a cline, belong to a species complex consisting of at least four valid species. Raja miraletus appears to be confined to the Mediterranean Sea, and the North-East Atlantic from the Bay of Biscay south to Morocco and Madeira. The southernmost species, referable to the resurrected Raja ocellifera, occurs off southern Africa, off Namibia and from False Bay to Durban (South Africa). Two species occur off tropical West Africa, including Raja parva sp. nov. (Senegal, Liberia and Angola but is probably more widespread within the region), and another unidentified species needing further investigation. Raja cf. miraletus, confirmed from Mauritania and Senegal, appears to be a larger skate with a broader disc, more broadly pointed snout, larger spiracles, and a slightly longer and broader tail. Raja parva sp. nov. differs from nominal members of the complex in having an unusually long procaudal tail (exceeding 22% TL), as well as a combination of other external characters. Past investigators observed morphological and anatomical differences between these forms but these were thought to be due to intraspecific variability. They postulated that an upwelling at Cape Blanco (21°N) may have isolated the Mediterranean form (R. miraletus) from Mauritania-Senegal form (now known to be two species). Similarly, the Benguela Current and upwelling off Cape Frio (18°S) were thought to be responsible for separating the Angolan form (R. parva) and South African form (R. ocellifera).

  13. Why related bacterial species bloom simultaneously in the gut: principles underlying the 'Like will to like' concept.

    PubMed

    Winter, Sebastian E; Bäumler, Andreas J

    2014-02-01

    The large intestine is host to a complex ecological community composed predominantly of obligate anaerobic bacteria belonging to the classes Bacteroidia and Clostridia. This community confers benefits through its metabolic activities and host interactions. However, a microbial imbalance (dysbiosis) characterized by a decreased abundance of Clostridia and a bloom of facultative anaerobic Proteobacteria is commonly observed during inflammation in the large bowel. Here we review recent insights into the principles that favour simultaneous increases in the abundance of closely related species belonging to the Proteobacteria during inflammation, which provides important clues for the rational design of strategies to treat dysbiosis. © 2013 John Wiley & Sons Ltd.

  14. Conceptualizing belonging.

    PubMed

    Mahar, Alyson L; Cobigo, Virginie; Stuart, Heather

    2013-06-01

    To develop a transdisciplinary conceptualization of social belonging that could be used to guide measurement approaches aimed at evaluating the effectiveness of community-based programs for people with disabilities. We conducted a narrative, scoping review of peer reviewed English language literature published between 1990 and July 2011 using multiple databases, with "sense of belonging" as a key search term. The search engine ranked articles for relevance to the search strategy. Articles were searched in order until theoretical saturation was reached. We augmented this search strategy by reviewing reference lists of relevant papers. Theoretical saturation was reached after 40 articles; 22 of which were qualitative accounts. We identified five intersecting themes: subjectivity; groundedness to an external referent; reciprocity; dynamism and self-determination. We define a sense of belonging as a subjective feeling of value and respect derived from a reciprocal relationship to an external referent that is built on a foundation of shared experiences, beliefs or personal characteristics. These feelings of external connectedness are grounded to the context or referent group, to whom one chooses, wants and feels permission to belong. This dynamic phenomenon may be either hindered or promoted by complex interactions between environmental and personal factors.

  15. A Cross-Sectional Survey of Bacterial Species in Plaque from Client Owned Dogs with Healthy Gingiva, Gingivitis or Mild Periodontitis

    PubMed Central

    Davis, Ian J.; Wallis, Corrin; Deusch, Oliver; Colyer, Alison; Milella, Lisa; Loman, Nick; Harris, Stephen

    2013-01-01

    Periodontal disease is the most widespread oral disease in dogs which if left untreated results in significant pain to the pet and loss of dentition. The objective of this study was to identify bacterial species in canine plaque that are significantly associated with health, gingivitis and mild periodontitis (<25% attachment loss). In this survey subgingival plaque samples were collected from 223 dogs with healthy gingiva, gingivitis and mild periodontitis with 72 to 77 samples per health status. DNA was extracted from the plaque samples and subjected to PCR amplification of the V1-V3 region of the 16S rDNA. Pyrosequencing of the PCR amplicons identified a total of 274 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all disease stages, particularly in health along with Moraxella and Bergeyella. Peptostreptococcus, Actinomyces, and Peptostreptococcaceae were the most abundant genera in mild periodontitis. Logistic regression analysis identified species from each of these genera that were significantly associated with health, gingivitis or mild periodontitis. Principal component analysis showed distinct community profiles in health and disease. The species identified show some similarities with health and periodontal disease in humans but also major differences. In contrast to human, healthy canine plaque was found to be dominated by Gram negative bacterial species whereas Gram positive anaerobic species predominate in disease. The scale of this study surpasses previously published research and enhances our understanding of the bacterial species present in canine subgingival plaque and their associations with health and early periodontal disease. PMID:24349448

  16. A cross-sectional survey of bacterial species in plaque from client owned dogs with healthy gingiva, gingivitis or mild periodontitis.

    PubMed

    Davis, Ian J; Wallis, Corrin; Deusch, Oliver; Colyer, Alison; Milella, Lisa; Loman, Nick; Harris, Stephen

    2013-01-01

    Periodontal disease is the most widespread oral disease in dogs which if left untreated results in significant pain to the pet and loss of dentition. The objective of this study was to identify bacterial species in canine plaque that are significantly associated with health, gingivitis and mild periodontitis (<25% attachment loss). In this survey subgingival plaque samples were collected from 223 dogs with healthy gingiva, gingivitis and mild periodontitis with 72 to 77 samples per health status. DNA was extracted from the plaque samples and subjected to PCR amplification of the V1-V3 region of the 16S rDNA. Pyrosequencing of the PCR amplicons identified a total of 274 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all disease stages, particularly in health along with Moraxella and Bergeyella. Peptostreptococcus, Actinomyces, and Peptostreptococcaceae were the most abundant genera in mild periodontitis. Logistic regression analysis identified species from each of these genera that were significantly associated with health, gingivitis or mild periodontitis. Principal component analysis showed distinct community profiles in health and disease. The species identified show some similarities with health and periodontal disease in humans but also major differences. In contrast to human, healthy canine plaque was found to be dominated by Gram negative bacterial species whereas Gram positive anaerobic species predominate in disease. The scale of this study surpasses previously published research and enhances our understanding of the bacterial species present in canine subgingival plaque and their associations with health and early periodontal disease.

  17. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an

  18. Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species.

    PubMed

    Bylund, Johan; Burgess, Lee-Anna; Cescutti, Paola; Ernst, Robert K; Speert, David P

    2006-02-03

    Bacteria belonging to the Burkholderia cepacia complex are important opportunistic pathogens in compromised hosts, particularly patients with cystic fibrosis or chronic granulomatous disease. Isolates of B. cepacia complex may produce large amounts of exopolysaccharides (EPS) that endow the bacteria with a mucoid phenotype and appear to facilitate bacterial persistence during infection. We showed that EPS from a clinical B. cenocepacia isolate interfered with the function of human neutrophils in vitro; it inhibited chemotaxis and production of reactive oxygen species (ROS), both essential components of innate neutrophil-mediated host defenses. These inhibitory effects were not due to cytotoxicity or interference with intracellular calcium signaling. EPS also inhibited enzymatic generation of ROS in cell-free systems, indicating that it scavenges these bactericidal products. B. cenocepacia EPS is structurally distinct from Pseudomonas aeruginosa alginate, yet they share the capacity to scavenge ROS and inhibit chemotaxis. These properties could explain why the two bacterial species resist clearance from the infected cystic fibrosis lung.

  19. Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach.

    PubMed

    Fakhry, Carl Tony; Kulkarni, Prajna; Chen, Ping; Kulkarni, Rahul; Zarringhalam, Kourosh

    2017-08-22

    Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a dramatic increase in the discovery of bacterial sRNAs. However, it is generally believed that the currently identified sRNAs constitute a limited subset of the bacterial sRNA repertoire. In several cases, sRNAs belonging to a specific class are already known and the challenge is to identify additional sRNAs belonging to the same class. In such cases, machine-learning approaches can be used to predict novel sRNAs in a given class. In this work, we develop novel bioinformatics approaches that integrate sequence and structure-based features to train machine-learning models for the discovery of bacterial sRNAs. We show that features derived from recurrent structural motifs in the ensemble of low energy secondary structures can distinguish the RNA classes with high accuracy. We apply this approach to predict new members in two broad classes of bacterial small RNAs: 1) sRNAs that bind to the RNA-binding protein RsmA/CsrA in diverse bacterial species and 2) sRNAs regulated by the master regulator of virulence, ToxT, in Vibrio cholerae. The involvement of sRNAs in bacterial adaptation to changing environments is an increasingly recurring theme in current research in microbiology. It is likely that future research, combining experimental and computational approaches, will discover many more examples of sRNAs as components of critical regulatory pathways in bacteria. We have developed a novel approach for prediction of small RNA regulators in important bacterial pathways. This approach can be applied to specific classes of sRNAs for which several members have been identified and the challenge is to identify additional sRNAs.

  20. Skin microbiota in frogs from the Brazilian Atlantic Forest: Species, forest type, and potential against pathogens.

    PubMed

    Assis, Ananda Brito de; Barreto, Cristine Chaves; Navas, Carlos Arturo

    2017-01-01

    The cutaneous microbiota of amphibians can be defined as a biological component of protection, since it can be composed of bacteria that produce antimicrobial compounds. Several factors influence skin microbial structure and it is possible that environmental variations are among one of these factors, perhaps through physical-chemical variations in the skin. This community, therefore, is likely modified in habitats in which some ecophysiological parameters are altered, as in fragmented forests. Our research goal was to compare the skin bacterial community of four anuran species of the Atlantic Forest of Brazil in landscapes from two different environments: continuous forest and fragmented forest. The guiding hypotheses were: 1) microbial communities of anuran skin vary among sympatric frog species of the Atlantic forest; 2) the degree to which forested areas are intact affects the cutaneous bacterial community of amphibians. If the external environment influences the skin microbiota, and if such influences affect microorganisms capable of inhibiting the colonization of pathogens, we expect consequences for the protection of host individuals. We compared bacterial communities based on richness and density of colony forming units; investigated the antimicrobial potential of isolated strains; and did the taxonomic identification of isolated morphotypes. We collected 188 individual frogs belonging to the species Proceratophrys boiei, Dendropsophus minutus, Aplastodiscus leucopygius and Phyllomedusa distincta, and isolated 221 bacterial morphotypes. Our results demonstrate variation in the skin microbiota of sympatric amphibians, but only one frog species exhibited differences in the bacterial communities between populations from fragmented and continuous forest. Therefore, the variation we observed is probably derived from both intrinsic aspects of the host amphibian species and extrinsic aspects of the environment occupied by the host. Finally, we detected

  1. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China

    PubMed Central

    She, Xiaoman; Yu, Lin; Lan, Guobing; Tang, Yafei; He, Zifu

    2017-01-01

    Ralstonia solanacearum species complex is a devastating phytopathogen with an unusually wide host range, and new host plants are continuously being discovered. In June 2016, a new bacterial wilt on Cucurbita maxima was observed in Guangdong province, China. Initially, in the adult plant stage, several leaves of each plant withered suddenly and drooped; the plant then wilted completely, and the color of their vasculature changed to dark brown, ultimately causing the entire plant to die. Creamy-whitish bacterial masses were observed to ooze from crosscut stems of these diseased plants. To develop control strategies for C. maxima bacterial wilt, the causative pathogenic isolates were identified and characterized. Twenty-four bacterial isolates were obtained from diseased C. maxima plants, and 16S rRNA gene sequencing and pathogenicity analysis results indicated that the pathogen of C. maxima bacterial wilt was Ralstonia solanacearum. The results from DNA-based analysis, host range determination and bacteriological identification confirmed that the 24 isolates belonged to R. solanacearum phylotype I, race 1, and eight of these isolates belonged to biovar 3, while 16 belonged to biovar 4. Based on the results of partial egl gene sequence analysis, the 24 isolates clustered into three egl- sequence type groups, sequevars 17, 45, and 56. Sequevar 56 is a new sequevar which is described for the first time in this paper. An assessment of the resistance of 21 pumpkin cultivars revealed that C. moschata cv. Xiangyu1 is resistant to strain RS378, C. moschata cv. Xiangmi is moderately resistant to strain RS378, and 19 other pumpkin cultivars, including four C. maxima cultivars and 15 C. moschata cultivars, are susceptible to strain RS378. To the best of our knowledge, this is the first report of C. maxima bacterial wilt caused by R. solanacearum race 1 in the world. Our results provide valuable information for the further development of control strategies for C. maxima wilt

  2. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China.

    PubMed

    She, Xiaoman; Yu, Lin; Lan, Guobing; Tang, Yafei; He, Zifu

    2017-01-01

    Ralstonia solanacearum species complex is a devastating phytopathogen with an unusually wide host range, and new host plants are continuously being discovered. In June 2016, a new bacterial wilt on Cucurbita maxima was observed in Guangdong province, China. Initially, in the adult plant stage, several leaves of each plant withered suddenly and drooped; the plant then wilted completely, and the color of their vasculature changed to dark brown, ultimately causing the entire plant to die. Creamy-whitish bacterial masses were observed to ooze from crosscut stems of these diseased plants. To develop control strategies for C. maxima bacterial wilt, the causative pathogenic isolates were identified and characterized. Twenty-four bacterial isolates were obtained from diseased C. maxima plants, and 16S rRNA gene sequencing and pathogenicity analysis results indicated that the pathogen of C. maxima bacterial wilt was Ralstonia solanacearum . The results from DNA-based analysis, host range determination and bacteriological identification confirmed that the 24 isolates belonged to R. solanacearum phylotype I, race 1, and eight of these isolates belonged to biovar 3, while 16 belonged to biovar 4. Based on the results of partial egl gene sequence analysis, the 24 isolates clustered into three egl- sequence type groups, sequevars 17, 45, and 56. Sequevar 56 is a new sequevar which is described for the first time in this paper. An assessment of the resistance of 21 pumpkin cultivars revealed that C. moschata cv. Xiangyu1 is resistant to strain RS378, C. moschata cv. Xiangmi is moderately resistant to strain RS378, and 19 other pumpkin cultivars, including four C. maxima cultivars and 15 C. moschata cultivars, are susceptible to strain RS378. To the best of our knowledge, this is the first report of C. maxima bacterial wilt caused by R. solanacearum race 1 in the world. Our results provide valuable information for the further development of control strategies for C. maxima wilt

  3. The microbiota of eight species of dehydrated edible seaweeds from North West Spain.

    PubMed

    Del Olmo, Ana; Picon, Antonia; Nuñez, Manuel

    2018-04-01

    The microbiota of eight species (Chondrus crispus, Himanthalia elongata, Laminaria ochroleuca, Palmaria palmata, Porphyra umbilicalis, Saccharina latissima, Ulva lactuca and Undaria pinnatifida) of edible seaweeds collected in North West Spain, marketed as dehydrated product, was quantitatively determined on nine solid media. Representative colonies were selected from solid culture media. The isolated microorganisms were identified by means of morphological characteristics, 16S rDNA sequencing and biochemical tests. U. pinnatifida was the seaweed species showing the most abundant microbial population, with counts on Marine agar up to 7.7 log cfu/g in individual samples and 5.0 log cfu/g as the mean value, and counts of coliforms up to 4.6 log cfu/g in individual samples and 2.4 log cfu/g as the mean value. The 225 identified bacterial isolates belonged to 11 families, 27 genera and 56 species. Bacillaceae was the family accounting for the highest number of isolates (111) followed by Enterobacteriaceae (60), Bacillales Family XII Incertae Sedis (20), Planococcaceae (11), Moraxellaceae (7), Paenibacillaceae (5) and Pseudomonadaceae (5). Bacterial species showing the highest occurrence in dehydrated seaweeds were Bacillus megaterium, B. licheniformis, Pantoea sp. and termoresistant Pantoea sp. Four of the Bacillus species isolated from dehydrated seaweeds (B. cereus, B. licheniformis, B. pumilus and B. subtilis) are among those containing strains considered to be foodborne pathogens and nine of the isolated non-Bacillales bacterial species have been reported to contain human opportunistic pathogenic strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms.

    PubMed

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.

  5. Evaluation of Intraspecies Interactions in Biofilm Formation by Methylobacterium Species Isolated from Pink-Pigmented Household Biofilms

    PubMed Central

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms. PMID:25381715

  6. Differentiation of some species of Neisseriaceae and other bacterial groups by DNA-DNA hybridization.

    PubMed

    Tønjum, T; Bukholm, G; Bøvre, K

    1989-05-01

    DNA-DNA hybridization using total genomic DNA probes may represent a way of differentiating between miscellaneous bacterial species. This was studied with type and reference strains of 20 species in Moraxella, Kingella, and other selected Gram-negative groups. Both radioactive and biotin labelling were employed. Most of the species examined were easily distinguished, such as Moraxella (Branhamella) catarrhalis, M.(B.) ovis, M. atlantae, M. phenylpyruvica, M. osloensis, Neisseria elongata, N. meningitidis, Kingella kingae, K. indologenes, K. dentrificans, Oligella urethralis, Eikenella corrodens, Cardiobacterium hominis, Haemophilus aphrophilus, Actinobacillus actinomycetemcomitans, Gardnerella vaginalis, and DF-2. This reflected the extent of the genetic distances between them as a basis for identification by hybridization. There was some clustering in the Moraxella group. Especially the closely related Moraxella nonliquefaciens, M. lacunata and M. bovis showed strong hybridization affinities. This leads to potential problems in distinguishing these three species from each other by DNA-DNA hybridization with total genomic probes alone.

  7. Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses.

    PubMed

    Li, Jing; Zheng, Yi; Xu, Haiyan; Xi, Xiaoxia; Hou, Qiangchuan; Feng, Shuzhen; Wuri, Laga; Bian, Yanfei; Yu, Zhongjie; Kwok, Lai-Yu; Sun, Zhihong; Sun, Tiansong

    2017-01-09

    In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy. Across the Kazakhstan cheese samples, a total of 238 bacterial species belonging to 14 phyla and 140 genera were identified. Lactococcus lactis (28.93%), Lactobacillus helveticus (26.43%), Streptococcus thermophilus (12.18%) and Lactobacillus delbrueckii (12.15%) were the dominant bacterial species for these samples. To further evaluate the cheese bacterial diversity of Kazakhstan cheeses in comparison with those from other geographic origins, 16S rRNA datasets of 36 artisanal cheeses from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy were retrieved from public databases. The cheese bacterial microbiota communities were largely different across sample origins. By principal coordinate analysis (PCoA) and multivariate analysis of variance (MANOVA), the structure of the Kazakhstan artisanal cheese samples was found to be different from those of the other geographic origins. Furthermore, the redundancy analysis (RDA) identified 16 bacterial OTUs as the key variables responsible for such microbiota structural difference. Our results together suggest that the diversity of bacterial communities in different groups is stratified by geographic region. This study does not only provide novel information on the bacterial microbiota of traditional artisanal cheese of Kazakhstan at species level, but also interesting insights into the bacterial diversity of artisanal

  8. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species

  9. Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations

    PubMed Central

    Garrido-Sanz, Daniel; Manzano, Javier; Martín, Marta; Redondo-Nieto, Miguel; Rivilla, Rafael

    2018-01-01

    Polychlorinated biphenyls (PCBs) are widespread persistent pollutants that cause several adverse health effects. Aerobic bioremediation of PCBs involves the activity of either one bacterial species or a microbial consortium. Using multiple species will enhance the range of PCB congeners co-metabolized since different PCB-degrading microorganisms exhibit different substrate specificity. We have isolated a bacterial consortium by successive enrichment culture using biphenyl (analog of PCBs) as the sole carbon and energy source. This consortium is able to grow on biphenyl, benzoate, and protocatechuate. Whole-community DNA extracted from the consortium was used to analyze biodiversity by Illumina sequencing of a 16S rRNA gene amplicon library and to determine the metagenome by whole-genome shotgun Illumina sequencing. Biodiversity analysis shows that the consortium consists of 24 operational taxonomic units (≥97% identity). The consortium is dominated by strains belonging to the genus Pseudomonas, but also contains betaproteobacteria and Rhodococcus strains. whole-genome shotgun (WGS) analysis resulted in contigs containing 78.3 Mbp of sequenced DNA, representing around 65% of the expected DNA in the consortium. Bioinformatic analysis of this metagenome has identified the genes encoding the enzymes implicated in three pathways for the conversion of biphenyl to benzoate and five pathways from benzoate to tricarboxylic acid (TCA) cycle intermediates, allowing us to model the whole biodegradation network. By genus assignment of coding sequences, we have also been able to determine that the three biphenyl to benzoate pathways are carried out by Rhodococcus strains. In turn, strains belonging to Pseudomonas and Bordetella are the main responsible of three of the benzoate to TCA pathways while the benzoate conversion into TCA cycle intermediates via benzoyl-CoA and the catechol meta-cleavage pathways are carried out by beta proteobacteria belonging to genera such as

  10. Bacterial communities in floral nectar.

    PubMed

    Fridman, Svetlana; Izhaki, Ido; Gerchman, Yoram; Halpern, Malka

    2012-02-01

    Floral nectar is regarded as the most important reward available to animal-pollinated plants to attract pollinators. Despite the vast amount of publications on nectar properties, the role of nectar as a natural bacterial habitat is yet unexplored. To gain a better understanding of bacterial communities inhabiting floral nectar, culture-dependent and -independent (454-pyrosequencing) methods were used. Our findings demonstrate that bacterial communities in nectar are abundant and diverse. Using culture-dependent method we showed that bacterial communities of nectar displayed significant variation among three plant species: Amygdalus communis, Citrus paradisi and Nicotiana glauca. The dominant class in the nectar bacterial communities was Gammaproteobacteria. About half of the isolates were novel species (< 97% similarities of the 16S rRNA gene with known species). Using 454-pyrosequencing we demonstrated that nectar microbial community are distinct for each of the plant species while there are no significant differences between nectar microbial communities within nectars taken from different plants of the same species. Primary selection of the nectar bacteria is unclear; it may be affected by variations in the chemical composition of the nectar in each plant. The role of the rich and diverse nectar microflora in the attraction-repulsion relationships between the plant and its nectar consumers has yet to be explored. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Burns, Adam R; Hampton, Jennifer S; Rolig, Annah S; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-12-16

    The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy

  12. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    PubMed

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  13. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing.

    PubMed

    Li, Tongtong; Long, Meng; Gatesoupe, François-Joël; Zhang, Qianqian; Li, Aihua; Gong, Xiaoning

    2015-01-01

    Gut microbiota is increasingly regarded as an integral component of the host, due to important roles in the modulation of the immune system, the proliferation of the intestinal epithelium and the regulation of the dietary energy intake. Understanding the factors that influence the composition of these microbial communities is essential to health management, and the application to aquatic animals still requires basic investigation. In this study, we compared the bacterial communities harboured in the intestines and in the rearing water of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius cuvieri), and bighead carp (Hypophthalmichthys nobilis), by using 454-pyrosequencing with barcoded primers targeting the V4 to V5 regions of the bacterial 16S rRNA gene. The specimens of the three species were cohabiting in the same pond. Between 6,218 and 10,220 effective sequences were read from each sample, resulting in a total of 110,398 sequences for 13 samples from gut microbiota and pond water. In general, the microbial communities of the three carps were dominated by Fusobacteria, Firmicutes, Proteobacteria and Bacteroidetes, but the abundance of each phylum was significantly different between species. At the genus level, the overwhelming group was Cetobacterium (97.29 ± 0.46 %) in crucian carp, while its abundance averaged c. 40 and 60 % of the sequences read in the other two species. There was higher microbial diversity in the gut of filter-feeding bighead carp than the gut of the two other species, with grazing feeding habits. The composition of intestine microbiota of grass carp and crucian carp shared higher similarity when compared with bighead carp. The principal coordinates analysis (PCoA) with the weighted UniFrac distance and the heatmap analysis suggested that gut microbiota was not a simple reflection of the microbial community in the local habitat but resulted from species-specific selective pressures, possibly dependent on behavioural, immune

  14. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    PubMed Central

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  15. Isolation of bacterial skin flora of healthy sheep, with comparison between frequent and minimal human handling.

    PubMed

    Haarstad, Amy C; Eisenschenk, Melissa C; Heinrich, Nicole A; Weese, J Scott; McKeever, Patrick J

    2014-06-01

    Few data are available regarding skin bacterial flora of healthy sheep and meticillin-resistant Staphylococcus carriage. To compare skin, ear and mucosal bacterial populations between minimally and frequently handled sheep; to determine whether the frequency of meticillin-resistant Staphylococcus aureus varied between groups. One hundred and three healthy feedlot and show sheep from eight farms. Swabs were collected from the dorsum, right ear and right nostril of each sheep. Two groups from each farm were evaluated, except from one farm, which had only one group. Bacterial isolates were identified to the genus or species level using phenotypic analysis or matrix-associated laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing and spa typing were performed on isolates of S. aureus. Sixteen bacterial genera were identified and 11 staphylococcal species, including S. aureus. The skin and mucosal bacterial flora were compared between the groups. The only statistically significant difference in bacteria was Streptococcus spp. on the dorsum (P = 0.0088), with carriage being more common in frequently handled sheep. Antimicrobial susceptibility testing did not find meticillin-resistant S. aureus. There was no significant difference in S. aureus carriage in the ear (P = 0.33), nostril (P = 0.43) or dorsum (P = 0.053) between frequently and minimally handled sheep. The S. aureus isolates belonged to six different spa types. Three were of the ST398 lineage. Sheep are a potential source of livestock-associated meticillin-sensitive Staphylococcus aureus ST398. © 2014 ESVD and ACVD.

  16. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  17. Molecular detection and identification of Wolbachia in three species of the genus Lutzomyia on the Colombian Caribbean coast.

    PubMed

    Vivero, Rafael José; Cadavid-Restrepo, Gloria; Herrera, Claudia Ximena Moreno; Soto, Sandra I Uribe

    2017-02-28

    The hematophagous habits of insects belonging to the genus Lutzomyia (Diptera: Psychodidae), as well as their role as biological vectors of Leishmania species, make their presence an indication of infection risk. In the present study, seven species of Lutzomyia were identified and screened for natural infections with Wolbachia. Collection of sand flies was done in an endemic focus of leishmaniasis on the Colombian Caribbean coast (Department of Sucre, Ovejas municipality). DNA collected from Lutzomyia species was evaluated with PCR for wsp gene amplification to screen for bacterial infection. Endosymbiotic Wolbachia was found in three species: Lutzomyia c. cayennensis, Lutzomyia dubitans and Lutzomyia evansi. Two Wolbachia strains (genotypes) were found in Lutzomyia spp. These genotypes were previously unknown in dipteran insects. The wLev strain was found in Lutzomyia dubitans, L. c. cayennensis and L. evansi and the wLcy strain was found only in L. c. cayennensis. Genetic analysis indicated that the Wolbachia strains wLcy and wLev belong to the B Supergroup. This study provides evidence of infections of more than one strain of Wolbachia in L. c. cayennensis.

  18. Species differences in unlocking B-side electron transfer in bacterial reaction centers

    DOE PAGES

    Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.; ...

    2016-06-21

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.

  19. Species differences in unlocking B-side electron transfer in bacterial reaction centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.

  20. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus.

    PubMed

    Timonen, Sari; Sinkko, Hanna; Sun, Hui; Sietiö, Outi-Maaria; Rinta-Kanto, Johanna M; Kiheri, Heikki; Heinonsalo, Jussi

    2017-05-01

    In this study, the bacterial populations of roots and mycospheres of the boreal pine forest ericoid plants, heather (Calluna vulgaris), bilberry (Vaccinium myrtillus), and lingonberry (Vaccinium vitis-idaea), were studied by qPCR and next-generation sequencing (NGS). All bacterial communities of mycosphere soils differed from soils uncolonized by mycorrhizal mycelia. Colonization by mycorrhizal hyphae increased the total number of bacterial 16S ribosomal DNA (rDNA) gene copies in the humus but decreased the number of different bacterial operational taxonomic units (OTUs). Nevertheless, ericoid roots and mycospheres supported numerous OTUs not present in uncolonized humus. Bacterial communities in bilberry mycospheres were surprisingly similar to those in pine mycospheres but not to bacterial communities in heather and lingonberry mycospheres. In contrast, bacterial communities of ericoid roots were more similar to each other than to those of pine roots. In all sample types, the relative abundances of bacterial sequences belonging to Alphaproteobacteria and Acidobacteria were higher than the sequences belonging to other classes. Soil samples contained more Actinobacteria, Deltaproteobacteria, Opitutae, and Planctomycetia, whereas Armatimonadia, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia were more common to roots. All mycosphere soils and roots harbored bacteria unique to that particular habitat. Our study suggests that the habitation by ericoid plants increases the overall bacterial diversity of boreal forest soils.

  1. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus).

    PubMed

    Bai, Ying; Urushadze, Lela; Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6-50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.

  2. Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain.

    PubMed

    Pascual, Javier; García-López, Marina; Bills, Gerald F; Genilloud, Olga

    2015-02-01

    During the course of screening bacterial isolates as sources of as-yet unknown bioactive compounds with pharmaceutical applications, a chemo-organotrophic, Gram-negative bacterium was isolated from a soil sample taken from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Strain F-278,770(T) was oxidase- and catalase-positive, aerobic, with a respiratory type of metabolism with oxygen as the terminal electron acceptor, non-spore-forming and motile by one polar flagellum, although some cells had two polar flagella. Phylogenetic analysis of the 16S rRNA, gyrB, rpoB and rpoD genes revealed that strain F-278,770(T) belongs to the Pseudomonas koreensis subgroup (Pseudomonas fluorescens lineage), with Pseudomonas moraviensis, P. koreensis, P. baetica and P. helmanticensis as its closest relatives. Chemotaxonomic traits such as polar lipid and fatty acid compositions and G+C content of genomic DNA corroborated the placement of strain F-278,770(T) in the genus Pseudomonas. DNA-DNA hybridization assays and phenotypic traits confirmed that this strain represents a novel species of the genus Pseudomonas, for which the name Pseudomonas granadensis sp. nov. is proposed. The type strain is F-278,770(T) ( = DSM 28040(T) = LMG 27940(T)). © 2015 Fundacion MEDINA, Centro de Excelencia en Investigacion de Medicamentos Innovadores en Andalucia.

  3. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    PubMed

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  4. Bacterial colonization of a fumigated alkaline saline soil.

    PubMed

    Bello-López, Juan M; Domínguez-Mendoza, Cristina A; de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Rodríguez-Valentín, Analine; Ruíz-Valdiviezo, Victor M; Luna-Guido, Marco; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2014-07-01

    After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased.

  5. Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host

    PubMed Central

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae

    2014-01-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (±97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. PMID:24928884

  6. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  7. Using bacterial and necrophagous insect dynamics for post-mortem interval estimation during cold season: Novel case study in Romania.

    PubMed

    Iancu, Lavinia; Carter, David O; Junkins, Emily N; Purcarea, Cristina

    2015-09-01

    Considering the biogeographical characteristics of forensic entomology, and the recent development of forensic microbiology as a complementary approach for post-mortem interval estimation, the current study focused on characterizing the succession of necrophagous insect species and bacterial communities inhabiting the rectum and mouth cavities of swine (Sus scrofa domesticus) carcasses during a cold season outdoor experiment in an urban natural environment of Bucharest, Romania. We monitored the decomposition process of three swine carcasses during a 7 month period (November 2012-May 2013) corresponding to winter and spring periods of a temperate climate region. The carcasses, protected by wire cages, were placed on the ground in a park type environment, while the meteorological parameters were constantly recorded. The succession of necrophagous Diptera and Coleoptera taxa was monitored weekly, both the adult and larval stages, and the species were identified both by morphological and genetic characterization. The structure of bacterial communities from swine rectum and mouth tissues was characterized during the same time intervals by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene fragments. We observed a shift in the structure of both insect and bacterial communities, primarily due to seasonal effects and the depletion of the carcass. A total of 14 Diptera and 6 Coleoptera species were recorded on the swine carcasses, from which Calliphora vomitoria and C. vicina (Diptera: Calliphoridae), Necrobia violacea (Coleoptera: Cleridae) and Thanatophilus rugosus (Coleoptera: Silphidae) were observed as predominant species. The first colonizing wave, primarily Calliphoridae, was observed after 15 weeks when the temperature increased to 13°C. This was followed by Muscidae, Fanniidae, Anthomyiidae, Sepsidae and Piophilidae. Families belonging to Coleoptera Order were observed at week 18 when temperatures raised above 18°C, starting with

  8. Bacterial community dynamics in a cooling tower with emphasis on pathogenic bacteria and Legionella species using universal and genus-specific deep sequencing.

    PubMed

    Pereira, Rui P A; Peplies, Jörg; Höfle, Manfred G; Brettar, Ingrid

    2017-10-01

    Cooling towers are the major source of outbreaks of legionellosis in Europe and worldwide. These outbreaks are mostly associated with Legionella species, primarily L. pneumophila, and its surveillance in cooling tower environments is of high relevance to public health. In this study, a combined NGS-based approach was used to study the whole bacterial community, specific waterborne and water-based bacterial pathogens, especially Legionella species, targeting the 16S rRNA gene. This approach was applied to water from a cooling tower obtained by monthly sampling during two years. The studied cooling tower was an open circuit cooling tower with lamellar cooling situated in Braunschweig, Germany. A highly diverse bacterial community was observed with 808 genera including 25 potentially pathogenic taxa using universal 16S rRNA primers. Sphingomonas and Legionella were the most abundant pathogenic genera. By applying genus-specific primers for Legionella, a diverse community with 85 phylotypes, and a representative core community with substantial temporal heterogeneity was observed. A high percentage of sequences (65%) could not be affiliated to an acknowledged species. L. pneumophila was part of the core community and the most abundant Legionella species reinforcing the importance of cooling towers as its environmental reservoir. Major temperature shifts (>10 °C) were the key environmental factor triggering the reduction or dominance of the Legionella species in the Legionella community dynamics. In addition, interventions by chlorine dioxide had a strong impact on the Legionella community composition but not on the whole bacterial community. Overall, the presented results demonstrated the value of a combined NGS approach for the molecular monitoring and surveillance of health related pathogens in man-made freshwater systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assessment of the Bacterial Diversity of Aircraft Water: Identification of the Frequent Fliers

    PubMed Central

    Handschuh, Harald; O’Dwyer, Jean; Adley, Catherine C.

    2017-01-01

    The aim of this study was to determine and identify bacteria inhabiting the supply chain of an airline’s drinking water using phenotypic and 16S rDNA sequence-based analysis. Water samples (n = 184) were sourced from long-haul and short-haul aircraft, the airline water source and a water service vehicle. In total, 308 isolates were characterised and their identity determined, which produced 82 identified bacterial species belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga. Statistical differences in bacterial diversity were found to exist across sampling locations (X2 = 39.220, p = 0.009) and furthermore, differences were observed (X2 = 15.475, p = 0.030) across aircraft type (long- or short-haul). This study demonstrates the diverse nature of microorganisms within the aircraft drinking water supply chain. To the best of our knowledge, this is the most extensive study undertaken to date of microbial diversity in aircraft drinking water. PMID:28114359

  10. Assessment of the Bacterial Diversity of Aircraft Water: Identification of the Frequent Fliers.

    PubMed

    Handschuh, Harald; Ryan, Michael P; O'Dwyer, Jean; Adley, Catherine C

    2017-01-01

    The aim of this study was to determine and identify bacteria inhabiting the supply chain of an airline's drinking water using phenotypic and 16S rDNA sequence-based analysis. Water samples (n = 184) were sourced from long-haul and short-haul aircraft, the airline water source and a water service vehicle. In total, 308 isolates were characterised and their identity determined, which produced 82 identified bacterial species belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga. Statistical differences in bacterial diversity were found to exist across sampling locations (X2 = 39.220, p = 0.009) and furthermore, differences were observed (X2 = 15.475, p = 0.030) across aircraft type (long- or short-haul). This study demonstrates the diverse nature of microorganisms within the aircraft drinking water supply chain. To the best of our knowledge, this is the most extensive study undertaken to date of microbial diversity in aircraft drinking water.

  11. THE OCCURRENCE OF POLYGLYCEROPHOSPHATE AS AN ANTIGENIC COMPONENT OF VARIOUS GRAM-POSITIVE BACTERIAL SPECIES

    PubMed Central

    McCarty, Maclyn

    1959-01-01

    A bacterial substance has been described which gives a precipitin reaction with certain antisera to Group A streptococci. The precipitating antigen is present in various Gram-positive bacteria, including most hemolytic streptococci, staphylococci, and aerobic sporulating bacilli. It is not present in any of the Gram-negative species examined or in pneumococci, clostridia, or corynebacteria. Analysis of purified preparations obtained from Group A streptococci indicates that the antigen is a simple polymer of glycerophosphate. The identification has been confirmed by immunochemical studies, including precipitin tests and specific inhibition with synthetic polyglycerophosphates. In addition, the infrared spectra of bacterial and synthetic polyglycerophosphate are shown to be closely similar. Immunochemical analysis suggests that the amount of polyglycerophosphate present in Group A streptococci and staphylococci is approximately 1 per cent of the dry weight of the cells. The cellular localization and function of the polyglycerophosphate have not been established. PMID:13641562

  12. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species.

    PubMed

    Marti, Elisabet; Huerta, Belinda; Rodríguez-Mozaz, Sara; Barceló, Damià; Marcé, Rafael; Balcázar, Jose Luis

    2018-04-01

    This study was aimed to determine the abundance of four antibiotic resistance genes (bla TEM , ermB, qnrS and sulI), as well as bacterial community composition associated with the intestinal mucus of wild freshwater fish species collected from the Foix and La Llosa del Cavall reservoirs, which represent ecosystems with high and low anthropogenic disturbance, respectively. Water and sediments from these reservoirs were also collected and analyzed to determine the pollution level by antibiotics. The bla TEM gene was only detected in brown trout and Ebro barbel, which were collected from La Llosa del Cavall reservoir. In contrast, the sulI and qnrS genes were only detected in common carp, which were collected from the Foix reservoir. Although the ermB gene was also detected in common carp, the values were below the limit of quantification. Likewise, water and sediment samples from the Foix reservoir had higher concentrations and more classes of antibiotics than those from La Llosa del Cavall. Pyrosequencing analysis of 16S rRNA genes revealed significant differences in bacterial communities associated with the intestinal mucus of fish species. Therefore, these findings suggest that anthropogenic activities are not only increasing the pollution of aquatic environments, but also contributing to the emergence and spread of antibiotic resistance in organisms that inhabit such environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cliona acephala (Porifera: Demospongiae: Clionaida), a new encrusting excavating reef sponge from the Colombian Caribbean belonging to the Cliona viridis species complex.

    PubMed

    Zea, Sven; López-Victoria, Mateo

    2016-10-26

    Several groups of sponges are able to excavate galleries and tunnels in calcareous substrata such as limestone rock, shells, calcareous algae and coral skeletons. Within the genus Cliona, some species share the common traits of being brown to olive-green in color, and harboring photosynthetic, unicellular dinoflagellates (zooxanthellae). These Cliona spp. have been grouped as the Cliona viridis species complex. Several species of this complex completely encrust the excavated substratum with a thin veneer of tissue and, when colonizing dead exposed parts of live coral colonies, they are able to undermine or overgrow and thus kill live coral tissue as they advance predominantly laterally. In the course of our taxonomic and ecological studies of Caribbean brown to brown-black encrusting Cliona, we found an as yet undescribed species that stands out by having tylostyle megasclere spicules with narrow heads and lacking the usual microsclere spicule complement of spirasters. This species, named and described here Cliona acephala n. sp., has so far been found exclusively in the Santa Marta area, Caribbean coast of Colombia. Previous studies with ITS2 ribosomal DNA showed it to be genetically distinct from other Caribbean encrusting species belonging to the Cliona viridis species complex, vis. Cliona aprica, Cliona caribbaea, Cliona tenuis and Cliona varians, but making it genetically closer to Indo-Pacific Cliona orientalis. An intriguing possibility, to be addressed with further studies, is that C. acephala n. sp. may have been introduced to the Caribbean. However, until proved otherwise, we regard the material presently described as distinct.

  14. Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians.

    PubMed

    Martínez-García, Manuel; Díaz-Valdés, Marta; Antón, Josefa

    2010-03-01

    Ascidians are invertebrate filter feeders widely distributed in benthic marine environments. A total of 14 different ascidian species were collected from the Western Mediterranean and their bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene. Results showed that ascidian tissues harbored Bacteria belonging to Gamma- and Alphaproteobacteria classes, some of them phylogenetically related to known aerobic anoxygenic phototrophs (AAPs), such as Roseobacter sp. In addition, hierarchical cluster analysis of DGGE patterns showed a large variability in the bacterial diversity among the different ascidians analyzed, which indicates that they would harbor different bacterial communities. Furthermore, pufM genes, involved in aerobic anoxygenic photosynthesis in marine and freshwater systems, were widely detected within the ascidians analyzed, because nine out of 14 species had pufM genes inside their tissues. The pufM gene was only detected in those specimens that inhabited shallow waters (<77 m of depth). Most pufM gene sequences were very closely related to that of uncultured marine bacteria. Thus, our results suggest that the association of ascidians with bacteria related to AAPs could be a general phenomenon and that ascidian-associated microbiota could use the light that penetrates through the tunic tissue as an energy source.

  15. Goniothalamus Species: A Source of Drugs for the Treatment of Cancers and Bacterial Infections?

    PubMed Central

    2007-01-01

    Irrespective of the presence of cytotoxic acetogenins and styryl-lactones in the genus Goniothalamus, only 22 species in the genus Goniothalamus, out of 160 species (13.7%) have so far been investigated. In an effort to promote further research on the genus Goniothalamus which could represent a source of drugs for the treatment of cancers and bacterial infections, this work offers a broad analysis of current knowledge on Goniothalamus species. Therefore, it includes (i) taxonomy (ii) botanical description (iii) traditional medicinal uses and (iv) phytochemical and pharmacological studies. We discuss the molecular mechanisms of actions of acetogenins and styryl-lactones, with some emphasis on the possible involvement of protein kinase, Bax and TRAIL receptors in the cytotoxic effects of styryl-lactones. We also report (v) the growth inhibition of several nosocomial bacteria by Goniothalamus. scortechinii. The crude methanol extract of G. scortechinii showed a good and broad spectrum of antibacterial activity against both Gram-negative and Gram-positive bacteria. PMID:17965760

  16. Effects of selected bacterial cultures on safety and sensory traits of Nocellara Etnea olives produced at large factory scale.

    PubMed

    Randazzo, Cinzia L; Russo, Nunziatina; Pino, Alessandra; Mazzaglia, Agata; Ferrante, Margherita; Conti, Gea Oliveri; Caggia, Cinzia

    2018-05-01

    This work investigates the effects of different combinations of selected lactic acid bacteria strains on Lactobacillus species occurrence, on safety and on sensory traits of natural green table olives, produced at large factory scale. Olives belonging to Nocellara Etnea cv were processed in a 6% NaCl brine and inoculated with six different bacterial cultures, using selected strains belonging to Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus pentosus species. The fermentation process was strongly influenced by the added starters and the identification of lactic acid bacteria isolated throughout the process confirms that L. pentosus dominated all fermentations, followed by L. plantarum, whereas L. casei was never detected. Pathogens were never found, while histamine and tyrosine were detected in control and in two experimental samples. The samples with the lowest final pH values showed a safer profile and the most appreciated sensory traits. The present study highlights that selected starters promote prevalence of L. pentosus over the autochthonous microbiota throughout the whole process of Nocellara Etnea olives. Copyright © 2018. Published by Elsevier Ltd.

  17. Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs.

    PubMed

    Séré, Mathieu G; Tortosa, Pablo; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2013-01-01

    The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.

  18. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Bacterial species involved in the conversion of dietary flavonoids in the human gut.

    PubMed

    Braune, Annett; Blaut, Michael

    2016-05-03

    The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.

  20. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    PubMed

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  1. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species

    PubMed Central

    Tsang, Jennifer; Hoover, Timothy R.

    2014-01-01

    Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ 54 (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization. PMID:24672734

  2. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus)

    PubMed Central

    Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6–50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential. PMID:28129398

  3. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    PubMed Central

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated. PMID:15345453

  4. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR.

    PubMed

    Iacumin, Lucilla; Ginaldi, Federica; Manzano, Marisa; Anastasi, Veronica; Reale, Anna; Zotta, Teresa; Rossi, Franca; Coppola, Raffaele; Comi, Giuseppe

    2015-04-01

    The correct identification and characterisation of bacteria is essential for several reasons: the classification of lactic acid bacteria (LAB) has changed significantly over the years, and it is important to distinguish and define them correctly, according to the current nomenclature, avoiding problems in the interpretation of literature, as well as mislabelling when probiotic are used in food products. In this study, species-specific PCR and HRM (high-resolution melting) analysis were developed to identify strains belonging to the Lactobacillus casei group and to classify them into L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus. HRM analysis confirmed to be a potent, simple, fast and economic tool for microbial identification. In particular, 201 strains, collected from International collections and attributed to the L. casei group, were examined using these techniques and the results were compared with consolidated molecular methods, already published. Seven of the tested strains don't belong to the L. casei group. Among the remaining 194 strains, 6 showed inconsistent results, leaving identification undetermined. All the applied techniques were congruent for the identification of the vast majority of the tested strains (188). Notably, for 46 of the strains, the identification differed from the previous attribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dietary and developmental shifts in butterfly-associated bacterial communities

    PubMed Central

    2018-01-01

    Bacterial communities associated with insects can substantially influence host ecology, evolution and behaviour. Host diet is a key factor that shapes bacterial communities, but the impact of dietary transitions across insect development is poorly understood. We analysed bacterial communities of 12 butterfly species across different developmental stages, using amplicon sequencing of the 16S rRNA gene. Butterfly larvae typically consume leaves of a single host plant, whereas adults are more generalist nectar feeders. Thus, we expected bacterial communities to vary substantially across butterfly development. Surprisingly, only few species showed significant dietary and developmental transitions in bacterial communities, suggesting weak impacts of dietary transitions across butterfly development. On the other hand, bacterial communities were strongly influenced by butterfly species and family identity, potentially due to dietary and physiological variation across the host phylogeny. Larvae of most butterfly species largely mirrored bacterial community composition of their diets, suggesting passive acquisition rather than active selection. Overall, our results suggest that although butterflies harbour distinct microbiomes across taxonomic groups and dietary guilds, the dramatic dietary shifts that occur during development do not impose strong selection to maintain distinct bacterial communities across all butterfly hosts. PMID:29892359

  6. Oligotyping reveals differences between gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level

    PubMed Central

    Menke, Sebastian; Wasimuddin; Meier, Matthias; Melzheimer, Jörg; Mfune, John K. E.; Heinrich, Sonja; Thalwitzer, Susanne; Wachter, Bettina; Sommer, Simone

    2014-01-01

    Recent gut microbiome studies in model organisms emphasize the effects of intrinsic and extrinsic factors on the variation of the bacterial composition and its impact on the overall health status of the host. Species occurring in the same habitat might share a similar microbiome, especially if they overlap in ecological and behavioral traits. So far, the natural variation in microbiomes of free-ranging wildlife species has not been thoroughly investigated. The few existing studies exploring microbiomes through 16S rRNA gene reads clustered sequencing reads into operational taxonomic units (OTUs) based on a similarity threshold (e.g., 97%). This approach, in combination with the low resolution of target databases, generally limits the level of taxonomic assignments to the genus level. However, distinguishing natural variation of microbiomes in healthy individuals from “abnormal” microbial compositions that affect host health requires knowledge of the “normal” microbial flora at a high taxonomic resolution. This gap can now be addressed using the recently published oligotyping approach, which can resolve closely related organisms into distinct oligotypes by utilizing subtle nucleotide variation. Here, we used Illumina MiSeq to sequence amplicons generated from the V4 region of the 16S rRNA gene to investigate the gut microbiome of two free-ranging sympatric Namibian carnivore species, the cheetah (Acinonyx jubatus) and the black-backed jackal (Canis mesomelas). Bacterial phyla with proportions >0.2% were identical for both species and included Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria and Actinobacteria. At a finer taxonomic resolution, black-backed jackals exhibited 69 bacterial taxa with proportions ≥0.1%, whereas cheetahs had only 42. Finally, oligotyping revealed that shared bacterial taxa consisted of distinct oligotype profiles. Thus, in contrast to 3% OTUs, oligotyping can detect fine-scale taxonomic differences between microbiomes

  7. Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity.

    PubMed

    Batta, Neha; Subudhi, Sanjukta; Lal, Banwari; Devi, Arundhuti

    2013-11-01

    Lead is one of the four heavy metals that has a profound damaging effects on human health. In the recent past there has been an increasing global concern for development of sustainable bioremediation technologies for detoxification of lead contaminant. Present investigation highlights for lead biosorption by a newly isolated novel bacterial species; Achromobacter sp. TL-3 strain, isolated from activated sludge samples contaminated with heavy metals (collected from oil refinery, Assam, North-East India). For isolation of lead tolerant bacteria, sludge samples were enriched into Luria Broth medium supplemented separately with a range of lead nitrate; 250, 500, 750, 1000, 1250 and 1500 ppm respectively. The bacterial consortium that could tolerate 1500 ppm of lead nitrate was selected further for purification of lead tolerant bacterial isolates. Purified lead tolerant bacterial isolates were then eventually inoculated into production medium supplemented with ethanol and glycerol as carbon and energy source to investigate for bioflocculant production. Bioflocculant production was estimated by monitoring the potential of lead tolerant bacterial isolate to flocculate Kaolin clay in presence of 1% CaCl2. Compared to other isolates, TL-3 isolate demonstrated for maximum bioflocculant activity of 95% and thus was identified based on 16S rRNA gene sequence analysis. TL3 isolate revealed maximum homology (98%) with Achromobacter sp. and thus designated as Achromobacter sp. TL-3. Bioflocculant activity of TL-3 isolate was correlated with the change in pH and growth. Achromobacter sp. TL-3 has significant potential for lead biosorption and can be effectively employed for detoxification of lead contaminated waste effluents/waste waters.

  8. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya.

    PubMed

    Lyngwi, Nathaniel A; Koijam, Khedarani; Sharma, D; Joshi, S R

    2013-03-01

    The Northeastern part of India sprawls over an area of 262 379km2 in the Eastern Himalayan range. This constitutes a biodiversity hotspot with high levels of biodiversity and endemism; unfortunately, is also a poorly known area, especially on its microbial diversity. In this study, we assessed cultivable soil bacterial diversity and distribution from lowlands to highlands (34 to 3 990m.a.s.l.). Soil physico-chemical parameters and forest types across the different altitudes were characterized and correlated with bacterial distribution and diversity. Microbes from the soil samples were grown in Nutrient, Muller Hinton and Luria-Bertani agar plates and were initially characterized using biochemical methods. Parameters like dehydrogenase and urease activities, temperature, moisture content, pH, carbon content, bulk density of the sampled soil were measured for each site. Representative isolates were also subjected to 16S rDNA sequence analysis. A total of 155 cultivable bacterial isolates were characterized which were analyzed for richness, evenness and diversity indices. The tropical and sub-tropical forests supported higher bacterial diversity compared to temperate pine, temperate conifer, and sub-alpine rhododendron forests. The 16S rRNA phylogenetic analysis revealed that Firmicutes was the most common group followed by Proteobacreria and Bacteroidetes. Species belonging to the genera Bacillus and Pseudomonas were the most abundant. Bacterial CFU showed positive but insignificant correlation with soil parameters like pH (r=0.208), soil temperature (r=0.303), ambient temperature (r=0.443), soil carbon content (r=0.525), soil bulk density (r=0.268), soil urease (r=0.549) and soil dehydrogenase (r=0.492). Altitude (r=-0.561) and soil moisture content (r=-0.051) showed negative correlation. Altitudinal gradient along with the vegetation and soil physico-chemical parameters were found to influence bacterial diversity and distribution. This study points out that this is

  9. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy.

    PubMed

    Iebba, Valerio; Guerrieri, Francesca; Di Gregorio, Vincenza; Levrero, Massimo; Gagliardi, Antonella; Santangelo, Floriana; Sobolev, Anatoly P; Circi, Simone; Giannelli, Valerio; Mannina, Luisa; Schippa, Serena; Merli, Manuela

    2018-05-29

    In liver cirrhosis (LC), impaired intestinal functions lead to dysbiosis and possible bacterial translocation (BT). Bacteria or their byproducts within the bloodstream can thus play a role in systemic inflammation and hepatic encephalopathy (HE). We combined 16S sequencing, NMR metabolomics and network analysis to describe the interrelationships of members of the microbiota in LC biopsies, faeces, peripheral/portal blood and faecal metabolites with clinical parameters. LC faeces and biopsies showed marked dysbiosis with a heightened proportion of Enterobacteriaceae. Our approach showed impaired faecal bacterial metabolism of short-chain fatty acids (SCFAs) and carbon/methane sources in LC, along with an enhanced stress-related response. Sixteen species, mainly belonging to the Proteobacteria phylum, were shared between LC peripheral and portal blood and were functionally linked to iron metabolism. Faecal Enterobacteriaceae and trimethylamine were positively correlated with blood proinflammatory cytokines, while Ruminococcaceae and SCFAs played a protective role. Within the peripheral blood and faeces, certain species (Stenotrophomonas pavanii, Methylobacterium extorquens) and metabolites (methanol, threonine) were positively related to HE. Cirrhotic patients thus harbour a 'functional dysbiosis' in the faeces and peripheral/portal blood, with specific keystone species and metabolites related to clinical markers of systemic inflammation and HE.

  10. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen.

    PubMed

    Do, Thi Huyen; Dao, Trong Khoa; Nguyen, Khanh Hoang Viet; Le, Ngoc Giang; Nguyen, Thi Mai Phuong; Le, Tung Lam; Phung, Thu Nguyet; van Straalen, Nico M; Roelofs, Dick; Truong, Nam Hai

    2018-05-01

    In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen was conducted to elucidate a role of bacterial structure for effective degradation of plant materials. The metagenomic data had been subjected into Basic Local Alignment Search Tool (BLASTX) algorithm and the National Center for Biotechnology Information non-redundant sequence database. Here the BLASTX hits were further processed by the Metagenome Analyzer program to statistically analyze the abundance of taxa. Microbial community in the rumen is defined by dominance of Bacteroidetes compared to Firmicutes. The ratio of Firmicutes versus Bacteroidetes was 0.36:1. An abundance of Synergistetes was uniquely identified in the goat microbiome may be formed by host genotype. With regard to bacterial lignocellulose degraders, the ratio of lignocellulolytic genes affiliated with Firmicutes compared to the genes linked to Bacteroidetes was 0.11:1, in which the genes encoding putative hemicellulases, carbohydrate esterases, polysaccharide lyases originated from Bacteroidetes were 14 to 20 times higher than from Firmicutes. Firmicutes seem to possess more cellulose hydrolysis capacity showing a Firmicutes/Bacteroidetes ratio of 0.35:1. Analysis of lignocellulolytic potential degraders shows that four species belonged to Bacteroidetes phylum, while two species belonged to Firmicutes phylum harbouring at least 12 different catalytic domains for all lignocellulose pretreatment, cellulose, as well as hemicellulose saccharification. Based on these findings, we speculate that increasing the members of Bacteroidetes to keep a low ratio of Firmicutes versus Bacteroidetes in goat rumen has resulted most likely in an increased lignocellulose digestion.

  11. Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species.

    PubMed

    Nguyen, Thao Thi; Chon, Tae-Soo; Kim, Jaehan; Seo, Young-Su; Heo, Muyoung

    2017-07-01

    Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM)-based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.

  12. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

    PubMed Central

    Srinivasan, Sujatha; Hoffman, Noah G.; Morgan, Martin T.; Matsen, Frederick A.; Fiedler, Tina L.; Hall, Robert W.; Ross, Frederick J.; McCoy, Connor O.; Bumgarner, Roger; Marrazzo, Jeanne M.; Fredricks, David N.

    2012-01-01

    Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in

  13. Structure and temporal dynamics of the bacterial communities associated to microhabitats of the coral Oculina patagonica.

    PubMed

    Rubio-Portillo, Esther; Santos, Fernando; Martínez-García, Manuel; de Los Ríos, Asunción; Ascaso, Carmen; Souza-Egipsy, Virginia; Ramos-Esplá, Alfonso A; Anton, Josefa

    2016-12-01

    Corals are known to contain a diverse microbiota that plays a paramount role in the physiology and health of holobiont. However, few studies have addressed the variability of bacterial communities within the coral host. In this study, bacterial community composition from the mucus, tissue and skeleton of the scleractinian coral Oculina patagonica were investigated seasonally at two locations in the Western Mediterranean Sea, to further understand how environmental conditions and the coral microbiome structure are related. We used denaturing gradient gel electrophoresis in combination with next-generation sequencing and electron microscopy to characterize the bacterial community. The bacterial communities were significantly different among coral compartments, and coral tissue displayed the greatest changes related to environmental conditions and coral health status. Species belonging to the Rhodobacteraceae and Vibrionaceae families form part of O. patagonica tissues core microbiome and may play significant roles in the nitrogen cycle. Furthermore, sequences related to the coral pathogens, Vibrio mediterranei and Vibrio coralliilyticus, were detected not only in bleached corals but also in healthy ones, even during cold months. This fact opens a new view onto unveiling the role of pathogens in the development of coral diseases in the future. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. A Novel Alkaliphilic Bacillus Esterase Belongs to the 13th Bacterial Lipolytic Enzyme Family

    PubMed Central

    Rao, Lang; Xue, Yanfen; Zheng, Yingying; Lu, Jian R.; Ma, Yanhe

    2013-01-01

    Background Microbial derived lipolytic hydrolysts are an important class of biocatalysts because of their huge abundance and ability to display bioactivities under extreme conditions. In spite of recent advances, our understanding of these enzymes remains rudimentary. The aim of our research is to advance our understanding by seeking for more unusual lipid hydrolysts and revealing their molecular structure and bioactivities. Methodology/Principal Findings Bacillus. pseudofirmus OF4 is an extreme alkaliphile with tolerance of pH up to 11. In this work we successfully undertook a heterologous expression of a gene estof4 from the alkaliphilic B. pseudofirmus sp OF4. The recombinant protein called EstOF4 was purified into a homologous product by Ni-NTA affinity and gel filtration. The purified EstOF4 was active as dimer with the molecular weight of 64 KDa. It hydrolyzed a wide range of substrates including p-nitrophenyl esters (C2–C12) and triglycerides (C2–C6). Its optimal performance occurred at pH 8.5 and 50°C towards p-nitrophenyl caproate and triacetin. Sequence alignment revealed that EstOF4 shared 71% identity to esterase Est30 from Geobacillus stearothermophilus with a typical lipase pentapeptide motif G91LS93LG95. A structural model developed from homology modeling revealed that EstOF4 possessed a typical esterase 6α/7β hydrolase fold and a cap domain. Site-directed mutagenesis and inhibition studies confirmed the putative catalytic triad Ser93, Asp190 and His220. Conclusion EstOF4 is a new bacterial esterase with a preference to short chain ester substrates. With a high sequence identity towards esterase Est30 and several others, EstOF4 was classified into the same bacterial lipolytic family, Family XIII. All the members in this family originate from the same bacterial genus, bacillus and display optimal activities from neutral pH to alkaline conditions with short and middle chain length substrates. However, with roughly 70% sequence identity, these

  15. Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans.

    PubMed

    Reunamo, Anna; Riemann, Lasse; Leskinen, Piia; Jørgensen, Kirsten S

    2013-07-15

    The natural petroleum hydrocarbon degrading capacity of the Archipelago Sea water in S-W Finland was studied in a microcosm experiment. Pristine and previously oil exposed sites were examined. Bacterial community fingerprinting was performed using terminal restriction fragment length polymorphism (T-RFLP) and samples from selected microcosms were sequenced. The abundance of PAH degradation genes was measured by quantitative PCR. Bacterial communities in diesel exposed microcosms diverged from control microcosms during the experiment. Gram positive PAH degradation genes dominated at both sites in situ, whereas gram negative PAH degrading genes became enriched in diesel microcosms. The dominant bacterial groups after a 14 days of diesel exposure were different depending on the sampling site, belonging to the class Actinobacteria (32%) at a pristine site and Betaproteobacteria (52%) at a previously oil exposed site. The hydrocarbon degrading bacteria in the Baltic Sea differ from those in the oceans, where most hydrocarbon degraders belong to Gammaproteobacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Seed size and photoblastism in species belonging to tribe Cacteae (Cactaceae).

    PubMed

    Rojas-Aréchiga, Mariana; Mandujano, María C; Golubov, Jordan K

    2013-05-01

    The response of seed germination towards light and the relationship to seed traits has been studied particularly well in tropical forests. Several authors have shown a clear adaptive response of seed size and photoblastism, however, the evolutionary significance of this relationship for species inhabiting arid environments has not been fully understood and only some studies have considered the response in a phylogenetic context. We collected seeds from 54 cacti species spread throughout the tribe Cacteae to test whether there was correlated evolution of photoblastism, seed traits and germination using a reconstructed phylogeny of the tribe. For each species we determined the photoblastic response under controlled conditions, and seed traits, and analyzed the results using phylogenetically independent contrasts. All studied species were positive photoblastic contrasting with the basal Pereskia suggesting an early evolution of this trait. Seeds from basal species were mostly medium-sized, diverging into two groups. Seeds tend to get smaller and lighter suggesting an evolution to smaller sizes. No evidence exists of a relationship between seed size and photoblastic response suggesting that the photoblastic response within members of this tribe is not adaptive though it is phylogenetically fixed and that is coupled with environmental cues that fine tune the germination response.

  17. Drought and host selection influence bacterial community dynamics in the grass root microbiome

    PubMed Central

    Naylor, Dan; DeGraaf, Stephanie; Purdom, Elizabeth; Coleman-Derr, Devin

    2017-01-01

    Root endophytes have been shown to have important roles in determining host fitness under periods of drought stress, and yet the effect of drought on the broader root endosphere bacterial community remains largely uncharacterized. In this study, we present phylogenetic profiles of bacterial communities associated with drought-treated root and rhizosphere tissues of 18 species of plants with varying degrees of drought tolerance belonging to the Poaceae family, including important crop plants. Through 16S rRNA gene profiling across two distinct watering regimes and two developmental time points, we demonstrate that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing conserved shifts in bacterial community composition. We identify a significant enrichment in a wide variety of Actinobacteria during drought within the roots of all hosts, and demonstrate that this enrichment is higher within the root than it is in the surrounding environments. Furthermore, we show that this observed enrichment is the result of an absolute increase in Actinobacterial abundance and that previously hypothesized mechanisms for observed enrichments in Actinobacteria in drought-treated soils are unlikely to fully account for the phenomena observed here within the plant root. PMID:28753209

  18. Drought and host selection influence bacterial community dynamics in the grass root microbiome.

    PubMed

    Naylor, Dan; DeGraaf, Stephanie; Purdom, Elizabeth; Coleman-Derr, Devin

    2017-12-01

    Root endophytes have been shown to have important roles in determining host fitness under periods of drought stress, and yet the effect of drought on the broader root endosphere bacterial community remains largely uncharacterized. In this study, we present phylogenetic profiles of bacterial communities associated with drought-treated root and rhizosphere tissues of 18 species of plants with varying degrees of drought tolerance belonging to the Poaceae family, including important crop plants. Through 16S rRNA gene profiling across two distinct watering regimes and two developmental time points, we demonstrate that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing conserved shifts in bacterial community composition. We identify a significant enrichment in a wide variety of Actinobacteria during drought within the roots of all hosts, and demonstrate that this enrichment is higher within the root than it is in the surrounding environments. Furthermore, we show that this observed enrichment is the result of an absolute increase in Actinobacterial abundance and that previously hypothesized mechanisms for observed enrichments in Actinobacteria in drought-treated soils are unlikely to fully account for the phenomena observed here within the plant root.

  19. Bacterial Species and Antibiotic Sensitivity in Korean Patients Diagnosed with Acute Otitis Media and Otitis Media with Effusion.

    PubMed

    Kim, Sang Hoon; Jeon, Eun Ju; Hong, Seok Min; Bae, Chang Hoon; Lee, Ho Yun; Park, Moo Kyun; Byun, Jae Yong; Kim, Myung Gu; Yeo, Seung Geun

    2017-04-01

    Changes over time in pathogens and their antibiotic sensitivity resulting from the recent overuse and misuse of antibiotics in otitis media (OM) have complicated treatment. This study evaluated changes over 5 years in principal pathogens and their antibiotic sensitivity in patients in Korea diagnosed with acute OM (AOM) and OM with effusion (OME). The study population consisted of 683 patients who visited the outpatient department of otorhinolaryngology in 7 tertiary hospitals in Korea between January 2010 and May 2015 and were diagnosed with acute AOM or OME. Aural discharge or middle ear fluid were collected from patients in the operating room or outpatient department and subjected to tests of bacterial identification and antibiotic sensitivity. The overall bacteria detection rate of AOM was 62.3% and OME was 40.9%. The most frequently isolated Gram-positive bacterial species was coagulase negative Staphylococcus aureus (CNS) followed by methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Streptococcus pneumonia (SP), whereas the most frequently isolated Gram-negative bacterium was Pseudomonas aeruginosa (PA). Regardless of OM subtype, ≥ 80% of CNS and MRSA strains were resistant to penicillin (PC) and tetracycline (TC); isolated MRSA strains showed low sensitivity to other antibiotics, with 100% resistant to PC, TC, cefoxitin (CFT), and erythromycin (EM); and isolated PA showed low sensitivity to quinolone antibiotics, including ciprofloxacin (CIP) and levofloxacin (LFX), and to aminoglycosides. Bacterial species and antibiotic sensitivity did not change significantly over 5 years. The rate of detection of MRSA was higher in OME than in previous studies. As bacterial predominance and antibiotic sensitivity could change over time, continuous and periodic surveillance is necessary in guiding appropriate antibacterial therapy. © 2017 The Korean Academy of Medical Sciences.

  20. The Microbial Community of Tardigrades: Environmental Influence and Species Specificity of Microbiome Structure and Composition.

    PubMed

    Vecchi, Matteo; Newton, Irene L G; Cesari, Michele; Rebecchi, Lorena; Guidetti, Roberto

    2018-01-15

    Symbiotic associations of metazoans with bacteria strongly influence animal biology since bacteria are ubiquitous and virtually no animal is completely free from them. Tardigrades are micrometazoans famous for their ability to undergo ametabolic states (cryptobiosis) but very little information is available on potential microbial associations. We characterized the microbiomes of six limnoterrestrial tardigrade species belonging to several phylogenetic lines in tandem with the microbiomes of their respective substrates. The experimental design enabled us to determine the effects of both the environment and the host genetic background on the tardigrade microbiome; we were able to define the microbial community of the same species sampled from different environments, and the communities of different species from the same environment. Our 16S rRNA gene amplicon approach indicated that the tardigrade microbiome is species-specific and well differentiated from the environment. Tardigrade species showed a much lower microbial diversity compared to their substrates, with only one significant exception. Forty-nine common OTUs (operational taxonomic units) were classified into six bacterial phyla, while four common OTUs were unclassified and probably represent novel bacterial taxa. Specifically, the tardigrade microbiome appears dominated by Proteobacteria and Bacteroidetes. Some OTUs were shared between different species from geographically distant samples, suggesting the associated bacteria may be widespread. Putative endosymbionts of tardigrades from the order Rickettsiales were identified. Our results indicated that like all other animals, tardigrades have their own microbiota that is different among species, and its assembly is determined by host genotype and environmental influences.

  1. Lactobacillus species isolated from vaginal secretions of healthy and bacterial vaginosis-intermediate Mexican women: a prospective study

    PubMed Central

    2013-01-01

    Background Lactobacillus jensenii, L. iners, L. crispatus and L. gasseri are the most frequently occurring lactobacilli in the vagina. However, the native species vary widely according to the studied population. The present study was performed to genetically determine the identity of Lactobacillus strains present in the vaginal discharge of healthy and bacterial vaginosis (BV) intermediate Mexican women. Methods In a prospective study, 31 strains preliminarily identified as Lactobacillus species were isolated from 21 samples collected from 105 non-pregnant Mexican women. The samples were classified into groups according to the Nugent score criteria proposed for detection of BV: normal (N), intermediate (I) and bacterial vaginosis (BV). We examined the isolates using culture-based methods as well as molecular analysis of the V1–V3 regions of the 16S rRNA gene. Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis was performed to reject clones. Results Clinical isolates (25/31) were classified into four groups based on sequencing and analysis of the 16S rRNA gene: L. acidophilus (14/25), L. reuteri (6/25), L. casei (4/25) and L. buchneri (1/25). The remaining six isolates were presumptively identified as Enterococcus species. Within the L. acidophilus group, L. gasseri was the most frequently isolated species, followed by L. jensenii and L. crispatus. L. fermentum, L. rhamnosus and L. brevis were also isolated, and were placed in the L. reuteri, L. casei and L. buchneri groups, respectively. ERIC profile analysis showed intraspecific variability amongst the L. gasseri and L. fermentum species. Conclusions These findings agree with previous studies showing that L. crispatus, L. gasseri and L. jensenii are consistently present in the healthy vaginal ecosystem. Additional species or phylotypes were detected in the vaginal microbiota of the non-pregnant Mexican (Hispanic-mestizo) population, and thus, these results further our understanding of

  2. Comprehensive Analysis of Bacterial Flora in Postoperative Maxillary Cyst Fluid by 16S rRNA Gene and Culture Methods

    PubMed Central

    Sano, Naoto; Yamashita, Yoshio; Fukuda, Kazumasa; Taniguchi, Hatsumi; Goto, Masaaki; Miyamoto, Hiroshi

    2012-01-01

    Intracystic fluid was aseptically collected from 11 patients with postoperative maxillary cyst (POMC), and DNA was extracted from the POMC fluid. Bacterial species were identified by sequencing after cloning of approximately 580 bp of the 16S rRNA gene. Identification of pathogenic bacteria was also performed by culture methods. The phylogenetic identity was determined by sequencing 517–596 bp in each of the 1139 16S rRNA gene clones. A total of 1114 clones were classified while the remaining 25 clones were unclassified. A total of 103 bacterial species belonging to 42 genera were identified in POMC fluid samples by 16S rRNA gene analysis. Species of Prevotella (91%), Neisseria (73%), Fusobacterium (73%), Porphyromonas (73%), and Propionibacterium (73%) were found to be highly prevalent in all patients. Streptococcus mitis (64%), Fusobacterium nucleatum (55%), Propionibacterium acnes (55%), Staphylococcus capitis (55%), and Streptococcus salivarius (55%) were detected in more than 6 of the 11 patients. The results obtained by the culture method were different from those obtained by 16S rRNA gene analysis, but both approaches may be necessary for the identification of pathogens, especially of bacteria that are difficult to detect by culture methods, and the development of rational treatments for patients with POMC. PMID:22685668

  3. Teaching Pre-Service Teachers about Belonging

    ERIC Educational Resources Information Center

    Gillies, Ann

    2017-01-01

    This article describes how a Teacher Educator teaches her university students (pre-service teachers) about belonging; how it feels to belong to a group, why they need to spend their time and energy during the school day working to make K-12 students feel that they belong, what belonging looks like, and how to make it happen in the pre-service…

  4. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species

    PubMed Central

    Brinkman, Cassandra L.; Schmidt-Malan, Suzannah M.; Karau, Melissa J.; Greenwood-Quaintance, Kerryl; Hassett, Daniel J.; Mandrekar, Jayawant N.

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the ‘electricidal effect’, in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS. PMID:27992529

  5. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species.

    PubMed

    Brinkman, Cassandra L; Schmidt-Malan, Suzannah M; Karau, Melissa J; Greenwood-Quaintance, Kerryl; Hassett, Daniel J; Mandrekar, Jayawant N; Patel, Robin

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS.

  6. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    PubMed

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  7. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  8. Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques

    PubMed Central

    Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming

    2013-01-01

    Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682

  9. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    PubMed

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this

  10. In vitro antifungal susceptibility of clinical species belonging to Aspergillus genus and Rhizopus oryzae.

    PubMed

    Kachuei, R; Khodavaisy, S; Rezaie, S; Sharifynia, S

    2016-03-01

    Among filamentous fungal pathogens, Aspergillus spp. and zygomycetes account for highest rates of morbidity and mortality among immunocompromised patients. Recently developed antifungal drugs offer the potential to improve management and therapeutic outcomes of fungal infections. The aim of this study was to analyse the in vitro activities of voriconazole, itraconazole, amphotericin B and caspofungin against clinical isolates of Aspergillus spp. and Rhizopus oryzae. The in vitro antifungal susceptibility of 54 isolates belonging to different clinical isolates of Aspergillus spp. and R. oryzae was tested for four antifungal agents using a microdilution reference method (CLSI, M38-A2). All isolates were identified by typical colony and microscopic characteristics, and also characterized by molecular methods. Caspofungin (MEC range: 0.008-0.25 and MEC50: 0.0023μg/mL) was the most active drug in vitro against Aspergillus spp., followed by voriconazole (MIC range: 0.031-8 and MIC50: 0.5μg/mL), itraconazole (MIC range: 0.031-16 and MIC50: 0.25μg/mL), and amphotericin B (MIC range: 0.125-4 and MIC50: 0.5μg/mL), in order of decreasing activity. The caspofungin, voriconazole, and itraconazole demonstrated poor in vitro activity against R. oryzae isolates evaluated, followed by amphotericin B. This study demonstrates that caspofungin had good antifungal activity and azole agents had better activity than amphotericin B against Aspergillus species. Although, azole drugs are considered ineffective against R. oryzae. This result is just from a small scale in vitro susceptibility study and we did not take other factors into consideration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Characterization of the bacterial biodiversity in Pico cheese (an artisanal Azorean food).

    PubMed

    Riquelme, Cristina; Câmara, Sandra; Dapkevicius, Maria de Lurdes N Enes; Vinuesa, Pablo; da Silva, Célia Costa Gomes; Malcata, F Xavier; Rego, Oldemiro A

    2015-01-02

    This work presents the first study on the bacterial communities in Pico cheese, a traditional cheese of the Azores (Portugal), made from raw cow's milk. Pyrosequencing of tagged amplicons of the V3-V4 regions of the 16S rDNA and Operational Taxonomic Unit-based (OTU-based) analysis were applied to obtain an overall idea of the microbiota in Pico cheese and to elucidate possible differences between cheese-makers (A, B and C) and maturation times. Pyrosequencing revealed a high bacterial diversity in Pico cheese. Four phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) and 54 genera were identified. The predominant genus was Lactococcus (77% of the sequences). Sequences belonging to major cheese-borne pathogens were not found. Staphylococcus accounted for 0.5% of the sequences. Significant differences in bacterial community composition were observed between cheese-maker B and the other two units that participated in the study. However, OTU analysis identified a set of taxa (Lactococcus, Streptococcus, Acinetobacter, Enterococcus, Lactobacillus, Staphylococcus, Rothia, Pantoea and unclassified genera belonging to the Enterobacteriaceae family) that would represent the core components of artisanal Pico cheese microbiota. A diverse bacterial community was present at early maturation, with an increase in the number of phylotypes up to 2 weeks, followed by a decrease at the end of ripening. The most remarkable trend in abundance patterns throughout ripening was an increase in the number of sequences belonging to the Lactobacillus genus, with a concomitant decrease in Acinetobacter, and Stenotrophomonas. Microbial rank abundance curves showed that Pico cheese's bacterial communities are characterized by a few dominant taxa and many low-abundance, highly diverse taxa that integrate the so-called "rare biosphere". Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparative Genomic Analyses of the Bacterial Phosphotransferase System

    PubMed Central

    Barabote, Ravi D.; Saier, Milton H.

    2005-01-01

    We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer. PMID:16339738

  13. Viral-bacterial associations in acute apical abscesses.

    PubMed

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  14. Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features.

    PubMed

    Yadav, R K P; Karamanoli, K; Vokou, D

    2005-08-01

    In this study, we assessed various leaf structural and chemical features as possible predictors of the size of the phyllosphere bacterial population in the Mediterranean environment. We examined eight perennial species, naturally occurring and coexisting in the same area, in Halkidiki (northern Greece). They are Arbutus unedo, Quercus coccifera, Pistacia lentiscus, and Myrtus communis (evergreen sclerophyllous species), Lavandula stoechas and Cistus incanus (drought semi-deciduous species), and Calamintha nepeta and Melissa officinalis (non-woody perennial species). M. communis, L. stoechas, C. nepeta, and M. officinalis produce essential oil in substantial quantities. We sampled summer leaves from these species and (1) estimated the size of the bacterial population of their phyllosphere, (2) estimated the concentration of different leaf constituents, and (3) studied leaf morphological and anatomical features and expressed them in a quantitative way. The aromatic plants are on average more highly colonized than the other species, whereas the non-woody perennials are more highly colonized than the woody species. The population size of epiphytic bacteria is positively correlated with glandular and non-glandular trichome densities, and with water and phosphorus contents; it is negatively correlated with total phenolics content and the thickness of the leaf, of the mesophyll, and of the abaxial epidermis. No correlation was found with the density of stomata, the nitrogen, and the soluble sugar contents. By regression tree analysis, we found that the leaf-microbe system can be effectively described by three leaf attributes with leaf water content being the primary explanatory attribute. Leaves with water content >73% are the most highly colonized. For leaves with water content <73%, the phosphorus content, with a critical value of 1.34 mg g(-1) d.w., is the next explanatory leaf attribute, followed by the thickness of the adaxial epidermis. Leaves higher in phosphorus

  15. A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates

    PubMed Central

    Liu, Xiao Lei; Liu, Su Lin; Liu, Min; Kong, Bi He; Liu, Lei; Li, Yan Hong

    2014-01-01

    Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed. PMID:24948927

  16. Host and Environmental Specificity in Bacterial Communities Associated to Two Highly Invasive Marine Species (Genus Asparagopsis)

    PubMed Central

    Aires, Tânia; Serrão, Ester A.; Engelen, Aschwin H.

    2016-01-01

    As habitats change due to global and local pressures, population resilience, and adaptive processes depend not only on their gene pools but also on their associated bacteria communities. The hologenome can play a determinant role in adaptive evolution of higher organisms that rely on their bacterial associates for vital processes. In this study, we focus on the associated bacteria of the two most invasive seaweeds in southwest Iberia (coastal mainland) and nearby offshore Atlantic islands, Asparagopsis taxiformis and Asparagopsis armata. Bacterial communities were characterized using 16S rRNA barcoding through 454 next generation sequencing and exploratory shotgun metagenomics to provide functional insights and a backbone for future functional studies. The bacterial community composition was clearly different between the two species A. taxiformis and A. armata and between continental and island habitats. The latter was mainly due to higher abundances of Acidimicrobiales, Sphingomonadales, Xanthomonadales, Myxococcales, and Alteromonadales on the continent. Metabolic assignments for these groups contained a higher number of reads in functions related to oxidative stress and resistance to toxic compounds, more precisely heavy metals. These results are in agreement with their usual association with hydrocarbon degradation and heavy-metals detoxification. In contrast, A. taxiformis from islands contained more bacteria related to oligotrophic environments which might putatively play a role in mineralization of dissolved organic matter. The higher number of functional assignments found in the metagenomes of A. taxiformis collected from Cape Verde Islands suggest a higher contribution of bacteria to compensate nutrient limitation in oligotrophic environments. Our results show that Asparagopsis-associated bacterial communities have host-specificity and are modulated by environmental conditions. Whether this environmental effect reflects the host's selective requirements or

  17. Bacterial species and their associations with acute and chronic mastitis in suckler ewes.

    PubMed

    Smith, E M; Willis, Z N; Blakeley, M; Lovatt, F; Purdy, K J; Green, L E

    2015-10-01

    Acute mastitis in suckler ewes is often detected because of systemic signs such as anorexia or lameness, whereas chronic mastitis, characterized by intramammary abscesses with no systemic disease, is typically detected when ewes are inspected before mating. The aims of the current study were to identify the species and strains of culturable bacteria associated with acutely diseased, chronically diseased, and unaffected mammary glands to investigate whether species and strains vary by state. To investigate acute mastitis, 28 milk samples were obtained from both glands of 14 ewes with acute mastitis in one gland only. To investigate chronic mastitis, 16 ovine udders were obtained from 2 abattoirs; milk was aspirated from the 32 glands where possible, and the udders were sectioned to expose intramammary abscesses, which were swab sampled. All milk and swab samples were cultured aerobically. In total, 37 bacterial species were identified, 4 from acute mastitis, 26 from chronic mastitis, and 8 from apparently healthy glands. In chronic mastitis, the overall coincidence index of overlap of species detected in intramammary abscesses and milk was 0.60, reducing to 0.36 within individual glands, indicating a high degree of species overlap in milk and abscesses overall, but less overlap within specific glands. Staphylococcus aureus was detected frequently in all sample types; it was isolated from 10/14 glands with acute mastitis. In 5 ewes, closely related strains were present in both affected and unaffected glands. In chronic mastitis, closely related Staphylococcus aureus strains were detected in milk and abscesses from the same gland. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia.

    PubMed

    Kumar, Manoj; van Elsas, Jan Dirk; Nissinen, Riitta

    2017-01-01

    Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB) communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel) and Saxifraga oppositifolia (blue saxifrage), in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region) and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH -targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ- Proteobacteria ) were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and rhizosphere soil

  19. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    PubMed

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  20. Assessment of bacterial diversity during composting of agricultural byproducts

    PubMed Central

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost

  1. Exploration of bacterial species associated with the salivary microbiome of individuals with a low susceptibility to dental caries.

    PubMed

    Yasunaga, Haruna; Takeshita, Toru; Shibata, Yukie; Furuta, Michiko; Shimazaki, Yoshihiro; Akifusa, Sumio; Ninomiya, Toshiharu; Kiyohara, Yutaka; Takahashi, Ichiro; Yamashita, Yoshihisa

    2017-11-01

    Dental caries is caused by acidogenic plaque microbiota formed on saliva-bathed tooth surfaces, in which multiple organisms act collectively to initiate and expand a cavity. We explored bacterial species associated with the salivary microbiome of individuals with low susceptibility to dental caries. The bacterial composition of saliva from 19 young adults was analyzed using barcoded pyrosequencing of the 16S rRNA gene; we compared 10 caries-experienced (CE) and nine caries-free (CF) individuals. A quantitative PCR assay of saliva from 139 orally healthy adults aged 40-59 years was carried out to confirm the result obtained by pyrosequencing analysis. The microbiomes of CF individuals showed more diverse communities with a significantly greater proportion of the genus Porphyromonas. Among operational taxonomic units (OTUs) corresponding to the genus Porphyromonas, the OTU corresponding to P. pasteri was the most predominant and its relative abundance in CF individuals was significantly greater than in CE individuals (P < 0.001, Wilcoxon rank sum test). A quantitative PCR assay of saliva confirmed that the amounts of P. pasteri were significantly higher in individuals with lower caries experience (filled teeth <15, n = 67) than in those with higher caries experience (filled teeth ≥15, n = 72) (P < 0.001, Student's t test). These results revealed an association between a greater abundance of P. pasteri and lower susceptibility to dental caries. P. pasteri may be a bacterial species that could potentially be used as a marker for maintaining a healthy oral microbiome against dental caries.

  2. Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura)

    PubMed Central

    Allen, Julie M.; Koga, Ryuichi; Fukatsu, Takema; Sweet, Andrew D.; Johnson, Kevin P.; Reed, David L.

    2016-01-01

    ABSTRACT Roughly 10% to 15% of insect species host heritable symbiotic bacteria known as endosymbionts. The lice parasitizing mammals rely on endosymbionts to provide essential vitamins absent in their blood meals. Here, we describe two bacterial associates from a louse, Proechinophthirus fluctus, which is an obligate ectoparasite of a marine mammal. One of these is a heritable endosymbiont that is not closely related to endosymbionts of other mammalian lice. Rather, it is more closely related to endosymbionts of the genus Sodalis associated with spittlebugs and feather-chewing bird lice. Localization and vertical transmission of this endosymbiont are also more similar to those of bird lice than to those of other mammalian lice. The endosymbiont genome appears to be degrading in symbiosis; however, it is considerably larger than the genomes of other mammalian louse endosymbionts. These patterns suggest the possibility that this Sodalis endosymbiont might be recently acquired, replacing a now-extinct, ancient endosymbiont. From the same lice, we also identified an abundant bacterium belonging to the genus Rickettsia that is closely related to Rickettsia ricketsii, a human pathogen vectored by ticks. No obvious masses of the Rickettsia bacterium were observed in louse tissues, nor did we find any evidence of vertical transmission, so the nature of its association remains unclear. IMPORTANCE Many insects are host to heritable symbiotic bacteria. These heritable bacteria have been identified from numerous species of parasitic lice. It appears that novel symbioses have formed between lice and bacteria many times, with new bacterial symbionts potentially replacing existing ones. However, little was known about the symbionts of lice parasitizing marine mammals. Here, we identified a heritable bacterial symbiont in lice parasitizing northern fur seals. This bacterial symbiont appears to have been recently acquired by the lice. The findings reported here provide insights

  3. Interrogating "Belonging" in Belonging, Being and Becoming: The Early Years Learning Framework for Australia

    ERIC Educational Resources Information Center

    Sumsion, Jennifer; Wong, Sandie

    2011-01-01

    In this article, the authors interrogate the use of "belonging" in "Belonging, Being and Becoming: the Early Years Learning Framework for Australia" (EYLF), Australia's first national curriculum for early childhood education and care settings and, from the authors' interrogation, possibilities are offered for thinking about and…

  4. Bacterial Diversity in Human Subgingival Plaque

    PubMed Central

    Paster, Bruce J.; Boches, Susan K.; Galvin, Jamie L.; Ericson, Rebecca E.; Lau, Carol N.; Levanos, Valerie A.; Sahasrabudhe, Ashish; Dewhirst, Floyd E.

    2001-01-01

    The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our

  5. Characterization of bacterial symbionts in Frankliniella occidentalis (Pergande), Western flower thrips.

    PubMed

    Chanbusarakum, Lisa; Ullman, Diane

    2008-11-01

    Many insects have associations with bacteria, although it is often difficult to determine the intricacies of the relationships. In one such case, facultative bacteria have been discovered in a major crop pest and virus vector, the Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Several bacterial isolates have been studied in Netherlands greenhouse thrips populations, with molecular data indicating that these bacteria were similar to Escherichia coli, although biochemical properties suggested these microbes might actually be most similar to plant pathogenic bacteria in the genus Erwinia. We focused on the bacterial flora of the Hawaiian Islands thrips population where these gut bacteria were first reported in 1989. We also analyzed a German population and a 1965 California population preserved in ethanol. Culture and culture-independent techniques revealed a consistent microflora that was similar to the Netherlands isolates studied. The similarity among thrips microbes from multiple populations and environments suggested these bacteria and their hosts share a widespread association. Molecular phylogeny based on the 16S rRNA gene and biochemical analysis of thrips bacteria suggested two distinctive groups of microbes are present in thrips. Phylogenetic analysis also revealed support for one thrips bacterial group having a shared ancestry with Erwinia, whereas the second group of thrips bacteria fell out with E. coli, but without support. Although species-specific relationships were indeterminable due to the conservative nature of 16S, there is strong indication that thrips symbionts belong to two different genera and originated from environmental microbes.

  6. Molecular analysis of bacterial communities in raw cow milk and the impact of refrigeration on its structure and dynamics.

    PubMed

    Raats, Dina; Offek, Maya; Minz, Dror; Halpern, Malka

    2011-05-01

    The impact of refrigeration on raw cow milk bacterial communities in three farm bulk tanks and three dairy plant silo tanks was studied using two methods: DGGE and cloning. Both methods demonstrated that bacterial taxonomic diversity decreased during refrigeration. Gammaproteobacteria, especially Pseudomonadales, dominated the milk after refrigeration. Farm samples and dairy plant samples differed in their microbial community composition, the former showing prevalence of Gram-positive bacteria affiliated with the classes Bacilli, Clostridia and Actinobacteria, the latter showing prevalence of Gram-negative species belonging to the Gammaproteobacteria class. Actinobacteria prevalence in the farm milk samples immediately after collection stood at about 25% of the clones. A previous study had found that psychrotolerant Actinobacteria identified in raw cow milk demonstrated both lipolytic and proteolytic enzymatic activity. Thus, we conclude that although Pseudomonadales play an important role in milk spoilage after long periods of cold incubation, Actinobacteria occurrence may play an important role when assessing the quality of milk arriving at the dairy plant from different farms. As new cooling technologies reduce the initial bacterial counts of milk to very low levels, more sensitive and efficient methods to evaluate the bacterial quality of raw milk are required. The present findings are an important step towards achieving this goal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Clarification of Taxonomic Status within the Pseudomonas syringae Species Group Based on a Phylogenomic Analysis

    PubMed Central

    Gomila, Margarita; Busquets, Antonio; Mulet, Magdalena; García-Valdés, Elena; Lalucat, Jorge

    2017-01-01

    The Pseudomonas syringae phylogenetic group comprises 15 recognized bacterial species and more than 60 pathovars. The classification and identification of strains is relevant for practical reasons but also for understanding the epidemiology and ecology of this group of plant pathogenic bacteria. Genome-based taxonomic analyses have been introduced recently to clarify the taxonomy of the whole genus. A set of 139 draft and complete genome sequences of strains belonging to all species of the P. syringae group available in public databases were analyzed, together with the genomes of closely related species used as outgroups. Comparative genomics based on the genome sequences of the species type strains in the group allowed the delineation of phylogenomic species and demonstrated that a high proportion of strains included in the study are misclassified. Furthermore, representatives of at least 7 putative novel species were detected. It was also confirmed that P. ficuserectae, P. meliae, and P. savastanoi are later synonyms of P. amygdali and that “P. coronafaciens” should be revived as a nomenspecies. PMID:29270162

  8. Clarification of Taxonomic Status within the Pseudomonas syringae Species Group Based on a Phylogenomic Analysis.

    PubMed

    Gomila, Margarita; Busquets, Antonio; Mulet, Magdalena; García-Valdés, Elena; Lalucat, Jorge

    2017-01-01

    The Pseudomonas syringae phylogenetic group comprises 15 recognized bacterial species and more than 60 pathovars. The classification and identification of strains is relevant for practical reasons but also for understanding the epidemiology and ecology of this group of plant pathogenic bacteria. Genome-based taxonomic analyses have been introduced recently to clarify the taxonomy of the whole genus. A set of 139 draft and complete genome sequences of strains belonging to all species of the P. syringae group available in public databases were analyzed, together with the genomes of closely related species used as outgroups. Comparative genomics based on the genome sequences of the species type strains in the group allowed the delineation of phylogenomic species and demonstrated that a high proportion of strains included in the study are misclassified. Furthermore, representatives of at least 7 putative novel species were detected. It was also confirmed that P. ficuserectae, P. meliae , and P. savastanoi are later synonyms of P. amygdali and that " P. coronafaciens " should be revived as a nomenspecies.

  9. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    PubMed

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.

  10. Bacterial diversity at different stages of the composting process

    PubMed Central

    2010-01-01

    Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants. PMID:20350306

  11. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  12. Bacterial community structures in air conditioners installed in Japanese residential buildings.

    PubMed

    Hatayama, Kouta; Oikawa, Yurika; Ito, Hiroyuki

    2018-01-01

    The bacterial community structures in four Japanese split-type air conditioners were analyzed using a next-generation sequencer. A variety of bacteria were detected in the air filter of an air conditioner installed on the first floor. In the evaporator of this air conditioner, bacteria belonging to the genus Methylobacterium, or the family of Sphingomonadaceae, were predominantly detected. On the other hand, the majority of bacteria detected in the air filters and evaporators of air conditioners installed on the fifth and twelfth floors belonged to the family Enterobacteriaceae. The source of bacteria belonging to the family Enterobacteriaceae may have been aerosols generated by toilet flushing in the buildings. Our results suggested the possibility that the bacterial contamination in the air conditioners was affected by the floor level on which they were installed. The air conditioner installed on the lower floor, near the ground, may have been contaminated by a variety of outdoor bacteria, whereas the air conditioners installed on floors more distant from the ground may have been less contaminated by outdoor bacteria. However, these suppositions may apply only to the specific split-type air conditioners that we analyzed, because our sample size was small.

  13. Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities.

    PubMed

    Colin, Y; Nicolitch, O; Turpault, M-P; Uroz, S

    2017-03-01

    mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. Copyright © 2017 American Society for Microbiology.

  14. Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities

    PubMed Central

    Colin, Y.; Nicolitch, O.; Turpault, M.-P.

    2016-01-01

    how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. PMID:28003192

  15. How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA.

    PubMed

    Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J

    2012-12-01

    Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.

  16. Differentiation of bacterial colonies and temporal growth patterns using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Buck, Gregory W.; Livingston, Daniel W.

    2014-09-01

    Detection and identification of bacteria are important for health and safety. Hyperspectral imaging offers the potential to capture unique spectral patterns and spatial information from bacteria which can then be used to detect and differentiate bacterial species. Here, hyperspectral imaging has been used to characterize different bacterial colonies and investigate their growth over time. Six bacterial species (Pseudomonas fluorescens, Escherichia coli, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, Enterobacter aerogenes) were grown on tryptic soy agar plates. Hyperspectral data were acquired immediately after, 24 hours after, and 96 hours after incubation. Spectral signatures from bacterial colonies demonstrated repeatable measurements for five out of six species. Spatial variations as well as changes in spectral signatures were observed across temporal measurements within and among species at multiple wavelengths due to strengthening or weakening reflectance signals from growing bacterial colonies based on their pigmentation. Between-class differences and within-class similarities were the most prominent in hyperspectral data collected 96 hours after incubation.

  17. Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of Pseudomonas and Ralstonia1[W][OA

    PubMed Central

    Wroblewski, Tadeusz; Caldwell, Katherine S.; Piskurewicz, Urszula; Cavanaugh, Keri A.; Xu, Huaqin; Kozik, Alexander; Ochoa, Oswaldo; McHale, Leah K.; Lahre, Kirsten; Jelenska, Joanna; Castillo, Jose A.; Blumenthal, Daniel; Vinatzer, Boris A.; Greenberg, Jean T.; Michelmore, Richard W.

    2009-01-01

    Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell. PMID:19571308

  18. Bacterial Identification Using Light Scattering Measurements: a Preliminary Report

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1971-01-01

    The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.

  19. Analysis, Characterization, and Loci of the tuf Genes in Lactobacillus and Bifidobacterium Species and Their Direct Application for Species Identification

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Meylan, Valèrie; Klaenhammer, Todd R.; Zink, Ralf

    2003-01-01

    We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobacillus species and 8 Bifidobacterium species. The tuf sequences were aligned and used to infer phylogenesis among species of lactobacilli and bifidobacteria. We demonstrated that the synonymous substitution affecting this gene renders elongation factor Tu a reliable molecular clock for investigating evolutionary distances of lactobacilli and bifidobacteria. In fact, the phylogeny generated by these tuf sequences is consistent with that derived from 16S rRNA analysis. The investigation of a multiple alignment of tuf sequences revealed regions conserved among strains belonging to the same species but distinct from those of other species. PCR primers complementary to these regions allowed species-specific identification of closely related species, such as Lactobacillus casei group members. These tuf gene-based assays developed in this study provide an alternative to present methods for the identification for lactic acid bacterial species. Since a variable number of tuf genes have been described for bacteria, the presence of multiple genes was examined. Southern analysis revealed one tuf gene in the genomes of lactobacilli and bifidobacteria, but the tuf gene was arranged differently in the genomes of these two taxa. Our results revealed that the tuf gene in bifidobacteria is flanked by the same gene constellation as the str operon, as originally reported for Escherichia coli. In contrast, bioinformatic and transcriptional analyses of the DNA region flanking the tuf gene in four Lactobacillus species indicated the same four-gene unit and suggested a novel tuf operon specific for the genus Lactobacillus. PMID:14602655

  20. Childhood antecedents of adult sense of belonging.

    PubMed

    Hagerty, Bonnie M; Williams, Reg Arthur; Oe, Hiroaki

    2002-07-01

    Sense of belonging has been proposed to be a basic human need, and deficits in sense of belonging have been linked to problems in social and psychological functioning. Yet, there is little evidence about what early life experiences contribute to sense of belonging. The purpose of this study was to examine potential childhood antecedents of adult sense of belonging. The sample consisted of 362 community college students ranging in age from 18 to 72 years, with a mean age of 26 years. Measures included the Sense of Belonging Instrument, the Parental Bonding Instrument, and the Childhood Adversity and Adolescent Deviance Instrument. Multiple regression analysis was used to correlate childhood antecedents with adult sense of belonging. The final reduced model included 12 variables, which accounted for 25% of the variance in sense of belonging. Significant positive antecedents with a relationship with sense of belonging were perceived caring by both mother and father while growing up, participation in high school athletic activity, and parental divorce. Significant negative variables with a relationship with sense of belonging included perceived overprotection of father, high school pregnancy, family financial problems while growing up, incest, and homosexuality. Knowledge of these factors should influence interventions with families regarding child-rearing and parenting practices, mediating the effects of crises during childhood such as divorce and teen pregnancy, and the interpersonal growth needs of teenagers. Copyright 2002 Wiley Periodicals, Inc.

  1. Bacterial community composition characterization of a lead-contaminated Microcoleus sp. consortium.

    PubMed

    Giloteaux, Ludovic; Solé, Antoni; Esteve, Isabel; Duran, Robert

    2011-08-01

    A Microcoleus sp. consortium, obtained from the Ebro delta microbial mat, was maintained under different conditions including uncontaminated, lead-contaminated, and acidic conditions. Terminal restriction fragment length polymorphism and 16S rRNA gene library analyses were performed in order to determine the effect of lead and culture conditions on the Microcoleus sp. consortium. The bacterial composition inside the consortium revealed low diversity and the presence of specific terminal-restriction fragments under lead conditions. 16S rRNA gene library analyses showed that members of the consortium were affiliated to the Alpha, Beta, and Gammaproteobacteria and Cyanobacteria. Sequences closely related to Achromobacter spp., Alcaligenes faecalis, and Thiobacillus species were exclusively found under lead conditions while sequences related to Geitlerinema sp., a cyanobacterium belonging to the Oscillatoriales, were not found in presence of lead. This result showed a strong lead selection of the bacterial members present in the Microcoleus sp. consortium. Several of the 16S rRNA sequences were affiliated to nitrogen-fixing microorganisms including members of the Rhizobiaceae and the Sphingomonadaceae. Additionally, confocal laser scanning microscopy and scanning and transmission electron microscopy showed that under lead-contaminated condition Microcoleus sp. cells were grouped and the number of electrodense intracytoplasmic inclusions was increased.

  2. Periodic growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  3. Effect of Weak Magnetic Field on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  4. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  5. The intrinsic resistome of bacterial pathogens.

    PubMed

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  6. Relationship of periodontal clinical parameters with bacterial composition in human dental plaque.

    PubMed

    Fujinaka, Hidetake; Takeshita, Toru; Sato, Hirayuki; Yamamoto, Tetsuji; Nakamura, Junji; Hase, Tadashi; Yamashita, Yoshihisa

    2013-06-01

    More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.

  7. Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos.

    PubMed

    Wang, Fan; Zhao, Hongwei; Xiang, Haiying; Wu, Lijun; Men, Xiao; Qi, Chang; Chen, Guoqiang; Zhang, Haibo; Wang, Yi; Xian, Mo

    2018-06-05

    Microbes on aging flue-cured tobaccos (ATFs) improve the aroma and other qualities desirable in products. Understanding the relevant organisms would picture microbial community diversity, metabolic potential, and their applications. However, limited efforts have been made on characterizing the microbial quality and functional profiling. Herein, we present our investigation of the bacterial diversity and predicted potential genetic capability of the bacteria from two AFTs using 16S rRNA gene sequences and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) software. The results show that dominant bacteria from AFT surfaces were classified into 48 genera, 36 families, and 7 phyla. In addition, Bacillus spp. was found prevalent on both ATFs. Furthermore, PICRUSt predictions of bacterial community functions revealed many attractive metabolic capacities in the AFT microbiota, including several involved in the biosynthesis of flavors and fragrances and the degradation of harmful compounds, such as nicotine and nitrite. These results provide insights into the importance of AFT bacteria in determining product qualities and indicate specific microbial species with predicted enzymatic capabilities for the production of high-efficiency flavors, the degradation of undesirable compounds, and the provision of nicotine and nitrite tolerance which suggest fruitful areas of investigation into the manipulation of AFT microbiota for AFT and other product improvements.

  8. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis

    PubMed Central

    Facey, Paul D.; Méric, Guillaume; Hitchings, Matthew D.; Pachebat, Justin A.; Hegarty, Matt J.; Chen, Xiaorui; Morgan, Laura V.A.; Hoeppner, James E.; Whitten, Miranda M.A.; Kirk, William D.J.; Dyson, Paul J.; Sheppard, Sam K.; Sol, Ricardo Del

    2015-01-01

    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. PMID:26185096

  9. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  10. Key determinants of the fungal and bacterial microbiomes in homes.

    PubMed

    Kettleson, Eric M; Adhikari, Atin; Vesper, Stephen; Coombs, Kanistha; Indugula, Reshmi; Reponen, Tiina

    2015-04-01

    The microbiome of the home is of great interest because of its possible impact on health. Our goal was to identify some of the factors that determine the richness, evenness and diversity of the home's fungal and bacterial microbiomes. Vacuumed settled dust from homes (n=35) in Cincinnati, OH, were analyzed by pyrosequencing to determine the fungal and bacterial relative sequence occurrence. The correlation coefficients between home environmental characteristics, including age of home, Environmental Relative Moldiness Index (ERMI) values, occupant number, relative humidity and temperature, as well as pets (dog and cat) were evaluated for their influence on fungal and bacterial communities. In addition, linear discriminant analysis (LDA) was used for identifying fungal and bacterial genera and species associated with those housing determinants found to be significant. The fungal richness was found to be positively correlated with age of home (p=0.002), ERMI value (p=0.003), and relative humidity (p=0.015) in the home. However, fungal evenness and diversity were only correlated with the age of home (p=0.001). Diversity and evenness (not richness) of the bacterial microbiome in the homes were associated with dog ownership. Linear discriminant analysis showed total of 39 putative fungal genera/species with significantly higher LDA scores in high ERMI homes and 47 genera/species with significantly higher LDA scores in homes with high relative humidity. When categorized according to the age of the home, a total of 67 fungal genera/species had LDA scores above the significance threshold. Dog ownership appeared to have the most influence on the bacterial microbiome, since a total of 130 bacterial genera/species had significantly higher LDA scores in homes with dogs. Some key determinants of the fungal and bacterial microbiome appear to be excess moisture, age of the home and dog ownership. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Broad spectrum microarray for fingerprint-based bacterial species identification

    PubMed Central

    2010-01-01

    Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups. PMID:20163710

  12. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  13. Race and Belonging in School: How Anticipated and Experienced Belonging Affect Choice, Persistence, and Performance

    ERIC Educational Resources Information Center

    Murphy, Mary; Zirkel, Sabrina

    2015-01-01

    Background/Context: A sense of belonging in school is a complex construct that relies heavily on students' perceptions of the educational environment, especially their relationships with other students. Some research suggests that a sense of belonging in school is important to all students. However, we argue that the nature and meaning of…

  14. Molecular Survey of Bacterial Communities Associated with Bacterial Chondronecrosis with Osteomyelitis (BCO) in Broilers

    PubMed Central

    Jiang, Tieshan; Mandal, Rabindra K.; Wideman, Robert F.; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  15. Palpi aplenty: New species in the Chrysotus longipalpus species group (Diptera: Dolichopodidae)

    Treesearch

    Justin B. Runyon; Renato S. Capellari

    2018-01-01

    Four new Nearctic species belonging to the Chrysotus longipalpus species group are described: Chrysotus keyensis sp. nov. (Florida), Chrysotus mccreadiei sp. nov. (Alabama), Chrysotus mystax sp. nov. (Alabama), and Chrysotus plumarista sp. nov. (Alabama). This brings the number of known species in this group to twelve. A key to species of males of the C. longipalpus...

  16. Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab

    PubMed Central

    Thurber, Andrew R.; Jones, William J.; Schnabel, Kareen

    2011-01-01

    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3rd maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins. PMID:22140426

  17. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab.

    PubMed

    Thurber, Andrew R; Jones, William J; Schnabel, Kareen

    2011-01-01

    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3(rd) maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.

  18. Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles.

    PubMed

    Walker, Alejandro R; Grimes, Tyler L; Datta, Somnath; Datta, Susmita

    2018-05-22

    Microbial communities can be location specific, and the abundance of species within locations can influence our ability to determine whether a sample belongs to one city or another. As part of the 2017 CAMDA MetaSUB Inter-City Challenge, next generation sequencing (NGS) data was generated from swipe samples collected from subway stations in Boston, New York City hereafter New York, and Sacramento. DNA was extracted and Illumina sequenced. Sequencing data was provided for all cities as part of 2017 CAMDA contest challenge dataset. Principal component analysis (PCA) showed clear clustering of the samples for the three cities, with a substantial proportion of the variance explained by the first three components. We ran two different classifiers and results were robust for error rate (< 6%) and accuracy (> 95%). The analysis of variance (ANOVA) demonstrated that overall, bacterial composition across the three cities is significantly different. A similar conclusion was reached using a novel bootstrap based test using diversity indices. Last but not least, a co-abundance association network analyses for the taxonomic levels "order", "family", and "genus" found different patterns of bacterial networks for the three cities. Bacterial fingerprint can be useful to predict sample provenance. In this work prediction of provenance reported with over 95% accuracy. Association based network analysis, emphasized similarities between the closest cities sharing common bacterial composition. ANOVA showed different patterns of bacterial amongst cities, and these findings strongly suggest that bacterial signature across multiple cities are different. This work advocates a data analysis pipeline which could be followed in order to get biological insight from this data. However, the biological conclusions from this analysis is just an early indication out of a pilot microbiome data provided to us through CAMDA 2017 challenge and will be subject to change as we get more complete data

  19. Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts.

    PubMed

    An, Shu; Couteau, Cécile; Luo, Fan; Neveu, Julie; DuBow, Michael S

    2013-11-01

    Arid regions represent nearly 30 % of the Earth's terrestrial surface, but their microbial biodiversity is not yet well characterized. The surface sands of deserts, a subset of arid regions, are generally subjected to large temperature fluctuations plus high UV light exposure and are low in organic matter. We examined surface sand samples from the Taklamaken (China, three samples) and Gobi (Mongolia, two samples) deserts, using pyrosequencing of PCR-amplified 16S V1/V2 rDNA sequences from total extracted DNA in order to gain an assessment of the bacterial population diversity. In total, 4,088 OTUs (using ≥97 % sequence similarity levels), with Chao1 estimates varying from 1,172 to 2,425 OTUs per sample, were discernable. These could be grouped into 102 families belonging to 15 phyla, with OTUs belonging to the Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria phyla being the most abundant. The bacterial population composition was statistically different among the samples, though members from 30 genera were found to be common among the five samples. An increase in phylotype numbers with increasing C/N ratio was noted, suggesting a possible role in the bacterial richness of these desert sand environments. Our results imply an unexpectedly large bacterial diversity residing in the harsh environment of these two Asian deserts, worthy of further investigation.

  20. Relationship between bacterial diversity and environmental parameters during composting of different raw materials.

    PubMed

    Wang, Xueqin; Cui, Hongyang; Shi, Jianhong; Zhao, Xinyu; Zhao, Yue; Wei, Zimin

    2015-12-01

    The aim of this study was to compare the bacterial structure of seven different composts. The primary environmental factors affecting bacterial species were identified, and a strategy to enhance the abundance of uncultured bacteria through controlling relevant environmental parameters was proposed. The results showed that the physical-chemical parameters of each different pile changed in its own manner during composting, which affected the structure and succession of bacteria in different ways. DGGE profiles showed that there were 10 prominent species during composting. Among them, four species existed in all compost types, two species existed in several piles and four species were detected in a single material. Redundancy analysis results showed that bacterial species compositions were significantly influenced by C/N and moisture (p<0.05). The optimal range of C/N was 14-27. Based on these results, the primary environmental factors affecting a certain species were further identified as a potential control of bacterial diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm.

    PubMed

    Wang, Zhao; Yang, Yuyin; Sun, Weimin; Dai, Yu; Xie, Shuguang

    2015-02-01

    Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation.

  2. Phytotoxic activity against Bromus tectorum for secondary metabolites of a seed-pathogenic Fusarium strain belonging to the F. tricinctum species complex.

    PubMed

    Masi, Marco; Meyer, Susan; Pescitelli, Gennaro; Cimmino, Alessio; Clement, Suzette; Peacock, Beth; Evidente, Antonio

    2017-12-01

    The winter annual grass Bromus tectorum (cheatgrass) has become highly invasive in semiarid ecosystems of western North America. In these areas, a natural phenomenon, complete cheatgrass stand failure ('die-off'), is apparently caused by a complex interaction among soilborne fungal pathogens. Several Fusarium strains belonging to the Fusarium tricinctum species complex were isolated from these soils and found to be pathogenic on B. tectorum seeds. One of these strains was produced in cheatgrass seed culture to evaluate its ability to produce phytotoxins. Six metabolites were isolated and identified by spectroscopic methods (essentially 1D and 2D NMR and ESIMS) as acuminatopyrone (1), blumenol A (2), chlamydosporol (3), isochlamydosporol (4), ergosterol (5) and 4-hydroxybenzaldehyde (6). Upon testing against B. tectorum in a seedling bioassay, (6) the coleoptile and radicle length of cheatgrass seedlings were significantly reduced. Compounds 1 and 2 showed moderate activity, while 3-5 were not significantly different from the control.

  3. RNA-oligonucleotide quantification technique (ROQT) for the enumeration of uncultivated bacterial species in subgingival biofilms

    PubMed Central

    Teles, F.R.F.; Teles, R.P.; Siegelin, Y.; Paster, B.; Haffajee, A.D.; Socransky, S.S.

    2010-01-01

    SUMMARY Approximately 35% of the species present in subgingival biofilms are as yet uncultivated, so their role in periodontal pathogenesis is unknown. The aim of the present study was to develop a high throughput method to quantify a wide range of cultivated and uncultivated taxa in subgingival biofilm samples associated with periodontal disease or health. Oligonucleotides targeting the 16S ribosomal DNA gene were designed, synthesized and labeled with digoxigenin. These probes were hybridized with the total nucleic acids of pure cultures or subgingival biofilm samples. Target species included cultivated taxa associated with periodontal health and disease, as well as uncultivated species, such as TM7 sp OT 346, Mitsuokella sp. OT 131 and Desulfobulbus sp. OT 041. Sensitivity and specificity of the probes were determined. A Universal probe was used to assess total bacterial load. Sequences complementary to the probes were used as standards for quantification. Chemiluminescent signals were visualized after film exposure or using a CCD camera. In a pilot clinical study, 266 subgingival plaque samples from eight periodontally healthy people and 11 patients with periodontitis were examined. Probes were specific and sensitivity reached 104 cells. Fusobacterium nucleatum ss polymorphum and Actinomyces gerencseriae were the most abundant cultivated taxa in clinical samples. Among uncultivated/unrecognized species, Mitsuokella sp. OT 131 and Prevotella sp. OT 306 were the most numerous. Porphyromonas gingivalis and Desulfobulbus sp. OT 041 were only detected in patients with periodontitis. Direct hybridization of total nucleic acids using oligonucleotide probes permitted the quantification of multiple cultivated and uncultivated taxa in mixed species biofilm samples. PMID:21375703

  4. RT-PCR-DGGE Analysis to Elucidate the Dominant Bacterial Species of Industrial Spanish-Style Green Table Olive Fermentations.

    PubMed

    Benítez-Cabello, Antonio; Bautista-Gallego, Joaquín; Garrido-Fernández, Antonio; Rantsiou, Kalliopi; Cocolin, Luca; Jiménez-Díaz, Rufino; Arroyo-López, Francisco N

    2016-01-01

    This paper describes the dominant bacterial species metabolically active through the industrial production of Spanish-style Manzanilla and Gordal olives. For this purpose, samples (brines and fruits) obtained at 0, 15, and 90 fermentation days were analyzed by a culture-independent approach to determine viable cells by reverse transcription of RNA and further PCR-DGGE analysis, detecting at least 7 different species. Vibrio vulnificus, Lactobacillus plantarum group, and Lactobacillus parafarraginis were present in samples from both cultivars; Lactobacillus sanfranciscensis and Halolactobacillus halophilus were detected only in Gordal samples, while Staphylococcus sp. was exclusively found at the onset of Manzanilla fermentations. Physicochemical data showed a typical fermentation profile while scanning electron microscopy confirmed the in situ biofilm formation on the olive epidermis. Different Bacillus, Staphylococcus, and Enterococcus species, not detected during the fermentation process, were also found in the solid marine salt used by the industry for preparation of brines. Elucidation of these non-lactic acid bacteria species role during fermentation is then an appealingly challenge, particularly regarding safety issues.

  5. Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo

    PubMed Central

    McDonald, Nathan D.; Lubin, Jean-Bernard; Chowdhury, Nityananda

    2016-01-01

    ABSTRACT A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota. Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces), Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella), Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus), and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species), mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others. PMID:27073099

  6. Promiscuity in mice is associated with increased vaginal bacterial diversity

    NASA Astrophysics Data System (ADS)

    Macmanes, Matthew David

    2011-11-01

    Differences in the number of sexual partners (i.e., mating system) have the potential to exert a strong influence on the bacterial communities present in reproductive structures like the vagina. Because this structure serves as a conduit for gametes, bacteria present there may have a pronounced, direct effect on host reproductive success. As a first step towards the identification of the relationship between sexual behavior and potentially pathogenic bacterial communities inhabiting vital reproductive structures, as well as their potential effects on fitness, I sought to quantify differences in bacterial diversity in a promiscuous and monogamous mammal species. To accomplish this, I used two sympatric species of Peromyscus rodents— Peromyscus californicus and Peromyscus maniculatus that differ with regard to the number of sexual partners per individual to test the hypothesis that bacterial diversity should be greater in the promiscuous P. maniculatus relative to the monogamous P. californicus. As predicted, phylogenetically controlled and operational taxonomic unit-based indices of bacterial diversity indicated that diversity is greater in the promiscuous species. These results provide important new insights into the effects of mating system on bacterial diversity in free-living vertebrates, and may suggest a potential cost of promiscuity.

  7. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vass, A.A.; Tyndall, R.L.; Terzaghi-Howe, P.

    1999-11-16

    This application describes a bacterial preparation from Pseudomonas species isolated {number{underscore}sign}15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  8. Adolescents’ Perceptions of Family Belonging in Stepfamilies

    PubMed Central

    King, Valarie; Boyd, Lisa M.; Thorsen, Maggie L.

    2015-01-01

    Prior research has established that adolescents’ perceptions of family belonging are associated with a range of well-being indicators and that adolescents in stepfamilies report lower levels of family belonging than adolescents in two-biological-parent families. Yet, we know little regarding what factors are associated with adolescents’ perceptions of family belonging in stepfamilies. Guided by family systems theory, the authors addressed this issue by using nationally representative data (Add Health) to examine the associations between family characteristics and adolescents’ perceptions of family belonging in stepfather families (N = 2,085). Results from structural equation models revealed that both the perceived quality of the stepfather–adolescent relationship, and in particular the perceived quality of the mother–adolescent relationship, were the factors most strongly associated with feelings of family belonging. PMID:26166845

  9. Diversity and distribution of culturable lactic acid bacterial species in Indonesian Sayur Asin.

    PubMed

    Mangunwardoyo, Wibowo; Abinawanto; Salamah, Andi; Sukara, Endang; Sulistiani; Dinoto, Achmad

    2016-08-01

    Lactic acid bacteria (LAB) play important roles in processing of Sayur Asin (spontaneously fermented mustard). Unfortunately, information about LAB in Indonesian Sayur Asin, prepared by traditional manufactures which is important as baseline data for maintenance of food quality and safety, is unclear. The aim of this study was to describe the diversity and distribution of culturable lactic acid bacteria in Sayur Asin of Indonesia. Four Sayur Asin samples (fermentation liquor and fermented mustard) were collected at harvesting times (3-7 days after fermentation) from two traditional manufactures in Tulung Agung (TA) and Kediri (KDR), East Java provinces, Indonesia. LAB strains were isolated by using MRS agar method supplemented with 1% CaCO 3 and characterized morphologically. Identification of the strains was performed basedon 16S rDNA analysis and the phylogenetic tree was drawn to understand the phylogenetic relationship of the collected strains. Different profiles were detected in total count of the plates, salinity and pH of fermenting liquor of Sayur Asin in TA and KDR provinces. A total of 172 LAB isolates were successfully isolated and identified based on their 16S rDNA sequences. Phylogenetic analysis of 27 representative LAB strains from Sayur Asin showed that these strains belonged to 5 distinct species namely Lactobacilus farciminis (N=32), L. fermentum (N=4), L. namurensis (N=15), L. plantarum (N=118) and L. parafarraginis (N=1). Strains D5-S-2013 and B4-S-2013 showed a close phylogenetic relationship with L. composti and L. paralimentarius, respectively where as the sequence had slightly lower similarity of lower than 99%, suggesting that they may be classified into novel species and need further investigation due to exhibition of significant differences in their nucleotide sequences. Lactobacillus plantarum was found being dominant in all sayur asin samples. Lactobacilli were recognized as the major group of lactic acid bacteria in Sayur Asin

  10. Metagenomic study of bacterial microbiota in persistent endodontic infections using Next-generation sequencing.

    PubMed

    Sánchez-Sanhueza, G; Bello-Toledo, H; González-Rocha, G; Gonçalves, A T; Valenzuela, V; Gallardo-Escárate, C

    2018-05-22

    To determine the bacterial microbiota in root canals associated with persistent apical periodontitis and their relationship with the clinical characteristics of patients using next-generation sequencing (NGS). Bacterial samples from root canals associated with teeth having persistent apical periodontitis were taken from 24 patients undergoing root canal retreatment. Bacterial DNA was extracted, and V3-V4 variable regions of the 16S rRNA gene were amplified. The amplification was deep sequenced by Illumina technology to establish the metagenetic relationships among the bacterial species identified. The composition and diversity of microbial communities in the root canal and their relationships with clinical features were analysed. Parametric and nonparametric tests were used to analyse differences between patient characteristics and microbial data. A total of 86 different operational taxonomic units (OTUs) were identified and Good's nonparametric coverage estimator method indicated that 99.9 ± 0.00001% diversity was recovered per sample. The largest number of bacteria belonged to the phylum Proteobacteria. According to the medical history from the American Society of Anesthesiologists (ASA) Classification System, ASA II-III had higher richness estimates and distinct phylogenetic relationships compared to ASA I individuals (P < 0.05). Periapical index (PAI) score 5 was associated with increased microbiota diversity in comparison to PAI score 4, and this index was reduced in symptomatic patients. Based on the findings of this study, it is possible to suggest a close relationship between several clinical features and greater microbiota diversity with persistent endodontic infections. This work provides a better understanding on how microbial communities interact with their host and vice versa. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  12. Bacterial detection: from microscope to smartphone.

    PubMed

    Gopinath, Subash C B; Tang, Thean-Hock; Chen, Yeng; Citartan, Marimuthu; Lakshmipriya, Thangavel

    2014-10-15

    The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe's milk cheeses.

    PubMed

    Fuka, Mirna Mrkonjić; Wallisch, Stefanie; Engel, Marion; Welzl, Gerhard; Havranek, Jasmina; Schloter, Michael

    2013-01-01

    Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a

  14. Dynamics of Bacterial Communities during the Ripening Process of Different Croatian Cheese Types Derived from Raw Ewe's Milk Cheeses

    PubMed Central

    Fuka, Mirna Mrkonjić; Wallisch, Stefanie; Engel, Marion; Welzl, Gerhard; Havranek, Jasmina; Schloter, Michael

    2013-01-01

    Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a

  15. [Sharing bacterial microbiota between owners and their pets (dogs, cats)].

    PubMed

    Wipler, Jan; Čermáková, Zuzana; Hanzálek, Tomáš; Horáková, Hana; Žemličková, Helena

    2017-06-01

    The microbiological aspect of a relationship between pets (dogs/cats) and their owners is mainly concerned with the incidence of shared bacterial species, in particular potential pathogens. Given the great popularity of sharing homes with pets (dogs/cats) in the Czech Republic, there is an increased possibility of communication between microbiota of the two macroorganisms (pet and owner). The aim of the study was to determine the biodiversity of shared bacteria and possibility of exchange of genes of resistance to antimicrobial agents between potential pathogens based on the close relationship between pets and humans. A total of 103 samples were collected from 20 pairs (20 owners, 16 dogs and 4 cats). All owners completed a questionnaire with their pets' veterinarians. In owners, swabs were collected from the nasal mucosa, armpit and interdigital spaces of the foot. In pets, swabs were obtained from the external auditory meatus and nasal mucosa. In individuals with skin lesions, samples were also collected from the affected areas. Bacterial species were identified by culture and matrix-assisted laser desorption/ionization - time of flight (MALDI-TOF) mass spectrometry. In shared species, susceptibility to antibiotics was tested by the disk diffusion method. Statistical methods were used to correlate the closeness of relationship with the number of shared bacterial species and to correlate previous antimicrobial therapy with shared resistance of the common bacteria. Analysis of the questionnaires showed that 65 % of owners who participated in the study kept more pets at home than only the tested one. In the previous year, 5 % of pets and 5 % of owners received antimicrobial therapy. As many as 45 % of dogs or cats slept in their owners' beds and 80 % rested on a sofa together with their owners. Also, 45 % owners had their faces licked by pets. Eighty percent of pets were fed with several types of food (dry food and cooked food). Further, 70 % of pets lived

  16. New target for inhibition of bacterial RNA polymerase: 'switch region'.

    PubMed

    Srivastava, Aashish; Talaue, Meliza; Liu, Shuang; Degen, David; Ebright, Richard Y; Sineva, Elena; Chakraborty, Anirban; Druzhinin, Sergey Y; Chatterjee, Sujoy; Mukhopadhyay, Jayanta; Ebright, Yon W; Zozula, Alex; Shen, Juan; Sengupta, Sonali; Niedfeldt, Rui Rong; Xin, Cai; Kaneko, Takushi; Irschik, Herbert; Jansen, Rolf; Donadio, Stefano; Connell, Nancy; Ebright, Richard H

    2011-10-01

    A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species ▿ ‡ #

    PubMed Central

    Gillespie, Joseph J.; Wattam, Alice R.; Cammer, Stephen A.; Gabbard, Joseph L.; Shukla, Maulik P.; Dalay, Oral; Driscoll, Timothy; Hix, Deborah; Mane, Shrinivasrao P.; Mao, Chunhong; Nordberg, Eric K.; Scott, Mark; Schulman, Julie R.; Snyder, Eric E.; Sullivan, Daniel E.; Wang, Chunxia; Warren, Andrew; Williams, Kelly P.; Xue, Tian; Seung Yoo, Hyun; Zhang, Chengdong; Zhang, Yan; Will, Rebecca; Kenyon, Ronald W.; Sobral, Bruno W.

    2011-01-01

    Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRIC's outreach activities, collaborative endeavors, and future research directions is provided. PMID:21896772

  18. Chemical sensing in mammalian host-bacterial commensal associations

    USDA-ARS?s Scientific Manuscript database

    The mammalian gastrointestinal (GI) tract is colonized by a complex consortium of bacterial species. Bacteria engage in chemical signaling to coordinate population-wide behavior. However, it is unclear if chemical sensing plays a role in establishing mammalian host–bacterial commensal relationships....

  19. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease

    PubMed Central

    Deep, Antariksh; Chaudhary, Uma; Gupta, Varsha

    2011-01-01

    Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The “language” used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation. PMID:21701655

  20. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin.

    PubMed

    Park, Doo-Sang; Oh, Hyun-Woo; Jeong, Won-Jin; Kim, Hyangmi; Park, Ho-Yong; Bae, Kyung Sook

    2007-10-01

    In this study, bacterial communities within the guts of several longicorn beetles were investigated by a culture-dependent method. A total of 142 bacterial strains were isolated from nine species of longicorn beetle, including adults and larvae. A comparison of their partial 16S rRNA gene sequences showed that most of the bacteria constituting the gut communities can typically be found in soil, plants and the intestines of animals, and approximately 10% were proposed as unreported. Phylogenetic analysis demonstrated that the bacterial species comprised 7 phyla, and approximately half were Gammaproteobacteria. Actinobacteria were the second most populous group (19%), followed by Firmicutes (13%) and Alphaproteobacteria (11%). Betaproteobacteria, Flavobacteria, and Acidobacteria were minor constituents. The taxonomic compositions of the isolates were variable according to the species of longicorn beetle. Particularly, an abundance of Actinobacteria existed in Moechotypa diphysis and Mesosa hirsute, which eat broadleaf trees; however, no Actinobacteria were isolated from Corymbia rubra and Monochamus alternatus, which are needle-leaf eaters. Considerable proportions of xylanase and pectinase producing bacteria in the guts of the longicorn beetles implied that the bacteria may play an important role in the digestion of woody diets. Actinobacteria and Gammaproteobacteria were the dominant xylanase producers in the guts of the beetles.

  1. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    PubMed Central

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  2. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity

    PubMed Central

    Caimi, Nicole A.; Northup, Diana E.; Valdez, Ernest W.; Buecher, Debbie C.; Dunlap, Christopher A.; Labeda, David P.; Lueschow, Shiloh

    2016-01-01

    ABSTRACT At least two-thirds of commercial antibiotics today are derived from Actinobacteria, more specifically from the genus Streptomyces. Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans, which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans, with 32 (88.9%) actinobacteria belonging to the genus Streptomyces. Isolates in the genera Rhodococcus, Streptosporangium, Luteipulveratus, and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans. IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans, the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. PMID:27986729

  3. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.

    PubMed

    Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini

    2016-10-01

    This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.

  4. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota

    PubMed Central

    Hibberd, Matthew C.; Wu, Meng; Rodionov, Dmitry A.; Li, Xiaoqing; Cheng, Jiye; Griffin, Nicholas W.; Barratt, Michael J.; Giannone, Richard J.; Hettich, Robert L.; Osterman, Andrei L.; Gordon, Jeffrey I.

    2017-01-01

    Vitamin and mineral (micronutrient) deficiencies afflict two billion people. While the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the gut microbiota of developing or adult humans. Therefore, we established a community of cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on bacterial community structure and meta-transcriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA-Seq, and transcription factor binding assays disclosed that AcrR is a repressor of an adjacent AcrAB-TolC efflux system. Retinol efflux measurements in wildtype and acrR-mutant strains plus treatment with a pharmacologic inhibitor of the efflux system, revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity in B. vulgatus. Acute vitamin A deficiency was associated with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help to develop mechanistic insights about and more effective treatment strategies for micronutrient deficiencies. PMID:28515336

  5. Western bats as a reservoir of novel Streptomyces species with antifungal activity

    USGS Publications Warehouse

    Hamm, Paris S.; Caimi, Nicole A.; Northup, Diana E.; Valdez, Ernest W.; Buecher, Debbie C.; Dunlap, Christopher A.; Labeda, David P.; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-01-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria, more specifically from the genus Streptomyces. Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans, which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans, with 32 (88.9%) actinobacteria belonging to the genus Streptomyces. Isolates in the genera Rhodococcus, Streptosporangium, Luteipulveratus, and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans.

  6. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species.

    PubMed

    Joyce, E; Phull, S S; Lorimer, J P; Mason, T J

    2003-10-01

    Some species of bacteria produce colonies and spores which agglomerate in spherical clusters (Bacillus subtilis) and this serves as a protection for the organisms inside against biocidal attack. Flocs of fine particles e.g. clay can entrap bacteria which can also protect them against the biocides. It is because of problems such as these that alternative methods of disinfecting water are under active investigation. One such method is the use of power ultrasound, either alone or in combination with other methods. Ultrasound is able to inactivate bacteria and deagglomerate bacterial clusters or flocs through a number of physical, mechanical and chemical effects arising from acoustic cavitation. The aim of this study was to investigate the effect of power ultrasound at different powers and frequencies on Bacillus subtilis. Viable plate count techniques were used as a measure of microbial activity. Results showed a significant increase in percent kill for Bacillus species with increasing duration of exposure and intensity of ultrasound in the low-kilohertz range (20 and 38 kHz). Results obtained at two higher frequencies (512 and 850 kHz) indicated a significant increase in bacteria count suggesting declumping. In assessing the bacterial kill with time under different sonication regimes three types of behaviour were characterized: High power ultrasound (lower frequencies) in low volumes of bacterial suspension results in a continuous reduction in bacterial cell numbers i.e. the kill rate predominates. High power ultrasound (lower frequencies) in larger volumes results in an initial rise in cell numbers suggesting declumping of the bacteria but this initial rise then falls as the declumping finishes and the kill rate becomes more important. Low intensity ultrasound (higher frequencies) gives an initial rise in cell numbers as a result of declumping. The kill rate is low and so there is no significant subsequent decrease in bacterial cell numbers.

  7. Prevalence and Bacterial Isolates of Mastitis in Dairy Farms in Selected Districts of Eastern Harrarghe Zone, Eastern Ethiopia

    PubMed Central

    Abera, Gerema

    2017-01-01

    The study was conducted from November 2015 to April 2016 to estimate the prevalence of clinical and subclinical mastitis in lactating cows, to assess the associated risk factors, and to isolate the major bacterial pathogens in dairy farms in selected district of Eastern Harrarghe Zone, Eastern Ethiopia. The study was carried out in 384 dairy cows based on data collection, farm visit, animal examination, California mastitis test (CMT), and isolation bacterial pathogens using standard techniques. In the present study the overall mastitis at cow level was 247 (64.3%). The prevalence of clinical and subclinical mastitis and quarter level prevalence for clinical and subclinical mastitis were 12.5% and 51.8% at cow level and 10.7% and 46.4% at quarter level, respectively. Clinically, 101 (6.6%) quarters which belong to 75 (19.5%) animals were found to be with blind teat. In the present study prevalence of mastitis was significantly associated with parity and age (p < 0.05). Bacteriological examination of milk sample revealed 187 isolates where coagulase negative Staphylococcus species (CNS) (34.2%) was the predominant species while Streptococcus faecalis (2.1%) was identified as the least bacteria. The present study concluded that prevalence of mastitis particularly the subclinical mastitis was major problem of dairy cows in the area and hence warrants serious attention. PMID:28352648

  8. Epidemiology of bacterial pathogens associated with infectious diarrhea in Djibouti.

    PubMed Central

    Mikhail, I A; Fox, E; Haberberger, R L; Ahmed, M H; Abbatte, E A

    1990-01-01

    During a survey examining the causes of diarrhea in the East African country of Djibouti, 140 bacterial pathogens were recovered from 209 diarrheal and 100 control stools. The following pathogens were isolated at comparable frequencies from both diarrheal and control stools: enteroadherent Escherichia coli (EAEC) (10.6 versus 13%), enterotoxigenic E. coli (ETEC) (11 versus 10%), enteropathogenic E. coli (EPEC) (7.7 versus 12%), Salmonella spp. (2.9 versus 3%), and Campylobacter jejuni-C. coli (3.3 versus 5%). Surprisingly, the EAEC strains isolated did not correspond to well-recognized EPEC serogroups. No Yersinia spp., enteroinvasive E. coli, or enterohemorrhagic E. coli were isolated during the course of this study. Only the following two genera were recovered from diarrheal stools exclusively: Shigella spp. (7.7%) and Aeromonas hydrophila group organisms (3.3%). Shigella flexneri was the most common Shigella species isolated. Patients with Shigella species were of a higher average age than were controls (27 versus 13 years), while subjects with Campylobacter or Salmonella species belonged to younger age groups (2.6 and 1.6 years, respectively). Salmonella cases were more often in females. Shigella diarrhea was associated with fecal blood or mucus and leukocytes. ETEC was not associated with nausea or vomiting. Anorexia, weight loss, and fever were associated with the isolation of Salmonella and Aeromonas species. EAEC, ETEC, EPEC, and Shigella species were resistant to most drugs used for treating diarrhea in Africa, while the antibiotic most active against all bacteria tested was norfloxacin. We conclude that in Djibouti in 1989, Shigella and Aeromonas species must be considered as potential pathogens whenever they are isolated from diarrheal stools and that norfloxacin should be considered the drug of choice in adults for treating severe shigellosis and for diarrhea prophylaxis in travelers. PMID:2351738

  9. Universality in Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Bonachela, Juan A.; Nadell, Carey D.; Xavier, João B.; Levin, Simon A.

    2011-07-01

    The emergent spatial patterns generated by growing bacterial colonies have been the focus of intense study in physics during the last twenty years. Both experimental and theoretical investigations have made possible a clear qualitative picture of the different structures that such colonies can exhibit, depending on the medium on which they are growing. However, there are relatively few quantitative descriptions of these patterns. In this paper, we use a mechanistically detailed simulation framework to measure the scaling exponents associated with the advancing fronts of bacterial colonies on hard agar substrata, aiming to discern the universality class to which the system belongs. We show that the universal behavior exhibited by the colonies can be much richer than previously reported, and we propose the possibility of up to four different sub-phases within the medium-to-high nutrient concentration regime. We hypothesize that the quenched disorder that characterizes one of these sub-phases is an emergent property of the growth and division of bacteria competing for limited space and nutrients.

  10. Crystal structure analysis of a bacterial aryl acylamidase belonging to the amidase signature enzyme family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin

    2015-11-13

    The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad,more » is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr{sup 136} and Thr{sup 330}) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys{sup 84} as the catalytic base to polarize the Ser{sup 187} nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr{sup 136} and Thr{sup 330} mediates ligand-binding and substrate.« less

  11. The Patterns and Drivers of Bacterial and Fungal β-Diversity in a Typical Dryland Ecosystem of Northwest China.

    PubMed

    Wang, Jianming; Zhang, Tianhan; Li, Liping; Li, Jingwen; Feng, Yiming; Lu, Qi

    2017-01-01

    Dryland ecosystems cover more than 30% of the terrestrial area of China, while processes that shape the biogeographic patterns of bacterial and fungal β-diversity have rarely been evaluated synchronously. To compare the biogeographic patterns and its drivers of bacterial and fungal β-diversity, we collected 62 soil samples from a typical dryland region of northwest China. We assessed bacterial and fungal communities by sequencing bacterial 16S rRNA gene and fungal ITS data. Meanwhile, the β-diversity was decomposed into two components: species replacement (species turnover) and nestedness to further explore the bacterial and fungal β-diversity patterns and its causes. The results show that both bacterial and fungal β-diversity were derived almost entirely from species turnover rather than from species nestedness. Distance-decay relationships confirmed that the geographic patterns of bacterial and fungal β-diversity were significantly different. Environmental factors had the dominant influence on both the bacterial and fungal β-diversity and species turnover, however, the role of geographic distance varied across bacterial and fungal communities. Furthermore, both bacterial and fungal nestedness did not significantly respond to the environmental and geographic distance. Our findings suggest that the different response of bacterial and fungal species turnover to dispersal limitation and other, unknown processes may result in different biogeographic patterns of bacterial and fungal β-diversity in the drylands of northwest China. Together, we highlight that the drivers of β-diversity patterns vary between bacterial and fungal communities, and microbial β-diversity are driven by multiple factors in the drylands of northwest China.

  12. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2003-11-01

    A bacterial strain (designated IH5(T)), isolated from rhizospheric soil of grasses growing spontaneously in Spanish soil, actively solubilized phosphates in vitro when bicalcium phosphate was used as a phosphorus source. This strain was Gram-negative, strictly aerobic, rod-shaped and motile. The strain produced catalase, but not oxidase. Cellulose, casein, starch, gelatin, aesculin and urea were not hydrolysed. Growth was observed with many carbohydrates as the carbon source. The main non-polar fatty acids detected were hexadecenoic acid (C(16 : 1)), hexadecanoic acid (C(16 : 0)) and octadecenoic acid (C(18 : 1)). The hydroxy fatty acids detected were 3-hydroxydecanoic acid (C(10 : 0) 3-OH), 3-hydroxydodecanoic acid (C(12 : 0) 3-OH) and 2-hydroxydodecanoic acid (C(12 : 0) 2-OH). Phylogenetic analysis of 16S rRNA indicated that this bacterium belongs to the genus Pseudomonas in the gamma-subclass of the Proteobacteria and that the closest related species is Pseudomonas graminis. The DNA G+C content was 61 mol%. DNA-DNA hybridization showed 23 % relatedness between strain IH5(T) and P. graminis DSM 11363(T). Therefore, strain IH5(T) belongs to a novel species from the genus Pseudomonas, for which the name Pseudomonas rhizosphaerae sp. nov. is proposed (type strain, IH5(T)=LMG 21640(T)=CECT 5726(T)).

  13. Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital.

    PubMed

    Moles, Laura; Gómez, Marta; Jiménez, Esther; Bustos, Gerardo; de Andrés, Javier; Melgar, Ana; Escuder, Diana; Fernández, Leónides; Del Campo, Rosa; Rodríguez, Juan Miguel

    2017-01-01

    Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella , and Escherichia . The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis . Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium , and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella , and Streptococcus were the most abundant. Own mother's milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them.

  14. Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital

    PubMed Central

    Moles, Laura; Gómez, Marta; Jiménez, Esther; Bustos, Gerardo; de Andrés, Javier; Melgar, Ana; Escuder, Diana; Fernández, Leónides; del Campo, Rosa; Rodríguez, Juan Miguel

    2017-01-01

    Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella, and Escherichia. The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis. Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium, and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella, and Streptococcus were the most abundant. Own mother’s milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them. PMID:28459051

  15. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  16. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  17. Biodiversity of Bacterial Ecosystems in Traditional Egyptian Domiati Cheese▿

    PubMed Central

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2007-01-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type. PMID:17189434

  18. Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese.

    PubMed

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2007-02-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Domiati cheeses, as reflected by the numerous bands present in TTGE and DGGE patterns. The dominant lactic acid bacteria (LAB) identified were as follows: Leuconostoc mesenteroides, Lactococcus garvieae, Aerococcus viridans, Lactobacillus versmoldensis, Pediococcus inopinatus, and Lactococcus lactis. Frequent non-LAB species included numerous coagulase-negative staphylococci, Vibrio spp., Kocuria rhizophila, Kocuria kristinae, Kocuria halotolerans, Arthrobacter spp./Brachybacterium tyrofermentans. This is the first time that the majority of these species has been identified in Domiati cheese. Nearly all the dominant and frequent bacterial species are salt tolerant, and several correspond to known marine bacteria. As Domiati cheese contains 5.4 to 9.5% NaCl, we suggest that these bacteria are likely to have an important role in the ripening process. This first systematic study of the microbial composition of Domiati cheeses reveals great biodiversity and evokes a role for marine bacteria in determining cheese type.

  19. Morphodynamics of growing bacterial colony

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Perlekar, Prasad; Rana, Navdeep

    Self-organization into multicellular communities is a natural trend of most of the bacteria. Mutual interactions and competition among the bacterial cells in such multicellular organization play essential role in governing the spatiotemporal dynamics. We here present the spatiotemporal dynamics of growing bacterial colony using theory and a particle-based or individual-based simulation model of nonmotile cells growing utilizing a diffusing nutrient/food on a semi-solid surface by their growth and division forces and by pushing each-other through sliding motility. We show how the resource competition over a fixed amount of food, the diffusion coefficient of the nutrient and the random genetic noise govern the morphodynamics of a single species and a well-mixed two-species bacterial colonies. Our results show that for a very low initial food concentrations, colony develops fingering pattern at the front, while for intermediate values of initial food sources, the colony undergoes transitions to branched structures at the periphery and for very high values of food colony develops smoother fronts.

  20. Inter- and intra-specific cuticle variation between amphimictic and parthenogenetic species of root-knot nematode (Meloidogyne spp.) as revealed by a bacterial parasite (Pasteuria penetrans).

    PubMed

    Davies, K G; Rowe, J A; Williamson, V M

    2008-06-01

    Specific host-parasite interactions exist between species and strains of plant parasitic root-knot nematodes and the Gram-positive bacterial hyperparasite Pasteuria penetrans. This bacterium produces endospores that adhere to the cuticle of migrating juveniles, germinate and colonise the developing female within roots. Endospore attachment of P. penetrans populations to second-stage juveniles of the root-knot nematode species Meloidogyne incognita and Meloidogyne hapla showed there were interactive differences between bacterial populations and nematode species. Infected females of M. incognita produced a few progeny which were used to establish two nematode lines from single infective juveniles encumbered with either three or 26 endospores. Single juvenile descent lines of each nematode species were produced to test whether cuticle variation was greater within M. hapla lines that reproduce by facultative meiotic parthenogenesis than within lines of M. incognita, which reproduces by obligate parthenogenesis. Assays revealed variability between broods of individual females derived from single second-stage juvenile descent lines of both M. incognita and M. hapla suggesting that progeny derived from a single individual can differ in spore adhesion in both sexual and asexual nematode species. These results suggest that special mechanisms that produced these functional differences in the cuticle surface may have evolved in both sexually and asexually reproducing nematodes as a strategy to circumvent infection by this specialised hyperparasite.

  1. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    PubMed

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  2. Assessment of bacterial contamination of lipstick using pyrosequencing.

    PubMed

    Lee, So Y; Lee, Si Y

    As soon as they are exposed to the environment, cosmetics become contaminated with microorganisms, and this contamination accumulates with increased use. In this study, we employed pyrosequencing to investigate the diversity of bacteria found on lipstick. Bacterial DNA was extracted from 20 lipstick samples and mixed in equal ratios for pyrosequencing analysis. As a result, 105 bacterial genera were detected, four of which ( Leifsonia , Methylobacterium , Streptococcus , and Haemophilus ) were predominant in 92% of the 19,863 total sequence reads. Potentially pathogenic genera such as Staphylococcus , Pseudomonas , Escherichia , Salmonella , Corynebacterium , Mycobacterium , and Neisseria accounted for 27.6% of the 105 genera. The most commonly identified oral bacteria belonged to the Streptococcus genus, although other oral genera such as Actinomyces , Fusobacterium , Porphyromonas , and Lactobacillus were also detected.

  3. Redescriptions and reestablishments of some species belonging to the genus Prionospio (Polychaeta, Spionidae) and descriptions of three new species

    NASA Astrophysics Data System (ADS)

    Delgado-Blas, V. H.

    2014-03-01

    Available type material of Prionospio heterobranchia Moore, 1907, P. ( Prionospio) texana Hartman, 1951, P. spongicola Wesenberg-Lund, 1958 and P. ( P.) newportensis Reish, 1959, as well as newly collected material from the Southern Gulf of Mexico and Chetumal Bay in the Caribbean Sea, was examined. Several important differences were found between P. heterobranchia, P. ( Prionospio) texana, P. spongicola and P. ( P.) newportensis, and as a result, these three species are removed from synonymy with P. heterobranchia Moore, 1907, and redescribed and reinstated as valid species. In addition, three new species were identified and described: P. caribensis sp. nov., P. rosariae sp. nov. and P. jamaicensis sp. nov. A key to all species of Prionospio with five pairs of branchiae is provided.

  4. Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production.

    PubMed

    Trabal Fernández, Natalia; Mazón-Suástegui, José M; Vázquez-Juárez, Ricardo; Ascencio-Valle, Felipe; Romero, Jaime

    2014-04-01

    The resident microbiota of three oyster species (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) was characterised using a high-throughput sequencing approach (pyrosequencing) that was based on the V3-V5 regions of the 16S rRNA gene. We analysed the changes in the bacterial community beginning with the postlarvae produced in a hatchery, which were later planted at two grow-out cultivation sites until they reached the adult stage. DNA samples from the oysters were amplified, and 31 008 sequences belonging to 13 phyla (including Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) and 243 genera were generated. Considering all life stages, Proteobacteria was the most abundant phylum, but it showed variations at the genus level between the postlarvae and the adult oysters. Bacteroidetes was the second most common phylum, but it was found in higher abundance in the postlarvae than in adults. The relative abundance showed that the microbiota that was associated with the postlarvae and adults differed substantially, and higher diversity and richness were evident in the postlarvae in comparison with adults of the same species. The site of rearing influenced the bacterial community composition of C. corteziensis and C. sikamea adults. The bacterial groups that were found in these oysters were complex and metabolically versatile, making it difficult to understand the host-bacteria symbiotic relationships; therefore, the physiological and ecological significances of the resident microbiota remain uncertain. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis

    PubMed Central

    Feder, Stefan; Lehmann, Stefanie; Kullnick, Yvonne; Buschmann, Tilo; Blumert, Conny; Horn, Friedemann; Neuhaus, Jochen; Neujahr, Ralph; Bagaev, Erik; Hagl, Christian; Pichlmaier, Maximilian; Rodloff, Arne Christian; Gräber, Sandra; Kirsch, Katharina; Sandri, Marcus; Kumbhari, Vivek; Behzadi, Armirhossein; Behzadi, Amirali; Correia, Joao Carlos; Mohr, Friedrich Wilhelm

    2017-01-01

    Aims In infective endocarditis (IE), a severe inflammatory disease of the endocardium with an unchanged incidence and mortality rate over the past decades, only 1% of the cases have been described as polymicrobial infections based on microbiological approaches. The aim of this study was to identify potential biodiversity of bacterial species from infected native and prosthetic valves. Furthermore, we compared the ultrastructural micro-environments to detect the localization and distribution patterns of pathogens in IE. Material and methods Using next-generation sequencing (NGS) of 16S rDNA, which allows analysis of the entire bacterial community within a single sample, we investigated the biodiversity of infectious bacterial species from resected native and prosthetic valves in a clinical cohort of 8 IE patients. Furthermore, we investigated the ultrastructural infected valve micro-environment by focused ion beam scanning electron microscopy (FIB-SEM). Results Biodiversity was detected in 7 of 8 resected heart valves. This comprised 13 bacterial genera and 16 species. In addition to 11 pathogens already described as being IE related, 5 bacterial species were identified as having a novel association. In contrast, valve and blood culture-based diagnosis revealed only 4 species from 3 bacterial genera and did not show any relevant antibiotic resistance. The antibiotics chosen on this basis for treatment, however, did not cover the bacterial spectra identified by our amplicon sequencing analysis in 4 of 8 cases. In addition to intramural distribution patterns of infective bacteria, intracellular localization with evidence of bacterial immune escape mechanisms was identified. Conclusion The high frequency of polymicrobial infections, pathogen diversity, and intracellular persistence of common IE-causing bacteria may provide clues to help explain the persistent and devastating mortality rate observed for IE. Improved bacterial diagnosis by 16S rDNA NGS that increases the

  6. It Feels Good to Learn Where I Belong: School Belonging, Academic Emotions, and Academic Achievement in Adolescents

    ERIC Educational Resources Information Center

    Lam, Un Fong; Chen, Wei-Wen; Zhang, Jingqi; Liang, Ting

    2015-01-01

    This study examined the relationships between school belonging, academic emotions, and academic achievement in Macau adolescents. A survey of 406 junior high school students in Macau was used to collect information on the extent to which these students felt accepted and respected in their schools (school belonging), the emotions they experienced…

  7. [Investigation of bacterial diversity in the biological desulfurization reactor for treating high salinity wastewater by the 16S rDNA cloning method].

    PubMed

    Liu, Wei-Guo; Liang, Cun-Zhen; Yang, Jin-Sheng; Wang, Gui-Ping; Liu, Miao-Miao

    2013-02-01

    The bacterial diversity in the biological desulfurization reactor operated continuously for 1 year was studied by the 16S rDNA cloning and sequencing method. Forty clones were randomly selected and their partial 16S rDNA genes (ca. 1,400 bp) were sequenced and blasted. The results indicated that there were dominant bacterias in the biological desulfurization reactor, where 33 clones belonged to 3 different published phyla, while 1 clone belonged to unknown phylum. The dominant bacterial community in the system was Proteobacteria, which accounted for 85.3%. The bacterial community succession was as follows: the gamma-Proteobacteria(55.9%), beta-Proteobacteria(17.6%), Actinobacteridae (8.8%), delta-Proteobacteria (5.9%) , alpha-Proteobacteria(5.9%), and Sphingobacteria (2.9%). Halothiobacillus sp. ST15 and Thiobacillus sp. UAM-I were the major desulfurization strains.

  8. The Belonging to the University Scale

    ERIC Educational Resources Information Center

    Karaman, Omer; Cirak, Yuksel

    2017-01-01

    The aim of the study is to develop a belonging to the university scale (BUS) in order to determine the level of fulfillment of the need to belong among university students at the higher education institutions they attend. The population of the investigation includes university students studying at the campus of Ordu University. A 5 point…

  9. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  11. Deep learning approach to bacterial colony classification.

    PubMed

    Zieliński, Bartosz; Plichta, Anna; Misztal, Krzysztof; Spurek, Przemysław; Brzychczy-Włoch, Monika; Ochońska, Dorota

    2017-01-01

    In microbiology it is diagnostically useful to recognize various genera and species of bacteria. It can be achieved using computer-aided methods, which make the recognition processes more automatic and thus significantly reduce the time necessary for the classification. Moreover, in case of diagnostic uncertainty (the misleading similarity in shape or structure of bacterial cells), such methods can minimize the risk of incorrect recognition. In this article, we apply the state of the art method for texture analysis to classify genera and species of bacteria. This method uses deep Convolutional Neural Networks to obtain image descriptors, which are then encoded and classified with Support Vector Machine or Random Forest. To evaluate this approach and to make it comparable with other approaches, we provide a new dataset of images. DIBaS dataset (Digital Image of Bacterial Species) contains 660 images with 33 different genera and species of bacteria.

  12. Fumonisin-Exposure Impairs Age-Related Ecological Succession of Bacterial Species in Weaned Pig Gut Microbiota.

    PubMed

    Mateos, Ivan; Combes, Sylvie; Pascal, Géraldine; Cauquil, Laurent; Barilly, Céline; Cossalter, Anne-Marie; Laffitte, Joëlle; Botti, Sara; Pinton, Philippe; Oswald, Isabelle P

    2018-06-05

    Pigs are highly affected by dietary mycotoxin contamination and particularly by fumonisin. The effects of fumonisin on pig intestinal health are well documented, but little is known regarding its impact on gut microbiota. We investigate the effects of the fumonisin (FB1, 12 mg/kg feed) on the fecal microbiota of piglets ( n = 6) after 0, 8, 15, 22, and 29 days of exposure. A control group of six piglets received a diet free of FB1. Bacterial community diversity, structure and taxonomic composition were carried out by V3⁻V4 16S rRNA gene sequencing. Exposure to FB1 decreases the diversity index, and shifts and constrains the structure and the composition of the bacterial community. This takes place as early as after 15 days of exposure and is at a maximum after 22 days of exposure. Compared to control, FB1 alters the ecological succession of fecal microbiota species toward higher levels of Lactobacillus and lower levels of the Lachnospiraceae and Veillonellaceae families, and particularly OTUs (Operational Taxonomic Units) of the genera Mitsuokella , Faecalibacterium and Roseburia . In conclusion, FB1 shifts and constrains age-related evolution of microbiota. The direct or indirect contribution of FB1 microbiota alteration in the global host response to FB1 toxicity remains to be investigated.

  13. Monochloramine inactivation of bacterial select agents.

    PubMed

    Rose, Laura J; Rice, Eugene W; Hodges, Lisa; Peterson, Alicia; Arduino, Matthew J

    2007-05-01

    Seven species of bacterial select agents were tested for susceptibility to monochloramine. Under test conditions, the monochloramine routinely maintained in potable water would reduce six of the species by 2 orders of magnitude within 4.2 h. Bacillus anthracis spores would require up to 3.5 days for the same inactivation with monochloramine.

  14. Molecular detection of Lactobacillus species in the neovagina of male-to-female transsexual women

    PubMed Central

    Petricevic, Ljubomir; Kaufmann, Ulrike; Domig, Konrad J.; Kraler, Manuel; Marschalek, Julian; Kneifel, Wolfgang; Kiss, Herbert

    2014-01-01

    There is a general opinion that penile skin lined neovagina of transsexual women is not able to support the growth of lactobacilli. This study was undertaken to prove if lactobacilli strains could survive in neovagina and to characterise the most dominant Lactobacillus species. Sixty three male-to-female transsexual women without abnormal vaginal discharge, clinical signs of infection were recruited on an ongoing basis from among transsexual outpatients in an academic research institution and tertiary care centre. Neovaginal smears were taken for molecular Lactobacillus spp. profiling by denaturing gradient gel electrophoresis (PCR–DGGE). Lactobacillus species were detected from 47/63 transsexual women (75%). The 279 Lactobacillus signals detected by PCR-DGGE technique belonged to 13 different species. Lactobacilli of the L. delbrueckii group (L. gasseri, L. crispatus, L. johnsonii, L. iners, L. jensenii) were predominant. More than 90% of women harboured a combination of two or more neovaginal Lactobacillus species. In this study we report the frequent occurrence of lactobacilli from neovagina of transsexual women. Both, frequency and composition were similar to the normal lactic acid bacterial microflora in both women of reproductive age and postmenopausal women. PMID:24434849

  15. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota.

    PubMed

    Hibberd, Matthew C; Wu, Meng; Rodionov, Dmitry A; Li, Xiaoqing; Cheng, Jiye; Griffin, Nicholas W; Barratt, Michael J; Giannone, Richard J; Hettich, Robert L; Osterman, Andrei L; Gordon, Jeffrey I

    2017-05-17

    Vitamin and mineral (micronutrient) deficiencies afflict 2 billion people. Although the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the gut microbiota of developing or adult humans. Therefore, we established a community of cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron, or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on bacterial community structure and metatranscriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA sequencing, and transcription factor-binding assays disclosed that AcrR is a repressor of an adjacent AcrAB-TolC efflux system. Retinol efflux measurements in wild-type and acrR -mutant strains plus treatment with a pharmacologic inhibitor of the efflux system revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity in B. vulgatus Acute vitamin A deficiency was associated with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help to develop mechanistic insights about the effects of, and more effective treatment strategies for micronutrient deficiencies. Copyright © 2017, American Association for the Advancement of Science.

  16. Diversity and distribution of culturable lactic acid bacterial species in Indonesian Sayur Asin

    PubMed Central

    Mangunwardoyo, Wibowo; Abinawanto; Salamah, Andi; Sukara, Endang; Sulistiani; Dinoto, Achmad

    2016-01-01

    Background and Objectives: Lactic acid bacteria (LAB) play important roles in processing of Sayur Asin (spontaneously fermented mustard). Unfortunately, information about LAB in Indonesian Sayur Asin, prepared by traditional manufactures which is important as baseline data for maintenance of food quality and safety, is unclear. The aim of this study was to describe the diversity and distribution of culturable lactic acid bacteria in Sayur Asin of Indonesia. Materials and Methods: Four Sayur Asin samples (fermentation liquor and fermented mustard) were collected at harvesting times (3–7 days after fermentation) from two traditional manufactures in Tulung Agung (TA) and Kediri (KDR), East Java provinces, Indonesia. LAB strains were isolated by using MRS agar method supplemented with 1% CaCO 3 and characterized morphologically. Identification of the strains was performed basedon 16S rDNA analysis and the phylogenetic tree was drawn to understand the phylogenetic relationship of the collected strains. Results: Different profiles were detected in total count of the plates, salinity and pH of fermenting liquor of Sayur Asin in TA and KDR provinces. A total of 172 LAB isolates were successfully isolated and identified based on their 16S rDNA sequences. Phylogenetic analysis of 27 representative LAB strains from Sayur Asin showed that these strains belonged to 5 distinct species namely Lactobacilus farciminis (N=32), L. fermentum (N=4), L. namurensis (N=15), L. plantarum (N=118) and L. parafarraginis (N=1). Strains D5-S-2013 and B4-S-2013 showed a close phylogenetic relationship with L. composti and L. paralimentarius, respectively where as the sequence had slightly lower similarity of lower than 99%, suggesting that they may be classified into novel species and need further investigation due to exhibition of significant differences in their nucleotide sequences. Lactobacillus plantarum was found being dominant in all sayur asin samples. Conclusion: Lactobacilli were

  17. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles.

    PubMed

    Kwon, Young Sang; Ryu, Choong-Min; Lee, Soohyun; Park, Hyo Bee; Han, Ki Soo; Lee, Jung Han; Lee, Kyunghee; Chung, Woo Sik; Jeong, Mi-Jeong; Kim, Hee Kyu; Bae, Dong-Won

    2010-11-01

    Plant root-associated bacteria (rhizobacteria) elicit plant basal immunity referred to as induced systemic resistance (ISR) against multiple pathogens. Among multi-bacterial determinants involving such ISR, the induction of ISR and promotion of growth by bacterial volatile compounds was previously reported. To exploit global de novo expression of plant proteins by bacterial volatiles, proteomic analysis was performed after exposure of Arabidopsis plants to the rhizobacterium Bacillus subtilis GB03. Ethylene biosynthesis enzymes were significantly up-regulated. Analysis by quantitative reverse transcriptase polymerase chain reaction confirmed that ethylene biosynthesis-related genes SAM-2, ACS4, ACS12, and ACO2 as well as ethylene response genes, ERF1, GST2, and CHIB were up-regulated by the exposure to bacterial volatiles. More interestingly, the emission of bacterial volatiles significantly up-regulated both key defense mechanisms mediated by jasmonic acid and salicylic acid signaling pathways. In addition, high accumulation of antioxidant proteins also provided evidence of decreased sensitivity to reactive oxygen species during the elicitation of ISR by bacterial volatiles. The present results suggest that the proteomic analysis of plant defense responses in bacterial volatile-mediated ISR can reveal the mechanisms of plant basal defenses orchestrated by endogenous ethylene production pathways and the generation of reactive oxygen species.

  18. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis.

    PubMed

    Facey, Paul D; Méric, Guillaume; Hitchings, Matthew D; Pachebat, Justin A; Hegarty, Matt J; Chen, Xiaorui; Morgan, Laura V A; Hoeppner, James E; Whitten, Miranda M A; Kirk, William D J; Dyson, Paul J; Sheppard, Sam K; Del Sol, Ricardo

    2015-07-15

    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. © The Author(s) 2015. Published by

  19. Identification of Bacterial Species in Kuwaiti Waters Through DNA Sequencing

    NASA Astrophysics Data System (ADS)

    Chen, K.

    2017-01-01

    With an objective of identifying the bacterial diversity associated with ecosystem of various Kuwaiti Seas, bacteria were cultured and isolated from 3 water samples. Due to the difficulties for cultured and isolated fecal coliforms on the selective agar plates, bacterial isolates from marine agar plates were selected for molecular identification. 16S rRNA genes were successfully amplified from the genome of the selected isolates using Universal Eubacterial 16S rRNA primers. The resulted amplification products were subjected to automated DNA sequencing. Partial 16S rDNA sequences obtained were compared directly with sequences in the NCBI database using BLAST as well as with the sequences available with Ribosomal Database Project (RDP).

  20. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry.

    PubMed

    Naz, Tayyaba; Khan, Muhammad Daud; Ahmed, Iftikhar; Rehman, Shafiq Ur; Rha, Eui Shik; Malook, Ijaz; Jamil, Muhammad

    2016-09-01

    Heavy metal-resistant bacteria can be efficient bioremediators of metals and may provide an alternative or additional method to conventional methods of metal removal. In this study, 10 bacterial isolates were isolated from soil samples of a sugar industry, located at Peshawar, Pakistan. Morphological, physiological, and biochemical characteristics of these isolates were observed. Sequence analysis (16S ribosomal RNA) revealed that isolated strains were closely related to the species belonging to the genera Pseudomonas, Arthrobacter, Exiguobacterium, Citrobacter, and Enterobacter Bacterial isolates were resistant with a minimum inhibitory concentration (500-900 ppm) to lead ion (Pb(2+)), (500-600 ppm) nickel ion (Ni(2+)), (500-800 ppm) copper ion (Cu(2+)), and (600-800 ppm) chromium ion (Cr(3+)) in solid media. Furthermore, biosorption of metals proved considerable removal of heavy metals by isolated metal-resistant strains. Pseudomonas sp. reduced 37% (Pb(2+)), 32% (Ni(2+)), 29% (Cu(2+)), and 32% (Cr(3+)) and was thus found to be most effective, whereas Enterobacter sp. reduced 19% (Pb(2+)), 7% (Ni(2+)), 14% (Cu(2+)), and 21% (Cr(3+)) and was found to be least effective. While average reduction of Pb(2+), Ni(2+), Cu(2+), and Cr(3+) by Citrobacter sp. was found to be 24%, 18%, 23%, and 27%, respectively, among recognized species. This study revealed that Pseudomonas sp. may provide a new microbial community that can be used for enhanced remediation of contaminated environment. © The Author(s) 2015.

  1. The diversity of polyprenol pattern in leaves of fruit trees belonging to Rosaceae and Cornaceae.

    PubMed

    Wanke, M; Chojnacki, T; Swiezewska, E

    1998-01-01

    The polyprenol pattern in leaves of fruit trees belonging to the Rosaceae (genera: Prunus, Malus) and Cornaceae (genus: Cornus) families is presented. The content of polyprenyl acetates varied within plant species between 10-50 mg per gram of dry weight. In genus Prunus, Cornus and in representatives of species Malus domestica, a mixture of polyprenols composed of 18, 19, 20, 21 isoprene units was found. In six species of genus Prunus (sour-cherry): P. serrulata-spontanea, P. yedoensis, P. fruticosa. P. kurilensis, P. subhirtella and P. incisa the presence of a second polyprenol family, i.e. the group of prenologues consisting of prenol -35, -36, -37, etc. up to -42 was detected.

  2. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider

    PubMed Central

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947

  3. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Frangoulidis, Dimitrios; Tomaso, Herbert; Waldenström, Jonas; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-03-20

    Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen "Candidatus Neoehrlichia mikurensis". An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. "Candidatus Neoehrlichia mikurensis" was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania.

  4. Bioprospecting from cultivable bacterial communities of marine sediment and invertebrates from the underexplored Ubatuba region of Brazil.

    PubMed

    Tangerina, Marcelo M P; Correa, Hebelin; Haltli, Brad; Vilegas, Wagner; Kerr, Russell G

    2017-01-01

    Shrimp fisheries along the Brazilian coast have significant environmental impact due to high by-catch rates (21 kg per kilogram of shrimp). Typically discarded, by-catch contains many invertebrates that may host a great variety of bacterial genera, some of which may produce bioactive natural products with biotechnological applications. Therefore, to utilize by-catch that is usually discarded we explored the biotechnological potential of culturable bacteria of two abundant by-catch invertebrate species, the snail Olivancillaria urceus and the sea star Luidia senegalensis. Sediment from the collection area was also investigated. Utilizing multiple isolation approaches, 134 isolates were obtained from the invertebrates and sediment. Small-subunit rRNA (16S) gene sequencing revealed that the isolates belonged to Proteobacteria, Firmicutes and Actinobacteria phyla and were distributed among 28 genera. Several genera known for their capacity to produce bioactive natural products (Micromonospora, Streptomyces, Serinicoccus and Verrucosispora) were retrieved from the invertebrate samples. To query the bacterial isolates for their ability to produce bioactive metabolites, all strains were fermented and fermentation extracts profiled by UP LC-HRMS and tested for antimicrobial activity. Four strains exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus warneri.

  5. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    PubMed

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  6. Monochloramine Inactivation of Bacterial Select Agents▿

    PubMed Central

    Rose, Laura J.; Rice, Eugene W.; Hodges, Lisa; Peterson, Alicia; Arduino, Matthew J.

    2007-01-01

    Seven species of bacterial select agents were tested for susceptibility to monochloramine. Under test conditions, the monochloramine routinely maintained in potable water would reduce six of the species by 2 orders of magnitude within 4.2 h. Bacillus anthracis spores would require up to 3.5 days for the same inactivation with monochloramine. PMID:17400782

  7. Bacterial diversity in the oral cavity of ten healthy individuals

    PubMed Central

    Bik, Elisabeth M.; Long, Clara Davis; Armitage, Gary C.; Loomer, Peter; Emerson, Joanne; Mongodin, Emmanuel F.; Nelson, Karen E.; Gill, Steven R.; Fraser-Liggett, Claire M.; Relman, David A.

    2010-01-01

    The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An eleventh pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S rRNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11 368 high-quality, non-chimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacteria phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences to near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis demonstrated significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically-significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health. PMID:20336157

  8. Towards Spectral Library-free MALDI-TOF MS Bacterial Identification.

    PubMed

    Cheng, Ding; Qiao, Liang; Horvatovich, Péter

    2018-05-11

    Bacterial identification is of great importance in clinical diagnosis, environmental monitoring and food safety control. Among various strategies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has drawn significant interests, and has been clinically used. Nevertheless, current bioinformatics solutions use spectral libraries for the identification of bacterial strains. Spectral library generation requires acquisition of MALDI-TOF spectra from monoculture bacterial colonies, which is time-consuming and not possible for many species and strains. We propose a strategy for bacterial typing by MALDI-TOF using protein sequences from public database, i.e. UniProt. Ten genes were identified to encode proteins most often observed by MALD-TOF from bacteria through 500 times repeated a 10-fold double cross-validation procedure, using 403 MALDI-TOF spectra corresponding to 14 genera, 81 species and 403 strains, and the protein sequences of 1276 species in UniProt. The 10 genes were then used to annotate peaks on MALDI-TOF spectra of bacteria for bacterial identification. With the approach, bacteria can be identified at the genus level by searching against a database containing the protein sequences of 42 genera of bacteria from UniProt. Our approach identified 84.1% of the 403 spectra correctly at the genus level. Source code of the algorithm is available at https://github.com/dipcarbon/BacteriaMSLF.

  9. Structure of a bacterial cell surface decaheme electron conduit

    USDA-ARS?s Scientific Manuscript database

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  10. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    PubMed

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.

  11. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar.

    PubMed

    Štornik, Aleksandra; Skok, Barbara; Trček, Janja

    2016-03-01

    Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different Hae III and five different Hpa II restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different Hae III and two different Hpa II restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica , Pichia membranifaciens and Saccharomycodes ludwigii . This study has shown for the first time that the bacterial microbiota for the industrial production of

  12. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar

    PubMed Central

    Štornik, Aleksandra; Skok, Barbara

    2016-01-01

    Summary Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S−23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S−23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1−5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the industrial

  13. Domestic animals as carriers of Bordetella species in Senegal.

    PubMed

    Ngom, Abdoulaye; Boulanger, Denis; Ndiaye, Tofène; Mboup, Souleymane; Bada-Alambedji, Rianatou; Simondon, François; Ayih-Akakpo, Ayayi Justin

    2006-01-01

    Despite intense efforts to maintain a high level of vaccine coverage against human whooping cough, rural senegalese areas are still endemic for Bordetella pertussis. One explanation being the potential existence of animal reservoirs, the objective of this work was to precise the carriage by domestic animals of bacteria belonging to the genus Bordetella in Senegal. Bacteriological samples (swabs and aspirates) were obtained from various domestic animals living in different parts of the country. No B. pertussis nor B. parapertussis were isolated. However, for the first time to our knowledge, B. bronchiseptica was identified from small ruminants located in Africa. The positive animals were two goats and two sheep from Dakar slaughterhouse together with a goat living in a rural compound. The fact that it was identified in goats and sheep underlines the potential zoonotic of that bacterial species in countries where small ruminants are of economical and cultural relevance.

  14. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity.

    PubMed

    Hamm, Paris S; Caimi, Nicole A; Northup, Diana E; Valdez, Ernest W; Buecher, Debbie C; Dunlap, Christopher A; Labeda, David P; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-03-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria , more specifically from the genus Streptomyces Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans , which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans , with 32 (88.9%) actinobacteria belonging to the genus Streptomyces Isolates in the genera Rhodococcus , Streptosporangium , Luteipulveratus , and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans , the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. Copyright © 2017 American Society for Microbiology.

  15. Characterization of a Single Magnetotactic Bacterial Species from Devil's Bathtub, Mendon Ponds Park, Honeoye Falls, NY

    NASA Astrophysics Data System (ADS)

    Wagner, C.; Tarduno, J. A.; Stein, A.; Sia, E.

    2015-12-01

    Magnetotactic bacteria (MTB) belong to a lineage of prokaryotic bacteria that synthesize magnetosomes, single domain magnetic particles (typically magnetite or greigite) with an average size of 50 nanometers. MTB utilize magnetosomes through magnetotaxis, the alignment and movement along magnetic field lines to navigate towards preferred environmental conditions. MTB are sensitive to different environments and are thought to exhibit varying magnetosome morphologies, compositions, sizes, and quantities in regards to the environments which they inhabit. These characteristics allow MTB and magnetofossils (preserved magnetosomes) to be used as modern/paleoenvironmental recorders and biomarkers for environmental change(s). Devil's Bathtub (Mendon Ponds Park, Honeoye Falls, NY) is a meromictic glacial kettle pond surrounded by deciduous tree cover. Here we examine one species of MTB based on prominence of this particular morphology at this locale. Magnetotaxis and morphology of this species have been observed using light microscopy. Micrographs have also been taken using Transmission Electron Microscopy (TEM) to verify cell morphology and to determine magnetosome morphology. TEM and magnetic hysteresis measurements were done to find and test the composition of magnetosomes. In this study we also focus on DNA sequencing and characterization of this MTB, as there are few MTB species which have been DNA sequenced successfully. Data from these experiments are directly applicable to this up-and-coming area of research as it will aid in the understanding and correlation of magnetosome and magnetofossils with environmental characteristics.

  16. Redox-Stratified Bacterial Communities in Sediments Associated with Multiple Lucinid Bivalve Species: Implications for Symbiosis in Changing Coastal Habitats

    NASA Astrophysics Data System (ADS)

    Paterson, A. T.; Fortier, C. M.; Long, B.; Kokesh, B. S.; Lim, S. J.; Campbell, B. J.; Anderson, L. C.; Engel, A. S.

    2017-12-01

    Lucinids, chemosymbiotic marine bivalves, occupy strong redox gradient habitats, including the rhizosphere of coastal seagrass beds and mangrove forests in subtropical to tropical ecosystems. Lucinids and their sulfide-oxidizing gammaproteobacterial endosymbionts, which are acquired from the environment, provide a critical ecosystem service by removing toxic reduced sulfur compounds from the surrounding environment, and lucinids may be an important food source to economically valuable fisheries. The habitats of Phacoides pectinatus, Stewartia floridana, Codakia orbicularis, Ctena orbiculata, and Lucina pensylvanica lucinids in Florida and San Salvador in The Bahamas were evaluated in comprehensive malacological, microbiological, and geochemical surveys. Vegetation cover included different seagrass species or calcareous green macroalgae. All sites were variably affected by anthropogenic activities, as evidenced by visible prop scars in seagrass beds, grain size distributions atypical of low energy environments (i.e., artificial fill or dredge material from nearby channels), and high levels of pyrogenic hydrocarbon compounds in sediment indicative of urbanization impact. Where present, lucinid population densities frequently exceeded 2000 individuals per cubic meter, and were typically more abundant underlying seagrass compared to unvegetated, bare sand. Dissolved oxygen and sulfide levels varied from where lucinids were recovered. The sediment bacterial communities from classified 16S rRNA gene sequences indicated that the diversity of putative anaerobic groups increased with sediment depth, but putative aerobes, including of Gammaproteobacteria related to the lucinid endosymbionts, decreased with depth. Where multiple seagrass species co-occurred, retrieved bacterial community compositions correlated to overlying seagrass species, but diversity differed from bare sand patches, including among putative free-living endosymbiont groups. As such, continued sea

  17. Bacterial Colonization and Tissue Compatibility of Denture Base Resins.

    PubMed

    Olms, Constanze; Yahiaoui-Doktor, Maryam; Remmerbach, Torsten W; Stingu, Catalina Suzana

    2018-06-15

    Currently, there is minimal clinical data regarding biofilm composition on the surface of denture bases and the clinical tissue compatibility. Therefore, the aim of this experimental study was to compare the bacterial colonization and the tissue compatibility of a hypoallergenic polyamide with a frequently used PMMA resin tested intraorally in a randomized split-mouth design. Test specimens made of polyamide ( n = 10) and PMMA ( n = 10) were attached over a molar band appliance in oral cavity of 10 subjects. A cytological smear test was done from palatal mucosa at baseline and after four weeks. The monolayers were inspected for micronuclei. After four weeks in situ, the appliance was removed. The test specimens were immediately cultivated on non-selective and selective nutrient media. All growing colonies were identified using VITEK-MS. The anonymized results were analyzed descriptively. A total of 110 different bacterial species could be isolated, including putative pathogens. An average of 17.8 different bacterial species grew on the PMMA specimens, and 17.3 on the polyamide specimens. The highest number of different bacterial species was n = 24, found on a PMMA specimen. On the two specimens, a similar bacterial distribution was observed. Micronuclei, as a marker for genotoxic potential of dental materials, were not detected. This study indicates that the composition of bacterial biofilm developed on these resins after four weeks is not influenced by the type of resin itself. The two materials showed no cytological differences. This investigation suggests that polyamide and PMMA are suitable for clinical use as denture base material.

  18. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  19. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  20. Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas.

    PubMed

    Luengo, José M; Olivera, Elías R

    2017-01-01

    The study of the catabolic potential of microbial species isolated from different habitats has allowed the identification and characterization of bacteria able to assimilate bile acids and other steroids (e.g., testosterone and 4-androsten-3,17-dione). From soil samples, we have isolated several strains belonging to genus Pseudomonas that grow efficiently in chemical defined media containing some cyclopentane-perhydro-phenantrene derivatives as carbon sources. Genetic and biochemical studies performed with one of these bacteria (P. putida DOC21) allowed the identification of the genes and enzymes belonging to the 9,10-seco pathway, the route involved in the aerobic assimilation of steroids. In this manuscript, we describe the most relevant methods required for (1) isolation and characterization of these species; (2) determining the chromosomal location, nucleotide sequence, and functional analysis of the catabolic genes (or gene clusters) encoding the enzymes from this pathway; and (3) the tools employed to establish the role of some of the proteins that participate in this route.

  1. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    PubMed

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Endogenous cellulases in animals: Isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes

    PubMed Central

    Smant, Geert; Stokkermans, Jack P. W. G.; Yan, Yitang; de Boer, Jan M.; Baum, Thomas J.; Wang, Xiaohong; Hussey, Richard S.; Gommers, Fred J.; Henrissat, Bernard; Davis, Eric L.; Helder, Johannes; Schots, Arjen; Bakker, Jaap

    1998-01-01

    β-1,4-Endoglucanases (EGases, EC 3.2.1.4) degrade polysaccharides possessing β-1,4-glucan backbones such as cellulose and xyloglucan and have been found among extremely variegated taxonomic groups. Although many animal species depend on cellulose as their main energy source, most omnivores and herbivores are unable to produce EGases endogenously. So far, all previously identified EGase genes involved in the digestive system of animals originate from symbiotic microorganisms. Here we report on the synthesis of EGases in the esophageal glands of the cyst nematodes Globodera rostochiensis and Heterodera glycines. From each of the nematode species, two cDNAs were characterized and hydrophobic cluster analysis revealed that the four catalytic domains belong to family 5 of the glycosyl hydrolases (EC 3.2.1, 3.2.2, and 3.2.3). These domains show 37–44% overall amino acid identity with EGases from the bacteria Erwinia chrysanthemi, Clostridium acetobutylicum, and Bacillus subtilis. One EGase with a bacterial type of cellulose-binding domain was identified for each nematode species. The leucine-rich hydrophobic core of the signal peptide and the presence of a polyadenylated 3′ end precluded the EGases from being of bacterial origin. Cyst nematodes are obligatory plant parasites and the identified EGases presumably facilitate the intracellular migration through plant roots by partial cell wall degradation. PMID:9560201

  3. Bacterial communities associated with four ctenophore genera from the German Bight (North Sea).

    PubMed

    Hao, Wenjin; Gerdts, Gunnar; Peplies, Jörg; Wichels, Antje

    2015-01-01

    Intense research has been conducted on jellyfish and ctenophores in recent years. They are increasingly recognized as key elements in the marine ecosystem that serve as critical indicators and drivers of ecosystem performance and change. However, the bacterial community associated with ctenophores is still poorly investigated. Based on automated ribosomal intergenic spacer analysis (ARISA) and 16S ribosomal RNA gene amplicon pyrosequencing, we investigated bacterial communities associated with the frequently occurring ctenophore species Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus at Helgoland Roads in the German Bight (North Sea). We observed significant differences between the associated bacterial communities of the different ctenophore species based on ARISA patterns. With respect to bacterial taxa, all ctenophore species were dominated by Proteobacteria as revealed by pyrosequencing. Mnemiopsis leidyi and P. pileus mainly harboured Gammaproteobacteria, with Marinomonas as the dominant phylotype of M. leidyi. By contrast, Pseudoalteromonas and Psychrobacter were the most abundant Gammaproteobacteria in P. pileus. Beroe sp. was mainly dominated by Alphaproteobacteria, particularly by the genus Thalassospira. For B. infundibulum, the bacterial community was composed of Alphaproteobacteria and Gammaproteobacteria in equal parts, which consisted of the genera Thalassospira and Marinomonas. In addition, the bacterial communities associated with M. leidyi display a clear variation over time that needs further investigation. Our results indicate that the bacterial communities associated with ctenophores are highly species- specific. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The protective role of endogenous bacterial communities in chironomid egg masses and larvae

    PubMed Central

    Senderovich, Yigal; Halpern, Malka

    2013-01-01

    Insects of the family Chironomidae, also known as chironomids, are distributed worldwide in a variety of water habitats. These insects display a wide range of tolerance toward metals and organic pollutions. Bacterial species known for their ability to degrade toxicants were identified from chironomid egg masses, leading to the hypothesis that bacteria may contribute to the survival of chironomids in polluted environments. To gain a better understanding of the bacterial communities that inhabit chironomids, the endogenous bacteria of egg masses and larvae were studied by 454-pyrosequencing. The microbial community of the egg masses was distinct from that of the larval stage, most likely due to the presence of one dominant bacterial Firmicutes taxon, which consisted of 28% of the total sequence reads from the larvae. This taxon may be an insect symbiont. The bacterial communities of both the egg masses and the larvae were found to include operational taxonomic units, which were closely related to species known as toxicant degraders. Furthermore, various bacterial species with the ability to detoxify metals were isolated from egg masses and larvae. Koch-like postulates were applied to demonstrate that chironomid endogenous bacterial species protect the insect from toxic heavy metals. We conclude that chironomids, which are considered pollution tolerant, are inhabited by stable endogenous bacterial communities that have a role in protecting their hosts from toxicants. This phenomenon, in which bacteria enable the continued existence of their host in hostile environments, may not be restricted only to chironomids. PMID:23804150

  5. Draft Genome Sequence of Pedobacter agri PB92T, Which Belongs to the Family Sphingobacteriaceae

    PubMed Central

    Lee, Myunglip; Roh, Seong Woon; Lee, Hae-Won; Yim, Kyung June; Kim, Kil-Nam; Bae, Jin-Woo; Choi, Kwang-Sik; Jeon, You-Jin; Jung, Won-Kyo; Kang, Heewan

    2012-01-01

    Strain PB92T of Pedobacter agri, which belongs to the family Sphingobacteriaceae, was isolated from soil in the Republic of Korea. The draft genome of strain PB92T contains 5,141,552 bp, with a G+C content of 38.0%. This is the third genome sequencing project of the type strains among the Pedobacter species. PMID:22740666

  6. New perspectives on bacterial ferredoxin evolution

    NASA Technical Reports Server (NTRS)

    George, D. G.; Hunt, L. T.; Yeh, L.-S. L.; Barker, W. C.

    1985-01-01

    Ferredoxins are low-molecular-weight, nonheme, iron proteins which function as electron carriers in a wide variety of electron transport chains. Howard et al. (1983) have suggested that the amino end of Azotobacter vinelandii ferredoxin shows a greater similarity to the carboxyl end of ferredoxin from Chromatium vinosum and that their half-chain sequences are homologous when the half-chains of either species are considered in inverse order. Examination of this proposition has made it necessary to reevaluate previous conclusions concerning the evolution of bacterial ferredoxin. Attention is given to the properties of the bacterial ferredoxin sequences, and the evolution of the bacterial ferredoxins.

  7. Oral associated bacterial infection in horses: studies on the normal anaerobic flora from the pharyngeal tonsillar surface and its association with lower respiratory tract and paraoral infections.

    PubMed

    Bailey, G D; Love, D N

    1991-02-15

    Two hundred and seventy bacterial isolates were obtained from the pharyngeal tonsillar surface of 12 normal horses and 98 obligatory anaerobic bacteria were characterised. Of these, 57 isolates belonging to 7 genera (Peptostreptococcus (1); Eubacterium (9); Clostridium (6); Veillonella (6); Megasphera (1); Bacteroides (28); Fusobacterium (6)) were identified, and 16 of these were identified to species level (P. anaerobius (1); E. fossor (9); C. villosum (1); B. fragilis (1); B. tectum (2); B. heparinolyticus (2)). Three hundred and twenty isolates were obtained from 23 samples from horses with lower respiratory tract (LRT) or paraoral (PO) bacterial infections. Of the 143 bacteria selected for detailed characterisation, obligate anaerobes accounted for 100 isolates, facultative anaerobes for 42 isolates and obligate aerobes for one isolate. Phenotypic characterisation separated 99 of the isolates into 14 genera. Among the obligately anaerobic species, Gram-positive cocci including P. anaerobius comprised 25% of isolates, E. fossor 11% and other Gram-positive rods (excluding Clostridium sp.) 18% of isolates. The Gram-negative rods comprised B. fragilis 5%, B. heparinolyticus 5%, asaccharolytic pigmented Bacteroides 3% and other Bacteroides 13%, while a so-far unnamed species of Fusobacterium (7%), and Gram-negative corroding rods (3%) were isolated. Among the facultatively anaerobic isolates, S. equi subsp. zooepidemicus accounted for 31% of isolates, followed by Pasteurella spp. 19%, Escherichia coli 17%, Actinomyces spp. 9%, Streptococcus spp. 9%. Incidental facultative isolates were Enterococcus spp. 2%, Enterobacter cloaceae 2%, Actinobacillus spp. 2% and Gram-negative corroding rods 5%. On the basis of the similarities (as determined by DNA hybridization data and/or phenotypic characteristics) of some of the bacterial species (e.g. E. fossor and B. heparinolyticus) isolated from both the normal pharyngeal tonsillar surfaces and LRT and PO diseases of horses, it

  8. Efficacy of species-specific recA PCR tests in the identification of Burkholderia cepacia complex environmental isolates.

    PubMed

    Dalmastri, Claudia; Pirone, Luisa; Tabacchioni, Silvia; Bevivino, Annamaria; Chiarini, Luigi

    2005-05-01

    In this study, we evaluated if recA species-specific PCR assays could be successfully applied to identify environmental isolates of the widespread Burkholderia cepacia complex (Bcc) species. A total of 729 Bcc rhizosphere isolates collected in different samplings were assigned to the species B. cepacia genomovar I (61), B. cenocepacia recA lineage IIIB (514), B. ambifaria (124) and B. pyrrocinia (30), by means of recA (RFLP) analysis, and PCR tests were performed to assess sensitivity and specificity of recA species-specific primers pairs. B. cepacia genomovar I specific primers produced the expected amplicon with all isolates of the corresponding species (sensitivity, 100%), and cross-reacted with all B. pyrrocinia isolates. On the contrary, B. cenocepacia IIIB primers did not give the expected amplicon in 164 B. cenocepacia IIIB isolates (sensitivity, 68.1%), and isolates of distinct populations showed different sensitivity. B. ambifaria primers failed to amplify a recA-specific fragment only in a few isolates of this species (sensitivity, 93.5%). The absence of specific amplification in a high number of B. cenocepacia rhizosphere isolates indicates that recA specific PCR assays can lead to an underestimation of environmental microorganisms belonging to this bacterial species.

  9. DNA barcoding of morphologically characterized mosquitoes belonging to the subfamily Culicinae from Sri Lanka.

    PubMed

    Weeraratne, Thilini Chathurika; Surendran, Sinnathamby Noble; Parakrama Karunaratne, S H P

    2018-04-25

    Vectors of mosquito-borne diseases in Sri Lanka, except for malaria, belong to the subfamily Culicinae, which includes nearly 84% of the mosquito fauna of the country. Hence, accurate and precise species identification of culicine mosquitoes is a crucial factor in implementing effective vector control strategies. During the present study, a combined effort using morphology and DNA barcoding was made to characterize mosquitoes of the subfamily Culicinae for the first time from nine districts of Sri Lanka. Cytochrome c oxidase subunit 1 (cox1) gene from the mitochondrial genome and the internal transcribed spacer 2 (ITS2) region from the nuclear ribosomal DNA were used for molecular characterization. According to morphological identification, the field collected adult mosquitoes belonged to 5 genera and 14 species, i.e. Aedes aegypti, Ae. albopictus, Ae. pallidostriatus, Aedes sp. 1, Armigeres sp. 1, Culex bitaeniorhynchus, Cx. fuscocephala, Cx. gelidus, Cx. pseudovishnui, Cx. quinquefasciatus, Cx. tritaeniorhynchus, Cx. whitmorei, Mansonia uniformis and Mimomyia chamberlaini. Molecular analyses of 62 cox1 and 36 ITS2 sequences were exclusively comparable with the morphological identifications of all the species except for Ae. pallidostriatus and Aedes sp. 1. Although the species identification of Armigeres sp. 1 specimens using morphological features was not possible during this study, DNA barcodes of the specimens matched 100% with the publicly available Ar. subalbatus sequences, giving their species status. Analysis of all the cox1 sequences (14 clades supported by strong bootstrap value in the Neighbor-Joining tree and interspecific distances of > 3%) showed the presence of 14 different species. This is the first available DNA sequence in the GenBank records for morphologically identified Ae. pallidostriatus. Aedes sp. 1 could not be identified morphologically or by publicly available sequences. Aedes aegypti, Ae. albopictus and all Culex species reported during

  10. Discrimination of Aspergillus niger and other Aspergillus species belonging to section Nigri by PCR assays.

    PubMed

    González-Salgado, Amaia; Patiño, Belén; Vázquez, Covadonga; González-Jaén, M Teresa

    2005-04-15

    Aspergillus species included in section Nigri are common in plant products and processed food, such as grapes, cereals, coffee and derivatives, particularly in warm and tropical climates. Two of these species, A. carbonarius and A. niger, are known to produce ochratoxin A (OTA), a potent nephrotoxin and carcinogenic to human (group 2B). Recognition of the several species of this section is difficult and requires considerable expertise using conventional methods based on morphological features. In this work we describe rapid, sensitive and robust assays based on the PCR technique to discriminate the main species included in section Nigri: A. japonicus, A. heteromorphus, A. ellipticus and the two morphologically indistinguishable species of the A. niger aggregate: A. niger and A. tubingensis. The species-specific primers have been designed on the basis of ITS (internal transcribed spacers of rDNA units) sequence comparisons obtained from several Aspergillus strains and have been tested in a number of strains from different origins and hosts. These PCR assays, based on multi-copy sequences, are highly sensitive and specific and represent a good tool for an early detection of OTA-producing Aspergillus species in order to prevent OTA from entering the food chain.

  11. A new checkerboard panel for testing bacterial markers in periodontal disease.

    PubMed

    Dahlén, G; Leonhardt, A

    2006-02-01

    Various microbiological methods have been used for testing bacterial markers for periodontitis and periodontal disease progression. Most studies have used only a limited number of well recognized bacterial species. The purpose of the present study was to evaluate the association of 13 more recently identified bacterial species in a new panel in comparison with 12 previously more recognized periodontotopathogens ('old panel') using the 'checkerboard' DNA-DNA hybridization method. Fifty individuals were chosen who showed at least one site with a probing pocket depth of 6 mm or more (disease) and bleeding on probing and at least one site with a probing pocket depth of 3 mm and without bleeding on probing (health). One diseased and one healthy site on each individual were sampled with the paperpoint technique and the samples were processed in the checkerboard technique against deoxigenin-labeled whole genomic probes to 25 subgingival species representing 12 well recognized and 13 newly identified periodontitis associated species. Twenty-four (out of 25) species were detected more frequently in the subgingival plaque of diseased than healthy sites both at score 1 (> 10(4)) and score 3 (> 10(5)). A significant difference at the higher score (score 3) was noticed for all species of the old panel except for three (Streptococcus intermedius, Selenomonas noxia, and Eikenella corrodens). Of the species in the new panel only Prevotella tannerae, Filifactor alocis, and Porphyromonas endodontalis showed a statistical significant difference between diseased and healthy sites. It was concluded that P. tannerae, F. alocis, and P. endodontalis should be added to the 12 species used for routine diagnostics of periodontitis-associated bacterial flora.

  12. Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope.

    PubMed

    Hasim, Sahar; Allison, David P; Mendez, Berlin; Farmer, Abigail T; Pelletier, Dale A; Retterer, Scott T; Campagna, Shawn R; Reynolds, Todd B; Doktycz, Mitchel J

    2018-01-01

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus -derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin's mode of action and a better understanding of its selectivity.

  13. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species

    PubMed Central

    Ussery, David; Nielsen, Lene N.; Ingmer, Hanne

    2015-01-01

    The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family. Not all SMR proteins are called Qac and the reverse is also true, which has caused confusion in the literature and in gene annotations. The discovery of qac genes and their presence in various staphylococcal populations is briefly reviewed. A sequence comparison revealed that some of the PCR primers described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting with genes present in S. aureus and S. epidermidis, and extending this to related genes found in other species of this genus, and finally to genes found in other genera. PMID

  14. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species.

    PubMed

    Wassenaar, Trudy M; Ussery, David; Nielsen, Lene N; Ingmer, Hanne

    2015-03-01

    The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family. Not all SMR proteins are called Qac and the reverse is also true, which has caused confusion in the literature and in gene annotations. The discovery of qac genes and their presence in various staphylococcal populations is briefly reviewed. A sequence comparison revealed that some of the PCR primers described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting with genes present in S. aureus and S. epidermidis, and extending this to related genes found in other species of this genus, and finally to genes found in other genera.

  15. Analysis of the Bacterial Diversity in Liver Abscess: Differences between Pyogenic and Amebic Abscesses

    PubMed Central

    Reyna-Fabián, Miriam E.; Zermeño, Valeria; Ximénez, Cecilia; Flores, Janin; Romero, Miguel F.; Diaz, Daniel; Argueta, Jesús; Moran, Patricia; Valadez, Alicia; Cerritos, René

    2016-01-01

    Several recent studies have demonstrated that virulence in Entamoeba histolytica is triggered in the presence of both pathogenic and nonpathogenic bacteria species using in vitro and in vivo experimental animal models. In this study, we examined samples aspirated from abscess material obtained from patients who were clinically diagnosed with amebic liver abscess (ALA) or pyogenic liver abscess (PLA). To determine the diversity of bacterial species in the abscesses, we performed partial 16S rRNA gene sequencing. In addition, the E. histolytica and Entamoeba dispar species were genotyped using tRNA-linked short tandem repeats as specific molecular markers. The association between clinical data and bacterial and parasite genotypes were examined through a correspondence analysis. The results showed the presence of numerous bacterial groups. These taxonomic groups constitute common members of the gut microbiota, although all of the detected bacterial species have a close phylogenetic relationship with bacterial pathogens. Furthermore, some patients clinically diagnosed with PLA and ALA were coinfected with E. dispar or E. histolytica, which suggests that the virulence of these parasites increased in the presence of bacteria. However, no specific bacterial groups were associated with this effect. Together, our results suggest a nonspecific mechanism of virulence modulation by bacteria in Entamoeba. PMID:26572872

  16. Places of Civic Belonging among Transnational Youth

    ERIC Educational Resources Information Center

    Keegan, Patrick

    2017-01-01

    This dissertation study investigated how immigrant youth attending two different high schools for late-arrival immigrants in New York City constructed civic belonging by attending to their everyday enactments of citizenship across the contexts of school, neighborhood and home. Civic belonging refers to the embodied social practices by which…

  17. Community-acquired bacterial meningitis.

    PubMed

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G; Wijdicks, Eelco

    2016-11-03

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma (nosocomial bacterial meningitis). Despite advances in treatment and vaccinations, community-acquired bacterial meningitis remains one of the most important infectious diseases worldwide. Streptococcus pneumoniae and Neisseria meningitidis are the most common causative bacteria and are associated with high mortality and morbidity; vaccines targeting these organisms, which have designs similar to the successful vaccine that targets Haemophilus influenzae type b meningitis, are now being used in many routine vaccination programmes. Experimental and genetic association studies have increased our knowledge about the pathogenesis of bacterial meningitis. Early antibiotic treatment improves the outcome, but the growing emergence of drug resistance as well as shifts in the distribution of serotypes and groups are fuelling further development of new vaccines and treatment strategies. Corticosteroids were found to be beneficial in high-income countries depending on the bacterial species. Further improvements in the outcome are likely to come from dampening the host inflammatory response and implementing preventive measures, especially the development of new vaccines.

  18. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial Typing.

    PubMed

    Quintelas, Cristina; Ferreira, Eugénio C; Lopes, João A; Sousa, Clara

    2018-01-01

    The sustained emergence of new declared bacterial species makes typing a continuous challenge for microbiologists. Molecular biology techniques have a very significant role in the context of bacterial typing, but they are often very laborious, time consuming, and eventually fail when dealing with very closely related species. Spectroscopic-based techniques appear in some situations as a viable alternative to molecular methods with advantages in terms of analysis time and cost. Infrared and mass spectrometry are among the most exploited techniques in this context: particularly, infrared spectroscopy emerged as a very promising method with multiple reported successful applications. This article presents a systematic review on infrared spectroscopy applications for bacterial typing, highlighting fundamental aspects of infrared spectroscopy, a detailed literature review (covering different taxonomic levels and bacterial species), advantages, and limitations of the technique over molecular biology methods and a comparison with other competing spectroscopic techniques such as MALDI-TOF MS, Raman, and intrinsic fluorescence. Infrared spectroscopy possesses a high potential for bacterial typing at distinct taxonomic levels and worthy of further developments and systematization. The development of databases appears fundamental toward the establishment of infrared spectroscopy as a viable method for bacterial typing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx

    PubMed Central

    Shak, Joshua R.; Vidal, Jorge E.; Klugman, Keith P.

    2013-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. PMID:23273566

  20. The quest for bacterial allergens.

    PubMed

    Nordengrün, Maria; Michalik, Stephan; Völker, Uwe; Bröker, Barbara M; Gómez-Gascón, Lidia

    2018-04-26

    Allergies are complex diseases featuring local tissue inflammation, which is characterized by an exaggerated type 2 immune response to environmental compounds known as allergens. Pollens, environmental fungi, and house dust mites are examples of common allergens. Bacteria have a dual role in allergy. Usually, they are associated with protection, however, certain bacterial species promote the development and exacerbation of allergic inflammation. Notably, IgE antibodies specific for bacterial antigens are found in the sera of allergic individuals. This implies that some bacterial factors are allergens, eliciting a specific type 2 immune response. However, to date, only a few of these are molecularly defined. This review summarizes the current knowledge about known bacterial allergens, and it provides an overview of the available techniques for the discovery of new allergens as well as for measuring the immune responses directed against them. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Do honeybees shape the bacterial community composition in floral nectar?

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers' nectar, but not from those in the uncovered flowers' nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves.

  2. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  3. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows

    PubMed Central

    Opdahl, Lee James; Gonda, Michael G.

    2018-01-01

    The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6–50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers (Ruminococcus flavefaciens and Fibrobacter succinogenes), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides. PMID:29495256

  4. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows.

    PubMed

    Opdahl, Lee James; Gonda, Michael G; St-Pierre, Benoit

    2018-02-24

    The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6-50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers ( Ruminococcus flavefaciens and Fibrobacter succinogenes ), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides.

  5. Two new species of Leptogenys from southern Brazil (Hymenoptera: Formicidae).

    PubMed

    LÓpez-muÑoz, RomÁn A; Villarreal, Erick; Lattke, John E

    2018-04-18

    Two new species of ants belonging to the genus Leptogenys are described: L. academica n. sp., and L. carioca n. sp., both belonging to the crudelis group. The former species is known from the city of Curitiba while the other species occurs in montane forests of the Itatiaia Plateau. We provide descriptions based on the worker caste, images, as well as a modification of the key presently used for identifying the New World workers of Leptogenys.

  6. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    PubMed Central

    Chen, Xiaorui; Hitchings, Matthew D.; Mendoza, José E.; Balanza, Virginia; Facey, Paul D.; Dyson, Paul J.; Bielza, Pablo; Del Sol, Ricardo

    2017-01-01

    Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis) from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle. PMID:29067021

  7. Pyrosequencing analysis of the bacterial community in drinking water wells.

    PubMed

    Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc

    2013-07-01

    Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.

  8. Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage

    PubMed Central

    Mesa, Victoria; Gallego, Jose L. R.; González-Gil, Ricardo; Lauga, Béatrice; Sánchez, Jesús; Méndez-García, Celia; Peláez, Ana I.

    2017-01-01

    Acid mine drainages are characterized by their low pH and the presence of dissolved toxic metallic species. Microorganisms survive in different microhabitats within the ecosystem, namely water, sediments, and biofilms. In this report, we surveyed the microbial diversity within all domains of life in the different microhabitats at Los Rueldos abandoned mercury underground mine (NW Spain), and predicted bacterial function based on community composition. Sediment samples contained higher proportions of soil bacteria (AD3, Acidobacteria), as well as Crenarchaeota and Methanomassiliicoccaceae archaea. Oxic and hypoxic biofilm samples were enriched in bacterial iron oxidizers from the genus Leptospirillum, order Acidithiobacillales, class Betaproteobacteria, and archaea from the class Thermoplasmata. Water samples were enriched in Cyanobacteria and Thermoplasmata archaea at a 3–98% of the sunlight influence, whilst Betaproteobacteria, Thermoplasmata archaea, and Micrarchaea dominated in acid water collected in total darkness. Stalactites hanging from the Fe-rich mine ceiling were dominated by the neutrophilic iron oxidizer Gallionella and other lineages that were absent in the rest of the microhabitats (e.g., Chlorobi, Chloroflexi). Eukaryotes were detected in biofilms and open-air water samples, and belonged mainly to clades SAR (Alveolata and Stramenopiles), and Opisthokonta (Fungi). Oxic and hypoxic biofilms displayed higher proportions of ciliates (Gonostomum, Oxytricha), whereas water samples were enriched in fungi (Paramicrosporidium and unknown microbial Helotiales). Predicted function through bacterial community composition suggested adaptive evolutive convergence of function in heterogeneous communities. Our study showcases a broad description of the microbial diversity across different microhabitats in the same environment and expands the knowledge on the diversity of microbial eukaryotes in AMD habitats. PMID:28955322

  9. Bacterial Quorum Sensing and Microbial Community Interactions

    PubMed Central

    2018-01-01

    ABSTRACT Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections. PMID:29789364

  10. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?

    PubMed Central

    Budd, Aidan; Blandin, Stephanie; Levashina, Elena A; Gibson, Toby J

    2004-01-01

    Background Invasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion. Results Database searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor. Conclusions Metazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might

  11. Subdimensions of Adolescent Belonging in High School

    ERIC Educational Resources Information Center

    Wallace, Tanner LeBaron; Ye, Feifei; Chhuon, Vichet

    2012-01-01

    Adolescents' sense of belonging in high school may serve a protective function, linking school-based relationships to positive youth outcomes. To advance the study of sense of belonging, we conducted a mixed method, factor analytic study (Phase 1 focus groups, N = 72; Phase 2 cross-sectional survey, N = 890) to explore the multidimensionality of…

  12. BACTERIAL INHIBITORS IN LAKE WATER

    EPA Science Inventory

    The populations of six bacterial genera fell rapidly after their addition to sterile lake water but not after their addition to buffer. The decline in numbers of two species that were studied further, Klebsiella pneumoniae and Micrococcus flavus, occurred even when the buffer was...

  13. Intestinal Bacterial Communities of Trypanosome-Infected and Uninfected Glossina palpalis palpalis from Three Human African Trypanomiasis Foci in Cameroon

    PubMed Central

    Jacob, Franck; Melachio, Trésor T.; Njitchouang, Guy R.; Gimonneau, Geoffrey; Njiokou, Flobert; Abate, Luc; Christen, Richard; Reveillaud, Julie; Geiger, Anne

    2017-01-01

    Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status. PMID:28824591

  14. Intestinal Bacterial Communities of Trypanosome-Infected and Uninfected Glossina palpalis palpalis from Three Human African Trypanomiasis Foci in Cameroon.

    PubMed

    Jacob, Franck; Melachio, Trésor T; Njitchouang, Guy R; Gimonneau, Geoffrey; Njiokou, Flobert; Abate, Luc; Christen, Richard; Reveillaud, Julie; Geiger, Anne

    2017-01-01

    Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene . Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia , and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis . The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia , were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.

  15. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx.

    PubMed

    Shak, Joshua R; Vidal, Jorge E; Klugman, Keith P

    2013-03-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. "… but if you're afraid of things, how are you meant to belong?" What belonging means to people with intellectual disabilities?

    PubMed

    Strnadová, Iva; Johnson, Kelley; Walmsley, Jan

    2018-05-15

    A policy commitment to social inclusion has brought about some positive changes in the lives of people with intellectual disabilities; yet many also continue to experience social isolation, poverty and abuse. The authors introduce a framework for belonging from the literature and then present a study exploring the views of people with intellectual disabilities about belonging. These are discussed in relation to the framework identified from the literature. Three focus groups with 24 participants with intellectual disabilities were conducted in New South Wales and Victoria (Australia). The authors used inductive content analysis to identify four meanings of belonging: (i) belonging in relation to place, (ii) as being part of a community, (iii) as having relationships and (iv) as identity. Also discussed are commonly experienced barriers to belonging identified by participants. Implications for policy, service provision and practice are discussed. © 2018 John Wiley & Sons Ltd.

  17. A new species of the genus Eurhadina Haupt (Hemiptera: Auchenorrhyncha: Cicadellidae: Typhlocybinae) from Korea, with a key to Korean species.

    PubMed

    Oh, Sumin; Lim, Jongok; Jung, Sunghoon

    2016-04-11

    The leafhopper genus Eurhadina Haupt, 1929 belongs to the tribe Typhlocybini of subfamily Typhlocybinae (Hemiptera: Auchenorrhyncha: Cicadellidae). Currently, genus Eurhadina includes 3 subgenera, Eurhadina Haupt 1929, Singhardina Mahmood 1967, Zhihadina Yang & Li 1991. A total of 20 valid species of subgenus Eurhadina have been described in the Nearctic and Palaearctic region and the subgenus Singhardina includes 57 species in the Oriental and Palaearctic region (Huang & Zhang 1999, Dworakowska 2002). The subgenus Zhihadina includes only 1 species from China (Yang & Lee, 1991). So far, four species of subgenus Eurhadina were recorded in the Korean Peninsula (Kwon & Huh 2001): Eurhadina (Eurhadina) betularia Anufriev, 1969, E. (E.) koreana Dworakowska, 1971, E. (E.) pulchella (Fallen, 1806), and E. (E.) wagneri Dworakowska, 1969. The majority of species belonging to the subgenus Eurhadina are difficult to distinguish by external appearance because the color patterns of the forewings are very similar among species.

  18. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora.

    PubMed

    Li, Jie; Chen, Qi; Zhang, Si; Huang, Hui; Yang, Jian; Tian, Xin-Peng; Long, Li-Juan

    2013-01-01

    Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.

  19. Spatial and vertical distribution of bacterial community in the northern South China Sea.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao

    2015-10-01

    Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.

  20. Bacterial biota in reflux esophagitis and Barrett’s esophagus

    PubMed Central

    Pei, Zhiheng; Yang, Liying; Peek, Richard M; Levine, Jr Steven M; Pride, David T; Blaser, Martin J

    2005-01-01

    AIM: To identify the bacterial flora in conditions such as Barrett’s esophagus and reflux esophagitis to determine if they are similar to normal esophageal flora. METHODS: Using broad-range 16S rDNA PCR, esophageal biopsies were examined from 24 patients [9 with normal esophageal mucosa, 12 with gastroesophageal reflux disease (GERD), and 3 with Barrett’s esophagus]. Two separate broad-range PCR reactions were performed for each patient, and the resulting products were cloned. In one patient with Barrett’s esophagus, 99 PCR clones were analyzed. RESULTS: Two separate clones were recovered from each patient (total = 48), representing 24 different species, with 14 species homologous to known bacteria, 5 homologous to unidentified bacteria, and 5 were not homologous (<97% identity) to any known bacterial 16S rDNA sequences. Seventeen species were found in the reflux esophagitis patients, 5 in the Barrett’s esophagus patients, and 10 in normal esophagus patients. Further analysis concentrating on a single biopsy from an individual with Barrett’s esophagus revealed the presence of 21 distinct bacterial species. Members of four phyla were represented, including Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Microscopic examination of each biopsy demonstrated bacteria in intimate association with the distal esophageal epithelium, suggesting that the presence of these bacteria is not transitory. CONCLUSION: These findings provide evidence for a complex, residential bacterial population in esophageal reflux-related disorders. While much of this biota is present in the normal esophagus, more detailed comparisons may help identify potential disease associations. PMID:16437628

  1. Diversity of Bacterial Communities in Container Habitats of Mosquitoes

    PubMed Central

    Ponnusamy, Loganathan; Xu, Ning; Stav, Gil; Wesson, Dawn M.; Schal, Coby

    2010-01-01

    We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including tires (n=12), cemetery urns (n=23), and miscellaneous containers that included two tree holes (n=19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units, OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys of microbial communities associated with mosquito habitats can provide significant insight into community organization and dynamics of bacterial species. PMID:18373113

  2. Infants, Family Day Care and the Politics of Belonging

    ERIC Educational Resources Information Center

    Stratigos, Tina; Bradley, Ben; Sumsion, Jennifer

    2014-01-01

    Belonging has long been conceptualised as a fundamental human need, essential for the good health of individuals and communities. In relation to young children, belonging may be linked to their developing sense of identity, as well as the way they perceive and respond to others. Belonging is emerging as an important aspect of contemporary early…

  3. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    PubMed

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  4. Bacterial respiration of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  5. Bacterial pericarditis in a cat.

    PubMed

    LeBlanc, Nicole; Scollan, Katherine F

    2015-01-01

    A 4-year-old male neutered domestic shorthair cat was presented to the Oregon State University cardiology service for suspected pericardial effusion. Cardiac tamponade was documented and pericardiocentesis yielded purulent fluid with cytologic results supportive of bacterial pericarditis. The microbial population consisted of Pasteurella multocida, Actinomyces canis, Fusobacterium and Bacteroides species. Conservative management was elected consisting of intravenous antibiotic therapy with ampicillin sodium/sulbactam sodium and metronidazole for 48 h followed by 4 weeks of oral antibiotics. Re-examination 3 months after the initial incident indicated no recurrence of effusion and the cat remained free of clinical signs 2 years after presentation. Bacterial pericarditis is a rare cause of pericardial effusion in cats. Growth of P multocida, A canis, Fusobacterium and Bacteroides species has not previously been documented in feline septic pericarditis. Conservative management with broad-spectrum antibiotics may be considered when further diagnostic imaging or exploratory surgery to search for a primary nidus of infection is not feasible or elected.

  6. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  7. Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche

    PubMed Central

    Simone, Domenico; Bay, Denice C.; Leach, Thorin; Turner, Raymond J.

    2013-01-01

    Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial

  8. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.

  9. Bacterial Community Succession in Pine-Wood Decomposition.

    PubMed

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  10. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  11. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    PubMed Central

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  12. The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species.

    PubMed

    Rodríguez-Beltrán, Jerónimo; Rodríguez-Rojas, Alexandro; Yubero, Elva; Blázquez, Jesús

    2013-06-01

    Animal fodder is routinely complemented with antibiotics together with other food supplements to improve growth. For instance, sepiolite is currently used as a dietary coadjuvant in animal feed, as it increases animal growth parameters and improves meat and derived final product quality. This type of food additive has so far been considered innocuous for the development and spread of antibiotic resistance. In this study, we demonstrate that sepiolite promotes the direct horizontal transfer of antibiotic resistance plasmids between bacterial species. The conditions needed for plasmid transfer (sepiolite and friction forces) occur in the digestive tracts of farm animals, which routinely receive sepiolite as a food additive. Furthermore, this effect may be aggravated by the use of antibiotics supplied as growth promoters.

  13. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes.

    PubMed

    Sánchez-Castro, Iván; Amador-García, Ahinara; Moreno-Romero, Cristina; López-Fernández, Margarita; Phrommavanh, Vannapha; Nos, Jeremy; Descostes, Michael; Merroun, Mohamed L

    2017-01-01

    The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis.

    PubMed

    Rocha, Danilo J P; Santos, Carolina S; Pacheco, Luis G C

    2015-09-01

    The appropriate choice of reference genes is essential for accurate normalization of gene expression data obtained by the method of reverse transcription quantitative real-time PCR (RT-qPCR). In 2009, a guideline called the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) highlighted the importance of the selection and validation of more than one suitable reference gene for obtaining reliable RT-qPCR results. Herein, we searched the recent literature in order to identify the bacterial reference genes that have been most commonly validated in gene expression studies by RT-qPCR (in the first 5 years following publication of the MIQE guidelines). Through a combination of different search parameters with the text mining tool MedlineRanker, we identified 145 unique bacterial genes that were recently tested as candidate reference genes. Of these, 45 genes were experimentally validated and, in most of the cases, their expression stabilities were verified using the software tools geNorm and NormFinder. It is noteworthy that only 10 of these reference genes had been validated in two or more of the studies evaluated. An enrichment analysis using Gene Ontology classifications demonstrated that genes belonging to the functional categories of DNA Replication (GO: 0006260) and Transcription (GO: 0006351) rendered a proportionally higher number of validated reference genes. Three genes in the former functional class were also among the top five most stable genes identified through an analysis of gene expression data obtained from the Pathosystems Resource Integration Center. These results may provide a guideline for the initial selection of candidate reference genes for RT-qPCR studies in several different bacterial species.

  15. Twenty Species of Hypobarophilic Bacteria Recovered from Diverse Soils Exhibit Growth under Simulated Martian Conditions at 0.7 kPa

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Nicholson, Wayne L.

    2016-12-01

    Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds and the bulk atmosphere on Earth and for modeling the forward contamination of planetary surfaces like Mars. Here, we describe experiments on the recovery and identification of 20 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 10 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from diverse soils, and high numbers of hypobarophiles were recovered from Arctic and Siberian permafrost soils. Isolates were identified through 16S rRNA sequencing to belong to the genera Bacillus, Carnobacterium, Clostridium, Cryobacterium, Exiguobacterium, Paenibacillus, Rhodococcus, Streptomyces, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 × 104 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian Arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to six type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km.

  16. Bacterial Succession in the Broiler Gastrointestinal Tract

    PubMed Central

    Lawley, Blair; Tannock, Gerald; Engberg, Ricarda M.

    2016-01-01

    A feeding trial was performed with broilers receiving a diet of wheat-based feed (WBF), maize-based feed (MBF), or maize-based concentrates supplemented with 15% or 30% crimped kernel maize silage (CKMS-15 or CKMS-30, respectively). The aim of the study was to investigate the bacterial community compositions of the crop, gizzard, ileum, and cecum contents in relation to the feeding strategy and age (8, 15, 22, 25, 29, or 36 days). Among the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454 pyrosequencing of the 16S rRNA gene. Since the diets had no significant influence on bacterial diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and increased bacterial diversity were observed. Lactobacillaceae (belonging mainly to the genus Lactobacillus) represented most of the Firmicutes at all ages and in all segments of the gut except the cecum. The development of a “mature” microbiota in broilers occurred during the period from days 15 to 22. Striking increases in the relative abundances of Lactobacillus salivarius (17 to 36%) and clostridia (11 to 18%), and a concomitant decrease in the relative abundance of Lactobacillus reuteri, were found in the ileum after day 15. The concentration of deconjugated bile salts increased in association with the increased populations of L. salivarius and clostridia. Both L. salivarius and clostridia deconjugate bile acids, and increases in the abundances of these bacteria might be associated with growth reduction and gastrointestinal (GI) disorders occurring in the critical period of broiler life between days 20 and 30. PMID:26873323

  17. Evaluation of the mtDNA-COII Region Based Species Specific Assay for Identifying Members of the Anopheles culicifacies Species Complex

    PubMed Central

    Manonmani, Arulsamy Mary; Mathivanan, Ashok Kumar; Sadanandane, Candassamy; Jambulingam, Purushothaman

    2013-01-01

    Background: Anopheles culicifacies, a major malarial vector has been recognized as a complex of five sibling species, A, B, C, D and E. These sibling species exhibit varied vectorial capacity, host specificity and susceptibility to malarial parasites/ insecticides. In this study, a PCR assay developed earlier for distinguishing the five individual species was validated on samples of An. culicifacies collected from various parts of India. Methods: The samples were initially screened using the rDNA-ITS2 region based primers which categorised the samples into either A/D group or B/C/E group. A proportion of samples belonging to each group were subjected to the mtDNA-COII PCR assay for identifying individual species. Results: Among the 615 samples analysed by rDNA-ITS2 PCR assay, 303 were found to belong to A/D group and 299 to B/C/E group while 13 turned negative. Among 163 samples belonging to A/D group, only one sample displayed the profile characteristic of species A and among the 176 samples falling in the B/C/E group, 51 were identified as species B, 14 as species C and 41 as species E respectively by the mtDNA-COII PCR assay. Samples exhibiting products diagnostic of B/C/E, when subjected to PCR-RFLP assay identified 15 samples as species E. Conclusion: Validation of the mtDNA-COII PCR assay on large number of samples showed that this technique cannot be used universally to distinguish the 5 members of this species complex, as it has been designed based on minor/single base differences observed in the COII region. PMID:24409441

  18. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes.

    PubMed

    Yang, Chao; Fei, Yuda; Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients.

  19. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes

    PubMed Central

    Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    Background The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. Methods A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. Results The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. Conclusions STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients. PMID:26176548

  20. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    PubMed Central

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder (Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella, Lactarius, and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter, Granulicella, and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of

  1. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    PubMed

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder ( Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella , Lactarius , and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter , Granulicella , and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages

  2. Bacterial diversity in water injection systems of Brazilian offshore oil platforms.

    PubMed

    Korenblum, Elisa; Valoni, Erika; Penna, Mônica; Seldin, Lucy

    2010-01-01

    Biogenic souring and microbial-influenced corrosion is a common scenario in water-flooded petroleum reservoirs. Water injection systems are continuously treated to control bacterial contamination, but some bacteria that cause souring and corrosion can persist even after different treatments have been applied. Our aim was to increase our knowledge of the bacterial communities that persist in the water injection systems of three offshore oil platforms in Brazil. To achieve this goal, we used a culture-independent molecular approach (16S ribosomal RNA gene clone libraries) to analyze seawater samples that had been subjected to different treatments. Phylogenetic analyses revealed that the bacterial communities from the different platforms were taxonomically different. A predominance of bacterial clones affiliated with Gammaproteobacteria, mostly belonging to the genus Marinobacter (60.7%), were observed in the platform A samples. Clones from platform B were mainly related to the genera Colwellia (37.9%) and Achromobacter (24.6%), whereas clones obtained from platform C were all related to unclassified bacteria. Canonical correspondence analyses showed that different treatments such as chlorination, deoxygenation, and biocide addition did not significantly influence the bacterial diversity in the platforms studied. Our results demonstrated that the injection water used in secondary oil recovery procedures contained potentially hazardous bacteria, which may ultimately cause souring and corrosion.

  3. Soil Bacterial Community Shifts after Chitin Enrichment: An Integrative Metagenomic Approach

    PubMed Central

    Jacquiod, Samuel; Franqueville, Laure; Cécillon, Sébastien; M. Vogel, Timothy; Simonet, Pascal

    2013-01-01

    Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome. PMID:24278158

  4. Sense of community-belonging and health-behaviour change in Canada.

    PubMed

    Hystad, Perry; Carpiano, Richard M

    2012-03-01

    Research indicates that primary prevention targeting individual behaviours should incorporate contextual factors. The objectives of this study are to examine the role of community-belonging and contextual factors on health-behaviour change in Canada, and whether the influence of community-belonging on behaviour change varies by specific types of behaviours and contextual factors. Data on individual-level community-belonging, socio-demographics and self-rated health were obtained for 119 693 respondents from the 2007/2008 Canadian Community Health Survey located within 100 health regions across Canada. Contextual factors were based on health-region groupings of socio-economic determinants of health. Multilevel models were used to estimate the influence of community-belonging and health-region contextual factors on general, and specific, health-behaviour changes in the past year. After controlling for individual and contextual factors, community-belonging showed a positive dose-response relationship with health-behaviour change. Health-region contextual factors were only slightly associated with behaviour change; however, the influence of community-belonging on behaviour change showed significant variability based on health-region contextual factors. The influence of community-belonging also varied by specific health-behaviour changes, but for most prominent health behaviours (exercise, weight loss and improved diet) the effect was consistent. Community-belonging was strongly related to health-behaviour change in Canada and may be an important component of population health prevention strategies. Efforts to increase community-belonging, however, need to be considered along with contextual factors.

  5. Contrasting Ecological Processes and Functional Compositions Between Intestinal Bacterial Community in Healthy and Diseased Shrimp.

    PubMed

    Zhu, Jinyong; Dai, Wenfang; Qiu, Qiongfen; Dong, Chunming; Zhang, Jinjie; Xiong, Jinbo

    2016-11-01

    Intestinal bacterial communities play a pivotal role in promoting host health; therefore, the disruption of intestinal bacterial homeostasis could result in disease. However, the effect of the occurrences of disease on intestinal bacterial community assembly remains unclear. To address this gap, we compared the multifaceted ecological differences in maintaining intestinal bacterial community assembly between healthy and diseased shrimps. The neutral model analysis shows that the relative importance of neutral processes decreases when disease occurs. This pattern is further corroborated by the ecosphere null model, revealing that the bacterial community assembly of diseased samples is dominated by stochastic processes. In addition, the occurrence of shrimp disease reduces the complexity and cooperative activities of species-to-species interactions. The keystone taxa affiliated with Alphaproteobacteria and Actinobacteria in healthy shrimp gut shift to Gammaproteobacteria species in diseased shrimp. Changes in intestinal bacterial communities significantly alter biological functions in shrimp. Within a given metabolic pathway, the pattern of enrichment or decrease between healthy and deceased shrimp is correlated with its functional effects. We propose that stressed shrimp are more prone to invasion by alien strains (evidenced by more stochastic assembly and higher migration rate in diseased shrimp), which, in turn, disrupts the cooperative activity among resident species. These findings greatly aid our understanding of the underlying mechanisms that govern shrimp intestinal community assembly between health statuses.

  6. Assessing genetic structure, diversity of bacterial aerosol from aeration system in an oxidation ditch wastewater treatment plant by culture methods and bio-molecular tools.

    PubMed

    Li, Lin; Han, Yunping; Liu, Junxin

    2013-01-01

    Airborne bacteria emissions from oxidation ditch with rotating aeration brushes were investigated in a municipal wastewater treatment plant in Beijing, China. Microbial samples were collected at different distances from the rotating brushes, different heights above the water surface, and different operation state over a 3-month period (April, May, and June) in order to estimate the seasonal variation and site-related distribution characteristics of the microorganisms present. The concentration of bacterial aerosol was analyzed by culture methods, while their dominant species, genetic structure and diversity were assayed using bio-molecular tools. Results showed that total microbial concentrations were highest in June and lowest in April. The mechanical rotation caused remarkable variation in concentration and diversity of culturable airborne bacteria before and after the rotating brushes. The highest concentration was observed near the rotating brushes (931 ± 129-3,952 ± 730 CFU/m(3)), with concentration decreasing as distance and height increased. Bacterial community polymerase chain reaction and denaturing gradient gel electrophoresis indicated that diversity decreased gradually with increasing height above the water surface but remained relatively constant at the same height. All dominant bacteria identified by DNA sequence analysis belonged to Firmicutes. Pathogenic species such as Moraxella nonliquefaciens and Flavobacterium odoratum were isolated from the bioaerosols. Due to the serious health risks involved, exposure of sewage workers to airborne microorganisms caused by brush aerators should be monitored and controlled.

  7. A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota

    PubMed Central

    Roach, David J.; Burton, Joshua N.; Lee, Choli; Stackhouse, Bethany; Butler-Wu, Susan M.; Cookson, Brad T.

    2015-01-01

    Bacterial whole genome sequencing holds promise as a disruptive technology in clinical microbiology, but it has not yet been applied systematically or comprehensively within a clinical context. Here, over the course of one year, we performed prospective collection and whole genome sequencing of nearly all bacterial isolates obtained from a tertiary care hospital’s intensive care units (ICUs). This unbiased collection of 1,229 bacterial genomes from 391 patients enables detailed exploration of several features of clinical pathogens. A sizable fraction of isolates identified as clinically relevant corresponded to previously undescribed species: 12% of isolates assigned a species-level classification by conventional methods actually qualified as distinct, novel genomospecies on the basis of genomic similarity. Pan-genome analysis of the most frequently encountered pathogens in the collection revealed substantial variation in pan-genome size (1,420 to 20,432 genes) and the rate of gene discovery (1 to 152 genes per isolate sequenced). Surprisingly, although potential nosocomial transmission of actively surveilled pathogens was rare, 8.7% of isolates belonged to genomically related clonal lineages that were present among multiple patients, usually with overlapping hospital admissions, and were associated with clinically significant infection in 62% of patients from which they were recovered. Multi-patient clonal lineages were particularly evident in the neonatal care unit, where seven separate Staphylococcus epidermidis clonal lineages were identified, including one lineage associated with bacteremia in 5/9 neonates. Our study highlights key differences in the information made available by conventional microbiological practices versus whole genome sequencing, and motivates the further integration of microbial genome sequencing into routine clinical care. PMID:26230489

  8. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso.

    PubMed

    Razanamahandry, Lovasoa Christine; Andrianisa, Harinaivo Anderson; Karoui, Hela; Kouakou, Koffi Marcelin; Yacouba, Hamma

    2016-08-01

    Soil and water samples were collected from a watershed in Burkina Faso where illegal artisanal gold extraction using cyanidation occurs. The samples were used to evaluate cyanide contamination and the presence of cyanide degrading bacteria (CDB). Free cyanide (F-CN) was detected in all samples, with concentrations varying from 0.023 to 0.9 mg kg(-1), and 0.7-23 μg L(-1) in the soil and water samples, respectively. Potential CDB also were present in the samples. To test the effective F-CN degradation capacity of the isolated CDB species, the species were cultivated in growth media containing 40, 60 or 80 mg F-CN L(-1), with or without nutrients, at pH 9.5 and at room temperature. More than 95% of F-CN was degraded within 25 h, and F-CN degradation was associated with bacterial growth and ammonium production. However, initial concentrations of F-CN higher than 100 mg L(-1) inhibited bacterial growth and cyanide degradation. Abiotic tests showed that less than 3% of F-CN was removed by volatilization. Thus, the degradation of F-CN occurred predominately by biological mechanisms, and such mechanisms are recommended for remediation of contaminated soil and water. The bacteria consortium used in the experiment described above exist in a Sahelian climate, which is characterized by a long hot and dry season. Because the bacteria are already adapted to the local climate conditions and show the potential for cyanide biodegradation, further applicability to other contaminated areas in West Africa, where illegal gold cyanidation is widespread, should be explored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species

    PubMed Central

    2010-01-01

    Background The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. Results The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single

  10. Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China

    PubMed Central

    2013-01-01

    Background Sika deer (Cervus nippon) have different dietary preferences to other ruminants and are tolerant to tannin-rich plants. Because the rumen bacteria in domestic Sika deer have not been comprehensively studied, it is important to investigate its rumen bacterial population in order to understand its gut health and to improve the productivity of domestic Sika deer. Results The rumen bacterial diversity in domestic Sika deer (Cervus nippon) fed oak leaves- (OL group) and corn stalks-based diets (CS group) were elucidated using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE). Overall, 239 sequences were examined from the two groups, 139 clones from the OL group were assigned to 57 operational taxonomic units (OTUs) and 100 sequences from the CS group were divided into 50 OTUs. Prevotella-like sequences belonging to the phylum Bacteroidetes were the dominant bacteria in both groups (97.2% OL and 77% CS), and sequences related to Prevotella brevis were present in both groups. However, Prevotella shahii-like, Prevotella veroralis-like, Prevotella albensis-like, and Prevotella salivae-like sequences were abundant in the OL group compared to those in the CS group, while Succinivibrio dextrinosolvens-like and Prevotella ruminicola-like sequences were prevalent in the CS group. PCR-DGGE showed that bacterial communities clustered with respect to diets and the genus Prevotella was the dominant bacteria in the rumen of domestic Sika deer. However, the distribution of genus Prevotella from two groups was apparent. In addition, other fibrolytic bacteria, such as Clostridium populeti and Eubacterium cellulosolvens were found in the rumen of domestic Sika deer. Conclusions The rumen of domestic Sika deer harbored unique bacteria which may represent novel species. The bacterial composition appeared to be affected by diet, and sequences related to Prevotella spp. may represent new species that may be related to the degradation of fiber biomass or

  11. Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China.

    PubMed

    Li, Zhi Peng; Liu, Han Lu; Li, Guang Yu; Bao, Kun; Wang, Kai Ying; Xu, Chao; Yang, Yi Feng; Yang, Fu He; Wright, André-Denis G

    2013-07-08

    Sika deer (Cervus nippon) have different dietary preferences to other ruminants and are tolerant to tannin-rich plants. Because the rumen bacteria in domestic Sika deer have not been comprehensively studied, it is important to investigate its rumen bacterial population in order to understand its gut health and to improve the productivity of domestic Sika deer. The rumen bacterial diversity in domestic Sika deer (Cervus nippon) fed oak leaves- (OL group) and corn stalks-based diets (CS group) were elucidated using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE). Overall, 239 sequences were examined from the two groups, 139 clones from the OL group were assigned to 57 operational taxonomic units (OTUs) and 100 sequences from the CS group were divided into 50 OTUs. Prevotella-like sequences belonging to the phylum Bacteroidetes were the dominant bacteria in both groups (97.2% OL and 77% CS), and sequences related to Prevotella brevis were present in both groups. However, Prevotella shahii-like, Prevotella veroralis-like, Prevotella albensis-like, and Prevotella salivae-like sequences were abundant in the OL group compared to those in the CS group, while Succinivibrio dextrinosolvens-like and Prevotella ruminicola-like sequences were prevalent in the CS group. PCR-DGGE showed that bacterial communities clustered with respect to diets and the genus Prevotella was the dominant bacteria in the rumen of domestic Sika deer. However, the distribution of genus Prevotella from two groups was apparent. In addition, other fibrolytic bacteria, such as Clostridium populeti and Eubacterium cellulosolvens were found in the rumen of domestic Sika deer. The rumen of domestic Sika deer harbored unique bacteria which may represent novel species. The bacterial composition appeared to be affected by diet, and sequences related to Prevotella spp. may represent new species that may be related to the degradation of fiber biomass or tannins. Moreover, the mechanism

  12. Acculturative Stress and School Belonging among Latino Youth

    ERIC Educational Resources Information Center

    Roche, Cathy; Kuperminc, Gabriel P.

    2012-01-01

    Dimensions of acculturative stress and their implications for school belonging and achievement were examined among 199 Latino middle-school students. The proposed model hypothesized that school belonging would mediate the association between acculturative stress dimensions and low school achievement. Eighty percent youth of the sample were…

  13. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

    NASA Astrophysics Data System (ADS)

    Vences, Miguel; Lyra, Mariana L.; Kueneman, Jordan G.; Bletz, Molly C.; Archer, Holly M.; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J.; Tebbe, Christoph C.; Haddad, Célio F. B.; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.

  14. Diversity of Hindgut Bacterial Population in Subterranean Termite, Reticulitermes flavipes

    Treesearch

    Olanrewaju Raji; Dragica Jeremic-Nikolic; Juliet D. Tang

    2017-01-01

    The termite hindgut contains a bacterial community that symbiotically aids in digestion of cellulosic materials. For this paper, a species survey of bacterial hindgut symbionts in termites collected from Saucier, Mississippi was examined. Two methods were tested for optimal genetic material isolation. Genomic DNA was isolated from the hindgut luminal contents of five...

  15. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    PubMed

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  16. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  17. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    DOE PAGES

    Hasim, Sahar; Allison, David P.; Mendez, Berlin; ...

    2018-02-14

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less

  18. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasim, Sahar; Allison, David P.; Mendez, Berlin

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less

  19. Identity and Belonging in a Changing Great Britain

    ERIC Educational Resources Information Center

    Strom, Adam

    2009-01-01

    This resource gives students and teachers a greater understanding of identity, membership, citizenship, and belonging in the UK. In a time when debates about national identity and integration have taken on increased urgency, Facing History and Ourselves introduces, "Identity and Belonging in a Changing Great Britain". It reveals…

  20. The Bacterial Community Structure and Dynamics of Carbon and Nitrogen when Maize (Zea mays L.) and Its Neutral Detergent Fibre Were Added to Soil from Zimbabwe with Contrasting Management Practices.

    PubMed

    De la Cruz-Barrón, Magali; Cruz-Mendoza, Alejandra; Navarro-Noya, Yendi E; Ruiz-Valdiviezo, Victor M; Ortíz-Gutiérrez, Daniel; Ramírez-Villanueva, Daniel A; Luna-Guido, Marco; Thierfelder, Cristian; Wall, Patrick C; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2017-01-01

    Water infiltration, soil carbon content, aggregate stability and yields increased in conservation agriculture practices compared to conventionally ploughed control treatments at the Henderson research station near Mazowe (Zimbabwe). How these changes in soil characteristics affect the bacterial community structure and the bacteria involved in the degradation of applied organic material remains unanswered. Soil was sampled from three agricultural systems at Henderson, i.e. (1) conventional mouldboard ploughing with continuous maize (conventional tillage), (2) direct seeding with a Fitarelli jab planter and continuous maize (direct seeding with continuous maize) and (3) direct seeding with a Fitarelli jab planter with rotation of maize sunn hemp (direct seeding with crop rotation). Soil was amended with young maize plants or their neutral detergent fibre (NDF) and incubated aerobically for 56 days, while C and N mineralization and the bacterial community structure were monitored. Bacillus (Bacillales), Micrococcaceae (Actinomycetales) and phylotypes belonging to the Pseudomonadales were first degraders of the applied maize plants. At day 3, Streptomyces (Actinomycetales), Chitinophagaceae ([Saprospirales]) and Dyella (Xanthomonadales) participated in the degradation of the applied maize and at day 7 Oxalobacteraceae (Burkholderiales). Phylotypes belonging to Halomonas (Oceanospirillales) were the first degraders of NDF and were replaced by Phenylobacterium (Caulobacterales) and phylotypes belonging to Pseudomonadales at day 3. Afterwards, similar bacterial groups were favoured by application of NDF as they were by the application of maize plants, but there were also clear differences. Phylotypes belonging to the Micrococcaceae and Bacillus did not participate in the degradation of NDF or its metabolic products, while phylotypes belonging to the Acidobacteriaceae participated in the degradation of NDF but not in that of maize plants. It was found that agricultural

  1. Bacterial flora in abnormalities of the female genital tract

    PubMed Central

    Gordon, A. M.; Hughes, H. E.; Barr, G. T. D.

    1966-01-01

    The bacterial flora associated with certain common abnormalities of the female genital tract were studied. The abnormalities included were trichomonal infestation of the vagina, the epithelial inflammation and cellular atypia associated with protozoal infestation, and erosions of the cervix. Trichomonas vaginalis infestation and marked epithelial inflammation were associated with a very varied bacterial flora in which Mycoplasma species, streptococci, and `Haemophilus vaginalis' (Gardner and Dukes, 1955) were often prominent. No cases of vaginitis attributable to Haemophilus vaginalis were detected. An essentially normal bacterial flora accompanied erosions of the cervix. PMID:5919354

  2. Bacterial Community Composition Associated with Chironomid Egg Masses

    PubMed Central

    Senderovich, Yigal; Halpern, Malka

    2012-01-01

    Chironomids (Diptera: Chironomidae) are the most widely distributed and often the most abundant insect in freshwater. They undergo a complete metamorphosis of four life stages, of which the egg, larva, and pupae are aquatic and the adult is terrestrial. Chironomid egg masses were found to be natural reservoirs of Vibrio cholerae and Aeromonas species. To expand the knowledge of the endogenous bacterial community associated with chironomid egg masses, denaturing gradient gel electrophoresis and clone analysis of 16S rRNA gene libraries were used in this study. Bacterial community composition associated with chironomid egg masses was found to be stable among different sampling periods. Cloned libraries of egg masses revealed that about 40% of the clones were related to bacteria known to degrade various toxicants. These findings were further supported when bacterial species that showed resistance to different toxic metals were isolated from egg masses and larval samples. Chironomids are found under a wide range of water conditions and are able to survive pollutants. However, little is known about their protective mechanisms under these conditions. Chironomid egg masses are inhabited by a stable endogenous bacterial community, which may potentially play a role in protecting chironomids from toxicants in polluted environments. Further study is needed to support this hypothesis. PMID:23461272

  3. Complexity and Dynamics of the Winemaking Bacterial Communities in Berries, Musts, and Wines from Apulian Grape Cultivars through Time and Space

    PubMed Central

    Marzano, Marinella; Fosso, Bruno; Manzari, Caterina; Grieco, Francesco; Intranuovo, Marianna; Cozzi, Giuseppe; Mulè, Giuseppina; Scioscia, Gaetano; Valiente, Gabriel; Tullo, Apollonia; Sbisà, Elisabetta; Pesole, Graziano; Santamaria, Monica

    2016-01-01

    Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS) to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable. PMID:27299312

  4. Bacterial biofilm composition in caries and caries-free subjects.

    PubMed

    Wolff, D; Frese, C; Maier-Kraus, T; Krueger, T; Wolff, B

    2013-01-01

    Certain major pathogens such as Streptococcus mutans, Lactobacillus spp. and others have been reported to be involved in caries initiation and progression. Yet, in addition to those leading pathogens, microbial communities seem to be much more diverse and individually differing. The aim of this study, therefore, was to analyze the bacterial composition of carious dentin and the plaque of caries-free patients by using a custom-made, real-time quantitative polymerase chain reaction assay (RQ-PCR). The study included 26 patients with caries and 28 caries-free controls. Decayed tooth substance and plaque samples were harvested. Bacterial DNA was extracted and tested for the presence of 43 bacterial species or species groups using RQ-PCR. Relative quantification revealed that Propionibacterium acidifaciens was significantly more abundant in caries samples than were other microorganisms (fold change 169.12, p = 0.023). In the caries-free samples, typical health-associated species were significantly more prevalent. Unsupervised hierarchical cluster analysis showed a high abundance of P. acidifaciens in caries subjects and distinct but individually differing bacterial clusters in the caries-free subjects. The distribution of 11 bacteria allowed full discrimination between caries and caries-free subjects. Within the investigated cohort, P. acidifaciens was the only pathogen significantly more abundant in caries subjects. Cluster analysis yielded a diverse flora in caries-free subjects, whereas it was narrowed down to a small range of a few outcompeting members in caries subjects. Copyright © 2012 S. Karger AG, Basel.

  5. Bacterial gene transfer by natural genetic transformation in the environment.

    PubMed Central

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924

  6. Analysis of the distal gut bacterial community by 454-pyrosequencing in captive giraffes (Giraffa camelopardalis).

    PubMed

    AlZahal, Ousama; Valdes, Eduardo V; McBride, Brian W

    2016-01-01

    The objective of this study was to characterize the structure of the fecal bacterial community of five giraffes (Giraffa camelopardalis) at Disney's Animal Kingdom, FL. Fecal genomic DNA was extracted and variable regions 1-3 of the 16S rRNA gene was PCR-amplified and then sequenced. The MOTHUR software-program was used for sequence processing, diversity analysis, and classification. A total of 181,689 non-chimeric bacterial sequences were obtained, and average number of sequences per sample was 36,338 -± 8,818. Sequences were assigned to 8,284 operational taxonomic units (OTU) with 95% of genetic similarity, which included 2,942 singletons (36%). Number of OTUs per sample was 2,554 ± 264. Samples were normalized and alpha (intra-sample) diversity indices; Chao1, Inverse Simpson, Shannon, and coverage were estimated as 3,712 ± 430, 116 -± 70, 6.1 ± 0.4, and 96 ± 1%, respectively. Thirteen phyla were detected and Firmicutes, Bacteroidetes, and Spirochaetes were the most dominant phyla (more than 2% of total sequences), and constituted 92% of the classified sequences, 66% of total sequences, and 43% of total OTUs. Our computation predicted that three OTUs were likely to be present in at least three of the five samples at greater than 1% dominance rate. These OTUs were Treponema, an unidentified OTU belonging to the order Bacteroidales, and Ruminococcus. This report was the first to characterize the bacterial community of the distal gut in giraffes utilizing fecal samples, and it demonstrated that the distal gut of giraffes is likely a potential reservoir for a number of undocumented species of bacteria. © 2015 Wiley Periodicals, Inc.

  7. Bacterial population dynamics in recycled mushroom compost leachate.

    PubMed

    Safianowicz, Katarzyna; Bell, Tina L; Kertesz, Michael A

    2018-06-01

    Mushrooms are an important food crop throughout the world. The most important edible mushroom is the button mushroom (Agaricus bisporus), which comprises about 30% of the global mushroom market. This species is cultivated commercially on a selective compost that is produced predominantly from wheat straw/stable bedding and chicken manure, at a moisture content of around 70% (w/w) and temperatures of up to 80 °C. Large volumes of water are required to achieve this moisture content, and many producers therefore collect leachate from the composting windrows and bunkers (known in the industry as "goody water") and reuse it to wet the raw ingredients. This has the benefit of recycling and saving water and has the potential to enrich beneficial microorganisms that stimulate composting, but also the risk of enhancing pathogen populations that could reduce productivity. Here, we show by 16S rRNA gene sequencing that mushroom compost leachate contains a high diversity of unknown microbes, with most of the species found affiliated with the phyla Firmicutes and Proteobacteria. However, by far the most abundant species was the thermophile Thermus thermophilus, which made up approximately 50% of the bacterial population present. Although the leachate was routinely collected and stored in an aerated central storage tank, many of the bacterial species found in leachate were facultative anaerobes. However, there was no evidence for sulfide production, and no sulfate-reducing bacterial species were detected. Because T. thermophilus is important in the high temperature phase of composting, the use of recycled leachate as an inoculum for the raw materials is likely to be beneficial for the composting process.

  8. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability

    Treesearch

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    We examined the potential for interactions between aquatic hyphomycetes and bacteria isolated from leaves decaying in a headwater stream. In agar plate assays, culture filtrates of each of 28 aquatic hyphomycete isolates tested (5 species) inhibited bacterial growth (16 Gram-negative bacterial isolates belonging to 6 colony morphotypes were tested). Inhibition of...

  9. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    PubMed Central

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized

  10. A question of belonging: race, social fit, and achievement.

    PubMed

    Walton, Gregory M; Cohen, Geoffrey L

    2007-01-01

    Stigmatization can give rise to belonging uncertainty. In this state, people are sensitive to information diagnostic of the quality of their social connections. Two experiments tested how belonging uncertainty undermines the motivation and achievement of people whose group is negatively characterized in academic settings. In Experiment 1, students were led to believe that they might have few friends in an intellectual domain. Whereas White students were unaffected, Black students (stigmatized in academics) displayed a drop in their sense of belonging and potential. In Experiment 2, an intervention that mitigated doubts about social belonging in college raised the academic achievement (e.g., college grades) of Black students but not of White students. Implications for theories of achievement motivation and intervention are discussed. 2007 APA, all rights reserved

  11. Characterization of the Cultivable Gut Microflora in Wild-Caught 
Mediterranean Fish Species.

    PubMed

    Jammal, Ahmad; Bariche, Michel; Zu Dohna, Heinrich; Kambris, Zakaria

    2017-05-01

    Microflora of the gastrointestinal tract plays important roles in food digestion, nutrient absorption and in host defense against ingested pathogens. Several studies have focused on the microflora of farmed fishes, but the gut flora of wild fishes remains poorly characterized. The aim of this work was to provide an overview of the bacteria colonizing the gut of wild-caught fishes and to determine whether some bacterial species can be pathogenic. We isolated cultivable bacteria from fifteen wild-caught Mediterranean fish species corresponding to different habitat, diet and origin. Bacterial species identity was determined by 16s rRNA gene sequencing for the 61 isolates. The potential pathogenicity of isolated bacteria was investigated using fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) as model organisms. Two bacterial strains (Serratia sp. and Aeromonas salmonicida) were lethal when microinjected to Drosophila, while zebrafish did not develop any disease when exposed to any of 34 isolated bacterial strains. However, it was interesting to note that two bacterial strains (Shewanella and Arthrobacter) isolated from marine fishes were able to colonize the guts of freshwater zebrafish. The results of this study give an overview of the bacterial species found in the guts of wild fishes living off Beirut seashore. It shows that some parameters believed to be limiting factors to host-gut colonization by bacteria can be overcome by some species. This pilot study could be extended by sampling a larger number of fish species with several specimens per fish species, and by identifying uncultivable bacteria that reside in the fish guts. Our results may have implications for the utilization of certain bacterial species in fish farming or their use as bio-indicators for water and/or food quality.

  12. Estimating Bacterial Diversity for Ecological Studies: Methods, Metrics, and Assumptions

    PubMed Central

    Birtel, Julia; Walser, Jean-Claude; Pichon, Samuel; Bürgmann, Helmut; Matthews, Blake

    2015-01-01

    Methods to estimate microbial diversity have developed rapidly in an effort to understand the distribution and diversity of microorganisms in natural environments. For bacterial communities, the 16S rRNA gene is the phylogenetic marker gene of choice, but most studies select only a specific region of the 16S rRNA to estimate bacterial diversity. Whereas biases derived from from DNA extraction, primer choice and PCR amplification are well documented, we here address how the choice of variable region can influence a wide range of standard ecological metrics, such as species richness, phylogenetic diversity, β-diversity and rank-abundance distributions. We have used Illumina paired-end sequencing to estimate the bacterial diversity of 20 natural lakes across Switzerland derived from three trimmed variable 16S rRNA regions (V3, V4, V5). Species richness, phylogenetic diversity, community composition, β-diversity, and rank-abundance distributions differed significantly between 16S rRNA regions. Overall, patterns of diversity quantified by the V3 and V5 regions were more similar to one another than those assessed by the V4 region. Similar results were obtained when analyzing the datasets with different sequence similarity thresholds used during sequences clustering and when the same analysis was used on a reference dataset of sequences from the Greengenes database. In addition we also measured species richness from the same lake samples using ARISA Fingerprinting, but did not find a strong relationship between species richness estimated by Illumina and ARISA. We conclude that the selection of 16S rRNA region significantly influences the estimation of bacterial diversity and species distributions and that caution is warranted when comparing data from different variable regions as well as when using different sequencing techniques. PMID:25915756

  13. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome

    PubMed Central

    Roder, Cornelia; Arif, Chatchanit; Daniels, Camille; Weil, Ernesto; Voolstra, Christian R

    2014-01-01

    Coral diseases are characterized by microbial community shifts in coral mucus and tissue, but causes and consequences of these changes are vaguely understood due to the complexity and dynamics of coral-associated bacteria. We used 16S rRNA gene microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially abundant operational taxonomic units (OTUs) revealed strong differences between healthy and diseased specimens, but not between coral species. A subsequent comparison to data from two Indo-Pacific coral species (Pavona duerdeni and Porites lutea) revealed distinct microbial community patterns associated with ocean basin, coral species and health state. Coral species were clearly separated by site, but also, the relatedness of the underlying bacterial community structures resembled the phylogenetic relationship of the coral hosts. In diseased samples, bacterial richness increased and putatively opportunistic bacteria were consistently more abundant highlighting the role of opportunistic conditions in structuring microbial community patterns during disease. Our comparative analysis shows that it is possible to derive conserved bacterial footprints of diseased coral holobionts that might help in identifying key bacterial species related to the underlying etiopathology. Furthermore, our data demonstrate that similar-appearing disease phenotypes produce microbial community patterns that are consistent over coral species and oceans, irrespective of the putative underlying pathogen. Consequently, profiling coral diseases by microbial community structure over multiple coral species might allow the development of a comparative disease framework that can inform on cause and relatedness of coral diseases. PMID:24350609

  14. Bacterial species and mycotoxin contamination associated with locust bean, melon and their fermented products in south-western Nigeria.

    PubMed

    Adedeji, Bamidele S; Ezeokoli, Obinna T; Ezekiel, Chibundu N; Obadina, Adewale O; Somorin, Yinka M; Sulyok, Michael; Adeleke, Rasheed A; Warth, Benedikt; Nwangburuka, Cyril C; Omemu, Adebukola M; Oyewole, Olusola B; Krska, Rudolf

    2017-10-03

    The microbiological safety of spontaneously fermented foods is not always guaranteed due to the undefined fermenting microbial consortium and processing materials. In this study, two commonly consumed traditional condiments (iru and ogiri) and their respective raw seeds (locust bean and melon) purchased from markets in south-western Nigeria were assessed for bacterial diversity and mycotoxin contamination using 16S rRNA gene sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Two hundred isolates obtained from the raw seeds and condiments clustered into 10 operational taxonomic units (OTUs) and spanned 3 phyla, 10 genera, 14 species and 2 sub-species. Bacillus (25%) and Staphylococcus (23.5%) dominated other genera. Potentially pathogenic species such as Alcaligenes faecalis, Bacillus anthracis, Proteus mirabilis and Staphylococcus sciuri subsp. sciuri occurred in the samples, suggesting poor hygienic practice during production and/or handling of the condiments. A total of 48 microbial metabolites including 7 mycotoxins [3-nitropropionic acid, aflatoxin B 1 (AFB 1 ), AFB 2 , beauvericin, citrinin, ochratoxin A and sterigmatocystin] were quantified in the food samples. Melon and ogiri had detectable aflatoxin levels whereas locust bean and iru did not; the overall mycotoxin levels in the food samples were low. There is a need to educate processors/vendors of these condiments on good hygienic and processing practices. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  16. Two new species of the genus Anemadus Reitter, 1885, from the Near East (Coleoptera: Cholevidae).

    PubMed

    Giachino, Mauro; Latella, Leonardo; Vailati, Dante

    2013-01-01

    Two new species of Anemadus from the Near East are described and illustrated. Anemadus lucarellii sp. nov., from South-Western Anatolia, belongs to the Anemadus pellitus species-group (sensu Giachino & Vailati, 1993) and Anemadus kadleci sp. nov., from North-Western Syria, belongs to the Anemadus strigosus species-group (sensu Giachino & Vailati, 1993). The description of these new species markedly increases the knowledge of the distribution of this genus in the Near East.

  17. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  18. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    PubMed Central

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  19. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens.

    PubMed

    Andersen, Jody L; He, Gui-Xin; Kakarla, Prathusha; K C, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F

    2015-01-28

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  20. Pattern Formation of Bacterial Colonies by Escherichia coli

    NASA Astrophysics Data System (ADS)

    Tokita, Rie; Katoh, Takaki; Maeda, Yusuke; Wakita, Jun-ichi; Sano, Masaki; Matsuyama, Tohey; Matsushita, Mitsugu

    2009-07-01

    We have studied the morphological diversity and change in bacterial colonies, using the bacterial species Escherichia coli, as a function of both agar concentration Ca and nutrient concentration Cn. We observed various colony patterns, classified them into four types by pattern characteristics and established a morphological diagram by dividing it into four regions. They are regions A [diffusion-limited aggregation (DLA)-like], B (Eden-like), C (concentric-ring), and D (fluid-spreading). In particular, we have observed a concentric-ring colony growth for E. coli. We focused on the periodic growth in region C and obtained the following results: (i) A colony grows cyclically with the growing front repeating an advance (migration phase) and a momentary rest (consolidation phase) alternately. (ii) The growth width L and the bulge width W in one cycle decrease asymptotically to certain values, when Ca is increased. (iii) L does not depend on Cn, while W is an increasing function of Cn. Plausible mechanisms are proposed to explain the experimental results, by comparing them with those obtained for other bacterial species such as Proteus mirabilis and Bacillus subtilis.

  1. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system.

    PubMed

    Bai, Yunpeng; Patil, Santoshkumar N; Bowden, Steven D; Poulter, Simon; Pan, Jie; Salmond, George P C; Welch, Martin; Huck, Wilhelm T S; Abell, Chris

    2013-05-21

    In this paper, we investigated the intra-species bacterial quorum sensing at the single cell level using a double droplet trapping system. Escherichia coli transformed to express the quorum sensing receptor protein, LasR, were encapsulated in microdroplets that were positioned adjacent to microdroplets containing the autoinducer, N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Functional activation of the LasR protein by diffusion of the OdDHL across the droplet interface was measured by monitoring the expression of green fluorescent protein (GFP) from a LasR-dependent promoter. A threshold concentration of OdDHL was found to induce production of quorum-sensing associated GFP by E. coli. Additionally, we demonstrated that LasR-dependent activation of GFP expression was also initiated when the adjacent droplets contained single E. coli transformed with the OdDHL synthase gene, LasI, representing a simple quorum sensing circuit between two droplets.

  2. Two new species of Nemouridae (Plecoptera) from Vietnam.

    PubMed

    Fochetti, Romolo; Ceci, Massimo

    2017-05-23

    Two new species belonging to the family Nemouridae, Nemoura kontumensis sp. nov. and Amphinemura konplongensis sp. nov. are described from the Central Highlands of Vietnam. Remarks on the affinities with related species are given.

  3. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica)

    PubMed Central

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-01-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. PMID:23233413

  4. Bacterial pericarditis in a cat

    PubMed Central

    LeBlanc, Nicole; Scollan, Katherine F

    2015-01-01

    Case summary A 4-year-old male neutered domestic shorthair cat was presented to the Oregon State University cardiology service for suspected pericardial effusion. Cardiac tamponade was documented and pericardiocentesis yielded purulent fluid with cytologic results supportive of bacterial pericarditis. The microbial population consisted of Pasteurella multocida, Actinomyces canis, Fusobacterium and Bacteroides species. Conservative management was elected consisting of intravenous antibiotic therapy with ampicillin sodium/sulbactam sodium and metronidazole for 48 h followed by 4 weeks of oral antibiotics. Re-examination 3 months after the initial incident indicated no recurrence of effusion and the cat remained free of clinical signs 2 years after presentation. Relevance and novel information Bacterial pericarditis is a rare cause of pericardial effusion in cats. Growth of P multocida, A canis, Fusobacterium and Bacteroides species has not previously been documented in feline septic pericarditis. Conservative management with broad-spectrum antibiotics may be considered when further diagnostic imaging or exploratory surgery to search for a primary nidus of infection is not feasible or elected. PMID:28491384

  5. Personal storytelling and the metaphor of belonging.

    PubMed

    Griffith, E E

    1995-01-01

    The author uses the idiom of autobiographical storytelling to explicate two important themes: How the complex phenomenon of 'belonging' results from the interactions of members of a nondominant group and those of a dominant group; and how the author himself has dealt with this phenomenon in his own developmental adaptation over the years. The concept of belonging is a cultural principle that should be thoroughly understood by mental health professionals if they are to deal effectively with the problem of cross-cultural adaptation.

  6. Hieracium sinoaestivum (Asteraceae), a new species from North China

    PubMed Central

    Sennikov, Alexander N.

    2014-01-01

    Abstract Hieracium sinoaestivum Sennikov sp. nov. is described as new to science and illustrated. This presumably apomictic species is solely known from two old collections made in a single locality in the Shanxi Province of China. It belongs to the hybridogenous group Hieracium sect. Aestiva (Hieracium sect. Prenanthoidea × Hieracium sect. Umbellata) and is most similar to Hieracium veresczaginii from southern Siberia. The new species occurs at low altitudes in the forest belt of Lülian Mts. and belongs to taiga forest elements. PMID:25197222

  7. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myneni, Satish C.; Mishra, Bhoopesh; Fein, Jeremy

    2009-04-01

    The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specificallymore » in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested

  8. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    PubMed

    Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E

    2016-10-18

    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS

  9. Live Attenuated Bacterial Vaccines in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Aquaculture has emerged as an important economical agribusiness, worldwide. Among the top barrier to growth of aquaculture is infectious disease that is causing severe economic losses. Bacterial species of more than 20 genera have been reported as causes of diseases. The risk of disease is often ...

  10. Conjunctival bacterial and fungal flora in clinically normal sheep.

    PubMed

    Bonelli, Francesca; Barsotti, Giovanni; Attili, Anna Rita; Mugnaini, Linda; Cuteri, Vincenzo; Preziuso, Silvia; Corazza, Michele; Preziuso, Giovanna; Sgorbini, Micaela

    2014-01-01

    The aim was to identify conjunctival bacterial and fungal flora in clinically normal sheep. Prospective study. Tuscany. 100 eyes from 50 adult Massese female sheep were examined. The sheep included in the study were considered free of anterior ophthalmic abnormalities. Bacteria were identified by morphological assessment, Gram staining, biochemical tests. Identification of filamentous fungi was achieved at the genus level, and Aspergillus species were identified based on keys provided by other authors. Yeast colonies were highlighted, but not identified. Positive cultures were obtained from 100/100 eyes for bacteria, and from 86/100 eyes for fungi. A total of 14 types of bacteria and 5 types of fungi were isolated. Yeasts were isolated from 13/100 eyes. The most frequent fungal isolates were saprophytic fungi. Conjunctival bacterial and fungal flora of clinically normal eyes were reported in sheep. The positivity obtained for conjunctival bacteria was higher compared to findings in the literature by other authors in the same species (100 per cent v 40 per cent), while our results were in line with a recent work performed on mouflons (Ovis Musimon) with a 100 per cent positivity for bacterial conjunctival fornix. In our survey, Gram-positive species were prevalent, as reported by other authors in different species. Few data are available in the literature regarding conjunctival fungal flora in healthy small ruminants. The prevalence of conjunctival fungal flora in this study was higher than findings reported in mouflons (86 per cent v 45 per cent). Differences in fungal prevalence may be due to different methods of managing herds, though further studies are required to verify this hypothesis. The similarities in bacterial and fungal isolates between sheep and mouflons suggest a genera pattern of conjunctival colonisation by bacteria and fungi.

  11. N-METHYL GROUPS IN BACTERIAL LIPIDS

    PubMed Central

    Goldfine, Howard; Ellis, Martha E.

    1964-01-01

    Goldfine, Howard (Harvard Medical School, Boston, Mass.), and Martha E. Ellis. N-methyl groups in bacterial lipids. J. Bacteriol. 87:8–15. 1964.—The ability of bacteria to synthesize lecithin was examined by measuring the incorporation of the methyl group of methionine into the water-soluble moieties obtained on acid hydrolysis of bacterial lipids. Of 21 species examined, mostly of the order Eubacteriales, only 2, Agrobacterium radiobacter and A. rhizogenes, incorporated the methyl group of methionine into lipid-bound choline. Evidence was also obtained for the formation of lipid-bound N-methylethanolamine and N,N′-dimethylethanolamine in these two organisms. Two other species, Clostridium butyricum and Proteus vulgaris, incorporated the methyl group of methionine into lipid-bound N-methylethanolamine, but did not appear to be able to further methylate these lipids to form lecithin. The results of this study lend further strength to the generalization that bacteria, with the exception of the genus Agrobacterium, are unable to synthesize lecithin. PMID:14102879

  12. Bacterial desorption from food container and food processing surfaces.

    PubMed

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  13. Molecular dynamics simulations on interaction between bacterial proteins: Implication on pathogenic activities.

    PubMed

    Mondal, Manas; Chakrabarti, Jaydeb; Ghosh, Mahua

    2018-03-01

    We perform molecular dynamics simulation studies on interaction between bacterial proteins: an outer-membrane protein STY3179 and a yfdX protein STY3178 of Salmonella Typhi. STY3179 has been found to be involved in bacterial adhesion and invasion. STY3178 is recently biophysically characterized. It is a soluble protein having antibiotic binding and chaperon activity capabilities. These two proteins co-occur and are from neighboring gene in Salmonella Typhi-occurrence of homologs of both STY3178 and STY3179 are identified in many Gram-negative bacteria. We show using homology modeling, docking followed by molecular dynamics simulation that they can form a stable complex. STY3178 belongs to aqueous phase, while the beta barrel portion of STY3179 remains buried in DPPC bilayer with extra-cellular loops exposed to water. To understand the molecular basis of interaction between STY3178 and STY3179, we compute the conformational thermodynamics which indicate that these two proteins interact through polar and acidic residues belonging to their interfacial region. Conformational thermodynamics results further reveal instability of certain residues in extra-cellular loops of STY3179 upon complexation with STY3178 which is an indication for binding with host cell protein laminin. © 2017 Wiley Periodicals, Inc.

  14. The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling.

    PubMed

    Balážová, Tereza; Makovcová, Jitka; Šedo, Ondrej; Slaný, Michal; Faldyna, Martin; Zdráhal, Zbyněk

    2014-04-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) represents a simple reliable approach for rapid bacterial identification based on specific peptide/protein fingerprints. However, cell-wall characteristics of mycobacterial species, and their well known stability, complicate MALDI-TOF MS profiling analysis. In this study, we tested two recently published protocols for inactivation and disruption of mycobacteria, and we also examined the influence of different culture conditions (four culture media and five cultivation times) on mass spectral quality and the discriminatory power of the method. We found a significant influence of sample pretreatment method and culture medium on species identification and differentiation for a total of 10 strains belonging to Mycobacterium phlei and Mycobacterium smegmatis. Optimum culture conditions yielding the highest identification success rate against the BioTyper database (Bruker Daltonics) and permitting the possibility of automatic acquisition of mass spectra were found to be distinct for the two mycobacterial species examined. Similarly, individual changes in growth conditions had diverse effects on the two species. For these reasons, thorough control over cultivation conditions should always be employed to maximize the performance and discriminatory power of MALDI-TOF MS profiling, and cultivation conditions must be optimized separately for individual groups of mycobacterial species/strains. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Antimicrobial activities of three species of family mimosaceae.

    PubMed

    Mahmood, Adeel; Mahmood, Aqeel; Qureshi, Rizwana Aleem

    2012-01-01

    The antimicrobial activities of crude methanolic extract of leaves of Acacia nilotica L., Albizia lebbeck L. and Mimosa himalayana Gamble belonging to family mimosaceae were investigated in this research work. Antibacterial activity was studied by agar well diffusion method against one gram-positive Bacillus subtilis and three gram-negative Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumonia. Crude extract of all plants showed best activity against gram-negative bacterial strains while minor inhibition zones were found against gram positive bacterial strains. Antifungal activity of crude plant extract was screened by agar tube dilution method against Aspergillus nigar and Aspergillus flavus. These results showed that these plants extracts have potential against bacterias, while against fungi their activity is not much effective.

  16. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints.

    PubMed

    Mouchet, Maud A; Bouvier, Corinne; Bouvier, Thierry; Troussellier, Marc; Escalas, Arthur; Mouillot, David

    2012-03-01

    Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate™ and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment. © European Union 2011.

  17. A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings

    USGS Publications Warehouse

    Borrok, D.; Turner, B.F.; Fein, J.B.

    2005-01-01

    Adsorption onto bacterial cell walls can significantly affect the speciation and mobility of aqueous metal cations in many geologic settings. However, a unified thermodynamic framework for describing bacterial adsorption reactions does not exist. This problem originates from the numerous approaches that have been chosen for modeling bacterial surface protonation reactions. In this study, we compile all currently available potentiometric titration datasets for individual bacterial species, bacterial consortia, and bacterial cell wall components. Using a consistent, four discrete site, non-electrostatic surface complexation model, we determine total functional group site densities for all suitable datasets, and present an averaged set of 'universal' thermodynamic proton binding and site density parameters for modeling bacterial adsorption reactions in geologic systems. Modeling results demonstrate that the total concentrations of proton-active functional group sites for the 36 bacterial species and consortia tested are remarkably similar, averaging 3.2 ?? 1.0 (1??) ?? 10-4 moles/wet gram. Examination of the uncertainties involved in the development of proton-binding modeling parameters suggests that ignoring factors such as bacterial species, ionic strength, temperature, and growth conditions introduces relatively small error compared to the unavoidable uncertainty associated with the determination of cell abundances in realistic geologic systems. Hence, we propose that reasonable estimates of the extent of bacterial cell wall deprotonation can be made using averaged thermodynamic modeling parameters from all of the experiments that are considered in this study, regardless of bacterial species used, ionic strength, temperature, or growth condition of the experiment. The average site densities for the four discrete sites are 1.1 ?? 0.7 ?? 10-4, 9.1 ?? 3.8 ?? 10-5, 5.3 ?? 2.1 ?? 10-5, and 6.6 ?? 3.0 ?? 10-5 moles/wet gram bacteria for the sites with pKa values of 3

  18. The mariner transposons belonging to the irritans subfamily were maintained in chordate genomes by vertical transmission.

    PubMed

    Sinzelle, Ludivine; Chesneau, Albert; Bigot, Yves; Mazabraud, André; Pollet, Nicolas

    2006-01-01

    Mariner-like elements (MLEs) belong to the Tc1-mariner superfamily of DNA transposons, which is very widespread in animal genomes. We report here the first complete description of a MLE, Xtmar1, within the genome of a poikilotherm vertebrate, the amphibian Xenopus tropicalis. A close relative, XlMLE, is also characterized within the genome of a sibling species, Xenopus laevis. The phylogenetic analysis of the relationships between MLE transposases reveals that Xtmar1 is closely related to Hsmar2 and Bytmar1 and that together they form a second distinct lineage of the irritans subfamily. All members of this lineage are also characterized by the 36- to 43-bp size of their imperfectly conserved inverted terminal repeats and by the -8-bp motif located at their outer extremity. Since XlMLE, Xlmar1, and Hsmar2 are present in species located at both extremities of the vertebrate evolutionary tree, we looked for MLE relatives belonging to the same subfamily in the available sequencing projects using the amino acid consensus sequence of the Hsmar2 transposase as an in silico probe. We found that irritans MLEs are present in chordate genomes including most craniates. This therefore suggests that these elements have been present within chordate genomes for 750 Myr and that the main way they have been maintained in these species has been via vertical transmission. The very small number of stochastic losses observed in the data available suggests that their inactivation during evolution has been very slow.

  19. [The composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora].

    PubMed

    Lei, D; Lin, Y; Jiang, X; Lan, L; Zhang, W; Wang, B X

    2017-03-02

    Objective: To explore the composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora. Method: Twenty-four specimens were collected from pregnant Kunming mouse including 8 mice of early embryonic (12-13 days) gastrointestinal tissues, 8 cases of late embryonic (19-20 days)gastrointestinal tissues, 8 of late pregnancy placental tissues.The 24 samples were extracted by DNeasy Blood & Tissue kit for high-throughput DNA sequencing. Result: The level of Proteobacteria, Bacteroidetes, Actino-bacteria and Firmicutes were predominantin all specimens.The relative content of predominant bacterial phyla in each group: Proteobacteria (95.00%, 88.14%, 87.26%), Bacteroidetes(1.71%, 2.15%, 2.63%), Actino-Bacteria(1.16%, 4.10%, 3.38%), Firmicutes(0.75%, 2.62%, 2.01%). At the level of family, there were nine predominant bacterial families in which Enterobacteriaeae , Shewanel laceae and Moraxellaceae were dominant.The relative content of dominant bacterial family in eachgroup: Enterobacteriaeae (46.99%, 44.34%, 41.08%), Shewanellaceae (21.99%, 21.10%, 19.05%), Moraxellaceae (9.18%, 7.09%, 5.64%). From the species of flora, the flora from fetal gastrointestinal in early pregnancy and late pregnancy (65.44% and 62.73%) were the same as that from placenta tissue in the late pregnancy.From the abundance of bacteria, at the level of family, the same content of bacteria in three groups accounted for 78.16%, 72.53% and 65.78% respectively. Conclusion: It was proved that the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora were colonized. At the same time the bacteria are classified.

  20. Species delimitation in the Stenocereus griseus (Cactaceae) species complex reveals a new species, S. huastecorum

    PubMed Central

    Alvarado-Sizzo, Hernán; Parra, Fabiola; Arreola-Nava, Hilda Julieta; Terrazas, Teresa; Sánchez, Cristian

    2018-01-01

    The Stenocereus griseus species complex (SGSC) has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC. PMID:29342184