Sample records for bacterial species escherichia

  1. Eradication of bacterial species via photosensitization

    NASA Astrophysics Data System (ADS)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1999-02-01

    Photosensitization and inactivation efficacy of three bacterial species: Prevotella nigrescens, Staphylococcus aureus and Escherichia coli have been investigated. Samples of Staphylococcus aureus and Escherichia coli were treated with the triphenylmethane dye malachite green isothiocyanate and exposed to light from a variety of continuous and pulsed light sauces at a wavelength of approximately 630 nm. Inactivation of the Gram-positive species Staphylococcus aureus was found to increase with radiation dose, whilst Gram-negative Escherichia coli was resistant to such treatment. Samples of the pigmented species Prevotella nigrescens were found to be inactivated by exposure to light alone. The mechanism of photosensitization and inactivation of Staphylococcus aureus with malachite green isothiocyanate is addressed. The possible roles of the excited triplet state of the photosensitizer, the involvement of molecular oxygen, and the bacterial cell wall are discussed. Photosensitization may provide a way of eliminating naturally pigmented species responsible for a variety of infections, including oral diseases such as gingivitis and periodontitis.

  2. Pattern Formation of Bacterial Colonies by Escherichia coli

    NASA Astrophysics Data System (ADS)

    Tokita, Rie; Katoh, Takaki; Maeda, Yusuke; Wakita, Jun-ichi; Sano, Masaki; Matsuyama, Tohey; Matsushita, Mitsugu

    2009-07-01

    We have studied the morphological diversity and change in bacterial colonies, using the bacterial species Escherichia coli, as a function of both agar concentration Ca and nutrient concentration Cn. We observed various colony patterns, classified them into four types by pattern characteristics and established a morphological diagram by dividing it into four regions. They are regions A [diffusion-limited aggregation (DLA)-like], B (Eden-like), C (concentric-ring), and D (fluid-spreading). In particular, we have observed a concentric-ring colony growth for E. coli. We focused on the periodic growth in region C and obtained the following results: (i) A colony grows cyclically with the growing front repeating an advance (migration phase) and a momentary rest (consolidation phase) alternately. (ii) The growth width L and the bulge width W in one cycle decrease asymptotically to certain values, when Ca is increased. (iii) L does not depend on Cn, while W is an increasing function of Cn. Plausible mechanisms are proposed to explain the experimental results, by comparing them with those obtained for other bacterial species such as Proteus mirabilis and Bacillus subtilis.

  3. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  4. Prevalent bacterial species and novel phylotypes in advanced noma lesions.

    PubMed

    Paster, B J; Falkler Jr, W A; Enwonwu, C O; Idigbe, E O; Savage, K O; Levanos, V A; Tamer, M A; Ericson, R L; Lau, C N; Dewhirst, F E

    2002-06-01

    The purpose of this study was to determine the bacterial diversity in advanced noma lesions using culture-independent molecular methods. 16S ribosomal DNA bacterial genes from DNA isolated from advanced noma lesions of four Nigerian children were PCR amplified with universally conserved primers and spirochetal selective primers and cloned into Escherichia coli. Partial 16S rRNA sequences of approximately 500 bases from 212 cloned inserts were used initially to determine species identity or closest relatives by comparison with sequences of known species or phylotypes. Nearly complete sequences of approximately 1,500 bases were obtained for most of the potentially novel species. A total of 67 bacterial species or phylotypes were detected, 25 of which have not yet been grown in vitro. Nineteen of the species or phylotypes, including Propionibacterium acnes, Staphylococcus spp., and the opportunistic pathogens Stenotrophomonas maltophilia and Ochrobactrum anthropi were detected in more than one subject. Other known species that were detected included Achromobacter spp., Afipia spp., Brevundimonas diminuta, Capnocytophaga spp., Cardiobacterium sp., Eikenella corrodens, Fusobacterium spp., Gemella haemoylsans, and Neisseria spp. Phylotypes that were unique to noma infections included those in the genera Eubacterium, Flavobacterium, Kocuria, Microbacterium, and Porphyromonas and the related Streptococcus salivarius and genera Sphingomonas and TREPONEMA: Since advanced noma lesions are infections open to the environment, it was not surprising to detect species not commonly associated with the oral cavity, e.g., from soil. Several species previously implicated as putative pathogens of noma, such as spirochetes and Fusobacterium spp., were detected in at least one subject. However, due to the limited number of available noma subjects, it was not possible at this time to associate specific species with the disease.

  5. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    PubMed

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  6. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  7. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  8. Clinical characteristics and outcomes of spontaneous bacterial peritonitis caused by Enterobacter species versus Escherichia coli: a matched case-control study.

    PubMed

    Bae, Seongman; Kim, Taeeun; Kim, Min-Chul; Chong, Yong Pil; Kim, Sung-Han; Sung, Heungsup; Lim, Young-Suk; Lee, Sang-Oh; Kim, Mi-Na; Kim, Yang Soo; Woo, Jun Hee; Choi, Sang-Ho

    2016-06-07

    Enterobacter species are important nosocomial pathogens, and there is growing concern about their ability to develop resistance during antimicrobial therapy. However, few data are available on the clinical characteristics and outcomes of Enterobacter spontaneous bacterial peritonitis (SBP). We retrospectively identified all patients with SBP caused by Enterobacter species admitted to a tertiary care hospital between January 1997 and December 2013. Each case was age- and sex-matched with four patients with Escherichia coli SBP. A total of 32 cases with Enterobacter SBP and 128 controls with E. coli SBP were included. Twenty-one (65.6 %) cases and 111 (86.7 %) controls had Child-Pugh class C (P = 0.006). Cases were significantly more likely to have hepatocellular carcinoma (65.6 % vs. 37.5 %, P = 0.004) and upper gastrointestinal bleeding (28.1 % vs. 9.4 %, P = 0.005). The initial response to empirical therapy (81.3 % vs. 81.2 %, P = 0.995) and the 30-day mortality (37.5 % vs. 28.9 %, P = 0.35) were not significantly different between the groups. Drug resistance emerged in one case and in no controls (4.3 % [1/23] vs. 0 % [0/98], P = 0.19). Compared with E. coli SBP, patients with Enterobacter SBP more frequently had hepatocellular carcinoma and upper gastrointestinal bleeding, yet clinical outcomes were comparable. Development of resistance during third-generation cephalosporin therapy was infrequent in patients with Enterobacter SBP.

  9. Effect of bacterial components of mixed culture supernatants of planktonic and biofilm Pseudomonas aeruginosa with commensal Escherichia coli on the neutrophil response in vitro.

    PubMed

    Maslennikova, Irina L; Kuznetsova, Marina V; Nekrasova, Irina V; Shirshev, Sergei V

    2017-11-30

    Pseudomonas aeruginosa (PA) responsible for acute and chronic infections often forms a well-organized bacterial population with different microbial species including commensal strains of Escherichia coli. Bacterial extracellular components of mixed culture can modulate the influence of bacteria on the neutrophil functions. The objective of this study was to compare the effect of pyocyanin, pyoverdine, LPS, exopolysaccharide of single species and mixed culture supernatants of PA strains and E. coli K12 on microbicidal, secretory activity of human neutrophils in vitro. Bacterial components of E. coli K12 in mixed supernatants with 'biofilm' PA strains (PA ATCC, PA BALG) enhanced short-term microbicidal mechanisms and inhibited neutrophil secretion delayed in time. The influence of 'planktonic' PA (PA 9-3) exometabolites in mixed culture is almost mimicked by E. coli K12 effect on functional neutrophil changes. This investigation may help to understand some of the mechanisms of neutrophil response to mixed infections of different PA with other bacteria species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The in situ bacterial production of fluorescent organic matter; an investigation at a species level.

    PubMed

    Fox, B G; Thorn, R M S; Anesio, A M; Reynolds, D M

    2017-11-15

    Aquatic dissolved organic matter (DOM) plays an essential role in biogeochemical cycling and transport of organic matter throughout the hydrological continuum. To characterise microbially-derived organic matter (OM) from common environmental microorganisms (Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa), excitation-emission matrix (EEM) fluorescence spectroscopy was employed. This work shows that bacterial organisms can produce fluorescent organic matter (FOM) in situ and, furthermore, that the production of FOM differs at a bacterial species level. This production can be attributed to structural biological compounds, specific functional proteins (e.g. pyoverdine production by P. aeruginosa), and/or metabolic by-products. Bacterial growth curve data demonstrates that the production of FOM is fundamentally related to microbial metabolism. For example, the majority of Peak T fluorescence (> 75%) is shown to be intracellular in origin, as a result of the building of proteins for growth and metabolism. This underpins the use of Peak T as a measure of microbial activity, as opposed to bacterial enumeration as has been previously suggested. This study shows that different bacterial species produce a range of FOM that has historically been attributed to high molecular weight allochthonous material or the degradation of terrestrial FOM. We provide definitive evidence that, in fact, it can be produced by microbes within a model system (autochthonous), providing new insights into the possible origin of allochthonous and autochthonous organic material present in aquatic systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Bacterial communities in the phylloplane of Prunus species.

    PubMed

    Jo, Yeonhwa; Cho, Jin Kyong; Choi, Hoseong; Chu, Hyosub; Lian, Sen; Cho, Won Kyong

    2015-04-01

    Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bacterial Identification Using Light Scattering Measurements: a Preliminary Report

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1971-01-01

    The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.

  13. Characterization of the spoilage potential of pure and mixed cultures of bacterial species isolated from tropical yellowfin tuna (Thunnus albacares).

    PubMed

    Silbande, A; Cornet, J; Cardinal, M; Chevalier, F; Rochefort, K; Smith-Ravin, J; Adenet, S; Leroi, F

    2018-02-01

    The spoilage potential of 28 bacterial strains isolated from spoiled raw yellowfin tuna was evaluated. Bacterial species were inoculated in irradiated tuna matrix. Chemical changes, bacterial growth and sensory quality were monitored during aerobic storage at 8°C. Pseudomonas spp., Enterobacter spp. and Escherichia hermanii had no spoiling effect. Brochothrix thermosphacta and Carnobacterium divergens/maltaromaticum developed moderate unpleasant odours. Hafnia paralvei and Serratia spp. released strong off-odours (pyrrolidine, sulphur/cabbage). No bacterial group (except H. paralvei) combined with Pseudomonas spp. deteriorated the sensory quality of tuna. When C. divergens/maltaromaticum was associated with H. paralvei or B. thermosphacta, the odour is close to the naturally contaminated tuna stored on the same conditions. The pH, total volatile basic nitrogen (TVBN) and trimethylamine (TMA) were not correlated with the spoilage. The bacterial species had a different impact on the sensory quality of the fish. The bacterial interactions lead to an enhancement or an inhibition of the spoilage potential and the bacterial growth. The specific spoilage organism (SSO) appears to be an association of lactic acid bacteria (LAB) with Enterobacteriaceae or B. thermosphacta. Pseudomonas, often dominant at the sensory rejection time, is not a good quality indicator. © 2017 The Society for Applied Microbiology.

  14. Distinct antimicrobial peptide expression determines host species-specific bacterial associations

    PubMed Central

    Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian

    2013-01-01

    Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149

  15. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens.

    PubMed

    Ardizzoni, Andrea; Neglia, Rachele G; Baschieri, Maria C; Cermelli, Claudio; Caratozzolo, Manuela; Righi, Elena; Palmieri, Beniamino; Blasi, Elisabetta

    2011-10-01

    Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.

  16. IDENTIFYING ESCHERICHIA SPECIES WITH BIOCHEMICAL TEST KITS AND STANDARD BACTERIOLOGICAL TESTS

    EPA Science Inventory

    Two commercially available biochemical test systems were evaluated for their ability to accurately identify speies of the genus Escherichia. Three laboratories participated in the study. The test kits did not always correctly identify species of Escherichia, but only once was a...

  17. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    PubMed

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  19. Staphylococcus aureus and Escherichia coli dual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles.

    PubMed

    Barros, Joana; Grenho, Liliana; Fontenente, Sílvia; Manuel, Cândida M; Nunes, Olga C; Melo, Luís F; Monteiro, Fernando J; Ferraz, Maria P

    2017-02-01

    Implant-associated infections are caused by surface-adhering microorganisms persisting as biofilms, resistant to host defense and antimicrobial agents. Given the limited efficacy of traditional antibiotics, novel strategies may rely on the prevention of such infections through the design of new biomaterials. In this work, two antimicrobial agents applied to nanohydroxyapatite materials-namely, chlorhexidine digluconate (CHX) and zinc oxide (ZnO) nanoparticles-were compared concerning their ability to avoid single- or dual-species biofilms of Staphylococcus aureus and Escherichia coli. The resulting biofilms were quantified by the enumeration of colony-forming units and examined by confocal microscopy using both Live/Dead staining and bacterial-specific fluorescent in situ hybridization. The sessile population arrangement was also observed by scanning electron microscopy. Both biomaterials showed to be effective in impairing bacterial adhesion and proliferation for either single- or dual-species biofilms. Furthermore, a competitive interaction was observed for dual-species biofilms wherein E. coli exhibited higher proliferative capacity than S. aureus, an inverse behavior from the one observed in single-species biofilms. Therefore, either nanoHA-CHX or nanoHA-ZnO surfaces appear as promising alternatives to antibiotics for the prevention of devices-related infections avoiding the critical risk of antibiotic-resistant strains emergence. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 491-497, 2017. © 2016 Wiley Periodicals, Inc.

  20. Aerobic bacterial flora of addled raptor eggs in Saskatchewan.

    PubMed

    Houston, C S; Saunders, J R; Crawford, R D

    1997-04-01

    In south-central Saskatchewan, Canada, in 1986, 1987 and 1989, the aerobic bacterial flora was evaluated from 75 unhatched raptor eggs of three species: 42 of the Swainson's hawk (Buteo Swainsoni), 21 of the ferruginous hawk (Buteo regalis), and 12 of the great horned owl (Bubo virginianus). In addled Swainson's hawk eggs, the most common bacterial genera were Enterobacter (18 eggs), Escherichia (12), and Streptococcus (10). Seven great horned owl eggs and six ferruginous hawk eggs also contained Escherichia coli. Salmonella spp. were not isolated. These bacteria were interpreted as secondary contaminants and not the primary cause of reproductive failure.

  1. Bacterial Dose-Dependent Role of G Protein-Coupled Receptor Kinase 5 in Escherichia coli-Induced Pneumonia.

    PubMed

    Packiriswamy, Nandakumar; Steury, Michael; McCabe, Ian C; Fitzgerald, Scott D; Parameswaran, Narayanan

    2016-05-01

    G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase previously shown to mediate polymicrobial sepsis-induced inflammation. The goal of the present study was to examine the role of GRK5 in monomicrobial pulmonary infection by using an intratracheal Escherichia coli infection model of pneumonia. We used sublethal and lethal doses of E. coli to examine the mechanistic differences between low-grade and high-grade inflammation induced by E. coli infection. With a sublethal dose of E. coli, GRK5 knockout (KO) mice exhibited higher plasma CXCL1/KC levels and enhanced lung neutrophil recruitment early after infection, and lower bacterial loads, than wild-type (WT) mice. The inflammatory response was also diminished, and resolution of inflammation advanced, in the lungs of GRK5 KO mice. In contrast to the reduced bacterial loads in GRK5 KO mice following a sublethal dose, at a lethal dose of E. coli, the bacterial burdens remained high in GRK5 KO mice relative to those in WT mice. This occurred in spite of enhanced plasma CXCL1 levels as well as neutrophil recruitment in the KO mice. But the recruited neutrophils (following high-dose infection) exhibited decreased CD11b expression and reduced reactive oxygen species production, suggesting decreased neutrophil activation or increased neutrophil exhaustion in the GRK5 KO mice. In agreement with the increased bacterial burden, KO mice showed poorer survival than WT mice following E. coli infection at a lethal dose. Overall, our data suggest that GRK5 negatively regulates CXCL1/KC levels during bacterial pneumonia but that the role of GRK5 in the clinical outcome in this model is dependent on the bacterial dose. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  3. Hybrid-fuel bacterial flagellar motors in Escherichia coli

    PubMed Central

    Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M.

    2014-01-01

    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H+ or Na+ ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H+- and Na+-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na+ concentration ([Na+]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na+ and H+ stator components expressed at high and medium levels, respectively, Na+ stator units dominate at high [Na+] and are replaced by H+ units when Na+ is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H+ and Na+ stator components sharing a common rotor. PMID:24550452

  4. Use of Nitrogen-15-Enriched Escherichia coli as a Bacterial Tracer in Karst Aquifers.

    PubMed

    Ward, James W; Warden, John G; Bandy, Ashley M; Fryar, Alan E; Brion, Gail M; Macko, Stephen A; Romanek, Christopher S; Coyne, Mark S

    2016-11-01

    Karst aquifers are susceptible to contamination by microorganisms, but relatively few studies have used bacteria as tracers. We demonstrate the utility of Escherichia coli enriched in the stable isotope nitrogen-15 ( 15 N) as a novel bacterial tracer. Nonpathogenic E. coli from two springs in central Kentucky were grown on 15 N-enriched media. Survival of E. coli and persistence of the isotopic signal were assessed in two sets of laboratory experiments conducted with sterilized spring water in dark microcosms at 14 °C. First, isotopically labeled bacteria survived for 130 d at concentrations within one log unit of the average initial value, and there was no significant difference in δ 15 N values from Day 1 to Day 130. Second, water samples with E. coli were inoculated with either of two different species of protozoa (Tetrahymena pyriformis or Colpoda steinii). During 7 d, δ 15 N values increased in T. pyriformis while bacterial populations decreased. In a field test, following a 2.1-cm rainfall, 15 N-labeled E. coli, solutes (rhodamine WT dye and bromide), and latex microspheres were injected into a sinkhole approximately 530 m upgradient of a spring. Breakthrough of all tracers coincided, but microspheres were remobilized by subsequent storms, unlike other tracers. Enriched E. coli exhibited more tailing than solute tracers during the initial storm-flow recession. These results indicate that 15 N-enriched E. coli is a viable tracer of bacterial transport in karst aquifers, although predation may attenuate the isotopic signal in systems that are not rapidly flushed. © 2016, National Ground Water Association.

  5. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  6. Structural differences in the bacterial flagellar motor among bacterial species.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Morimoto, Yusuke V; Imada, Katsumi; Minamino, Tohru

    2017-01-01

    The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.

  7. Combined chemical and physical transformation method with RbCl and sepiolite for the transformation of various bacterial species.

    PubMed

    Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun

    2017-04-01

    DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.

  8. Differentiation of bacterial colonies and temporal growth patterns using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Buck, Gregory W.; Livingston, Daniel W.

    2014-09-01

    Detection and identification of bacteria are important for health and safety. Hyperspectral imaging offers the potential to capture unique spectral patterns and spatial information from bacteria which can then be used to detect and differentiate bacterial species. Here, hyperspectral imaging has been used to characterize different bacterial colonies and investigate their growth over time. Six bacterial species (Pseudomonas fluorescens, Escherichia coli, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, Enterobacter aerogenes) were grown on tryptic soy agar plates. Hyperspectral data were acquired immediately after, 24 hours after, and 96 hours after incubation. Spectral signatures from bacterial colonies demonstrated repeatable measurements for five out of six species. Spatial variations as well as changes in spectral signatures were observed across temporal measurements within and among species at multiple wavelengths due to strengthening or weakening reflectance signals from growing bacterial colonies based on their pigmentation. Between-class differences and within-class similarities were the most prominent in hyperspectral data collected 96 hours after incubation.

  9. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    PubMed

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Osmotaxis in Escherichia coli through changes in motor speed

    PubMed Central

    Rosko, Jerko; Martinez, Vincent A.; Poon, Wilson C. K.

    2017-01-01

    Bacterial motility, and in particular repulsion or attraction toward specific chemicals, has been a subject of investigation for over 100 years, resulting in detailed understanding of bacterial chemotaxis and the corresponding sensory network in many bacterial species. For Escherichia coli most of the current understanding comes from the experiments with low levels of chemotactically active ligands. However, chemotactically inactive chemical species at concentrations found in the human gastrointestinal tract produce significant changes in E. coli’s osmotic pressure and have been shown to lead to taxis. To understand how these nonspecific physical signals influence motility, we look at the response of individual bacterial flagellar motors under stepwise changes in external osmolarity. We combine these measurements with a population swimming assay under the same conditions. Unlike for chemotactic response, a long-term increase in swimming/motor speeds is observed, and in the motor rotational bias, both of which scale with the osmotic shock magnitude. We discuss how the speed changes we observe can lead to steady-state bacterial accumulation. PMID:28874571

  11. Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli DH5α on glycogen structure, accumulation, and bacterial viability.

    PubMed

    Wang, Liang; Regina, Ahmed; Butardo, Vito M; Kosar-Hashemi, Behjat; Larroque, Oscar; Kahler, Charlene M; Wise, Michael J

    2015-05-07

    Glycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation. A series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media. Despite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were

  12. Detection of intracellular bacterial communities in a child with Escherichia coli recurrent urinary tract infections.

    PubMed

    Robino, Luciana; Scavone, Paola; Araujo, Lucia; Algorta, Gabriela; Zunino, Pablo; Vignoli, Rafael

    2013-08-01

    The formation of intracellular bacterial communities (IBC) has been proposed as a new pathogenic model for urinary tract infections. Scarce reports describe this phenomenon in humans. We describe the presence of IBC in uroepithelial cells of a child with recurrent urinary infections. Urine specimen was collected from a child with Escherichia coli UTI and analyzed by light and confocal laser scanning microscopy (CLSM). The capability of this strain to produce intracellular infection in bladder tissue was confirmed in mice models. Escherichia coli phylogenetic group, presence of virulence factors genes, and its multiple locus sequence type were determined. CLSM showed large collections of morphologically coccoid and rod bacteria in eukaryotic cells cytoplasm, even seemingly protruding from the cells. Escherichia coli EC7U, ST3626, harbored type 1, P, and S/F1C fimbriae and K1 capsule genes. In this report, we confirm the presence of IBC in children with UTI, as it has been described before in women. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Effect of Weak Magnetic Field on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  14. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  15. Engineering of chimeric eukaryotic/bacterial Rubisco large subunits in Escherichia coli.

    PubMed

    Koay, Teng Wei; Wong, Hann Ling; Lim, Boon Hoe

    2016-11-26

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a rate-limiting photosynthetic enzyme that catalyzes carbon fixation in the Calvin cycle. Much interest has been devoted to engineering this ubiquitous enzyme with the goal of increasing plant growth. However, experiments that have successfully produced improved Rubisco variants, via directed evolution in Escherichia coli, are limited to bacterial Rubisco because the eukaryotic holoenzyme cannot be produced in E. coli. The present study attempts to determine the specific differences between bacterial and eukaryotic Rubisco large subunit primary structure that are responsible for preventing heterologous eukaryotic holoenzyme formation in E. coli. A series of chimeric Synechococcus Rubiscos were created in which different sections of the large subunit were swapped with those of the homologous Chlamydomonas Rubisco. Chimeric holoenzymes that can form in vivo would indicate that differences within the swapped sections do not disrupt holoenzyme formation. Large subunit residues 1-97, 198-247 and 448-472 were successfully swapped without inhibiting holoenzyme formation. In all ten chimeras, protein expression was observed for the separate subunits at a detectable level. As a first approximation, the regions that can tolerate swapping may be targets for future engineering.

  16. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  17. The intrinsic resistome of bacterial pathogens.

    PubMed

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  18. Distinctive bacterial communities in the rhizoplane of four tropical tree species.

    PubMed

    Oh, Yoon Myung; Kim, Mincheol; Lee-Cruz, Larisa; Lai-Hoe, Ang; Go, Rusea; Ainuddin, N; Rahim, Raha Abdul; Shukor, Noraini; Adams, Jonathan M

    2012-11-01

    It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0-10 cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both

  19. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    PubMed

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species

  20. Distribution of 10 periodontal bacterial species in children and adolescents over a 7-year period.

    PubMed

    Nakano, K; Miyamoto, E; Tamura, K; Nemoto, H; Fujita, K; Nomura, R; Ooshima, T

    2008-10-01

    There is scant information available regarding the distribution of periodontal bacterial species in children and adolescents over an extended period. The purpose of this study was to compare bacterial profiles in the same individuals over a period of 7 years. Twenty-six children and adolescents from whom dental plaque and saliva specimens were obtained during both the first (1999-2000) and second (2006-2007) periods, were analyzed. Bacterial DNA was extracted from each specimen and the presence of 10 periodontal bacterial species was determined using a PCR method, with a focus on the red complex species of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Subjects with red complex species in saliva specimens obtained during the second collection possessed a significantly higher number of total bacterial species than those without. The detection rate of the red complex species in the second collection period samples was significantly greater in subjects who had two or more species detected in samples taken during the first collection compared with the other subjects. Subjects possessing red complex species may be at possible risk for infection with a high number of periodontal bacterial species during adolescent and younger adult years.

  1. New bacterial species associated with chronic periodontitis.

    PubMed

    Kumar, P S; Griffen, A L; Barton, J A; Paster, B J; Moeschberger, M L; Leys, E J

    2003-05-01

    Recent investigations of the human subgingival oral flora based on ribosomal 16S cloning and sequencing have shown many of the bacterial species present to be novel species or phylotypes. The purpose of the present investigation was to identify potential periodontal pathogens among these newly identified species and phylotypes. Species-specific ribosomal 16S primers for PCR amplification were developed for detection of new species. Associations with chronic periodontitis were observed for several new species or phylotypes, including uncultivated clones D084 and BH017 from the Deferribacteres phylum, AU126 from the Bacteroidetes phylum, Megasphaera clone BB166, clone X112 from the OP11 phylum, and clone I025 from the TM7 phylum, and the named species Eubacterium saphenum, Porphyromonas endodontalis, Prevotella denticola, and Cryptobacterium curtum. Species or phylotypes more prevalent in periodontal health included two uncultivated phylotypes, clone W090 from the Deferribacteres phylum and clone BU063 from the Bacteroidetes, and named species Atopobium rimae and Atopobium parvulum.

  2. Bacterial-biota dynamics of eight bryophyte species from different ecosystems

    PubMed Central

    Koua, Faisal Hammad Mekky; Kimbara, Kazuhide; Tani, Akio

    2014-01-01

    Despite the importance of bryophyte-associated microorganisms in various ecological aspects including their crucial roles in the soil-enrichment of organic mass and N2 fixation, nonetheless, little is known about the microbial diversity of the bryophyte phyllospheres (epi-/endophytes). To get insights into bacterial community structures and their dynamics on the bryophyte habitats in different ecosystems and their potential biological roles, we utilized the 16S rRNA gene PCR-DGGE and subsequent phylogenetic analyses to investigate the bacterial community of eight bryophyte species collected from three distinct ecosystems from western Japan. Forty-two bacterial species belonging to γ-proteobacteria and Firmicutes with 71.4% and 28.6%, respectively, were identified among 90 DGGE gel band population. These DGGE-bands were assigned to 13 different genera with obvious predomination the genus Clostridium with 21.4% from the total bacterial community. These analyses provide new insights into bryophyte-associated bacteria and their relations to the ecosystems. PMID:25737654

  3. Real-time measurement of UV-inactivated Escherichia coli bacterial particles by electrospray-assisted UVAPS spectrometry.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Bae, Gwi Nam

    2011-08-01

    The ultraviolet aerodynamic particle sizer (UVAPS) is a novel commercially available aerosol spectrometer for real-time continuous monitoring of viable bioaerosols, based on fluorescence from living microorganisms. In a previous study, we developed an electrospray-assisted UVAPS using biological electrospray techniques, which have the advantage of generating non-agglomerated single particles by the repulsive electrical forces. With this electrospraying of suspensions containing microorganisms, the analytical system can supply more accurate and quantitative information about living microorganisms than with conventional aerosolization. Using electrospray-assisted UVAPS, we investigated the characteristics of bacterial particles with various viabilities in real-time. Escherichia coli was used as the test microorganism, and its initial viability was controlled by the degree of exposure to UV irradiation. In the stable cone-jet domain, the particle size distributions of test bacterial particles remained almost uniform regardless of the degree of UV inactivation. However, the fluorescence spectra of the bacterial particles changed with the degree of UV inactivation. The fluorescence characteristics of UV-inactivated bacterial particles tended to show a similar decline with viability, determined by the sampling and culture method, although the percentage showing fluorescence was higher than that showing viability. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A new mathematical model of bacterial interactions in two-species oral biofilms

    PubMed Central

    Martin, Bénédicte; Tamanai-Shacoori, Zohreh; Bronsard, Julie; Ginguené, Franck; Meuric, Vincent

    2017-01-01

    Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions. PMID:28253369

  5. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    EPA Science Inventory

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  6. Reproducible Biofilm Cultivation of Chemostat-Grown Escherichia coli and Investigation of Bacterial Adhesion on Biomaterials Using a Non-Constant-Depth Film Fermenter

    PubMed Central

    Lüdecke, Claudia; Jandt, Klaus D.; Siegismund, Daniel; Kujau, Marian J.; Zang, Emerson; Rettenmayr, Markus; Bossert, Jörg; Roth, Martin

    2014-01-01

    Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support developing and adequate testing of biomaterials surface modifications eventually preventing biomaterial

  7. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil.

    PubMed

    Reed-Jones, Neiunna L; Marine, Sasha Cahn; Everts, Kathryne L; Micallef, Shirley A

    2016-01-04

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P < 0.001). E. coli levels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring. L. innocua diminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P < 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions in L. innocua numbers were observed after tilling (P < 0.05). Green manure type was a factor only for L. innocua abundance in a transitional field (P < 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil

    PubMed Central

    Reed-Jones, Neiunna L.; Marine, Sasha Cahn; Everts, Kathryne L.

    2016-01-01

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P < 0.001). E. coli levels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring. L. innocua diminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P < 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions in L. innocua numbers were observed after tilling (P < 0.05). Green manure type was a factor only for L. innocua abundance in a transitional field (P < 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. PMID:26729724

  9. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    PubMed

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  10. DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family.

    PubMed

    Cooley, Anne E; Riley, Sean P; Kral, Keith; Miller, M Clarke; DeMoll, Edward; Fried, Michael G; Stevenson, Brian

    2009-07-13

    Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel "tweezer"-like structure. However, a function for YbaB had remained elusive, with an early study of the H. influenzae ortholog failing to detect DNA-binding activity. Our group recently determined that the Borrelia burgdorferi YbaB ortholog, EbfC, is a DNA-binding protein. To reconcile those results, we assessed the abilities of both the H. influenzae and E. coli YbaB proteins to bind DNA to which B. burgdorferi EbfC can bind. Both the H. influenzae and the E. coli YbaB proteins bound to tested DNAs. DNA-binding was not well competed with poly-dI-dC, indicating some sequence preferences for those two proteins. Analyses of binding characteristics determined that both YbaB orthologs bind as homodimers. Different DNA sequence preferences were observed between H. influenzae YbaB, E. coli YbaB and B. burgdorferi EbfC, consistent with amino acid differences in the putative DNA-binding domains of these proteins. Three distinct members of the YbaB/EbfC bacterial protein family have now been demonstrated to bind DNA. Members of this protein family are encoded by a broad range of bacteria, including many pathogenic species, and results of our studies suggest that all such proteins have DNA-binding activities. The functions of YbaB/EbfC family members in each bacterial species are as-yet unknown, but given the ubiquity of these DNA-binding proteins among Eubacteria, further investigations are warranted.

  11. Characterization of Extended-Spectrum Beta-lactamase from Escherichia coli and Klebsiella Species from North Eastern Nigeria.

    PubMed

    Mohammed, Yahaya; Gadzama, Galadima Bala; Zailani, Sambo Bello; Aboderin, Aaron Oladipo

    2016-02-01

    Resistance to antimicrobials has become a serious global health concern complicating treatment strategies and increasing health-care costs. The extended-spectrum beta-lactamase producing bacteria stand out as bacteria of great epidemic concern among Gram negative bacilli. Control and appropriate interventions for antimicrobial resistance depend on effective surveillance and knowledge of the patterns and determinants of resistance. The present study was undertaken to detect and characterize ESBLs in Escherichia coli and Klebsiella Species from University of Maiduguri Teaching Hospital, Maiduguri, North-Eastern Nigeria. Confirmed variants of Escherichia coli and Klebsiella Species isolated from 439 patients that were admitted in various units of University of Maiduguri Teaching Hospital (UMTH) were screened for ESBL using CLSI breakpoints. Suspected ESBLs producers were subjected to confirmation using double disk synergy method. Detection of ESBL genes was further done by multiplex PCR. Out of the 439 isolates screened; the result shows 147 (33.5%) were ESBL producers but only 121(23.6%) were confirmed by the double disk synergy method. The prevalence of ESBL amongst the organisms were; 41/172 (23.8%) for Escherichia coli and 80/267/(30.0%) for Klebsiella Species. Based on PCR analysis, the various percentage genotypes of the ESBL producers were 44 (36.4%) for SHV gene followed by 38(31.4%) for TEM gene and the lowest of 33(27.3%) for CTX-M gene. ESBLs are prevalent among Species of Escherichia coli and Klebsiella Species in Maiduguri, Borno State, not only are there TEM and SHV but also CTX-M types. Antibiotic stewardship program to maximise use of available antibiotics is underscored as well as coordinated national efforts in combating resistance.

  12. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    PubMed Central

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  13. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.

  14. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    PubMed Central

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  15. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system.

    PubMed

    Bai, Yunpeng; Patil, Santoshkumar N; Bowden, Steven D; Poulter, Simon; Pan, Jie; Salmond, George P C; Welch, Martin; Huck, Wilhelm T S; Abell, Chris

    2013-05-21

    In this paper, we investigated the intra-species bacterial quorum sensing at the single cell level using a double droplet trapping system. Escherichia coli transformed to express the quorum sensing receptor protein, LasR, were encapsulated in microdroplets that were positioned adjacent to microdroplets containing the autoinducer, N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Functional activation of the LasR protein by diffusion of the OdDHL across the droplet interface was measured by monitoring the expression of green fluorescent protein (GFP) from a LasR-dependent promoter. A threshold concentration of OdDHL was found to induce production of quorum-sensing associated GFP by E. coli. Additionally, we demonstrated that LasR-dependent activation of GFP expression was also initiated when the adjacent droplets contained single E. coli transformed with the OdDHL synthase gene, LasI, representing a simple quorum sensing circuit between two droplets.

  16. Gram Stains: A Resource for Retrospective Analysis of Bacterial Pathogens in Clinical Studies

    PubMed Central

    Srinivasan, Usha; Ponnaluri, Sreelatha; Villareal, Lisa; Gillespie, Brenda; Wen, Ai; Miles, Arianna; Bucholz, Brigette; Marrs, Carl F.; Iyer, Ram K.; Misra, Dawn; Foxman, Betsy

    2012-01-01

    We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 108 cfu/ml of Escherichia coli and 105 cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces. PMID:23071487

  17. Gram stains: a resource for retrospective analysis of bacterial pathogens in clinical studies.

    PubMed

    Srinivasan, Usha; Ponnaluri, Sreelatha; Villareal, Lisa; Gillespie, Brenda; Wen, Ai; Miles, Arianna; Bucholz, Brigette; Marrs, Carl F; Iyer, Ram K; Misra, Dawn; Foxman, Betsy

    2012-01-01

    We demonstrate the feasibility of using qPCR on DNA extracted from vaginal Gram stain slides to estimate the presence and relative abundance of specific bacterial pathogens. We first tested Gram stained slides spiked with a mix of 10(8) cfu/ml of Escherichia coli and 10(5) cfu/ml of Lactobacillus acidophilus. Primers were designed for amplification of total and species-specific bacterial DNA based on 16S ribosomal gene regions. Sample DNA was pre-amplified with nearly full length 16S rDNA ribosomal gene fragment, followed by quantitative PCR with genera and species-specific 16S rDNA primers. Pre-amplification PCR increased the bacterial amounts; relative proportions of Escherichia coli and Lactobacillus recovered from spiked slides remained unchanged. We applied this method to forty two archived Gram stained slides available from a clinical trial of cerclage in pregnant women at high risk of preterm birth. We found a high correlation between Nugent scores based on bacterial morphology of Lactobacillus, Gardenerella and Mobiluncus and amounts of quantitative PCR estimated genus specific DNA (rrn copies) from Gram stained slides. Testing of a convenience sample of eight paired vaginal swabs and Gram stains freshly collected from healthy women found similar qPCR generated estimates of Lactobacillus proportions from Gram stained slides and vaginal swabs. Archived Gram stained slides collected from large scale epidemiologic and clinical studies represent a valuable, untapped resource for research on the composition of bacterial communities that colonize human mucosal surfaces.

  18. Draft Genome Sequences of Escherichia coli Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Members of the Escherichia coli bacterial family have been grouped as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens because of their extensive drug resistance phenotypes and increasing threat to human health. The genomes of six extended-spectrum β-lactamase (ESBL)-producing E. coli strains isolated from wounded military personnel were sequenced and annotated. Copyright © 2016 Arivett et al.

  19. The bacterial species definition in the genomic era

    PubMed Central

    Konstantinidis, Konstantinos T; Ramette, Alban; Tiedje, James M

    2006-01-01

    The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction. PMID:17062412

  20. Predominant bacterial species in subgingival plaque in dogs.

    PubMed

    Dahlén, G; Charalampakis, G; Abrahamsson, I; Bengtsson, L; Falsen, E

    2012-06-01

    The dog has been used extensively for experimental and microbiological studies on periodontitis and peri-implantitis without detailed knowledge about the predominant flora of the subgingival plaque. This study was designed to evaluate the predominant cultivable bacterial species in dogs and compare them phenotypically and genotypically with corresponding human species. Four subgingival samples were taken from two upper premolars in each of six Labrador retrievers. The samples from each dog were processed for anaerobic culture. From the samples of each dog, the five or six predominating bacteria based on colony morphology were selected and pure cultured. Each of the strains was characterized by Gram stain, anaerobic/aerobic growth and API-ZYM test. Eighteen strains showing clear-cut phenotypic differences were further classified based on DNA sequencing technology. Cross-reactions of DNA probes from human and dog strains were also tested against a panel of both human and dog bacterial species. Thirty-one strains in the dogs were isolated and characterized. They represented 21 different species, of which six belonged to the genus Porphyromonas. No species was found consistently in the predominant flora of all six dogs. Porphyromonas crevioricanis and Fusobacterium canifelinum were the two most prevalent species in predominant flora in dogs. DNA probes from human and dog species cross-reacted to some extent with related strains from humans and dogs; however, distinct exceptions were found. The predominant cultural subgingival flora in dogs shows great similarities with the subgingival bacteria from humans at the genus level, but distinct differences at the species level; however, a genetic relatedness could be disclosed for most strains investigated. © 2011 John Wiley & Sons A/S.

  1. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran.

    PubMed

    Momtaz, Hassan; Dehkordi, Farhad Safarpoor; Rahimi, Ebrahim; Asgarifar, Amin

    2013-06-07

    The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health

  2. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran

    PubMed Central

    2013-01-01

    Background The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. Methods A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. Results The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. Conclusions This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The

  3. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  4. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  5. Season, Irrigation, Leaf Age, and Escherichia coli Inoculation Influence the Bacterial Diversity in the Lettuce Phyllosphere

    PubMed Central

    Williams, Thomas R.; Moyne, Anne-Laure; Harris, Linda J.; Marco, Maria L.

    2013-01-01

    The developmental and temporal succession patterns and disturbance responses of phyllosphere bacterial communities are largely unknown. These factors might influence the capacity of human pathogens to persist in association with those communities on agriculturally-relevant plants. In this study, the phyllosphere microbiota was identified for Romaine lettuce plants grown in the Salinas Valley, CA, USA from four plantings performed over 2 years and including two irrigation methods and inoculations with an attenuated strain of Escherichia coli O157:H7. High-throughput DNA pyrosequencing of the V5 to V9 variable regions of bacterial 16S rRNA genes recovered in lettuce leaf washes revealed that the bacterial diversity in the phyllosphere was distinct for each field trial but was also strongly correlated with the season of planting. Firmicutes were generally most abundant in early season (June) plantings and Proteobacteria comprised the majority of bacteria recovered later in the year (August and October). Comparisons within individual field trials showed that bacterial diversity differed between sprinkler (overhead) and drip (surface) irrigated lettuce and increased over time as the plants grew. The microbiota were also distinct between control and E. coli O157:H7-inoculated plants and between E. coli O157:H7-inoculated plants with and without surviving pathogen cells. The bacterial inhabitants of the phyllosphere therefore appear to be affected by seasonal, irrigation, and biological factors in ways that are relevant for assessments of fresh produce food safety. PMID:23844230

  6. Multiplex PCR assay for the detection and quantification of Campylobacter spp., Escherichia coli O157:H7, and Salmonella serotypes in water samples

    USDA-ARS?s Scientific Manuscript database

    Three pathogens, Campylobacter, Salmonella, and Shiga toxin producing Escherichia coli (STEC), are leading causes of bacterial gastroenteritis in the United States and worldwide. For example, Campylobacter species are responsible for 17% of all hospitalizations related to illness, and although Campy...

  7. Bacterial Diversity in Human Subgingival Plaque

    PubMed Central

    Paster, Bruce J.; Boches, Susan K.; Galvin, Jamie L.; Ericson, Rebecca E.; Lau, Carol N.; Levanos, Valerie A.; Sahasrabudhe, Ashish; Dewhirst, Floyd E.

    2001-01-01

    The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our

  8. Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women

    PubMed Central

    Tamrakar, Renuka; Yamada, Takashi; Furuta, Itsuko; Cho, Kazutoshi; Morikawa, Mamoru; Yamada, Hideto; Sakuragi, Noriaki; Minakami, Hisanori

    2007-01-01

    Background Bacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women. Methods To examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any Lactobacillus, four Lactobacillus species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal Lactobacillus primer, Lactobacillus species-specific primers for L. crispatus, L. jensenii, L. gasseri, and L. iners, and BV-related bacterium-specific primers for BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Results The prevalences of L. crispatus, L. jensenii, and L. gasseri were significantly higher, while those of BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium were significantly lower in the normal group than in the BV group. Unlike other Lactobacillus species, the prevalence of L. iners did not differ between the three groups and women with L. iners were significantly more likely to have BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Linear regression analysis revealed associations of BVAB2 and Megasphaera with Nugent score, and multivariate regression analyses suggested a close relationship between Eggerthella-like bacterium and BV. Conclusion The BV-related bacteria, including BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of L. iners may be correlated with vaginal colonization by these BV-related bacteria. PMID:17986357

  9. Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species

    USGS Publications Warehouse

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C; Clostio, Rachel W; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  10. Plants of the fynbos biome harbour host species-specific bacterial communities.

    PubMed

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities.

    PubMed

    Scholz, Christian F P; Jensen, Anders

    2017-01-01

    The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

  12. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China.

    PubMed

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.

  13. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China

    PubMed Central

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments. PMID:27695084

  14. Genome dynamics and its impact on evolution of Escherichia coli.

    PubMed

    Dobrindt, Ulrich; Chowdary, M Geddam; Krumbholz, G; Hacker, J

    2010-08-01

    The Escherichia coli genome consists of a conserved part, the so-called core genome, which encodes essential cellular functions and of a flexible, strain-specific part. Genes that belong to the flexible genome code for factors involved in bacterial fitness and adaptation to different environments. Adaptation includes increase in fitness and colonization capacity. Pathogenic as well as non-pathogenic bacteria carry mobile and accessory genetic elements such as plasmids, bacteriophages, genomic islands and others, which code for functions required for proper adaptation. Escherichia coli is a very good example to study the interdependency of genome architecture and lifestyle of bacteria. Thus, these species include pathogenic variants as well as commensal bacteria adapted to different host organisms. In Escherichia coli, various genetic elements encode for pathogenicity factors as well as factors, which increase the fitness of non-pathogenic bacteria. The processes of genome dynamics, such as gene transfer, genome reduction, rearrangements as well as point mutations contribute to the adaptation of the bacteria into particular environments. Using Escherichia coli model organisms, such as uropathogenic strain 536 or commensal strain Nissle 1917, we studied mechanisms of genome dynamics and discuss these processes in the light of the evolution of microbes.

  15. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    PubMed

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Subcutaneous immunization with inactivated bacterial components and purified protein of Escherichia coli, Fusobacterium necrophorum and Trueperella pyogenes prevents puerperal metritis in Holstein dairy cows.

    PubMed

    Machado, Vinícius Silva; Bicalho, Marcela Luccas de Souza; Meira Junior, Enoch Brandão de Souza; Rossi, Rodolfo; Ribeiro, Bruno Leonardo; Lima, Svetlana; Santos, Thiago; Kussler, Arieli; Foditsch, Carla; Ganda, Erika Korzune; Oikonomou, Georgios; Cheong, Soon Hon; Gilbert, Robert Owen; Bicalho, Rodrigo Carvalho

    2014-01-01

    In this study we evaluate the efficacy of five vaccine formulations containing different combinations of proteins (FimH; leukotoxin, LKT; and pyolysin, PLO) and/or inactivated whole cells (Escherichia coli, Fusobacterium necrophorum, and Trueperella pyogenes) in preventing postpartum uterine diseases. Inactivated whole cells were produced using two genetically distinct strains of each bacterial species (E. coli, F. necrophorum, and T. pyogenes). FimH and PLO subunits were produced using recombinant protein expression, and LKT was recovered from culturing a wild F. necrophorum strain. Three subcutaneous vaccines were formulated: Vaccine 1 was composed of inactivated bacterial whole cells and proteins; Vaccine 2 was composed of proteins only; and Vaccine 3 was composed of inactivated bacterial whole cells only. Two intravaginal vaccines were formulated: Vaccine 4 was composed of inactivated bacterial whole cells and proteins; and Vaccine 5 was composed of PLO and LKT. To evaluate vaccine efficacy, a randomized clinical trial was conducted at a commercial dairy farm; 371 spring heifers were allocated randomly into one of six different treatments groups: control, Vaccine 1, Vaccine 2, Vaccine 3, Vaccine 4 and Vaccine 5. Late pregnant heifers assigned to one of the vaccine groups were each vaccinated twice: at 230 and 260 days of pregnancy. When vaccines were evaluated grouped as subcutaneous and intravaginal, the subcutaneous ones were found to significantly reduce the incidence of puerperal metritis. Additionally, subcutaneous vaccination significantly reduced rectal temperature at 6±1 days in milk. Reproduction was improved for cows that received subcutaneous vaccines. In general, vaccination induced a significant increase in serum IgG titers against all antigens, with subcutaneous vaccination again being more effective. In conclusion, subcutaneous vaccination with inactivated bacterial components and/or protein subunits of E. coli, F. necrophorum and T. pyogenes

  17. Reagent-free bacterial identification using multivariate analysis of transmission spectra

    NASA Astrophysics Data System (ADS)

    Smith, Jennifer M.; Huffman, Debra E.; Acosta, Dayanis; Serebrennikova, Yulia; García-Rubio, Luis; Leparc, German F.

    2012-10-01

    The identification of bacterial pathogens from culture is critical to the proper administration of antibiotics and patient treatment. Many of the tests currently used in the clinical microbiology laboratory for bacterial identification today can be highly sensitive and specific; however, they have the additional burdens of complexity, cost, and the need for specialized reagents. We present an innovative, reagent-free method for the identification of pathogens from culture. A clinical study has been initiated to evaluate the sensitivity and specificity of this approach. Multiwavelength transmission spectra were generated from a set of clinical isolates including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Spectra of an initial training set of these target organisms were used to create identification models representing the spectral variability of each species using multivariate statistical techniques. Next, the spectra of the blinded isolates of targeted species were identified using the model achieving >94% sensitivity and >98% specificity, with 100% accuracy for P. aeruginosa and S. aureus. The results from this on-going clinical study indicate this approach is a powerful and exciting technique for identification of pathogens. The menu of models is being expanded to include other bacterial genera and species of clinical significance.

  18. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species

    PubMed Central

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C.; Clostio, Rachel W.; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4–V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont. PMID:27092120

  19. Spontaneous bacterial and fungal infections in genetically engineered mice: Is Escherichia coli an emerging pathogen in laboratory mouse?

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin

    2015-01-01

    The impact of particular microbes on genetically engineered mice depends on the genotype and the environment. Infections resulting in clinical disease have an obvious impact on animal welfare and experimentation. In this study, we investigated the bacterial and fungal aetiology of spontaneous clinical disease of infectious origin among the genetically engineered mice from our institution in relation to their genotype. A total of 63 mice belonging to 33 different mice strains, from severe immunodeficient to wild-type, were found to display infections as the primary cause leading to their euthanasia. The necropsies revealed abscesses localized subcutaneously as well as in the kidney, preputial glands, seminal vesicles, in the uterus, umbilicus or in the lung. In addition, pneumonia, endometritis and septicaemia cases were recorded. Escherichia coli was involved in 21 of 44 (47.72%) of the lesions of bacterial origin, whereas [Pasteurella] pneumotropica was isolated from 19 of 44 (43.18%) cases. The infections with the two agents mentioned above included three cases of mixed infection with both pathogens. Staphylococcus aureus was considered responsible for five of 44 (11.36%) cases whereas Enterobacter cloacae was found to cause lesions in two of 44 (4.54%) mice. Overall, 16 of the 44 (36.36%) cases of bacterial aetiology affected genetically engineered mice without any explicit immunodeficiency or wild-type strains. The remaining 19 cases of interstitial pneumonia were caused by Pneumocystis murina. In conclusion, the susceptibility of genetically modified mice to opportunistic infections has to be regarded with precaution, regardless of the type of genetic modification performed. Beside the classical opportunists, such as [Pasteurella] pneumotropica and Staphylococcus aureus, Escherichia coli should as well be closely monitored to evaluate whether it represents an emerging pathogen in the laboratory mouse.

  20. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  1. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection

    PubMed Central

    Madsen, Anne Mette; Alwan, Taif; Ørberg, Anders; Uhrbrand, Katrine; Jørgensen, Marie Birk

    2016-01-01

    A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the

  2. Comparison of bacterial communities in faeces of beef cattle fed diets containing corn and wet distillers grain with solubles

    USDA-ARS?s Scientific Manuscript database

    Aim: The microbial ecology of feedlot Escherichia coli is poorly understood. It is a minority component of feces and must interact with many other bacteria. Use of wet distiller’s grains with solubles (WDGS) in cattle feed creates a gastrointestinal environment where some bacterial species are enri...

  3. Temporal changes in species interactions in simple aquatic bacterial communities

    PubMed Central

    2012-01-01

    Background Organisms modify their environment and in doing so change the quantity and possibly the quality of available resources. Due to the two-way relationship between organisms and their resource environment, and the complexity it brings to biological communities, measuring species interactions reliably in any biological system is a challenging task. As the resource environment changes, the intensity and even the sign of interactions may vary in time. We used Serratia marcescens and Novosphingobium capsulatum bacteria to study how the interaction between resource environment and organisms influence the growth of the bacterial species during circa 200 generations. We used a sterile-filtering method to measure how changes in resource environment are reflected in growth rates of the two species. Results Changes in the resource environment caused complex time and species composition-dependent effects on bacterial growth performance. Variation in the quality of the growth medium indicated existence of temporally fluctuating within-species facilitation and inhibition, and between-species asymmetric facilitation. Conclusions The interactions between the community members could not be fully predicted based only on the knowledge of the growth performance of each member in isolation. Growth dynamics in sterile-filtered samples of the conditioned growth medium can reveal both biologically meaningful changes in resource availability and temporally changing facilitative resource-mediated interactions between study species. This is the first study we are aware of where the filter-sterilization – growth assay method is applied to study the effect of long-term changes in the environment on species interactions. PMID:22984961

  4. Positive and negative associations between bacterial species in dental root canals.

    PubMed

    Gomes, B P; Drucker, D B; Lilley, J D

    1994-01-01

    Significant associations have been previously reported between certain pairs of bacterial species isolated from human dental root canals. The aim of this study was to examine microbiologically a more extensive series of cases, with particular reference to obligate anaerobes which accounted for 64% of total isolations. A total of 65 different species was isolated and individual root canals yielded a maximum of eleven bacterial species. Highly significant positive associations (p < 0.001) were found between Peptostreptococcus spp. and Prevotella spp., between Peptostreptococcus spp. and P. melaninogenica, between P. micros and Prevotella spp., P. micros and P. melaninogenica and between Prevotella spp. and Eubacterium spp., all with an ODDS ratio of > 9.0. In contrast, negative and highly significant associations (p < 0.01) were found only between the four species pairs: B. vulgatus/F. necrophorum, P. magnus/Bifidobacterium spp., B. gracilis/F. nucleatum and between B. gracilis/Fusobacterium spp.; all with an ODDS ratio of < 0.5. Some previously published associations were confirmed and some new associations were found, while some negative associations became apparent.

  5. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    NASA Astrophysics Data System (ADS)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  6. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli

    PubMed Central

    Laganenka, Leanid; Colin, Remy; Sourjik, Victor

    2016-01-01

    Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour—autoaggregation—of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell–cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation. PMID:27687245

  7. Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype.

    PubMed

    Mushtaq, Naseem; Redpath, Maria B; Luzio, J Paul; Taylor, Peter W

    2004-05-01

    Escherichia coli is a common cause of meningitis and sepsis in the newborn infant, and the large majority of isolates from these infections produce a polysialic acid (PSA) capsular polysaccharide, the K1 antigen, that protects the bacterial cell from immune attack. We determined whether a capsule-depolymerizing enzyme, by removing this protective barrier, could alter the outcome of systemic infection in an animal model. Bacteriophage-derived endosialidase E (endoE) selectively degrades the PSA capsule on the surface of E. coli K1 strains. Intraperitoneal administration of small quantities of recombinant endoE (20 micro g) to 3-day-old rats, colonized with a virulent strain of K1, prevented bacteremia and death from systemic infection. The enzyme had no effect on the viability of E. coli strains but sensitized strains expressing PSA to killing by the complement system. This study demonstrates the potential therapeutic efficacy of agents that cure infections by modification of the bacterial phenotype rather than by killing or inhibition of growth of the pathogen.

  8. Host species shapes the co-occurrence patterns rather than diversity of stomach bacterial communities in pikas.

    PubMed

    Li, Huan; Li, Tongtong; Tu, Bo; Kou, Yongping; Li, Xiangzhen

    2017-07-01

    The mammalian stomach acts as an important barrier against ingested pathogens into the entire gastrointestinal tract, thereby playing a key role in host health. However, little is known regarding to the stomach microbial compositions in wild mammals and the factors that may influence the community compositions. Using high-throughput sequencing of the 16S rRNA gene, we characterized the stomach bacterial community compositions, diversity, and interactions in two common pika (Ochotona sp.) species in China, including Plateau pikas (Ochotona curzoniae) and Daurian pikas (Ochotona daurica) living in the Qinghai-Tibet Plateau and the Inner Mongolia Grassland, respectively. The bacterial communities can be divided into two distinct phylogenetic clusters. The most dominant bacteria in cluster I were unclassified bacteria. Cluster II was more diverse, predominantly consisting of Bacteroidetes, followed by unclassified bacteria, Firmicutes and Proteobacteria. Three dominant genera (Prevotella, Oscillospira, and Ruminococcus) in pika stomachs were significantly enriched in cluster II. In addition, seasons, host species, and sampling sites as well as body weight and sex had no significant impacts on the composition and diversity of pika stomach communities. Interestingly, Plateau pikas harbored a more complex bacterial network than Daurian pikas, and these two pika species showed different co-occurrence patterns. These results suggested that the pika stomach harbors a diverse but relatively stable and unique bacterial community, which is independent on host (host species, body weight, and sex) and measured environmental factors (sampling sites and seasons). Interestingly, host species shapes the microbial interactions rather than diversity of stomach bacterial communities in pikas, reflecting specific niche adaptation of stomach bacterial communities through species interactions.

  9. Massive Infection of Seabird Ticks with Bacterial Species Related to Coxiella burnetii

    PubMed Central

    Dietrich, Muriel; Lebarbenchon, Camille; Jaeger, Audrey; Le Rouzic, Céline; Bastien, Matthieu; Lagadec, Erwan; McCoy, Karen D.; Pascalis, Hervé; Le Corre, Matthieu; Dellagi, Koussay; Tortosa, Pablo

    2014-01-01

    Seabird ticks are known reservoirs of bacterial pathogens of medical importance; however, ticks parasitizing tropical seabirds have received less attention than their counterparts from temperate and subpolar regions. Recently, Rickettsia africae was described to infect seabird ticks of the western Indian Ocean and New Caledonia, constituting the only available data on bacterial pathogens associated with tropical seabird tick species. Here, we combined a pyrosequencing-based approach with a classical molecular analysis targeting bacteria of potential medical importance in order to describe the bacterial community in two tropical seabird ticks, Amblyomma loculosum and Carios (Ornithodoros) capensis. We also investigated the patterns of prevalence and host specificity within the biogeographical context of the western Indian Ocean islands. The bacterial community of the two tick species was characterized by a strong dominance of Coxiella and Rickettsia. Our data support a strict Coxiella-host tick specificity, a pattern resembling the one found for Rickettsia spp. in the same two seabird tick species. Both the high prevalence and stringent host tick specificity suggest that these bacteria may be tick symbionts with probable vertical transmission. Detailed studies of the pathogenicity of these bacteria will now be required to determine whether horizontal transmission can occur and to clarify their status as potential human pathogens. More generally, our results show that the combination of next generation sequencing with targeted detection/genotyping approaches proves to be efficient in poorly investigated fields where research can be considered to be starting from scratch. PMID:24657860

  10. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  11. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  12. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.

    PubMed

    Lindsey, Rebecca L; Garcia-Toledo, L; Fasulo, D; Gladney, L M; Strockbine, N

    2017-09-01

    Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. Published by Elsevier B.V.

  13. Identification of regulatory targets for the bacterial Nus factor complex.

    PubMed

    Baniulyte, Gabriele; Singh, Navjot; Benoit, Courtney; Johnson, Richard; Ferguson, Robert; Paramo, Mauricio; Stringer, Anne M; Scott, Ashley; Lapierre, Pascal; Wade, Joseph T

    2017-12-11

    Nus factors are broadly conserved across bacterial species, and are often essential for viability. A complex of five Nus factors (NusB, NusE, NusA, NusG and SuhB) is considered to be a dedicated regulator of ribosomal RNA folding, and has been shown to prevent Rho-dependent transcription termination. Here, we identify an additional cellular function for the Nus factor complex in Escherichia coli: repression of the Nus factor-encoding gene, suhB. This repression occurs primarily by translation inhibition, followed by Rho-dependent transcription termination. Thus, the Nus factor complex can prevent or promote Rho activity depending on the gene context. Conservation of putative NusB/E binding sites upstream of Nus factor genes suggests that Nus factor autoregulation occurs in many bacterial species. Additionally, many putative NusB/E binding sites are also found upstream of other genes in diverse species, and we demonstrate Nus factor regulation of one such gene in Citrobacter koseri. We conclude that Nus factors have an evolutionarily widespread regulatory function beyond ribosomal RNA, and that they are often autoregulatory.

  14. Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild.

    PubMed

    Chou, Lee Yiung; Clarke, Charles M; Dykes, Gary A

    2014-10-01

    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.

  15. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing.

    PubMed

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2012-10-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.

  16. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  17. Impact of grassland management regimes on bacterial endophyte diversity differs with grass species.

    PubMed

    Wemheuer, F; Wemheuer, B; Kretzschmar, D; Pfeiffer, B; Herzog, S; Daniel, R; Vidal, S

    2016-04-01

    Most plant species are colonized by endophytic bacteria. Despite their importance for plant health and growth, the response of these bacteria to grassland management regimes is still not understood. Hence, we investigated the bacterial community structure in three agricultural important grass species Dactylis glomerata L., Festuca rubra L. and Lolium perenne L. with regard to fertilizer application and different mowing frequencies. For this purpose, above-ground plant material was collected from the Grassland Management Experiment (GrassMan) in Germany in September 2010 and 2011. DNA was extracted from surface-sterilized plant tissue and subjected to 16S rRNA gene PCRs. Endophytic community structures were assessed by denaturing gradient gel electrophoresis (DGGE)-based analysis of obtained PCR products. DGGE fingerprints revealed that fertilizer application significantly altered the endophytic communities in L. perenne and F. rubra but not in D. glomerata. Although no direct effect of mowing was observed, mowing frequencies in combination with fertilizer application had a significant impact on endophyte bacterial community structures. However, this effect was not observed for all three grass species in both years. Therefore, our results showed that management regimes changed the bacterial endophyte communities, but this effect was plant-specific and varied over time. Endophytic bacteria play an important role in plant health and growth. However, studies addressing the influence of grassland management regimes on these bacteria in above-ground plant parts are still missing. In this study, we present first evidence that fertilizer application significantly impacted bacterial community structures in three agricultural important grass species, whereas mowing had only a minor effect. Moreover, this effect was plant-specific and thus not visible for all grass species in each year. Consequently, this study sheds new light into the complex interaction of microbes and

  18. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    PubMed Central

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  19. Nonimmunoglobulin fraction of human milk inhibits bacterial adhesion (hemagglutination) and enterotoxin binding of Escherichia coli and Vibrio cholerae.

    PubMed Central

    Holmgren, J; Svennerholm, A M; Ahrén, C

    1981-01-01

    Human milk and colostrum samples were divided into an immunoglobulin and a nonimmunoglobulin fraction by immunosorbent chromatography. The ability of these fractions to inhibit bacterial cell adhesion and enterotoxin receptor binding of Vibrio cholerae and various Escherichia coli isolates was then tested by in vitro assays. The strongest effect was generally seen with the nonimmunoglobulin fractions, which were shown to significantly inhibit E. coli cell adhesion (hemagglutination) mediated by CFA/I, CFA/II, or K88 fimbriae (but not type 1 pili) and V. cholerae hemagglutination, as well as the binding of cholera toxin and E. coli heat-labile enterotoxin to GM1 ganglioside. Also, the immunoglobulin fractions had significant inhibitory activity in some of these systems. The results are interpreted to suggest that human milk and colostrum may contain secreted structure analogs of the cell receptors for some bacterial adhesions and enterotoxins; this might contribute to the protective effect of milk against enteric infections. PMID:7021421

  20. Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species.

    PubMed

    Khan, S Sudheer; Mukherjee, Amitava; Chandrasekaran, N

    2011-10-01

    Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of <0.5 M. A very less adsorption was observed at pH 9 and NaCl concentration >0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Bacterial species colonizing the vagina of healthy women are not associated with race.

    PubMed

    Beamer, May A; Austin, Michele N; Avolia, Hilary A; Meyn, Leslie A; Bunge, Katherine E; Hillier, Sharon L

    2017-06-01

    The vaginal microbiota of 36 white versus 25 black asymptomatic women were compared using both cultivation-dependent and -independent identification. Significant differences by race were found in colonization and density of bacterial species. However, exclusion of 12 women with bacterial vaginosis by Nugent criteria resulted in no significant differences by race. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.

    PubMed

    Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E

    2008-04-01

    Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.

  3. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  4. Photoinactivation of mcr-1 positive Escherichia coli

    NASA Astrophysics Data System (ADS)

    Caires, C. S. A.; Leal, C. R. B.; Rodrigues, A. C. S.; Lima, A. R.; Silva, C. M.; Ramos, C. A. N.; Chang, M. R.; Arruda, E. J.; Oliveira, S. L.; Nascimento, V. A.; Caires, A. R. L.

    2018-01-01

    The emergence of plasmid-mediated colistin resistance in Enterobacteriaceae, mostly in Escherichia coli due to the mcr-1 gene, has revealed the need to develop alternative approaches in treating mcr-1 positive bacterial infections. This is because colistin is a broad-spectrum antibiotic and one of the ‘last-resort’ antibiotics for multidrug resistant bacteria. The present study evaluated for the first time, to the best of our knowledge, the efficacy of photoinactivation processes to kill a known mcr-1 positive E. coli strain. Eosin methylene-blue (EMB) was investigated as a photoantimicrobial agent for inhibiting the growth of a mcr-1 positive E. coli strain obtained from a patient with a diabetic foot infection. The photoantimicrobial activity of EMB was also tested in a non-multidrug resistant E. coli strain. The photoinactivation process was tested using light doses in the 30-45 J cm-2 range provided by a LED device emitting at 625 nm. Our findings demonstrate that a mcr-1 positive E. coli strain is susceptible to photoinactivation. The results show that the EMB was successfully photoactivated, regardless of the bacterial multidrug resistance; inactivating the bacterial growth by oxidizing the cells in accordance with the generation of the oxygen reactive species. Our results suggest that bacterial photoinactivation is an alternative and effective approach to kill mcr-1 positive bacteria.

  5. Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections.

    PubMed

    Vickerman, M M; Brossard, K A; Funk, D B; Jesionowski, A M; Gill, S R

    2007-01-01

    Phylogenetic analysis of bacterial and archaeal 16S rRNA was used to examine polymicrobial communities within infected root canals of 20 symptomatic and 14 asymptomatic patients. Nucleotide sequences from approximately 750 clones amplified from each patient group with universal bacterial primers were matched to the Ribosomal Database Project II database. Phylotypes from 37 genera representing Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were identified. Results were compared to those obtained with species-specific primers designed to detect Prevotella intermedia, Porphyromonas gingivalis, Porphyromonas endodontalis, Peptostreptococcus micros, Enterococcus sp., Streptococcus sp., Fusobacterium nucleatum, Tannerella forsythensis and Treponema denticola. Since members of the domain Archaea have been implicated in the severity of periodontal disease, and a recent report confirms that archaea are present in endodontic infections, 16S archaeal primers were also used to detect which patients carried these prokaryotes, to determine if their presence correlated with severity of the clinical symptoms. A Methanobrevibacter oralis-like species was detected in one asymptomatic and one symptomatic patient. DNA from root canals of these two patients was further analysed using species-specific primers to determine bacterial cohabitants. Trep. denticola was detected in the asymptomatic but not the symptomatic patient. Conversely, Porph. endodontalis was found in the symptomatic but not the asymptomatic patient. All other species except enterococci were detected with the species-specific primers in both patients. These results confirm the presence of archaea in root canals and provide additional insights into the polymicrobial communities in endodontic infections associated with clinical symptoms.

  6. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes.

    PubMed

    Yang, Chao; Fei, Yuda; Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients.

  7. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes

    PubMed Central

    Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    Background The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. Methods A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. Results The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. Conclusions STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients. PMID:26176548

  8. Effect of species, breed, and age on bacterial load in bovine and bubaline semen

    PubMed Central

    Sannat, Chandrahas; Nair, Ajit; Sahu, S. B.; Sahasrabudhe, S. A.; Kumar, Ashish; Gupta, Amit Kumar; Shende, R. K.

    2015-01-01

    Aim: The present study was conducted to investigate the effect of species, breed and age on bacterial load in fresh and frozen semen of Cattle and Buffalo bull. Materials and Methods: Present study covered 56 cow and 10 buffalo bulls stationed at Central Semen Station Anjora, Durg (Chhattisgarh). Impact of breeds on bacterial load in semen was assessed using six breeds of cattle viz. Sahiwal, Gir, Red Sindhi, Tharparkar, Jersey and Holstein Friesian (HF) cross. Cow bulls were categorized into four different groups based on their age (<4 years, 4-5 years, 5-6 years and > 6 years) to study variation among age groups. Bacterial load was measured in fresh and frozen semen samples from these bulls using the standard plate count (SPC) method and count was expressed as colony forming unit (CFU) per ml of semen. Results: Higher bacterial load was reported in fresh (2.36 × 104 ± 1943 CFU/ml) and frozen (1.00 × 10 ± 90 CFU/ml) semen of cow bulls as compared to buffalo bulls (1.95 × 104 ± 2882 and 7.75 × 102 ± 160 CFU/ml in fresh and frozen semen, respectively). Jersey bull showed significantly higher bacterial count (p < 0.05) both in fresh (4.07 × 104 ± 13927 CFU/ml) and frozen (1.92 × 103 ± 178 CFU/ml) semen followed by HF cross, Sahiwal, Gir, Red Sindhi and Tharparkar bull. Bulls aged < 4 years and more than 6 years yielded increased bacterial load in their semen. Although a minor variation was reported between species and among age groups, no significant differences were measured. Conclusion: Bacterial load in semen did not differ significantly between species and age groups; however significant variation was reported among different breeds. Bulls of Jersey breed showed significantly higher bacterial load in semen as compared to the crossbred and indigenous bull. PMID:27047115

  9. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Removal of bacteria Legionella pneumophila, Escherichia coli, and Bacillus subtilis by (super)cavitation.

    PubMed

    Šarc, Andrej; Kosel, Janez; Stopar, David; Oder, Martina; Dular, Matevž

    2018-04-01

    In sufficient concentrations, the pathogenic bacteria L. pneumophila can cause a respiratory illness that is known as the "Legionnaires" disease. Moreover, toxic Shiga strains of bacteria E. coli can cause life-threatening hemolytic-uremic syndrome. Because of the recent restrictions imposed on the usage of chlorine, outbreaks of these two bacterial species have become more common. In this study we have developed a novel rotation generator and its effectiveness against bacteria Legionella pneumophila and Escherichia coli was tested for various types of hydrodynamic cavitation (attached steady cavitation, developed unsteady cavitation and supercavitation). The results show that the supercavitation was the only effective form of cavitation. It enabled more than 3 logs reductions for both bacterial species and was also effective against a more persistent Gram positive bacteria, B. subtilis. The deactivation mechanism is at present unknown. It is proposed that when bacterial cells enter a supercavitation cavity, an immediate pressure drop occurs and this results in bursting of the cellular membrane. The new rotation generator that induced supercavitation proved to be economically and microbiologically far more effective than the classical Venturi section (super)cavitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments.

    PubMed

    Rodríguez-López, Pedro; Cabo, Marta López

    2017-10-01

    This study was designed to assess the effects that sublethal exposures to pronase (PRN) and benzalkonium chloride (BAC) combined treatments have on Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel in terms of tolerance development (TD) to these compounds. Additionally, fluorescence microscopy was used to observe the changes of the biofilm structure. PRN-BAC exposure was carried out using three different approaches and TD was evaluated treating biofilms with a final 100 μg/ml PRN followed by 50 μg/ml BAC combined treatment. Results showed that exposure to PRN-BAC significantly decreased the number of adhered L. monocytogenes (P < 0.05), while E. coli counts remained generally unaltered. It was also demonstrated that the incorporation of recovery periods during sublethal exposures increased the tolerance of both species of the mixed biofilm to the final PRN-BAC treatment. Moreover, control biofilms became more resistant to PRN-BAC if longer incubation periods were used. Regardless of the treatment used, log reduction values were generally lower in L. monocytogenes compared to E. coli. Additionally, microscopy images showed an altered morphology produced by sublethal PRN-BAC in exposed L. monocytogenes-E. coli dual-species biofilms compared to control samples. Results also demonstrated that L. monocytogenes-E. coli dual-species biofilms are able to develop tolerance to PRN-BAC combined treatments depending on way they have been previously exposed. Moreover, they suggest that the generation of bacterial tolerance should be included as a parameter for sanitation procedures design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  13. Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities.

    PubMed

    Xu, Yong; Dugat-Bony, Eric; Zaheer, Rahat; Selinger, Lorna; Barbieri, Ruth; Munns, Krysty; McAllister, Tim A; Selinger, L Brent

    2014-01-01

    Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed "super-shedders". A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a "normal" microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7.

  14. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    PubMed Central

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-01-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  15. ß-Phenylethylamine as a novel nutrient treatment to reduce bacterial contamination due to Escherichia coli O157:H7 on beef meat.

    PubMed

    Lynnes, Ty; Horne, S M; Prüß, B M

    2014-01-01

    Bacterial infection by Escherichia coli O157:H7 through the consumption of beef meat or meat products is an ongoing problem, in part because bacteria develop resistances towards chemicals aimed at killing them. In an approach that uses bacterial nutrients to manipulate bacteria into behaviors or cellular phenotypes less harmful to humans, we screened a library of 95 carbon and 95 nitrogen sources for their effect on E. coli growth, cell division, and biofilm formation. In the initial screening experiment using the Phenotype MicroArray(TM) technology from BioLog (Hayward, CA), we narrowed the 190 starting nutrients down to eight which were consecutively tested as supplements in liquid beef broth medium. Acetoacetic acid (AAA) and ß-phenylethylamine (PEA) performed best in this experiment. On beef meat pieces, PEA reduced the bacterial cell count by 90% after incubation of the PEA treated and E. coli contaminated meat pieces at 10°C for one week. © 2013.

  16. Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility

    PubMed Central

    Whitten, Miranda M A; Davies, Charlotte E; Kim, Anita; Tlusty, Michael; Wootton, Emma C; Chistoserdov, Andrei; Rowley, Andrew F

    2014-01-01

    Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation. Culture-independent molecular techniques revealed diversity in the bacterial communities of cuticle biofilms both within and between the two lobster species, and identified three bacterial genera associated with shell lesions plus two putative beneficial bacterial species (detected exclusively in healthy cuticle or healing damaged cuticle). In an experimental aquarium shared between American and European lobsters, heterospecific transmission of potentially pathogenic bacteria appeared to be very limited; however, the claws of European lobsters were more likely to develop lesions when reared in the presence of American lobsters. Aquarium biofilms were also examined but revealed no candidate pathogens for environmental transmission. Aquimarina sp. ‘homaria’ (a potential pathogen associated with a severe epizootic form of shell disease) was detected at a much higher prevalence among American than European lobsters, but its presence correlated more with exacerbation of existing lesions rather than with lesion initiation. PMID:24817518

  17. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains.

    PubMed

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-04-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli.

  18. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains

    PubMed Central

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-01-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli. PMID:22139924

  19. Presence of pathogenic Escherichia coli is correlated with bacterial community diversity and composition on pre-harvest cattle hides.

    PubMed

    Chopyk, Jessica; Moore, Ryan M; DiSpirito, Zachary; Stromberg, Zachary R; Lewis, Gentry L; Renter, David G; Cernicchiaro, Natalia; Moxley, Rodney A; Wommack, K Eric

    2016-03-22

    Since 1982, specific serotypes of Shiga toxin-producing Escherichia coli (STEC) have been recognized as significant foodborne pathogens acquired from contaminated beef and, more recently, other food products. Cattle are the major reservoir hosts of these organisms, and while there have been advancements in food safety practices and industry standards, STEC still remains prevalent within beef cattle operations with cattle hides implicated as major sources of carcass contamination. To investigate whether the composition of hide-specific microbial communities are associated with STEC prevalence, 16S ribosomal RNA (rRNA) bacterial community profiles were obtained from hide and fecal samples collected from a large commercial feedlot over a 3-month period. These community data were examined amidst an extensive collection of prevalence data on a subgroup of STEC that cause illness in humans, referred to as enterohemorrhagic E. coli (EHEC). Fecal 16S rRNA gene OTUs (operational taxonomic units) were subtracted from the OTUs found within each hide 16S rRNA amplicon library to identify hide-specific bacterial populations. Comparative analysis of alpha diversity revealed a significant correlation between low bacterial diversity and samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups: O26, O111, O103, O121, O45, and O145. This trend occurred regardless of diversity metric or fecal OTU presence. The number of EHEC serogroups present in the samples had a compounding effect on the inverse relationship between pathogen presence and bacterial diversity. Beta diversity data showed differences in bacterial community composition between samples containing O157 and non-O157 populations, with certain OTUs demonstrating significant changes in relative abundance. The cumulative prevalence of the targeted EHEC serogroups was correlated with low bacterial community diversity on pre-harvest cattle hides. Understanding the relationship between indigenous hide

  20. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  1. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana.

    PubMed

    Liu, Sha; Jin, Dong; Lan, Ruiting; Wang, Yiting; Meng, Qiong; Dai, Hang; Lu, Shan; Hu, Shoukui; Xu, Jianguo

    2015-07-01

    The taxonomic position of a group of seven closely related lactose-negative enterobacterial strains, which were isolated from fresh faecal samples of Marmota himalayana collected from the Qinghai-Tibetan plateau, China, was determined by using a polyphasic approach. Cells were Gram-reaction-negative, non-sporulating, non-motile, short rods (0.5-1 × 1-2.5 μm). By 16S rRNA gene sequences, the representative strain, HT073016(T), showed highest similarity values with Escherichia fergusonii ATCC 35469(T) at 99.3%, Escherichia coli ATCC 11775(T) at 99.2%, Escherichia albertii LMG 20976(T) at 98.9%, Escherichia hermannii CIP 103176(T) at 98.4%, and Escherichia vulneris ATCC 33821(T) at 97.7%. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the seven strains formed a monophyletic group with five other species of the genus Escherichia. Digital DNA-DNA hybridization studies between strain HT073016(T) and five other species of the genus Escherichia showed that it shared less than 70% DNA-DNA relatedness with all known species of the genus Escherichia, supporting the novel species status of the strain. The DNA G+C content of strain HT073016(T) was 53.8 mol%. On the basis of phenotypic and phylogenetic characteristics, strain HT073016(T) and the six other HT073016(T)-like strains were clearly distinct from the type strains of other recognized species of the genus Escherichia and represent a novel species of the genus Escherichia, for which the name Escherichia marmotae sp. nov. is proposed, with HT073016(T) ( = CGMCC 1.12862(T) = DSM 28771(T)) as the type strain.

  2. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    PubMed

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Aeromonas species exhibit aggregative adherence to HEp-2 cells.

    PubMed Central

    Neves, M S; Nunes, M P; Milhomem, A M

    1994-01-01

    Clinical and environmental isolates of Aeromonas species (five A. hydrophila isolates, three A. caviae isolates, and two A. sobria isolates) were tested for their adherence to HEp-2 cells. Clinical isolates of A. hydrophila and A. sobria exhibited aggregative adherence similar to that presented by enteroadherent-aggregative Escherichia coli. Bacterial aggregates adhered to cells with a typical "stacked-brick" appearance. In contrast, A. caviae strains showed a diffuse adherence pattern. Images PMID:8027331

  4. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine.

    PubMed

    Zaheer, Rahat; Dugat-Bony, Eric; Holman, Devon; Cousteix, Elodie; Xu, Yong; Munns, Krysty; Selinger, Lorna J; Barbieri, Rutn; Alexander, Trevor; McAllister, Tim A; Selinger, L Brent

    2017-01-01

    Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders.

  5. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine

    PubMed Central

    Cousteix, Elodie; Xu, Yong; Munns, Krysty; Selinger, Lorna J.; Barbieri, Rutn; Alexander, Trevor; McAllister, Tim A.; Selinger, L. Brent

    2017-01-01

    Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders. PMID:28141846

  6. Identification of different bacterial species in biofilms using confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  7. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.

    PubMed

    Ulvatne, Hilde; Samuelsen, Ørjan; Haukland, Hanne H; Krämer, Manuela; Vorland, Lars H

    2004-08-15

    Most antimicrobial peptides have an amphipathic, cationic structure, and an effect on the cytoplasmic membrane of susceptible bacteria has been postulated as the main mode of action. Other mechanisms have been reported, including inhibition of cellular functions by binding to DNA, RNA and proteins, and the inhibition of DNA and/or protein synthesis. Lactoferricin B (Lfcin B), a cationic peptide derived from bovine lactoferrin, exerts slow inhibitory and bactericidal activity and does not lyse susceptible bacteria, indicating a possible intracellular target. In the present study incorporation of radioactive precursors into DNA, RNA and proteins was used to demonstrate effects of Lfcin B on macromolecular synthesis in bacteria. In Escherichia coli UC 6782, Lfcin B induces an initial increase in protein and RNA synthesis and a decrease in DNA synthesis. After 10 min, the DNA-synthesis increases while protein and RNA-synthesis decreases significantly. In Bacillus subtilis, however, all synthesis of macromolecules is inhibited for at least 20 min. After 20 min RNA-synthesis increases. The results presented here show that Lfcin B at concentrations not sufficient to kill bacterial cells inhibits incorporation of radioactive precursors into macromolecules in both Gram-positive and Gram-negative bacteria.

  8. Prevalence of Corynebacterial 16S rRNA Sequences in Patients with Bacterial and “Nonbacterial” Prostatitis

    PubMed Central

    Tanner, Michael A.; Shoskes, Daniel; Shahed, Asha; Pace, Norman R.

    1999-01-01

    The etiology of chronic prostatitis syndromes in men is controversial, particularly when positive cultures for established uropathogens are lacking. Although identification of bacteria in prostatic fluid has relied on cultivation and microscopy, most microorganisms in the environment, including some human pathogens, are resistant to cultivation. We report here on an rRNA-based molecular phylogenetic approach to the identification of bacteria in prostate fluid from prostatitis patients. Positive bacterial signals were seen for 65% of patients with chronic prostatitis overall. Seven of 11 patients with bacterial signals but none of 6 patients without bacterial signals were cured with antibiotic-based therapy. Results indicate the occurrence in the prostate fluid of a wide spectrum of bacterial species representing several genera. Most rRNA genes were closely related to those of species belonging to the genera Corynebacterium, Staphylococcus, Peptostreptococcus, Streptococcus, and Escherichia. Unexpectedly, a wide diversity of Corynebacterium species was found in high proportion compared to the proportions of other bacterial species found. A subset of these 16S rRNA sequences represent those of undescribed species on the basis of their positions in phylogenetic trees. These uncharacterized organisms were not detected in control samples, suggesting that the organisms have a role in the disease or are the consequence of the disease. These studies show that microorganisms associated with prostatitis generally occur as complex microbial communities that differ between patients. The results also indicate that microbial communities distinct from those associated with prostatitis may occur at low levels in normal prostatic fluid. PMID:10325338

  9. Sequential necrotizing fasciitis caused by the monomicrobial pathogens Streptococcus equisimilis and extended-spectrum beta-lactamase-producing Escherichia coli.

    PubMed

    Endo, Akiko; Matsuoka, Ryosuke; Mizuno, Yasushi; Doi, Asako; Nishioka, Hiroaki

    2016-08-01

    Necrotizing fasciitis is a rapidly progressing bacterial infection of the superficial fascia and subcutaneous tissue that is associated with a high mortality rate and is caused by a single species of bacteria or polymicrobial organisms. Escherichia coli is rarely isolated from patients with monomicrobial disease. Further, there are few reports of extended-spectrum beta-lactamase (ESBL)-producing E. coli associated with necrotizing fasciitis. We report here our treatment of an 85-year-old man who was admitted because of necrotizing fasciitis of his right thigh. Streptococcus equisimilis was detected as a monomicrobial pathogen, and the infection was cured by amputation of the patient's right leg and the administration of antibiotics. However, 5 days after discontinuing antibiotic therapy, he developed necrotizing fasciitis on his right upper limb and died. ESBL-producing E. coli was the only bacterial species isolated from blood and skin cultures. This case demonstrates that ESBL-producing E. coli can cause monomicrobial necrotizing fasciitis, particularly during hospitalization and that a different bacterial species can cause disease shortly after a previous episode. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Escherichia coli O157:H7 Super-Shedder and Non-Shedder Feedlot Steers Harbour Distinct Fecal Bacterial Communities

    PubMed Central

    Zaheer, Rahat; Selinger, Lorna; Barbieri, Ruth; Munns, Krysty; McAllister, Tim A.; Selinger, L. Brent

    2014-01-01

    Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed “super-shedders”. A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a “normal” microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7. PMID:24858731

  11. Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene.

    PubMed

    Yuan, Chungang; Lu, Xiufen; Qin, Jie; Rosen, Barry P; Le, X Chris

    2008-05-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400-500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems.

  12. Volatile Arsenic Species Released from Escherichia coli Expressing the AsIII S-adenosylmethionine Methyltransferase Gene

    PubMed Central

    YUAN, CHUNGANG; LU, XIUFEN; QIN, JIE; ROSEN, BARRY P.; LE, X. CHRIS

    2015-01-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400–500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems. PMID:18522094

  13. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe

    PubMed Central

    Skaljac, Marisa; Zanic, Katja; Puizina, Jasna; Lepen Pleic, Ivana; Ghanim, Murad

    2017-01-01

    Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia), which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar) Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium) known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies. PMID:29053633

  14. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe.

    PubMed

    Skaljac, Marisa; Kanakala, Surapathrudu; Zanic, Katja; Puizina, Jasna; Pleic, Ivana Lepen; Ghanim, Murad

    2017-10-20

    Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia), which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar) Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium) known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies.

  15. Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility.

    PubMed

    Whitten, Miranda M A; Davies, Charlotte E; Kim, Anita; Tlusty, Michael; Wootton, Emma C; Chistoserdov, Andrei; Rowley, Andrew F

    2014-06-01

    Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation. Culture-independent molecular techniques revealed diversity in the bacterial communities of cuticle biofilms both within and between the two lobster species, and identified three bacterial genera associated with shell lesions plus two putative beneficial bacterial species (detected exclusively in healthy cuticle or healing damaged cuticle). In an experimental aquarium shared between American and European lobsters, heterospecific transmission of potentially pathogenic bacteria appeared to be very limited; however, the claws of European lobsters were more likely to develop lesions when reared in the presence of American lobsters. Aquarium biofilms were also examined but revealed no candidate pathogens for environmental transmission. Aquimarina sp. 'homaria' (a potential pathogen associated with a severe epizootic form of shell disease) was detected at a much higher prevalence among American than European lobsters, but its presence correlated more with exacerbation of existing lesions rather than with lesion initiation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    NASA Astrophysics Data System (ADS)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  17. Use of a Bacterial Luciferase Monitoring System To Estimate Real-Time Dynamics of Intracellular Metabolism in Escherichia coli.

    PubMed

    Shimada, Tomohiro; Tanaka, Kan

    2016-10-01

    Regulation of central carbon metabolism has long been an important research subject in every organism. While the dynamics of metabolic flows during changes in available carbon sources have been estimated based on changes in metabolism-related gene expression, as well as on changes in the metabolome, the flux change itself has scarcely been measured because of technical difficulty, which has made conclusions elusive in many cases. Here, we used a monitoring system employing Vibrio fischeri luciferase to probe the intracellular metabolic condition in Escherichia coli Using a batch culture provided with a limited amount of glucose, we performed a time course analysis, where the predominant carbon source shifts from glucose to acetate, and identified a series of sequential peaks in the luciferase activity (peaks 1 to 4). Two major peaks, peaks 1 and 3, were considered to correspond to the glucose and acetate consuming phases, respectively, based on the glucose, acetate, and dissolved oxygen concentrations in the medium. The pattern of these peaks was changed by the addition of a different carbon source or by an increasing concentration of glucose, which was consistent with the present model. Genetically, mutations involved in glycolysis or the tricarboxylic acid (TCA) cycle/gluconeogenesis specifically affected peak 1 or peak 3, respectively, as expected from the corresponding metabolic phase. Intriguingly, mutants for the acetate excretion pathway showed a phenotype of extended peak 2 and delayed transition to the TCA cycle/gluconeogenesis phase, which suggests that peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Intracellular metabolic flows dynamically change during shifts in available carbon sources. However, because of technical difficulty, the flux change has scarcely been measured in living cells. Here

  18. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    PubMed Central

    Cabugao, Kristine G.; Timm, Collin M.; Carrell, Alyssa A.; Childs, Joanne; Lu, Tse-Yuan S.; Pelletier, Dale A.; Weston, David J.; Norby, Richard J.

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability (p-value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  19. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest.

    PubMed

    Cabugao, Kristine G; Timm, Collin M; Carrell, Alyssa A; Childs, Joanne; Lu, Tse-Yuan S; Pelletier, Dale A; Weston, David J; Norby, Richard J

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability ( p -value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  20. High level bacterial contamination of secondary school students' mobile phones.

    PubMed

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-06-01

    While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students' mobile phones. Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline ( tet A, tet B, tet M), erythromycin ( erm B) and sulphonamide ( sul 1) resistance genes was assessed. We found a high median bacterial count on secondary school students' mobile phones (10.5 CFU/cm 2 ) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes ( Staphylococcus aureus , Acinetobacter spp. , Pseudomonas spp., Bacillus cereus and Neisseria flavescens ) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner's gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Quantitative study methods revealed high level bacterial contamination of secondary school students' mobile phones.

  1. Non-thermal effects of 94 GHz radiation on bacterial metabolism

    NASA Astrophysics Data System (ADS)

    Raitt, Brittany J.

    Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were used to investigate the non-thermal effects of terahertz (THz) radiation exposure on bacterial cells. The THz source used was a 94 GHz (0.94 THz) Millitech Gunn Diode Oscillator with a power density of 1.3 mW/cm2. The cultures were placed in the middle sixty wells of two 96-well microplates, one serving as the experimental plate and one serving as a control. The experimental plate was placed on the radiation source for either two, eighteen, or twenty-four hours and the metabolism of the cells was measured in a spectrophotometer using the tetrazolium dye XTT. The results showed no consistent significant differences in either the growth rates or the metabolism of any of the bacterial species at this frequency and power density.

  2. [Trigger factor dependent refolding of bacterial luciferases in Escherichia coli cells: kinetics, efficiency and effect of the bichaperone system, DnaKJE-ClpB].

    PubMed

    Mel'kina, O E; Gorianin, I I; Manukhov, I V; Zavil'gel'skiĭ, G B

    2013-01-01

    Here were determined the basic parameters of the Tigger Factor (TF) -dependent refolding of thermal inactivated bacterial luciferases. The TF-dependent refolding is less efficient and requires more time than DnaKJE-dependent refolding. The increase in the intracellular concentration of TF leads to an apparent decrease in the level of the thermal inactivated bacterial luciferase refolding. For thermolabile luciferases, the level of TF-dependent refolding is significantly higher, than for thermostable luciferases: 30-40%--for the thermolabile Aliivibrio fischeri and Photobacterium leiognathi luciferases, and 10 and 0.5% for the thermostable Vibrio harveyi and Photorhabdus luminescens luciferases, respectively. The negative effect of the ClpB protein on the TF-dependent refolding was shown: in Escherichia coli clpB::kan TF-dependent refolding is more efficient than in the E. coli clpB+.

  3. Bacterial and fungal endophthalmitis in upper Egypt: related species and risk factors.

    PubMed

    Gharamah, A A; Moharram, A M; Ismail, M A; Al-Hussaini, A K

    2012-08-01

    To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  4. SuperPhy: predictive genomics for the bacterial pathogen Escherichia coli.

    PubMed

    Whiteside, Matthew D; Laing, Chad R; Manji, Akiff; Kruczkiewicz, Peter; Taboada, Eduardo N; Gannon, Victor P J

    2016-04-12

    Predictive genomics is the translation of raw genome sequence data into a phenotypic assessment of the organism. For bacterial pathogens, these phenotypes can range from environmental survivability, to the severity of human disease. Significant progress has been made in the development of generic tools for genomic analyses that are broadly applicable to all microorganisms; however, a fundamental missing component is the ability to analyze genomic data in the context of organism-specific phenotypic knowledge, which has been accumulated from decades of research and can provide a meaningful interpretation of genome sequence data. In this study, we present SuperPhy, an online predictive genomics platform ( http://lfz.corefacility.ca/superphy/ ) for Escherichia coli. The platform integrates the analytical tools and genome sequence data for all publicly available E. coli genomes and facilitates the upload of new genome sequences from users under public or private settings. SuperPhy provides real-time analyses of thousands of genome sequences with results that are understandable and useful to a wide community, including those in the fields of clinical medicine, epidemiology, ecology, and evolution. SuperPhy includes identification of: 1) virulence and antimicrobial resistance determinants 2) statistical associations between genotypes, biomarkers, geospatial distribution, host, source, and phylogenetic clade; 3) the identification of biomarkers for groups of genomes on the based presence/absence of specific genomic regions and single-nucleotide polymorphisms and 4) in silico Shiga-toxin subtype. SuperPhy is a predictive genomics platform that attempts to provide an essential link between the vast amounts of genome information currently being generated and phenotypic knowledge in an organism-specific context.

  5. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    PubMed

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  6. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health.

  7. The normal vaginal and uterine bacterial microbiome in giant pandas (Ailuropoda melanoleuca).

    PubMed

    Yang, Xin; Cheng, Guangyang; Li, Caiwu; Yang, Jiang; Li, Jianan; Chen, Danyu; Zou, Wencheng; Jin, SenYan; Zhang, Hemin; Li, Desheng; He, Yongguo; Wang, Chengdong; Wang, Min; Wang, Hongning

    2017-06-01

    While the health effects of the colonization of the reproductive tracts of mammals by bacterial communities are widely known, there is a dearth of knowledge specifically in relation to giant panda microbiomes. In order to investigate the vaginal and uterine bacterial diversity of healthy giant pandas, we used high-throughput sequence analysis of portions of the 16S rRNA gene, based on samples taken from the vaginas (GPV group) and uteri (GPU group) of these animals. Results showed that the four most abundant phyla, which contained in excess of 98% of the total sequences, were Proteobacteria (59.2% for GPV and 51.4% for GPU), Firmicutes (34.4% for GPV and 23.3% for GPU), Actinobacteria (5.2% for GPV and 14.0% for GPU) and Bacteroidetes (0.3% for GPV and 10.3% for GPU). At the genus level, Escherichia was most abundant (11.0%) in the GPV, followed by Leuconostoc (8.7%), Pseudomonas (8.0%), Acinetobacter (7.3%), Streptococcus (6.3%) and Lactococcus (6.0%). In relation to the uterine samples, Janthinobacterium had the highest prevalence rate (20.2%), followed by Corynebacterium (13.2%), Streptococcus (19.6%), Psychrobacter (9.3%), Escherichia (7.5%) and Bacteroides (6.2%). Moreover, both Chao1 and abundance-based coverage estimator (ACE) species richness indices, which were operating at the same sequencing depth for each sample, demonstrated that GPV had more species richness than GPU, while Simpson and Shannon indices of diversity indicated that GPV had the higher bacterial diversity. These findings contribute to our understanding of the potential influence abnormal reproductive tract microbial communities have on negative pregnancy outcomes in giant pandas. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Investigation of multimodal forward scatter phenotyping from bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kim, Huisung

    A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with

  9. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  10. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  11. Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence.

    PubMed

    Gkekas, Sotirios; Singh, Ranjan Kumar; Shkumatov, Alexander V; Messens, Joris; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan; Versées, Wim

    2017-04-07

    The Obg protein family belongs to the TRAFAC (translation factor) class of P-loop GTPases and is conserved from bacteria to eukaryotes. Essential roles in many different cellular processes have been suggested for the Obg protein from Escherichia coli (ObgE), and we recently showed that it is a central regulator of bacterial persistence. Here, we report the first crystal structure of ObgE at 1.85-Å resolution in the GDP-bound state, showing the characteristic N-terminal domain and a central G domain that are common to all Obg proteins. ObgE also contains an intrinsically disordered C-terminal domain, and we show here that this domain specifically contributed to GTP binding, whereas it did not influence GDP binding or GTP hydrolysis. Biophysical analysis, using small angle X-ray scattering and multi-angle light scattering experiments, revealed that ObgE is a monomer in solution, regardless of the bound nucleotide. In contrast to recent suggestions, our biochemical analyses further indicate that ObgE is neither activated by K + ions nor by homodimerization. However, the ObgE GTPase activity was stimulated upon binding to the ribosome, confirming the ribosome-dependent GTPase activity of the Obg family. Combined, our data represent an important step toward further unraveling the detailed molecular mechanism of ObgE, which might pave the way to further studies into how this GTPase regulates bacterial physiology, including persistence. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria▿

    PubMed Central

    Jordal, Peter Bruun; Dueholm, Morten Simonsen; Larsen, Poul; Petersen, Steen Vang; Enghild, Jan Johannes; Christiansen, Gunna; Højrup, Peter; Nielsen, Per Halkjær; Otzen, Daniel Erik

    2009-01-01

    Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope. PMID:19395568

  13. NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES.

    PubMed

    Yang, Xin; Yang, Jiang; Wang, Hongning; Li, Caiwu; He, Yongguo; Jin, SenYan; Zhang, Hemin; Li, Desheng; Wang, Pengyan; Xu, Yuesong; Xu, Changwen; Fan, Chengyun; Xu, Lulai; Huang, Shan; Qu, Chunmao; Li, Guo

    2016-03-01

    In order to study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13 of 24), followed by Staphylococcus epidermidis (41.7%, 10 of 24) and Escherichia coli (33.3%, 8 of 24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae, and Proteus mirabilis, were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), while 7.2% were multidrug resistant. This is the first report of the normal vaginal culturable bacterial flora of giant pandas, followed by the antimicrobial susceptibility patterns of the isolates.

  14. NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES.

    PubMed

    Yang, Xin; Yang, Jiang; Wang, Hongning; Li, Caiwu; He, Yongguo; Jin, SenYan; Zhang, Hemin; Li, Desheng; Wang, Pengyan; Xu, Yuesong; Xu, Changwen; Fan, Chengyun; Xu, Lulai; Huang, Shan; Qu, Chunmao; Li, Guo

    2016-06-01

    To study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13/24), followed by Staphylococcus epidermidis (41.7%, 10/24) and Escherichia coli (33.3%, 8/24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae , and Proteus mirabilis , were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with the disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), whereas 7.2% were multidrug resistant. This is the first report of the normal culturable vaginal bacterial flora of giant pandas and the antimicrobial susceptibility patterns of the isolates.

  15. Parallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium

    DOE PAGES

    Douglas, Sarah M.; Chubiz, Lon M.; Harcombe, William R.; ...

    2016-09-12

    Multi-species microbial communities play a critical role in human health, industry, and waste remediation. Recently, the evolution of synthetic consortia in the laboratory has enabled adaptation to be addressed in the context of interacting species. Using an engineered bacterial consortium,we repeatedly evolved cooperative genotypes and examined both the predictability of evolution and the phenotypes that determinecommunity dynamics. Eight Salmonella enterica serovar Typhimurium strains evolved methionine excretion sufficient to support growth of an Escherichia coli methionine auxotroph, from whom they required excreted growth substrates. Non-synonymousmutations in metA, encoding homoserine trans-succinylase (HTS), were detected in each evolved S. enterica methionine cooperator andmore » were shown to be necessary for cooperative consortia growth. Molecular modeling was used to predict that most of the non-synonymous mutations slightly increase the binding affinity for HTS homodimer formation. Despite this genetic parallelism and trend of increasing protein binding stability, these metA alleles gave rise to a wide range of phenotypic diversity in termsof individual versus group benefit. The cooperators with the highest methionine excretion permitted nearly two-fold faster consortia growth and supported the highest fraction of E. coli, yet also had the slowest individual growth rates compared to less cooperative strains. Thus, although the genetic basis of adaptation was quite similar across independent origins of cooperative phenotypes, quantitative measurements of metabolite production were required to predict either the individual-level growth consequences or how these propagate to community-level behavior.« less

  16. Parallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Sarah M.; Chubiz, Lon M.; Harcombe, William R.

    Multi-species microbial communities play a critical role in human health, industry, and waste remediation. Recently, the evolution of synthetic consortia in the laboratory has enabled adaptation to be addressed in the context of interacting species. Using an engineered bacterial consortium,we repeatedly evolved cooperative genotypes and examined both the predictability of evolution and the phenotypes that determinecommunity dynamics. Eight Salmonella enterica serovar Typhimurium strains evolved methionine excretion sufficient to support growth of an Escherichia coli methionine auxotroph, from whom they required excreted growth substrates. Non-synonymousmutations in metA, encoding homoserine trans-succinylase (HTS), were detected in each evolved S. enterica methionine cooperator andmore » were shown to be necessary for cooperative consortia growth. Molecular modeling was used to predict that most of the non-synonymous mutations slightly increase the binding affinity for HTS homodimer formation. Despite this genetic parallelism and trend of increasing protein binding stability, these metA alleles gave rise to a wide range of phenotypic diversity in termsof individual versus group benefit. The cooperators with the highest methionine excretion permitted nearly two-fold faster consortia growth and supported the highest fraction of E. coli, yet also had the slowest individual growth rates compared to less cooperative strains. Thus, although the genetic basis of adaptation was quite similar across independent origins of cooperative phenotypes, quantitative measurements of metabolite production were required to predict either the individual-level growth consequences or how these propagate to community-level behavior.« less

  17. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    NASA Astrophysics Data System (ADS)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  18. The RclR Protein Is a Reactive Chlorine-specific Transcription Factor in Escherichia coli *

    PubMed Central

    Parker, Benjamin W.; Schwessinger, Emily A.; Jakob, Ursula; Gray, Michael J.

    2013-01-01

    Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance. PMID:24078635

  19. The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli.

    PubMed

    Parker, Benjamin W; Schwessinger, Emily A; Jakob, Ursula; Gray, Michael J

    2013-11-08

    Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance.

  20. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    PubMed

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  1. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    PubMed

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of animal bacterial pathogens.

    PubMed

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-05-01

    To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains.

  3. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  4. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    PubMed

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids.

    PubMed

    Xu, Zimu; Cheng, Cheng; Shen, Jie; Lan, Yan; Hu, Shuheng; Han, Wei; Chu, Paul K

    2018-06-01

    The direct inactivation effects of an atmospheric pressure direct current (DC) air plasma against planktonic Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in aqueous solution are investigated in vitro. Upon plasma treatment, extensively analyses on cell culturability, metabolic capacity, membrane integrity, surface morphology, cellular proteins, nucleic acids and intracellular reactive oxygen species (ROS) for both bacterial species were carried out and significant antimicrobial effects observed. Compared with the cellular culturability, a sub-lethal viable but non-culturable (VBNC) state was induced while more S. aureus entered this state than E. coli. Damaged bacterial outer structures were observed and the total concentrations of cellular protein and nucleic acid decreased for both bacteria after plasma treatment. The plasma-induced aqueous reactive species (RS) and intracellular ROS might produce detrimental effects to the bacteria, while S. aureus was less susceptible to the discharge after a 20-min exposure compared to E. coli. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Associations between intrauterine bacterial infection, reproductive tract inflammation, and reproductive performance in pasture-based dairy cows.

    PubMed

    de Boer, Melvin; Buddle, Bryce M; Heuer, Cord; Hussein, Hassan; Zheng, Tao; LeBlanc, Stephen J; McDougall, Scott

    2015-06-01

    Reproductive tract bacterial infections, particularly those caused by Escherichia coli and Trueperella pyogenes, can have a negative impact on reproductive performance. It has been hypothesized that the presence of E coli early postpartum may increase the risk of isolation of T pyogenes later postpartum. The objective of the present study was to examine associations between intrauterine bacterial infections with E coli and T pyogenes and any bacterial growth (irrespective of bacterial species), purulent vaginal discharge (PVD), cytologic evidence of endometritis (an increased proportion of polymorphonuclear cells [PMNs]), and reproductive performance. Dairy cows (n = 272) from six herds were examined at Days 0 (median, 2 days in milk), 21 and 42 postpartum. From each cow two intrauterine samples were collected via triple-guarded cytobrush at Days 0 and 21. The first cytobrush was used for bacteriologic culture. Escherichia coli and T pyogenes were isolated by culture, and E coli isolates were assigned to one of four phylogenetic groups using a two-step triplex polymerase chain reaction. In addition, T pyogenes was confirmed by polymerase chain reaction. The second cytobrush was used to prepare a cytology slide. Nucleated cells (n = 200) were categorized as epithelial cells, PMNs, or macrophages. Cows were also assessed for body condition score, PVD score, the presence of a CL, and pregnancy. Statistical analysis was performed using multivariable models. There was no association between the presence of E coli at Day 0 and probability of isolation of T pyogenes 3 weeks later; however, E coli positive cows at Day 0 were more likely to be diagnosed with E coli at Day 21 (relative risk [RR] = 2.0, P < 0.01). Escherichia coli at Day 0 or T pyogenes at Day 21 increased the risk of PVD diagnosis 3 weeks later (RR = 1.9; P = 0.04 and RR = 3.0; P = 0.05, respectively). Cows with any bacterial growth at Day 21, irrespective of species, were less likely to conceive within 3

  7. Comparison between Flow Cytometry and Traditional Culture Methods for Efficacy Assessment of Six Disinfectant Agents against Nosocomial Bacterial Species

    PubMed Central

    Massicotte, Richard; Mafu, Akier A.; Ahmad, Darakhshan; Deshaies, Francis; Pichette, Gilbert; Belhumeur, Pierre

    2017-01-01

    The present study was undertaken to compare the use of flow cytometry (FCM) and traditional culture methods for efficacy assessment of six disinfectants used in Quebec hospitals including: two quaternary ammonium-based, two activated hydrogen peroxide-based, one phenol-based, and one sodium hypochlorite-based. Four nosocomial bacterial species, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Vancomycin-resistant Enterococci faecalis, were exposed to minimum lethal concentrations (MLCs) and sublethal concentrations (1/2 MLCs) of disinfectants under study. The results showed a strong correlation between the two techniques for the presence of dead and live cell populations, as well as, evidence of injured populations with the FCM. The only exception was observed with sodium hypochlorite at higher concentrations where fluorescence was diminished and underestimating dead cell population. The results also showed that FCM can replace traditional microbiological methods to study disinfectant efficacy on bacteria. Furthermore, FCM profiles for E. coli and E. faecalis cells exposed to sublethal concentrations exhibited distinct populations of injured cells, opening a new aspect for future research and investigation to elucidate the role of injured, cultural/noncuturable/resuscitable cell populations in infection control. PMID:28217115

  8. The Inhibition of Escherichia coli Biofilm Formation by Gallium Nitrate-Modified Titanium.

    PubMed

    Zhu, Yuanyuan; Qiu, Yan; Chen, Ruiqi; Liao, Lianming

    2015-08-01

    Periprosthetic infections are notoriously difficult to treat due to biofilm formation. Previously, we reported that gallium-EDTA attached to PVC (polyvinyl chloride) surface could prevent bacterial colonization. Herein we examined the effect of this gallium-EDTA complex on Escherichia coli biofilm formation on titanium. It was clearly demonstrated that gallium nitrate significantly inhibited the growth and auto-aggregation of Escherichia coli. Furthermore, titanium with gallium-EDTA coating resisted bacterial colonization as indicated by crystal violet staining. When the chips were immersed in human serum and incubated at 37 °C, they demonstrated significant antimicrobial activity after more than 28 days of incubation. These findings indicate that gallium-EDTA coating of implants can result in a surface that can resist bacterial colonization. This technology holds great promise for the prevention and treatment of periprosthetic infections.

  9. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  10. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  11. The species accuracy of the Most Probable Number (MPN) European Union reference method for enumeration of Escherichia coli in marine bivalves.

    PubMed

    Grevskott, Didrik Hjertaker; Svanevik, Cecilie Smith; Wester, Astrid Louise; Lunestad, Bjørn Tore

    2016-12-01

    Continuous European Union programmes with specified methods for enumeration of Escherichia coli in bivalves for human consumption are currently running. The objective of this research was to examine the species accuracy of the five times three tube Most Probable Number (MPN) EU reference method used for detection of E. coli in marine bivalves. Among 549 samples of bivalves harvested from Norwegian localities during 2014 and 2015, a total number of 200 bacterial isolates were prepared from randomly selected culture-positive bivalves. These presumptive E. coli isolates were characterized biochemically by the Analytical Profile Index (API) 20E, as well as by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). The majority of isolates (90%) were identified as E. coli, by both API 20E and MALDI-TOF MS. Ten isolates (5%) were identified as Klebsiella pneumoniae, while one isolate was identified as K. oxytoca by both methods, whereas three isolates were identified as Acinetobacter baumannii, Citrobacter braakii, and Enterobacter cloacae, respectively. The identification of the remaining six isolates were not in compliance between the two methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano

    PubMed Central

    Banskar, Sunil; Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Punekar, Sachin; Shouche, Yogesh S.

    2016-01-01

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals. PMID:27845426

  13. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano.

    PubMed

    Banskar, Sunil; Bhute, Shrikant S; Suryavanshi, Mangesh V; Punekar, Sachin; Shouche, Yogesh S

    2016-11-15

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.

  14. High level bacterial contamination of secondary school students’ mobile phones

    PubMed Central

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-01-01

    Introduction While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students’ mobile phones. Methods Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline (tetA, tetB, tetM), erythromycin (ermB) and sulphonamide (sul1) resistance genes was assessed. Results We found a high median bacterial count on secondary school students’ mobile phones (10.5 CFU/cm2) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes (Staphylococcus aureus, Acinetobacter spp., Pseudomonas spp., Bacillus cereus and Neisseria flavescens) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner’s gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Conclusion Quantitative study methods revealed high level bacterial contamination of secondary school students’ mobile phones. PMID:28626737

  15. 40 CFR 799.9510 - TSCA bacterial reverse mutation test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false TSCA bacterial reverse mutation test... REQUIREMENTS Health Effects Test Guidelines § 799.9510 TSCA bacterial reverse mutation test. (a) Scope. This... mutation test uses amino-acid requiring strains of Salmonella typhimurium and Escherichia coli to detect...

  16. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    PubMed Central

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  17. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli.

    PubMed

    Sharifi-Rad, J; Soufi, L; Ayatollahi, S A M; Iriti, M; Sharifi-Rad, M; Varoni, E M; Shahri, F; Esposito, S; Kuhestani, K; Sharifi-Rad, M

    2016-09-19

    Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 is one of the most important human pathogenic microorganisms, which can cause life-threatening infections. Xanthium strumarium L. is a plant with anti-bacterial activity against gram-negative and gram-positive bacteria. This study aims to demonstrate in vitro efficacy of the essential oil (EO) extracted from Xanthium strumarium L. against E. coli O157:H7. Using the agar test diffusion, the effect of Xanthium strumarium L. EO (5, 10, 15, 30, 60, and 120 mg/mL) was verified at each of the four different growth phases of E. coli O157:H7. Cell counts of viable cells and colony forming unit (CFU) were determined at regular time points using Breed's method and colony counting method, respectively. No viable cell was detectable after the 1 hour-exposure to X. strumarium EO at 30, 60, and 120 mg/mL concentrations. No bacterial colony was formed after 1 h until the end of the incubation period at 24 h. At lower concentrations, the number of bacteria cells decreased and colonies could be observed only after incubation. At the exponential phase, the EO at 15 mg/mL was only bacteriostatic, while from 30 mg/mL started to be bactericidal. X. strumarium EO antibacterial activity against Shiga toxin-producing E. coli O157:H7 is dependent on EO concentration and physiological state of the microorganisms tested. The best inhibitory activity was achieved during the late exponential and the stationary phases.

  18. Role of K1 capsule antigen in cirrhotic patients with Escherichia coli spontaneous bacterial peritonitis in southern Taiwan.

    PubMed

    Wang, M C; Lin, W H; Tseng, C C; Wu, A B; Teng, C H; Yan, J J; Wu, J J

    2013-03-01

    Spontaneous bacterial peritonitis (SBP) is one of the most serious complications in patients with cirrhosis. This study aimed to investigate the prevalence of SBP caused by Escherichia coli isolates with or without the K1 capsule antigen in cirrhotic patients and the outcome. From January 2004 to January 2012, a total of 54 and 41 E. coli strains derived from patients with SBP and intestinal perforation (IP), respectively, were included for comparison in this study. Bacterial characteristics including phylogenetic groups, K1 capsule antigen, and 14 virulence factor genetic determinants, as well as data regarding patient characteristics, clinical manifestations, and in-hospital deaths, were collected and analyzed. The prevalence of the K1 capsule antigen gene neuA was more common in SBP isolates compared to IP isolates (28 % vs. 10 %, p = 0.0385). Phylogenetic groups B2 and group D were dominant in E. coli isolates with and without the K1 capsule antigen, respectively. The prevalence of virulence factors genes papG II, ompT, and usp was higher in E. coli K1 strains. There were 26 deaths (48 %) during hospitalization. Presence of the K1 capsule antigen in E. coli isolates was significantly associated with in-hospital death in cirrhotic patients with SBP (42 % vs. 14 %, p = 0.0331). This study demonstrates a higher prevalence of the K1 capsule antigen in E. coli SBP compared to E. coli peritonitis caused by IP. There were significant associations between the K1 capsule antigen and in-hospital mortality and bacterial virulence in cirrhotic patients with E. coli SBP.

  19. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae)

    PubMed Central

    Zheng, Zhou; Wang, Dandan; He, Hong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the “filter chamber + conical segment” of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative

  20. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae).

    PubMed

    Zheng, Zhou; Wang, Dandan; He, Hong; Wei, Cong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the "filter chamber + conical segment" of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative for

  1. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population.

    PubMed

    Qi, Z; Cao, H; Jiang, H; Zhao, J; Tang, Z

    2016-01-01

    To use microarrays to detect 11 selected bacteria in infected root canals, revealing bacterial combinations that are associated with clinical symptoms and signs of primary endodontic infections in a Chinese population. DNA was extracted from 90 samples collected from the root canals of teeth with primary endodontic infections in a Chinese population, and the 16S rRNA gene was amplified by polymerase chain reaction (PCR). The PCR products were hybridized to microarrays containing specific oligonucleotide probes targeting 11 species, and the arrays were screened with a confocal laser scanner. Pearson's chi-squared test and cluster analysis were performed to investigate the associations between the bacterial combinations and clinical symptoms and signs using SAS 8.02. Seventy-seven samples (86%) yielded at least one of the 11 target species. Parvimonas micra (56%), Porphyromonas endodontalis (51%), Tannerella forsythia (48%), Prevotella intermedia (44%) and Porphyromonas gingivalis (37%) were the most prevalent taxa and were often concomitant. The following positive associations were found between the bacterial combinations and clinical features: P. endodontalis and T. forsythia with abscess; P. gingivalis and P. micra with sinus tract; P. gingivalis and P. endodontalis or P. micra and P. endodontalis with abscess and sinus tract; and the combination of P. endodontalis, P. micra, T. forsythia and P. gingivalis with sinus tract (P < 0.05). Various combinations of P. micra, P. endodontalis, T. forsythia and P. gingivalis may contribute to abscesses or sinus tracts of endodontic origin with bacterial synergism in a Chinese population. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Inhibitors of the bacterial cell wall biosynthesis enzyme MurC.

    PubMed

    Reck, F; Marmor, S; Fisher, S; Wuonola, M A

    2001-06-04

    A series of phosphinate transition-state analogues of the L-alanine adding enzyme (MurC) of bacterial peptidoglycan biosynthesis was prepared and tested as inhibitors of the Escherichia coli enzyme. Compound 4 was identified as a potent inhibitor of MurC from Escherichia coli with an IC(50) of 49nM.

  3. Periodic Colony Formation by Bacterial Species Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Wakita, Jun-ichi; Shimada, Hirotoshi; Itoh, Hiroto; Matsuyama, Tohey; Matsushita, Mitsugu

    2001-03-01

    We have investigated the periodic colony growth of bacterial species Bacillus subtilis. A colony grows cyclically with the interface repeating an advance (migration phase) and a rest (consolidation phase) alternately on a surface of semi-solid agar plate under appropriate environmental conditions, resulting in a concentric ring-like colony. It was found from macroscopic observations that the characteristic quantities for the periodic growth such as the migration time, the consolidation time and the terrace spacing do not depend so much on nutrient concentration Cn, but do on agar concentration Ca. The consolidation time was a weakly increasing function of Ca, while the migration time and the terrace spacing were, respectively, weakly and strongly decreasing function of Ca. Overall, the cycle (migration-plus-consolidation) time seems to be constant, and does not depend so much on both Cn and Ca. Microscopically, bacterial cells inside the growing front of a colony keep increasing their population during both migration and consolidation phases. It was also confirmed that their secreting surfactant called surfactin does not affect their periodic growth qualitatively, i.e., mutant cells which cannot secrete surfactin produce a concentric ring-like colony. All these results suggest that the diffusion of the nutrient and the surfactin are irrelevant to their periodic growth.

  4. Escherichia Coli--Key to Modern Genetics.

    ERIC Educational Resources Information Center

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  5. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  6. Identification and characterization of bacterial symbionts in three species of filth fly parasitoids.

    PubMed

    Betelman, Kfir; Caspi-Fluger, Ayelet; Shamir, Maayan; Chiel, Elad

    2017-09-01

    Facultative bacterial symbionts are widespread among insects and have diverse effects on their biology. Here, we focused on bacterial symbionts of three ecologically and economically important filth flies parasitoid species-Spalangia cameroni, Spalangia endius and Muscidifurax raptor. Both Spalangia species harbored a Sodalis bacterium that is closely related to Spalangia praecaptivus (a free-living bacterium) and to Sodalis symbionts of weevils. This is the only case of Sodalis infection in the important order Hymenoptera. We also found, for the first time in this parasitoid guild, a Rickettsia infecting the two Spalangia spp., albeit in much higher prevalence in S. cameroni. Molecular and phylogenetic analyses revealed that it is closely related to Rickettsia felis and other Rickettsia species from the 'transitional' group. All three parasitoid species harbored Wolbachia. Using multi-locus sequence typing, we found that M. raptor harbors a single Wolbachia strain whereas the Spalangia spp. have multiple strains. By controlled crossings, we found that Wolbachia infection in S. endius causes incomplete cytoplasmic incompatibility and increased longevity, thereby promoting Wolbachia's spread. In contrast, no effects of Wolbachia on the reproduction and longevity of M. raptor were found. This study underscores the diversity and nature of symbiotic interactions between microbes and insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage.

    PubMed

    Yue, Lifang; Lv, Hexin; Zhen, Jing; Jiang, Shengping; Jia, Shiru; Shen, Shigang; Gao, Lu; Dai, Yujie

    2016-04-28

    Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.

  8. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis.

    PubMed

    Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji

    2012-12-01

    Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Role of interspecies interactions in dual-species biofilms developed in vitro by uropathogens isolated from polymicrobial urinary catheter-associated bacteriuria.

    PubMed

    Galván, E M; Mateyca, C; Ielpi, L

    2016-10-01

    Most catheter-associated urinary tract infections are polymicrobial. Here, uropathogen interactions in dual-species biofilms were studied. The dual-species associations selected based on their prevalence in clinical settings were Klebsiella pneumoniae-Escherichia coli, E. coli-Enterococcus faecalis, K. pneumoniae-E. faecalis, and K. pneumoniae-Proteus mirabilis. All species developed single-species biofilms in artificial urine. The ability of K. pneumoniae to form biofilms was not affected by E. coli or E. faecalis co-inoculation, but was impaired by P. mirabilis. Conversely, P. mirabilis established a biofilm when co-inoculated with K. pneumoniae. Additionally, E. coli persistence in biofilms was hampered by K. pneumoniae but not by E. faecalis. Interestingly, E. coli, but not K. pneumoniae, partially inhibited E. faecalis attachment to the surface and retarded biofilm development. The findings reveal bacterial interactions between uropathogens in dual-species biofilms ranged from affecting initial adhesion to outcompeting one bacterial species, depending on the identity of the partners involved.

  10. Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks.

    PubMed

    Sun, Hongwei; Li, Guiying; Nie, Xin; Shi, Huixian; Wong, Po-Keung; Zhao, Huijun; An, Taicheng

    2014-08-19

    A systematic approach was developed to understand, in-depth, the mechanisms involved during the inactivation of bacterial cells using photoelectrocatalytic (PEC) processes with Escherichia coli K-12 as the model microorganism. The bacterial cells were found to be inactivated and decomposed primarily due to attack from photogenerated H2O2. Extracellular reactive oxygen species (ROSs), such as H2O2, may penetrate into the bacterial cell and cause dramatically elevated intracellular ROSs levels, which would overwhelm the antioxidative capacity of bacterial protective enzymes such as superoxide dismutase and catalase. The activities of these two enzymes were found to decrease due to the ROSs attacks during PEC inactivation. Bacterial cell wall damage was then observed, including loss of cell membrane integrity and increased permeability, followed by the decomposition of cell envelope (demonstrated by scanning electronic microscope images). One of the bacterial building blocks, protein, was found to be oxidatively damaged due to the ROSs attacks, as well. Leakage of cytoplasm and biomolecules (bacterial building blocks such as proteins and nucleic acids) were evident during prolonged PEC inactivation process. The leaked cytoplasmic substances and cell debris could be further degraded and, ultimately, mineralized with prolonged PEC treatment.

  11. Amoxicillin/clavulanate (Augmentin) resistant Escherichia coli in bacterial peritonitis after abdominal surgery--clinical outcome in ICU patients.

    PubMed

    Rahnama'i, M S; Wagenvoort, J H T; van der Linden, C J

    2009-05-01

    Bacterial resistance to antimicrobial agents is of great concern to clinicians. Patient outcome after infection is mainly dependent on the sensitivity of the bacterium to the agent used. We retrospectively studied 89 postoperative intensive care unit (ICU) patients with proven Escherichia coli peritonitis and investigated the clinical consequences of the E. coli resistance to amoxicillin/clavulanate. Significantly increased mortality, days of ventilation and ICU stay were noted in the co-amoxicillin/clavulanate resistant group. Furthermore, our results demonstrate that the sensitivity of E. coli to amoxicillin/clavulanate in the postoperative ICU setting has decreased in recent years. We can conclude that the current antibiotic regimen for the empirical treatment of ICU patients with peritonitis, as used in our hospital, needs to be changed. A switch, for instance, to ceftriaxone (Rocephin) in combination with metronidazole and gentamicin, instead of the present regimen of amoxicillin/clavulanate in combination with gentamicin, seems preferable.

  12. The Unculturables: targeted isolation of bacterial species associated with canine periodontal health or disease from dental plaque.

    PubMed

    Davis, Ian J; Bull, Christopher; Horsfall, Alexander; Morley, Ian; Harris, Stephen

    2014-08-01

    The current inability to culture the entirety of observed bacteria is well known and with the advent of ever more powerful molecular tools, that can survey bacterial communities at previously unattainable depth, the gap in our capacity to culture and define all of these species increases exponentially. This gap has essentially become the rate limiting step in determining how the knowledge of which species are present in a sample can be applied to understand the role of these species in an ecosystem or disease process. A case in point is periodontal disease, which is the most widespread oral disease in dogs. If untreated the disease results in significant pain, eventual loss of the dentition and potentially an increased risk of systemic diseases. Previous molecular based studies have identified the bacterial species associated with periodontal disease in dogs; however without cultured strains from many of these species it has not been possible to study whether they play a role in the disease process. Using a quantitative polymerase chain reaction (qPCR) directed approach a range of microbiological media were screened and optimized to enrich for previously uncultivated target species. A systematic screening methodology was then employed to isolate the species of interest. In cases where the target species were not cultivable in isolation, helper strains grown underneath a nitrocellulose membrane were used to provide the necessary growth factors. This guided media optimization approach enabled the purification of 14 species, 8 of which we had previously been unable to cultivate in isolation. It is also applicable to the targeted isolation of isolates from species that have previously been cultured (for example to study intra-species variation) as demonstrated by the successful isolation of 6 targeted isolates of already cultured species. To our knowledge this is the first time this combination of qPCR guided media optimization, strategic screening and helper strain

  13. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation.

    PubMed

    Daeffler, Kristina N-M; Galley, Jeffrey D; Sheth, Ravi U; Ortiz-Velez, Laura C; Bibb, Christopher O; Shroyer, Noah F; Britton, Robert A; Tabor, Jeffrey J

    2017-04-03

    There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two-component systems from marine Shewanella species, and validate them in laboratory Escherichia coli Then, we port these sensors into a gut-adapted probiotic E. coli strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  15. Putting on the brakes: Bacterial impediment of wound healing

    PubMed Central

    Brothers, Kimberly M.; Stella, Nicholas A.; Hunt, Kristin M.; Romanowski, Eric G.; Liu, Xinyu; Klarlund, Jes K.; Shanks, Robert M. Q.

    2015-01-01

    The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration. Migration of human foreskin fibroblasts was also inhibited by S. marcescens secretomes indicating that the effect is not cornea specific. Transposon mutagenesis implicated lipopolysaccharide (LPS) core biosynthetic genes as being required to inhibit corneal epithelial cell migration. LPS depletion of S. marcescens secretomes with polymyxin B agarose rendered secretomes unable to inhibit epithelial cell migration. Purified LPS from S. marcescens, but not from Escherichia coli or S. marcescens strains with mutations in the waaG and waaC genes, inhibited epithelial cell migration in vitro and wound healing ex vivo. Together these data suggest that S. marcescens LPS is sufficient for inhibition of epithelial wound healing. This study presents a novel host-pathogen interaction with implications for infections where bacteria impact wound healing and provides evidence that secreted LPS is a key factor in the inhibitory mechanism. PMID:26365869

  16. Bacterial predator–prey dynamics in microscale patchy landscapes

    PubMed Central

    Rotem, Or; Jurkevitch, Edouard; Dekker, Cees

    2016-01-01

    Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299

  17. Cheating fosters species co-existence in well-mixed bacterial communities

    PubMed Central

    Leinweber, Anne; Fredrik Inglis, R; Kümmerli, Rolf

    2017-01-01

    Explaining the enormous biodiversity observed in bacterial communities is challenging because ecological theory predicts that competition between species occupying the same niche should lead to the exclusion of less competitive community members. Competitive exclusion should be particularly strong when species compete for a single limiting resource or live in unstructured habitats that offer no refuge for weaker competitors. Here, we describe the ‘cheating effect’, a form of intra-specific competition that can counterbalance between-species competition, thereby fostering biodiversity in unstructured habitats. Using experimental communities consisting of the strong competitor Pseudomonas aeruginosa (PA) and its weaker counterpart Burkholderia cenocepacia (BC), we show that co-existence is impossible when the two species compete for a single limiting resource, iron. However, when introducing a PA cheating mutant, which specifically exploits the iron-scavenging siderophores produced by the PA wild type, we found that biodiversity was preserved under well-mixed conditions where PA cheats could outcompete the PA wild type. Cheating fosters biodiversity in our system because it creates strong intra-specific competition, which equalizes fitness differences between PA and BC. Our study identifies cheating – typically considered a destructive element – as a constructive force in shaping biodiversity. PMID:28060362

  18. Anti-bacterial activity of some Brazilian medicinal plants.

    PubMed

    de Lima, Maria Raquel Ferreira; de Souza Luna, Josiane; dos Santos, Aldenir Feitosa; de Andrade, Maria Cristina Caño; Sant'Ana, Antônio Euzébio Goulart; Genet, Jean-Pierre; Marquez, Béatrice; Neuville, Luc; Moreau, Nicole

    2006-04-21

    Extracts from various organs of 25 plants of Brazilian traditional medicine were assayed with respect to their anti-bacterial activities against Escherichia coli, a susceptible strain of Staphylococcus aureus and two resistant strains of Staphylococcus aureus harbouring the efflux pumps NorA and MsrA. Amongst the 49 extracts studied, 14 presented anti-bacterial activity against Staphylococcus aureus, including the ethanolic extracts from the rhizome of Jatropha elliptica, from the stem barks of Schinus terebinthifolius and Erythrina mulungu, from the stems and leaves of Caesalpinia pyramidalis and Serjania lethalis, and from the stem bark and leaves of Lafoensia pacari. The classes of compounds present in the active extracts were determined as a preliminary step towards their bioactivity-guided separation. No extracts were active against Escherichia coli.

  19. Escherichia coli Free Radical-Based Killing Mechanism Driven by a Unique Combination of Iron Restriction and Certain Antibiotics

    PubMed Central

    Ma, Li; Gao, Yongjun

    2015-01-01

    ABSTRACT Bacterial resistance to antibiotics is precipitating a medical crisis, and new antibacterial strategies are being sought. Hypothesizing that a growth-restricting strategy could be used to enhance the efficacy of antibiotics, we determined the effect of FDA-approved iron chelators and various antibiotic combinations on invasive and multidrug-resistant extraintestinal pathogenic Escherichia coli (ExPEC), the Gram-negative bacterium most frequently isolated from the bloodstreams of hospitalized patients. We report that certain antibiotics used at sublethal concentrations display enhanced growth inhibition and/or killing when combined with the iron chelator deferiprone (DFP). Inductively coupled plasma optical emission spectrometry reveals abnormally high levels of cell-associated iron under these conditions, a response that correlates with an iron starvation response and supraphysiologic levels of reactive oxygen species (ROS). The high ROS level is reversed upon the addition of antioxidants, which restores bacterial growth, suggesting that the cells are inhibited or killed by excessive free radicals. A model is proposed in which peptidoglycan-targeting antibiotics facilitate the entry of lethal levels of iron-complexed DFP into the bacterial cytoplasm, a process that drives the generation of ROS. This new finding suggests that, in addition to restriction of access to iron as a general growth-restricting strategy, targeting of cellular pathways or networks that selectively disrupt normal iron homeostasis can have potent bactericidal outcomes. IMPORTANCE The prospect that common bacteria will become resistant to all antibiotics is challenging the medical community. In addition to the development of next-generation antibiotics, new bacterial targets that display cytotoxic properties when altered need to be identified. Data presented here demonstrate that combining subinhibitory levels of both iron chelators and certain antibiotics kills pathogenic Escherichia

  20. A role for bacterial urease in gut dysbiosis and Crohn’s disease

    PubMed Central

    Ni, Josephine; Shen, Ting-Chin David; Chen, Eric Z.; Bittinger, Kyle; Bailey, Aubrey; Roggiani, Manuela; Sirota-Madi, Alexandra; Friedman, Elliot S.; Chau, Lillian; Lin, Andrew; Nissim, Ilana; Scott, Justin; Lauder, Abigail; Hoffmann, Christian; Rivas, Gloriany; Albenberg, Lindsey; Baldassano, Robert N.; Braun, Jonathan; Xavier, Ramnik J.; Clish, Clary B.; Yudkoff, Marc; Li, Hongzhe; Goulian, Mark; Bushman, Frederic D.; Lewis, James D.; Wu, Gary D.

    2018-01-01

    Gut dysbiosis during inflammatory bowel disease involves alterations in the gut microbiota associated with inflammation of the host gut. We used a combination of shotgun metagenomic sequencing and metabolomics to analyze fecal samples from pediatric patients with Crohn’s disease and found an association between disease severity, gut dysbiosis, and bacterial production of free amino acids. Nitrogen flux studies using 15N in mice showed that activity of bacterial urease, an enzyme that releases ammonia by hydrolysis of host urea, led to the transfer of murine host-derived nitrogen to the gutmicrobiota where it was used for amino acid synthesis. Inoculation of a conventional murine host (pretreated with antibiotics and polyethylene glycol) with commensal Escherichia coli engineered to express urease led to dysbiosis of the gut microbiota, resulting in a predominance of Proteobacteria species. This was associated with a worsening of immune-mediated colitis in these animals. A potential role for altered urease expression and nitrogen flux in the development of gut dysbiosis suggests that bacterial urease may be a potential therapeutic target for inflammatory bowel diseases. PMID:29141885

  1. Changes in the proteome of Mastitis-causing escherichia coli strains that affect pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Milk is the environment in which bacteria must grow to establish an infection of the mammary gland. However, milk is not a rich growth media for bacteria. In fact, milk naturally contains many mechanisms to inhibit bacterial ...

  2. A CASE STUDY OF NONPOINT SOURCES BACTERIAL CONTRIBUTION TO RURAL SURFACE WATER

    EPA Science Inventory

    The presentation will address several bacterial issues affecting the Turkey Creek (TC) watershed, in north central Ok. Our results from seasonal stream Escherichia coli (E. coli) analysis, bacterial source tracking, and antibiotic resistance will be shared and discussed in relat...

  3. Influence of sodium chloride on the beta-glucuronidase activity of Clostridium perfringens and Escherichia coli.

    PubMed

    Fujisawa, T; Aikawa, K; Takahashi, T; Yamai, S

    2000-09-01

    While the beta-glucuronidase activity of intact cells of Clostridium perfringens was higher in 0.95% sodium chloride (NaCl) than that in 0, 0.1 or 0.5%, that of Escherichia coli was higher in 0.1% NaCl than that in 0, 0.5 or 0.95% NaCl in 0.1 mol l-1 KH2PO4. However, the enzyme activity of both species of intact cells was higher in buffer containing 16 mEq sodium, 134 mEq potassium and 16 mEq chloride per litre than in that containing 146 mEq sodium, 13 mEq potassium and 146 mEq chloride. These findings suggest that bacterial cells are affected by the presence of NaCl and that the effect of NaCl on the activity of bacterial beta-glucuronidase may differ by location in the large intestine.

  4. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    PubMed

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  5. Competition of Escherichia coli O157 with a drinking water bacterial community at low nutrient concentrations.

    PubMed

    Vital, Marius; Hammes, Frederik; Egli, Thomas

    2012-12-01

    In contrast to studies on (long-term) survival of enteric pathogens in the environment, investigations on the principles of their growth and competition with autochthonous aquatic bacteria are rare and unexplored. Hence, improved basic knowledge is crucial for an adequate risk assessment and for understanding (and avoiding) the spreading of waterborne diseases. Therefore, the pathogen Escherichia coli O157 was grown in competition with a drinking water bacterial community on natural assimilable organic carbon (AOC) originating from diluted wastewater, in both batch and continuous culture. Growth was monitored by flow cytometry enabling enumeration of total cell concentration as well as specific E. coli O157 detection using fluorescently-labelled antibodies. An enhanced competitive fitness of E. coli O157 with higher AOC concentrations, higher temperatures and increased dilution rates (continuous culture) was observed. A classical "opportunist" versus "gleaner" relationship, where E. coli O157 is the "opportunist", specialised for growth at high nutrient concentrations (μ(max): 0.87 h(-1) and K(s): 489 μg consumed DOC L(-1)), and the bacterial community is the "gleaner" adapted to nutrient-poor environments (μ(max): 0.33 h(-1) and K(s): 7.4 μg consumed DOC L(-1)) was found. The obtained competition results can be explained by the growth properties of the two competitors determined in pure cultures and it was possible to model many of the observed dynamics based on Monod kinetics. The study provides new insights into the principles governing competition of an enteric pathogen with autochthonous aquatic bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Lipocalin 2 regulates intestine bacterial survival by interplaying with siderophore in a weaned piglet model of Escherichia coli infection.

    PubMed

    Guo, Bing-Xiu; Wang, Qian-Qian; Li, Jia-Hui; Gan, Zhen-Shun; Zhang, Xiao-Feng; Wang, Yi-Zhen; Du, Hua-Hua

    2017-09-12

    Iron is an essential nutrient that facilitates cell proliferation and growth, which plays a pivotal role in modulating the battle for survival between mammalian hosts and their pathogens. Pathogenic bacteria secrete siderophores to acquire iron from the host. However, lipocalin 2 (Lcn2), a siderophore-binding antimicrobial protein, binds to siderophores to prevent bacterial uptake of iron, which is critical for the control of systemic infection with Escherichia coli ( E. coli ). But few studies focus on the anti-infective response of Lcn2 in the intestines by inhibiting bacterial proliferation based on microbial iron metabolism. In this study, we showed that iron was sequestrated within cells in a piglet model of E. coli K88 infection. Siderophores was produced following E. coli K88 infection and siderophore-related genes expression was upregulated in iron-deficiency environment in vitro . Meanwhile, we found that Lcn2 expression was rapidly and robustly induced in jejunum by E. coli K88 infection and could be stimulated by IL-17 and IL-22. Furthermore, both Lcn2 induced in epithelial cells IPEC-1 and added exogenously as a recombinant protein could inhibit the growth of E. coli . We can conclude that Lcn2 is a crucial component of mucosal immune defense against intestinal infection with E. coli K88.

  7. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  8. Determination of ionic species formed during growth of Escherichia coli by capillary isotachophoresis.

    PubMed

    Futschik, K; Ammann, M; Bachmayer, S; Kenndler, E

    1993-08-06

    The ionic species that are formed during the microbial growth of Escherichia coli were determined by capillary isotachophoresis as a function of the time of cultivation. This formation was indicated by the change in a sum parameter, the impedance of the nutrient broth, measured by a special electrode system. Based on the determination of the individual ions formed under the given conditions (identified as acetate, lactate, alpha-ketoglutarate, fumarate, ammonium and probably a simple amine), the change in conductivity was calculated and compared with that obtained by the impedance measurement of the bulk medium. From the results it can be concluded that the change in the sum parameter as a function of time is originated by the ions determined.

  9. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less

  10. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  11. Bacterial Cellular Materials as Precursors of Chloroform

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  12. EXPLOSIVE RADIATION OF A BACTERIAL SPECIES GROUP

    PubMed Central

    Morlon, Hélène; Kemps, Brian D.; Plotkin, Joshua B.; Brisson, Dustin

    2013-01-01

    The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life. PMID:22834754

  13. Diversity of bacterial species in the nasal cavity of sheep in the highlands of Ethiopia and first report of Histophilus somni in the country.

    PubMed

    Tesfaye, Biruk; Sisay Tessema, Tesfaye; Tefera, Genene

    2013-06-01

    A study was conducted to isolate bacterial species/pathogens from the nasal cavity of apparently healthy and pneumonic sheep. Nasal swabs were collected aseptically, transported in tryptose soya broth and incubated for 24 h. Then, each swab was streaked onto chocolate and blood agar for culture. Bacterial species were identified following standard bacteriological procedures. Accordingly, a total of 1,556 bacteria were isolated from 960 nasal swabs collected from three different highland areas of Ethiopia, namely Debre Berhan, Asella, and Gimba. In Debre Berhan, 140 Mannheimia haemolytica, 81 Histophilus somni, 57 Staphylococcus species, and 52 Bibersteinia trehalosi were isolated. While from Gimba M. haemolytica, Staphylococcus, Streptococcus, and H. somni were isolated at rates of 25.2, 15.9, 11.4, and 5.9 %, respectively, of the total 647 bacterial species. In Asella from 352 bacterial species isolated, 93 (26.4 %) were M. haemolytica, 48 (13.6 %) were Staphylococcus species, 26 (7.4 %) were B. trehalosi, and 17 (4.8 %) H. somni were recognized. Further identification and characterization using BIOLOG identification system Enterococcus avium and Sphingomonas sanguinis were identified at 100 % probability, while, H. somni and Actinobacillus lignerisii were suggested by the system. The study showed that a variety of bacterial species colonize the nasal cavity of the Ethiopian highland sheep with variable proportion between healthy and pneumonic ones. To our knowledge, this is the first report on isolation of H. somni, an important pathogen in cattle, from the respiratory tract of a ruminant species in the country.

  14. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts

    PubMed Central

    Crozier, Louise; Hedley, Pete E.; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C.; Toth, Ian; Jackson, Robert W.; Holden, Nicola J.

    2016-01-01

    Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai,’ to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant–microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate

  15. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sagitova, A.; Yaminsky, I.; Meshkov, G.

    2016-08-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope.

  16. Survival of selected bacterial species in sterilized activated carbon filters and biological activated carbon filters.

    PubMed Central

    Rollinger, Y; Dott, W

    1987-01-01

    The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects. PMID:3579281

  17. Bacterial adhesion to orthopedic implant polymers.

    PubMed

    Barton, A J; Sagers, R D; Pitt, W G

    1996-03-01

    The degradable polymers poly(orthoester) (POE), poly(L-lactic acid) (PLA), and the nondegradable polymers polysulfone (PSF), polyethylene (PE), and poly(ether ether ketone) (PEEK) were exposed to cultures of Staphylococcus epidermidis, Pseudomonas aeruginosa, or Escherichia coli. Bacteria washed and resuspended in phosphate buffered saline (PBS) adhered to polymers in amounts nearly twice those of bacteria that were left in their growth medium, tryptic soy broth (TSB). In TSB, there was variation in adhesion from species to species, but no significant variation from polymer to polymer within one species. In PBS there were significant differences in the amounts of bacteria adhering to the various polymers with the exception, of S. epidermidis, which had similar adhesion to all polymers. As a whole, P. aeruginosa was the most adherent while S. epidermidis was the least adherent. The estimated values of the free energy of adhesion (delta Fadh) correlated with the amount of adherent P. aeruginosa. When POE, PLA, and PSF were exposed to hyaluronic acid (HA) before exposure to the bacteria, there was 50% more adhesion of E. coli and P. aeruginosa on POE and PLA. With respect to bacterial adhesion, the biodegradable polymers (POE and PLA) in general were not significantly different from the nondegradable polymers.

  18. Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail.

    PubMed

    Geeraerts, Wim; Pothakos, Vasileios; De Vuyst, Luc; Leroy, Frédéric

    2017-08-01

    Pork-based cooked products, such as cooked hams, are economically valuable foods that are vulnerable to bacterial spoilage, even when applying cooling and modified atmosphere packaging (MAP). Besides a common presence of Brochothrix thermosphacta, their microbiota are usually dominated by lactic acid bacteria (LAB). Yet, the exact LAB species diversity can differ considerably among products. In this study, 42 sliced cooked pork samples were acquired from three different Belgian supermarkets to map their bacterial heterogeneity. The community compositions of the dominant bacterial species were established by analysing a total of 702 isolates from selective agar media by (GTG) 5 -PCR fingerprinting followed by gene sequencing. Most of the isolates belonged to the genera Carnobacterium, Lactobacillus, and Leuconostoc, with Leuconostoc carnosum and Leuconostoc gelidum subsp. gelidum being the most dominant members. The diversity of the dominant bacterial species varied when comparing samples from different production facilities and, in some cases, even within the same product types. Although LAB consistently dominated the microbiota of sliced cooked pork products in the Belgian market, results indicated that bacterial diversity needs to be addressed on the level of product composition and batch variation. Dedicated studies will be needed to substantiate potential links between such variability and microbial composition. For instance, the fact that higher levels of lactobacilli were associated with the presence of potassium lactate (E326) may be suggestive of selective pressure but needs to be validated, as this finding referred to a single product only. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli

    PubMed Central

    Ihssen, Julian; Reiss, Renate; Luchsinger, Ronny; Thöny-Meyer, Linda; Richter, Michael

    2015-01-01

    Laccases are multi-copper oxidases that oxidize a broad range of substrates at the expense of molecular oxygen, without any need for co-factor regeneration. These enzymes bear high potential for the sustainable synthesis of fine chemicals and the modification of (bio)polymers. Here we describe cloning and expression of five novel bacterial laccase-like multi copper oxidases (LMCOs) of diverse origin which were identified by homology searches in online databases. Activity yields under different expression conditions and temperature stabilities were compared to three previously described enzymes from Bacillus subtilis, Bacillus pumilus and Bacillus clausii. In almost all cases, a switch to oxygen-limited growth conditions after induction increased volumetric activity considerably. For proteins with predicted signal peptides for secretion, recombinant expression with and without signal sequence was investigated. Bacillus CotA-type LMCOs outperformed enzymes from Streptomyces and Gram-negative bacteria with respect to activity yields in Escherichia coli and application relevant biochemical properties. The novel Bacillus coagulans LMCO combined high activity yields in E. coli with unprecedented activity at strong alkaline pH and high storage stability, making it a promising candidate for further development. PMID:26068013

  20. N-Acetyl-L-cysteine Effects on Multi-species Oral Biofilm Formation and Bacterial Ecology

    PubMed Central

    Rasmussen, Karin; Nikrad, Julia; Reilly, Cavan; Li, Yuping; Jones, Robert S.

    2015-01-01

    Future therapies for the treatment of dental decay have to consider the importance of preserving bacterial ecology while reducing biofilm adherence to teeth. A multi-species plaque derived (MSPD) biofilm model was used to assess how concentrations of N-acetyl-L-cysteine (0, 0.1%, 1%, 10%) affected the growth of complex oral biofilms. Biofilms were grown (n=96) for 24 hours on hydroxyapatite disks in BMM media with 0.5% sucrose. Bacterial viability and biomass formation was examined on each disk using a microtiter plate reader. In addition, fluorescence microscopy and Scanning Electron Microscopy was used to qualitatively examine the effect of NAC on bacterial biofilm aggregation, extracellular components, and bacterial morphology. The total biomass was significantly decreased after exposure of both 1% (from 0.48, with a 95% confidence interval of (0.44, 0.57) to 0.35, with confidence interval (0.31, 0.38)) and 10% NAC (0.14 with confidence interval (0.11, 0.17)). 16S rRNA amplicon sequencing analysis indicated that 1% NAC reduced biofilm adherence while preserving biofilm ecology. PMID:26518358

  1. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    PubMed Central

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  2. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    PubMed

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  3. Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken.

    PubMed

    Forgetta, V; Rempel, H; Malouin, F; Vaillancourt, R; Topp, E; Dewar, K; Diarra, M S

    2012-02-01

    An Escherichia spp. isolate, ECD-227, was previously identified from the broiler chicken as a phylogenetically divergent and multidrug-resistant Escherichia coli possessing numerous virulence genes. In this study, whole genome sequencing and comparative genome analysis was used to further characterize this isolate. The presence of known and putative antibiotic resistance and virulence open reading frames were determined by comparison to pathogenic (E. coli O157:H7 TW14359, APEC O1:K1:H7, and UPEC UTI89) and nonpathogenic species (E. coli K-12 MG1655 and Escherichia fergusonii ATCC 35469). The assembled genome size of 4.87 Mb was sequenced to 18-fold depth of coverage and predicted to contain 4,376 open reading frames. Phylogenetic analysis of 537 open reading frames present across 110 enteric bacterial species identifies ECD-227 to be E. fergusonii. The genome of ECD-227 contains 5 plasmids showing similarity to known E. coli and Salmonella enterica plasmids. The presence of virulence and antibiotic resistance genes were identified and localized to the chromosome and plasmids. The mutation in gyrA (S83L) involved in fluoroquinolone resistance was identified. The Salmonella-like plasmids harbor antibiotic resistance genes on a class I integron (aadA, qacEΔ-sul1, aac3-VI, and sulI) as well as numerous virulence genes (iucABCD, sitABCD, cib, traT). In addition to the genome analysis, the virulence of ECD-227 was evaluated in a 1-d-old chick model. In the virulence assay, ECD-227 was found to induce 18 to 30% mortality in 1-d-old chicks after 24 h and 48 h of infection, respectively. This study documents an avian multidrug-resistant and virulent E. fergusonii. The existence of several resistance genes to multiple classes of antibiotics indicates that infection caused by ECD-227 would be difficult to treat using antimicrobials currently available for poultry.

  4. Efficiencies of Recovery of Bdellovibrios from Brackish- Water Environments by Using Various Bacterial Species as Prey

    PubMed Central

    Schoeffield, A. J.; Williams, H. N.

    1990-01-01

    A total of 44 bacterial species subdivided into 10 trial experiments have been used as prey for the recovery of bdellovibrios from samples of water from a brackish tidal pond and an aquarium saltwater tank. In an initial investigation, the recovery efficiency of each of the test bacterial species was compared with that of a designated standard prey, Vibrio parahaemolyticus P-5. The results revealed that in each case strain P-5 yielded an equal or significantly greater number of plaques of bdellovibrios than the test prey with but a single exception, strain CS5. In repeat experiments, CS5 yielded fewer plaques than P-5. To determine whether the use of multiple bacterial species compared with a single species as prey would increase the number of PFU of bdellovibrios recovered, material from plaques appearing on each of the test prey in the respective trials was sequentially subcultured onto two respective agar plates, the first containing as prey V. parahaemolyticus P-5 and the second containing the initial test organism. In nearly every case, subculture of plaques from lawns of the test prey to P-5 resulted in plaque formation. On the basis of the results, the use of several test prey and P-5 did not result in the recovery of any more bdellovibrio PFU than the use of P-5 alone. In this study, V. parahaemolyticus P-5 was observed to be the most efficient prey for the recovery of bdellovibrios from moderate salt water. PMID:16348096

  5. Bacterial Quality of Urinary Tract Infections in Diabetic and Non Diabetics of the Population of Ma'an Province, Jordan.

    PubMed

    Al-Asoufi, Ali; Khlaifat, Ali; Tarawneh, Amjad Al; Alsharafa, Khalid; Al-Limoun, Muhamad; Khleifat, Khaled

    2017-01-01

    The patients with Diabetes Mellitus (DM) have malfunction in bladder which prompt urine accumulation in its pool which serves a decent situation to the microbes to be develop and cause Urinary Tract Infection (UTI). The UTI is the most infectious disease that affects both males and females. This study was designed to detect the bacterial species responsible for UTI in both diabetic and non-diabetic patients in Ma'an province, Jordan. One hundred sixteen urine samples were investigated to determine UTI-causing bacteria. These samples distributed unequally between diabetic male (12) and diabetic female (25) and also non-diabetic male (13) and non-diabetic female (66). It was observed that E. coli is responsible for large proportion (44.8%) of UTI in both diabetic (15.5%) and non-diabetic (29.3%) patients. This study showed inequality in the bacterial species that were isolated from both diabetic and non-diabetic samples. However, five bacterial species including E. aerogenes, E. cloacae, C. freundii, A. baumannii and B. subtilis did not exist in all diabetic samples. Treatment of UTI in both diabetic and non-diabetic patients with chloramphenicol (30 μg), ciprofloxacin (5 μg) and vancomycin (30 μg) resulted in more favorability than other antibiotics. At the same time cephalothin (30 μg) was not recommended. Escherichia coli was the prevailing bacterial infections among those which were isolated from patients with UTI. Certain forms of bacterial infections inclined to be extra common in diabetic patients than others and other infections may be more severe in people with diabetics than in non diabetics.

  6. Identification of Bacterial Factors Involved in Type 1 Fimbria Expression using an Escherichia coli K12 Proteome Chip*

    PubMed Central

    Chen, Yi-Wen; Teng, Ching-Hao; Ho, Yu-Hsuan; Jessica Ho, Tien Yu; Huang, Wen-Chun; Hashimoto, Masayuki; Chiang, I-Yuan; Chen, Chien-Sheng

    2014-01-01

    Type 1 fimbriae are filamentous structures on Escherichia coli. These structures are important adherence factors. Because binding to the host cells is the first step of infection, type 1 fimbria is an important virulence factor of pathogenic E. coli. Expression of type 1 fimbria is regulated by a phase variation in which each individual bacterium can alternate between fimbriated (phase-ON) and nonfimbriated (phase-OFF) states. The phase variation is regulated by the flipping of the 314-bp fimS fragment, which contains the promoter driving the expression of the genes required for the synthesis of type 1 fimbria. Thus, the bacterial proteins able to interact with fimS are likely to be involved in regulating the expression of type 1 fimbria. To identify novel type 1 fimbria-regulating factors, we used an E. coli K12 proteome chip to screen for the bacterial factors able to interact with a 602-bp DNA fragment containing fimS and its adjacent regions. The Spr protein was identified by the proteome chip-based screening and further confirmed to be able to interact with fimS by electrophoretic mobility shift assay. Deletion of spr in the neonatal meningitis E. coli strain RS218 significantly increased the ratio of the bacterial colonies that contained the type 1 fimbria phase-ON cells on agar plates. In addition, Spr interfered with the interactions of fimS with the site-specific recombinases, FimB and FimE, which are responsible for mediating the flipping of fimS. These results suggest that Spr is involved in the regulation of type 1 fimbria expression through direct interaction with the invertible element fimS. These findings facilitate our understanding of the regulation of type 1 fimbria. PMID:24692643

  7. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    PubMed

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis , alpha-hemolytic streptococci, Staphylococcus hominis , coagulase-negative staphylococci, Leuconostoc mesenteroides , Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity) to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  8. Toxicity of ZnO and TiO2 to Escherichia coli cells

    PubMed Central

    Leung, Yu Hang; Xu, Xiaoying; Ma, Angel P. Y.; Liu, Fangzhou; Ng, Alan M. C.; Shen, Zhiyong; Gethings, Lee A.; Guo, Mu Yao; Djurišić, Aleksandra B.; Lee, Patrick K. H.; Lee, Hung Kay; Chan, Wai Kin; Leung, Frederick C. C.

    2016-01-01

    We performed a comprehensive investigation of the toxicity of ZnO and TiO2 nanoparticles using Escherichia coli as a model organism. Both materials are wide band gap n-type semiconductors and they can interact with lipopolysaccharide molecules present in the outer membrane of E. coli, as well as produce reactive oxygen species (ROS) under UV illumination. Despite the similarities in their properties, the response of the bacteria to the two nanomaterials was fundamentally different. When the ROS generation is observed, the toxicity of nanomaterial is commonly attributed to oxidative stress and cell membrane damage caused by lipid peroxidation. However, we found that significant toxicity does not necessarily correlate with up-regulation of ROS-related proteins. TiO2 exhibited significant antibacterial activity, but the protein expression profile of bacteria exposed to TiO2 was different compared to H2O2 and the ROS-related proteins were not strongly expressed. On the other hand, ZnO exhibited lower antibacterial activity compared to TiO2, and the bacterial response involved up-regulating ROS-related proteins similar to the bacterial response to the exposure to H2O2. Reasons for the observed differences in toxicity and bacterial response to the two metal oxides are discussed. PMID:27731373

  9. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    PubMed

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Bacterial Genetic Architecture of Ecological Interactions in Co-culture by GWAS-Taking Escherichia coli and Staphylococcus aureus as an Example.

    PubMed

    He, Xiaoqing; Jin, Yi; Ye, Meixia; Chen, Nan; Zhu, Jing; Wang, Jingqi; Jiang, Libo; Wu, Rongling

    2017-01-01

    How a species responds to such a biotic environment in the community, ultimately leading to its evolution, has been a topic of intense interest to ecological evolutionary biologists. Until recently, limited knowledge was available regarding the genotypic changes that underlie phenotypic changes. Our study implemented GWAS (Genome-Wide Association Studies) to illustrate the genetic architecture of ecological interactions that take place in microbial populations. By choosing 45 such interspecific pairs of Escherichia coli and Staphylococcus aureus strains that were all genotyped throughout the entire genome, we employed Q-ROADTRIPS to analyze the association between single SNPs and microbial abundance measured at each time point for bacterial populations reared in monoculture and co-culture, respectively. We identified a large number of SNPs and indels across the genomes (35.69 G clean data of E. coli and 50.41 G of S. aureus ). We reported 66 and 111 SNPs that were associated with interaction in E. coli and S. aureus , respectively. 23 out of 66 polymorphic changes resulted in amino acid alterations.12 significant genes, such as murE, treA, argS , and relA , which were also identified in previous evolutionary studies. In S. aureus , 111 SNPs detected in coding sequences could be divided into 35 non-synonymous and 76 synonymous SNPs. Our study illustrated the potential of genome-wide association methods for studying rapidly evolving traits in bacteria. Genetic association study methods will facilitate the identification of genetic elements likely to cause phenotypes of interest and provide targets for further laboratory investigation.

  11. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.

    PubMed

    Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F

    2010-01-01

    The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.

  12. Limitations to estimating bacterial cross-species transmission using genetic and genomic markers: inferences from simulation modeling

    PubMed Central

    Benavides, Julio A; Cross, Paul C; Luikart, Gordon; Creel, Scott

    2014-01-01

    Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced. PMID:25469159

  13. Species and Scale Dependence of Bacterial Motion Dynamics

    NASA Astrophysics Data System (ADS)

    Sund, N. L.; Yang, X.; Parashar, R.; Plymale, A.; Hu, D.; Kelly, R.; Scheibe, T. D.

    2017-12-01

    Many metal reducing bacteria are motile with their motion characteristics described by run-and-tumble behavior exhibiting series of flights (jumps) and waiting (residence) time spanning a wide range of values. Accurate models of motility allow for improved design and evaluation of in-situ bioremediation in the subsurface. While many bioremediation models neglect the motion of the bacteria, others treat motility using an advection dispersion equation, which assumes that the motion of the bacteria is Brownian.The assumption of Brownian motion to describe motility has enormous implications on predictive capabilities of bioremediation models, yet experimental evidence of this assumption is mixed [1][2][3]. We hypothesize that this is due to the species and scale dependence of the motion dynamics. We test our hypothesis by analyzing videos of motile bacteria of five different species in open domains. Trajectories of individual cells ranging from several seconds to few minutes in duration are extracted in neutral conditions (in the absence of any chemical gradient). The density of the bacteria is kept low so that the interaction between the bacteria is minimal. Preliminary results show a transition from Fickian (Brownian) to non-Fickian behavior for one species of bacteria (Pelosinus) and persistent Fickian behavior of another species (Geobacter).Figure: Video frames of motile bacteria with the last 10 seconds of their trajectories drawn in red. (left) Pelosinus and (right) Geobacter.[1] Ariel, Gil, et al. "Swarming bacteria migrate by Lévy Walk." Nature Communications 6 (2015).[2] Saragosti, Jonathan, Pascal Silberzan, and Axel Buguin. "Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis." PloS one 7.4 (2012): e35412.[3] Wu, Mingming, et al. "Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique." Applied and Environmental Microbiology 72.7 (2006): 4987-4994.

  14. Effects of Aronia melanocarpa constituents on biofilm formation of Escherichia coli and Bacillus cereus.

    PubMed

    Bräunlich, Marie; Økstad, Ole A; Slimestad, Rune; Wangensteen, Helle; Malterud, Karl E; Barsett, Hilde

    2013-12-05

    Many bacteria growing on surfaces form biofilms. Adaptive and genetic changes of the microorganisms in this structure make them resistant to antimicrobial agents. Biofilm-forming organisms on medical devices can pose serious threats to human health. Thus, there is a need for novel prevention and treatment strategies. This study aimed to evaluate the ability of Aronia melanocarpa extracts, subfractions and compounds to prevent biofilm formation and to inhibit bacterial growth of Escherichia coli and Bacillus cereus in vitro. It was found that several aronia substances possessed anti-biofilm activity, however, they were not toxic to the species screened. This non-toxic inhibition may confer a lower potential for resistance development compared to conventional antimicrobials.

  15. An Escherichia coli nitrogen starvation response is important for mutualistic coexistence with Rhodopseudomonas palustris.

    PubMed

    McCully, Alexandra L; Behringer, Megan G; Gliessman, Jennifer R; Pilipenko, Evgeny V; Mazny, Jeffrey L; Lynch, Michael; Drummond, D Allan; McKinlay, James B

    2018-05-04

    Microbial mutualistic cross-feeding interactions are ubiquitous and can drive important community functions. Engaging in cross-feeding undoubtedly affects the physiology and metabolism of individual species involved. However, the nature in which an individual's physiology is influenced by cross-feeding and the importance of those physiological changes for the mutualism have received little attention. We previously developed a genetically tractable coculture to study bacterial mutualisms. The coculture consists of fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli anaerobically ferments sugars into excreted organic acids as a carbon source for R. palustris In return, a genetically-engineered R. palustris constitutively converts N 2 into NH 4 + , providing E. coli with essential nitrogen. Using RNA-seq and proteomics, we identified transcript and protein levels that differ in each partner when grown in coculture versus monoculture. When in coculture with R. palustris , E. coli gene-expression changes resembled a nitrogen starvation response under the control of the transcriptional regulator NtrC. By genetically disrupting E. coli NtrC, we determined that a nitrogen starvation response is important for a stable coexistence, especially at low R. palustris NH 4 + excretion levels. Destabilization of the nitrogen starvation regulatory network resulted in variable growth trends and in some cases, extinction. Our results highlight that alternative physiological states can be important for survival within cooperative cross-feeding relationships. Importance Mutualistic cross-feeding between microbes within multispecies communities is widespread. Studying how mutualistic interactions influence the physiology of each species involved is important for understanding how mutualisms function and persist in both natural and applied settings. Using a bacterial mutualism consisting of Rhodopseudomonas palustris and Escherichia coli

  16. Bacterial Diversity in Ships' Ballast Water, Ballast-Water Exchange, and Implications for Ship-Mediated Dispersal of Microorganisms.

    PubMed

    Lymperopoulou, Despoina S; Dobbs, Fred C

    2017-02-21

    Using next-generation DNA sequencing of the 16S rRNA gene, we analyzed the composition and diversity of bacterial assemblages in ballast water from tanks of 17 commercial ships arriving to Hampton Roads, Virginia (USA) following voyages in the North Atlantic Ocean. Amplicon sequencing analysis showed the heterogeneous assemblages were (1) dominated by Alpha- and Gammaproteobacteria, Bacteroidetes, and unclassified Bacteria; (2) temporally distinct (June vs August/September); and (3) highly fidelitous among replicate samples. Whether tanks were exchanged at sea or not, their bacterial assemblages differed from those of local, coastal water. Compositional data suggested at-sea exchange did not fully flush coastal Bacteria from all tanks; there were several instances of a genetic geographic signal. Quantitative PCR yielded no Escherichia coli and few instances of Vibrio species. Salinity, but not ballast-water age or temperature, contributed significantly to bacterial diversity. Whether anthropogenic mixing of marine Bacteria restructures their biogeography remains to be tested.

  17. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation

    PubMed Central

    Ercan, Utku K.; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D.; Joshi, Suresh G.

    2016-01-01

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation. PMID:26832829

  18. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    PubMed

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms.

  19. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindarajan, A.G.; Lindow, S.E.

    1988-03-01

    Four bacterial species are known to catalyze ice formation at temperatures just below 0/sup 0/C. To better understand the relationship between the molecular structure of bacterial ice-nucleation site(s) and the quantitative and qualitative features of the ice-nucleation-active phenotype, the authors determined by ..gamma..-radiation analysis the in situ size of ice-nucleation sites in strains of Pseudomonas syringae and Erwinia herbicola and in Escherichia coli HB101 carrying the plasmid pICE1.1. Lyophilized cells of each bacterial strain were irradiated with a flux of ..gamma.. radiation from 0 to 10.2 Mrad. Differential concentrations of active ice nuclei decreased as a first-order function of radiationmore » dose in all strains as temperature was decreased from -2/sup 0/C to -14/sup 0/C in 1/sup 0/C intervals. Sizes of ice nuclei were calculated from the /sup +/-radiation flux at which 37% of initial ice nuclei active within each 1/sup 0/C temperature interval remained. The minimum mass of a functional ice nucleus was about 150 kDa for all strains. The size of ice nuclei increased logarithmically with increasing temperature from -12/sup 0/CC to -2/sup 0/C, where the estimated nucleant mass was 19,000 kDa. The ice nucleant in these three bacterial species may represent an oligomeric structure, composed at least in part of an ice gene product that can self-associate to assume many possible sizes.« less

  20. Antibacterial activity of Mediterranean Oyster mushrooms, species of genus Pleurotus (higher Basidiomycetes).

    PubMed

    Schillaci, Domenico; Arizza, Vincenzo; Gargano, Maria Letizia; Venturella, Giuseppe

    2013-01-01

    Extracts of the Mediterranean culinary-medicinal Oyster mushrooms Pleurotus eryngii var. eryngii, P. eryngii var. ferulae, P. eryngii var. elaeoselini, and P. nebrodensis were tested for their in vitro growth inhibitory activity against a group of bacterial reference strains of medical relevance: Staphylococcus aureus ATCC 25923, S. epidermidis RP62A, Pseudomonas aeruginosa ATCC 15442, and Escherichia coli ATCC10536. All of the Pleurotus species analyzed inhibited the tested microorganisms in varying degrees. The data included in this paper for P. nebrodensis and P. eryngii var. elaeoselinii are new reports.

  1. THE EVOLUTION OF RESTRAINT IN BACTERIAL BIOFILMS UNDER NONTRANSITIVE COMPETITION

    PubMed Central

    Prado, Federico; Kerr, Benjamin

    2009-01-01

    Theoretical and empirical evidence indicates that competing species can coexist if dispersal, migration, and competitive interactions occur over relatively small spatial scales. In particular, spatial structure appears to be critical to certain communities with nontransitive competition. A typical nontransitive system involves three competing species that satisfy a relationship similar to the children’s game of rock–paper–scissors. Although the ecological dynamics of nontransitive systems in spatially structured communities have received some attention, fewer studies have incorporated evolutionary change. Here we investigate evolution within toxic bacterial biofilms using an agent-based simulation that represents a nontransitive community containing three populations of Escherichia coli. In structured, nontransitive communities, strains evolve that do not maximize their competitive ability: They do not reduce their probability of death to a minimum or increase their toxicity to a maximum. That is, types evolve that exercise restraint. We show that nontransitivity and spatial structure (in the form of localized interactions) are both necessary for the evolution of restraint in these biofilms. PMID:18039324

  2. The evolution of restraint in bacterial biofilms under nontransitive competition.

    PubMed

    Prado, Federico; Kerr, Benjamin

    2008-03-01

    Theoretical and empirical evidence indicates that competing species can coexist if dispersal, migration, and competitive interactions occur over relatively small spatial scales. In particular, spatial structure appears to be critical to certain communities with nontransitive competition. A typical nontransitive system involves three competing species that satisfy a relationship similar to the children's game of rock-paper-scissors. Although the ecological dynamics of nontransitive systems in spatially structured communities have received some attention, fewer studies have incorporated evolutionary change. Here we investigate evolution within toxic bacterial biofilms using an agent-based simulation that represents a nontransitive community containing three populations of Escherichia coli. In structured, nontransitive communities, strains evolve that do not maximize their competitive ability: They do not reduce their probability of death to a minimum or increase their toxicity to a maximum. That is, types evolve that exercise restraint. We show that nontransitivity and spatial structure (in the form of localized interactions) are both necessary for the evolution of restraint in these biofilms.

  3. Characterization of bacterial pathogens in rural and urban irrigation water.

    PubMed

    Aijuka, Matthew; Charimba, George; Hugo, Celia J; Buys, Elna M

    2015-03-01

    The study aimed to compare the bacteriological quality of an urban and rural irrigation water source. Bacterial counts, characterization, identification and diversity of aerobic bacteria were determined. Escherichia coli isolated from both sites was subjected to antibiotic susceptibility testing, virulence gene (Stx1/Stx2 and eae) determination and (GTG)5 Rep-PCR fingerprinting. Low mean monthly counts for aerobic spore formers, anaerobic spore formers and Staphylococcus aureus were noted although occasional spikes were observed. The most prevalent bacterial species at both sites were Bacillus spp., E. coli and Enterobacter spp. In addition, E. coli and Bacillus spp. were most prevalent in winter and summer respectively. Resistance to at least one antibiotic was 84% (rural) and 83% (urban). Highest resistance at both sites was to cephalothin and ampicillin. Prevalence of E. coli possessing at least one virulence gene (Stx1/Stx2 and eae) was 15% (rural) and 42% (urban). All (rural) and 80% (urban) of E. coli possessing virulence genes showed antibiotic resistance. Complete genetic relatedness (100%) was shown by 47% of rural and 67% of urban E. coli isolates. Results from this study show that surface irrigation water sources regardless of geographical location and surrounding land-use practices can be reservoirs of similar bacterial pathogens.

  4. Virulence variations in Shigella and enteroinvasive Escherichia coli using the Caenorhabditis elegans model.

    PubMed

    Fung, Crystal Ching; Octavia, Sophie; Mooney, Anne-Marie; Lan, Ruiting

    2015-01-01

    Shigella species and enteroinvasive Escherichia coli (EIEC) belong to the same species genetically, with remarkable phenotypic and genomic similarities. Shigella is the main cause of bacillary dysentery with around 160 million annual cases, while EIEC generally induces a milder disease compared to Shigella. This study aimed to determine virulence variations between Shigella and EIEC using the nematode Caenorhabditis elegans as a model host. Caenorhabditis elegans killing- and bacterial colonization assays were performed to examine the potential difference in virulence between Shigella and EIEC strains. Statistically significant difference in the survival rates of nematodes was demonstrated, with Shigella causing death at 88.24 ± 1.20% and EIEC at 94.37 ± 0.70%. The intestinal load of bacteria in the nematodes was found to be 7.65 × 10(4) ± 8.83 × 10(3) and 2.92 × 10(4) ± 6.26 × 10(3) CFU ml(-1) per nematode for Shigella and EIEC, respectively. Shigella dysenteriae serotype 1 which carries the Shiga toxin showed the lowest nematode survival rate at 82.6 ± 3.97% and highest bacterial colonization of 1.75 × 10(5) ± 8.17 × 10(4) CFU ml(-1), whereas a virulence plasmid-negative Shigella strain demonstrated 100 ± 0% nematode survival and lowest bacterial accumulation of 1.02 × 10(4) ± 7.23 × 10(2) CFU ml(-1). This study demonstrates C. elegans as an effective model for examining and comparing Shigella and EIEC virulence variation. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Loofah sponges as reservoirs and vehicles in the transmission of potentially pathogenic bacterial species to human skin.

    PubMed Central

    Bottone, E J; Perez, A A; Oeser, J L

    1994-01-01

    Loofah sponges are natural products used as exfoliative beauty aids. As a consequence of tracing a case of Pseudomonas aeruginosa folliculitis to a contaminated loofah sponge, we assessed the role of loofah sponges in supporting the growth of a wide variety of bacterial species. Our data show growth enhancement of sterile loofah fragments for numerous gram-negative (Pseudomonas, Xanthomonas, and Klebsiella) and gram-positive (Enterococcus and group B Streptococcus) species of human and environmental origin. Furthermore, hydrated new, unused loofah sponges undergo a shift in bacterial flora from sparse colonies of Bacillus spp. and Staphylococcus epidermidis to a predominantly gram-negative flora. The growth-promoting potential of loofah sponges (and other exfoliatives) can be further augmented by desquamated epithelial cells entrapped in the loofah fibrous matrix. Therefore, as loofah sponges (and other exfoliatives) can serve as a reservoir and a vehicle for the transmission of potentially pathogenic species to the human skin, we recommend their decontamination with hypochlorite (10%) bleach at regular intervals. Images PMID:8150959

  6. Loofah sponges as reservoirs and vehicles in the transmission of potentially pathogenic bacterial species to human skin.

    PubMed

    Bottone, E J; Perez, A A; Oeser, J L

    1994-02-01

    Loofah sponges are natural products used as exfoliative beauty aids. As a consequence of tracing a case of Pseudomonas aeruginosa folliculitis to a contaminated loofah sponge, we assessed the role of loofah sponges in supporting the growth of a wide variety of bacterial species. Our data show growth enhancement of sterile loofah fragments for numerous gram-negative (Pseudomonas, Xanthomonas, and Klebsiella) and gram-positive (Enterococcus and group B Streptococcus) species of human and environmental origin. Furthermore, hydrated new, unused loofah sponges undergo a shift in bacterial flora from sparse colonies of Bacillus spp. and Staphylococcus epidermidis to a predominantly gram-negative flora. The growth-promoting potential of loofah sponges (and other exfoliatives) can be further augmented by desquamated epithelial cells entrapped in the loofah fibrous matrix. Therefore, as loofah sponges (and other exfoliatives) can serve as a reservoir and a vehicle for the transmission of potentially pathogenic species to the human skin, we recommend their decontamination with hypochlorite (10%) bleach at regular intervals.

  7. Comparison of the activities of extracts of Escherichia coli and Salmonella typhimurium in amino acid incorporation.

    PubMed

    Bassel, B A; Curry, M E

    1973-11-01

    We have compared the amino acid incorporating activities of extracts of Escherichia coli and Salmonella typhimurium in in vitro protein-synthesizing systems directed by bacterial messenger ribonucleic acid (mRNA) of both species and by the genomes of coliphages Qbeta and f2. E. coli and S. typhimurium extracts translate both homologous and heterologous bacterial mRNAs at comparable rates. S. typhimurium extracts translate phage RNAs only 10 to 15% as fast as E. coli extracts do. The presence of glucose in the growth medium increases the activity of S. typhimurium extracts three- to fourfold in the phage RNA-directed systems. Glucose has a much more limited effect on the activities of E. coli extracts. We show that similar amounts of phage RNA-ribosome complexes are formed in both the E. coli and the S. typhimurium systems, indicating that the different activities observed may be attributed to different rates of peptide elongation or to the formation of complexes at different sites on the RNA strand.

  8. Virulence characteristics of extraintestinal pathogenic Escherichia coli deletion of gene encoding the outer membrane protein X.

    PubMed

    Meng, Xianrong; Liu, Xueling; Zhang, Liyuan; Hou, Bo; Li, Binyou; Tan, Chen; Li, Zili; Zhou, Rui; Li, Shaowen

    2016-09-01

    Outer membrane protein X (OmpX) and its homologues have been proposed to contribute to the virulence in various bacterial species. But, their role in virulence of extraintestinal pathogenic Escherichia coli (ExPEC) is yet to be determined. This study evaluates the role of OmpX in ExPEC virulence in vitro and in vivo using a clinical strain PPECC42 of porcine origin. The ompX deletion mutant exhibited increased swimming motility and decreased adhesion to, and invasion of pulmonary epithelial A549 cell, compared to the wild-type strain. A mild increase in LD50 and distinct decrease in bacterial load in such organs as heart, liver, spleen, lung and kidney were observed in mice infected with the ompX mutant. Complementation of the complete ompX gene in trans restored the virulence of mutant strain to the level of wild-type strain. Our results reveal that OmpX contributes to ExPEC virulence, but may be not an indispensable virulence determinant.

  9. Effect of DSS on Bacterial Growth in Gastrointestinal Tract.

    PubMed

    Hlinková, J; Svobodová, H; Brachtlová, T; Gardlík, R

    2016-01-01

    Inflammatory bowel disease is an idiopathic autoimmune disorder that is mainly divided into ulcerative colitis and Crohn's disease. Probiotics are known for their beneficial effect and used as a treatment option in different gastrointestinal problems. The aim of our study was to find suitable bacterial vectors for gene therapy of inflammatory bowel disease. Salmonella enterica serovar Typhimurium SL7207 and Escherichia coli Nissle 1917 were investigated as potential vectors. Our results show that the growth of Escherichia coli Nissle 1917 was inhibited in the majority of samples collected from dextran sodium sulphate-treated animals compared with control growth in phosphate-buffered saline. The growth of Salmonella enterica serovar Typhimurium SL7207 in all investigated samples was enhanced or unaffected in comparison with phosphate-buffered saline; however, it did not reach the growth rates of Escherichia coli Nissle 1917. Dextran sodium sulphate treatment had a stimulating effect on the growth of both strains in homogenates of distant small intestine and proximal colon samples. The gastrointestinal tract contents and tissue homogenates did not inhibit growth of Salmonella enterica serovar Typhimurium SL7207 in comparison with the negative control, and provided more suitable environment for growth compared to Escherichia coli Nissle 1917. We therefore conclude that Salmonella enterica serovar Typhimurium SL7207 is a more suitable candidate for a potential bacterial vector, even though it has no known probiotic properties.

  10. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determines risk for urinary tract infections

    PubMed Central

    Schreiber, Henry L.; Conover, Matt S.; Chou, Wen-Chi; Hibbing, Michael E.; Manson, Abigail L.; Dodson, Karen W.; Hannan, Thomas J.; Roberts, Pacita L.; Stapleton, Ann E.; Hooton, Thomas M.; Livny, Jonathan; Earl, Ashlee M.; Hultgren, Scott J.

    2017-01-01

    Urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC) strains. In contrast to many enteric E. coli pathogroups, no genetic signature has been identified for UPEC strains. We conducted a high-resolution comparative genomic study using E. coli isolates collected from the urine of women suffering from frequent recurrent UTIs. These isolates were genetically diverse and varied in urovirulence, or the ability to infect the bladder of a mouse model of cystitis. Importantly, we found no set of genes, including previously defined putative urovirulence factors (PUFs), that were predictive of urovirulence. In addition, in some patients, the E. coli strain causing a recurrent UTI had fewer PUFs than the supplanted strain. In competitive experimental infections in mice, the supplanting strain was more efficient at colonizing the mouse bladder than the supplanted strain. Despite the lack of a clear genomic signature for urovirulence, comparative transcriptomic and phenotypic analyses revealed that the expression of key conserved functions during culture, such as motility and sugar metabolism, could be used to predict subsequent mouse bladder colonization. Taken together, our findings suggest that UTI risk and outcome may be determined by complex interactions between host susceptibility and the urovirulence potential of diverse bacterial strains. PMID:28330863

  11. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  12. Bacterial microflora of normal and telangiectatic livers in cattle.

    PubMed

    Stotland, E I; Edwards, J F; Roussel, A J; Simpson, R B

    2001-07-01

    To identify potential bacterial pathogens in normal and telangiectatic livers of mature cattle at slaughter and to identify consumer risk associated with hepatic telangiectasia. 50 normal livers and 50 severely telangiectatic livers. Normal and telangiectatic livers were collected at slaughter for aerobic and anaerobic bacterial culture. Isolates were identified, and patterns of isolation were analyzed. Histologic examination of all livers was performed. Human pathogens isolated from normal and telangiectatic livers included Escherichia coli O157:H7 and group-D streptococci. Most livers in both groups contained bacteria in low numbers; however, more normal livers yielded negative culture results. More group-D streptococci were isolated from the right lobes of telangiectatic livers than from the left lobes, and more gram-negative anaerobic bacteria were isolated from left lobes of telangiectatic livers than from right lobes. All telangiectatic lesions were free of fibrosis, active necrotizing processes, and inflammation. The USDA regulation condemning telangiectatic livers is justified insofar as these livers contain more bacteria than normal livers do; however, normal livers contain similar species of microflora. Development of telangiectasia could not be linked to an infectious process. The finding of E coli O157:H7 in bovine livers suggests that information regarding bacterial content of other offal and muscle may identify sources of this and other potential foodborne pathogens and assist in establishing critical control points for the meat industry.

  13. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  14. Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea.

    PubMed

    Skaljac, M; Zanić, K; Hrnčić, S; Radonjić, S; Perović, T; Ghanim, M

    2013-02-01

    Several whitefly species (Hemiptera: Aleyrodidae) are cosmopolitan phloem-feeders that cause serious damage in numerous agricultural crops. All whitefly species harbor a primary bacterial symbiont and a diverse array of secondary symbionts which may influence several aspects of the insect's biology. We surveyed infections by secondary symbionts in Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood) and Siphoninus phillyreae (Haliday) from areas in the east cost of the Adriatic Sea. Both the Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) B. tabaci genetic groups were detected in Montenegro, whereas only the MED was confirmed in Croatia. Trialeurodes vaporariorum and S. phillyreae were found in all areas surveyed. MEAM1 and MED exhibited similarity to previously reported infections, while populations of T. vaporariorum from Montenegro harbored Rickettsia, Wolbachia and Cardinium in addition to previously reported Hamiltonella and Arsenopnohus. Siphoninus phillyreae harbored Hamiltonella, Wolbachia, Cardinium and Arsenophonus, with the latter appearing in two alleles. Multiple infections of all symbionts were common in the three insect species tested, with some reaching near fixation. Florescent in situ hybridization showed new localization patterns for Hamiltonella in S. phillyreae, and the morphology of the bacteriosome differed from that observed in other whitefly species. Our results show new infections with bacterial symbionts in the whitefly species studied. Infections with the same symbionts in reproductively isolated whitefly species confirm complex relationships between whiteflies and bacterial symbionts, and suggest possible horizontal transfer of some of these bacteria.

  15. Enzymatic activity necessary to restore the lethality due to Escherichia coli RNase E deficiency is distributed among bacteria lacking RNase E homologues

    PubMed Central

    Kageyama, Daisuke; Honda, Naoko; Fujimoto, Hirofumi; Kato, Atsushi

    2017-01-01

    Escherichia coli RNase E (Eco-RNase E), encoded by rne (Eco-rne), is considered the global RNA decay initiator. Although Eco-RNase E is an essential gene product in E. coli, some bacterial species, such as Bacillus subtilis, do not possess Eco-RNase E sequence homologues. B. subtilis instead possesses RNase J1/J2 (Bsu-RNase J1/J2) and RNase Y (Bsu-RNase Y) to execute RNA decay. Here we found that E. coli lacking the Eco-rne gene (Δrne E. coli) was viable conditional on M9 minimal media by introducing Bsu-RNase J1/J2 or Bsu-RNase Y. We also cloned an extremely short Eco-RNase E homologue (Wpi-RNase E) and a canonical sized Bsu-RNase J1/J2 homologue (Wpi-RNase J) from Wolbachia pipientis, an α-proteobacterial endosymbiont of arthropods. We found that Wpi-RNase J restored the colony-forming ability (CFA) of Δrne E. coli, whereas Wpi-RNase E did not. Unexpectedly, Wpi-RNase E restored defective CFA due to lack of Eco-RNase G, a paralogue of Eco-RNase E. Our results indicate that bacterial species that lack Eco-RNase E homologues or bacterial species that possess Eco-RNase E homologues which lack Eco-RNase E-like activities have a modest Eco-RNase E-like function using RNase J and/or RNase Y. These results suggest that Eco-RNase E-like activities might distribute among a wide array of bacteria and that functions of RNases may have changed dynamically during evolutionary divergence of bacterial lineages. PMID:28542621

  16. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    PubMed

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  17. Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection

    PubMed Central

    Lee, Jeong Yoon; Lee, Ji Sun; Materne, Emma C.; Rajala, Rahul; Ismail, Ashrafali M.; Seto, Donald; Dyer, David W.

    2018-01-01

    ABSTRACT Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the

  18. The effect of bacterial environmental and metabolic stresses on a laser-induced breakdown spectroscopy (LIBS) based identification of Escherichia coli and Streptococcus viridans.

    PubMed

    Mohaidat, Qassem; Palchaudhuri, Sunil; Rehse, Steven J

    2011-04-01

    In this paper we investigate the effect that adverse environmental and metabolic stresses have on the laser-induced breakdown spectroscopy (LIBS) identification of bacterial specimens. Single-pulse LIBS spectra were acquired from a non-pathogenic strain of Escherichia coli cultured in two different nutrient media: a trypticase soy agar and a MacConkey agar with a 0.01% concentration of deoxycholate. A chemometric discriminant function analysis showed that the LIBS spectra acquired from bacteria grown in these two media were indistinguishable and easily discriminated from spectra acquired from two other non-pathogenic E. coli strains. LIBS spectra were obtained from specimens of a nonpathogenic E. coli strain and an avirulent derivative of the pathogen Streptococcus viridans in three different metabolic situations: live bacteria reproducing in the log-phase, bacteria inactivated on an abiotic surface by exposure to bactericidal ultraviolet irradiation, and bacteria killed via autoclaving. All bacteria were correctly identified regardless of their metabolic state. This successful identification suggests the possibility of testing specimens that have been rendered safe for handling prior to LIBS identification. This would greatly enhance personnel safety and lower the cost of a LIBS-based diagnostic test. LIBS spectra were obtained from pathogenic and non-pathogenic bacteria that were deprived of nutrition for a period of time ranging from one day to nine days by deposition on an abiotic surface at room temperature. All specimens were successfully classified by species regardless of the duration of nutrient deprivation. © 2011 Society for Applied Spectroscopy

  19. Biomimetic/Optical Sensors for Detecting Bacterial Species

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ksendzov, Alexander; Yen, Shiao-Pin; Ryan, Margaret; Lazazzera, Beth

    2006-01-01

    Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum-signaling compounds are acyl-homoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum. A sensor according to the proposal would include a specially formulated biomimetic film, made of a molecularly imprinted polymer (MIP), that would respond optically to the signaling compound of interest. The MIP film would be integrated directly onto an opticalwaveguide- based ring resonator for optical readout. Optically, the sensor would resemble the one described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. MIPs have been used before as molecular- recognition compounds, though not in the manner of the present proposal. Molecular imprinting is an approach to making molecularly selective cavities in a polymer matrix. These cavities function much as enzyme receptor sites: the chemical functionality and shape of a cavity in the polymer matrix cause the cavity to bind to specific molecules. An MIP matrix is made by polymerizing monomers in the presence of the compound of interest (template molecule). The polymer forms around the template. After the polymer solidifies, the template molecules are removed from the polymer matrix by decomplexing them from their binding sites and then dissolving them, leaving cavities that are matched to the template molecules in size, shape, and chemical functionality. The cavities thus become molecular-recognition sites

  20. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    PubMed

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  1. Forest Fragmentation as Cause of Bacterial Transmission among Nonhuman Primates, Humans, and Livestock, Uganda

    PubMed Central

    Gillespie, Thomas R.; Rwego, Innocent B.; Estoff, Elizabeth L.; Chapman, Colin A.

    2008-01-01

    We conducted a prospective study of bacterial transmission among humans, nonhuman primates (primates hereafter), and livestock in western Uganda. Humans living near forest fragments harbored Escherichia coli bacteria that were ≈75% more similar to bacteria from primates in those fragments than to bacteria from primates in nearby undisturbed forests. Genetic similarity between human/livestock and primate bacteria increased ≈3-fold as anthropogenic disturbance within forest fragments increased from moderate to high. Bacteria harbored by humans and livestock were approximately twice as similar to those of red-tailed guenons, which habitually enter human settlements to raid crops, than to bacteria of other primate species. Tending livestock, experiencing gastrointestinal symptoms, and residing near a disturbed forest fragment increased genetic similarity between a participant’s bacteria and those of nearby primates. Forest fragmentation, anthropogenic disturbance within fragments, primate ecology, and human behavior all influence bidirectional, interspecific bacterial transmission. Targeted interventions on any of these levels should reduce disease transmission and emergence. PMID:18760003

  2. [Bacterial flora and mycosis of the vagina in women with symptoms of vaginal inflammation].

    PubMed

    Dybaś, Irena; Sidor-Wójtowicz, Anna; Kozioł-Montewka, Maria

    2005-05-01

    To estimate the microbiological profile of vaginal flora in 30 women with gynecologic problems and 20 pregnant women complaining about pathological symptoms {pruritus, burning, vaginal discharge}. The discharge from posterior vaginal vault was examined microbiologically on the Columbia Agar with sheep blood, MacConkey and Sabourand cultures incubated of 48 hours in the temperature of 37 degrees C. Bacterial infections were detected in 33 cases (66%), 12 of these women (24%) lived in urban, 21 (42%) in rural environment. From bacteria isolated from the vagina, most often because at 14 women stepped out Streptococcus agalactiae, at 11 Enterococcus faecalis at 8 Escherichia coli. In 5 cases bacterial inflammation was caused by two kinds of bacterium. At two women stepped out both Enterococcus faecalis and Escherichia coli. In single cases it was Klebsiella pneumoniae and Proteus vulgaris, Escherichia coli and Streptococcus agalactiae. In all cases of inflammation mycosis was called out by from Candida albicans. One ascertained it at 14 among all given an examination women. Mixed inflammations called out both by mycosis and bacterial stepped out in 3 cases in age of 21-30. At two women it was Candida albicans and Streptococcus agalactiae, at one inflammation mycosis accompanied Enterococcus faecalis. The common reason of vaginitis are bacterial infections caused by Streptococcus agalactiae, Enterococcus faecalis, E coli. Both, place of living and women' s age influence the type of etiological factor.

  3. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    PubMed

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  4. Growth phase-dependent induction of stationary-phase promoters of Escherichia coli in different gram-negative bacteria.

    PubMed Central

    Miksch, G; Dobrowolski, P

    1995-01-01

    RSF1010-derived plasmids carrying a fusion of a promoterless lacZ gene with the sigma s-dependent growth phase-regulated promoters of Escherichia coli, bolAp1 and fic, were constructed. The plasmids were mobilized into the gram-negative bacterial species Acetobacter methanolicus, Xanthomonas campestris, Pseudomonas putida, and Rhizobium meliloti. The beta-galactosidase activities of bacterial cultures were determined during exponential and stationary growth phases. Transcriptional activation of the fic promoter in the different bacteria was growth phase dependent as in E. coli and was initiated generally during the transition to stationary phase. The induction of the bolA promoter was also growth phase dependent in the bacteria tested. While the expression in E. coli and R. meliloti was initiated during the transition from exponential to stationary phase, the induction in A. methanolicus, P. putida, and X. campestris started some hours after stationary growth phase was reached. In all the species tested, DNA fragments hybridizing with the rpoS gene of E. coli were detected. The results show that in different gram-negative bacteria, stationary-phase-specific sigma factors which are structurally and functionally homologous to sigma s and are able to recognize the promoter sequences of both bolA and fic exist. PMID:7665531

  5. Investigation of bacterial resistance to the immune system response: cepacian depolymerisation by reactive oxygen species.

    PubMed

    Cuzzi, Bruno; Cescutti, Paola; Furlanis, Linda; Lagatolla, Cristina; Sturiale, Luisa; Garozzo, Domenico; Rizzo, Roberto

    2012-08-01

    Reactive oxygen species (ROS) are part of the weapons used by the immune system to kill and degrade infecting microorganisms. Bacteria can produce macromolecules, such as polysaccharides, that are able to scavenge ROS. Species belonging to the Burkholderia cepacia complex are involved in serious lung infection in cystic fibrosis patients and produce a characteristic polysaccharide, cepacian. The interaction between ROS and bacterial polysaccharides was first investigated by killing experiments, where bacteria cells were incubated with sodium hypochlorite (NaClO) with and without prior incubation with cepacian. The results showed that the polysaccharide had a protective effect towards bacterial cells. Cepacian was then treated with different concentrations of NaClO and the course of reactions was followed by means of capillary viscometry. The degradation products were characterised by size-exclusion chromatography, NMR and mass spectrometry. The results showed that hypochlorite depolymerised cepacian, removed side chains and O-acetyl groups, but did not cleave the glycosidic bond between glucuronic acid and rhamnose. The structure of some oligomers produced by NaClO oxidation is reported.

  6. A Cross-Sectional Survey of Bacterial Species in Plaque from Client Owned Dogs with Healthy Gingiva, Gingivitis or Mild Periodontitis

    PubMed Central

    Davis, Ian J.; Wallis, Corrin; Deusch, Oliver; Colyer, Alison; Milella, Lisa; Loman, Nick; Harris, Stephen

    2013-01-01

    Periodontal disease is the most widespread oral disease in dogs which if left untreated results in significant pain to the pet and loss of dentition. The objective of this study was to identify bacterial species in canine plaque that are significantly associated with health, gingivitis and mild periodontitis (<25% attachment loss). In this survey subgingival plaque samples were collected from 223 dogs with healthy gingiva, gingivitis and mild periodontitis with 72 to 77 samples per health status. DNA was extracted from the plaque samples and subjected to PCR amplification of the V1-V3 region of the 16S rDNA. Pyrosequencing of the PCR amplicons identified a total of 274 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all disease stages, particularly in health along with Moraxella and Bergeyella. Peptostreptococcus, Actinomyces, and Peptostreptococcaceae were the most abundant genera in mild periodontitis. Logistic regression analysis identified species from each of these genera that were significantly associated with health, gingivitis or mild periodontitis. Principal component analysis showed distinct community profiles in health and disease. The species identified show some similarities with health and periodontal disease in humans but also major differences. In contrast to human, healthy canine plaque was found to be dominated by Gram negative bacterial species whereas Gram positive anaerobic species predominate in disease. The scale of this study surpasses previously published research and enhances our understanding of the bacterial species present in canine subgingival plaque and their associations with health and early periodontal disease. PMID:24349448

  7. A cross-sectional survey of bacterial species in plaque from client owned dogs with healthy gingiva, gingivitis or mild periodontitis.

    PubMed

    Davis, Ian J; Wallis, Corrin; Deusch, Oliver; Colyer, Alison; Milella, Lisa; Loman, Nick; Harris, Stephen

    2013-01-01

    Periodontal disease is the most widespread oral disease in dogs which if left untreated results in significant pain to the pet and loss of dentition. The objective of this study was to identify bacterial species in canine plaque that are significantly associated with health, gingivitis and mild periodontitis (<25% attachment loss). In this survey subgingival plaque samples were collected from 223 dogs with healthy gingiva, gingivitis and mild periodontitis with 72 to 77 samples per health status. DNA was extracted from the plaque samples and subjected to PCR amplification of the V1-V3 region of the 16S rDNA. Pyrosequencing of the PCR amplicons identified a total of 274 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all disease stages, particularly in health along with Moraxella and Bergeyella. Peptostreptococcus, Actinomyces, and Peptostreptococcaceae were the most abundant genera in mild periodontitis. Logistic regression analysis identified species from each of these genera that were significantly associated with health, gingivitis or mild periodontitis. Principal component analysis showed distinct community profiles in health and disease. The species identified show some similarities with health and periodontal disease in humans but also major differences. In contrast to human, healthy canine plaque was found to be dominated by Gram negative bacterial species whereas Gram positive anaerobic species predominate in disease. The scale of this study surpasses previously published research and enhances our understanding of the bacterial species present in canine subgingival plaque and their associations with health and early periodontal disease.

  8. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an

  9. Differentiation of the Ribosomal Protein Compositions in the Genus Escherichia and Its Related Bacteria

    PubMed Central

    Osawa, Syozo; Itoh, Takuzi; Otaka, Eiko

    1971-01-01

    Compositions of the ribosomal proteins of 60 bacterial strains belonging to the genus Escherichia and its related genera were examined by use of a column of carboxymethyl cellulose. The ribosomes were classified into seven groups and were further differentiated into several types (subgroups) according to their protein compositions. It was shown that ribosomal protein composition is a useful characteristic for studies of bacterial taxonomy. PMID:5563866

  10. Influence of type-I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution.

    PubMed

    Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M

    2018-01-12

    Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are

  11. Combination of therapeutic ultrasound with antibiotics interfere with the growth of bacterial culture that colonizes skin ulcers: An in-vitro study.

    PubMed

    Guirro, Elaine Caldeira de Oliveira; Angelis, Dejanira de Franceschi de; Sousa, Natanael Teixeira Alves de; Guirro, Rinaldo Roberto de Jesus

    2016-09-01

    Staphylococcus aureus and Escherichia coli are among the major bacterial species that colonize skin ulcers. Therapeutic ultrasound (TUS) produces biophysical effects that are relevant to wound healing; however, its application over a contaminated injury is not evidence-based. The objective of this research was to analyze the effect of TUS on in vitro-isolated S. aureus and E. coli, including the combination of ultrasound and antibiotics, in order to assess their antibiotic action on bacterial susceptibility. For the experiments, the bacterial strains were suspended in saline, then diluted (10(4)CFU/mL) for irradiation (at 1 and 3MHz, 0.5 and 0.8W/cm(2) for 0 and 15min) and the combination treatment of ultrasonication and antibiotics was administered by adding nalidixic acid (S. aureus) and tetracycline (E. coli) at concentrations equivalent to 50% of the minimum inhibitory concentration (MIC). The experiments were carried out in duplicate with six repetitions. The suspensions were inoculated on to Petri plates and incubated at 37°C and the colony forming units (CFUs) were counted after 24h. The results were subjected to the Shapiro-Wilk normality test, followed by parametric ANOVA and Tukey's post hoc test at a significance level of 1%. The results demonstrated that the action of TUS at 1MHz inhibited bacterial growth while at 3MHz, bacterial growth was observed in both species. However, the synergistic combination of ultrasound and antibiotics was able to inhibit the growth of both bacteria completely after 15min of ultrasonication. The results suggest that the action of ultrasound on S. aureus and E. coli are dependent on the oscillation frequency as well as the intensity and time of application. The combination of ultrasound with antibiotics was able to inhibit bacterial growth fully at all frequencies and doses in both species. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Small Heat-Shock Proteins, IbpAB, Protect Non-Pathogenic Escherichia coli from Killing by Macrophage-Derived Reactive Oxygen Species

    PubMed Central

    Goeser, Laura; Fan, Ting-Jia; Tchaptchet, Sandrine; Stasulli, Nikolas; Goldman, William E.; Sartor, R. Balfour; Hansen, Jonathan J.

    2015-01-01

    Many intracellular bacterial pathogens possess virulence factors that prevent detection and killing by macrophages. However, similar virulence factors in non-pathogenic bacteria are less well-characterized and may contribute to the pathogenesis of chronic inflammatory conditions such as Crohn’s disease. We hypothesize that the small heat shock proteins IbpAB, which have previously been shown to reduce oxidative damage to proteins in vitro and be upregulated in luminal non-pathogenic Escherichia strain NC101 during experimental colitis in vivo, protect commensal E. coli from killing by macrophage-derived reactive oxygen species (ROS). Using real-time PCR, we measured ibpAB expression in commensal E. coli NC101 within wild-type (wt) and ROS-deficient (gp91phox-/-) macrophages and in NC101 treated with the ROS generator paraquat. We also quantified survival of NC101 and isogenic mutants in wt and gp91phox-/- macrophages using gentamicin protection assays. Similar assays were performed using a pathogenic E. coli strain O157:H7. We show that non-pathogenic E. coli NC101inside macrophages upregulate ibpAB within 2 hrs of phagocytosis in a ROS-dependent manner and that ibpAB protect E. coli from killing by macrophage-derived ROS. Moreover, we demonstrate that ROS-induced ibpAB expression is mediated by the small E. coli regulatory RNA, oxyS. IbpAB are not upregulated in pathogenic E. coli O157:H7 and do not affect its survival within macrophages. Together, these findings indicate that ibpAB may be novel virulence factors for certain non-pathogenic E. coli strains. PMID:25798870

  13. Insights from 20 years of bacterial genome sequencing

    DOE PAGES

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran; ...

    2015-02-27

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about

  14. Insights from 20 years of bacterial genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about

  15. Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria.

    PubMed

    Bae, Kyung Sook; Kim, Mi Sun; Lee, Ji Hee; Kang, Joo Won; Kim, Dae In; Lee, Ji Hee; Seong, Chi Nam

    2016-12-01

    , Gyeonggi, Jeonnam, Daejeon, and Chungnam. A large number of novel actinobacterial species continue to be discovered since the Korean government is encouraging the search for new bacterial species and researchers are endeavoring to find out novel strains from extreme or untapped environments.

  16. Novel approach for differentiating Shigella species and Escherichia coli by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Khot, Prasanna D; Fisher, Mark A

    2013-11-01

    Shigella species are so closely related to Escherichia coli that routine matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) cannot reliably differentiate them. Biochemical and serological methods are typically used to distinguish these species; however, "inactive" isolates of E. coli are biochemically very similar to Shigella species and thus pose a greater diagnostic challenge. We used ClinProTools (Bruker Daltonics) software to discover MALDI-TOF MS biomarker peaks and to generate classification models based on the genetic algorithm to differentiate between Shigella species and E. coli. Sixty-six Shigella spp. and 72 E. coli isolates were used to generate and test classification models, and the optimal models contained 15 biomarker peaks for genus-level classification and 12 peaks for species-level classification. We were able to identify 90% of E. coli and Shigella clinical isolates correctly to the species level. Only 3% of tested isolates were misidentified. This novel MALDI-TOF MS approach allows laboratories to streamline the identification of E. coli and Shigella species.

  17. Future challenges in the elimination of bacterial meningitis.

    PubMed

    Bottomley, Matthew J; Serruto, Davide; Sáfadi, Marco Aurélio Palazzi; Klugman, Keith P

    2012-05-30

    Despite the widespread implementation of several effective vaccines over the past few decades, bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Group B Streptococcus (GBS) still results in unacceptably high levels of human mortality and morbidity. A residual disease burden due to bacterial meningitis is also apparent due to a number of persistent or emerging pathogens, including Mycobacterium tuberculosis, Escherichia coli, Staphylococcus aureus, Salmonella spp. and Streptococcus suis. Here, we review the current status of bacterial meningitis caused by these pathogens, highlighting how past and present vaccination programs have attempted to counter these pathogens. We discuss how improved pathogen surveillance, implementation of current vaccines, and development of novel vaccines may be expected to further reduce bacterial meningitis and related diseases in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    ILG1. CONCLUSIONS: In the course of our studies using cDNA RDA, we have isolated and identified ILG1, a likely active site-specific recombinase and new member of the bacteriophage P4 family of integrases. This family of integrases is implicated in the horizontal DNA transfer of pathogenic genes between bacterial species, such as those found in pathogenic strains of E. coli, Shigella, Yersinia, and Vibrio cholera. Using ILG1 as a marker of our laboratory E. coli strain TOP10F', our evidence suggests that contaminating bacterial DNA in our subtraction experiment is due to this laboratory bacterial strain, which colonized exposed surfaces of the laboratory worker. Thus, identification of differentially expressed genes between normal and diseased states could be dramatically improved by using extra precaution to prevent bacterial contamination of samples. PMID:12393938

  19. A Mesocosm of Lactobacillus johnsonii, Bifidobacterium longum, and Escherichia coli in the mouse gut.

    PubMed

    Denou, Emmanuel; Rezzonico, Enea; Panoff, Jean-Michel; Arigoni, Fabrizio; Brüssow, Harald

    2009-08-01

    The relative contribution of competition and cooperation at the microbe-microbe level is not well understood for the bacteria constituting the gut microbiota. The high number and variability of human gut commensals have hampered the analysis. To get some insight into the question how so many different bacterial species can coexist in the mammalian gut, we studied the interaction between three human gut commensals (Escherichia coli K-12, Lactobacillus johnsonii NCC533, and Bifidobacterium longum NCC2705) in the intestine of gnotobiotic mice. The bacterial titers and their anatomical distribution were studied in the colonized mice. L. johnsonii achieved the highest cell counts in the stomach, while B. longum dominated the colon. The colon was also the intestinal location in which B. longum displayed the highest number of expressed genes, followed by the cecum and the small intestine. Addition of further bacterial strains led to strikingly different results. A Lactobacillus paracasei strain coexisted, while a second B. longum strain was excluded from the system. Notably, this strain lacked an operon involved in the degradation, import, and metabolism of mannosylated glycans. Subsequent introduction of the E. coli Nissle strain resulted in the elimination of L. johnsonii NCC533 and E. coli K-12, while B. longum NCC2705 showed a transient decrease in population size, demonstrating the dynamic nature of microbe-microbe interactions. The study of such simple interacting bacterial systems might help to derive some basic rules governing microbial ecology within the mammalian gut.

  20. Rapid detection of bacterial pathogens using flourescence spectroscopy and chemometrics

    USDA-ARS?s Scientific Manuscript database

    This work presents the development of a method for rapid bacterial identification based on the fluorescence spectroscopy combined with multivariate analysis. Fluorescence spectra of pure three different genera of bacteria (Escherichia coli, Salmonella, and Campylobacter) were collected from 200...

  1. Differentiation of some species of Neisseriaceae and other bacterial groups by DNA-DNA hybridization.

    PubMed

    Tønjum, T; Bukholm, G; Bøvre, K

    1989-05-01

    DNA-DNA hybridization using total genomic DNA probes may represent a way of differentiating between miscellaneous bacterial species. This was studied with type and reference strains of 20 species in Moraxella, Kingella, and other selected Gram-negative groups. Both radioactive and biotin labelling were employed. Most of the species examined were easily distinguished, such as Moraxella (Branhamella) catarrhalis, M.(B.) ovis, M. atlantae, M. phenylpyruvica, M. osloensis, Neisseria elongata, N. meningitidis, Kingella kingae, K. indologenes, K. dentrificans, Oligella urethralis, Eikenella corrodens, Cardiobacterium hominis, Haemophilus aphrophilus, Actinobacillus actinomycetemcomitans, Gardnerella vaginalis, and DF-2. This reflected the extent of the genetic distances between them as a basis for identification by hybridization. There was some clustering in the Moraxella group. Especially the closely related Moraxella nonliquefaciens, M. lacunata and M. bovis showed strong hybridization affinities. This leads to potential problems in distinguishing these three species from each other by DNA-DNA hybridization with total genomic probes alone.

  2. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr

    PubMed Central

    Eo, Yumi; Ma, Xiaochu; Stephens, Kristina; Jeong, Migyeong; Bentley, William E.

    2018-01-01

    Quorum sensing (QS), a bacterial process that regulates population-scale behavior, is mediated by small signaling molecules, called autoinducers (AIs), that are secreted and perceived, modulating a “collective” phenotype. Because the autoinducer AI-2 is secreted by a wide variety of bacterial species, its “perception” cues bacterial behavior. This response is mediated by the lsr (LuxS-regulated) operon that includes the AI-2 transporter LsrACDB and the kinase LsrK. We report that HPr, a phosphocarrier protein central to the sugar phosphotransferase system of Escherichia coli, copurifies with LsrK. Cocrystal structures of an LsrK/HPr complex were determined, and the effects of HPr and phosphorylated HPr on LsrK activity were assessed. LsrK activity is inhibited when bound to HPr, revealing new linkages between QS activity and sugar metabolism. These findings help shed new light on the abilities of bacteria to rapidly respond to changing nutrient levels at the population scale. They also suggest new means of manipulating QS activity among bacteria and within various niches. PMID:29868643

  3. Impact of hydrodynamic stresses on bacterial flagella

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Riley, Emily; Lauga, Eric

    2017-11-01

    The locomotion of bacteria powered by helical filaments, such as Escherichia coli, critically involves the generation of flows and hydrodynamic stresses which lead to forces and moments balanced by the moment applied by the bacterial rotary motor (which is embedded in the cell wall) and the deformation of the short flexible hook. In this talk we use numerical computations to accurately compute these hydrodynamic stresses, to show how they critically lead to fluid-structure instabilities at the whole-cell level, and enquire if they can be used to rationalise experimental measurements of bacterial motor torques. ERC Consolidator Grant.

  4. Mechanosensing regulates virulence in Escherichia coli O157:H7.

    PubMed

    Islam, Md Shahidul; Krachler, Anne Marie

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 is a food-borne pathogen transmitted via the fecal-oral route, and can cause bloody diarrhea and hemolytic uremic syndrome (HUS) in the human host. Although a range of colonization factors, Shiga toxins and a type III secretion system (T3SS) all contribute to disease development, the locus of enterocyte effacement (LEE) encoded T3SS is responsible for the formation of lesions in the intestinal tract. While a variety of chemical cues in the host environment are known to up-regulate LEE expression, we recently demonstrated that changes in physical forces at the site of attachment are required for localized, full induction of the system and thus spatial regulation of virulence in the intestinal tract. Here, we discuss our findings in the light of other recent studies describing mechanosensing of the host and force-dependent induction of virulence mechanisms. We discuss potential mechanisms of mechanosensing and mechanotransduction, and the level of conservation across bacterial species.

  5. Synergistic effects of Candida and Escherichia coli on gut barrier function.

    PubMed

    Diebel, L N; Liberati, D M; Diglio, C A; Dulchavsky, S A; Brown, W J

    1999-12-01

    Disruption of the indigenous gut microflora with overgrowth of gram-negative bacteria and Candida species is common in the critically ill patient. These organisms readily translocate in vitro, which may cause septic complications and organ failure. A synergistic effect between Escherichia coli and C. albicans in polymicrobial infections has been demonstrated. An interaction between these organisms at the mucosal barrier is unknown. Ca(CO2) monolayers were grown to confluence in a two compartment culture system. E. coli and C. albicans or E. coli alone were added to the apical chambers. Secretory immunoglobulin A was added to half of the apical chambers as well. Cell cultures were incubated for a total of 240 minutes. Basal media were sampled at timed intervals for quantitative culture. Monolayer integrity was confirmed by serial measurement of transepithelial electrical resistance. Secretory immunoglobulin A decreased bacterial translocation across Ca(CO2) monolayers challenged with E. coli alone. Transepithelial passage of E. coli was significantly increased by coculture of bacteria with C. albicans. Augmentation of bacterial translocation by Candida occurred even in the presence of secretory immunoglobulin A. Candida colonization of the GI tract may impair mucosal barrier defense against gram-negative bacteria. The clinical role of gut antifungal prophylaxis in protecting against gut derived gram-negative sepsis is speculative.

  6. [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa].

    PubMed

    Sienkiewicz, Monika; Wasiela, Małgorzata; Głowacka, Anna

    2012-01-01

    The aim of this study was to investigate the antibacterial properties of oregano (Origanum heracleoticum L.) essential oil against clinical strains of Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of oregano essential oil was investigate against 2 tested and 20 clinical bacterial strains of Escherichia coli and 20 clinical strains o Pseudomonas aeruginosa come from patients with different clinical conditions. The agar dilution method was used for microbial growth inhibition at various concentrations ofoil. Susceptibility testing to antibiotics was carried out using disc-diffusion method. The results of experiments showed that the tested oil was active against all of the clinical strains from both genus of bacteria, but strains of Escherichia coli were more sensitive to tested oil. Essential oil from Origanum heracleoticum L. inhibited the growth of Escherichia coli and Pseudomonas aeruginosa clinical strains with different patters of resistance. The obtained outcomes will enable further investigations using oregano essential oil obtained from Origanum heracleoticum L. as alternative antibacterial remedies enhancing healing process in bacterial infections and as an effective means for the prevention of antibiotic-resistant strain development.

  7. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh

    PubMed Central

    2011-01-01

    Background Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Methods Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. Results All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm). Conclusion Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary. PMID:21406097

  8. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh.

    PubMed

    Rahman, Shahedur; Parvez, Anowar Khasru; Islam, Rezuanul; Khan, Mahboob Hossain

    2011-03-15

    Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm). Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary.

  9. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    PubMed

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high.

  10. Bacterial communities in floral nectar.

    PubMed

    Fridman, Svetlana; Izhaki, Ido; Gerchman, Yoram; Halpern, Malka

    2012-02-01

    Floral nectar is regarded as the most important reward available to animal-pollinated plants to attract pollinators. Despite the vast amount of publications on nectar properties, the role of nectar as a natural bacterial habitat is yet unexplored. To gain a better understanding of bacterial communities inhabiting floral nectar, culture-dependent and -independent (454-pyrosequencing) methods were used. Our findings demonstrate that bacterial communities in nectar are abundant and diverse. Using culture-dependent method we showed that bacterial communities of nectar displayed significant variation among three plant species: Amygdalus communis, Citrus paradisi and Nicotiana glauca. The dominant class in the nectar bacterial communities was Gammaproteobacteria. About half of the isolates were novel species (< 97% similarities of the 16S rRNA gene with known species). Using 454-pyrosequencing we demonstrated that nectar microbial community are distinct for each of the plant species while there are no significant differences between nectar microbial communities within nectars taken from different plants of the same species. Primary selection of the nectar bacteria is unclear; it may be affected by variations in the chemical composition of the nectar in each plant. The role of the rich and diverse nectar microflora in the attraction-repulsion relationships between the plant and its nectar consumers has yet to be explored. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Burns, Adam R; Hampton, Jennifer S; Rolig, Annah S; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-12-16

    The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy

  12. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    PubMed

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  13. Avian pathogenic Escherichia coli bind fibronectin and laminin.

    PubMed

    Ramírez, Rosa María; Almanza, Yolanda; González, Rafael; García, Santos; Heredia, Norma

    2009-04-01

    Avian colisepticemia frequently occurs after respiratory tract damage, the primary site for infection allows bacteria to encounter an exposed basement membrane, where laminin and fibronectin are important components. We investigated the ability of an isolate of avian pathogenic Escherichia coli to bind fibronectin and laminin. Using Far-western dot blot analysis, we demonstrated the ability of this microorganism to bind basement membrane proteins fibronectin and laminin. Results from an ELISA-based approach indicate that the binding to these membrane proteins was bacterial-dose dependent. Furthermore, two specific E. coli polypeptides, of 32 kDa and 130 kDa, reacted with laminin and fibronectin, respectively. Further evaluation of these potential bacterial adhesins may provide insights into the pathogenesis of colibacillosis.

  14. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing.

    PubMed

    Li, Tongtong; Long, Meng; Gatesoupe, François-Joël; Zhang, Qianqian; Li, Aihua; Gong, Xiaoning

    2015-01-01

    Gut microbiota is increasingly regarded as an integral component of the host, due to important roles in the modulation of the immune system, the proliferation of the intestinal epithelium and the regulation of the dietary energy intake. Understanding the factors that influence the composition of these microbial communities is essential to health management, and the application to aquatic animals still requires basic investigation. In this study, we compared the bacterial communities harboured in the intestines and in the rearing water of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius cuvieri), and bighead carp (Hypophthalmichthys nobilis), by using 454-pyrosequencing with barcoded primers targeting the V4 to V5 regions of the bacterial 16S rRNA gene. The specimens of the three species were cohabiting in the same pond. Between 6,218 and 10,220 effective sequences were read from each sample, resulting in a total of 110,398 sequences for 13 samples from gut microbiota and pond water. In general, the microbial communities of the three carps were dominated by Fusobacteria, Firmicutes, Proteobacteria and Bacteroidetes, but the abundance of each phylum was significantly different between species. At the genus level, the overwhelming group was Cetobacterium (97.29 ± 0.46 %) in crucian carp, while its abundance averaged c. 40 and 60 % of the sequences read in the other two species. There was higher microbial diversity in the gut of filter-feeding bighead carp than the gut of the two other species, with grazing feeding habits. The composition of intestine microbiota of grass carp and crucian carp shared higher similarity when compared with bighead carp. The principal coordinates analysis (PCoA) with the weighted UniFrac distance and the heatmap analysis suggested that gut microbiota was not a simple reflection of the microbial community in the local habitat but resulted from species-specific selective pressures, possibly dependent on behavioural, immune

  15. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042

    PubMed Central

    2018-01-01

    ABSTRACT Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae, cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli, out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue (hns2). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae. IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool. PMID

  16. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042.

    PubMed

    Prieto, A; Bernabeu, M; Aznar, S; Ruiz-Cruz, S; Bravo, A; Queiroz, M H; Juárez, A

    2018-01-01

    Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae , cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli , out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue ( hns2 ). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae . IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool.

  17. Bacterial infection of the lower respiratory tract in 34 horses.

    PubMed

    Racklyeft, D J; Love, D N

    2000-08-01

    To investigate associations between the bacteriology and aspects of history, clinical presentation, outcome and pathology of lower respiratory tract disease of 34 horses. Detailed aerobic and anaerobic bacteriological investigations were performed on clinical specimens from horses with pneumonia, lung abscessation and necrotic pneumonia with or without pleurisy in an attempt to identify those bacteria that might contribute to the initiation and progression of infection. Bacteria were cultured from 33 of the 34 horses. In ten cases, only aerobic/facultatively anaerobic isolates were cultured while aerobic/facultatively anaerobic bacteria and obligately anaerobic bacteria were isolated in the other 23 cases. Moderate to large numbers of anaerobic bacteria were isolated only when the estimated duration of illness was at least five days. Bacteria were not cultured from 12 of the pleural fluid samples but were always cultured from pulmonary samples (either transtracheal aspirates from live horses or pulmonary lesions at necropsy). Streptococcus equi subsp zooepidemicus was isolated in the three cases where only one bacterial species was cultured. In the other 30 cases, multiple species were isolated. These included most often and in greatest numbers, Streptococcus equi subsp zooepidemicus, Pasteurellaceae, Escherichia coli, anaerobic cocci, Eubacterium fossor, Bacteroides tectum, Prevotella heparinolytica, Fusobacterium spp, and pigmented members of the genera Prevotella and Porphyromonas. Aerobic/facultatively anaerobic organisms were isolated from 97% of horses, while obligately anaerobic organisms were cultured from 68% of horses. There was no association between the isolation of any specific bacterium and the outcome of disease. However, obligately anaerobic bacteria (such as anaerobic cocci, Bacteroides tectum, P heparinolytica and Fusobacterium spp) and the facultatively anaerobic species Escherichia coli, were recovered more commonly from horses that died or were

  18. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  19. Survival and heat resistance of Salmonella enterica and Escherichia coli O157:H7 in peanut butter.

    PubMed

    He, Yingshu; Guo, Dongjing; Yang, Jingyun; Tortorello, Mary Lou; Zhang, Wei

    2011-12-01

    Significant differences (P < 0.05) were found between the survival rates of Salmonella enterica and Escherichia coli O157:H7 in peanut butter with different formulations and water activity. High carbohydrate content in peanut butter and low incubation temperature resulted in higher levels of bacterial survival during storage but lower levels of bacterial resistance to heat treatment.

  20. Adherence of Escherichia coli O157:H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions

    PubMed Central

    Yin, Xianhua; Feng, Yanni; Wheatcroft, Roger; Chambers, James; Gong, Joshua; Gyles, Carlton L.

    2011-01-01

    The objectives of this study were to determine the effect of bacterial culture conditions on adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 in vivo to pig enterocytes and to compare the results with adherence in vitro to cultured HEp-2 and IPEC-J2 cells. Growth of O157:H7 in MacConkey broth (MB) resulted in almost no adherence to both HEp-2 and IPEC-J2 cells; prior exposure of the bacteria to pH 2.5 reduced adherence. There was greater adherence by bacteria from static cultures than by those from shaken cultures and by bacteria cultured in brain–heart infusion (BHI) plus NaHCO3 (BHIN) than by bacteria cultured in BHI. In contrast, in pig ileal loops, bacteria cultured in MB adhered well to enterocytes, and prior exposure to pH 2.5 had no effect on adherence. Among several media tested for their effect on bacterial adherence in the pig intestine, MB and BHIN proved to be the best. Bacterial adherence was dose-dependent and was more extensive in the ileum than in the colon. This study demonstrated that there are remarkable differences between culture conditions that promote adherence of an EHEC O157:H7 strain in vitro and in vivo, that culture conditions profoundly affect adherence to epithelial cells in vitro and in vivo, and that pig ileal loops are better suited to adherence studies than are colon loops. PMID:21731177

  1. Species differences in unlocking B-side electron transfer in bacterial reaction centers

    DOE PAGES

    Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.; ...

    2016-06-21

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.

  2. Species differences in unlocking B-side electron transfer in bacterial reaction centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, Nicholas P.; Faries, Kaitlyn M.; Wyllie, Ryan M.

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. Finally, the overall yields of transmembrane ET are similar, but enabled in fundamentally different ways.

  3. Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili

    PubMed Central

    Floyd, Kyle A.; Moore, Jessica L.; Eberly, Allison R.; Good, James A. D.; Shaffer, Carrie L.; Zaver, Himesh; Almqvist, Fredrik; Skaar, Eric P.; Caprioli, Richard M.; Hadjifrangiskou, Maria

    2015-01-01

    Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the “OFF” orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were up-regulated under anoxic conditions. Tethering the fim promoter in the “ON” orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms

  4. Multiplex polymerase chain reaction assay developed to diagnose adult bacterial meningitis in Taiwan.

    PubMed

    Lee, Chi-Tsung; Hsiao, Kuang-Ming; Chen, Jin-Cherng; Su, Cheng-Chuan

    2015-11-01

    Acute bacterial meningitis causes high morbidity and mortality; the associated clinical symptoms often are insensitive or non-specific; and the pathogenic bacteria are geographically diverse. Clinical diagnosis requires a rapid and accurate methodology. This study aimed to develop a new multiplex polymerase chain reaction (mPCR) assay to detect simultaneously six major bacteria that cause adult bacterial meningitis in Taiwan: Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii. Species-specific primers for the six bacteria were developed using reference strains. The specificities of the mPCRs for these bacteria were validated, and the sensitivities were evaluated via serial dilutions. The mPCR assay specifically detected all of the six pathogens, particularly with sensitivities of 12 colony forming units (CFU)/mL, 90 CFU/mL, and 390 CFU/mL for E. coli, S. pneumoniae, and K. pneumoniae, respectively. This mPCR assay is a rapid and specific tool to detect the six major bacterial pathogens that cause acute adult meningitis in Taiwan, particularly sensitive for detecting E. coli, S. pneumoniae, and K. pneumoniae. The assay may facilitate early diagnosis and guidance for antimicrobial therapy for adult patients with this deadly disease in Taiwan. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  5. The Differential Effects of Anesthetics on Bacterial Behaviors

    PubMed Central

    Chamberlain, Matthew; Koutsogiannaki, Sophia; Schaefers, Matthew; Babazada, Hasan; Liu, Renyu; Yuki, Koichi

    2017-01-01

    Volatile anesthetics have been in clinical use for a long period of time and are considered to be promiscuous by presumably interacting with several ion channels in the central nervous system to produce anesthesia. Because ion channels and their existing evolutionary analogues, ion transporters, are very important in various organisms, it is possible that volatile anesthetics may affect some bacteria. In this study, we hypothesized that volatile anesthetics could affect bacterial behaviors. We evaluated the impact of anesthetics on bacterial growth, motility (swimming and gliding) and biofilm formation of four common bacterial pathogens in vitro. We found that commonly used volatile anesthetics isoflurane and sevoflurane affected bacterial motility and biofilm formation without any effect on growth of the common bacterial pathogens studied here. Using available Escherichia coli gene deletion mutants of ion transporters and in silico molecular docking, we suggested that these altered behaviors might be at least partly via the interaction of volatile anesthetics with ion transporters. PMID:28099463

  6. Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis

    NASA Astrophysics Data System (ADS)

    de Siqueira e Oliveira, Fernanda SantAna; Giana, Hector Enrique; Silveira, Landulfo

    2012-10-01

    A method, based on Raman spectroscopy, for identification of different microorganisms involved in bacterial urinary tract infections has been proposed. Spectra were collected from different bacterial colonies (Gram-negative: Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa and Enterobacter cloacae, and Gram-positive: Staphylococcus aureus and Enterococcus spp.), grown on culture medium (agar), using a Raman spectrometer with a fiber Raman probe (830 nm). Colonies were scraped from the agar surface and placed on an aluminum foil for Raman measurements. After preprocessing, spectra were submitted to a principal component analysis and Mahalanobis distance (PCA/MD) discrimination algorithm. We found that the mean Raman spectra of different bacterial species show similar bands, and S. aureus was well characterized by strong bands related to carotenoids. PCA/MD could discriminate Gram-positive bacteria with sensitivity and specificity of 100% and Gram-negative bacteria with sensitivity ranging from 58 to 88% and specificity ranging from 87% to 99%.

  7. Phenotypic and molecular detection of BLACTX-M gene extended-spectrum beta-lactamases in escherichia coli and klebsiella pneumoniae of north sumatera isolates

    NASA Astrophysics Data System (ADS)

    Hasibuan, Mirzan; Suryanto, Dwi; Lia Kusumawati, R.

    2018-03-01

    The application of antibiotics expanded-spectrum third-generation cephalosporin for the treatment of infectious diseases in hospitals is known contribute to increasing resistance due to the presence of the blaCTX-M gene in the bacteria producing ESBLs. This study was aimed to detect ESBLs, isolate phenotype and blaCTX-M genes on Escherichia coli and Klebsiella pneumoniae collected from H. Adam Malik Central Hospital. Phenotypes of the bacterial were detection using Vitek two compact, while the blaCTX-M genes were detection using polymerase chain reaction technique. The results showed that 85 (100%) isolates were ESBLs consisted of 41(48%) of Escherichia coli, and 44 (52%) of Klebsiella pneumoniae, respectively. blaCTX-M genes were detection in 62 (72.94%) of the isolates which 31 (36.47%) were Escherichia coli, and 31 (36.47%) of the isolates were Klebsiella pneumoniae, respectively. This study indicates the high prevalence of blaCTX-M genes in Escherichia coli and Klebsiella pneumoniea causing bacterial antibiotic resistance.

  8. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts.

    PubMed

    Elisha, Ishaku Leo; Botha, Francien S; McGaw, Lyndy Joy; Eloff, Jacobus Nicolaas

    2017-02-28

    The development of antibiotic resistant bacteria stems from a number of factors, including inappropriate use of antibiotics in human and animal health and their prolonged use as growth promoters at sub-clinical doses in poultry and livestock production. We were interested in investigating plants that could be useful in protecting humans or animals against diarrhoea. We decided to work on extracts of nine plant species with good activity against Escherichia coli based on earlier work in the Phytomedicine Programme. Leaves of nine medicinal plant species with high antibacterial activity against Escherichia coli were extracted with acetone and their minimal inhibitory concentration (MIC) values determined using a microplate serial dilution technique against Gram-positive (Staphylococcus aureus, Enterococcus faecalis and Bacillus cereus) and Gram-negative (Escherichia coli, Salmonella Typhimurium and Pseudomonas aeruginosa) bacteria. Bioautography was used to determine the number of bioactive compounds in each extract. In vitro safety of the extracts was determined using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay on Vero cells. The extracts were active against all the pathogens with average MICs ranging from 0.02 to 0.52 mg/ml. As expected E. coli was relatively sensitive, while E. faecalis and S. Typhimurium were more resistant to the extracts (average MICs of 0.28 mg/ml and 0.22 mg/ml respectively). Cremaspora triflora and Maesa lanceolata leaf extracts had higher activity than the other extracts against Gram-positive and Gram-negative pathogens with mean MICs of 0.07 mg/ml and 0.09 mg/ml respectively. Extracts of Maesa lanceolata and Hypericum roeperianum had the highest total antibacterial activity (TAA) at 1417 and 963 ml/g respectively. All extracts with the exception of that of Maesa lanceolata, Elaeodendron croceum and Calpurnia aurea had relatively low cytotoxicity with LC 50  > 20 μg/ml. Cremaspora triflora had

  9. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    PubMed

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  10. Isolation of cell-free bacterial inclusion bodies.

    PubMed

    Rodríguez-Carmona, Escarlata; Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Villaverde, Antonio; García-Fruitós, Elena

    2010-09-17

    Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10⁻¹ cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.

  11. Highly diverse and antimicrobial susceptible Escherichia coli display a naïve bacterial population in fruit bats from the Republic of Congo.

    PubMed

    Nowak, Kathrin; Fahr, Jakob; Weber, Natalie; Lübke-Becker, Antina; Semmler, Torsten; Weiss, Sabrina; Mombouli, Jean-Vivien; Wieler, Lothar H; Guenther, Sebastian; Leendertz, Fabian H; Ewers, Christa

    2017-01-01

    Bats are suspected to be a reservoir of several bacterial and viral pathogens relevant to animal and human health, but studies on Escherichia coli in these animals are sparse. We investigated the presence of E. coli in tissue samples (liver, lung and intestines) collected from 50 fruit bats of five different species (Eidolon helvum, Epomops franqueti, Hypsignathus monstrosus, Myonycteris torquata, Rousettus aegyptiacus) of two different areas in the Republic of Congo between 2009 and 2010. To assess E. coli pathotypes and phylogenetic relationships, we determined the presence of 59 virulence associated genes and multilocus sequence types (STs). Isolates were further tested for their susceptibility to several antimicrobial substances by agar disk diffusion test and for the presence of an Extended-Spectrum Beta-Lactamase phenotype. E. coli was detected in 60% of the bats analysed. The diversity of E. coli strains was very high, with 37 different STs within 40 isolates. Occasionally, we detected sequence types (e.g. ST69, ST127, and ST131) and pathotypes (e.g. ExPEC, EPEC and atypical EPEC), which are known pathogens in human and/or animal infections. Although the majority of strains were assigned to phylogenetic group B2 (46.2%), which is linked with the ExPEC pathovar, occurrence of virulence-associated genes in these strains were unexpectedly low. Due to this, and as only few of the E. coli isolates showed intermediate resistance to certain antimicrobial substances, we assume a rather naïve E. coli population, lacking contact to humans or domestic animals. Future studies featuring in depth comparative whole genome sequence analyses will provide insights into the microevolution of this interesting strain collection.

  12. Highly diverse and antimicrobial susceptible Escherichia coli display a naïve bacterial population in fruit bats from the Republic of Congo

    PubMed Central

    Nowak, Kathrin; Fahr, Jakob; Weber, Natalie; Lübke-Becker, Antina; Semmler, Torsten; Weiss, Sabrina; Mombouli, Jean-Vivien; Wieler, Lothar H.; Guenther, Sebastian

    2017-01-01

    Bats are suspected to be a reservoir of several bacterial and viral pathogens relevant to animal and human health, but studies on Escherichia coli in these animals are sparse. We investigated the presence of E. coli in tissue samples (liver, lung and intestines) collected from 50 fruit bats of five different species (Eidolon helvum, Epomops franqueti, Hypsignathus monstrosus, Myonycteris torquata, Rousettus aegyptiacus) of two different areas in the Republic of Congo between 2009 and 2010. To assess E. coli pathotypes and phylogenetic relationships, we determined the presence of 59 virulence associated genes and multilocus sequence types (STs). Isolates were further tested for their susceptibility to several antimicrobial substances by agar disk diffusion test and for the presence of an Extended-Spectrum Beta-Lactamase phenotype. E. coli was detected in 60% of the bats analysed. The diversity of E. coli strains was very high, with 37 different STs within 40 isolates. Occasionally, we detected sequence types (e.g. ST69, ST127, and ST131) and pathotypes (e.g. ExPEC, EPEC and atypical EPEC), which are known pathogens in human and/or animal infections. Although the majority of strains were assigned to phylogenetic group B2 (46.2%), which is linked with the ExPEC pathovar, occurrence of virulence-associated genes in these strains were unexpectedly low. Due to this, and as only few of the E. coli isolates showed intermediate resistance to certain antimicrobial substances, we assume a rather naïve E. coli population, lacking contact to humans or domestic animals. Future studies featuring in depth comparative whole genome sequence analyses will provide insights into the microevolution of this interesting strain collection. PMID:28700648

  13. Involvement of Pacific oyster CgPGRP-S1S in bacterial recognition, agglutination and granulocyte degranulation.

    PubMed

    Iizuka, Masao; Nagasaki, Toshihiro; Takahashi, Keisuke G; Osada, Makoto; Itoh, Naoki

    2014-03-01

    Peptidoglycan recognition protein (PGRP) recognizes invading bacteria through their peptidoglycans (PGN), a component of the bacterial cell wall. Insect PGRPs contribute to effective immune systems as inducers of other host defense responses, while this function has not been reported from PGRP of bivalves. In this study, recombinant CgPGRP-S1S (rCgPGRP-S1S), produced in the mantle and the gill, was synthesized and used to elucidate the immunological function of CgPGRP-S1S. rCgPGRP-S1S bound specifically to DAP-type PGN and to Escherichia coli cells, but not to other DAP-type PGN-containing bacterial species, Vibrio anguillarum, or Bacillus subtilis. Antibacterial activity was not detected, but E. coli cells were agglutinated. Moreover, in addition to these direct interactions with bacterial cells, rCgPGRP-S1S induced secretion of granular contents by hemocyte degranulation. Taken together, these results suggest for the first time that a PGRP of bivalves is, just as in insects, involved in host defense, not only by direct interaction with bacteria, but also by triggering other defense pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    PubMed

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated

  15. Genomic and phenotypic characterization of Xanthomonas cynarae sp. nov., a new species that causes bacterial bract spot of artichoke (Cynara scolymus L.).

    PubMed

    Trébaol, G; Gardan, L; Manceau, C; Tanguy, J L; Tirilly, Y; Boury, S

    2000-07-01

    A bacterial disease of artichoke (Cynara scolymus L.) was first observed in 1954 in Brittany and the Loire Valley, France. This disease causes water-soaked spots on bracts and depreciates marketability of the harvest. Ten strains of the pathogen causing bacterial spot of artichoke, previously identified as a member of the genus Xanthomonas, were characterized and compared with type and pathotype strains of the 20 Xanthomonas species using a polyphasic study including both phenotypic and genomic methods. The ten strains presented general morphological, biochemical and physiological traits and G+C content characteristic of the genus Xanthomonas. Sequencing of the 165 rRNA gene confirmed that this bacterium belongs to the genus Xanthomonas, and more precisely to the Xanthomonas campestris core. DNA-DNA hybridization results showed that the strains that cause bacterial spot of artichoke were 92-100% related to the proposed type strain CFBP 4188T and constituted a discrete DNA homology group that was distinct from the 20 previously described Xanthomonas species. The results of numerical analysis were in accordance with DNA-DNA hybridization data. Strains causing the bacterial bract spot of artichoke exhibited consistent determinative biochemical characteristics, which distinguished them from the 20 other Xanthomonas species previously described. Furthermore, pathogenicity tests allowed specific identification of this new phytopathogenic bacterium. Thus, it is concluded that this bacterium is a new species belonging to the genus Xanthomonas, for which the name Xanthomonas cynarae is proposed. The type strain, CFBP 4188T, has been deposited in the Collection Française des Bactéries Phytopathogènes (CFBP).

  16. Physiological changes induced in four bacterial strains following oxidative stress.

    PubMed

    Baatout, S; De Boever, P; Mergeay, M

    2006-01-01

    In order to study the behaviour and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential usefulness in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123, 3,3'-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxyflurorescein diacetate succinimidyl ester (5(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. Membrane potential, esterase activity, intracellular pH and production of superoxide anion production were considerably modified at high H2O2 concentrations in all four strains. In conclusion, we show that a range of significant physiological alterations occurs when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are useful for monitoring the changes induced not only by oxidative stress but also by other

  17. Rehosting of Bacterial Chaperones for High-Quality Protein Production▿

    PubMed Central

    Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio

    2009-01-01

    Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142

  18. Bacterial community dynamics in a cooling tower with emphasis on pathogenic bacteria and Legionella species using universal and genus-specific deep sequencing.

    PubMed

    Pereira, Rui P A; Peplies, Jörg; Höfle, Manfred G; Brettar, Ingrid

    2017-10-01

    Cooling towers are the major source of outbreaks of legionellosis in Europe and worldwide. These outbreaks are mostly associated with Legionella species, primarily L. pneumophila, and its surveillance in cooling tower environments is of high relevance to public health. In this study, a combined NGS-based approach was used to study the whole bacterial community, specific waterborne and water-based bacterial pathogens, especially Legionella species, targeting the 16S rRNA gene. This approach was applied to water from a cooling tower obtained by monthly sampling during two years. The studied cooling tower was an open circuit cooling tower with lamellar cooling situated in Braunschweig, Germany. A highly diverse bacterial community was observed with 808 genera including 25 potentially pathogenic taxa using universal 16S rRNA primers. Sphingomonas and Legionella were the most abundant pathogenic genera. By applying genus-specific primers for Legionella, a diverse community with 85 phylotypes, and a representative core community with substantial temporal heterogeneity was observed. A high percentage of sequences (65%) could not be affiliated to an acknowledged species. L. pneumophila was part of the core community and the most abundant Legionella species reinforcing the importance of cooling towers as its environmental reservoir. Major temperature shifts (>10 °C) were the key environmental factor triggering the reduction or dominance of the Legionella species in the Legionella community dynamics. In addition, interventions by chlorine dioxide had a strong impact on the Legionella community composition but not on the whole bacterial community. Overall, the presented results demonstrated the value of a combined NGS approach for the molecular monitoring and surveillance of health related pathogens in man-made freshwater systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Survivial Strategies in Bacterial Range Expansions

    NASA Astrophysics Data System (ADS)

    Frey, Erwin

    2014-03-01

    Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.

  20. THE OCCURRENCE OF POLYGLYCEROPHOSPHATE AS AN ANTIGENIC COMPONENT OF VARIOUS GRAM-POSITIVE BACTERIAL SPECIES

    PubMed Central

    McCarty, Maclyn

    1959-01-01

    A bacterial substance has been described which gives a precipitin reaction with certain antisera to Group A streptococci. The precipitating antigen is present in various Gram-positive bacteria, including most hemolytic streptococci, staphylococci, and aerobic sporulating bacilli. It is not present in any of the Gram-negative species examined or in pneumococci, clostridia, or corynebacteria. Analysis of purified preparations obtained from Group A streptococci indicates that the antigen is a simple polymer of glycerophosphate. The identification has been confirmed by immunochemical studies, including precipitin tests and specific inhibition with synthetic polyglycerophosphates. In addition, the infrared spectra of bacterial and synthetic polyglycerophosphate are shown to be closely similar. Immunochemical analysis suggests that the amount of polyglycerophosphate present in Group A streptococci and staphylococci is approximately 1 per cent of the dry weight of the cells. The cellular localization and function of the polyglycerophosphate have not been established. PMID:13641562

  1. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract.

    PubMed

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2', 7'-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results.

  2. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract

    PubMed Central

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2’, 7’-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results. PMID:25550774

  3. Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides

    PubMed Central

    Rosser, Gabriel; Fletcher, Alexander G.; Wilkinson, David A.; de Beyer, Jennifer A.; Yates, Christian A.; Armitage, Judith P.; Maini, Philip K.; Baker, Ruth E.

    2013-01-01

    Tracking bacteria using video microscopy is a powerful experimental approach to probe their motile behaviour. The trajectories obtained contain much information relating to the complex patterns of bacterial motility. However, methods for the quantitative analysis of such data are limited. Most swimming bacteria move in approximately straight lines, interspersed with random reorientation phases. It is therefore necessary to segment observed tracks into swimming and reorientation phases to extract useful statistics. We present novel robust analysis tools to discern these two phases in tracks. Our methods comprise a simple and effective protocol for removing spurious tracks from tracking datasets, followed by analysis based on a two-state hidden Markov model, taking advantage of the availability of mutant strains that exhibit swimming-only or reorientating-only motion to generate an empirical prior distribution. Using simulated tracks with varying levels of added noise, we validate our methods and compare them with an existing heuristic method. To our knowledge this is the first example of a systematic assessment of analysis methods in this field. The new methods are substantially more robust to noise and introduce less systematic bias than the heuristic method. We apply our methods to tracks obtained from the bacterial species Rhodobacter sphaeroides and Escherichia coli. Our results demonstrate that R. sphaeroides exhibits persistence over the course of a tumbling event, which is a novel result with important implications in the study of this and similar species. PMID:24204227

  4. Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli.

    PubMed

    Ishihama, Akira; Kori, Ayako; Koshio, Etsuko; Yamada, Kayoko; Maeda, Hiroto; Shimada, Tomohiro; Makinoshima, Hideki; Iwata, Akira; Fujita, Nobuyuki

    2014-08-01

    The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Amplicon sequencing of bacterial microbiota in abortion material from cattle.

    PubMed

    Vidal, Sara; Kegler, Kristel; Posthaus, Horst; Perreten, Vincent; Rodriguez-Campos, Sabrina

    2017-10-10

    Abortions in cattle have a significant economic impact on animal husbandry and require prompt diagnosis for surveillance of epizootic infectious agents. Since most abortions are not epizootic but sporadic with often undetected etiologies, this study examined the bacterial community present in the placenta (PL, n = 32) and fetal abomasal content (AC, n = 49) in 64 cases of bovine abortion by next generation sequencing (NGS) of the 16S rRNA gene. The PL and AC from three fetuses of dams that died from non-infectious reasons were included as controls. All samples were analyzed by bacterial culture, and 17 were examined by histopathology. We observed 922 OTUs overall and 267 taxa at the genus level. No detectable bacterial DNA was present in the control samples. The microbial profiles of the PL and AC differed significantly, both in their composition (PERMANOVA), species richness and Chao-1 (Mann-Whitney test). In both organs, Pseudomonas was the most abundant genus. The combination of NGS and culture identified opportunistic pathogens of interest in placentas with lesions, such as Vibrio metschnikovii, Streptococcus uberis, Lactococcus lactis and Escherichia coli. In placentas with lesions where culturing was unsuccessful, Pseudomonas and unidentified Aeromonadaceae were identified by NGS displaying high number of reads. Three cases with multiple possible etiologies and placentas presenting lesions were detected by NGS. Amplicon sequencing has the potential to uncover unknown etiological agents. These new insights on cattle abortion extend our focus to previously understudied opportunistic abortive bacteria.

  6. New Bacterial Infection in the Prostate after Transrectal Prostate Biopsy.

    PubMed

    Seo, Yumi; Lee, Gilho

    2018-04-23

    The prostate is prone to infections. Hypothetically, bacteria can be inoculated into the prostate during a transrectal prostate biopsy (TRPB) and progress into chronic bacterial prostatitis. Therefore, we examined new bacterial infections in biopsied prostates after TRPB and whether they affect clinical characteristics in the biopsied patients. Of men whose prostate cultures have been taken prior to TRPB, 105 men with bacteria-free benign prostate pathology underwent an additional repeated prostate culture within a year after TRPB. Twenty out of 105 men (19.05%) acquired new bacteria in their naïve prostates after TRPB. Except for one single case of Escherichia coli infection, 19 men had acquired gram-positive bacteria species. Between the culture-positive and negative groups, there were no significant differences in age, serum prostate-specific antigen (PSA) level, white blood cell (WBC) counts in expressed prostatic secretion (EPS), prostate volume, symptom severities in Korean version of the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) questionnaire, and patient-specific risk factors for biopsy associated infectious complications. Additionally, the TRPB procedure increased the WBC counts in post-biopsy EPS ( P = 0.031, McNemar test), but did not increase the serum PSA level and symptoms of NIH-CPSI in 20 men who acquired new bacteria after TRPB. The TRPB procedure was significantly associated with acquiring new bacterial infections in the biopsied prostate, but these localized bacteria did not affect patients' serum PSA level and symptoms after biopsy.

  7. Copper transport and trafficking at the host-bacterial pathogen interface.

    PubMed

    Fu, Yue; Chang, Feng-Ming James; Giedroc, David P

    2014-12-16

    CONSPECTUS: The human innate immune system has evolved the means to reduce the bioavailability of first-row late d-block transition metal ions to invading microbial pathogens in a process termed "nutritional immunity". Transition metals from Mn(II) to Zn(II) function as metalloenzyme cofactors in all living cells, and the successful pathogen is capable of mounting an adaptive response to mitigate the effects of host control of transition metal bioavailability. Emerging evidence suggests that Mn, Fe, and Zn are withheld from the pathogen in classically defined nutritional immunity, while Cu is used to kill invading microorganisms. This Account summarizes new molecular-level insights into copper trafficking across cell membranes from studies of a number of important bacterial pathogens and model organisms, including Escherichia coli, Salmonella species, Mycobacterium tuberculosis, and Streptococcus pneumoniae, to illustrate general principles of cellular copper resistance. Recent highlights of copper chemistry at the host-microbial pathogen interface include the first high resolution structures and functional characterization of a Cu(I)-effluxing P1B-ATPase, a new class of bacterial copper chaperone, a fungal Cu-only superoxide dismutase SOD5, and the discovery of a small molecule Cu-bound SOD mimetic. Successful harnessing by the pathogen of host-derived bactericidal Cu to reduce the bacterial load of reactive oxygen species (ROS) is an emerging theme; in addition, recent studies continue to emphasize the importance of short lifetime protein-protein interactions that orchestrate the channeling of Cu(I) from donor to target without dissociation into bulk solution; this, in turn, mitigates the off-pathway effects of Cu(I) toxicity in both the periplasm in Gram negative organisms and in the bacterial cytoplasm. It is unclear as yet, outside of the photosynthetic bacteria, whether Cu(I) is trafficked to other cellular destinations, for example, to cuproenzymes or other

  8. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species.

    PubMed

    Marti, Elisabet; Huerta, Belinda; Rodríguez-Mozaz, Sara; Barceló, Damià; Marcé, Rafael; Balcázar, Jose Luis

    2018-04-01

    This study was aimed to determine the abundance of four antibiotic resistance genes (bla TEM , ermB, qnrS and sulI), as well as bacterial community composition associated with the intestinal mucus of wild freshwater fish species collected from the Foix and La Llosa del Cavall reservoirs, which represent ecosystems with high and low anthropogenic disturbance, respectively. Water and sediments from these reservoirs were also collected and analyzed to determine the pollution level by antibiotics. The bla TEM gene was only detected in brown trout and Ebro barbel, which were collected from La Llosa del Cavall reservoir. In contrast, the sulI and qnrS genes were only detected in common carp, which were collected from the Foix reservoir. Although the ermB gene was also detected in common carp, the values were below the limit of quantification. Likewise, water and sediment samples from the Foix reservoir had higher concentrations and more classes of antibiotics than those from La Llosa del Cavall. Pyrosequencing analysis of 16S rRNA genes revealed significant differences in bacterial communities associated with the intestinal mucus of fish species. Therefore, these findings suggest that anthropogenic activities are not only increasing the pollution of aquatic environments, but also contributing to the emergence and spread of antibiotic resistance in organisms that inhabit such environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. SURVIVAL OF ESCHERICHIA COLI 0157:H7 IN DAIRY CATTLE FEED WATER

    EPA Science Inventory

    Cattle feed waters from two dairy farms were used in a study to determine the survival characteristics of the bacterial pathogen Escherichia coli )157:H7 and wild-type E. coli. The E. coli 0157:H7 inoculum consisted of a consortium of isolates obtained from dairy cattle. Fresh ma...

  10. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds.

    PubMed

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa.

  11. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds

    PubMed Central

    Hoppe, Thomas; Kutschera, Ulrich

    2015-01-01

    On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa. PMID:26357877

  12. Antibiotic-Resistant Escherichia coli in Migratory Birds Inhabiting Remote Alaska.

    PubMed

    Ramey, Andrew M; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D; Schmutz, Joel A; Atterby, Clara; Järhult, Josef D; Bonnedahl, Jonas

    2017-12-11

    We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.

  13. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens

    PubMed Central

    Stork, Christoph; Kovács, Beáta; Rózsai, Barnabás; Putze, Johannes; Kiel, Matthias; Dorn, Ágnes; Kovács, Judit; Melegh, Szilvia; Leimbach, Andreas; Kovács, Tamás; Schneider, György; Kerényi, Monika; Emödy, Levente; Dobrindt, Ulrich

    2018-01-01

    Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising

  14. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  15. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  16. Revisiting the structures of several antibiotics bound to the bacterial ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulkley, David; Innis, C. Axel; Blaha, Gregor

    2010-10-08

    The increasing prevalence of antibiotic-resistant pathogens reinforces the need for structures of antibiotic-ribosome complexes that are accurate enough to enable the rational design of novel ribosome-targeting therapeutics. Structures of many antibiotics in complex with both archaeal and eubacterial ribosomes have been determined, yet discrepancies between several of these models have raised the question of whether these differences arise from species-specific variations or from experimental problems. Our structure of chloramphenicol in complex with the 70S ribosome from Thermus thermophilus suggests a model for chloramphenicol bound to the large subunit of the bacterial ribosome that is radically different from the prevailing model.more » Further, our structures of the macrolide antibiotics erythromycin and azithromycin in complex with a bacterial ribosome are indistinguishable from those determined of complexes with the 50S subunit of Haloarcula marismortui, but differ significantly from the models that have been published for 50S subunit complexes of the eubacterium Deinococcus radiodurans. Our structure of the antibiotic telithromycin bound to the T. thermophilus ribosome reveals a lactone ring with a conformation similar to that observed in the H. marismortui and D. radiodurans complexes. However, the alkyl-aryl moiety is oriented differently in all three organisms, and the contacts observed with the T. thermophilus ribosome are consistent with biochemical studies performed on the Escherichia coli ribosome. Thus, our results support a mode of macrolide binding that is largely conserved across species, suggesting that the quality and interpretation of electron density, rather than species specificity, may be responsible for many of the discrepancies between the models.« less

  17. Revisiting the Structures of Several Antibiotics Bound to the Bacterial Ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Bulkley; C Innis; G Blaha

    2011-12-31

    The increasing prevalence of antibiotic-resistant pathogens reinforces the need for structures of antibiotic-ribosome complexes that are accurate enough to enable the rational design of novel ribosome-targeting therapeutics. Structures of many antibiotics in complex with both archaeal and eubacterial ribosomes have been determined, yet discrepancies between several of these models have raised the question of whether these differences arise from species-specific variations or from experimental problems. Our structure of chloramphenicol in complex with the 70S ribosome from Thermus thermophilus suggests a model for chloramphenicol bound to the large subunit of the bacterial ribosome that is radically different from the prevailing model.more » Further, our structures of the macrolide antibiotics erythromycin and azithromycin in complex with a bacterial ribosome are indistinguishable from those determined of complexes with the 50S subunit of Haloarcula marismortui, but differ significantly from the models that have been published for 50S subunit complexes of the eubacterium Deinococcus radiodurans. Our structure of the antibiotic telithromycin bound to the T. thermophilus ribosome reveals a lactone ring with a conformation similar to that observed in the H. marismortui and D. radiodurans complexes. However, the alkyl-aryl moiety is oriented differently in all three organisms, and the contacts observed with the T. thermophilus ribosome are consistent with biochemical studies performed on the Escherichia coli ribosome. Thus, our results support a mode of macrolide binding that is largely conserved across species, suggesting that the quality and interpretation of electron density, rather than species specificity, may be responsible for many of the discrepancies between the models.« less

  18. Goniothalamus Species: A Source of Drugs for the Treatment of Cancers and Bacterial Infections?

    PubMed Central

    2007-01-01

    Irrespective of the presence of cytotoxic acetogenins and styryl-lactones in the genus Goniothalamus, only 22 species in the genus Goniothalamus, out of 160 species (13.7%) have so far been investigated. In an effort to promote further research on the genus Goniothalamus which could represent a source of drugs for the treatment of cancers and bacterial infections, this work offers a broad analysis of current knowledge on Goniothalamus species. Therefore, it includes (i) taxonomy (ii) botanical description (iii) traditional medicinal uses and (iv) phytochemical and pharmacological studies. We discuss the molecular mechanisms of actions of acetogenins and styryl-lactones, with some emphasis on the possible involvement of protein kinase, Bax and TRAIL receptors in the cytotoxic effects of styryl-lactones. We also report (v) the growth inhibition of several nosocomial bacteria by Goniothalamus. scortechinii. The crude methanol extract of G. scortechinii showed a good and broad spectrum of antibacterial activity against both Gram-negative and Gram-positive bacteria. PMID:17965760

  19. In Vitro Activity of Cephalothin and Three Penicillins Against Escherichia coli and Proteus Species

    PubMed Central

    Barry, Arthur L.; Hoeprich, Paul D.

    1973-01-01

    The susceptibility of clinical isolates of Escherichia coli (67) and Proteus species (58) to cephalothin, ampicillin, benzyl penicillin, and phenoxymethyl penicillin was determined in vitro by using broth dilution and disk diffusion tests. The data were correlated by using a four-category scheme for interpreting minimal inhibitory concentrations (groups 1 to 4) as recommended by a subcommittee of an international collaborative study of susceptibility testing. With cephalothin and ampicillin, groups 1 (susceptible) and 2 (moderately susceptible) were susceptible by the disk test, and with benzyl penicillin, similar results were observed when the interpretive zone standards were changed. Strains categorized as group 4 (very resistant) were resistant by the disk method, but group 3 (moderately resistant) strains were not adequately distinguished by disk testing. Group 3 susceptibility to benzyl and phenoxymethyl penicillins can be predicted by extrapolating results from tests with ampicillin disks. PMID:4202343

  20. Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level.

    PubMed

    Smati, Mounira; Clermont, Olivier; Bleibtreu, Alexandre; Fourreau, Frédéric; David, Anthony; Daubié, Anne-Sophie; Hignard, Cécile; Loison, Odile; Picard, Bertrand; Denamur, Erick

    2015-08-01

    The primary habitat of the Escherichia coli species is the gut of warm-blooded vertebrates. The E. coli species is structured into four main phylogenetic groups A, B1, B2, and D. We estimated the relative proportions of these phylogroups in the feces of 137 wild and domesticated animals with various diets living in the Ile de France (Paris) region by real-time PCR. We distinguished three main clusters characterized by a particular abundance of two or more phylogroups within the E. coli animal commensal populations, which we called "enterocolitypes" by analogy with the enterotypes defined in the human gut microbiota at the genus level. These enterocolitypes were characterized by a dominant (>50%) B2, B1, or A phylogroup and were associated with different host species, diets, and habitats: wild and herbivorous species (wild rabbits and deer), domesticated herbivorous species (domesticated rabbits, horses, sheep, and cows), and omnivorous species (boar, pigs, and chickens), respectively. By analyzing retrospectively the data obtained using the same approach from 98 healthy humans living in Ile de France (Smati et al. 2013, Appl. Environ. Microbiol. 79, 5005-5012), we identified a specific human enterocolitype characterized by the dominant and/or exclusive (>90%) presence of phylogroup B2. We then compared B2 strains isolated from animals and humans, and revealed that human and animal strains differ regarding O-type and B2 subgroup. Moreover, two genes, sfa/foc and clbQ, were associated with the exclusive character of strains, observed only in humans. In conclusion, a complex network of interactions exists at several levels (genus and intra-species) within the intestinal microbiota. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. In vitro susceptibility of gram-negative bacterial isolates to chlorhexidine gluconate.

    PubMed

    Mengistu, Y; Erge, W; Bellete, B

    1999-05-01

    To investigate the susceptibility of clinical isolates of gram-negative bacteria to chlorhexidine gluconate. Prospective laboratory study. Tikur Anbessa Hospital, Addis Ababa, Ethiopia. Clinical specimens from 443 hospital patients. Significant number of gram negative bacteria were not inhibited by chlorhexidine gluconate (0.02-0.05%) used for antisepsis. Four hundred and forty three strains of gram-negative bacteria were isolated from Tikur Anbessa Hospital patients. Escherichia coli (31.6%) and Klebsiella pneumoniae (23%) were the most frequently isolated bacteria followed by Proteus species (13.3%), Pseudomonas species (9.2%), and Citrobacter species (6.1%). Each organism was tested to chlorhexidine gluconate (CHG), minimum inhibitory concentration (MIC) ranging from 0.0001% to 1%w/v. All Salmonella species and E. coli were inhibited by CHG, MIC < or = 0.01%. Twenty nine per cent of Acinetobacter, 28% of K. pneumoniae and Enterobacter species and 19-25% of Pseudomonas, Proteus and Providencia species were only inhibited at high concentrations of CHG (> or = 0.1%). Our results showed that a significant number of the gram-negative bacterial isolates were not inhibited by CHG at the concentration used for disinfection of wounds or instruments (MIC 0.02-0.05% w/v). It is therefore important to select appropriate concentration of this disinfectant and rationally use it for disinfection and hospital hygiene. Continuing follow up and surveillance is also needed to detect resistant bacteria to chlorhexidine or other disinfectants in time.

  2. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds

    NASA Astrophysics Data System (ADS)

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Gruber, Hermann J.; Cui, Yidan; Traxler, Lukas; Siligan, Christine; Park, Sungsu; Hinterdorfer, Peter

    2016-09-01

    Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.

  3. [Plasticity of bacterial genomes: pathogenicity islands and the locus of enterocyte effacement (LEE)].

    PubMed

    Kirsch, Petra; Jores, Jörg; Wieler, Lothar H

    2004-01-01

    Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near transfer-RNA genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect to the rest of the genome, the presence of direct repeat sequences at the flanking regions, the presence of integrase gene determinants as other mobility features,the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer. PAIs are the fascinating proof of the plasticity of bacterial genomes. PAIs were originally described in human pathogenic Escherichia (E.) coli strains. In the meantime PAIs have been found in various pathogenic bacteria of humans, animals and even plants. The Locus of Enterocyte Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E. coli (EPEC), and most enterohaemorrhegic E. coli (EHEC) also harbor the LEE. The LEE encodes a type III secretion system, an adhesion (intimin) that mediates the intimate contact between the bacterium and the epithelial cell, as well as various proteins which are secreted via the type III secretion system. The LEE encoded

  4. Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs.

    PubMed

    Mann, Evelyne; Wetzels, Stefanie U; Pinior, Beate; Metzler-Zebeli, Barbara U; Wagner, Martin; Schmitz-Esser, Stephan

    2016-07-01

    The aim of this study was to disentangle the microbial diversity on porcine musculature. The hypervariable V1-V2 region of the 16S rRNA gene was amplified from DNA samples of clinically healthy slaughter pigs (n=8). Pyrosequencing yielded 37,000 quality-controlled reads and a diverse microbiome with 54-159 OTUs per sample was detected. Interestingly, 6 out of 8 samples were strongly dominated by 1-2 highly abundant OTUs (best hits of highly abundant OTUs: Serratia proteamaculans, Pseudomonas syringae, Aeromonas allosaccharophila, Brochothrix thermosphacta, Acidiphilium cryptum and Escherichia coli). In 1g musculature scraping, 3.20E+06 16S rRNA gene copies and 4.45E+01 Enterobacteriaceae rRNA gene copies were detected with qPCR. We conclude that i.) next-generation sequencing technologies help encompass the full content of complex, bacterial contamination, ii.) psychrophile spoilers dominated the microbiota and iii.) E. coli is an effective marker species for pork contamination, as it was one of very few abundant species being present in all samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bacterial species involved in the conversion of dietary flavonoids in the human gut.

    PubMed

    Braune, Annett; Blaut, Michael

    2016-05-03

    The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.

  6. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species

    PubMed Central

    Tsang, Jennifer; Hoover, Timothy R.

    2014-01-01

    Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ 54 (also known as RpoN) to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni), Gammaproteobacteria (e.g., Vibrio and Pseudomonas species), and Alphaproteobacteria (e.g., Caulobacter crescentus). This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization. PMID:24672734

  7. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    PubMed Central

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated. PMID:15345453

  8. β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity

    PubMed Central

    Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodríguez-Rojas, A.; Blázquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I.

    2013-01-01

    Regardless of their targets and modes of action, subinhibitory concentrations of antibiotics can have an impact on cell physiology and trigger a large variety of cellular responses in different bacterial species. Subinhibitory concentrations of β-lactam antibiotics cause reactive oxygen species production and induce PolIV-dependent mutagenesis in Escherichia coli. Here we show that subinhibitory concentrations of β-lactam antibiotics induce the RpoS regulon. RpoS-regulon induction is required for PolIV-dependent mutagenesis because it diminishes the control of DNA-replication fidelity by depleting MutS in E. coli, Vibrio cholerae and Pseudomonas aeruginosa. We also show that in E. coli, the reduction in mismatch-repair activity is mediated by SdsR, the RpoS-controlled small RNA. In summary, we show that mutagenesis induced by subinhibitory concentrations of antibiotics is a genetically controlled process. Because this mutagenesis can generate mutations conferring antibiotic resistance, it should be taken into consideration for the development of more efficient antimicrobial therapeutic strategies. PMID:23511474

  9. Dietary and developmental shifts in butterfly-associated bacterial communities

    PubMed Central

    2018-01-01

    Bacterial communities associated with insects can substantially influence host ecology, evolution and behaviour. Host diet is a key factor that shapes bacterial communities, but the impact of dietary transitions across insect development is poorly understood. We analysed bacterial communities of 12 butterfly species across different developmental stages, using amplicon sequencing of the 16S rRNA gene. Butterfly larvae typically consume leaves of a single host plant, whereas adults are more generalist nectar feeders. Thus, we expected bacterial communities to vary substantially across butterfly development. Surprisingly, only few species showed significant dietary and developmental transitions in bacterial communities, suggesting weak impacts of dietary transitions across butterfly development. On the other hand, bacterial communities were strongly influenced by butterfly species and family identity, potentially due to dietary and physiological variation across the host phylogeny. Larvae of most butterfly species largely mirrored bacterial community composition of their diets, suggesting passive acquisition rather than active selection. Overall, our results suggest that although butterflies harbour distinct microbiomes across taxonomic groups and dietary guilds, the dramatic dietary shifts that occur during development do not impose strong selection to maintain distinct bacterial communities across all butterfly hosts. PMID:29892359

  10. In vitro analysis of the bactericidal activity of Escherichia coli Nissle 1917 against pediatric uropathogens.

    PubMed

    Storm, Douglas W; Koff, Stephen A; Horvath, Dennis J; Li, Birong; Justice, Sheryl S

    2011-10-01

    The usefulness of prophylactic antibiotics to prevent recurrent urinary tract infections in children was recently questioned. Some groups have attempted to use probiotics, most commonly lactobacillus, to prevent recurrent infections by altering the intestinal bacterial reservoir with variable results. Mutaflor® is a possible alternative probiotic in which the active agent is Nissle 1917. Nissle 1917 is a commensal Escherichia coli strain that eradicates pathogenic bacteria from the gastrointestinal tract. Due to its ability to alter the intestinal biome we hypothesized that Mutaflor may have the potential to prevent recurrent urinary tract infections. Thus, we used an in vitro assay to analyze the effectiveness of Nissle 1917 for eradicating pediatric uropathogens. We established a collection of 43 bacterial pediatric uropathogens. With each isolate a microcin-type assay was performed to determine the effectiveness of Nissle 1917 on bacterial growth inhibition and competitive overgrowth. Nissle 1917 adversely affected the growth of 34 of the 43 isolates (79%) isolates. It inhibited the growth of 21 isolates and overgrew 13. The percent of species adversely affected by Nissle 1917 was 40% for Pseudomonas, 50% for E. coli, Enterococcus and Staphylococcus, 100% for Klebsiella and Enterobacter, and 0% for Citrobacter and Serratia. Nissle 1917, the active agent in Mutaflor, inhibited or out competed most bacterial isolates. These mechanisms could be used in vivo to eradicate uropathogens from the gastrointestinal tract. Further study is needed to determine whether Mutaflor can prevent recurrent urinary tract infections in children. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential.

    PubMed

    de Alencar, Daniel Barroso; de Carvalho, Fátima Cristiane Teles; Rebouças, Rosa Helena; Dos Santos, Daniel Rodrigues; Dos Santos Pires-Cavalcante, Kelma Maria; de Lima, Rebeca Larangeira; Baracho, Bárbara Mendes; Bezerra, Rayssa Mendes; Viana, Francisco Arnaldo; Dos Fernandes Vieira, Regine Helena Silva; Sampaio, Alexandre Holanda; de Sousa, Oscarina Viana; Saker-Sampaio, Silvana

    2016-04-01

    To evaluate the antioxidant, antibacterial and bacterial cell agglutination activities of the hexane (Hex) and 70% ethanol (70% EtOH) extracts of two species of red seaweeds Pterocladiella capillacea (P. capillacea) and Osmundaria obtusiloba. In vitro antioxidant activity was determined by DPPH radical scavenging assay, ferric-reducing antioxidant power assay, ferrous ion chelating assay, β-carotene bleaching assay and total phenolic content quantification. Antimicrobial activity was tested using the method of disc diffusion on Mueller-Hinton medium. The ability of algal extracts to agglutinate bacterial cells was also tested. The 70% EtOH extract of the two algae showed the highest values of total phenolic content compared to the Hex extract. The results of DPPH for both extracts (Hex, 70% EtOH) of Osmundaria obtusiloba (43.46% and 99.47%) were higher than those of P. capillacea (33.04% and 40.81%) at a concentration of 1000 μg/mL. As for the ferrous ion chelating, there was an opposite behavior, extracts of P. capillacea had a higher activity. The extracts showed a low ferric-reducing antioxidant power, with optical density ranging from 0.054 to 0.180. Antioxidant activities of all extracts evaluated for β-carotene bleaching were above 40%. There was no antibacterial activity against bacterial strains tested. However, the extracts of both species were able to agglutinate bacterial Gram positive cells of Staphylococcus aureus and Gram negative cells of Escherichia coli, multidrug-resistant Salmonella and Vibrio harveyi. This is the first report of the interaction between these algal extracts, rich in natural compounds with antioxidant potential, and Gram positive and Gram negative bacterial cells. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  12. Characterization of bacterial symbionts in Frankliniella occidentalis (Pergande), Western flower thrips.

    PubMed

    Chanbusarakum, Lisa; Ullman, Diane

    2008-11-01

    Many insects have associations with bacteria, although it is often difficult to determine the intricacies of the relationships. In one such case, facultative bacteria have been discovered in a major crop pest and virus vector, the Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Several bacterial isolates have been studied in Netherlands greenhouse thrips populations, with molecular data indicating that these bacteria were similar to Escherichia coli, although biochemical properties suggested these microbes might actually be most similar to plant pathogenic bacteria in the genus Erwinia. We focused on the bacterial flora of the Hawaiian Islands thrips population where these gut bacteria were first reported in 1989. We also analyzed a German population and a 1965 California population preserved in ethanol. Culture and culture-independent techniques revealed a consistent microflora that was similar to the Netherlands isolates studied. The similarity among thrips microbes from multiple populations and environments suggested these bacteria and their hosts share a widespread association. Molecular phylogeny based on the 16S rRNA gene and biochemical analysis of thrips bacteria suggested two distinctive groups of microbes are present in thrips. Phylogenetic analysis also revealed support for one thrips bacterial group having a shared ancestry with Erwinia, whereas the second group of thrips bacteria fell out with E. coli, but without support. Although species-specific relationships were indeterminable due to the conservative nature of 16S, there is strong indication that thrips symbionts belong to two different genera and originated from environmental microbes.

  13. Oligotyping reveals differences between gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level

    PubMed Central

    Menke, Sebastian; Wasimuddin; Meier, Matthias; Melzheimer, Jörg; Mfune, John K. E.; Heinrich, Sonja; Thalwitzer, Susanne; Wachter, Bettina; Sommer, Simone

    2014-01-01

    Recent gut microbiome studies in model organisms emphasize the effects of intrinsic and extrinsic factors on the variation of the bacterial composition and its impact on the overall health status of the host. Species occurring in the same habitat might share a similar microbiome, especially if they overlap in ecological and behavioral traits. So far, the natural variation in microbiomes of free-ranging wildlife species has not been thoroughly investigated. The few existing studies exploring microbiomes through 16S rRNA gene reads clustered sequencing reads into operational taxonomic units (OTUs) based on a similarity threshold (e.g., 97%). This approach, in combination with the low resolution of target databases, generally limits the level of taxonomic assignments to the genus level. However, distinguishing natural variation of microbiomes in healthy individuals from “abnormal” microbial compositions that affect host health requires knowledge of the “normal” microbial flora at a high taxonomic resolution. This gap can now be addressed using the recently published oligotyping approach, which can resolve closely related organisms into distinct oligotypes by utilizing subtle nucleotide variation. Here, we used Illumina MiSeq to sequence amplicons generated from the V4 region of the 16S rRNA gene to investigate the gut microbiome of two free-ranging sympatric Namibian carnivore species, the cheetah (Acinonyx jubatus) and the black-backed jackal (Canis mesomelas). Bacterial phyla with proportions >0.2% were identical for both species and included Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria and Actinobacteria. At a finer taxonomic resolution, black-backed jackals exhibited 69 bacterial taxa with proportions ≥0.1%, whereas cheetahs had only 42. Finally, oligotyping revealed that shared bacterial taxa consisted of distinct oligotype profiles. Thus, in contrast to 3% OTUs, oligotyping can detect fine-scale taxonomic differences between microbiomes

  14. Survival and Heat Resistance of Salmonella enterica and Escherichia coli O157:H7 in Peanut Butter ▿ †

    PubMed Central

    He, Yingshu; Guo, Dongjing; Yang, Jingyun; Tortorello, Mary Lou; Zhang, Wei

    2011-01-01

    Significant differences (P < 0.05) were found between the survival rates of Salmonella enterica and Escherichia coli O157:H7 in peanut butter with different formulations and water activity. High carbohydrate content in peanut butter and low incubation temperature resulted in higher levels of bacterial survival during storage but lower levels of bacterial resistance to heat treatment. PMID:21965404

  15. Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity.

    PubMed

    Batta, Neha; Subudhi, Sanjukta; Lal, Banwari; Devi, Arundhuti

    2013-11-01

    Lead is one of the four heavy metals that has a profound damaging effects on human health. In the recent past there has been an increasing global concern for development of sustainable bioremediation technologies for detoxification of lead contaminant. Present investigation highlights for lead biosorption by a newly isolated novel bacterial species; Achromobacter sp. TL-3 strain, isolated from activated sludge samples contaminated with heavy metals (collected from oil refinery, Assam, North-East India). For isolation of lead tolerant bacteria, sludge samples were enriched into Luria Broth medium supplemented separately with a range of lead nitrate; 250, 500, 750, 1000, 1250 and 1500 ppm respectively. The bacterial consortium that could tolerate 1500 ppm of lead nitrate was selected further for purification of lead tolerant bacterial isolates. Purified lead tolerant bacterial isolates were then eventually inoculated into production medium supplemented with ethanol and glycerol as carbon and energy source to investigate for bioflocculant production. Bioflocculant production was estimated by monitoring the potential of lead tolerant bacterial isolate to flocculate Kaolin clay in presence of 1% CaCl2. Compared to other isolates, TL-3 isolate demonstrated for maximum bioflocculant activity of 95% and thus was identified based on 16S rRNA gene sequence analysis. TL3 isolate revealed maximum homology (98%) with Achromobacter sp. and thus designated as Achromobacter sp. TL-3. Bioflocculant activity of TL-3 isolate was correlated with the change in pH and growth. Achromobacter sp. TL-3 has significant potential for lead biosorption and can be effectively employed for detoxification of lead contaminated waste effluents/waste waters.

  16. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape.

    PubMed

    Sahari, Ali; Traore, Mahama A; Scharf, Birgit E; Behkam, Bahareh

    2014-10-01

    Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).

  17. Molecular response of Escherichia coli adhering onto nanoscale topography

    NASA Astrophysics Data System (ADS)

    Rizzello, Loris; Galeone, Antonio; Vecchio, Giuseppe; Brunetti, Virgilio; Sabella, Stefania; Pompa, Pier Paolo

    2012-10-01

    Bacterial adhesion onto abiotic surfaces is an important issue in biology and medicine since understanding the bases of such interaction represents a crucial aspect in the design of safe implant devices with intrinsic antibacterial characteristics. In this framework, we investigated the effects of nanostructured metal substrates on Escherichia coli adhesion and adaptation in order to understand the bio-molecular dynamics ruling the interactions at the interface. In particular, we show how highly controlled nanostructured gold substrates impact the bacterial behavior in terms of morphological changes and lead to modifications in the expression profile of several genes, which are crucially involved in the stress response and fimbrial synthesis. These results mainly demonstrate that E. coli cells are able to sense even slight changes in surface nanotopography and to actively respond by activating stress-related pathways. At the same time, our findings highlight the possibility of designing nanoengineered substrates able to trigger specific bio-molecular effects, thus opening the perspective of smartly tuning bacterial behavior by biomaterial design.

  18. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  19. tif-Stimulated deoxyribonucleic acid repair in Escherichia coli K-12.

    PubMed Central

    Castellazzi, M; Jacques, M; George, J

    1980-01-01

    Bacterial survival is significantly increased after ultraviolet irradiation in tif sfi cells, provided that the thermosensitive tif mutation has been expressed at 41 degrees C before irradiation. This tif-mediated "reactivation of ultraviolet irradiated bacteria" needs de novo protein synthesis, as is the case for the tif-mediated reactivation of ultraviolet-irradiated phage lambda. However, in striking contrast to the phage reactivation process, this tif-mediated reactivation is no longer associated with mutagenesis. It also requires the presence of the uvrA+ excision function. These results strongly suggest the existence in Escherichia coli K-12 of a repair pathway acting on bacterial deoxyribonucleic acid which is inducible, error free, and uvr dependent. PMID:6451614

  20. Escherichia coli removal in biochar-augmented biofilter: effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost.

    PubMed

    Mohanty, Sanjay K; Boehm, Alexandria B

    2014-10-07

    Bioretention systems and biofilters are used in low impact development to passively treat urban stormwater. However, these engineered natural systems are not efficient at removing fecal indicator bacteria, the contaminants responsible for a majority of surface water impairments. The present study investigates the efficacy of biochar-augmented model sand biofilters for Escherichia coli removal under a variety of stormwater bacterial concentrations and infiltration rates. Additionally, we test the role of biochar particle size and "presence of compost on model" biofilter performance. Our results show that E. coli removal in a biochar-augmented sand biofilter is ∼ 96% and is not greatly affected by increases in stormwater infiltration rates and influent bacterial concentrations, particularly within the ranges expected in field. Removal of fine (<125 μm) biochar particles from the biochar-sand biofilter decreased the removal capacity from 95% to 62%, indicating biochar size is important. Addition of compost to biochar-sand biofilters not only lowered E. coli removal capacity but also increased the mobilization of deposited bacteria during intermittent infiltration. This result is attributed to exhaustion of attachment sites on biochar by the dissolved organic carbon leached from compost. Overall, our study indicates that biochar has potential to remove bacteria from stormwater under a wide range of field conditions, but for biochar to be effective, the size should be small and biochar should be applied without compost. Although the results aid in the optimization of biofilter design, further studies are needed to examine biochar potential in the field over an entire rainy season.

  1. Comparative and bioinformatics analyses of pathogenic bacterial secretomes identified by mass spectrometry in Burkholderia species.

    PubMed

    Nguyen, Thao Thi; Chon, Tae-Soo; Kim, Jaehan; Seo, Young-Su; Heo, Muyoung

    2017-07-01

    Secreted proteins (secretomes) play crucial roles during bacterial pathogenesis in both plant and human hosts. The identification and characterization of secretomes in the two plant pathogens Burkholderia glumae BGR1 and B. gladioli BSR3, which cause diseases in rice such as seedling blight, panicle blight, and grain rot, are important steps to not only understand the disease-causing mechanisms but also find remedies for the diseases. Here, we identified two datasets of secretomes in B. glumae BGR1 and B. gladioli BSR3, which consist of 118 and 111 proteins, respectively, using mass spectrometry approach and literature curation. Next, we characterized the functional properties, potential secretion pathways and sequence information properties of secretomes of two plant pathogens in a comparative analysis by various computational approaches. The ratio of potential non-classically secreted proteins (NCSPs) to classically secreted proteins (CSPs) in B. glumae BGR1 was greater than that in B. gladioli BSR3. For CSPs, the putative hydrophobic regions (PHRs) which are essential for secretion process of CSPs were screened in detail at their N-terminal sequences using hidden Markov model (HMM)-based method. Total 31 pairs of homologous proteins in two bacterial secretomes were indicated based on the global alignment (identity ≥ 70%). Our results may facilitate the understanding of the species-specific features of secretomes in two plant pathogenic Burkholderia species.

  2. Prevalence and multidrug resistance of Escherichia coli from community acquired infections in Lagos, Nigeria

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli is one of the most frequent causes of bacterial infections among humans. The emergence of multi-drug resistance (MDR; resistance to >2 more antimicrobials) in E. coli is of great concern due to the complications encountered in its treatment in a resource constrained economy. In th...

  3. A Murine Model for Escherichia coli Urinary Tract Infection.

    PubMed

    Hannan, Thomas J; Hunstad, David A

    2016-01-01

    Urinary tract infections (UTI) are among the most common bacterial infections of humans. The mouse provides an excellent and tractable model system for cystitis and pyelonephritis caused by Escherichia coli and other uropathogens. Using a well-established model of experimental cystitis in which the bladders of female mice are infected via transurethral catheterization, the molecular details of the pathogenesis of bacterial cystitis have been substantially illuminated in the last decade. Uropathogenic E. coli attach to bladder epithelium (both in human and mouse) via adhesive type 1 pili, establish a replicative niche within epithelial cell cytoplasm, and form intracellular bacterial communities that are protected from antibiotic effects and immune clearance. The use of different inbred and mutant mouse strains offers the opportunity to study outcomes of infection, including resolution, formation of quiescent intracellular bacterial reservoirs, chronic bacterial cystitis, and recurrent infections. Urine, bladder, and kidney tissues can be analyzed by bacterial culture, histology, immunohistochemistry, immunofluorescent and confocal microscopy, electron microscopy, and flow cytometry, while a broad array of soluble markers (e.g., cytokines) can also be profiled in serum, urine, and tissue homogenates by ELISA, Western blotting, multiplex bead array, and other approaches. This model promises to afford continued opportunity for discovery of pathogenic mechanisms and evaluation of therapeutic and preventive strategies for acute, chronic, and recurrent UTI.

  4. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

    PubMed Central

    Srinivasan, Sujatha; Hoffman, Noah G.; Morgan, Martin T.; Matsen, Frederick A.; Fiedler, Tina L.; Hall, Robert W.; Ross, Frederick J.; McCoy, Connor O.; Bumgarner, Roger; Marrazzo, Jeanne M.; Fredricks, David N.

    2012-01-01

    Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in

  5. Bacterial colonisation of suture material after routine neurosurgical procedures: relevance for wound infection.

    PubMed

    Hong, Bujung; Winkel, Andreas; Ertl, Philipp; Stumpp, Sascha Nico; Schwabe, Kerstin; Stiesch, Meike; Krauss, Joachim K

    2018-03-01

    Wound healing impairment is a serious problem in surgical disciplines which may be associated with chronic morbidity, increased cost and patient discomfort. Here we aimed to investigate the relevance of bacterial colonisation on suture material using polymerase chain reaction (PCR) to detect and taxonomically classify bacterial DNA in patients with and without wound healing problems after routine neurosurgical procedures. Repeat surgery was performed in 25 patients with wound healing impairment and in 38 patients with well-healed wounds. To determine the presence of bacteria, a 16S rDNA-based PCR detection method was applied. Fragments of 500 bp were amplified using universal primers which target hypervariable regions within the bacterial 16S rRNA gene. Amplicons were separated from each other by single-strand conformation polymorphism (SSCP) analysis, and finally classified using Sanger sequencing. PCR/SSCP detected DNA of various bacteria species on suture material in 10/38 patients with well-healed wounds and in 12/25 patients with wound healing impairment including Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes and Escherichia coli. Microbiological cultures showed bacterial growth in almost all patients with wound healing impairment and positive results in PCR/SSCP (10/12), while this was the case in only one patient with a well-healed wound (1/10). Colonisation of suture material with bacteria occurs in a relevant portion of patients with and without wound healing impairment after routine neurosurgical procedures. Suture material may provide a nidus for bacteria and subsequent biofilm formation. Most likely, however, such colonisation of sutures is not a general primer for subsequent wound infection.

  6. Antibiotic resistance in conjunctival and enteric bacterial flora in raptors housed in a zoological garden.

    PubMed

    Sala, Andrea; Taddei, Simone; Santospirito, Davide; Sandri, Camillo; Magnone, William; Cabassi, Clotilde S

    2016-11-01

    Antimicrobial resistance (AMR) in a wide range of infectious agents is a growing public health threat. Birds of prey are considered indicators of the presence of AMR bacteria in their ecosystem because of their predatory behaviour. Only few data are reported in the literature on AMR strains isolated from animals housed in zoos and none about AMR in raptors housed in zoological gardens. This study investigated the antibiotic sensitivity profile of the isolates obtained from the conjunctival and cloacal bacterial flora of 14 healthy birds of prey, 6 Accipitriformes , 3 Falconiformes and 5 Strigiformes , housed in an Italian zoological garden. Staphylococcus spp. was isolated from 50% of the conjunctival swabs, with S. xylosus as the most common species. From cloacal swabs, Escherichia coli was cultured from all animals, while Klebsiella spp. and Proteus spp. were isolated from a smaller number of birds. Worthy of note is the isolation of Escherichia fergusonii and Serratia odorifera , rarely isolated from raptors. Staphylococci were also isolated. All the isolates were multidrug resistant (MDR). To the author's knowledge, this is the first report regarding the presence of MDR strains within raptors housed in a zoological garden. Since resistance genes can be transferred to other pathogenic bacteria, this represents a potential hazard for the emergence of new MDR pathogens. In conclusion, the obtained data could be useful for ex-situ conservation programmes aimed to preserve the health of the endangered species housed in a zoo.

  7. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    PubMed Central

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  8. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding sitemore » are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.« less

  9. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    PubMed

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Low intensity infrared laser induces filamentation in Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Presta, G. A.; Geller, M.; Paoli, F.

    2011-10-01

    Low intensity continuous wave and pulsed emission modes laser is used in treating many diseases and the resulting biostimulative effect on tissues has been described, yet the photobiological basis is not well understood. The aim of this wok was to evaluate, using bacterial filamentation assay, effects of laser on Escherichia coli cultures in exponential and stationary growth phase. E. coli cultures, proficient and deficient on DNA repair, in exponential and stationary growth phase, were exposed to low intensity infrared laser, aliquots were spread onto microscopic slides, stained by Gram method, visualized by optical microscopy, photographed and percentage of bacterial filamentation were determined. Low intensity infrared laser with therapeutic fluencies and different emission modes can induce bacterial filamentation in cultures of E. coli wild type, fpg/ mutM, endonuclease III and exonuclease III mutants in exponential and stationary growth phase. This study showed induction of bacterial, filamentation in E. coli cultures expose to low intensity infrared laser and attention to laser therapy protocols, which should take into account fluencies, wavelengths, tissue conditions, and genetic characteristics of cells before beginning treatment.

  11. Analysis, Characterization, and Loci of the tuf Genes in Lactobacillus and Bifidobacterium Species and Their Direct Application for Species Identification

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Meylan, Valèrie; Klaenhammer, Todd R.; Zink, Ralf

    2003-01-01

    We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobacillus species and 8 Bifidobacterium species. The tuf sequences were aligned and used to infer phylogenesis among species of lactobacilli and bifidobacteria. We demonstrated that the synonymous substitution affecting this gene renders elongation factor Tu a reliable molecular clock for investigating evolutionary distances of lactobacilli and bifidobacteria. In fact, the phylogeny generated by these tuf sequences is consistent with that derived from 16S rRNA analysis. The investigation of a multiple alignment of tuf sequences revealed regions conserved among strains belonging to the same species but distinct from those of other species. PCR primers complementary to these regions allowed species-specific identification of closely related species, such as Lactobacillus casei group members. These tuf gene-based assays developed in this study provide an alternative to present methods for the identification for lactic acid bacterial species. Since a variable number of tuf genes have been described for bacteria, the presence of multiple genes was examined. Southern analysis revealed one tuf gene in the genomes of lactobacilli and bifidobacteria, but the tuf gene was arranged differently in the genomes of these two taxa. Our results revealed that the tuf gene in bifidobacteria is flanked by the same gene constellation as the str operon, as originally reported for Escherichia coli. In contrast, bioinformatic and transcriptional analyses of the DNA region flanking the tuf gene in four Lactobacillus species indicated the same four-gene unit and suggested a novel tuf operon specific for the genus Lactobacillus. PMID:14602655

  12. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies

    PubMed Central

    Lee, Ken-ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-01-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. PMID:23919289

  13. Comparison on conjunctival sac bacterial flora of the seniors with dry eye in Ganzi autonomous prefecture

    PubMed Central

    Zhang, Yue; Liu, Zhi-Rong; Chen, Hui; Fan, Ying-Chuan; Duo, Ji; Zheng, Hong; Wang, Guang-Jin; Li, Yu-Chan; Jiachu, Dan-Ba; Zewang, Ge-Ma

    2013-01-01

    AIM To compare the bacterial flora in palpebral conjunctiva of xerophthalmia seniors of Tibetan, Yi and Han, and analyze the differences and similarities of the bacteria. METHODS The test subjects were selected from 2 Tibetan, 2 Yi and 3 Han populated places, respectively. Total 222 seniors (444 eyes) with dry eye were examined. Secretion was collected from the palpebral conjunctiva of the subjects and then inoculated onto a blood agar plate. After 48h of incubation, the bacteria were examined for the differences and similarities between different ethnics. RESULTS There was no significant difference (P>0.05) of Gram stain characterization, dominant bacteria and number of the bacterial species present in oxrophthalmia patients among Tibetan, Yi and Han nationalities. The bacteria presented in all groups include staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa. The bacteria detected from the two of three ethnic groups were staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae, and staphylococcus heads. The incidence rate of bacteria-associated dry eye in Tibetan population was significantly lower than that of Han and Yi population. CONCLUSION There is no significant difference in the bacteria flora of palpebral conjunctiva observed among dry eye elder populations of Tibetan, Yi and Han people. All of staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa, staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae and staphylococcus heads are common bacteria flora of the three nationalities inhibiting in this area. PMID:23991377

  14. Microbial effects on the development of forensically important blow fly species.

    PubMed

    Crooks, Esther R; Bulling, Mark T; Barnes, Kate M

    2016-09-01

    Colonisation times and development rates of specific blow fly species are used to estimate the minimum Post Mortem Interval (mPMI). The presence or absence of bacteria on a corpse can potentially affect the development and survival of blow fly larvae. Therefore an understanding of microbial-insect interactions is important for improving the interpretation of mPMI estimations. In this study, the effect of two bacteria (Escherichia coli and Staphylococcus aureus) on the growth rate and survival of three forensically important blow fly species (Lucilia sericata, Calliphora vicina and Calliphora vomitoria) was investigated. Sterile larvae were raised in a controlled environment (16:8h day: night light cycle, 23:21°C day: night temperature cycle and a constant 35% relative humidity) on four artificial diets prepared with 100μl of 10(5) CFU bacterial solutions as follows: (1) E. coli, (2) S. aureus, (3) a 50:50 E. coli:S. aureus mix and (4) a sterile bacteria-free control diet. Daily measurements (length, width and weight) were taken from first instar larvae through to the emergence of adult flies. Survival rates were also determined at pupation and adult emergence. Results indicate that bacteria were not essential for the development of any of the blow fly species. However, larval growth rates were affected by bacterial diet, with effects differing between blow fly species. Peak larval weights also varied according to species-diet combination; C. vomitoria had the largest weight on E. coli and mixed diets, C. vicina had the largest weight on S. aureus diets, and treatment had no significant effect on the peak larval weight of L. sericata. These results indicate the potential for the bacteria that larvae are exposed to during development on a corpse to alter both developmental rates and larval weight in some blow fly species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis

    PubMed Central

    Armingohar, Zahra; Jørgensen, Jørgen J.; Kristoffersen, Anne Karin; Abesha-Belay, Emnet; Olsen, Ingar

    2014-01-01

    Background Several studies have reported an association between chronic periodontitis (CP) and cardiovascular diseases. Detection of periodontopathogens, including red complex bacteria (RCB), in vascular lesions has suggested these bacteria to be involved in the pathogenesis of atherosclerosis and abdominal aortic aneurysms. Objective In this study, we investigate bacteria and their DNA in vascular biopsies from patients with vascular diseases (VD; i.e. abdominal aortic aneurysms, atherosclerotic carotid, and common femoral arteries), with and without CP. Methods DNA was extracted from vascular biopsies selected from 40 VD patients: 30 with CP and 10 without CP. The V3-V5 region of the 16S rDNA (V3-V5) was polymerase chain reaction (PCR)-amplified, and the amplicons were cloned into Escherichia coli, sequenced, and classified (GenBank and the Human Oral Microbiome database). Species-specific primers were used for the detection of Porphyromonas gingivalis. In addition, 10 randomly selected vascular biopsies from the CP group were subjected to scanning electron microscopy (SEM) for visualization of bacteria. Checkerboard DNA–DNA hybridization was performed to assess the presence of RCB in 10 randomly selected subgingival plaque samples from CP patients. Results A higher load and mean diversity of bacteria were detected in vascular biopsies from VD patients with CP compared to those without CP. Enterobacteriaceae were frequently detected in vascular biopsies together with cultivable, commensal oral, and not-yet-cultured bacterial species. While 70% of the subgingival plaque samples from CP patients showed presence of RCB, only P. gingivalis was detected in one vascular biopsy. Bacterial cells were seen in all 10 vascular biopsies examined by SEM. Conclusions A higher bacterial load and more diverse colonization were detected in VD lesions of CP patients as compared to patients without CP. This indicated that a multitude of bacterial species both from the gut and the

  16. Platelet-rich plasma affects bacterial growth in vitro.

    PubMed

    Mariani, Erminia; Filardo, Giuseppe; Canella, Valentina; Berlingeri, Andrea; Bielli, Alessandra; Cattini, Luca; Landini, Maria Paola; Kon, Elizaveta; Marcacci, Maurilio; Facchini, Andrea

    2014-09-01

    Platelet-rich plasma (PRP), a blood derivative rich in platelets, is a relatively new technique used in tissue regeneration and engineering. The increased quantity of platelets makes this formulation of considerable value for their role in tissue healing and microbicidal activity. This activity was investigated against five of the most important strains involved in nosocomial infections (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Streptococcus faecalis) to understand the prophylactic role of pure (P)-PRP. Microbicidal proteins released from activated P-PRP platelets were also determined. The microbicidal activity of P-PRP and platelet-poor plasma (PPP) was evaluated on different concentrations of the five bacterial strains incubated for 1, 2, 4 and 18 h and plated on agar for 18-24 h. P-PRP and PPP-released microbicidal proteins were evaluated by means of multiplex bead-based immunoassays. P-PRP and PPP inhibited bacterial growth for up to 2 h of incubation. The effect of P-PRP was significantly higher than that of PPP, mainly at the low seeding concentrations and/or shorter incubation times, depending on the bacterial strain. Chemokine (C-C motif) ligand-3, chemokine (C-C motif) ligand-5 and chemokine (C-X-C motif) ligand-1 were the molecules mostly related to Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus faecalis inhibition. Escherichia coli and Klebsiella pneumoniae were less influenced. The present results show that P-PRP might supply an early protection against bacterial contaminations during surgical interventions because the inhibitory activity is already evident from the first hour of treatment, which suggests that physiological molecules supplied in loco might be important in the time frame needed for the activation of the innate immune response. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Proteomic differences between Escherichia coli strains that cause transient versus persistent intramammary infections [abstract

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Typically this infection is transient in nature and lasts 2-3 days. However, in a minority of cases, E. coli can cause a persistent intramammary infection. The mechanisms that enable certain strains of E. coli to cause a p...

  18. Competition for space during bacterial colonization of a surface.

    PubMed

    Lloyd, Diarmuid P; Allen, Rosalind J

    2015-09-06

    Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. © 2015 The Authors.

  19. Competition for space during bacterial colonization of a surface

    PubMed Central

    Lloyd, Diarmuid P.; Allen, Rosalind J.

    2015-01-01

    Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. PMID:26333814

  20. Bacterial Species and Antibiotic Sensitivity in Korean Patients Diagnosed with Acute Otitis Media and Otitis Media with Effusion.

    PubMed

    Kim, Sang Hoon; Jeon, Eun Ju; Hong, Seok Min; Bae, Chang Hoon; Lee, Ho Yun; Park, Moo Kyun; Byun, Jae Yong; Kim, Myung Gu; Yeo, Seung Geun

    2017-04-01

    Changes over time in pathogens and their antibiotic sensitivity resulting from the recent overuse and misuse of antibiotics in otitis media (OM) have complicated treatment. This study evaluated changes over 5 years in principal pathogens and their antibiotic sensitivity in patients in Korea diagnosed with acute OM (AOM) and OM with effusion (OME). The study population consisted of 683 patients who visited the outpatient department of otorhinolaryngology in 7 tertiary hospitals in Korea between January 2010 and May 2015 and were diagnosed with acute AOM or OME. Aural discharge or middle ear fluid were collected from patients in the operating room or outpatient department and subjected to tests of bacterial identification and antibiotic sensitivity. The overall bacteria detection rate of AOM was 62.3% and OME was 40.9%. The most frequently isolated Gram-positive bacterial species was coagulase negative Staphylococcus aureus (CNS) followed by methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Streptococcus pneumonia (SP), whereas the most frequently isolated Gram-negative bacterium was Pseudomonas aeruginosa (PA). Regardless of OM subtype, ≥ 80% of CNS and MRSA strains were resistant to penicillin (PC) and tetracycline (TC); isolated MRSA strains showed low sensitivity to other antibiotics, with 100% resistant to PC, TC, cefoxitin (CFT), and erythromycin (EM); and isolated PA showed low sensitivity to quinolone antibiotics, including ciprofloxacin (CIP) and levofloxacin (LFX), and to aminoglycosides. Bacterial species and antibiotic sensitivity did not change significantly over 5 years. The rate of detection of MRSA was higher in OME than in previous studies. As bacterial predominance and antibiotic sensitivity could change over time, continuous and periodic surveillance is necessary in guiding appropriate antibacterial therapy. © 2017 The Korean Academy of Medical Sciences.

  1. Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska

    USGS Publications Warehouse

    Ramey, Andy M.; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D.; Schmutz, Joel A.; Atterby, Clara; Järhult, Josef D.; Bonnedahl, Jonas

    2018-01-01

    We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.

  2. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    PubMed

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  3. Lactobacillus species isolated from vaginal secretions of healthy and bacterial vaginosis-intermediate Mexican women: a prospective study

    PubMed Central

    2013-01-01

    Background Lactobacillus jensenii, L. iners, L. crispatus and L. gasseri are the most frequently occurring lactobacilli in the vagina. However, the native species vary widely according to the studied population. The present study was performed to genetically determine the identity of Lactobacillus strains present in the vaginal discharge of healthy and bacterial vaginosis (BV) intermediate Mexican women. Methods In a prospective study, 31 strains preliminarily identified as Lactobacillus species were isolated from 21 samples collected from 105 non-pregnant Mexican women. The samples were classified into groups according to the Nugent score criteria proposed for detection of BV: normal (N), intermediate (I) and bacterial vaginosis (BV). We examined the isolates using culture-based methods as well as molecular analysis of the V1–V3 regions of the 16S rRNA gene. Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis was performed to reject clones. Results Clinical isolates (25/31) were classified into four groups based on sequencing and analysis of the 16S rRNA gene: L. acidophilus (14/25), L. reuteri (6/25), L. casei (4/25) and L. buchneri (1/25). The remaining six isolates were presumptively identified as Enterococcus species. Within the L. acidophilus group, L. gasseri was the most frequently isolated species, followed by L. jensenii and L. crispatus. L. fermentum, L. rhamnosus and L. brevis were also isolated, and were placed in the L. reuteri, L. casei and L. buchneri groups, respectively. ERIC profile analysis showed intraspecific variability amongst the L. gasseri and L. fermentum species. Conclusions These findings agree with previous studies showing that L. crispatus, L. gasseri and L. jensenii are consistently present in the healthy vaginal ecosystem. Additional species or phylotypes were detected in the vaginal microbiota of the non-pregnant Mexican (Hispanic-mestizo) population, and thus, these results further our understanding of

  4. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species

    PubMed Central

    Brinkman, Cassandra L.; Schmidt-Malan, Suzannah M.; Karau, Melissa J.; Greenwood-Quaintance, Kerryl; Hassett, Daniel J.; Mandrekar, Jayawant N.

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the ‘electricidal effect’, in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS. PMID:27992529

  5. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species.

    PubMed

    Brinkman, Cassandra L; Schmidt-Malan, Suzannah M; Karau, Melissa J; Greenwood-Quaintance, Kerryl; Hassett, Daniel J; Mandrekar, Jayawant N; Patel, Robin

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS.

  6. Induced clustering of Escherichia coli by acoustic fields.

    PubMed

    Gutiérrez-Ramos, Salomé; Hoyos, Mauricio; Ruiz-Suárez, J C

    2018-03-16

    Brownian or self-propelled particles in aqueous suspensions can be trapped by acoustic fields generated by piezoelectric transducers usually at frequencies in the megahertz. The obtained confinement allows the study of rich collective behaviours like clustering or spreading dynamics in microgravity-like conditions. The acoustic field induces the levitation of self-propelled particles and provides secondary lateral forces to capture them at nodal planes. Here, we give a step forward in the field of confined active matter, reporting levitation experiments of bacterial suspensions of Escherichia coli. Clustering of living bacteria is monitored as a function of time, where different behaviours are clearly distinguished. Upon the removal of the acoustic signal, bacteria rapidly spread, impelled by their own swimming. Nevertheless, long periods of confinement result in irreversible bacteria entanglements that could act as seeds for levitating bacterial aggregates.

  7. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives.

    PubMed

    Ogunade, I M; Jiang, Y; Pech Cervantes, A A; Kim, D H; Oliveira, A S; Vyas, D; Weinberg, Z G; Jeong, K C; Adesogan, A T

    2018-03-01

    The first objective of this study was to examine effects of adding Escherichia coli O157:H7 with or without chemical or microbial additives on the bacterial diversity and composition of alfalfa silage. The second objective was to examine associations between the relative abundance of known and unknown bacterial species and indices of silage fermentation quality. Alfalfa forage was harvested at 54% dry matter, chopped to a theoretical length of cut of 19 mm, and ensiled in quadruplicate in laboratory silos for 100 d after the following treatments were applied: (1) distilled water (control); (2) 1 × 10 5 cfu/g of E. coli O157:H7 (EC); (3) EC and 1 × 10 6 cfu/g of Lactobacillus plantarum (EC+LP); (4) EC and 1 × 10 6 cfu/g of Lactobacillus buchneri (EC+LB); and (5) EC and 0.22% propionic acid (EC+PA). After 100 d of ensiling, the silage samples were analyzed for bacterial diversity and composition via the Illumina MiSeq platform (Illumina Inc., San Diego, CA) and chemically characterized. Overall, Firmicutes (74.1 ± 4.86%) was the most predominant phylum followed by Proteobacteria (20.4 ± 3.80%). Relative to the control, adding E. coli O157:H7 alone at ensiling did not affect bacterial diversity or composition but adding EC+LP or EC+LB reduced the Shannon index, a measure of diversity (3.21 vs. 2.63 or 2.80, respectively). The relative abundance of Firmicutes (69.2 and 68.8%) was reduced, whereas that of Proteobacteria (24.0 and 24.9%) was increased by EC+LP and EC+PA treatments, relative to those of the control (79.5 and 16.5%) and EC+LB (77.4 and 18.5%) silages, respectively. Compared with the control, treatment with EC+LP increased the relative abundance of Lactobacillus, Sphingomonas, Pantoea, Pseudomonas, and Erwinia by 426, 157, 200, 194, and 163%, respectively, but reduced those of Pediococcus, Weissella, and Methylobacterium by 5,436, 763, and 250%, respectively. Relative abundance of Weissella (9.19%) and Methylobacterium (0.94%) were also reduced in the

  8. On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity.

    PubMed

    Zhu, Manlu; Dai, Xiongfeng

    2018-01-15

    In nature, the maximal growth rates vary widely among different bacteria species. Fast-growing bacteria species such as Escherichia coli can have a shortest generation time of 20 min. Slow-growing bacteria species are perhaps best known for Mycobacterium tuberculosis, a human pathogen with a generation time being no less than 16 h. Despite of the significant progress made on understanding the pathogenesis of M. tuberculosis, we know little on the origin of its intriguingly slow growth. From a global view, the intrinsic constraint of the maximal growth rate of bacteria remains to be a fundamental question in microbiology. In this review, we analyze and discuss this issue from the angle of protein translation capacity, which is the major demand for cell growth. Based on quantitative analysis, we propose four parameters: rRNA chain elongation rate, abundance of RNA polymerase engaged in rRNA synthesis, polypeptide chain elongation rate, and active ribosome fraction, which potentially limit the maximal growth rate of bacteria. We further discuss the relation of these parameters with the growth rate for M. tuberculosis as well as other bacterial species. We highlight future comprehensive investigation of these parameters for different bacteria species to understand how bacteria set their own specific growth rates.

  9. Water microbiology. Bacterial pathogens and water.

    PubMed

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  10. Water Microbiology. Bacterial Pathogens and Water

    PubMed Central

    Cabral, João P. S.

    2010-01-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  11. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    PubMed

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  12. Construction of high-density bacterial colony arrays and patterns by the ink-jet method.

    PubMed

    Xu, Tao; Petridou, Sevastioni; Lee, Eric H; Roth, Elizabeth A; Vyavahare, Narendra R; Hickman, James J; Boland, Thomas

    2004-01-05

    We have developed a method for fabricating bacterial colony arrays and complex patterns using commercially available ink-jet printers. Bacterial colony arrays with a density of 100 colonies/cm(2) were obtained by directly ejecting Escherichia coli (E. coli) onto agar-coated substrates at a rapid arraying speed of 880 spots per second. Adjusting the concentration of bacterial suspensions allowed single colonies of viable bacteria to be obtained. In addition, complex patterns of viable bacteria as well as bacteria density gradients were constructed using desktop printers controlled by a simple software program. Copyright 2003 Wiley Periodicals, Inc.

  13. Complete Genome Sequence of the Neonatal Meningitis-Causing Escherichia coli Strain NMEC O18

    PubMed Central

    Nicholson, Bryon A.; Wannemuehler, Yvonne M.; Logue, Catherine M.; Li, Ganwu

    2016-01-01

    Neonatal meningitis Escherichia coli (NMEC) is a common agent of neonatal bacterial meningitis, causing high neonatal mortality and neurologic sequelae in its victims. Here, we present the complete genome sequence of NMEC O18 (also known as NMEC 58), a highly virulent (O18ac:K1, ST416) strain. PMID:27811114

  14. Species interactions differ in their genetic robustness

    DOE PAGES

    Chubiz, Lon M.; Granger, Brian R.; Segre, Daniel; ...

    2015-04-14

    Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S.more » enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.« less

  15. Involvement of Escherichia coli K1 ibeT in bacterial adhesion that is associated with the entry into human brain microvascular endothelial cells.

    PubMed

    Zou, Yanming; He, Lina; Chi, Feng; Jong, Ambrose; Huang, Sheng-He

    2008-12-01

    IbeT is a downstream gene of the invasion determinant ibeA in the chromosome of a clinical isolate of Escherichia coli K1 strain RS218 (serotype 018:K1:H7). Both ibeT and ibeA are in the same operon. Our previous mutagenesis and complementation studies suggested that ibeT may coordinately contribute to E. coli K1 invasion with ibeA. An isogenic in-frame deletion mutant of ibeT has been made by chromosomal gene replacement with a recombinant suicide vector carrying a fragment with an ibeT internal deletion. The characteristics of the mutant in meningitic E. coli infection were examined in vitro [cell culture of human brain microvascular endothelial cells (HBMEC)] and in vivo (infant rat model of E. coli meningitis) in comparison with the parent strain. The ibeT deletion mutant was significantly less adhesive and invasive than its parent strain E. coli E44 in vitro, and the adhesion- and invasion-deficient phenotypes of the mutant can be complemented by the ibeT gene. Recombinant IbeT protein is able to block E. coli E44 invasion of HBMEC. Furthermore, the ibeT deletion mutant is less capable of colonizing intestine and less virulent in bacterial translocation across the blood-brain barrier (BBB) than its parent E. coli E44 in vivo. These data suggest that ibeT-mediated E. coli K1 adhesion is associated with the bacterial invasion process.

  16. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  17. Bacterial meningoencephalomyelitis in dogs: a retrospective study of 23 cases (1990-1999).

    PubMed

    Radaelli, Simona T; Platt, Simon R

    2002-01-01

    The clinical records of 23 dogs (1990-1999) with histopathologically confirmed bacterial meningoencephalomyelitis were evaluated retrospectively. No breed, age, sex, or weight predisposition was found. All the dogs presented with clinical signs of a brain lesion, whereas 5 of 23 had neck pain. Pyrexia was detected in 11 of 23 dogs on admission. CBCs revealed neutrophilic leucocytosis in 7 of 21 dogs and thrombocytopenia in 3 of 21 dogs. The serum chemistry profiles were abnormal in 15 of 21 dogs. The results of cerebrospinal fluid (CSF) analysis were abnormal in 13 of 14 dogs and aerobic CSF culture was positive for bacteria in 1of 8 samples. At postmortem examination, the lesions were localized to the central nervous system. Escherichia coli, Streptococcus, and Klebsiella spp were the most frequently isolated bacteria from cultures collected at postmortem examination. Twelve papers reporting 51 total clinical cases of canine bacterial meningoencephalomyelitis were reviewed. The clinical signs and results of the CBC, serum chemistry, blood culture, and CSF analysis were collated and compared with those of this study. The results of the CSF analysis in this study were similar to those in the literature. CSF cultures documented in the literature were positive for Staphylococcus, Pasteurella. Actinomyces, Nocardia spp, and various anaerobic species including Peptostreptococcus, Eubacterium, and Bacteroides spp.

  18. Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques

    PubMed Central

    Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming

    2013-01-01

    Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682

  19. Comparative Genomic Analyses of the Bacterial Phosphotransferase System

    PubMed Central

    Barabote, Ravi D.; Saier, Milton H.

    2005-01-01

    We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer. PMID:16339738

  20. Viral-bacterial associations in acute apical abscesses.

    PubMed

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  1. Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features.

    PubMed

    Yadav, R K P; Karamanoli, K; Vokou, D

    2005-08-01

    In this study, we assessed various leaf structural and chemical features as possible predictors of the size of the phyllosphere bacterial population in the Mediterranean environment. We examined eight perennial species, naturally occurring and coexisting in the same area, in Halkidiki (northern Greece). They are Arbutus unedo, Quercus coccifera, Pistacia lentiscus, and Myrtus communis (evergreen sclerophyllous species), Lavandula stoechas and Cistus incanus (drought semi-deciduous species), and Calamintha nepeta and Melissa officinalis (non-woody perennial species). M. communis, L. stoechas, C. nepeta, and M. officinalis produce essential oil in substantial quantities. We sampled summer leaves from these species and (1) estimated the size of the bacterial population of their phyllosphere, (2) estimated the concentration of different leaf constituents, and (3) studied leaf morphological and anatomical features and expressed them in a quantitative way. The aromatic plants are on average more highly colonized than the other species, whereas the non-woody perennials are more highly colonized than the woody species. The population size of epiphytic bacteria is positively correlated with glandular and non-glandular trichome densities, and with water and phosphorus contents; it is negatively correlated with total phenolics content and the thickness of the leaf, of the mesophyll, and of the abaxial epidermis. No correlation was found with the density of stomata, the nitrogen, and the soluble sugar contents. By regression tree analysis, we found that the leaf-microbe system can be effectively described by three leaf attributes with leaf water content being the primary explanatory attribute. Leaves with water content >73% are the most highly colonized. For leaves with water content <73%, the phosphorus content, with a critical value of 1.34 mg g(-1) d.w., is the next explanatory leaf attribute, followed by the thickness of the adaxial epidermis. Leaves higher in phosphorus

  2. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli

    PubMed Central

    Abedi, D.; Feizizadeh, S.; Akbari, V.; Jafarian-Dehkordi, A.

    2013-01-01

    Considering the emergence of antibiotic resistance, scientists are interested in using new antimicrobial agents in the treatment of infectious diseases including infections of the enteric systems. Lactic acid bacteria have the great potential to produce antimicrobial compounds that inhibit and control pathogenic bacteria. The aim of this study was to determine the anti-bacterial and anti-adherence properties of Lactobacillus delbrueckii subsp bulgaricus against Escherichia coli. The antibacterial activity of L. delbrueckii was investigated using disc diffusion and spot on lawn methods. In vitro anti-adhesion effect of L. delbrueckii against E. coli was examined using Caco-2 cells. In anti-adhesion assay, three competition conditions including competitive inhibition, adhesion inhibition, and displacement were examined. In spot on lawn method the zone of growth inhibition of E. coli by L. delbrueckii was 21.1 mm. The cell free supernatant of L. delbrueckii showed a good antibacterial activity against E. coli which was mainly related to lactic acid produced by L. delbrueckii. When two bacteria added simultaneously (competitive inhibition) degree of inhibition of E. coli binding by L. delbrueckii was 77%. In adhesion inhibition assay, L. delbrueckii was able to exclude E. coli adherence by around 43.5%. Displacement assay showed that L. delbrueckii had strong displacement ability toward E. coli and reduction of E. coli attachment by bound L. delbrueckii was 81.3%. The results suggest that L. delbrueckii may be able to inhibit E. coli infection in the gut; however more studies including in vivo studies need to be performed. PMID:24082895

  3. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli.

    PubMed

    Abedi, D; Feizizadeh, S; Akbari, V; Jafarian-Dehkordi, A

    2013-10-01

    Considering the emergence of antibiotic resistance, scientists are interested in using new antimicrobial agents in the treatment of infectious diseases including infections of the enteric systems. Lactic acid bacteria have the great potential to produce antimicrobial compounds that inhibit and control pathogenic bacteria. The aim of this study was to determine the anti-bacterial and anti-adherence properties of Lactobacillus delbrueckii subsp bulgaricus against Escherichia coli. The antibacterial activity of L. delbrueckii was investigated using disc diffusion and spot on lawn methods. In vitro anti-adhesion effect of L. delbrueckii against E. coli was examined using Caco-2 cells. In anti-adhesion assay, three competition conditions including competitive inhibition, adhesion inhibition, and displacement were examined. In spot on lawn method the zone of growth inhibition of E. coli by L. delbrueckii was 21.1 mm. The cell free supernatant of L. delbrueckii showed a good antibacterial activity against E. coli which was mainly related to lactic acid produced by L. delbrueckii. When two bacteria added simultaneously (competitive inhibition) degree of inhibition of E. coli binding by L. delbrueckii was 77%. In adhesion inhibition assay, L. delbrueckii was able to exclude E. coli adherence by around 43.5%. Displacement assay showed that L. delbrueckii had strong displacement ability toward E. coli and reduction of E. coli attachment by bound L. delbrueckii was 81.3%. The results suggest that L. delbrueckii may be able to inhibit E. coli infection in the gut; however more studies including in vivo studies need to be performed.

  4. Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths

    PubMed Central

    Barbe, Valérie; Baeriswyl, Simon; Bidet, Philippe; Bingen, Edouard; Bonacorsi, Stéphane; Bouchier, Christiane; Bouvet, Odile; Calteau, Alexandra; Chiapello, Hélène; Clermont, Olivier; Cruveiller, Stéphane; Danchin, Antoine; Diard, Médéric; Dossat, Carole; Karoui, Meriem El; Frapy, Eric; Garry, Louis; Ghigo, Jean Marc; Gilles, Anne Marie; Johnson, James; Le Bouguénec, Chantal; Lescat, Mathilde; Mangenot, Sophie; Martinez-Jéhanne, Vanessa; Matic, Ivan; Nassif, Xavier; Oztas, Sophie; Petit, Marie Agnès; Pichon, Christophe; Rouy, Zoé; Ruf, Claude Saint; Schneider, Dominique; Tourret, Jérôme; Vacherie, Benoit; Vallenet, David; Médigue, Claudine; Rocha, Eduardo P. C.; Denamur, Erick

    2009-01-01

    The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome. PMID:19165319

  5. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  6. Surface Interactions between Escherichia coli and Hemocytes of the Mediterranean Mussel Mytilus galloprovincialis Lam. Leading to Efficient Bacterial Clearance

    PubMed Central

    Canesi, Laura; Pruzzo, Carla; Tarsi, Renato; Gallo, Gabriella

    2001-01-01

    The role of type 1 fimbriae in the interactions between Escherichia coli and Mytilus galloprovincialis Lam. hemocytes was evaluated. The association of fimbriated strain MG155 with hemocyte monolayers at 18°C was 1.5- and 3- to 4-fold greater than the association of unfimbriated mutant AAEC072 in artificial seawater and in hemolymph serum, respectively. Such differences were apparently due to different adhesive properties since MG155 adhered more efficiently than AAEC072 when hemocytes were incubated at 4°C to inhibit the internalization process. Hemolymph serum increased both association and adherence of MG155 two- to threefold but did not affect association and adherence of AAEC072. MG155 was also 1.5- to 1.7-fold more sensitive to killing by hemocytes than AAEC072, as evaluated by the number of culturable bacteria after 60 and 120 min of incubation. The role of type 1 fimbriae in MG155 interactions with hemocytes was confirmed by the inhibitory effect of d-mannose. In in vivo experiments MG155 cells were cleared from circulating hemolymph more rapidly than AAEC072 cells were cleared. These results confirm that surface properties are crucial in influencing bacterial persistence and survival within mussel hemolymph. PMID:11133482

  7. Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo

    PubMed Central

    McDonald, Nathan D.; Lubin, Jean-Bernard; Chowdhury, Nityananda

    2016-01-01

    ABSTRACT A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota. Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces), Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella), Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus), and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species), mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others. PMID:27073099

  8. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem

    PubMed Central

    Minerdi, Daniela; Zgrablic, Ivan; Castrignanò, Silvia; Catucci, Gianluca; Medana, Claudio; Terlizzi, Maria Elena; Gribaudo, Giorgio; Gilardi, Gianfranco

    2015-01-01

    Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance. PMID:26459905

  9. Evaluation of Ultrasound-Induced Damage to Escherichia coli and Staphylococcus aureus by Flow Cytometry and Transmission Electron Microscopy

    PubMed Central

    Li, Jiao; Ahn, Juhee; Liu, Donghong; Chen, Shiguo; Ye, Xingqian

    2016-01-01

    As a nonthermal sterilization technique, ultrasound has attracted great interest in the field of food preservation. In this study, flow cytometry and transmission electron microscopy were employed to investigate ultrasound-induced damage to Escherichia coli and Staphylococcus aureus. For flow cytometry studies, single staining with propidium iodide (PI) or carboxyfluorescein diacetate (cFDA) revealed that ultrasound treatment caused cell death by compromising membrane integrity, inactivating intracellular esterases, and inhibiting metabolic performance. The results showed that ultrasound damage was independent of initial bacterial concentrations, while the mechanism of cellular damage differed according to the bacterial species. For the Gram-negative bacterium E. coli, ultrasound worked first on the outer membrane rather than the cytoplasmic membrane. Based on the double-staining results, we inferred that ultrasound treatment might be an all-or-nothing process: cells ruptured and disintegrated by ultrasound cannot be revived, which can be considered an advantage of ultrasound over other nonthermal techniques. Transmission electron microscopy studies revealed that the mechanism of ultrasound-induced damage was multitarget inactivation, involving the cell wall, cytoplasmic membrane, and inner structure. Understanding of the irreversible antibacterial action of ultrasound has great significance for its further utilization in the food industry. PMID:26746712

  10. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens.

    PubMed

    Aylward, Frank O; Burnum, Kristin E; Scott, Jarrod J; Suen, Garret; Tringe, Susannah G; Adams, Sandra M; Barry, Kerrie W; Nicora, Carrie D; Piehowski, Paul D; Purvine, Samuel O; Starrett, Gabriel J; Goodwin, Lynne A; Smith, Richard D; Lipton, Mary S; Currie, Cameron R

    2012-09-01

    Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus-bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.

  11. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens

    PubMed Central

    Aylward, Frank O; Burnum, Kristin E; Scott, Jarrod J; Suen, Garret; Tringe, Susannah G; Adams, Sandra M; Barry, Kerrie W; Nicora, Carrie D; Piehowski, Paul D; Purvine, Samuel O; Starrett, Gabriel J; Goodwin, Lynne A; Smith, Richard D; Lipton, Mary S; Currie, Cameron R

    2012-01-01

    Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans. PMID:22378535

  12. Host and Environmental Specificity in Bacterial Communities Associated to Two Highly Invasive Marine Species (Genus Asparagopsis)

    PubMed Central

    Aires, Tânia; Serrão, Ester A.; Engelen, Aschwin H.

    2016-01-01

    As habitats change due to global and local pressures, population resilience, and adaptive processes depend not only on their gene pools but also on their associated bacteria communities. The hologenome can play a determinant role in adaptive evolution of higher organisms that rely on their bacterial associates for vital processes. In this study, we focus on the associated bacteria of the two most invasive seaweeds in southwest Iberia (coastal mainland) and nearby offshore Atlantic islands, Asparagopsis taxiformis and Asparagopsis armata. Bacterial communities were characterized using 16S rRNA barcoding through 454 next generation sequencing and exploratory shotgun metagenomics to provide functional insights and a backbone for future functional studies. The bacterial community composition was clearly different between the two species A. taxiformis and A. armata and between continental and island habitats. The latter was mainly due to higher abundances of Acidimicrobiales, Sphingomonadales, Xanthomonadales, Myxococcales, and Alteromonadales on the continent. Metabolic assignments for these groups contained a higher number of reads in functions related to oxidative stress and resistance to toxic compounds, more precisely heavy metals. These results are in agreement with their usual association with hydrocarbon degradation and heavy-metals detoxification. In contrast, A. taxiformis from islands contained more bacteria related to oligotrophic environments which might putatively play a role in mineralization of dissolved organic matter. The higher number of functional assignments found in the metagenomes of A. taxiformis collected from Cape Verde Islands suggest a higher contribution of bacteria to compensate nutrient limitation in oligotrophic environments. Our results show that Asparagopsis-associated bacterial communities have host-specificity and are modulated by environmental conditions. Whether this environmental effect reflects the host's selective requirements or

  13. A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.

    PubMed

    Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R

    2011-10-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.

  14. Bacterial species and their associations with acute and chronic mastitis in suckler ewes.

    PubMed

    Smith, E M; Willis, Z N; Blakeley, M; Lovatt, F; Purdy, K J; Green, L E

    2015-10-01

    Acute mastitis in suckler ewes is often detected because of systemic signs such as anorexia or lameness, whereas chronic mastitis, characterized by intramammary abscesses with no systemic disease, is typically detected when ewes are inspected before mating. The aims of the current study were to identify the species and strains of culturable bacteria associated with acutely diseased, chronically diseased, and unaffected mammary glands to investigate whether species and strains vary by state. To investigate acute mastitis, 28 milk samples were obtained from both glands of 14 ewes with acute mastitis in one gland only. To investigate chronic mastitis, 16 ovine udders were obtained from 2 abattoirs; milk was aspirated from the 32 glands where possible, and the udders were sectioned to expose intramammary abscesses, which were swab sampled. All milk and swab samples were cultured aerobically. In total, 37 bacterial species were identified, 4 from acute mastitis, 26 from chronic mastitis, and 8 from apparently healthy glands. In chronic mastitis, the overall coincidence index of overlap of species detected in intramammary abscesses and milk was 0.60, reducing to 0.36 within individual glands, indicating a high degree of species overlap in milk and abscesses overall, but less overlap within specific glands. Staphylococcus aureus was detected frequently in all sample types; it was isolated from 10/14 glands with acute mastitis. In 5 ewes, closely related strains were present in both affected and unaffected glands. In chronic mastitis, closely related Staphylococcus aureus strains were detected in milk and abscesses from the same gland. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. [Biological characteristics of an enteroinvasive Escherichia coli strain with tatABC deletion].

    PubMed

    Gong, Zhaolong; Ye, Changyun; Liu, Xiaobing; Zhang, Min; Zhuo, Qin

    2013-05-04

    To study the relationship between twin-arginine translocation system (Tat) system with the biological characteristics of enteroinvasive Escherichia coli (EIEC). Through homologous recombination, we constructed EIEC's tatABC gene deletion strain and complementary strain, and explored their impact on bacterial form, substrate transport function as well as on HeLa cells and guinea pig's corneal invasion force. The tatABC gene deletion strain had apparent changes in bacterial form, loss of substrate transporter function, and significant weakened bacterial invasion force (the number of the deletion strain invading into HeLa cells was decreased significantly, and the ability of its corneal lesion capacity of the guinea pig was significantly weakened), while the complementary strain was similar to the wild strain in the above respects. EIEC's Tat protein transport system is closely related with the biological characteristics of EIEC.

  16. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia.

    PubMed

    Kumar, Manoj; van Elsas, Jan Dirk; Nissinen, Riitta

    2017-01-01

    Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB) communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel) and Saxifraga oppositifolia (blue saxifrage), in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region) and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH -targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ- Proteobacteria ) were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and rhizosphere soil

  17. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    PubMed

    Sabree, Zakee L; Hansen, Allison K; Moran, Nancy A

    2012-01-01

    Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3): e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear.

  18. Devitalization of bacterial and parasitic germs in sewage sludge during aerobic digestion under laboratory conditions.

    PubMed

    Juris, P; Plachý, P; Lauková, A

    1995-05-01

    The survival of 8 bacterial species (Pseudomonas sp., Salmonella sp., Enterobacteriae, Streptococcus sp., Escherichia coli) was detected in municipal sewage sludge up to 37 hours of mesophilic aerobic digestion under laboratory conditions. The model strain Enterococcus faecium CCM 4231 survived almost twice as long as the above-mentioned isolates. Similar findings, regarding the viability of the microorganisms studied, were also determined during thermophilic aerobic digestion of municipal sewage sludges. The final reduction in the total count of bacteria was not directly dependent on the temperature during aerobic digestion. It may be supposed that E. faecium CCM 4231 strain as a bacteriocin-producing strain with a broad antimicrobial spectrum, inoculated into the sludges, could inhibit the growth of microorganisms in the sludges by the way of its bacteriocin activity. Studying the effect of aerobic digestion on the viability of helminth eggs, the observed negative effect of higher temperatures was more expressive in comparison with bacterial strains. During thermophilic digestion process all helminth eggs (Ascaris suum, Toxocara canis) were devitalized. All eggs of T. canis were killed in experiments under mesophilic temperature. However, 32% of nonembryonated A. suum eggs remained viable.

  19. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.

    PubMed

    Joshi, Suresh G; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D

    2011-03-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.

  20. Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli▿

    PubMed Central

    Joshi, Suresh G.; Cooper, Moogega; Yost, Adam; Paff, Michelle; Ercan, Utku K.; Fridman, Gregory; Friedman, Gary; Fridman, Alexander; Brooks, Ari D.

    2011-01-01

    Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria. PMID:21199923

  1. Model comparison for Escherichia coli growth in pouched food.

    PubMed

    Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi

    2006-06-01

    We recently studied the growth characteristics of Escherichia coli cells in pouched mashed potatoes (Fujikawa et al., J. Food Hyg. Soc. Japan, 47, 95-98 (2006)). Using those experimental data, in the present study, we compared a logistic model newly developed by us with the modified Gompertz and the Baranyi models, which are used as growth models worldwide. Bacterial growth curves at constant temperatures in the range of 12 to 34 degrees C were successfully described with the new logistic model, as well as with the other models. The Baranyi gave the least error in cell number and our model gave the least error in the rate constant and the lag period. For dynamic temperature, our model successfully predicted the bacterial growth, whereas the Baranyi model considerably overestimated it. Also, there was a discrepancy between the growth curves described with the differential equations of the Baranyi model and those obtained with DMfit, a software program for Baranyi model fitting. These results indicate that the new logistic model can be used to predict bacterial growth in pouched food.

  2. Exploration of bacterial species associated with the salivary microbiome of individuals with a low susceptibility to dental caries.

    PubMed

    Yasunaga, Haruna; Takeshita, Toru; Shibata, Yukie; Furuta, Michiko; Shimazaki, Yoshihiro; Akifusa, Sumio; Ninomiya, Toshiharu; Kiyohara, Yutaka; Takahashi, Ichiro; Yamashita, Yoshihisa

    2017-11-01

    Dental caries is caused by acidogenic plaque microbiota formed on saliva-bathed tooth surfaces, in which multiple organisms act collectively to initiate and expand a cavity. We explored bacterial species associated with the salivary microbiome of individuals with low susceptibility to dental caries. The bacterial composition of saliva from 19 young adults was analyzed using barcoded pyrosequencing of the 16S rRNA gene; we compared 10 caries-experienced (CE) and nine caries-free (CF) individuals. A quantitative PCR assay of saliva from 139 orally healthy adults aged 40-59 years was carried out to confirm the result obtained by pyrosequencing analysis. The microbiomes of CF individuals showed more diverse communities with a significantly greater proportion of the genus Porphyromonas. Among operational taxonomic units (OTUs) corresponding to the genus Porphyromonas, the OTU corresponding to P. pasteri was the most predominant and its relative abundance in CF individuals was significantly greater than in CE individuals (P < 0.001, Wilcoxon rank sum test). A quantitative PCR assay of saliva confirmed that the amounts of P. pasteri were significantly higher in individuals with lower caries experience (filled teeth <15, n = 67) than in those with higher caries experience (filled teeth ≥15, n = 72) (P < 0.001, Student's t test). These results revealed an association between a greater abundance of P. pasteri and lower susceptibility to dental caries. P. pasteri may be a bacterial species that could potentially be used as a marker for maintaining a healthy oral microbiome against dental caries.

  3. Aerobiological Stabilities of Different Species of Gram-Negative Bacteria, Including Well-Known Biothreat Simulants, in Single-Cell Particles and Cell Clusters of Different Compositions

    PubMed Central

    Skogan, Gunnar

    2017-01-01

    ABSTRACT The ability to perform controlled experiments with bioaerosols is a fundamental enabler of many bioaerosol research disciplines. A practical alternative to using hazardous biothreat agents, e.g., for detection equipment development and testing, involves using appropriate model organisms (simulants). Several species of Gram-negative bacteria have been used or proposed as biothreat simulants. However, the appropriateness of different bacterial genera, species, and strains as simulants is still debated. Here, we report aerobiological stability characteristics of four species of Gram-negative bacteria (Pantoea agglomerans, Serratia marcescens, Escherichia coli, and Xanthomonas arboricola) in single-cell particles and cell clusters produced using four spray liquids (H2O, phosphate-buffered saline[PBS], spent culture medium[SCM], and a SCM-PBS mixture). E. coli showed higher stability in cell clusters from all spray liquids than the other species, but it showed similar or lower stability in single-cell particles. The overall stability was higher in cell clusters than in single-cell particles. The highest overall stability was observed for bioaerosols produced using SCM-containing spray liquids. A key finding was the observation that stability differences caused by particle size or compositional changes frequently followed species-specific patterns. The results highlight how even moderate changes to one experimental parameter, e.g., bacterial species, spray liquid, or particle size, can strongly affect the aerobiological stability of Gram-negative bacteria. Taken together, the results highlight the importance of careful and informed selection of Gram-negative bacterial biothreat simulants and also the accompanying particle size and composition. The outcome of this work contributes to improved selection of simulants, spray liquids, and particle size for use in bioaerosol research. IMPORTANCE The outcome of this work contributes to improved selection of simulants

  4. Proteomic analysis reveals protein expression differences in Escherichia coli strains associated with persistent versus transient mastitis

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Typically this infection is transient in nature, causing an infection that lasts 2-3 days. However, in a minority of cases, E. coli has been shown to cause a persistent intramammary infection. The mechanisms that allow for...

  5. Assessment of bacterial contamination of lipstick using pyrosequencing.

    PubMed

    Lee, So Y; Lee, Si Y

    As soon as they are exposed to the environment, cosmetics become contaminated with microorganisms, and this contamination accumulates with increased use. In this study, we employed pyrosequencing to investigate the diversity of bacteria found on lipstick. Bacterial DNA was extracted from 20 lipstick samples and mixed in equal ratios for pyrosequencing analysis. As a result, 105 bacterial genera were detected, four of which ( Leifsonia , Methylobacterium , Streptococcus , and Haemophilus ) were predominant in 92% of the 19,863 total sequence reads. Potentially pathogenic genera such as Staphylococcus , Pseudomonas , Escherichia , Salmonella , Corynebacterium , Mycobacterium , and Neisseria accounted for 27.6% of the 105 genera. The most commonly identified oral bacteria belonged to the Streptococcus genus, although other oral genera such as Actinomyces , Fusobacterium , Porphyromonas , and Lactobacillus were also detected.

  6. Activity of fosfomycin against nosocomial multiresistant bacterial pathogens from Croatia: a multicentric study

    PubMed Central

    Bielen, Luka; Likić, Robert; Erdeljić, Viktorija; Mareković, Ivana; Firis, Nataša; Grgić-Medić, Marijana; Godan, Ana; Tomić, Ivan; Hunjak, Blaženka; Markotić, Alemka; Bejuk, Danijela; Tičić, Vladimira; Balzar, Silvana; Bedenić, Branka

    2018-01-01

    Aim To determine in vitro susceptibility of multiresistant bacterial isolates to fosfomycin. Methods In this prospective in vitro study (local non-random sample, level of evidence 3), 288 consecutively collected multiresistant bacterial isolates from seven medical centers in Croatia were tested from February 2014 until October 2016 for susceptibility to fosfomycin and other antibiotics according to Clinical and Laboratory Standards Institute methodology. Susceptibility to fosfomycin was determined by agar dilution method, while disc diffusion were performed for in vitro testing of other antibiotics. Polymerase chain reaction and sequencing was performed for the majority of extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) and carbapenem-resistant isolates. Results The majority of 288 multiresistant bacterial isolates (82.6%) were susceptible to fosfomycin. The 236 multiresistant Gram-negative isolates showed excellent susceptibility to fosfomycin. Susceptibility rates were as follows: Escherichia coli ESBL 97%, K. pneumoniae ESBL 80%, Enterobacter species 85.7%, Citrobacter freundii 100%, Proteus mirabilis 93%, and Pseudomonas aeruginosa 60%. Of the 52 multiresistant Gram-positive isolates, methicillin-resistant Staphylococcus aureus showed excellent susceptibility to fosfomycin (94.4%) and vancomycin-resistant enterococcus showed low susceptibility to fosfomycin (31%). Polymerase chain reaction analysis of 36/50 ESBL-producing K. pneumoniae isolates showed that majority of isolates had CTX-M-15 beta lactamase (27/36) preceded by ISEcp insertion sequence. All carbapenem-resistant Enterobacter and Citrobacter isolates had blaVIM-1 metallo-beta-lactamase gene. Conclusion With the best in vitro activity among the tested antibiotics, fosfomycin could be an effective treatment option for infections caused by multiresistant Gram-negative and Gram-positive bacterial strains in the hospital setting. PMID:29740989

  7. Directed evolution of cell size in Escherichia coli.

    PubMed

    Yoshida, Mari; Tsuru, Saburo; Hirata, Naoko; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen; Yomo, Tetsuya

    2014-12-17

    In bacteria, cell size affects chromosome replication, the assembly of division machinery, cell wall synthesis, membrane synthesis and ultimately growth rate. In addition, cell size can also be a target for Darwinian evolution for protection from predators. This strong coupling of cell size and growth, however, could lead to the introduction of growth defects after size evolution. An important question remains: can bacterial cell size change and/or evolve without imposing a growth burden? The directed evolution of particular cell sizes, without a growth burden, was tested with a laboratory Escherichia coli strain. Cells of defined size ranges were collected by a cell sorter and were subsequently cultured. This selection-propagation cycle was repeated, and significant changes in cell size were detected within 400 generations. In addition, the width of the size distribution was altered. The changes in cell size were unaccompanied by a growth burden. Whole genome sequencing revealed that only a few mutations in genes related to membrane synthesis conferred the size evolution. In conclusion, bacterial cell size could evolve, through a few mutations, without growth reduction. The size evolution without growth reduction suggests a rapid evolutionary change to diverse cell sizes in bacterial survival strategies.

  8. Biotinylation of environmentally isolated Shiga toxin-producing Escherichia coli (STEC) – specific bacteriophages for biosensor and biocontrol applications

    USDA-ARS?s Scientific Manuscript database

    Like common bacteriophages, Shiga toxin-producing Escherichia coli (STEC) bacteriophages are viruses that recognize and bind to specific bacterial host (STEC) for propagation. They co-exist with STEC hosts, which cause epidemic food and waterborne illnesses, but may act as host populations limiting ...

  9. Possible mistranslation of Shiga toxin from pathogenic Escherichia coli as measured by MALDI-TOF and Orbitrap mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    RATIONALE: Shiga toxin-producing Escherichia coli (STEC) are often subjected to DNA damaging antibiotics during culturing in order to elicit the bacterial SOS response and up-regulation of bacteriophage-encoded proteins including Shiga toxin (Stx). However, such antibiotic exposure and stress may al...

  10. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    PubMed

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  11. Temperate Bacterial Viruses as Double-Edged Swords in Bacterial Warfare

    PubMed Central

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a “replicating toxin”. However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  12. Protection against Shiga-Toxigenic Escherichia coli by Non-Genetically Modified Organism Receptor Mimic Bacterial Ghosts.

    PubMed

    Paton, Adrienne W; Chen, Austen Y; Wang, Hui; McAllister, Lauren J; Höggerl, Florian; Mayr, Ulrike Beate; Shewell, Lucy K; Jennings, Michael P; Morona, Renato; Lubitz, Werner; Paton, James C

    2015-09-01

    Shiga-toxigenic Escherichia coli (STEC) causes severe gastrointestinal infections in humans that may lead to life-threatening systemic sequelae, such as the hemolytic uremic syndrome (HUS). Rapid diagnosis of STEC infection early in the course of disease opens a window of opportunity for therapeutic intervention, for example, by administration of agents that neutralize Shiga toxin (Stx) in the gut lumen. We previously developed a recombinant bacterium that expresses a mimic of the Stx receptor globotriaosyl ceramide (Gb3) on its surface through modification of the lipopolysaccharide (A. W. Paton, R. Morona, and J. C. Paton, Nat Med 6:265-270, 2000, http://dx.doi.org/10.1038/73111). This construct was highly efficacious in vivo, protecting mice from otherwise fatal STEC disease, but the fact that it is a genetically modified organism (GMO) has been a barrier to clinical development. In the present study, we have overcome this issue by development of Gb3 receptor mimic bacterial ghosts (BGs) that are not classified as GMOs. Gb3-BGs neutralized Stx1 and Stx2 in vitro with high efficiency, whereas alternative Gb3-expressing non-GMO subbacterial particles (minicells and outer membrane blebs) were ineffective. Gb3-BGs were highly efficacious in a murine model of STEC disease. All mice (10/10) treated with Gb3-BGs survived challenge with a highly virulent O113:H21 STEC strain and showed no pathological signs of renal injury. In contrast, 6/10 mice treated with control BGs succumbed to STEC challenge, and survivors exhibited significant weight loss, neutrophilia, and histopathological evidence of renal damage. Thus, Gb3-BGs offer a non-GMO approach to treatment of STEC infection in humans, particularly in an outbreak setting. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Protection against Shiga-Toxigenic Escherichia coli by Non-Genetically Modified Organism Receptor Mimic Bacterial Ghosts

    PubMed Central

    Paton, Adrienne W.; Chen, Austen Y.; Wang, Hui; McAllister, Lauren J.; Höggerl, Florian; Mayr, Ulrike Beate; Shewell, Lucy K.; Jennings, Michael P.; Morona, Renato; Lubitz, Werner

    2015-01-01

    Shiga-toxigenic Escherichia coli (STEC) causes severe gastrointestinal infections in humans that may lead to life-threatening systemic sequelae, such as the hemolytic uremic syndrome (HUS). Rapid diagnosis of STEC infection early in the course of disease opens a window of opportunity for therapeutic intervention, for example, by administration of agents that neutralize Shiga toxin (Stx) in the gut lumen. We previously developed a recombinant bacterium that expresses a mimic of the Stx receptor globotriaosyl ceramide (Gb3) on its surface through modification of the lipopolysaccharide (A. W. Paton, R. Morona, and J. C. Paton, Nat Med 6:265–270, 2000, http://dx.doi.org/10.1038/73111). This construct was highly efficacious in vivo, protecting mice from otherwise fatal STEC disease, but the fact that it is a genetically modified organism (GMO) has been a barrier to clinical development. In the present study, we have overcome this issue by development of Gb3 receptor mimic bacterial ghosts (BGs) that are not classified as GMOs. Gb3-BGs neutralized Stx1 and Stx2 in vitro with high efficiency, whereas alternative Gb3-expressing non-GMO subbacterial particles (minicells and outer membrane blebs) were ineffective. Gb3-BGs were highly efficacious in a murine model of STEC disease. All mice (10/10) treated with Gb3-BGs survived challenge with a highly virulent O113:H21 STEC strain and showed no pathological signs of renal injury. In contrast, 6/10 mice treated with control BGs succumbed to STEC challenge, and survivors exhibited significant weight loss, neutrophilia, and histopathological evidence of renal damage. Thus, Gb3-BGs offer a non-GMO approach to treatment of STEC infection in humans, particularly in an outbreak setting. PMID:26099582

  14. Fate of Escherichia coli O26 in Corn Silage Experimentally Contaminated at Ensiling, at Silo Opening, or after Aerobic Exposure, and Protective Effect of Various Bacterial Inoculants▿

    PubMed Central

    Dunière, Lysiane; Gleizal, Audrey; Chaucheyras-Durand, Frédérique; Chevallier, Isabelle; Thévenot-Sergentet, Delphine

    2011-01-01

    Shiga toxin-producing Escherichia coli (STEC) strains are responsible for human illness. Ruminants are recognized as a major reservoir of STEC, and animal feeds, such as silages, have been pointed out as a possible vehicle for the spread of STEC. The present study aimed to monitor the fate of pathogenic E. coli O26 strains in corn material experimentally inoculated (105 CFU/g) during ensiling, just after silo opening, and after several days of aerobic exposure. The addition of 3 bacterial inoculants, Propionibacterium sp., Lactobacillus buchneri, and Leuconostoc mesenteroides (106 CFU/g), was evaluated for their abilities to control these pathogens. The results showed that E. coli O26 could not survive in corn silage 5 days postensiling, and the 3 inoculants tested did not modify the fate of pathogen survival during ensiling. In the case of direct contamination at silo opening, E. coli O26 could be totally eradicated from corn silage previously inoculated with Leuconostoc mesenteroides. The combination of proper ensiling techniques and the utilization of selected bacterial inoculants appears to represent a good strategy to guarantee nutritional qualities of cattle feed while at the same time limiting the entry of pathogenic E. coli into the epidemiological cycle to improve the microbial safety of the food chain. PMID:21984243

  15. [Abnormal bacterial colonisation of the vagina and implantation during assisted reproduction].

    PubMed

    Wittemer, C; Bettahar-Lebugle, K; Ohl, J; Rongières, C; Viville, S; Nisand, I

    2004-02-01

    To evaluate the efficiency of our treatment of vaginal infection for couples included in an IVF program. Microbiologic screening of vaginal flora and semen has been performed one month prior to in vitro fertilization for 951 couples in 2000. Antibiotic treatment was prescribed in case of positive culture. Positive microbial growths were observed from endocervical and vaginal cultures in 218 women (22.9%). The clinical pregnancy rate was 30.29% in the group of patients without growth and 30.27% in the group with positive microbial growth. The implantation rate was significantly diminished in case of bacterial growth: 14.6 compared to 19.3% (P <0.02) for sterile endocervical culture. Five main bacterial species were found at the cervical level: Candida albicans (69 cases), Ureaplasma urealyticum (49 cases), Gardnerella vaginalis (43 cases), Streptococcus B or D (24 cases) and Escherichia coli (22 cases). Positive cultures from both vagina and semen were observed for 77 couples whose clinical pregnancy rate was 19.5 vs 36.2% in case of vaginal infection alone (P <0.01) with a spontaneous miscarriage rate of 46.7 compared to 17.6% (P <0.01). Endocervical microorganisms, even treated with adapted antibiotics, may affect embryonic implantation. Positive culture from both female and male partner may enhance this negative effect. In this case, the best strategy would be to cancel the IVF treatment.

  16. Toward functional genomics in bacteria: Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus

    PubMed Central

    Rondon, Michelle R.; Raffel, Sandra J.; Goodman, Robert M.; Handelsman, Jo

    1999-01-01

    As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes. PMID:10339608

  17. A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis

    PubMed Central

    Bharat, Amrita; Blanchard, Jan E.; Brown, Eric D.

    2014-01-01

    The synthesis of ribosomes is an essential process, which is aided by a variety of transacting factors in bacteria. Among these is a group of GTPases essential for bacterial viability and emerging as promising targets for new antibacterial agents. Herein, we describe a robust high-throughput screening process for inhibitors of one such GTPase, the Escherichia coli EngA protein. The primary screen employed an assay of phosphate production in 384-well density. Reaction conditions were chosen to maximize sensitivity for the discovery of competitive inhibitors while maintaining a strong signal amplitude and low noise. In a pilot screen of 31,800 chemical compounds, 44 active compounds were identified. Further, we describe the elimination of non-specific inhibitors that were detergent-sensitive or reactive as well as those that interfered with the high-throughput phosphate assay. Four inhibitors survived these common counter-screens for non-specificity but these chemicals were also inhibitors of the unrelated enzyme dihydrofolate reductase, suggesting that they too were promiscuously active. The high-throughput screen of the EngA protein described here provides a meticulous pilot study in the search for specific inhibitors of GTPases involved in ribosome biogenesis. PMID:23606650

  18. Viability of 3h grown bacterial micro-colonies after direct Raman identification.

    PubMed

    Mathey, R; Dupoy, M; Espagnon, I; Leroux, D; Mallard, F; Novelli-Rousseau, A

    2015-02-01

    Clinical diagnostics in routine microbiology still mostly relies on bacterial growth, a time-consuming process that prevents test results to be used directly as key decision-making elements for therapeutic decisions. There is some evidence that Raman micro-spectroscopy provides clinically relevant information from a limited amount of bacterial cells, thus holding the promise of reduced growth times and accelerated result delivery. Indeed, bacterial identification at the species level directly from micro-colonies at an early time of growth (6h) directly on their growth medium has been demonstrated. However, such analysis is suspected to be partly destructive and could prevent the further growth of the colony needed for other tests, e.g. antibiotic susceptibility testing (AST). In the present study, we evaluated the effect of the powerful laser excitation used for Raman identification on micro-colonies probed after very short growth times. We show here, using envelope integrity markers (Syto 9 and Propidium Iodide) directly on ultra-small micro-colonies of a few tens of Escherichia coli and Staphylococcus epidermidis cells (3h growth time), that only the cells that are directly impacted by the laser lose their membrane integrity. Growth kinetics experiments show that the non-probed surrounding cells are sometimes also affected but that the micro-colonies keep their ability to grow, resulting in normal aspect and size of colonies after 15h of growth. Thus, Raman spectroscopy could be used for very early (<3h) identification of grown micro-organisms without impairing further antibiotics susceptibility characterization steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies.

    PubMed

    Lee, Ken-Ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-11-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Supercritical CO2 induces marked changes in membrane phospholipids composition in Escherichia coli K12.

    PubMed

    Tamburini, Sabrina; Anesi, Andrea; Ferrentino, Giovanna; Spilimbergo, Sara; Guella, Graziano; Jousson, Olivier

    2014-06-01

    Supercritical carbon dioxide (SC-CO2) treatment is one of the most promising alternative techniques for pasteurization of both liquid and solid food products. The inhibitory effect of SC-CO2 on bacterial growth has been investigated in different species, but the precise mechanism of action remains unknown. Membrane permeabilization has been proposed to be the first event in SC-CO2-mediated inactivation. Flow cytometry, high performance liquid chromatography–electrospray ionization–mass spectrometry and NMR analyses were performed to investigate the effect of SC-CO2 treatment on membrane lipid profile and membrane permeability in Escherichia coli K12. After 15 min of SC-CO2 treatment at 120 bar and 35 °C, the majority of bacterial cells dissipated their membrane potential (95 %) and lost membrane integrity, as 81 % become partially permeabilized and 18 % fully permeabilized. Membrane permeabilization was associated with a 20 % decrease in bacterial biovolume and to a strong (>50 %) reduction in phosphatidylglycerol (PG) membrane lipids, without altering the fatty acid composition and the degree of unsaturation of acyl chains. PGs are thought to play an important role in membrane stability, by reducing motion of phosphatidylethanolamine (PE) along the membrane bilayer, therefore promoting the formation of inter-lipid hydrogen bonds. In addition, the decrease in intracellular pH induced by SC-CO2 likely alters the chemical properties of phospholipids and the PE/PG ratio. Biophysical effects of SC-CO2 thus cause a strong perturbation of membrane architecture in E. coli, and such alterations are likely associated with its strong inactivation effect.

  1. Study of the effects of high-energy proton beams on escherichia coli

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  2. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    PubMed

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.

  3. Bacterial diversity at different stages of the composting process

    PubMed Central

    2010-01-01

    Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants. PMID:20350306

  4. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  5. Bacterial isolates from equine infections in western Canada (1998–2003)

    PubMed Central

    Clark, Chris; Greenwood, Sarah; Boison, Joe O.; Chirino-Trejo, Manuel; Dowling, Patricia M.

    2008-01-01

    All bacterial samples of equine origin submitted to the diagnostic laboratory at the Western College of Veterinary Medicine from January 1998 to December 2003 from either “in-clinic” or Field Service cases were accessed (1323 submissions). The most common bacterial isolates from specific presenting signs were identified, along with their in vitro antimicrobial susceptibility patterns. The most common site from which significant bacterial isolates were recovered was the respiratory tract, followed by wounds. Streptococcus zooepidemicus was the most common isolate from most infections, followed by Escherichia coli. Antimicrobial resistance was not common in the isolates and acquired antimicrobial resistance to multiple drugs was rare. The results are compared with previous published studies from other institutions and used to suggest appropriate antimicrobial treatments for equine infections in western Canada. PMID:18309745

  6. Unexpected Diversity of Escherichia coli Sialate O-Acetyl Esterase NanS

    PubMed Central

    Rangel, Ariel; Steenbergen, Susan M.

    2016-01-01

    indicates that diverse bacterial species use host sialic acids for adhesion or as sources of carbon and nitrogen. Our results show that the catabolism of the diacetylated form of host sialic acid requires a specialized esterase, NanS. Our results further show that nanS homologs exist in bacteria other than Escherichia coli, as well as part of toxigenic E. coli prophage. The unexpected diversity of these enzymes suggests new avenues for investigating host-bacterium interactions. Therefore, these original results extend our previous studies of nanS to include mucosal pathogens, prophage, and prophage remnants. This expansion of the nanS superfamily suggests important, although as-yet-unknown, functions in host-microbe interactions. PMID:27481927

  7. Surface Enhanced Raman Spectroscopy for the Rapid Detection and Identification of Microbial Pathogens in Human Serum

    DTIC Science & Technology

    2014-12-11

    and 1 mm depth. Bacterial culture and cell count determination Bacterial species of Acinetobacter baumannii (A. baumannii, ST-3), Escherichia coli...remove all broth components followed by a final resuspension of the pellet in ddH2O back to 1 OD. Cell count was determined by plating the 10 4 , 10 3...10 2 and 10 1 cell dilutions on TSB Nutrient Agar media. Colony forming units (CFU) were counted the following day to confirm bacterial species

  8. Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital.

    PubMed

    Moles, Laura; Gómez, Marta; Jiménez, Esther; Bustos, Gerardo; de Andrés, Javier; Melgar, Ana; Escuder, Diana; Fernández, Leónides; Del Campo, Rosa; Rodríguez, Juan Miguel

    2017-01-01

    Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella , and Escherichia . The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis . Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium , and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella , and Streptococcus were the most abundant. Own mother's milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them.

  9. Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital

    PubMed Central

    Moles, Laura; Gómez, Marta; Jiménez, Esther; Bustos, Gerardo; de Andrés, Javier; Melgar, Ana; Escuder, Diana; Fernández, Leónides; del Campo, Rosa; Rodríguez, Juan Miguel

    2017-01-01

    Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella, and Escherichia. The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis. Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium, and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella, and Streptococcus were the most abundant. Own mother’s milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them. PMID:28459051

  10. Quantifying the combined effects of pronase and benzalkonium chloride in removing late-stage Listeria monocytogenes-Escherichia coli dual-species biofilms.

    PubMed

    Rodríguez-López, Pedro; Puga, Carmen H; Orgaz, Belén; Cabo, Marta L

    2017-09-01

    This work presents the assessment of the effectivity of a pronase (PRN)-benzalkonium chloride (BAC) sequential treatment in removing Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel (SS) using fluorescence microscopy and plate count assays. The effects of PRN-BAC on the occupied area (OA) by undamaged cells in 168 h dual-species samples were determined using a first-order factorial design. Empirical equations significantly (r 2 = 0.927) described a negative individual effect of BAC and a negative interactive effect of PRN-BAC achieving OA reductions up to 46%. After treatment, high numbers of remaining attached and released viable and cultivable E. coli cells were detected in PRN-BAC combinations when low BAC concentrations were used. Therefore, at appropriate BAC doses, in addition to biofilm removal, sequential application of PRN and BAC represents an appealing strategy for pathogen control on SS surfaces while hindering the dispersion of live cells into the environment.

  11. Gradient microfluidics enables rapid bacterial growth inhibition testing.

    PubMed

    Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing

    2014-03-18

    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).

  12. Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities.

    PubMed

    Colin, Y; Nicolitch, O; Turpault, M-P; Uroz, S

    2017-03-01

    mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. Copyright © 2017 American Society for Microbiology.

  13. Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities

    PubMed Central

    Colin, Y.; Nicolitch, O.; Turpault, M.-P.

    2016-01-01

    how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. PMID:28003192

  14. Subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection with boron-doped diamond anode: A comparative study of three electrolytes.

    PubMed

    Long, Yujiao; Ni, Jinren; Wang, Zuhui

    2015-11-01

    Although the identification of effective oxidant species has been extensively studied, yet the subcellular mechanism of bacterial inactivation has never been clearly elucidated in electrochemical disinfection processes. In this study, subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection was revealed in terms of comprehensive factors such as cell morphology, total organic components, K(+) leakage, membrane permeability, lipid peroxidation, membrane potential, membrane proteins, intracellular enzyme, cellular ATP level and DNA. The electrolysis was conducted with boron-doped diamond anode in three electrolytes including chloride, sulfate and phosphate. Results demonstrated that cell inactivation was mainly attributed to damage to the intracellular enzymatic systems in chloride solution. In sulfate solution, certain essential membrane proteins like the K(+) ion transport systems were eliminated. Thus, the pronounced K(+) leakage from cytosol resulted in gradual collapse of the membrane potential, which would hinder the subcellular localization of cell division-related proteins as well as ATP synthesis and thereby lead to the bacterial inactivation. Remarkable lipid peroxidation was observed, while the intracellular damage was negligible. In phosphate solution, the cells sequentially underwent overall destruction as a whole cell with no captured intermediate state, during which the organic components of the cells were mostly subjected to mineralization. This study provided a thorough insight into the bacterial inactivation mechanism on the subcellular level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Epidemiology of bacterial pathogens associated with infectious diarrhea in Djibouti.

    PubMed Central

    Mikhail, I A; Fox, E; Haberberger, R L; Ahmed, M H; Abbatte, E A

    1990-01-01

    During a survey examining the causes of diarrhea in the East African country of Djibouti, 140 bacterial pathogens were recovered from 209 diarrheal and 100 control stools. The following pathogens were isolated at comparable frequencies from both diarrheal and control stools: enteroadherent Escherichia coli (EAEC) (10.6 versus 13%), enterotoxigenic E. coli (ETEC) (11 versus 10%), enteropathogenic E. coli (EPEC) (7.7 versus 12%), Salmonella spp. (2.9 versus 3%), and Campylobacter jejuni-C. coli (3.3 versus 5%). Surprisingly, the EAEC strains isolated did not correspond to well-recognized EPEC serogroups. No Yersinia spp., enteroinvasive E. coli, or enterohemorrhagic E. coli were isolated during the course of this study. Only the following two genera were recovered from diarrheal stools exclusively: Shigella spp. (7.7%) and Aeromonas hydrophila group organisms (3.3%). Shigella flexneri was the most common Shigella species isolated. Patients with Shigella species were of a higher average age than were controls (27 versus 13 years), while subjects with Campylobacter or Salmonella species belonged to younger age groups (2.6 and 1.6 years, respectively). Salmonella cases were more often in females. Shigella diarrhea was associated with fecal blood or mucus and leukocytes. ETEC was not associated with nausea or vomiting. Anorexia, weight loss, and fever were associated with the isolation of Salmonella and Aeromonas species. EAEC, ETEC, EPEC, and Shigella species were resistant to most drugs used for treating diarrhea in Africa, while the antibiotic most active against all bacteria tested was norfloxacin. We conclude that in Djibouti in 1989, Shigella and Aeromonas species must be considered as potential pathogens whenever they are isolated from diarrheal stools and that norfloxacin should be considered the drug of choice in adults for treating severe shigellosis and for diarrhea prophylaxis in travelers. PMID:2351738

  16. Role of surface properties in bacterial attachment

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Sharma, Sumedha

    2014-03-01

    Bacterial biofilms foul a wide range of engineered surfaces, from pipelines to membranes to biomedical implants, and lead to deleterious costs for industry and for human health. Designing strategies to reduce bacterial fouling requires fundamental understanding of mechanisms by which bacteria attach to surfaces. We investigate the attachment of Escherichia coli on silanized glass surfaces during flow through a linear channel at flow rates of 0.1-1 mL/min using confocal microscopy. We deposit self-assembled monolayers of organosilanes on glass and track the position and orientation of bacteria deposited on these surfaces during flow using high-throughput image processing algorithms. Here, we report differences in deposition rate and surface-tethered motion of cells as a function of surface charge and surface energy, suggesting that attachment of bacteria on these engineered surfaces is dominated by different physical mechanisms.

  17. Isolating Escherichia coli strains for recombinant protein production.

    PubMed

    Schlegel, Susan; Genevaux, Pierre; de Gier, Jan-Willem

    2017-03-01

    Escherichia coli has been widely used for the production of recombinant proteins. To improve protein production yields in E. coli, directed engineering approaches have been commonly used. However, there are only few reported examples of the isolation of E. coli protein production strains using evolutionary approaches. Here, we first give an introduction to bacterial evolution and mutagenesis to set the stage for discussing how so far selection- and screening-based approaches have been used to isolate E. coli protein production strains. Finally, we discuss how evolutionary approaches may be used in the future to isolate E. coli strains with improved protein production characteristics.

  18. Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: Prevalence among species and their roles in biofilm formation and cell-cell aggregation.

    PubMed

    Hu, Lan; Grim, Christopher J; Franco, Augusto A; Jarvis, Karen G; Sathyamoorthy, Vengopal; Kothary, Mahendra H; McCardell, Barbara A; Tall, Ben D

    2015-12-01

    Cronobacter species are emerging food-borne pathogens that cause severe sepsis, meningitis, and necrotizing entercolitis in neonates and infants. Bacterial pathogens such as Escherichia coli and Salmonella species produce extracellular cellulose which has been shown to be involved in rugosity, biofilm formation, and host colonization. In this study the distribution and prevalence of cellulose synthase operon genes (bcsABZC) were determined by polymerase chain reaction (PCR) analysis in 231 Cronobacter strains isolated from clinical, food, environmental, and unknown sources. Furthermore, bcsA and bcsB isogenic mutants were constructed in Cronobacter sakazakii BAA894 to determine their roles. In calcofluor binding assays bcsA and bcsB mutants did not produce cellulose, and their colonial morphotypes were different to that of the parent strain. Biofilm formation and bacterial cell-cell aggregation were significantly reduced in bcsA and bcsB mutants compared to the parental strain. bcsA or bcsAB PCR-negative strains of C. sakazakii did not bind calcofluor, and produced less biofilm and cell-cell aggregation compared to strains possessing bcsAB genes. These data indicated that Cronobacter bcsABZC were present in all clinical isolates and most of food and environmental isolates. bcsA and bcsB genes of Cronobacter were necessary to produce cellulose, and were involved in biofilm formation and cell-cell aggregation. Published by Elsevier Ltd.

  19. Variable Number Of Tandem Repeats (VNTR) and its application in bacterial epidemiology.

    PubMed

    Ramazanzadeh, Rashid; McNerney, Ruth

    2007-08-15

    Molecular epidemiology is the using of molecular techniques to study bacterial distribution in human populations. Recently molecular epidemiologist benefit from several techniques such as Variable Number Tandem Repeat (VNTR) typing method to typing bacterial strains. Variable Number Tandem Repeat (VNTR) typing is a tool for genotyping and provides data in a simple and numeric format based on the number of repetitive sequences. VNTR for first time identified in M. tuberculosis as Mycobacterial Interspersed Repeat Units (MIRUs). General terms of VNTR have now been reported in Bacillus anthracis, Legionella pneumophila, Pseudomonas aeruginosa, Salmonella enterica and Escherichia coli O157.

  20. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  1. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  2. Effect of spinach cultivar and strain variation on survival of Escherichia coli O157:H7 on spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 outbreaks of infections associated with the consumption of fresh produce have increased in recent years. Bacterial cell surface appendages such as curli and the spinach leaf structure topography influence pathogen attachment and subsequent survival on spinach ...

  3. Characterization and statistical modeling of bacterial (Escherichia coli) outflows from watersheds that discharge into Southern Lake Michigan

    USGS Publications Warehouse

    Olyphant, G.A.; Thomas, Joan; Whitman, R.L.; Harper, D.

    2003-01-01

    Two watersheds in northwestern Indiana were selected for detailed monitoring of bacterially contaminated discharges (Escherichia coli) into Lake Michigan. A large watershed that drains an urbanized area with treatment plants that release raw sewage during storms discharges into Lake Michigan at the outlet of Burns Ditch. A small watershed drains part of the Great Marsh, a wetland complex that has been disrupted by ditching and limited residential development, at the outlet of Derby Ditch. Monitoring at the outlet of Burns Ditch in 1999 and 2000 indicated that E. coli concentrations vary over two orders of magnitude during storms. During one storm, sewage overflows caused concentrations to increase to more than 10,000 cfu/100 mL for several hours. Monitoring at Derby Ditch from 1997 to 2000 also indicated that E. coli concentrations increase during storms with the highest concentrations generally occurring during rising streamflow. Multiple regression analysis indicated that 60% of the variability in measured outflows of E. coli from Derby Ditch (n = 88) could be accounted for by a model that utilizes continuously measured rainfall, stream discharge, soil temperature and depth to water table in the Great Marsh. A similar analysis indicated that 90% of the variability in measured E. coli concentrations at the outlet of Burns Ditch (n = 43) during storms could be accounted for by a combination of continuously measured water-quality variables including nitrate and ammonium. These models, which utilize data that can be collected on a real-time basis, could form part of an Early Warning System for predicting beach closures.

  4. Optically Mapping Multiple Bacterial Genomes Simultaneously in a Single Run

    DTIC Science & Technology

    2011-11-21

    sequence orientation. We have demonstrated mapping of Shigella dysenteriae and Escherichia coli simultaneously, despite their very close phylogenetic...relationship ( Shigella and Escherichia coli are generally considered to be within a single species, but are segregated at the genus level for historical...reasons [4]); two clones of Shigella would likely not map together successfully using the mixed DNA method. Similarly, based on reference maps being

  5. Effects of household washing on bacterial load and removal of Escherichia coli from lettuce and "ready-to-eat" salads.

    PubMed

    Uhlig, Elisabeth; Olsson, Crister; He, Jiayi; Stark, Therese; Sadowska, Zuzanna; Molin, Göran; Ahrné, Siv; Alsanius, Beatrix; Håkansson, Åsa

    2017-11-01

    Customer demands for fresh salads are increasing, but leafy green vegetables have also been linked to food-borne illness due to pathogens such as Escherichia coli O157:H7. As a safety measure, consumers often wash leafy vegetables in water before consumption. In this study, we analyzed the efficiency of household washing to reduce the bacterial content. Romaine lettuce and ready-to-eat mixed salad were washed several times in flowing water at different rates and by immersing the leaves in water. Lettuce was also inoculated with E. coli before washing. Only washing in a high flow rate (8 L/min) resulted in statistically significant reductions ( p  < .05), "Total aerobic count" was reduced by 80%, and Enterobacteriaceae count was reduced by 68% after the first rinse. The number of contaminating E. coli was not significantly reduced. The dominating part of the culturable microbiota of the washed lettuce was identified by rRNA 16S sequencing of randomly picked colonies. The majority belonged to Pseudomonadaceae , but isolates from Enterobacteriaceae and Staphylococcaceaceae were also frequently found. This study shows the inefficiency of tap water washing methods available for the consumer when it comes to removal of bacteria from lettuce. Even after washing, the lettuce contained high levels of bacteria that in a high dose and under certain circumstances may constitute a health risk.

  6. Multicenter evaluation of molecular and culture-dependent diagnostics for Shigella species and Entero-invasive Escherichia coli in the Netherlands.

    PubMed

    van den Beld, Maaike J C; Friedrich, Alexander W; van Zanten, Evert; Reubsaet, Frans A G; Kooistra-Smid, Mirjam A M D; Rossen, John W A

    2016-12-01

    An inter-laboratory collaborative trial for the evaluation of diagnostics for detection and identification of Shigella species and Entero-invasive Escherichia coli (EIEC) was performed. Sixteen Medical Microbiological Laboratories (MMLs) participated. MMLs were interviewed about their diagnostic methods and a sample panel, consisting of DNA-extracts and spiked stool samples with different concentrations of Shigella flexneri, was provided to each MML. The results of the trial showed an enormous variety in culture-dependent and molecular diagnostic techniques currently used among MMLs. Despite the various molecular procedures, 15 out of 16 MMLs were able to detect Shigella species or EIEC in all the samples provided, showing that the diversity of methods has no effect on the qualitative detection of Shigella flexneri. In contrast to semi quantitative analysis, the minimum and maximum values per sample differed by approximately five threshold cycles (Ct-value) between the MMLs included in the study. This indicates that defining a uniform Ct-value cut-off for notification to health authorities is not advisable. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015).

    PubMed

    van Spijk, J N; Schmitt, S; Fürst, A E; Schoster, A

    2016-06-01

    Antimicrobial resistance has become an important concern in veterinary medicine. The aim of this study was to describe the rate of antimicrobial resistance in common equine pathogens and to determine the occurrence of multidrug-resistant isolates. A retrospective analysis of all susceptibility testing results from bacterial pathogens cultured from horses at the University of Zurich Equine Hospital (2012-2015) was performed. Strains exhibiting resistance to 3 or more antimicrobial categories were defined as multidrug-resistant. Susceptibility results from 303 bacterial pathogens were analyzed, most commonly Escherichia coli (60/303, 20%) and Staphylococcus aureus (40/303, 13%). High rates of acquired resistance against commonly used antimicrobials were found in most of the frequently isolated equine pathogens. The highest rate of multidrug resistance was found in isolates of Acinetobacter baumannii (23/24, 96%), followed by Enterobacter cloacae complex (24/28, 86%) and Escherichia coli (48/60, 80%). Overall, 60% of Escherichia coli isolates were phenotypically ESBL-producing and 68% of Staphylococcus spp. were phenotypically methicillin-resistant. High rates of acquired antimicrobial resistance towards commonly used antibiotics are concerning and underline the importance of individual bacteriological and antimicrobial susceptibility testing to guide antimicrobial therapy. Minimizing and optimizing antimicrobial therapy in horses is needed.

  8. Periodic growth of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  9. Relationship of periodontal clinical parameters with bacterial composition in human dental plaque.

    PubMed

    Fujinaka, Hidetake; Takeshita, Toru; Sato, Hirayuki; Yamamoto, Tetsuji; Nakamura, Junji; Hase, Tadashi; Yamashita, Yoshihisa

    2013-06-01

    More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.

  10. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification☆

    PubMed Central

    Wilson, K.; Mole, D.J.; Binnie, M.; Homer, N.Z.M.; Zheng, X.; Yard, B.A.; Iredale, J.P.; Auer, M.; Webster, S.P.

    2014-01-01

    Kynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification. PMID:24316190

  11. The prevalence of antimicrobial-resistant Escherichia coli in two species of invasive alien mammals in Japan.

    PubMed

    Nakamura, Ichiro; Obi, Takeshi; Sakemi, Yoko; Nakayama, Ayano; Miyazaki, Kei; Ogura, Go; Tamaki, Masanobu; Oka, Tatsuzo; Takase, Kozo; Miyamoto, Atsushi; Kawamoto, Yasuhiro

    2011-08-01

    The prevalence of antimicrobial resistance in 128 Escherichia coli isolates was investigated in two species of invasive alien mammals (IAMs): the small Asian mongoose (SAM) and Japanese weasel (JW). The SAM is found on the main island of Okinawa, Japan, where a large number of livestock is available, and the JW is present on a small island, where is isolated from the main island, and have a small number of livestock. We focused on the two IAMs, inhabiting under the different environments, and compared their prevalence of antimicrobial-resistant E. coli. In the comparison of the frequencies of antimicrobial-resistant E. coli isolates between the SAM and JW, JW showed significantly higher prevalence of resistance against three drugs, ampicillin, chlortetracycline and nalidixic acid, compared with SAM's test results (P<0.05). The bla(TEM) gene and the aph1 gene were detected in 35 subjects (91%) of ampicillin-resistant isolates and 6 subjects (100%) of kanamycin-resistant isolates, respectively. The tet (A) gene was detected in 62 subjects (46%) of CTC-resistant isolates, and the tet (B) gene was detected in 25 subjects (8%) of those in IAM. The present results suggest that some IAMs were the carrier of antimicrobial-resistant bacteria and their genes, and the frequencies of these resistances were different between two IAM species.

  12. In vitro adherence of radioactively labeled Escherichia coli in normal and cystitis-prone females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, C.L.; Anwar, H.; Stauffer, C.

    Numerous investigators report data obtained using an in vitro quantitative assay for measuring bacterial adherence to epithelial cells. In the modified assay described here, we eliminated the need for visual counting of bacteria by incorporating the use of radioactively labeled Escherichia coli. This allowed quantitation of bacterial adherence to as many as 50,000 vaginal cells, whereas the visual counting system limits the determination to perhaps 50 cells. Using the modified method, we found no statistically significant differences among values for adherence of E. coli type 04 to the vaginal cells of control and cystitis-prone women at either pH 6.4 ormore » 4.0.« less

  13. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  14. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem.

    PubMed

    Minerdi, Daniela; Zgrablic, Ivan; Castrignanò, Silvia; Catucci, Gianluca; Medana, Claudio; Terlizzi, Maria Elena; Gribaudo, Giorgio; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos.

    PubMed

    Wang, Fan; Zhao, Hongwei; Xiang, Haiying; Wu, Lijun; Men, Xiao; Qi, Chang; Chen, Guoqiang; Zhang, Haibo; Wang, Yi; Xian, Mo

    2018-06-05

    Microbes on aging flue-cured tobaccos (ATFs) improve the aroma and other qualities desirable in products. Understanding the relevant organisms would picture microbial community diversity, metabolic potential, and their applications. However, limited efforts have been made on characterizing the microbial quality and functional profiling. Herein, we present our investigation of the bacterial diversity and predicted potential genetic capability of the bacteria from two AFTs using 16S rRNA gene sequences and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) software. The results show that dominant bacteria from AFT surfaces were classified into 48 genera, 36 families, and 7 phyla. In addition, Bacillus spp. was found prevalent on both ATFs. Furthermore, PICRUSt predictions of bacterial community functions revealed many attractive metabolic capacities in the AFT microbiota, including several involved in the biosynthesis of flavors and fragrances and the degradation of harmful compounds, such as nicotine and nitrite. These results provide insights into the importance of AFT bacteria in determining product qualities and indicate specific microbial species with predicted enzymatic capabilities for the production of high-efficiency flavors, the degradation of undesirable compounds, and the provision of nicotine and nitrite tolerance which suggest fruitful areas of investigation into the manipulation of AFT microbiota for AFT and other product improvements.

  16. Mathematical modeling of growth of non-O157 Shiga Toxin-producing Escherichia coli in raw ground beef

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the growth of Shiga toxin-producing Escherichia coli (STEC, including serogroups O45, O103, O111, O121, and O145) in raw ground beef and to develop mathematical models to describe the bacterial growth under different temperature conditions. Three prima...

  17. The group B streptococcal sialic acid O-acetyltransferase is encoded by neuD, a conserved component of bacterial sialic acid biosynthetic gene clusters.

    PubMed

    Lewis, Amanda L; Hensler, Mary E; Varki, Ajit; Nizet, Victor

    2006-04-21

    Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.

  18. Genomics of Escherichia and Shigella

    NASA Astrophysics Data System (ADS)

    Perna, Nicole T.

    The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.

  19. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids.

    PubMed

    Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M

    2011-10-01

    To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems

    PubMed Central

    Gomaa, Ahmed A.; Klumpe, Heidi E.; Luo, Michelle L.; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L.

    2014-01-01

    ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. PMID:24473129

  1. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  2. Key determinants of the fungal and bacterial microbiomes in homes.

    PubMed

    Kettleson, Eric M; Adhikari, Atin; Vesper, Stephen; Coombs, Kanistha; Indugula, Reshmi; Reponen, Tiina

    2015-04-01

    The microbiome of the home is of great interest because of its possible impact on health. Our goal was to identify some of the factors that determine the richness, evenness and diversity of the home's fungal and bacterial microbiomes. Vacuumed settled dust from homes (n=35) in Cincinnati, OH, were analyzed by pyrosequencing to determine the fungal and bacterial relative sequence occurrence. The correlation coefficients between home environmental characteristics, including age of home, Environmental Relative Moldiness Index (ERMI) values, occupant number, relative humidity and temperature, as well as pets (dog and cat) were evaluated for their influence on fungal and bacterial communities. In addition, linear discriminant analysis (LDA) was used for identifying fungal and bacterial genera and species associated with those housing determinants found to be significant. The fungal richness was found to be positively correlated with age of home (p=0.002), ERMI value (p=0.003), and relative humidity (p=0.015) in the home. However, fungal evenness and diversity were only correlated with the age of home (p=0.001). Diversity and evenness (not richness) of the bacterial microbiome in the homes were associated with dog ownership. Linear discriminant analysis showed total of 39 putative fungal genera/species with significantly higher LDA scores in high ERMI homes and 47 genera/species with significantly higher LDA scores in homes with high relative humidity. When categorized according to the age of the home, a total of 67 fungal genera/species had LDA scores above the significance threshold. Dog ownership appeared to have the most influence on the bacterial microbiome, since a total of 130 bacterial genera/species had significantly higher LDA scores in homes with dogs. Some key determinants of the fungal and bacterial microbiome appear to be excess moisture, age of the home and dog ownership. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transpositional inactivation of gadW enhances curli production and biofilm formation in Enterohemorrhagic Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been shown to produce variants that either express or are repressed in the expression of curli fimbriae promoting bacterial attachment, aggregation, and biofilm formation. The variant expression of curli fimbriae in some instances could result fr...

  4. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers.

    PubMed

    van Oene, Maarten M; Dickinson, Laura E; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2017-03-07

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor's response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor's performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level.

  5. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    PubMed Central

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  6. Broad spectrum microarray for fingerprint-based bacterial species identification

    PubMed Central

    2010-01-01

    Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups. PMID:20163710

  7. Selection of peptidoglycan-specific aptamers for bacterial cells identification.

    PubMed

    Ferreira, Iêda Mendes; de Souza Lacerda, Camila Maria; de Faria, Lígia Santana; Corrêa, Cristiane Rodrigues; de Andrade, Antero Silva Ribeiro

    2014-12-01

    Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.

  8. Gamma-irradiated bacterial preparation having anti-tumor activity

    DOEpatents

    Vass, Arpad A.; Tyndall, Richard L.; Terzaghi-Howe, Peggy

    1999-01-01

    A bacterial preparation from Pseudomonas species isolated #15 ATCC 55638 that has been exposed to gamma radiation exhibits cytotoxicity that is specific for neoplastic carcinoma cells. A method for obtaining a bacterial preparation having antitumor activity consists of suspending a bacterial isolate in media and exposing the suspension to gamma radiation. A bacterial preparation of an aged culture of an amoeba-associated bacteria exhibits anti-reverse transcriptase activity. A method for obtaining a bacterial preparation having anti-reverse transcriptase activity from an amoeba-associated bacterial isolate grown to stationary phase is disclosed.

  9. Variation in bacterial ATP concentration during rapid changes in extracellular pH and implications for the activity of attached bacteria.

    PubMed

    Albert, Lynal S; Brown, Derick G

    2015-08-01

    In this study we investigated the relationship between a rapid change in extracellular pH and the alteration of bacterial ATP concentration. This relationship is a key component of a hypothesis indicating that bacterial bioenergetics - the creation of ATP from ADP via a proton gradient across the cytoplasmic membrane - can be altered by the physiochemical charge-regulation effect, which results in a pH shift at the bacteria's surface upon adhesion to another surface. The bacterial ATP concentration was measured during a rapid change in extracellular pH from a baseline pH of 7.2 to pH values between 3.5 and 10.5. Experiments were conducted with four neutrophilic bacterial strains, including the Gram-negative Escherichia coli and Pseudomonas putida and the Gram-positive Bacillus subtilis and Staphylococcus epidermidis. A change in bulk pH produced an immediate response in bacterial ATP, demonstrating a direct link between changes in extracellular pH and cellular bioenergetics. In general, the shifts in ATP were similar across the four bacterial strains, with results following an exponential relationship between the extracellular pH and cellular ATP concentration. One exception occurred with S. epidermidis, where there was no variation in cellular ATP at acidic pH values, and this finding is consistent with this species' ability to thrive under acidic conditions. These results provide insight into obtaining a desired bioenergetic response in bacteria through (i) the application of chemical treatments to vary the local pH and (ii) the selection and design of surfaces resulting in local pH modification of attached bacteria via the charge-regulation effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice.

    PubMed

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A

    2010-05-01

    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  11. Role of curli expression by Escherichia coli O157:H7 on the cell’s ability to attach to spinach

    USDA-ARS?s Scientific Manuscript database

    Introduction: Shiga-toxigenic Escherichia coli O157:H7 (STEC) outbreaks have been linked to consumption of fresh produce. Mechanisms of bacterial interaction with plant surfaces should be investigated to develop mitigation strategies. Cellular appendages, such as curli fibers have been suggested t...

  12. Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase▿†

    PubMed Central

    Nawabi, Parwez; Bauer, Stefan; Kyrpides, Nikos; Lykidis, Athanasios

    2011-01-01

    The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis. PMID:21926202

  13. Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters.

    PubMed

    Ivanova, Kristina; Fernandes, Margarida M; Francesko, Antonio; Mendoza, Ernest; Guezguez, Jamil; Burnet, Michael; Tzanov, Tzanko

    2015-12-16

    Bacteria often colonize in-dwelling medical devices and grow as complex biofilm communities of cells embedded in a self-produced extracellular polymeric matrix, which increases their resistance to antibiotics and the host immune system. During biofilm growth, bacterial cells cooperate through specific quorum-sensing (QS) signals. Taking advantage of this mechanism of biofilm formation, we hypothesized that interrupting the communication among bacteria and simultaneously degrading the extracellular matrix would inhibit biofilm growth. To this end, coatings composed of the enzymes acylase and α-amylase, able to degrade bacterial QS molecules and polysaccharides, respectively, were built on silicone urinary catheters using a layer-by-layer deposition technique. Multilayer coatings of either acylase or amylase alone suppressed the biofilm formation of corresponding Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Further assembly of both enzymes in hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase position in the layers. Hybrid coatings, with the QS-signal-degrading acylase as outermost layer, demonstrated 30% higher antibiofilm efficiency against medically relevant Gram-negative bacteria compared to that of the other assemblies. These nanocoatings significantly reduced the occurrence of single-species (P. aeruginosa) and mixed-species (P. aeruginosa and Escherichia coli) biofilms on silicone catheters under both static and dynamic conditions. Moreover, in an in vivo animal model, the quorum quenching and matrix degrading enzyme assemblies delayed the biofilm growth up to 7 days.

  14. Molecular Survey of Bacterial Communities Associated with Bacterial Chondronecrosis with Osteomyelitis (BCO) in Broilers

    PubMed Central

    Jiang, Tieshan; Mandal, Rabindra K.; Wideman, Robert F.; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  15. A rapid diagnostic workflow for cefotaxime-resistant Escherichia coli and Klebsiella pneumoniae detection from blood cultures by MALDI-TOF mass spectrometry.

    PubMed

    De Carolis, Elena; Paoletti, Silvia; Nagel, Domenico; Vella, Antonietta; Mello, Enrica; Palucci, Ivana; De Angelis, Giulia; D'Inzeo, Tiziana; Sanguinetti, Maurizio; Posteraro, Brunella; Spanu, Teresa

    2017-01-01

    Nowadays, the global spread of resistance to oxyimino-cephalosporins in Enterobacteriaceae implies the need for novel diagnostics that can rapidly target resistant organisms from these bacterial species. In this study, we developed and evaluated a Direct Mass Spectrometry assay for Beta-Lactamase (D-MSBL) that allows direct identification of (oxyimino)cephalosporin-resistant Escherichia coli or Klebsiella pneumoniae from positive blood cultures (BCs), by using the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technology. The D-MSBL assay was performed on 93 E. coli or K. pneumoniae growing BC samples that were shortly co-incubated with cefotaxime (CTX) as the indicator cephalosporin. Susceptibility and resistance defining peaks from the samples' mass spectra were analyzed by a novel algorithm for bacterial organism classification. The D-MSBL assay allowed discrimination between E. coli and K. pneumoniae that were resistant or susceptible to CTX with a sensitivity of 86.8% and a specificity of 98.2%. The proposed algorithm-based D-MSBL assay, if integrated in the routine laboratory diagnostic workflow, may be useful to enhance the establishment of appropriate antibiotic therapy and to control the threat of oxyimino-cephalosporin resistance in hospital.

  16. Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli

    PubMed Central

    Houamel, Dounia; Ducrot, Nicolas; Lefebvre, Thibaud; Daher, Raed; Moulouel, Boualem; Sari, Marie-Agnes; Letteron, Philippe; Lyoumi, Said; Millot, Sarah; Tourret, Jerome; Bouvet, Odile; Vaulont, Sophie; Vandewalle, Alain; Denamur, Erick; Puy, Hervé; Beaumont, Carole; Gouya, Laurent

    2016-01-01

    The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc−/−) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc−/− mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc−/− mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion. PMID:26293821

  17. Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab

    PubMed Central

    Thurber, Andrew R.; Jones, William J.; Schnabel, Kareen

    2011-01-01

    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3rd maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins. PMID:22140426

  18. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab.

    PubMed

    Thurber, Andrew R; Jones, William J; Schnabel, Kareen

    2011-01-01

    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3(rd) maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.

  19. Bacterial uptake of antibiotics in model unsaturated systems

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Chen, Z.; Zhang, Y.; Zhao, Z.; Wang, G.; Gao, Y.; Boyd, S. A.; Zhu, D.; Li, H.

    2016-12-01

    Anthropogenic antibiotics are ubiquitously present in the environment due to large uses in human medicine and animal agriculture, and are causing unintended consequence to human and ecosystem health. Bacterial uptake of antibiotics could exert selection pressure on antibiotic resistance development among bacteria population. Therefore, understanding environmental factors controlling bioavailability of antibiotics to bacteria is critical to better assessing exposure risks and developing mitigation strategies. Nonetheless, conventional bioavailability assays are often performed in water-saturated systems that do not represent unsaturated soils where most bacteria live, therefore neglecting soil water as a controlling factor in determining the extent of antibiotic bacterial uptake. Therefore, we propose to study bacterial uptake of antibiotics in model unsaturated systems using GFP-tagged Escherichia coli bioreporter for tetracyclines. Our preliminary studies demonstrated the important role of water content (or water matric potential) in determining the bioavailability of antibiotics, and complex interactions of water potential, tetracycline diffusion, and E. coli growth. Therefore, unsaturated processes are important for understanding antibiotic resistance development and developing mitigation strategies.

  20. Bacterial infection imaging with [18F]fluoropropyl-trimethoprim

    PubMed Central

    Lee, Iljung; Hou, Catherine; Weng, Chi-Chang; Li, Shihong; Lieberman, Brian P.; Zeng, Chenbo; Mankoff, David A.; Mach, Robert H.

    2017-01-01

    There is often overlap in the diagnostic features of common pathologic processes such as infection, sterile inflammation, and cancer both clinically and using conventional imaging techniques. Here, we report the development of a positron emission tomography probe for live bacterial infection based on the small-molecule antibiotic trimethoprim (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater than 100-fold increased uptake in vitro in live bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls. In a rodent myositis model, [18F]FPTMP identified live bacterial infection without demonstrating confounding increased signal in the same animal from other etiologies including chemical inflammation (turpentine) and cancer (breast carcinoma). Additionally, the biodistribution of [18F]FPTMP in a nonhuman primate shows low background in many important tissues that may be sites of infection such as the lungs and soft tissues. These results suggest that [18F]FPTMP could be a broadly useful agent for the sensitive and specific imaging of bacterial infection with strong translational potential. PMID:28716936