Sample records for bacterial species streptococcus

  1. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    PubMed

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  2. Streptococcus tangierensis sp. nov. and Streptococcus cameli sp. nov., two novel Streptococcus species isolated from raw camel milk in Morocco.

    PubMed

    Kadri, Zaina; Vandamme, Peter; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; Elfahime, El Mostafa; Farricha, Omar El; Swings, Jean; Amar, Mohamed

    2015-02-01

    Biochemical and molecular genetic studies were performed on two unidentified Gram-stain positive, catalase and oxidase negative, non-hemolytic Streptococcus-like organisms recovered from raw camel milk in Morocco. Phenotypic characterization and comparative 16S rRNA gene sequencing demonstrated that the two strains were highly different from each other and that they did not correspond to any recognized species of the genus Streptococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed the unidentified organisms each formed a hitherto unknown sub-line within the genus Streptococcus, displaying a close affinity with Streptococcus moroccensis, Streptococcus minor and Streptococcus ovis. DNA G+C content determination, MALDI-TOF mass spectrometry and biochemical tests demonstrated the bacterial isolates represent two novel species. Based on the phenotypic distinctiveness of the new bacteria and molecular genetic evidence, it is proposed to classify the two strains as Streptococcus tangierensis sp. nov., with CCMM B832(T) (=LMG 27683(T)) as the type strain, and Streptococcus cameli sp. nov., with CCMM B834(T) (=LMG 27685(T)) as the type strain.

  3. Streptococcus massiliensis in the human mouth: a phylogenetic approach for the inference of bacterial habitats.

    PubMed

    Póntigo, F; Silva, C; Moraga, M; Flores, S V

    2015-12-29

    Streptococcus is a diverse bacterial lineage. Species of this genus occupy a myriad of environments inside humans and other animals. Despite the elucidation of several of these habitats, many remain to be identified. Here, we explore a methodological approach to reveal unknown bacterial environments. Specifically, we inferred the phylogeny of the Mitis group by analyzing the sequences of eight genes. In addition, information regarding habitat use of species belonging to this group was obtained from the scientific literature. The oral cavity emerged as a potential, previously unknown, environment of Streptococcus massiliensis. This phylogeny-based prediction was confirmed by species-specific polymerase chain reaction (PCR) amplification. We propose employing a similar approach, i.e., use of bibliographic data and molecular phylogenetics as predictive methods, and species-specific PCR as confirmation, in order to reveal other unknown habitats in further bacterial taxa.

  4. Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

    PubMed Central

    Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.

    2012-01-01

    Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have

  5. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups.

    PubMed

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.

  6. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    PubMed Central

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  7. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    PubMed Central

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  8. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  9. Identification of different bacterial species in biofilms using confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  10. Understanding the bacterial polysaccharide antigenicity of Streptococcus agalactiae versus Streptococcus pneumoniae.

    PubMed

    Kadirvelraj, Renuka; Gonzalez-Outeiriño, Jorge; Foley, B Lachele; Beckham, Meredith L; Jennings, Harold J; Foote, Simon; Ford, Michael G; Woods, Robert J

    2006-05-23

    Bacterial surface capsular polysaccharides (CPS) that are similar in carbohydrate sequence may differ markedly in immunogenicity and antigenicity. The structural origin of these phenomena is poorly understood. Such a case is presented by the Gram-positive bacteria Streptococcus agalactiae (Group B Streptococcus; GBS) type III (GBSIII) and Streptococcus pneumoniae (Pn) type 14 (Pn14), which share closely related CPS sequences. Nevertheless, antibodies (Abs) against GBSIII rarely cross-react with the CPS from Pn14. To establish the origin for the variation in CPS antigenicity, models for the immune complexes of CPS fragments from GBSIII and Pn14, with the variable fragment (Fv) of a GBS-specific mAb (mAb 1B1), are presented. The complexes are generated through a combination of comparative Ab modeling and automated ligand docking, followed by explicitly solvated 10-ns molecular dynamics simulations. The relationship between carbohydrate sequence and antigenicity is further quantified through the computation of interaction energies using the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method, augmented by conformational entropy estimates. Despite the electrostatic differences between Pn14 and GBSIII CPS, analysis indicates that entropic penalties are primarily responsible for the loss of affinity of the highly flexible Pn14 CPS for mAb 1B1. The similarity of the solution conformation of the relatively rigid GBSIII CPS with that in the immune complex characterizes the previously undescribed 3D structure of the conformational epitope. The analysis provides a comprehensive interpretation for a large body of biochemical and immunological data related to Ab recognition of bacterial polysaccharides and should be applicable to other Ab-carbohydrate interactions.

  11. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans.

    PubMed

    Wang, Xiao; Li, Xiaolan; Ling, Junqi

    2017-07-01

    Dental plaques are mixed-species biofilms that are related to the development of dental caries. Streptococcus mutans (S. mutans) is an important cariogenic bacterium that forms mixed-species biofilms with Streptococcus gordonii (S. gordonii), an early colonizer of the tooth surface. The LuxS/autoinducer-2(AI-2) quorum sensing system is involved in the regulation of mixed-species biofilms, and AI-2 is proposed as a universal signal for the interaction between bacterial species. In this work, a S. gordonii luxS deficient strain was constructed to investigate the effect of the S. gordonii luxS gene on dual-species biofilm formed by S. mutans and S. gordonii. In addition, AI-2 was synthesized in vitro by incubating recombinant LuxS and Pfs enzymes of S. gordonii together. The effect of AI-2 on S. mutans single-species biofilm formation and cariogenic virulence gene expression were also assessed. The results showed that luxS disruption in S. gordonii altered dual-species biofilm formation, architecture, and composition, as well as the susceptibility to chlorhexidine. And the in vitro synthesized AI-2 had a concentration-dependent effect on S. mutans biofilm formation and virulence gene expression. These findings indicate that LuxS/AI-2 quorum-sensing system of S. gordonii plays a role in regulating the dual-species biofilm formation with S. mutans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular and antimicrobial susceptibility profiling of atypical Streptococcus species from porcine clinical specimens.

    PubMed

    Moreno, Luisa Z; Matajira, Carlos E C; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2016-10-01

    The Streptococcus species present broad phenotypic variation, making identification difficult using only traditional microbiological methods. Even though Streptococcus suis is the most important species for the worldwide swine industry, other Streptococcus species appear to be able to cause disease in swine and could represent a higher underestimated risk for porcine health. The aim of this study was to identify Streptococcus-like isolates by MALDI-TOF MS and 16S rRNA sequencing and further molecular and antibiotic susceptibility characterization of the atypical Streptococcus species capable of causing disease in swine. Fifty presumptive Streptococcus isolates from diseased pigs isolated from different Brazilian States between 2002 and 2014 were evaluated. Among the studied isolates, 26% were identified as Streptococcus hyovaginalis, 24% as Streptococcus plurianimalium, 12% as Streptococcus alactolyticus, 10% as Streptococcus hyointestinalis, and the remaining isolates belonged to Streptococcus henryi (6%), Streptococcus thoraltensis (6%), Streptococcus gallolyticus (6%), Streptococcus gallinaceus (4%), Streptococcus sanguinis (4%), and Streptococcus mitis (2%). The Streptococcus isolates were successfully identified by spectral cluster analysis and 16S rRNA sequencing with 96% of concordance between the techniques. The SE-AFLP analysis also supported Streptococcus species distinction and enabled further observation of higher genetic heterogeneity intra-species. The identified Streptococcus species presented variable MIC values to β-lactams, enrofloxacin and florfenicol, and high resistance rates to tetracyclines and macrolides, which appear to be directly related to the industry's antimicrobial usage and resistance selection. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Streptococcus pharyngis sp. nov., a novel streptococcal species isolated from the respiratory tract of wild rabbits.

    PubMed

    Vela, Ana I; Casas-Díaz, Encarna; Lavín, Santiago; Domínguez, Lucas; Fernández-Garayzábal, Jose F

    2015-09-01

    Four isolates of an unknown Gram-stain-positive, catalase-negative coccus-shaped organism, isolated from the pharynx of four wild rabbits, were characterized by phenotypic and molecular genetic methods. The micro-organisms were tentatively assigned to the genus Streptococcus based on cellular morphological and biochemical criteria, although the organisms did not appear to correspond to any species with a validly published name. Comparative 16S rRNA gene sequencing confirmed their identification as members of the genus Streptococcus, being most closely related phylogenetically to Streptococcus porcorum 682-03(T) (96.9% 16S rRNA gene sequence similarity). Analysis of rpoB and sodA gene sequences showed divergence values between the novel species and S. porcorum 682-03(T) (the closest phylogenetic relative determined from 16S rRNA gene sequences) of 18.1 and 23.9%, respectively. The novel bacterial isolate could be distinguished from the type strain of S. porcorum by several biochemical characteristics, such as the production of glycyl-tryptophan arylamidase and α-chymotrypsin, and the non-acidification of different sugars. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be assigned to a novel species of the genus Streptococcus, and named Streptococcus pharyngis sp. nov. The type strain is DICM10-00796B(T) ( = CECT 8754(T) = CCUG 66496(T)).

  14. The influence of oral Veillonella species on biofilms formed by Streptococcus species.

    PubMed

    Mashima, Izumi; Nakazawa, Futoshi

    2014-08-01

    Oral Veillonella, Veillonella atypica, Veillonella denticariosi, Veillonella dispar, Veillonella parvula, Veillonella rogosae, and Veillonella tobetsuensis are known as early colonizers in oral biofilm formation. To investigate the role of oral Veillonella, biofilms formed by the co-culture of Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, or Streptococcus sanguinis, with oral Veillonella were examined at the species level. The amount of biofilm formed by S. mutans, S. gordonii, and S. salivarius in the presence of the six Veillonella species was greater than that formed in the control experiments, with the exception of S. mutans with V. dispar. In contrast, in the case of biofilm formation by S. sanguinis, the presence of Veillonella species reduced the amount of the biofilm, with the exception of V. parvula and V. dispar. The time-dependent changes in the amount of biofilm and the number of planktonic cells were grouped into four patterns over the 24 combinations. Only that of S. gordonii with V. tobetsuensis showed a unique pattern. These results indicate that the mode of action of this combination differed from that of the other combinations with respect to biofilm formation. It is possible that there may be several factors involved in the interaction between Streptococcus and Veillonella species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species

    PubMed Central

    Szymczak, Paula; Neves, Ana Rute; Kot, Witold; Hansen, Lars H.; Lametsch, René; Neve, Horst; Franz, Charles M. A. P.

    2016-01-01

    ABSTRACT Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. PMID:28039135

  16. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species.

    PubMed

    Szymczak, Paula; Janzen, Thomas; Neves, Ana Rute; Kot, Witold; Hansen, Lars H; Lametsch, René; Neve, Horst; Franz, Charles M A P; Vogensen, Finn K

    2017-03-01

    Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos - or pac -type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos - or pac -type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos - or pac -type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis , extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. Copyright © 2017 Szymczak et al.

  17. Stress responses in Streptococcus species and their effects on the host.

    PubMed

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  18. A new mathematical model of bacterial interactions in two-species oral biofilms

    PubMed Central

    Martin, Bénédicte; Tamanai-Shacoori, Zohreh; Bronsard, Julie; Ginguené, Franck; Meuric, Vincent

    2017-01-01

    Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions. PMID:28253369

  19. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans

    PubMed Central

    Huang, Xuelian; Palmer, Sara R.; Ahn, Sang-Joon; Richards, Vincent P.; Williams, Matthew L.; Nascimento, Marcelle M.

    2016-01-01

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. PMID:26826230

  20. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.

    PubMed

    Huang, Xuelian; Palmer, Sara R; Ahn, Sang-Joon; Richards, Vincent P; Williams, Matthew L; Nascimento, Marcelle M; Burne, Robert A

    2016-01-29

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Streptococcus iniae and Streptococcus agalactiae

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae and S. agalactiae are economically important Gram positive bacterial pathogens of cultured and wild fish with a worldwide distribution. Both bacteria are potential zoonotic pathogens and have been associated most often with infections in immunocompromised people. Streptococcus in...

  2. Role of Streptococcus sanguinis sortase A in bacterial colonization.

    PubMed

    Yamaguchi, Masaya; Terao, Yutaka; Ogawa, Taiji; Takahashi, Toshihito; Hamada, Shigeyuki; Kawabata, Shigetada

    2006-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, has low cariogenicity, though colonization on tooth surfaces by this bacterium initiates aggregation by other oral bacteria and maturation of dental plaque. Additionally, S. sanguinis is frequently isolated from infective endocarditis patients. We investigated the functions of sortase A (SrtA), which cleaves LPXTG-containing proteins and anchors them to the bacterial cell wall, as a possible virulence factor of S. sanguinis. We identified the srtA gene of S. sanguinis by searching a homologous gene of Streptococcus mutans in genome databases. Next, we constructed an srtA-deficient mutant strain of S. sanguinis by insertional inactivation and compared it to the wild type strain. In the case of the mutant strain, some surface proteins could not anchor to the cell wall and were partially released into the culture supernatant. Furthermore, adherence to saliva-coated hydroxyapatite beads and polystyrene plates, as well as adherence to and invasion of human epithelial cells were reduced significantly in the srtA-deficient strain when compared to the wild type. In addition, antiopsonization levels and bacterial survival of the srtA-deficient mutant were decreased in human whole blood. This is the first known study to report that SrtA contributes to antiopsonization in streptococci. Our results suggest that SrtA anchors surface adhesins as well as some proteins that function as antiopsonic molecules as a means of evading the human immune system. Furthermore, they demonstrate that SrtA of S. sanguinis plays important roles in bacterial colonization.

  3. Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica).

    PubMed

    Vela, A I; Mentaberre, G; Lavín, S; Domínguez, L; Fernández-Garayzábal, J F

    2016-01-01

    Biochemical and molecular genetic studies were performed on a novel Gram-stain-positive, catalase-negative, coccus-shaped organism isolated from tonsil samples of two Iberian ibexes. The micro-organism was identified as a streptococcal species based on its cellular, morphological and biochemical characteristics. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus, but the organism did not correspond to any species of this genus. The nearest phylogenetic relative of the unknown coccus from ibex was Streptococcus porci 2923-03T (96.6 % 16S rRNA gene sequence similarity). Analysis based on rpoB and sodA gene sequences revealed sequence similarity values lower than 86.0 and 83.8 %, respectively, from the type strains of recognized Streptococcus species. The novel bacterial isolate was distinguished from Streptococcus porci and other Streptococcus species using biochemical tests. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as representing a novel species of the genus Streptococcus, for which the name Streptococcus caprae sp. nov. is proposed. The type strain is DICM07-02790-1CT ( = CECT 8872T = CCUG 67170T).

  4. Prevalent bacterial species and novel phylotypes in advanced noma lesions.

    PubMed

    Paster, B J; Falkler Jr, W A; Enwonwu, C O; Idigbe, E O; Savage, K O; Levanos, V A; Tamer, M A; Ericson, R L; Lau, C N; Dewhirst, F E

    2002-06-01

    The purpose of this study was to determine the bacterial diversity in advanced noma lesions using culture-independent molecular methods. 16S ribosomal DNA bacterial genes from DNA isolated from advanced noma lesions of four Nigerian children were PCR amplified with universally conserved primers and spirochetal selective primers and cloned into Escherichia coli. Partial 16S rRNA sequences of approximately 500 bases from 212 cloned inserts were used initially to determine species identity or closest relatives by comparison with sequences of known species or phylotypes. Nearly complete sequences of approximately 1,500 bases were obtained for most of the potentially novel species. A total of 67 bacterial species or phylotypes were detected, 25 of which have not yet been grown in vitro. Nineteen of the species or phylotypes, including Propionibacterium acnes, Staphylococcus spp., and the opportunistic pathogens Stenotrophomonas maltophilia and Ochrobactrum anthropi were detected in more than one subject. Other known species that were detected included Achromobacter spp., Afipia spp., Brevundimonas diminuta, Capnocytophaga spp., Cardiobacterium sp., Eikenella corrodens, Fusobacterium spp., Gemella haemoylsans, and Neisseria spp. Phylotypes that were unique to noma infections included those in the genera Eubacterium, Flavobacterium, Kocuria, Microbacterium, and Porphyromonas and the related Streptococcus salivarius and genera Sphingomonas and TREPONEMA: Since advanced noma lesions are infections open to the environment, it was not surprising to detect species not commonly associated with the oral cavity, e.g., from soil. Several species previously implicated as putative pathogens of noma, such as spirochetes and Fusobacterium spp., were detected in at least one subject. However, due to the limited number of available noma subjects, it was not possible at this time to associate specific species with the disease.

  5. Controlled Human Infection for Vaccination Against Streptococcus Pyogenes

    ClinicalTrials.gov

    2018-06-26

    Streptococcus Pyogenes Pharyngitis; Streptococcus Pharyngitis; Strep Throat; Streptococcus Pyogenes Infection; Group A Streptococcus: B Hemolytic Pharyngitis; Group A Streptococcal Infection; Gram-Positive Bacterial Infections; Bacterial Infections

  6. The novel species Streptococcus tigurinus and its association with oral infection.

    PubMed

    Zbinden, Andrea; Bostanci, Nagihan; Belibasakis, Georgios N

    2015-01-01

    Streptococcus tigurinus is a novel species of viridans streptococci, shown to cause severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. S. tigurinus belongs to the Streptococcus mitis group and is most closely related to Streptococcus mitis, Streptococcus oralis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae and Streptococcus infantis. The presence of S. tigurinus in the human oral cavity has been documented, including in patients with periodontal disease. This review addresses the available scientific knowledge on S. tigurinus and its association with closely related streptococci, and discusses its putative involvement in common oral infections. While there is as yet no strong evidence on the involvement of S. tigurinus with oral infections, its presence in the oral cavity and its association with endocarditis warrants special attention for a link between oral and systemic infection.

  7. The novel species Streptococcus tigurinus and its association with oral infection

    PubMed Central

    Zbinden, Andrea; Bostanci, Nagihan; Belibasakis, Georgios N

    2015-01-01

    Streptococcus tigurinus is a novel species of viridans streptococci, shown to cause severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. S. tigurinus belongs to the Streptococcus mitis group and is most closely related to Streptococcus mitis, Streptococcus oralis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae and Streptococcus infantis. The presence of S. tigurinus in the human oral cavity has been documented, including in patients with periodontal disease. This review addresses the available scientific knowledge on S. tigurinus and its association with closely related streptococci, and discusses its putative involvement in common oral infections. While there is as yet no strong evidence on the involvement of S. tigurinus with oral infections, its presence in the oral cavity and its association with endocarditis warrants special attention for a link between oral and systemic infection. PMID:25483862

  8. Screening of binding activity of Streptococcus pneumoniae, Streptococcus agalactiae and Streptococcus suis to berries and juices.

    PubMed

    Toivanen, Marko; Huttunen, Sanna; Duricová, Jana; Soininen, Pasi; Laatikainen, Reino; Loimaranta, Vuokko; Haataja, Sauli; Finne, Jukka; Lapinjoki, Seppo; Tikkanen-Kaukanen, Carina

    2010-01-01

    Antiadhesion therapy is a promising approach to the fight against pathogens. Antibiotic resistance and the lack of effective vaccines have increased the search for new methods to prevent infectious diseases. Previous studies have shown the antiadhesion activity of juice from cultivated cranberries (Vaccinium macrocarpon Ait.) against bacteria, especially E. coli. In this study, the binding of two streptococcal strains, Streptococcus pneumoniae and Streptococcus agalactiae, to molecular size fractions (FI, FII and FIII, <10 kDa, 10-100 kDa, and >100 kDa, respectively) of berries and berry and fruit juices from 12 plant species were studied using a microtiter well assay. For Streptococcus suis a hemagglutination inhibition assay was used. In general, binding activity was detected especially to wild cranberry (Vaccinium oxycoccos L.) and to other Vaccinium species. S. pneumoniae cells bound most to cranberry juice fraction FI and S. agalactiae cells to cranberry fraction FIII. Hemagglutination induced by S. suis was most effectively inhibited by cranberry fraction FII. NMR spectra of some characteristic active and non-active fractions were also measured. They indicate that fractions FII and FIII contained proanthocyanidins and/or other phenolic compounds. The results suggest Vaccinium berries as possible sources of antiadhesives against bacterial infections.

  9. Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections.

    PubMed

    Vickerman, M M; Brossard, K A; Funk, D B; Jesionowski, A M; Gill, S R

    2007-01-01

    Phylogenetic analysis of bacterial and archaeal 16S rRNA was used to examine polymicrobial communities within infected root canals of 20 symptomatic and 14 asymptomatic patients. Nucleotide sequences from approximately 750 clones amplified from each patient group with universal bacterial primers were matched to the Ribosomal Database Project II database. Phylotypes from 37 genera representing Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were identified. Results were compared to those obtained with species-specific primers designed to detect Prevotella intermedia, Porphyromonas gingivalis, Porphyromonas endodontalis, Peptostreptococcus micros, Enterococcus sp., Streptococcus sp., Fusobacterium nucleatum, Tannerella forsythensis and Treponema denticola. Since members of the domain Archaea have been implicated in the severity of periodontal disease, and a recent report confirms that archaea are present in endodontic infections, 16S archaeal primers were also used to detect which patients carried these prokaryotes, to determine if their presence correlated with severity of the clinical symptoms. A Methanobrevibacter oralis-like species was detected in one asymptomatic and one symptomatic patient. DNA from root canals of these two patients was further analysed using species-specific primers to determine bacterial cohabitants. Trep. denticola was detected in the asymptomatic but not the symptomatic patient. Conversely, Porph. endodontalis was found in the symptomatic but not the asymptomatic patient. All other species except enterococci were detected with the species-specific primers in both patients. These results confirm the presence of archaea in root canals and provide additional insights into the polymicrobial communities in endodontic infections associated with clinical symptoms.

  10. Pheromone Recognition and Selectivity by ComR Proteins among Streptococcus Species

    PubMed Central

    Morrison, Donald A.; Talagas, Antoine; Nessler, Sylvie; Federle, Michael J.; Prehna, Gerd

    2016-01-01

    Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a ‘test-bed’ assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides

  11. Antimicrobial effect of probiotics on bacterial species from dental plaque.

    PubMed

    Zambori, Csilla; Morvay, Attila Alexandru; Sala, Claudia; Licker, Monica; Gurban, Camelia; Tanasie, Gabriela; Tirziu, Emil

    2016-03-31

    The antimicrobial role of probiotic Lactobacillus casei subspecies casei DG (L. casei DG) and of the mix culture of probiotic Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 was tested on species of Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera from supragingival sites from dogs with dental disease of different breed, age, sex, weight, and diet. The research was conducted on these four genera because of their importance in zoonotic infections after dog bites. Species from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera were isolated and identified. To test the antimicrobial efficacy of L. casei DG and the mixed culture of probiotic L. acidophilus LA-5 and Bifidobacterium bifidum BB-12 on the pathogenic species, the agar overlay method was used. L. casei DG had a bactericidal effect on all analyzed species isolated from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera after 24 hours of incubation. The mixed probiotic culture made up of L. acidophilus LA-5 and Bifidobacterium BB-12 species had no bactericidal effect on the species of Staphylococcus and Streptococcus genera, which were resistant. However, it had a bacteriostatic effect on several species of Pasteurella and Neisseria genera. This work highlights the antimicrobial potential of probiotics in vitro, demonstrating that the probiotic L. casei DG has a bactericidal effect on all analyzed species isolated from dental plaque and that the mix culture of probiotic L. acidophilus LA-5 and Bifidobacterium BB-12 has only a bacteriostatic effect.

  12. Loofah sponges as reservoirs and vehicles in the transmission of potentially pathogenic bacterial species to human skin.

    PubMed Central

    Bottone, E J; Perez, A A; Oeser, J L

    1994-01-01

    Loofah sponges are natural products used as exfoliative beauty aids. As a consequence of tracing a case of Pseudomonas aeruginosa folliculitis to a contaminated loofah sponge, we assessed the role of loofah sponges in supporting the growth of a wide variety of bacterial species. Our data show growth enhancement of sterile loofah fragments for numerous gram-negative (Pseudomonas, Xanthomonas, and Klebsiella) and gram-positive (Enterococcus and group B Streptococcus) species of human and environmental origin. Furthermore, hydrated new, unused loofah sponges undergo a shift in bacterial flora from sparse colonies of Bacillus spp. and Staphylococcus epidermidis to a predominantly gram-negative flora. The growth-promoting potential of loofah sponges (and other exfoliatives) can be further augmented by desquamated epithelial cells entrapped in the loofah fibrous matrix. Therefore, as loofah sponges (and other exfoliatives) can serve as a reservoir and a vehicle for the transmission of potentially pathogenic species to the human skin, we recommend their decontamination with hypochlorite (10%) bleach at regular intervals. Images PMID:8150959

  13. Loofah sponges as reservoirs and vehicles in the transmission of potentially pathogenic bacterial species to human skin.

    PubMed

    Bottone, E J; Perez, A A; Oeser, J L

    1994-02-01

    Loofah sponges are natural products used as exfoliative beauty aids. As a consequence of tracing a case of Pseudomonas aeruginosa folliculitis to a contaminated loofah sponge, we assessed the role of loofah sponges in supporting the growth of a wide variety of bacterial species. Our data show growth enhancement of sterile loofah fragments for numerous gram-negative (Pseudomonas, Xanthomonas, and Klebsiella) and gram-positive (Enterococcus and group B Streptococcus) species of human and environmental origin. Furthermore, hydrated new, unused loofah sponges undergo a shift in bacterial flora from sparse colonies of Bacillus spp. and Staphylococcus epidermidis to a predominantly gram-negative flora. The growth-promoting potential of loofah sponges (and other exfoliatives) can be further augmented by desquamated epithelial cells entrapped in the loofah fibrous matrix. Therefore, as loofah sponges (and other exfoliatives) can serve as a reservoir and a vehicle for the transmission of potentially pathogenic species to the human skin, we recommend their decontamination with hypochlorite (10%) bleach at regular intervals.

  14. Streptococcus ovuberis sp. nov., isolated from a subcutaneous abscess in the udder of a sheep.

    PubMed

    Zamora, Leydis; Pérez-Sancho, Marta; Fernández-Garayzábal, Jose Francisco; Orden, Jose Antonio; Domínguez-Bernal, Gustavo; de la Fuente, Ricardo; Domínguez, Lucas; Vela, Ana Isabel

    2017-11-01

    One unidentified, Gram-stain-positive, catalase-negative coccus-shaped organism was recovered from a subcutaneous abscess of the udder of a sheep and subjected to a polyphasic taxonomic analysis. Based on cellular morphology and biochemical criteria, the isolate was tentatively assigned to the genus Streptococcus, although the organism did not appear to match any recognized species. 16S rRNA gene sequence comparison studies confirmed its identification as a member of the genus Streptococcus and showed that the nearest phylogenetic relatives of the unknown coccus corresponded to Streptococcus moroccensis and Streptococcus cameli (95.9 % 16S rRNA gene sequence similarity). The sodA sequence analysis showed less than 89.3 % sequence similarity with the currently recognized species of the genus Streptococcus. The novel bacterial isolate was distinguished from close relatives of the genus Streptococcusby using biochemical tests. A mass spectrometry profile was also obtained for the novel isolate using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be classified as a representative of a novel species of the genus Streptococcus, Streptococcus ovuberis sp. nov. The type strain of Streptococcus ovuberissp. nov. is VB15-00779 T (=CECT 9179 T =CCUG 69612 T ).

  15. Bacterial Identification Using Light Scattering Measurements: a Preliminary Report

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1971-01-01

    The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.

  16. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries.

    PubMed

    Ribeiro, Apoena Aguiar; Azcarate-Peril, Maria Andrea; Cadenas, Maria Belen; Butz, Natasha; Paster, Bruce J; Chen, Tsute; Bair, Eric; Arnold, Roland R

    2017-01-01

    Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and

  17. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries

    PubMed Central

    Azcarate-Peril, Maria Andrea; Cadenas, Maria Belen; Butz, Natasha; Paster, Bruce J.; Chen, Tsute; Bair, Eric

    2017-01-01

    Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and

  18. Severe invasive streptococcal infection by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis.

    PubMed

    Watanabe, Shinya; Takemoto, Norihiko; Ogura, Kohei; Miyoshi-Akiyama, Tohru

    2016-01-01

    Streptococcus pyogenes, a group A Streptococcus (GAS), has been recognized as the causative pathogen in patients with severe invasive streptococcal infection with or without necrotizing fasciitis. In recent epidemiological studies, Streptococcus dysgalactiae subsp. equisimilis (SDSE) has been isolated from severe invasive streptococcal infection. Complete genome sequence showed that SDSE is the closest bacterial species to GAS, with approximately 70% of genome coverage. SDSE, however, lacks several key virulence factors present in GAS, such as SPE-B, the hyaluronan synthesis operon and active superantigen against human immune cells. A key event in the ability of GAS to cause severe invasive streptococcal infection was shown to be the acquisition of novel genetic traits such as phages. Strikingly, however, during severe invasive infection, GAS destroys its own covRS two-component system, which negatively regulates many virulence factor genes, resulting in a hyper-virulent phenotype. In contrast, this phenomenon has not been observed in SDSE. The present review describes the epidemiology of severe invasive streptococcal infection and the detailed pathogenic mechanisms of GAS and SDSE, emphasizing findings from their genome sequences and analyses of gene expression. © 2015 The Societies and John Wiley & Sons Australia, Ltd.

  19. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species.

    PubMed

    Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji

    2011-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Bath immersion, booster vaccination strategy holds potential for protecting juvenile tilapia against Streptococcus iniae

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae is a significant bacterial pathogen that causes hemorrhagic septicemia and meningoencephalitis in tilapia, hybrid striped bass, rainbow trout, olive flounder, yellowtail, barramundi and other species of cultured and wild fish worldwide. In tilapia production, vaccination of fry ...

  1. [Group B streptococcus meningitis and infection surrounding the spinal canal caused by bacterial transmission from rectal ulcer via Batson's plexus].

    PubMed

    Tsutsumi, Ryosuke; Saito, Masaaki; Yoshizawa, Toshihiro

    2011-07-01

    A 62-year-old man was admitted to our hospital because of fever and disturbed consciousness. He suffered from persistent constipation due to diabetic autonomic neuropathy. On admission, neck stiffness and weakness of the lower extremities were observed. Cerebrospinal fluid (CSF) pleocytosis and decreased CSF glucose concentration showed the presence of meningitis. Bacterial culture of CSF was negative. One week after admission, he suddenly suffered from massive bleeding from the rectum, where a hemorrhagic ulcer caused by severe persistent constipation was observed. Contrast-enhanced CT scans and gadolinium-enhanced MR scans demonstrated a lumbar spinal epidural abscess, paraspinal muscle abscess, and cervical osteomyelitis. Streptococcus agalactiae, a bacterial species belonging to the group B streptococci, was isolated from pus obtained by needle puncture of the paraspinal muscle abscess. His entire condition was treated successfully with ampicillin and cefotaxime. Group B streptococci normally colonize the mucous membrane of the genital or lower gastrointestinal regions and rarely cause a spinal epidural abscess. However, in this case, the existence of a rectal ulcer probably made it possible for S. agalactiae to cause an infection of the epidural space or paraspinal muscles via the spinal valveless venous system named Batson's plexus communicating with the sacral, pelvic, and prostatic venous plexus. Our case indicated the importance of Batson's plexus in group B streptococcus infections surrounding the spinal canal and the necessity to explore for intrapelvic lesions including a rectal ulcer.

  2. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens.

    PubMed

    Ardizzoni, Andrea; Neglia, Rachele G; Baschieri, Maria C; Cermelli, Claudio; Caratozzolo, Manuela; Righi, Elena; Palmieri, Beniamino; Blasi, Elisabetta

    2011-10-01

    Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.

  3. Treatment of acute bacterial rhinosinusitis caused by antimicrobial-resistant Streptococcus pneumoniae.

    PubMed

    Anon, Jack B

    2004-08-02

    Acute bacterial rhinosinusitis (ABRS) is a secondary bacterial infection of the nose and paranasal sinuses, usually preceded by a viral upper respiratory infection or allergy, with symptoms that have not improved after 10 days or that have worsened after 5 to 7 days. Streptococcus pneumoniae and Haemophilus influenzae are the most common causes of ABRS in adults. Increasing rates of antimicrobial resistance among S. pneumoniae and beta-lactamase production among H. influenzae are formidable challenges to the successful treatment of infections caused by these organisms. To this end, various formulations of amoxicillin-clavulanate have been developed, the most recent of which is pharmacokinetically enhanced and provides a total daily dose of 4,000 mg of amoxicillin and 250 mg of clavulanate. This formulation has been shown to be safe and effective in the treatment of infections caused by penicillin-resistant S. pneumoniae (minimum inhibitory concentration 2 microg/mL); the clavulanate component provides adequate coverage of beta-lactamase-producing pathogens.

  4. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.

    PubMed

    Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F

    2010-01-01

    The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.

  5. Peripheral ischaemic retinopathy and neovascularisation in a patient with subacute streptococcus mitis-induced bacterial endocarditis.

    PubMed

    Leysen, Laura S; Kreps, Elke O; De Schryver, Ilse; Hoornaert, Kristien P; Smith, Vanessa; De Zaeytijd, Julie

    2017-01-01

    Objective: To describe a patient with peripheral retinal ischaemia and neovascularisation who was diagnosed with streptococcus mitis-induced bacterial endocarditis. Methods: Retrospective analysis of case report. A 57-year-old man presented with a history of a rapidly progressive, bilateral, painless visual loss. He also suffered from pain in the neck and lower back and a weight loss of 10 kg. He underwent a full ophthalmologic work-up, laboratory investigations, and imaging of the spine. Results: BCVA was reduced to 20/40 in the right eye and 20/32 in the left eye. Fundoscopy showed rare intra-retinal haemorrhages including few Roth spots and cotton wool lesions. Fluorescein angiography demonstrated large areas of peripheral retinal ischaemia and neovascularisation. Imaging of the spine showed spondylodiscitis on several levels. Further imaging and blood cultures confirmed bacterial endocarditis of the mitral valve. Streptococcus mitis was subsequently identified as the causative organism. Conclusion: Peripheral retinal ischaemia and neovascularisation were previously unrecognised as a feature of infectious endocarditis. Therefore, their presence, apart from the classic Roth spots, should prompt the consideration of infectious endocarditis in the etiologic work-up.

  6. Peripheral ischaemic retinopathy and neovascularisation in a patient with subacute streptococcus mitis-induced bacterial endocarditis

    PubMed Central

    Leysen, Laura S.; Kreps, Elke O.; De Schryver, Ilse; Hoornaert, Kristien P.; Smith, Vanessa; De Zaeytijd, Julie

    2017-01-01

    Objective: To describe a patient with peripheral retinal ischaemia and neovascularisation who was diagnosed with streptococcus mitis-induced bacterial endocarditis. Methods: Retrospective analysis of case report. A 57-year-old man presented with a history of a rapidly progressive, bilateral, painless visual loss. He also suffered from pain in the neck and lower back and a weight loss of 10 kg. He underwent a full ophthalmologic work-up, laboratory investigations, and imaging of the spine. Results: BCVA was reduced to 20/40 in the right eye and 20/32 in the left eye. Fundoscopy showed rare intra-retinal haemorrhages including few Roth spots and cotton wool lesions. Fluorescein angiography demonstrated large areas of peripheral retinal ischaemia and neovascularisation. Imaging of the spine showed spondylodiscitis on several levels. Further imaging and blood cultures confirmed bacterial endocarditis of the mitral valve. Streptococcus mitis was subsequently identified as the causative organism. Conclusion: Peripheral retinal ischaemia and neovascularisation were previously unrecognised as a feature of infectious endocarditis. Therefore, their presence, apart from the classic Roth spots, should prompt the consideration of infectious endocarditis in the etiologic work-up. PMID:28944156

  7. Immunoelectrophoretic study of cell surface antigens from different Streptococcus mutans serotypes and Streptococcus sanguis.

    PubMed

    Ogier, J A; Klein, J P; Niddam, R; Frank, R M

    1985-06-01

    Antigens prepared from culture supernatants or whole cells of several cariogenic strains were examined by immunoelectrophoresis for their crossed antigenicity, with reference to Streptococcus mutans OMZ175, serotype f. Crossed immunoelectrophoresis revealed a crossreactivity between soluble extracellular and wall associated antigens of six strains of Streptococcus mutans and one strain of Streptococcus sanguis. Protease destroyed the immunoreactivity of crossreactive antigens. One of them was shown to be localized on the bacterial surface.

  8. Diversity of bacterial species in the nasal cavity of sheep in the highlands of Ethiopia and first report of Histophilus somni in the country.

    PubMed

    Tesfaye, Biruk; Sisay Tessema, Tesfaye; Tefera, Genene

    2013-06-01

    A study was conducted to isolate bacterial species/pathogens from the nasal cavity of apparently healthy and pneumonic sheep. Nasal swabs were collected aseptically, transported in tryptose soya broth and incubated for 24 h. Then, each swab was streaked onto chocolate and blood agar for culture. Bacterial species were identified following standard bacteriological procedures. Accordingly, a total of 1,556 bacteria were isolated from 960 nasal swabs collected from three different highland areas of Ethiopia, namely Debre Berhan, Asella, and Gimba. In Debre Berhan, 140 Mannheimia haemolytica, 81 Histophilus somni, 57 Staphylococcus species, and 52 Bibersteinia trehalosi were isolated. While from Gimba M. haemolytica, Staphylococcus, Streptococcus, and H. somni were isolated at rates of 25.2, 15.9, 11.4, and 5.9 %, respectively, of the total 647 bacterial species. In Asella from 352 bacterial species isolated, 93 (26.4 %) were M. haemolytica, 48 (13.6 %) were Staphylococcus species, 26 (7.4 %) were B. trehalosi, and 17 (4.8 %) H. somni were recognized. Further identification and characterization using BIOLOG identification system Enterococcus avium and Sphingomonas sanguinis were identified at 100 % probability, while, H. somni and Actinobacillus lignerisii were suggested by the system. The study showed that a variety of bacterial species colonize the nasal cavity of the Ethiopian highland sheep with variable proportion between healthy and pneumonic ones. To our knowledge, this is the first report on isolation of H. somni, an important pathogen in cattle, from the respiratory tract of a ruminant species in the country.

  9. Multiplex PCR-based identification of Streptococcus canis, Streptococcus zooepidemicus and Streptococcus dysgalactiae subspecies from dogs.

    PubMed

    Moriconi, M; Acke, E; Petrelli, D; Preziuso, S

    2017-02-01

    Streptococcus canis (S. canis), Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) and Streptococcus dysgalactiae subspecies (S. dysgalactiae subspecies) are β-haemolytic Gram positive bacteria infecting animals and humans. S. canis and S. zooepidemicus are considered as two of the major zoonotic species of Streptococcus, while more research is needed on S. dysgalactiae subspecies bacteria. In this work, a multiplex-PCR protocol was tested on strains and clinical samples to detect S. canis, S. dysgalactiae subspecies and S. equi subspecies bacteria in dogs. All strains were correctly identified as S. canis, S. equi subspecies or S. dysgalactiae subspecies by the multiplex-PCR. The main Streptococcus species isolated from symptomatic dogs were confirmed S. canis. The multiplex-PCR protocol described is a rapid, accurate and efficient method for identifying S. canis, S. equi subspecies and S. dysgalactiae subspecies in dogs and could be used for diagnostic purposes and for epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture

    PubMed Central

    Feng, Youjun; Cao, Min; Shi, Jie; Zhang, Huimin; Hu, Dan; Zhu, Jing; Zhang, Xianyun; Geng, Meiling; Zheng, Feng; Pan, Xiuzhen; Li, Xianfu; Hu, Fuquan; Tang, Jiaqi; Wang, Changjun

    2012-01-01

    NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibility to pH, and cps2B inactivation resulted in complete absence of capsular polysaccharides. These two mutants both exhibited increased adhesion and invasion to Hep-2 cells and improved sensibility to phagocytosis. Not only do they retain the capability of inducing the release of host pro-inflammatory cytokines, but also result in the faster secretion of IL-8. Easier cleaning up of the mutant strains in whole blood is consistent with virulence attenuation seen with experimental infections of both mice and SPF-piglets. Therefore we concluded that altered architecture of S. suis surface attenuates its virulence. PMID:23050094

  11. Genome-wide essential gene identification in Streptococcus sanguinis

    PubMed Central

    Xu, Ping; Ge, Xiuchun; Chen, Lei; Wang, Xiaojing; Dou, Yuetan; Xu, Jerry Z.; Patel, Jenishkumar R.; Stone, Victoria; Trinh, My; Evans, Karra; Kitten, Todd; Bonchev, Danail; Buck, Gregory A.

    2011-01-01

    A clear perception of gene essentiality in bacterial pathogens is pivotal for identifying drug targets to combat emergence of new pathogens and antibiotic-resistant bacteria, for synthetic biology, and for understanding the origins of life. We have constructed a comprehensive set of deletion mutants and systematically identified a clearly defined set of essential genes for Streptococcus sanguinis. Our results were confirmed by growing S. sanguinis in minimal medium and by double-knockout of paralogous or isozyme genes. Careful examination revealed that these essential genes were associated with only three basic categories of biological functions: maintenance of the cell envelope, energy production, and processing of genetic information. Our finding was subsequently validated in two other pathogenic streptococcal species, Streptococcus pneumoniae and Streptococcus mutans and in two other gram-positive pathogens, Bacillus subtilis and Staphylococcus aureus. Our analysis has thus led to a simplified model that permits reliable prediction of gene essentiality. PMID:22355642

  12. Capsular Polysaccharide Expression in Commensal Streptococcus Species: Genetic and Antigenic Similarities to Streptococcus pneumoniae.

    PubMed

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong; Tettelin, Hervé; Kilian, Mogens

    2016-11-15

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule production distinguishes S. pneumoniae from closely related commensals of the mitis group streptococci. Based on antigenic and genetic analyses of 187 mitis group streptococci, including 90 recognized serotypes of S. pneumoniae, we demonstrated capsule production by the Wzy/Wzx pathway in 74% of 66 S. mitis strains and in virtually all tested strains of S. oralis (subspecies oralis, dentisani, and tigurinus) and S. infantis Additional analyses of genomes of S. cristatus, S. parasanguinis, S. australis, S. sanguinis, S. gordonii, S. anginosus, S. intermedius, and S. constellatus revealed complete capsular biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S. pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S. pneumoniae raises concerns about potential misidentifications in addition to important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and for the pathogen. Expression of a capsular polysaccharide is among the principal virulence factors of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous

  13. Bacteremia due to Streptococcus tigurinus: A case report and literature review.

    PubMed

    Hirai, Jun; Sakanashi, Daisuke; Hagihara, Mao; Haranaga, Shusaku; Uechi, Kohei; Kato, Hideo; Hamada, Hiroyuki; Nishiyama, Naoya; Koizumi, Yusuke; Suematsu, Hiroyuki; Yamagishi, Yuka; Fujita, Jiro; Mikamo, Hiroshige

    2016-11-01

    Gene sequence analysis methods, including 16S rRNA identification, allows accurate identification of Streptococcus species, which include phenotypically closely related species that are difficult to differentiate using conventional chemical methods. We report a case of bacteremia due to Streptococcus tigurinus, identified by 16S rRNA, in a 72-year-old woman with gastrointestinal cancer and ascites. She was hospitalized to undergo elective tumor-related surgery. Five days prior to undergoing surgery, she developed a fever with no obvious source of infection. Blood cultures identified gram-positive cocci. The patient's bacteremia was initially thought to be caused by an Enterococcus species, given her underlying gastrointestinal disease. However, alpha-hemolytic, mucoid, circular colonies were observed on sheep blood agar the following day. Although matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and biochemical testing suggested Streptococcus pneumoniae, we conducted further investigation to identify the bacterium, as the patient had no symptoms of infections usually related with S. pneumoniae such as pneumonia, meningitis, or sinusitis, and the bacteremia occurred 30 days after hospitalization. Finally, the gram-positive cocci were identified as S. tigurinus, assigned to the Streptococcus mitis group in 2012. Although the origin of infection was unclear, it was suspected that peritonitis or bacterial translocation from the gastrointestinal tract caused the bacteremia. This novel species was recently reported as being extremely pathogenic and different from other Streptococcus species. It has been reported to occur in cases of infectious endocarditis and bacteremia. In this article, we reviewed previous reports of S. tigurinus infection and summarized the clinical and pathogenetic features. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights

  14. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    PubMed Central

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  15. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    PubMed

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis , alpha-hemolytic streptococci, Staphylococcus hominis , coagulase-negative staphylococci, Leuconostoc mesenteroides , Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity) to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  16. Identification of the psaA Gene, Coding for Pneumococcal Surface Adhesin A, in Viridans Group Streptococci other than Streptococcus pneumoniae

    PubMed Central

    Jado, Isabel; Fenoll, Asunción; Casal, Julio; Pérez, Amalia

    2001-01-01

    The gene encoding the pneumococcal surface adhesin A (PsaA) protein has been identified in three different viridans group streptococcal species. Comparative studies of the psaA gene identified in different pneumococcal isolates by sequencing PCR products showed a high degree of conservation among these strains. PsaA is encoded by an open reading frame of 930 bp. The analysis of this fragment in Streptococcus mitis, Streptococcus oralis, and Streptococcus anginosus strains revealed a sequence identity of 95, 94, and 90%, respectively, to the corresponding open reading frame of the previously reported Streptococcus pneumoniae serotype 6B strain. Our results confirm that psaA is present and detectable in heterologous bacterial species. The possible implications of these results for the suitability and potential use of PsaA in the identification and diagnosis of pneumococcal diseases are discussed. PMID:11527799

  17. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions.

    PubMed

    Wuchty, S; Rajagopala, S V; Blazie, S M; Parrish, J R; Khuri, S; Finley, R L; Uetz, P

    2017-01-01

    The functions of roughly a third of all proteins in Streptococcus pneumoniae , a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein's function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae . We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae , the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins.

  18. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions

    PubMed Central

    Rajagopala, S. V.; Blazie, S. M.; Parrish, J. R.; Khuri, S.; Finley, R. L.

    2017-01-01

    ABSTRACT The functions of roughly a third of all proteins in Streptococcus pneumoniae, a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein’s function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae. We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae, the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins. PMID:28744484

  19. Antibodies Reactive to Commensal Streptococcus mitis Show Cross-Reactivity With Virulent Streptococcus pneumoniae Serotypes.

    PubMed

    Shekhar, Sudhanshu; Khan, Rabia; Ferreira, Daniela M; Mitsi, Elena; German, Esther; Rørvik, Gro Herredsvela; Berild, Dag; Schenck, Karl; Kwon, Keehwan; Petersen, Fernanda

    2018-01-01

    Current vaccines against Streptococcus pneumoniae , a bacterial species that afflicts people by causing a wide spectrum of diseases, do not protect against all pneumococcal serotypes. Thus, alternative vaccines to fight pneumococcal infections that target common proteins are under investigation. One promising strategy is to take advantage of immune cross-reactivity between commensal and pathogenic microbes for cross-protection. In this study, we examined the antibody-mediated cross-reactivity between S. pneumoniae and Streptococcus mitis , a commensal species closely related to S. pneumoniae . Western blot analysis showed that rabbit antisera raised against S. mitis reacted with multiple proteins of virulent S. pneumoniae strains (6B, TIGR4, and D39). Rabbit anti- S. pneumoniae IgG antibodies also showed binding to S. mitis antigens. Incubation of rabbit antisera raised against S. mitis with heterologous or homologous bacterial lysates resulted in marked inhibition of the developments of bands in the Western blots. Furthermore, plasma IgG antibodies from adult human volunteers intranasally inoculated with S. pneumoniae 6B revealed enhanced S. mitis -specific IgG titers compared with the pre-inoculation samples. Using an on-chip protein microarray representing a number of selected membrane and extracellular S. pneumoniae proteins, we identified choline-binding protein D (CbpD), cell division protein (FtsH), and manganese ABC transporter or manganese-binding adhesion lipoprotein (PsaA) as common targets of the rabbit IgG antibodies raised against S. mitis or S. pneumoniae . Cumulatively, these findings provide evidence on the antibody-mediated cross-reactivity of proteins from S. mitis and S. pneumoniae , which may have implications for development of effective and wide-range pneumococcal vaccines.

  20. Association of viridans group streptococci from pregnant women with bacterial vaginosis and upper genital tract infection.

    PubMed Central

    Rabe, L K; Winterscheid, K K; Hillier, S L

    1988-01-01

    The prevalence and role of viridans group streptococci in the female genital tract have not been well described. In this study of 482 pregnant women, 147 (30%) were culture positive for viridans group streptococci. Of 392 women with predominant Lactobacillus morphotypes by Gram stain (normal), 110 (28%) were colonized with viridans group streptococci, compared with 37 (41%) of 90 women with bacterial vaginosis (BV) (P = 0.02). To determine whether any species were associated with BV, 177 consecutively isolated viridans group streptococci from the vagina were identified to the species level by using the Facklam scheme. The most frequently isolated species from the vagina was Streptococcus intermedius (13%), followed by Streptococcus acidominimus (6%), Streptococcus constellatus (5%), Streptococcus sanguis II (4%), Streptococcus mitis (2%), Streptococcus salivarius (2%), Streptococcus morbillorum (2%), Streptococcus sanguis I (1%), Streptococcus mutans (0.2%), and Streptococcus uberis (0.2%) with an average of 1.2 species per woman. The distribution of the species among women with BV compared with normal women was not significantly different, with the exception of two species which were associated with BV: S. acidominimus (18% versus 3%, P less than 0.001) and S. morbillorum (6% versus 0.7%, P = 0.005). Amniotic fluid and placenta cultures yielded 54 isolates: S. sanguis II (13 isolates), S. acidominimus (9 isolates), S. intermedius (10 isolates), S. constellatus (3 isolates), S. mitis (4 isolates), S. sanguis I (4 isolates), S. morbillorum (5 isolates), S. mutans (2 isolates), S. uberis (1 isolate), mannitol-positive S. intermedius (1 isolate), and 2 isolates which were not classified. The distribution of species isolated from the upper genital tract was not a reflection of the distribution in the lower genital tract. Dextran-producing species of viridans group streptococci may have a greater pathogenic potential in the placenta than the non

  1. Association of viridans group streptococci from pregnant women with bacterial vaginosis and upper genital tract infection.

    PubMed

    Rabe, L K; Winterscheid, K K; Hillier, S L

    1988-06-01

    The prevalence and role of viridans group streptococci in the female genital tract have not been well described. In this study of 482 pregnant women, 147 (30%) were culture positive for viridans group streptococci. Of 392 women with predominant Lactobacillus morphotypes by Gram stain (normal), 110 (28%) were colonized with viridans group streptococci, compared with 37 (41%) of 90 women with bacterial vaginosis (BV) (P = 0.02). To determine whether any species were associated with BV, 177 consecutively isolated viridans group streptococci from the vagina were identified to the species level by using the Facklam scheme. The most frequently isolated species from the vagina was Streptococcus intermedius (13%), followed by Streptococcus acidominimus (6%), Streptococcus constellatus (5%), Streptococcus sanguis II (4%), Streptococcus mitis (2%), Streptococcus salivarius (2%), Streptococcus morbillorum (2%), Streptococcus sanguis I (1%), Streptococcus mutans (0.2%), and Streptococcus uberis (0.2%) with an average of 1.2 species per woman. The distribution of the species among women with BV compared with normal women was not significantly different, with the exception of two species which were associated with BV: S. acidominimus (18% versus 3%, P less than 0.001) and S. morbillorum (6% versus 0.7%, P = 0.005). Amniotic fluid and placenta cultures yielded 54 isolates: S. sanguis II (13 isolates), S. acidominimus (9 isolates), S. intermedius (10 isolates), S. constellatus (3 isolates), S. mitis (4 isolates), S. sanguis I (4 isolates), S. morbillorum (5 isolates), S. mutans (2 isolates), S. uberis (1 isolate), mannitol-positive S. intermedius (1 isolate), and 2 isolates which were not classified. The distribution of species isolated from the upper genital tract was not a reflection of the distribution in the lower genital tract. Dextran-producing species of viridans group streptococci may have a greater pathogenic potential in the placenta than the non

  2. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET

    2018-01-01

    Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.

  3. Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis.

    PubMed

    Zheng, Wenning; Tan, Mui Fern; Old, Lesley A; Paterson, Ian C; Jakubovics, Nicholas S; Choo, Siew Woh

    2017-06-07

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.

  4. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms.

    PubMed

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong; Koo, Hyun

    2016-10-01

    l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. Dental caries is one

  5. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms

    PubMed Central

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong

    2016-01-01

    ABSTRACT l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. IMPORTANCE

  6. Antibacterial activity of cinnamon ethanol extract (cinnamomum burmannii) and its application as a mouthwash to inhibit streptococcus growth

    NASA Astrophysics Data System (ADS)

    Waty, Syahdiana; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Cinnamon bark has been commonly used as spicy and traditional medicine. It contains several antibacterial compounds such as flavonoids, saponins, and cinnamaldehyde. Several studies have been done to know the antibacterial effect on bacteria such as Streptococcus in vitro. This study aimed to examine the antibacterial activity of cinnamon ethanol extract against Streptococcus and its application as mouthwash to inhibit the bacteria. The cinnamon bark was macerated followed by extracted in 80% ethanol. Bacterial samples were isolated from dental plaque of patients visiting dental clinic drg. Syahdiana Waty in Medan, North Sumatra. The isolates were identified using Vitek 2 compact. Secondary metabolites were detected using previously described method. Antibacterial assay was done at extract concentration of 6.25%, 12.5%, and 25%. The result showed that alkaloids, flavonoids, saponins, and glycoside were detected in the extract. Nine bacterial species were identified as Streptococcus mitis, S. sanguinis, S. salivarius, S. pluranimalium, S. pneumoniae, S. alactolyticus, Kocuria rosea, Kocuria kristinae, and Spingomonas paucimolis. It showed that the extract of Cinnamon bark significantly inhibited Streptococcus growth, and it was effective as mouthwash.

  7. Streptococcus pneumoniae Supragenome Hybridization Arrays for Profiling of Genetic Content and Gene Expression.

    PubMed

    Kadam, Anagha; Janto, Benjamin; Eutsey, Rory; Earl, Joshua P; Powell, Evan; Dahlgren, Margaret E; Hu, Fen Z; Ehrlich, Garth D; Hiller, N Luisa

    2015-02-02

    There is extensive genomic diversity among Streptococcus pneumoniae isolates. Approximately half of the comprehensive set of genes in the species (the supragenome or pangenome) is present in all the isolates (core set), and the remaining is unevenly distributed among strains (distributed set). The Streptococcus pneumoniae Supragenome Hybridization (SpSGH) array provides coverage for an extensive set of genes and polymorphisms encountered within this species, capturing this genomic diversity. Further, the capture is quantitative. In this manner, the SpSGH array allows for both genomic and transcriptomic analyses of diverse S. pneumoniae isolates on a single platform. In this unit, we present the SpSGH array, and describe in detail its design and implementation for both genomic and transcriptomic analyses. The methodology can be applied to construction and modification of SpSGH array platforms, as well to other bacterial species as long as multiple whole-genome sequences are available that collectively capture the vast majority of the species supragenome. Copyright © 2015 John Wiley & Sons, Inc.

  8. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.

    1989-09-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a componentmore » with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.« less

  9. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis.

    PubMed

    Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji

    2012-12-01

    Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Oral microbiota species in acute apical endodontic abscesses

    PubMed Central

    George, Noelle; Flamiatos, Erin; Kawasaki, Kellie; Kim, Namgu; Carriere, Charles; Phan, Brian; Joseph, Raphael; Strauss, Shay; Kohli, Richie; Choi, Dongseok; Craig Baumgartner, J.; Sedgley, Christine; Maier, Tom; Machida, Curtis A.

    2016-01-01

    Background and objectives Acute apical abscesses are serious endodontic diseases resulting from pulpal infection with opportunistic oral microorganisms. The objective of this study was to identify and compare the oral microbiota in patients (N=18) exhibiting acute apical abscesses, originating from the demographic region in Portland, Oregon. The study hypothesis is that abscesses obtained from this demographic region may contain unique microorganisms not identified in specimens from other regions. Design Endodontic abscesses were sampled from patients at the Oregon Health & Science University (OHSU) School of Dentistry. DNA from abscess specimens was subjected to polymerase chain reaction amplification using 16S rRNA gene-specific primers and Cy3-dCTP labeling. Labeled DNA was then applied to microbial microarrays (280 species) generated by the Human Oral Microbial Identification Microarray Laboratory (Forsyth Institute, Cambridge, MA). Results The most prevalent microorganisms, found across multiple abscess specimens, include Fusobacterium nucleatum, Parvimonas micra, Megasphaera species clone CS025, Prevotella multisaccharivorax, Atopobium rimae, and Porphyromonas endodontalis. The most abundant microorganisms, found in highest numbers within individual abscesses, include F. nucleatum, P. micra, Streptococcus Cluster III, Solobacterium moorei, Streptococcus constellatus, and Porphyromonas endodontalis. Strong bacterial associations were identified between Prevotella multisaccharivorax, Acidaminococcaceae species clone DM071, Megasphaera species clone CS025, Actinomyces species clone EP053, and Streptococcus cristatus (all with Spearman coefficients >0.9). Conclusions Cultivable and uncultivable bacterial species have been identified in endodontic abscesses obtained from the Portland, Oregon demographic region, and taxa identifications correlated well with other published studies, with the exception of Treponema and Streptococcus cristae, which were not commonly

  11. Oral microbiota species in acute apical endodontic abscesses.

    PubMed

    George, Noelle; Flamiatos, Erin; Kawasaki, Kellie; Kim, Namgu; Carriere, Charles; Phan, Brian; Joseph, Raphael; Strauss, Shay; Kohli, Richie; Choi, Dongseok; Baumgartner, J Craig; Sedgley, Christine; Maier, Tom; Machida, Curtis A

    2016-01-01

    Acute apical abscesses are serious endodontic diseases resulting from pulpal infection with opportunistic oral microorganisms. The objective of this study was to identify and compare the oral microbiota in patients (N=18) exhibiting acute apical abscesses, originating from the demographic region in Portland, Oregon. The study hypothesis is that abscesses obtained from this demographic region may contain unique microorganisms not identified in specimens from other regions. Endodontic abscesses were sampled from patients at the Oregon Health & Science University (OHSU) School of Dentistry. DNA from abscess specimens was subjected to polymerase chain reaction amplification using 16S rRNA gene-specific primers and Cy3-dCTP labeling. Labeled DNA was then applied to microbial microarrays (280 species) generated by the Human Oral Microbial Identification Microarray Laboratory (Forsyth Institute, Cambridge, MA). The most prevalent microorganisms, found across multiple abscess specimens, include Fusobacterium nucleatum, Parvimonas micra, Megasphaera species clone CS025, Prevotella multisaccharivorax, Atopobium rimae, and Porphyromonas endodontalis. The most abundant microorganisms, found in highest numbers within individual abscesses, include F. nucleatum, P. micra, Streptococcus Cluster III, Solobacterium moorei, Streptococcus constellatus, and Porphyromonas endodontalis. Strong bacterial associations were identified between Prevotella multisaccharivorax, Acidaminococcaceae species clone DM071, Megasphaera species clone CS025, Actinomyces species clone EP053, and Streptococcus cristatus (all with Spearman coefficients >0.9). Cultivable and uncultivable bacterial species have been identified in endodontic abscesses obtained from the Portland, Oregon demographic region, and taxa identifications correlated well with other published studies, with the exception of Treponema and Streptococcus cristae, which were not commonly identified in endodontic abscesses between the

  12. Gene Repertoire Evolution of Streptococcus pyogenes Inferred from Phylogenomic Analysis with Streptococcus canis and Streptococcus dysgalactiae

    PubMed Central

    Lefébure, Tristan; Richards, Vince P.; Lang, Ping; Pavinski-Bitar, Paulina; Stanhope, Michael J.

    2012-01-01

    Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46%) of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86%) in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i) the integration of new virulence factors (e.g. speB, and the sal locus) and (ii) the construction of new regulation networks (e.g. rgg, and to some extent speB). PMID:22666370

  13. Bacterial communities in the phylloplane of Prunus species.

    PubMed

    Jo, Yeonhwa; Cho, Jin Kyong; Choi, Hoseong; Chu, Hyosub; Lian, Sen; Cho, Won Kyong

    2015-04-01

    Bacterial populations in the phylloplane of four different Prunus species were investigated by 16 S rRNA pyrosequencing. Bioinformatic analysis identified an average of 510 operational taxonomic units belonging to 159 genera in 76 families. The two genera, Sphingomonas and Methylobacterium, were dominant in the phylloplane of four Prunus species. Twenty three genera were commonly identified in the four Prunus species, indicating a high level of bacterial diversity dependent on the plant species. Our study based on 16 S rRNA sequencing reveals the complexity of bacterial diversity in the phylloplane of Prunus species in detail. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Distinct antimicrobial peptide expression determines host species-specific bacterial associations

    PubMed Central

    Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian

    2013-01-01

    Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149

  15. [Bacterial meningitis].

    PubMed

    Brouwer, M C; van de Beek, D

    2012-05-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria meningtidis group C and Streptococcus pneumoniae. Due to these vaccines, meningitis is now predominantly a disease occurring in adults, caused especially by Streptococcus pneumoniae, while it was formerly a child disease which was largely caused by Haemophilus influenzae. Bacterial meningitis is often difficult to recognize since the classical presentation with neck stiffness, reduced awareness and fever occurs in less than half of the patients. The only way to diagnose or exclude bacterial meningitis is by performing low-threshold cerebrospinal fluid examination with a suspicion of bacterial meningitis. The treatment consists of the prescription of antibiotics and dexamethasone.

  16. Capsular Polysaccharide Expression in Commensal Streptococcus Species: Genetic and Antigenic Similarities to Streptococcus pneumoniae

    PubMed Central

    Skov Sørensen, Uffe B.; Yao, Kaihu; Yang, Yonghong; Tettelin, Hervé

    2016-01-01

    ABSTRACT Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule production distinguishes S. pneumoniae from closely related commensals of the mitis group streptococci. Based on antigenic and genetic analyses of 187 mitis group streptococci, including 90 recognized serotypes of S. pneumoniae, we demonstrated capsule production by the Wzy/Wzx pathway in 74% of 66 S. mitis strains and in virtually all tested strains of S. oralis (subspecies oralis, dentisani, and tigurinus) and S. infantis. Additional analyses of genomes of S. cristatus, S. parasanguinis, S. australis, S. sanguinis, S. gordonii, S. anginosus, S. intermedius, and S. constellatus revealed complete capsular biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S. pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S. pneumoniae raises concerns about potential misidentifications in addition to important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and for the pathogen. PMID:27935839

  17. Diethylaminoethyl-cellulose-bacterial cell immunoadsorbent columns: preparation of serotype-specific globulin and immunofluorescent conjugates for Streptococcus mutans serotypes a and d.

    PubMed

    McKinney, R M; Thacker, L

    1976-04-01

    Diethylaminoethyl (DEAE)-cellulose was used as a support material for preparing bacterial cell columns. Pretreatment of the bacterial cells with formalin was essential in obtaining satisfactory adherence of the cells to DEAE-cellulose. Cross-reacting antibodies were removed from antibody preparations against strains of Streptococcus mutans serotypes a and d by adsorption on appropriate bacterial cell columns. S. mutans serotype d was further divided into two subtypes on the basis of immunofluorescent staining with conjugates of immunospecifically adsorbed immunoglobulin G. The DEAE-cellulose-bacterial cell columns were regenerated after use by desorbing the cross-reacting antibodies with low-pH buffer and were used repeatedly over and 18-month period with no detectable loss in effectiveness.

  18. Endocarditis in adults with bacterial meningitis.

    PubMed

    Lucas, Marjolein J; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2013-05-21

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2012. Endocarditis was identified in 24 of 1025 episodes (2%) of bacterial meningitis. Cultures yielded Streptococcus pneumoniae in 13 patients, Staphylococcus aureus in 8 patients, and Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus salivarius in 1 patient each. Clues leading to the diagnosis of endocarditis were cardiac murmurs, persistent or recurrent fever, a history of heart valve disease, and S aureus as the causative pathogen of bacterial meningitis. Treatment consisted of prolonged antibiotic therapy in all patients and surgical valve replacement in 10 patients (42%). Two patients were treated with oral anticoagulants, and both developed life-threatening intracerebral hemorrhage. Systemic (70%) and neurological (54%) complications occurred frequently, leading to a high proportion of patients with unfavorable outcome (63%). Seven of 24 patients (29%) with meningitis and endocarditis died. Endocarditis is an uncommon coexisting condition in bacterial meningitis but is associated with a high rate of unfavorable outcome.

  19. Nonencapsulated Streptococcus pneumoniae causes otitis media during single-species infection and during polymicrobial infection with nontypeable Haemophilus influenzae

    PubMed Central

    Murrah, Kyle A.; Pang, Bing; Richardson, Stephen; Perez, Antonia; Reimche, Jennifer; King, Lauren; Wren, John; Swords, W. Edward

    2014-01-01

    Streptococcus pneumoniae strains lacking capsular polysaccharide have been increasingly reported in carriage and disease contexts. Since most cases of otitis media involve more than one bacterial species, we aimed to determine the capacity of a nonencapsulated S. pneumoniae clinical isolate to induce disease in the context of a single-species infection and as a polymicrobial infection with nontypeable Haemophilus influenzae. Using the chinchilla model of otitis media, we found that nonencapsulated S. pneumoniae colonizes the nasopharynx following intranasal inoculation, but does not readily ascend into the middle ear. However, when we inoculated nonencapsulated S. pneumoniae directly into the middle ear, the bacteria persisted for two weeks post-inoculation and induced symptoms consistent with chronic otitis media. During coinfection with nontypeable H. influenzae, both species persisted for one week and induced polymicrobial otitis media. We also observed that nontypeable H. influenzae conferred passive protection from killing by amoxicillin upon S. pneumoniae from within polymicrobial biofilms in vitro. Therefore, based on these results, we conclude that nonencapsulated pneumococci are a potential causative agent of chronic/recurrent otitis media, and can also cause mutualistic infection with other opportunists, which could complicate treatment outcomes. PMID:26014114

  20. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx

    PubMed Central

    Shak, Joshua R.; Vidal, Jorge E.; Klugman, Keith P.

    2013-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. PMID:23273566

  1. Mixed Streptococcus pneumoniae and Streptococcus pyogenes meningitis in an immunocompromised adult patient: a case report.

    PubMed

    Demerle, Clémence; Ivanov, Vadim; Mercier, Cédric; Costello, Régis; Drancourt, Michel

    2015-11-29

    Community-acquired meningitis is a monomicrobial infection caused by either viruses or bacteria in the vast majority of patients. We report here one exceptional case of a patient with mixed bacterial meningitis due to Streptococcus pneumoniae and Streptococcus pyogenes. We report the case of a 68-year-old immunocompromised Caucasian man suffering from otitis and then meningitis caused by Streptococcus pneumoniae and Streptococcus pyogenes. Bacteria were undistinguishable by direct microscopic examination of the cerebrospinal fluid. He responded well to treatment with cefotaxime and dexamethasone, with no sequelae observed at the 4-month follow-up. This first reported case of mixed S. pneumoniae and S. pyogenes meningitis illustrates the life-threatening consequences of barotrauma in immunocompromised patients suffering from otorhinolaryngeal infections.

  2. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    PubMed

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Genetic basis of coaggregation receptor polysaccharide biosynthesis in Streptococcus sanguinis and related species.

    PubMed

    Yang, J; Yoshida, Y; Cisar, J O

    2014-02-01

    Interbacterial adhesion between streptococci and actinomyces promotes early dental plaque biofilm development. Recognition of coaggregation receptor polysaccharides (RPS) on strains of Streptococcus sanguinis, Streptococcus gordonii and Streptococcus oralis by Actinomyces spp. type 2 fimbriae is the principal mechanism of these interactions. Previous studies of genetic loci for synthesis of RPS (rps) and RPS precursors (rml, galE1 and galE2) in S. gordonii 38 and S. oralis 34 revealed differences between these strains. To determine whether these differences are strain-specific or species-specific, we identified and compared loci for polysaccharide biosynthesis in additional strains of these species and in several strains of the previously unstudied species, S. sanguinis. Genes for synthesis of RPS precursors distinguished the rps loci of different streptococci. Hence, rml genes for synthesis of TDP-L-Rha were in rps loci of S. oralis strains but at other loci in S. gordonii and S. sanguinis. Genes for two distinct galactose epimerases were also distributed differently. Hence, galE1 for epimerization of UDP-Glc and UDP-Gal was in galactose operons of S. gordonii and S. sanguinis strains but surprisingly, this gene was not present in S. oralis. Moreover, galE2 for epimerization of both UDP-Glc and UDP-Gal and UDP-GlcNAc and UDP-GalNAc was at a different locus in each species, including rps operons of S. sanguinis. The findings provide insight into cell surface properties that distinguish different RPS-producing streptococci and open an approach for identifying these bacteria based on the arrangement of genes for synthesis of polysaccharide precursors. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance

    PubMed Central

    Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M.; Ruttimann, Ricardo

    2016-01-01

    Objectives: Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. Methods: From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Results: Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Conclusions: Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures – negative but presumably bacterial meningitis cases. PMID:27551428

  5. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance.

    PubMed

    Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M; Ruttimann, Ricardo

    2016-01-01

    Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures - negative but presumably bacterial meningitis cases.

  6. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    PubMed

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.

  7. MALDI-TOF mass spectrometry for differentiation between Streptococcus pneumoniae and Streptococcus pseudopneumoniae.

    PubMed

    van Prehn, Joffrey; van Veen, Suzanne Q; Schelfaut, Jacqueline J G; Wessels, Els

    2016-05-01

    We compared the Vitek MS and Microflex MALDI-TOF mass spectrometry platform for species differentiation within the Streptococcus mitis group with PCR assays targeted at lytA, Spn9802, and recA as reference standard. The Vitek MS correctly identified 10/11 Streptococcus pneumoniae, 13/13 Streptococcus pseudopneumoniae, and 12/13 S. mitis/oralis. The Microflex correctly identified 9/11 S. pneumoniae, 0/13 S. pseudopneumoniae, and 13/13 S. mitis/oralis. MALDI-TOF is a powerful tool for species determination within the mitis group. Diagnostic accuracy varies depending on platform and database used. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    NASA Astrophysics Data System (ADS)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  9. Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets.

    PubMed

    Singh, Anirudh K; Woodiga, Shireen A; Grau, Margaret A; King, Samantha J

    2017-03-01

    Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis , like Streptococcus gordonii and Streptococcus sanguinis , binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors. Copyright © 2017 American Society for Microbiology.

  10. The effect of mango and neem extract on four organisms causing dental caries: Streptococcus mutans, Streptococcus salivavius, Streptococcus mitis, and Streptococcus sanguis: an in vitro study.

    PubMed

    Prashant, G M; Chandu, G N; Murulikrishna, K S; Shafiulla, M D

    2007-01-01

    Chewing twigs of the mango or neem tree is a common way of cleaning the teeth in the rural and semi-urban population. These twigs are also believed to possess medicinal properties. The present study was conducted to evaluate the antimicrobial effects of these chewing sticks on the microorganisms Streptococcus mutans , Streptococcus salivarius , Streptococcus mitis , and Streptococcus sanguis which are involved in the development of dental caries. An additional objective was to identify an inexpensive, simple, and effective method of preventing and controlling dental caries. The sticks were sun dried, ground into a coarse powder, and weighed into 5 gm, 10 gm, and 50 gm amounts. These were added to 100 ml of deionized distilled water. After soaking for 48 h at 4 degrees C, the water was filtered. The filtrate was inoculated onto blood agar plates containing individual species of microorganisms and incubated at 37 degrees C for 48 h. Mango extract, at 50% concentration, showed maximum zone of inhibition on Streptococcus mitis . Neem extract produced the maximum zone of inhibition on Streptococcus mutans at 50% concentration. Even at 5% concentration neem extract showed some inhibition of growth for all the four species of organisms. A combination of neem and mango chewing sticks may provide the maximum benefit. We recommend the use of both the chewing sticks.

  11. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx.

    PubMed

    Shak, Joshua R; Vidal, Jorge E; Klugman, Keith P

    2013-03-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Chemical interference with iron transport systems to suppress bacterial growth of Streptococcus pneumoniae.

    PubMed

    Yang, Xiao-Yan; Sun, Bin; Zhang, Liang; Li, Nan; Han, Junlong; Zhang, Jing; Sun, Xuesong; He, Qing-Yu

    2014-01-01

    Iron is an essential nutrient for the growth of most bacteria. To obtain iron, bacteria have developed specific iron-transport systems located on the membrane surface to uptake iron and iron complexes such as ferrichrome. Interference with the iron-acquisition systems should be therefore an efficient strategy to suppress bacterial growth and infection. Based on the chemical similarity of iron and ruthenium, we used a Ru(II) complex R-825 to compete with ferrichrome for the ferrichrome-transport pathway in Streptococcus pneumoniae. R-825 inhibited the bacterial growth of S. pneumoniae and stimulated the expression of PiuA, the iron-binding protein in the ferrichrome-uptake system on the cell surface. R-825 treatment decreased the cellular content of iron, accompanying with the increase of Ru(II) level in the bacterium. When the piuA gene (SPD_0915) was deleted in the bacterium, the mutant strain became resistant to R-825 treatment, with decreased content of Ru(II). Addition of ferrichrome can rescue the bacterial growth that was suppressed by R-825. Fluorescence spectral quenching showed that R-825 can bind with PiuA in a similar pattern to the ferrichrome-PiuA interaction in vitro. These observations demonstrated that Ru(II) complex R-825 can compete with ferrichrome for the ferrichrome-transport system to enter S. pneumoniae, reduce the cellular iron supply, and thus suppress the bacterial growth. This finding suggests a novel antimicrobial approach by interfering with iron-uptake pathways, which is different from the mechanisms used by current antibiotics.

  13. First Isolation of Streptococcus halichoeri and Streptococcus phocae from a Steller Sea Lion (Eumetopias jubatus) in South Korea.

    PubMed

    Lee, Kichan; Kim, Ji-Yeon; Jung, Suk Chan; Lee, Hee-Soo; Her, Moon; Chae, Chanhee

    2016-01-01

    Streptococcus species are emerging potential pathogens in marine mammals. We report the isolation and identification of Streptococcus halichoeri and Streptococcus phocae in a Steller sea lion (Eumetopias jubatus) in South Korea.

  14. The RFK catalytic cycle of the pathogen Streptococcus pneumoniae shows species-specific features in prokaryotic FMN synthesis.

    PubMed

    Sebastián, María; Velázquez-Campoy, Adrián; Medina, Milagros

    2018-12-01

    Emergence of multidrug-resistant bacteria forces us to explore new therapeutic strategies, and proteins involved in key metabolic pathways are promising anti-bacterial targets. Bifunctional flavin-adenine dinucleotide (FAD) synthetases (FADS) are prokaryotic enzymes that synthesise the flavin mononucleotide (FMN) and FAD cofactors. The FADS from the human pathogen Streptococcus pneumoniae (SpnFADS)-causative agent of pneumonia in humans - shows relevant catalytic dissimilarities compared to other FADSs. Here, by integrating thermodynamic and kinetic data, we present a global description of the riboflavin kinase activity of SpnFADS, as well as of the inhibition mechanisms regulating this activity. Our data shed light on biophysical determinants that modulate species-specific conformational changes leading to catalytically competent conformations, as well as binding rates and affinities of substrates versus products. This knowledge paves the way for the development of tools - that taking advantage of the regulatory dissimilarities during FMN biosynthesis in different species - might be used in the discovery of specific anti-pneumococcal drugs.

  15. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    PubMed Central

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220

  16. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae.

    PubMed

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually.

  17. Confocal Raman microscopy for identification of bacterial species in biofilms

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  18. Acidogenicity of dual-species biofilms of bifidobacteria and Streptococcus mutans.

    PubMed

    de Matos, Bruno Mello; Brighenti, Fernanda Lourenção; Do, Thuy; Beighton, David; Koga-Ito, Cristiane Yumi

    2017-06-01

    The aim of this study was to evaluate the acidogenicity of dual-species biofilms of bifidobacteria and Streptococcus mutans. The following strains were tested: Bifidobacterium dentium DSM20436, Parascardovia denticolens DSM10105, and Scardovia inopinata DSM10107. Streptococcus mutans UA159 and Lactobacillus acidophilus ATCC4356 were used as control. Bifidobacteria were studied planktonically as they were not able to form monospecies biofilm, they were grown in biofilms associated with S. mutans. Endogenous polysaccharide reserves of cultures at log phase were depleted. Standardized suspensions of the microorganisms were incubated in growth media supplemented with 10 mM glucose, lactose, raffinose, glucose, or xylitol. S. mutans biofilms were grown on glass cover slips for 24 h to which bifidobacteria were added. After 24 h, the dual-species biofilms were exposed to the same carbon sources, and after 3 h, the pH of spent culture media and concentrations of organic acids were measured. Statistical analyses were carried out using ANOVA and Tukey's test (α = 0.05). A higher pH drop was observed when S. mutans was associated with P. denticolens or S. inopinata, in either planktonic or biofilm cultures, than with S. mutans alone. Bifidobacteria showed a higher pH drop in the presence of raffinose than S. mutans or L. acidophilus. Dual-species biofilms of bifidobacteria and S. mutans produced more acid and greater pH drops than biofilms of S. mutans alone. New insights on the complex process of caries pathogenicity contribute to the establishment of preventive and therapeutic measures, in particular in specific cases, such as in early childhood caries.

  19. Nonencapsulated Streptococcus pneumoniae causes otitis media during single-species infection and during polymicrobial infection with nontypeable Haemophilus influenzae.

    PubMed

    Murrah, Kyle A; Pang, Bing; Richardson, Stephen; Perez, Antonia; Reimche, Jennifer; King, Lauren; Wren, John; Swords, W Edward

    2015-07-01

    Streptococcus pneumoniae strains lacking capsular polysaccharide have been increasingly reported in carriage and disease contexts. Since most cases of otitis media involve more than one bacterial species, we aimed to determine the capacity of a nonencapsulated S. pneumoniae clinical isolate to induce disease in the context of a single-species infection and as a polymicrobial infection with nontypeable Haemophilus influenzae. Using the chinchilla model of otitis media, we found that nonencapsulated S. pneumoniae colonizes the nasopharynx following intranasal inoculation, but does not readily ascend into the middle ear. However, when we inoculated nonencapsulated S. pneumoniae directly into the middle ear, the bacteria persisted for two weeks post-inoculation and induced symptoms consistent with chronic otitis media. During coinfection with nontypeable H. influenzae, both species persisted for one week and induced polymicrobial otitis media. We also observed that nontypeable H. influenzae conferred passive protection from killing by amoxicillin upon S. pneumoniae from within polymicrobial biofilms in vitro. Therefore, based on these results, we conclude that nonencapsulated pneumococci are a potential causative agent of chronic/recurrent otitis media, and can also cause mutualistic infection with other opportunists, which could complicate treatment outcomes. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level

    PubMed Central

    Conrads, Georg; de Soet, Johannes J.; Song, Lifu; Henne, Karsten; Sztajer, Helena; Wagner-Döbler, Irene; Zeng, An-Ping

    2014-01-01

    Background Two closely related species of mutans streptococci, namely Streptococcus mutans and Streptococcus sobrinus, are associated with dental caries in humans. Their acidogenic and aciduric capacity is directly associated with the cariogenic potential of these bacteria. To survive acidic and temporarily harsh conditions in the human oral cavity with hundreds of other microbial co-colonizers as competitors, both species have developed numerous mechanisms for adaptation. Objectives The recently published novel genome information for both species is used to elucidate genetic similarities but especially differences and to discuss the impact on cariogenicity of the corresponding phenotypic properties including adhesion, carbohydrate uptake and fermentation, acid tolerance, signaling by two component systems, competence, and oxidative stress resistance. Conclusions S. sobrinus can down-regulate the SpaA-mediated adherence to the pellicle. It has a smaller number of two-component signaling systems and bacteriocin-related genes than S. mutans, but all or even more immunity proteins. It lacks the central competence genes comC, comS, and comR. There are more genes coding for glucosyltransferases and a novel energy production pathway formed by lactate oxidase, which is not found in S. mutans. Both species show considerable differences in the regulation of fructan catabolism. However, both S. mutans and S. sobrinus share most of these traits and should therefore be considered as equally virulent with regard to dental caries. PMID:25475081

  1. A Novel α-Hemolytic Streptococcus Species (Streptococcus azizii sp. nov.) Associated with Meningoencephalitis in Naïve Weanling C57BL/6 Mice

    PubMed Central

    Braden, Gillian C; Arbona, Rodolfo Ricart; Lepherd, Michelle; Monette, Sébastien; Toma, Aziz; Fox, James G; Dewhirst, Floyd E; Lipman, Neil S

    2015-01-01

    During 1 year, experimentally naïve C57BL/6NCrl weanlings born to timed-pregnant dams from a single vendor demonstrated markedly increased mortality associated with runting, abnormal gait, and decreased activity. Gram-positive, aerobic, α-hemolytic, coccoid bacteria were isolated from the meninges (n = 16), blood (n = 1), and kidneys (n = 1) of clinically affected weanlings (n = 15); from the uterus (n = 1), meninges (n = 1), and oral cavity (n = 2) of 3 dams; and from the meninges and oral cavity of a clinically affected 86-d-old mouse in the same colony. Multifocal, necrosuppurative meningoencephalitis and ventriculitis with intralesional gram-positive coccoid bacteria were present in all but 2 affected animals. The bacterium also was isolated from the oral cavity of an asymptomatic timed-pregnant dam (1 of 23) from the same vendor and from 8 mice at the vendor's facility. All isolates (n = 25) were identified by using 2 semiautomated rapid-identification systems, one of which consistently identified the causative bacterium as Aerococcus viridans 2 (n = 12) or 3 (n = 13), with probabilities of 55.7% to 98.3%. The bacterium did not grow in 6.5% NaCl at 10 °C, thus suggesting a Streptococcus species. Partial 16S rRNA sequencing of 4 isolates suggested S. hyointestinalis (probability, 93.4%) and S. gallinaceus (99.5%). Full 16S rRNA sequences for 3 isolates identified the bacterium as a novel Streptococcus species most closely related to S. acidominimus strain LGM (96.5%) and Streptococcus species strain Smarlab 3301444 (96.3%) and for which we propose the name S. azizii. PMID:26141443

  2. Capsular Sialyltransferase Specificity Mediates Different Phenotypes in Streptococcus suis and Group B Streptococcus

    PubMed Central

    Roy, David; Takamatsu, Daisuke; Okura, Masatoshi; Goyette-Desjardins, Guillaume; Van Calsteren, Marie-Rose; Dumesnil, Audrey; Gottschalk, Marcelo; Segura, Mariela

    2018-01-01

    The capsular polysaccharide (CPS) represents a key virulence factor for most encapsulated streptococci. Streptococcus suis and Group B Streptococcus (GBS) are both well-encapsulated pathogens of clinical importance in veterinary and/or human medicine and responsible for invasive systemic diseases. S. suis and GBS are the only Gram-positive bacteria which express a sialylated CPS at their surface. An important difference between these two sialylated CPSs is the linkage between the side-chain terminal galactose and sialic acid, being α-2,6 for S. suis but α-2,3 for GBS. It is still unclear how sialic acid may affect CPS production and, consequently, the pathogenesis of the disease caused by these two bacterial pathogens. Here, we investigated the role of sialic acid and the putative effect of sialic acid linkage modification in CPS synthesis using inter-species allelic exchange mutagenesis. To this aim, a new molecular biogenetic approach to express CPS with modified sialic acid linkage was developed. We showed that sialic acid (and its α-2,6 linkage) is crucial for S. suis CPS synthesis, whereas for GBS, CPS synthesis may occur in presence of an α-2,6 sialyltransferase or in absence of sialic acid moiety. To evaluate the effect of the CPS composition/structure on sialyltransferase activity, two distinct capsular serotypes within each bacterial species were compared (S. suis serotypes 2 and 14 and GBS serotypes III and V). It was demonstrated that the observed differences in sialyltransferase activity and specificity between S. suis and GBS were serotype unrestricted. This is the first time that a study investigates the interspecies exchange of capsular sialyltransferase genes in Gram-positive bacteria. The obtained mutants represent novel tools that could be used to further investigate the immunomodulatory properties of sialylated CPSs. Finally, in spite of common CPS structural characteristics and similarities in the cps loci, sialic acid exerts differential

  3. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc.

    PubMed

    Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong

    2018-04-20

    Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae*

    PubMed Central

    Rego, Sara; Heal, Timothy J.; Pidwill, Grace R.; Till, Marisa; Robson, Alice; Lamont, Richard J.; Sessions, Richard B.; Jenkinson, Howard F.; Race, Paul R.; Nobbs, Angela H.

    2016-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans. Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections. PMID:27311712

  5. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  6. Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk.

    PubMed

    Kadri, Zaina; Amar, Mohamed; Ouadghiri, Mouna; Cnockaert, Margo; Aerts, Maarten; El Farricha, Omar; Vandamme, Peter

    2014-07-01

    Two catalase- and oxidase-negative Streptococcus-like strains, LMG 27682(T) and LMG 27684(T), were isolated from raw camel milk in Morocco. Comparative 16S rRNA gene sequencing assigned these bacteria to the genus Streptococcus with Streptococcus rupicaprae 2777-2-07(T) as their closest phylogenetic neighbour (95.9% and 95.7% similarity, respectively). 16S rRNA gene sequence similarity between the two strains was 96.7%. Although strains LMG 27682(T) and LMG 27684(T) shared a DNA-DNA hybridization value that corresponded to the threshold level for species delineation (68%), the two strains could be distinguished by multiple biochemical tests, sequence analysis of the phenylalanyl-tRNA synthase (pheS), RNA polymerase (rpoA) and ATP synthase (atpA) genes and by their MALDI-TOF MS profiles. On the basis of these considerable phenotypic and genotypic differences, we propose to classify both strains as novel species of the genus Streptococcus, for which the names Streptococcus moroccensis sp. nov. (type strain, LMG 27682(T)  = CCMM B831(T)) and Streptococcus rifensis sp. nov. (type strain, LMG 27684(T)  = CCMM B833(T)) are proposed. © 2014 IUMS.

  7. Eradication of bacterial species via photosensitization

    NASA Astrophysics Data System (ADS)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1999-02-01

    Photosensitization and inactivation efficacy of three bacterial species: Prevotella nigrescens, Staphylococcus aureus and Escherichia coli have been investigated. Samples of Staphylococcus aureus and Escherichia coli were treated with the triphenylmethane dye malachite green isothiocyanate and exposed to light from a variety of continuous and pulsed light sauces at a wavelength of approximately 630 nm. Inactivation of the Gram-positive species Staphylococcus aureus was found to increase with radiation dose, whilst Gram-negative Escherichia coli was resistant to such treatment. Samples of the pigmented species Prevotella nigrescens were found to be inactivated by exposure to light alone. The mechanism of photosensitization and inactivation of Staphylococcus aureus with malachite green isothiocyanate is addressed. The possible roles of the excited triplet state of the photosensitizer, the involvement of molecular oxygen, and the bacterial cell wall are discussed. Photosensitization may provide a way of eliminating naturally pigmented species responsible for a variety of infections, including oral diseases such as gingivitis and periodontitis.

  8. Identification of Enterococcus, Streptococcus, and Staphylococcus by Multivariate Analysis of Proton Magnetic Resonance Spectroscopic Data from Plate Cultures

    PubMed Central

    Bourne, Roger; Himmelreich, Uwe; Sharma, Ansuiya; Mountford, Carolyn; Sorrell, Tania

    2001-01-01

    A new fingerprinting technique with the potential for rapid identification of bacteria was developed by combining proton magnetic resonance spectroscopy (1H MRS) with multivariate statistical analysis. This resulted in an objective identification strategy for common clinical isolates belonging to the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, and the Streptococcus milleri group. Duplicate cultures of 104 different isolates were examined one or more times using 1H MRS. A total of 312 cultures were examined. An optimized classifier was developed using a bootstrapping process and a seven-group linear discriminant analysis to provide objective classification of the spectra. Identification of isolates was based on consistent high-probability classification of spectra from duplicate cultures and achieved 92% agreement with conventional methods of identification. Fewer than 1% of isolates were identified incorrectly. Identification of the remaining 7% of isolates was defined as indeterminate. PMID:11474013

  9. In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm.

    PubMed

    Valdebenito, B; Tullume-Vergara, P O; González, W; Kreth, J; Giacaman, R A

    2018-04-01

    During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries-free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H 2 O 2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H 2 O 2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H 2 O 2 . S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra-species communication. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Antibiotic susceptibility of periodontal Streptococcus constellatus and Streptococcus intermedius clinical isolates.

    PubMed

    Rams, Thomas E; Feik, Diane; Mortensen, Joel E; Degener, John E; van Winkelhoff, Arie J

    2014-12-01

    Streptococcus constellatus and Streptococcus intermedius in subgingival dental plaque biofilms may contribute to forms of periodontitis that resist treatment with conventional mechanical root debridement/surgical procedures and may additionally participate in some extraoral infections. Because systemic antibiotics are often used in these clinical situations, and little is known of the antibiotic susceptibility of subgingival isolates of these two bacterial species, this study determined the in vitro susceptibility to six antibiotics of fresh S. constellatus and S. intermedius clinical isolates from human periodontitis lesions. A total of 33 S. constellatus and 17 S. intermedius subgingival strains, each recovered from separate patients with severe chronic periodontitis (n = 50) before treatment, were subjected to antibiotic gradient strip susceptibility testing with amoxicillin, azithromycin, clindamycin, ciprofloxacin, and doxycycline on blood-supplemented Mueller-Hinton agar and to the inhibitory effects of metronidazole at 16 mg/L in an enriched Brucella blood agar dilution assay. Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing interpretative standards were used to assess the results. Clindamycin was the most active antibiotic against S. constellatus (minimum inhibitory concentration at 90% [MIC90] 0.25 mg/L), and amoxicillin was most active against S. intermedius (MIC90 0.125 mg/L). A total of 30% of the S. constellatus and S. intermedius clinical isolates were resistant in vitro to doxycycline, 98% were only intermediate in susceptibility to ciprofloxacin, and 90% were resistant to metronidazole at 16 mg/L. Subgingival S. constellatus and S. intermedius exhibited variable antibiotic susceptibility profiles, potentially complicating empirical selection of periodontitis antibiotic therapy in patients who are species positive.

  11. Structural differences in the bacterial flagellar motor among bacterial species.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Morimoto, Yusuke V; Imada, Katsumi; Minamino, Tohru

    2017-01-01

    The bacterial flagellum is a supramolecular motility machine consisting of the basal body as a rotary motor, the hook as a universal joint, and the filament as a helical propeller. Intact structures of the bacterial flagella have been observed for different bacterial species by electron cryotomography and subtomogram averaging. The core structures of the basal body consisting of the C ring, the MS ring, the rod and the protein export apparatus, and their organization are well conserved, but novel and divergent structures have also been visualized to surround the conserved structure of the basal body. This suggests that the flagellar motors have adapted to function in various environments where bacteria live and survive. In this review, we will summarize our current findings on the divergent structures of the bacterial flagellar motor.

  12. Delineation of Streptococcus dysgalactiae, Its Subspecies, and Its Clinical and Phylogenetic Relationship to Streptococcus pyogenes

    PubMed Central

    Jensen, Anders

    2012-01-01

    The taxonomic status and structure of Streptococcus dysgalactiae have been the object of much confusion. Bacteria belonging to this species are usually referred to as Lancefield group C or group G streptococci in clinical settings in spite of the fact that these terms lack precision and prevent recognition of the exact clinical relevance of these bacteria. The purpose of this study was to develop an improved basis for delineation and identification of the individual species of the pyogenic group of streptococci in the clinical microbiology laboratory, with a special focus on S. dysgalactiae. We critically reexamined the genetic relationships of the species S. dysgalactiae, Streptococcus pyogenes, Streptococcus canis, and Streptococcus equi, which may share Lancefield group antigens, by phylogenetic reconstruction based on multilocus sequence analysis (MLSA) and 16S rRNA gene sequences and by emm typing combined with phenotypic characterization. Analysis of concatenated sequences of seven genes previously used for examination of viridans streptococci distinguished robust and coherent clusters. S. dysgalactiae consists of two separate clusters consistent with the two recognized subspecies dysgalactiae and equisimilis. Both taxa share alleles with S. pyogenes in several housekeeping genes, which invalidates identification based on single-locus sequencing. S. dysgalactiae, S. canis, and S. pyogenes constitute a closely related branch within the genus Streptococcus indicative of recent descent from a common ancestor, while S. equi is highly divergent from other species of the pyogenic group streptococci. The results provide an improved basis for identification of clinically important pyogenic group streptococci and explain the overlapping spectrum of infections caused by the species associated with humans. PMID:22075580

  13. Population structure of Streptococcus oralis

    PubMed Central

    Do, Thuy; Jolley, Keith A.; Maiden, Martin C. J.; Gilbert, Steven C.; Clark, Douglas; Wade, William G.; Beighton, David

    2009-01-01

    Streptococcus oralis is a member of the normal human oral microbiota, capable of opportunistic pathogenicity; like related oral streptococci, it exhibits appreciable phenotypic and genetic variation. A multilocus sequence typing (MLST) scheme for S. oralis was developed and the resultant data analysed to examine the population structure of the species. Analysis of 113 isolates, confirmed as belonging to the S. oralis/mitis group by 16S rRNA gene sequencing, characterized the population as highly diverse and undergoing inter- and intra-species recombination with a probable clonal complex structure. ClonalFrame analysis of these S. oralis isolates along with examples of Streptococcus pneumoniae, Streptococcus mitis and Streptococcus pseudopneumoniae grouped the named species into distinct, coherent populations and did not support the clustering of S. pseudopneumoniae with S. mitis as reported previously using distance-based methods. Analysis of the individual loci suggested that this discrepancy was due to the possible hybrid nature of S. pseudopneumoniae. The data are available on the public MLST website (http://pubmlst.org/soralis/). PMID:19423627

  14. Future challenges in the elimination of bacterial meningitis.

    PubMed

    Bottomley, Matthew J; Serruto, Davide; Sáfadi, Marco Aurélio Palazzi; Klugman, Keith P

    2012-05-30

    Despite the widespread implementation of several effective vaccines over the past few decades, bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Group B Streptococcus (GBS) still results in unacceptably high levels of human mortality and morbidity. A residual disease burden due to bacterial meningitis is also apparent due to a number of persistent or emerging pathogens, including Mycobacterium tuberculosis, Escherichia coli, Staphylococcus aureus, Salmonella spp. and Streptococcus suis. Here, we review the current status of bacterial meningitis caused by these pathogens, highlighting how past and present vaccination programs have attempted to counter these pathogens. We discuss how improved pathogen surveillance, implementation of current vaccines, and development of novel vaccines may be expected to further reduce bacterial meningitis and related diseases in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Improved method for rapid and accurate isolation and identification of Streptococcus mutans and Streptococcus sobrinus from human plaque samples.

    PubMed

    Villhauer, Alissa L; Lynch, David J; Drake, David R

    2017-08-01

    Mutans streptococci (MS), specifically Streptococcus mutans (SM) and Streptococcus sobrinus (SS), are bacterial species frequently targeted for investigation due to their role in the etiology of dental caries. Differentiation of S. mutans and S. sobrinus is an essential part of exploring the role of these organisms in disease progression and the impact of the presence of either/both on a subject's caries experience. Of vital importance to the study of these organisms is an identification protocol that allows us to distinguish between the two species in an easy, accurate, and timely manner. While conducting a 5-year birth cohort study in a Northern Plains American Indian tribe, the need for a more rapid procedure for isolating and identifying high volumes of MS was recognized. We report here on the development of an accurate and rapid method for MS identification. Accuracy, ease of use, and material and time requirements for morphological differentiation on selective agar, biochemical tests, and various combinations of PCR primers were compared. The final protocol included preliminary identification based on colony morphology followed by PCR confirmation of species identification using primers targeting regions of the glucosyltransferase (gtf) genes of SM and SS. This method of isolation and identification was found to be highly accurate, more rapid than the previous methodology used, and easily learned. It resulted in more efficient use of both time and material resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an

  17. 9230 FECAL ENTEROCOCCUS/STREPTOCOCCUS GROUPS

    EPA Science Inventory

    In 1903 the genus name Enterococcus was proposed for gram-positive, catalase-negative, coccoid-shaped bacterial of intestinal origin. Several years later, it was suggested that the genus name be changed to Streptococcus because of the organisms' ability to form chains of coccoid...

  18. Aerobic bacterial flora of addled raptor eggs in Saskatchewan.

    PubMed

    Houston, C S; Saunders, J R; Crawford, R D

    1997-04-01

    In south-central Saskatchewan, Canada, in 1986, 1987 and 1989, the aerobic bacterial flora was evaluated from 75 unhatched raptor eggs of three species: 42 of the Swainson's hawk (Buteo Swainsoni), 21 of the ferruginous hawk (Buteo regalis), and 12 of the great horned owl (Bubo virginianus). In addled Swainson's hawk eggs, the most common bacterial genera were Enterobacter (18 eggs), Escherichia (12), and Streptococcus (10). Seven great horned owl eggs and six ferruginous hawk eggs also contained Escherichia coli. Salmonella spp. were not isolated. These bacteria were interpreted as secondary contaminants and not the primary cause of reproductive failure.

  19. Microbiological etiology and susceptibility of bacterial conjunctivitis isolates from clinical trials with ophthalmic, twice-daily besifloxacin.

    PubMed

    Haas, Wolfgang; Gearinger, Lynne S; Hesje, Christine K; Sanfilippo, Christine M; Morris, Timothy W

    2012-05-01

    Bacterial conjunctivitis is a contagious infection of the surface of the eye usually treated empirically with topical antibiotics. Since the etiologic agent is rarely identified, it is important to monitor which bacteria cause conjunctivitis and determine their antibacterial resistance profiles. A total of 496 bacterial samples were isolated during a randomized, double-masked, vehicle-controlled, parallel-group study conducted in the United States with besifloxacin ophthalmic suspension 0.6% dosed twice daily. Species were determined by standard biochemical and/or molecular identification methods. Minimum inhibitory concentrations were determined according to Clinical and Laboratory Standards Institute standards. The most prevalent species was Haemophilus influenzae, followed by Staphylococcus epidermidis, Staphylococcus aureus, the Streptococcus mitis group, and Streptococcus pneumoniae. One species identified in this study, which was not previously noted as a common cause of bacterial conjunctivitis, was Dolosigranulum pigrum. Ampicillin resistance was common among H. influenzae isolates, while macrolide resistance was high among S. pneumoniae, S. epidermidis, and S. aureus. The latter two species also included a number of isolates resistant to methicillin and ciprofloxacin. Antibiotic resistance among isolates remains a concern and the appearance of an emerging ocular pathogen, D. pigrum, suggests the need for continued observation. The topical ophthalmic fluoroquinolones continue to provide a good balance of low to moderate (i.e., manageable) levels of resistance plus broad-spectrum coverage for empiric treatment of ocular infections.

  20. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence

    PubMed Central

    Nguyen, Scott V.; McShan, William M.

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5′ end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges. PMID:25161960

  1. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence.

    PubMed

    Nguyen, Scott V; McShan, William M

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.

  2. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    PubMed

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  3. Phylogenomic and MALDI-TOF MS Analysis of Streptococcus sinensis HKU4T Reveals a Distinct Phylogenetic Clade in the Genus Streptococcus

    PubMed Central

    Tse, Herman; Chen, Jonathan H.K.; Tang, Ying; Lau, Susanna K.P.; Woo, Patrick C.Y.

    2014-01-01

    Streptococcus sinensis is a recently discovered human pathogen isolated from blood cultures of patients with infective endocarditis. Its phylogenetic position, as well as those of its closely related species, remains inconclusive when single genes were used for phylogenetic analysis. For example, S. sinensis branched out from members of the anginosus, mitis, and sanguinis groups in the 16S ribosomal RNA gene phylogenetic tree, but it was clustered with members of the anginosus and sanguinis groups when groEL gene sequences used for analysis. In this study, we sequenced the draft genome of S. sinensis and used a polyphasic approach, including concatenated genes, whole genomes, and matrix-assisted laser desorption ionization-time of flight mass spectrometry to analyze the phylogeny of S. sinensis. The size of the S. sinensis draft genome is 2.06 Mb, with GC content of 42.2%. Phylogenetic analysis using 50 concatenated genes or whole genomes revealed that S. sinensis formed a distinct cluster with Streptococcus oligofermentans and Streptococcus cristatus, and these three streptococci were clustered with the “sanguinis group.” As for phylogenetic analysis using hierarchical cluster analysis of the mass spectra of streptococci, S. sinensis also formed a distinct cluster with S. oligofermentans and S. cristatus, but these three streptococci were clustered with the “mitis group.” On the basis of the findings, we propose a novel group, named “sinensis group,” to include S. sinensis, S. oligofermentans, and S. cristatus, in the Streptococcus genus. Our study also illustrates the power of phylogenomic analyses for resolving ambiguities in bacterial taxonomy. PMID:25331233

  4. The Effect of a Low Fluoride Delivery System on Bacterial Metabolism.

    DTIC Science & Technology

    1980-09-01

    Fluorides, an4 -Ique mechanisms, slow release delivery, temporary restora- tions, bacterial attachment, Streptococcus mutans , bacterial metabo’ilsm...concentrations of NaF, SnF 4 , Na2SnF6 , TiF 4 , and SnCI2 on altering plaque formation by Streptococcus mutans NCTC 10449. Specific tests were...preparation. Microorganisms, Growth Media, and Growth A streptomycin resistant mutant of Streptococcus mutans NCTC 10449 (Bratthall serotype c) has been

  5. Bacterial Species and Antibiotic Sensitivity in Korean Patients Diagnosed with Acute Otitis Media and Otitis Media with Effusion.

    PubMed

    Kim, Sang Hoon; Jeon, Eun Ju; Hong, Seok Min; Bae, Chang Hoon; Lee, Ho Yun; Park, Moo Kyun; Byun, Jae Yong; Kim, Myung Gu; Yeo, Seung Geun

    2017-04-01

    Changes over time in pathogens and their antibiotic sensitivity resulting from the recent overuse and misuse of antibiotics in otitis media (OM) have complicated treatment. This study evaluated changes over 5 years in principal pathogens and their antibiotic sensitivity in patients in Korea diagnosed with acute OM (AOM) and OM with effusion (OME). The study population consisted of 683 patients who visited the outpatient department of otorhinolaryngology in 7 tertiary hospitals in Korea between January 2010 and May 2015 and were diagnosed with acute AOM or OME. Aural discharge or middle ear fluid were collected from patients in the operating room or outpatient department and subjected to tests of bacterial identification and antibiotic sensitivity. The overall bacteria detection rate of AOM was 62.3% and OME was 40.9%. The most frequently isolated Gram-positive bacterial species was coagulase negative Staphylococcus aureus (CNS) followed by methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Streptococcus pneumonia (SP), whereas the most frequently isolated Gram-negative bacterium was Pseudomonas aeruginosa (PA). Regardless of OM subtype, ≥ 80% of CNS and MRSA strains were resistant to penicillin (PC) and tetracycline (TC); isolated MRSA strains showed low sensitivity to other antibiotics, with 100% resistant to PC, TC, cefoxitin (CFT), and erythromycin (EM); and isolated PA showed low sensitivity to quinolone antibiotics, including ciprofloxacin (CIP) and levofloxacin (LFX), and to aminoglycosides. Bacterial species and antibiotic sensitivity did not change significantly over 5 years. The rate of detection of MRSA was higher in OME than in previous studies. As bacterial predominance and antibiotic sensitivity could change over time, continuous and periodic surveillance is necessary in guiding appropriate antibacterial therapy. © 2017 The Korean Academy of Medical Sciences.

  6. StreptoBase: An Oral Streptococcus mitis Group Genomic Resource and Analysis Platform.

    PubMed

    Zheng, Wenning; Tan, Tze King; Paterson, Ian C; Mutha, Naresh V R; Siow, Cheuk Chuen; Tan, Shi Yang; Old, Lesley A; Jakubovics, Nicholas S; Choo, Siew Woh

    2016-01-01

    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.

  7. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions.

    PubMed

    Shabayek, Sarah; Bauer, Richard; Mauerer, Stefanie; Mizaikoff, Boris; Spellerberg, Barbara

    2016-05-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance-associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe(2+) and Mn(2+) and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH-regulated NRAMP Mn(2+) /Fe(2+) transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages. © 2016 John Wiley & Sons Ltd.

  8. Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae.

    PubMed

    Lai, Liying; Dai, Jiao; Tang, Huanyu; Zhang, Shouming; Wu, Chunyan; Qiu, Wancen; Lu, Chengping; Yao, Huochun; Fan, Hongjie; Wu, Zongfu

    2017-06-01

    Streptococcus suis (SS), an important pathogen for pigs, is not only considered as a zoonotic agent for humans, but is also recognized as a major reservoir of antimicrobial resistance contributing to the spread of resistance genes to other pathogenic Streptococcus species. In addition to serotype 2 (SS2), serotype 9 (SS9) is another prevalent serotype isolated from diseased pigs. Although many SS strains have been sequenced, the complete genome of a non-SS2 virulent strain has been unavailable to date. Here, we report the complete genome of GZ0565, a virulent strain of SS9, isolated from a pig with meningitis. Comparative genomic analysis revealed five new putative virulence or antimicrobial resistance-associated genes in strain GZ0565 but not in SS2 virulent strains. These five genes encode a putative triacylglycerol lipase, a TipAS antibiotic-recognition domain protein, a putative TetR family transcriptional repressor, a protein containing a LPXTG domain and a G5 domain, and a type VII secretion system (T7SS) putative substrate (EsxA), respectively. Western blot analysis showed that strain GZ0565 can secrete EsxA. We generated an esxA deletion mutant and showed that EsxA contributes to SS virulence in a mouse infection model. Additionally, the antibiotic resistance gene vanZ SS was identified and expression of vanZ SS conferred resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. We believe this is the first experimental demonstration of the existence of the T7SS putative substrate EsxA and its contribution to bacterial virulence in SS. Together, our results contribute to further understanding of the virulence and antimicrobial resistance characteristics of SS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species

    PubMed Central

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J.; Paton, Lois; Woof, Jenny M.

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use. PMID:27749921

  10. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis▿†

    PubMed Central

    Nho, Seong Won; Hikima, Jun-ichi; Cha, In Seok; Park, Seong Bin; Jang, Ho Bin; del Castillo, Carmelo S.; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi; Jung, Tae Sung

    2011-01-01

    Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae. PMID:21531805

  11. Streptococcus loxodontisalivarius sp. nov. and Streptococcus saliviloxodontae sp. nov., isolated from oral cavities of elephants.

    PubMed

    Saito, Masanori; Shinozaki-Kuwahara, Noriko; Hirasawa, Masatomo; Takada, Kazuko

    2014-09-01

    Four Gram-stain-positive, catalase-negative, coccoid-shaped organisms were isolated from elephant oral cavities. The isolates were tentatively identified as streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed the organisms to be members of the genus Streptococcus. Two isolates (NUM 6304(T) and NUM 6312) were related most closely to Streptococcus salivarius with 96.8 % and 93.1 % similarity based on the 16S rRNA gene and the RNA polymerase β subunit encoding gene (rpoB), respectively, and to Streptococcus vestibularis with 83.7 % similarity based on the 60 kDa heat-shock protein gene (groEL). The other two isolates (NUM 6306(T) and NUM 6318) were related most closely to S. vestibularis with 97.0 % and 82.9 % similarity based on the 16S rRNA and groEL genes, respectively, and to S. salivarius with 93.5 % similarity based on the rpoB gene. Based on phylogenetic and phenotypic evidence, these isolates are suggested to represent novel species of the genus Streptococcus, for which the names Streptococcus loxodontisalivarius sp. nov. (type strain NUM 6304(T) = JCM 19287(T) = DSM 27382(T)) and Streptococcus saliviloxodontae sp. nov. (type strain NUM 6306(T) = JCM 19288(T) = DSM 27513(T)) are proposed. © 2014 IUMS.

  12. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    PubMed

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex

    PubMed Central

    2014-01-01

    Background Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Results Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly

  14. Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex.

    PubMed

    Papadimitriou, Konstantinos; Anastasiou, Rania; Mavrogonatou, Eleni; Blom, Jochen; Papandreou, Nikos C; Hamodrakas, Stavros J; Ferreira, Stéphanie; Renault, Pierre; Supply, Philip; Pot, Bruno; Tsakalidou, Effie

    2014-04-08

    Within the genus Streptococcus, only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus. In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus. For example, S. macedonicus has retained only one (i.e. the pil3) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were

  15. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide

    PubMed Central

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream. PMID:28222125

  16. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    PubMed

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  17. Monoclonal Idiotope Vaccine against Streptococcus pneumoniae Infection

    NASA Astrophysics Data System (ADS)

    McNamara, Mary K.; Ward, Ronald E.; Kohler, Heinz

    1984-12-01

    A monoclonal anti-idiotope antibody coupled to a carrier protein was used to immunize BALB/c mice against a lethal Streptococcus pneumoniae infection. Vaccinated mice developed a high titer of antibody to phosphorylcholine, which is known to protect against infection with Streptococcus pneumoniae. Measurement of the median lethal dose of the bacteria indicated that anti-idiotope immunization significantly increased the resistance of BALB/c mice to the bacterial challenge. Antibody to an idiotope can thus be used as an antigen substitute for the induction of protective immunity.

  18. Bacterial invasion into radicular dentine-an in vitro study.

    PubMed

    Stauffacher, Simone; Lussi, Adrian; Nietzsche, Sandor; Neuhaus, Klaus W; Eick, Sigrun

    2017-06-01

    We wanted to investigate differences in invasiveness into radicular dentinal tubules by monocultured and co-cultured bacteria frequently found in infected root canals. Fifty-one human roots were incubated for 8 weeks with monocultured Streptococcus gordonii ATCC 10558, Streptococcus sanguinis ATCC 10556, and with five capnophiles/anaerobes as well as with capnophiles/anaerobes co-cultured with a streptococcal species. Thereafter, bacterial samples were cultured from the inner, middle, and outer third of the root dentine of longitudinally broken teeth (n = 5). In addition, scanning electron microscopy (SEM) images were obtained. Single gram-positive species were able to penetrate into the middle and outer third of the root dentine. Fusobacterium nucleatum ATCC 25586 was not found in any of the dentine specimens. Prevotella intermedia ATCC 25611 and Porphyromonas gingivalis ATCC 33277 were found in the inner and middle third. The bacterial load of streptococci was higher in all thirds in co-cultures compared to single infections. In co-cultures with streptococci, Actinomyces oris ATCC 43146 was found in the outer third in 9/10 samples, whereas P. intermedia ATCC 25611 was not detectable inside dentine. Co-culture with S. sanguinis ATCC 10556 enabled F. nucleatum ATCC 25586 to invade dentine; SEM images showed that F. nucleatum ATCC 25586 had a swollen shape. Invasiveness of bacteria into dentinal tubules is species-specific and may change depending on culturing as a single species or co-culturing with other bacteria. Oral streptococci may promote or inhibit invasion of capnophiles/anaerobes into radicular dentine.

  19. Genomics, evolution, and molecular epidemiology of the Streptococcus bovis/Streptococcus equinus complex (SBSEC).

    PubMed

    Jans, Christoph; Meile, Leo; Lacroix, Christophe; Stevens, Marc J A

    2015-07-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) is a group of human and animal derived streptococci that are commensals (rumen and gastrointestinal tract), opportunistic pathogens or food fermentation associates. The classification of SBSEC has undergone massive changes and currently comprises 7 (sub)species grouped into four branches based on sequences identities: the Streptococcus gallolyticus, the Streptococcus equinus, the Streptococcus infantarius and the Streptococcus alactolyticus branch. In animals, SBSEC are causative agents for ruminal acidosis, potentially laminitis and infective endocarditis (IE). In humans, a strong association was established between bacteraemia, IE and colorectal cancer. Especially the SBSEC-species S. gallolyticus subsp. gallolyticus is an emerging pathogen for IE and prosthetic joint infections. S. gallolyticus subsp. pasteurianus and the S. infantarius branch are further associated with biliary and urinary tract infections. Knowledge on pathogenic mechanisms is so far limited to colonization factors such as pili and biofilm formation. Certain strain variants of S. gallolyticus subsp. macedonicus and S. infantarius subsp. infantarius are associated with traditional dairy and plant-based food fermentations and display traits suggesting safety. However, due to their close relationship to virulent strains, their use in food fermentation has to be critically assessed. Additionally, implementing accurate and up-to-date taxonomy is critical to enable appropriate treatment of patients and risk assessment of species and strains via recently developed multilocus sequence typing schemes to enable comparative global epidemiology. Comparative genomics revealed that SBSEC strains harbour genomics islands (GI) that seem acquired from other streptococci by horizontal gene transfer. In case of virulent strains these GI frequently encode putative virulence factors, in strains from food fermentation the GI encode functions that are

  20. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  1. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation

    PubMed Central

    2013-01-01

    Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in

  2. Recent trends in pediatric bacterial meningitis in Japan--a country where Haemophilus influenzae type b and Streptococcus pneumoniae conjugated vaccines have just been introduced.

    PubMed

    Shinjoh, Masayoshi; Iwata, Satoshi; Yagihashi, Tatsuhiko; Sato, Yoshitake; Akita, Hironobu; Takahashi, Takao; Sunakawa, Keisuke

    2014-08-01

    To investigate the trends in incidence and the characteristics of bacterial meningitis in Japan where Haemophilus influenzae type b (Hib) vaccine and 7-valent pneumococcal conjugated vaccine (PCV7) were introduced in 2008 and 2010, respectively, which was 5-20 years after their introduction in western countries. The nationwide Japanese survey of pediatric and neonatal bacterial meningitis was performed in 2011 and 2012. We analyzed the epidemiological and clinical data, and compared the information obtained in the previous nationwide survey database. We also investigated the risk factors for disease outcome. In the 2011-2012 surveys, 357 patients were evaluated. H. influenzae, Streptococcus pneumoniae, Streptococcus agalactiae and Escherichia coli were the main organisms. The number of patients hospitalized with bacterial meningitis per 1000 admissions decreased from 1.31 in 2009 to 0.43 in 2012 (p < 0.001). The incidence of H. influenzae and S. pneumoniae meningitis also decreased from 0.66 to 0.08 (p < 0.001), and 0.30 to 0.06 (p < 0.001), respectively. Only 0-2 cases with Neisseria meningitidis were reported each year throughout 2001-2012. The median patient age was 10-12 months in 2001-2011, and became lower in 2012 (2 month old) (p < 0.001). The fatality rate for S. agalactiae is the highest (5.9% (11/187)) throughout 2001-2012 among the four organisms. Risk factors for death and sequelae were convulsions at onset, low CSF glucose, S. agalactiae etiology, and persistent positive CSF culture. Hib vaccine and PCV7 decreased the rate of bacterial meningitis. Earlier introduction of these vaccines may have prevented bacterial meningitis among Japanese children. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Bacterial keratitis: a prospective clinical and microbiological study

    PubMed Central

    Schaefer, F.; Bruttin, O.; Zografos, L.; Guex-Crosier, Y.

    2001-01-01

    AIM—To define the clinical and microbiological profile of bacterial keratitis at the Jules Gonin Eye Hospital and to test the in vitro bacterial resistance.
METHODS—Patients presenting with bacterial keratitis were prospectively followed; clinical features (age, risk factors, visual acuity) and response to therapy were analysed. Bacteriological profile was determined and the sensitivity/resistance of isolated strains were tested towards 12 ocular antibiotics (NCCLS disc diffusion test).
RESULTS—85 consecutive patients (mean age 44.3 (SD 20.7) years) were prospectively enrolled from 1 March 1997 to 30 November 1998. The following risk factors were identified: contact lens wear, 36%; blepharitis, 21%; trauma, 20%; xerophthalmia, 15%; keratopathies, 8%; and eyelid abnormalities, 6%. The most commonly isolated bacteria were Staphylococcus epidermidis, 40%; Staphylococcus aureus, 22%; Streptococcus pneumoniae, 8%; others Streptococcus species, 5%; Pseudomonas, 9%; Moraxella and Serratia marcescens, 5% each; Bacillus, Corynebacterium, Alcaligenes xyloxidans, Morganella morganii, and Haemophilus influenza, 1% each. 1-15% of strains were resistant to fluoroquinolones, 13-22% to aminoglycosides, 37% to cefazolin, 18% to chloramphenicol, 54% to polymyxin B, 51% to fusidic acid, and 45% to bacitracin. Five of the 85 patients (5.8%) had a poor clinical outcome with a visual loss of one or more lines of visual acuity.
CONCLUSION—Fluoroquinolones appear to be the therapy of choice for bacterial keratitis, but, based upon these in vitro studies, some strains may be resistant.

 PMID:11423460

  4. Phylogenomic and MALDI-TOF MS analysis of Streptococcus sinensis HKU4T reveals a distinct phylogenetic clade in the genus Streptococcus.

    PubMed

    Teng, Jade L L; Huang, Yi; Tse, Herman; Chen, Jonathan H K; Tang, Ying; Lau, Susanna K P; Woo, Patrick C Y

    2014-10-20

    Streptococcus sinensis is a recently discovered human pathogen isolated from blood cultures of patients with infective endocarditis. Its phylogenetic position, as well as those of its closely related species, remains inconclusive when single genes were used for phylogenetic analysis. For example, S. sinensis branched out from members of the anginosus, mitis, and sanguinis groups in the 16S ribosomal RNA gene phylogenetic tree, but it was clustered with members of the anginosus and sanguinis groups when groEL gene sequences used for analysis. In this study, we sequenced the draft genome of S. sinensis and used a polyphasic approach, including concatenated genes, whole genomes, and matrix-assisted laser desorption ionization-time of flight mass spectrometry to analyze the phylogeny of S. sinensis. The size of the S. sinensis draft genome is 2.06 Mb, with GC content of 42.2%. Phylogenetic analysis using 50 concatenated genes or whole genomes revealed that S. sinensis formed a distinct cluster with Streptococcus oligofermentans and Streptococcus cristatus, and these three streptococci were clustered with the "sanguinis group." As for phylogenetic analysis using hierarchical cluster analysis of the mass spectra of streptococci, S. sinensis also formed a distinct cluster with S. oligofermentans and S. cristatus, but these three streptococci were clustered with the "mitis group." On the basis of the findings, we propose a novel group, named "sinensis group," to include S. sinensis, S. oligofermentans, and S. cristatus, in the Streptococcus genus. Our study also illustrates the power of phylogenomic analyses for resolving ambiguities in bacterial taxonomy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Community-acquired bacterial meningitis.

    PubMed

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G; Wijdicks, Eelco

    2016-11-03

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma (nosocomial bacterial meningitis). Despite advances in treatment and vaccinations, community-acquired bacterial meningitis remains one of the most important infectious diseases worldwide. Streptococcus pneumoniae and Neisseria meningitidis are the most common causative bacteria and are associated with high mortality and morbidity; vaccines targeting these organisms, which have designs similar to the successful vaccine that targets Haemophilus influenzae type b meningitis, are now being used in many routine vaccination programmes. Experimental and genetic association studies have increased our knowledge about the pathogenesis of bacterial meningitis. Early antibiotic treatment improves the outcome, but the growing emergence of drug resistance as well as shifts in the distribution of serotypes and groups are fuelling further development of new vaccines and treatment strategies. Corticosteroids were found to be beneficial in high-income countries depending on the bacterial species. Further improvements in the outcome are likely to come from dampening the host inflammatory response and implementing preventive measures, especially the development of new vaccines.

  6. Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus) and its transmission potential to cohabitated sheepshead minnows (Cyprinodon variegatus)

    USDA-ARS?s Scientific Manuscript database

    Streptococcus agalactiae has emerged as an economically important bacterial pathogen affecting global aquaculture. Worldwide aquaculture losses due to S. agalactiae are estimated around U.S. $1 billion, annually. Streptococcus agalactiae also known as a Lancefield Group B Streptococcus (GBS) is a Gr...

  7. Antibiotic Susceptibilities of Genetically Characterized Streptococcus milleri Group Strains

    PubMed Central

    Tracy, Michael; Wanahita, Anna; Shuhatovich, Yevgeny; Goldsmith, Elizabeth A.; Clarridge, Jill E.; Musher, Daniel M.

    2001-01-01

    Previous studies of the antibiotic susceptibility of Streptococcus milleri group organisms have distinguished among species by using phenotypic techniques. Using 44 isolates that were speciated by 16S rRNA gene sequencing, we studied the MICs and minimum bactericidal concentrations of penicillin, ampicillin, ceftriaxone, and clindamycin for Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus. None of the organisms was resistant to beta-lactam antibiotics, although a few isolates were intermediately resistant; one strain of S. anginosus was tolerant to ampicillin, and another was tolerant to ceftriaxone. Six isolates were resistant to clindamycin, with representation from each of the three species. Relatively small differences in antibiotic susceptibilities among species of the S. milleri group show that speciation is unlikely to be important in selecting an antibiotic to treat infection caused by one of these isolates. PMID:11302819

  8. Bacterial endophthalmitis after resident-performed cataract surgery.

    PubMed

    Hollander, David A; Vagefi, M Reza; Seiff, Stuart R; Stewart, Jay M

    2006-05-01

    To determine if there is an increased rate of postoperative bacterial endophthalmitis after resident-performed cataract extraction relative to the reported rates of experienced surgeons. Retrospective, observational case series. The operative reports of the resident-performed cataract surgeries at San Francisco General Hospital between 1983 and 2002 were reviewed. Cases of culture-positive bacterial endophthalmitis and vitreous loss were identified. Between 1983 and 2002, three cases (0.11%) of culture-positive bacterial endophthalmitis occurred after 2718 resident-performed cataract extractions. The overall vitreous loss rate was 6.7%. Two endophthalmitis cases were acute (Staphylococcus epidermidis, Streptococcus viridans), presenting within five days of surgeries complicated by vitreous loss, and one case was delayed-onset (Corynebacterium species) after Nd:YAG posterior capsulotomy after uncomplicated cataract extraction. Despite higher rates of vitreous loss, the rate of endophthalmitis following resident-performed cataract surgery remains comparable with the rates of more experienced surgeons.

  9. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival

    PubMed Central

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent

    2016-01-01

    ABSTRACT The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae. This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. PMID:27672194

  10. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  11. Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans.

    PubMed

    Ferreira, E L; Batista, M T; Cavalcante, R C M; Pegos, V R; Passos, H M; Silva, D A; Balan, A; Ferreira, L C S; Ferreira, R C C

    2016-10-01

    Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Distinctive bacterial communities in the rhizoplane of four tropical tree species.

    PubMed

    Oh, Yoon Myung; Kim, Mincheol; Lee-Cruz, Larisa; Lai-Hoe, Ang; Go, Rusea; Ainuddin, N; Rahim, Raha Abdul; Shukor, Noraini; Adams, Jonathan M

    2012-11-01

    It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0-10 cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both

  13. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta

    PubMed Central

    Whidbey, Christopher; Harrell, Maria Isabel; Burnside, Kellie; Ngo, Lisa; Becraft, Alexis K.; Iyer, Lakshminarayan M.; Aravind, L.; Hitti, Jane

    2013-01-01

    Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth, and newborn infections. Group B Streptococcus (GBS) is an important human bacterial pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero infection remain unknown. Previous studies indicated that GBS are unable to invade human amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamnolipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the importance of the hemolytic GBS pigment in ascending infection and fetal injury. PMID:23712433

  14. Antimicrobial effects of commensal oral species are regulated by environmental factors.

    PubMed

    Herrero, Esteban Rodriguez; Slomka, Vera; Bernaerts, Kristel; Boon, Nico; Hernandez-Sanabria, Emma; Passoni, Bernardo Born; Quirynen, Marc; Teughels, Wim

    2016-04-01

    The objectives of this study are to identify oral commensal species which can inhibit the growth of the main periodontopathogens, to determine the antimicrobial substances involved in these inhibitory activities and to evaluate the influence of environmental factors on the magnitude of these inhibitions. The spotting technique was used to quantify the capacity of 13 commensal species to inhibit the growth of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia. By altering experimental conditions (distance between spots and size of spots and concentration of commensal and pathogen) as well as environmental factors (inoculation sequence, oxygen and nutrition availability) the influence of these factors was evaluated. Additionally, the mechanism of inhibition was elucidated by performing inhibition experiments in the presence of peroxidase, trypsin and pepsin and by evaluating acid production. Streptococcus sanguinis, Streptococcus cristatus, Streptococcus gordonii, Streptococcus parasanguinis, Streptococcus mitis and Streptococcus oralis significantly inhibit the growth of all pathogens. The volume of the spots and concentration of the commensal have a significant positive correlation with the amount of inhibition whereas distance between the spots and concentration of the pathogen reduced the amount of inhibition. Inhibition is only observed when the commensal species are inoculated 24h before the pathogen and is more pronounced under aerobic conditions. Hydrogen peroxide production by the commensal is the main mechanism of inhibition. Bacterial antagonism is species specific and depending on experimental as well as environmental conditions. Blocking hydrogen peroxide production neutralizes the inhibitory effect. Identifying beneficial oral bacteria and understanding how they inhibit pathogens might help to unravel the mechanisms behind dysbiotic oral diseases. In this context, this study points towards an important role for

  15. [Streptococcus suis infection--clinical manifestations].

    PubMed

    Dragojlović, Julijana; Milosević, Branko; Sasić, Neda; Pelemis, Mijomir; Sasić, Milan

    2005-01-01

    Streptococcus suis is a bacterium causing a disease in pigs and rarely in humans. This zoonosis is mostly found as a sporadic disease in individuals that were in contact with the affected or infected pigs: farmers, veterinarians and workers engaged in fresh pork processing. It is assumed that the bacterium enters the body through a cut abrasion in the skin. Initially, the condition resembles a flu, followed by signs of bacteriemia and sepsis. The most frequent clinical manifestation of Streptococcus suis infection is meningitis, leading to hearing loss in over 75% of patients, and subsequent arthritis, endophtalmitis, endocarditis and pneumonia. Toxic shock syndrome with hemorhagic manifestations rarely develops. This study included five male patients aged 22 to 63 years treated in the Intensive Care Unit of the Institute of Infectious and Tropical Diseases in Belgrade, due to Streptococcus suis infection. The aim of this study was to point to the existence of this bacteria in our environment, to describe clinical manifestations of the disease and to point out the importance of its prevention. All patients had epidemiological evidence of being in contact with pork meat. There were no data about diseased pigs. The estimated incubation period was 4 to 8 days. All patients had meningeal signs. Clinical symptoms included shivering, fever, vomiting, headache, malaise, vertigo and tinitus. Three patients presented with alerterd level of awarrness. Four patients developed very severe bilateral hearing impairment, whereas one endophtalmtis and one developed endocarditis. The cerebrospinal fluid (CSF) was opalescent in four patients, and only one patient presented with clear CSF. CSF examination showed typical changes characteristic for bacterial meningitis. Streptoccocus suis was isolated in CSF in all patients, and in one patient the bacteria was isolated in blood as well. All patients underwent treatement with II and III generation cephalosporins and one with one

  16. Towards large-scale FAME-based bacterial species identification using machine learning techniques.

    PubMed

    Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul

    2009-05-01

    In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species

  17. Streptococcus pyogenes meningitis: report of a case and review of the literature.

    PubMed

    Berner, R; Herdeg, S; Gordjani, N; Brandis, M

    2000-07-01

    Streptococcus pyogenes is a very uncommon cause of bacterial meningitis beyond the neonatal period. A case report and a review of the recent literature is presented. We report on a previously healthy 7-year-old boy who developed S. pyogenes meningitis following a 2-day history of otitis media. A CT scan revealed right-sided mastoiditis as a possible focus of infection. The patient was treated with penicillin G for 14 days. The clinical course was uneventful, and the recovered without sequelae. By means of the polymerase chain reaction, the presence of streptococcal pyrogenic exotoxin (SPE) B and SPE C, but not SPE A genes was discovered from the bacterial DNA. Streptococcus pyogenes is a rare cause of bacterial meningitis but has to be considered as the causative pathogen beyond the neonatal period.

  18. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov.

    PubMed

    Nomoto, R; Maruyama, F; Ishida, S; Tohya, M; Sekizaki, T; Osawa, Ro

    2015-02-01

    In order to clarify the taxonomic position of serotypes 20, 22 and 26 of Streptococcus suis, biochemical and molecular genetic studies were performed on isolates (SUT-7, SUT-286(T), SUT-319, SUT-328 and SUT-380) reacted with specific antisera of serotypes 20, 22 or 26 from the saliva of healthy pigs as well as reference strains of serotypes 20, 22 and 26. Comparative recN gene sequencing showed high genetic relatedness among our isolates, but marked differences from the type strain S. suis NCTC 10234(T), i.e. 74.8-75.7 % sequence similarity. The genomic relatedness between the isolates and other strains of species of the genus Streptococcus, including S. suis, was calculated using the average nucleotide identity values of whole genome sequences, which indicated that serotypes 20, 22 and 26 should be removed taxonomically from S. suis and treated as a novel genomic species. Comparative sequence analysis revealed 99.0-100 % sequence similarities for the 16S rRNA genes between the reference strains of serotypes 20, 22 and 26, and our isolates. Isolate STU-286(T) had relatively high 16S rRNA gene sequence similarity with S. suis NCTC 10234(T) (98.8 %). SUT-286(T) could be distinguished from S. suis and other closely related species of the genus Streptococcus using biochemical tests. Due to its phylogenetic and phenotypic similarities to S. suis we propose naming the novel species Streptococcus parasuis sp. nov., with SUT-286(T) ( = JCM 30273(T) = DSM 29126(T)) as the type strain. © 2015 IUMS.

  19. Detection of Haemophilus influenzae type b, Streptococcus agalactiae, Streptococcus pneumoniae and Neisseria meningitidis in CSF specimens of children suspicious of Meningitis in Ahvaz, Iran.

    PubMed

    Amin, Mansour; Ghaderpanah, Mozhgan; Navidifar, Tahereh

    2016-10-01

    Meningitis is a life-threatening infection associated with a high mortality and morbidity worldwide. Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are the most prevalent infectious agents that cause bacterial meningitis (BM). The objective of this study was to determine the frequencies of these three bacteria using bacterial cultures and polymerase chain reaction (PCR). In our cross-sectional study, cerebrospinal fluid (CSF) specimens were obtained from 196 patients who were suspected of having BM and referred to the pediatric ward of Abuzar Hospital (Ahvaz, Iran). The samples were monitored by gram stain, cultures, and the PCR method. The patients' age mean was 23 ± 0.56 months. The 196 patients comprised 92 (46.9%) boys and 104 (53.06%) girls. Based on bacterial cultures, just three isolates of H. influenzae were detected. However, PCR detected this bacterium in eight patients. Streptococcus pneumoniae was detected in five (2.5%) patients by the amplification of the lytA gene and in one (0.5%) patient by ply. In this study, no N. meningitidis isolate was in the CSF samples, based on the bacterial culture or PCR results. Streptococcus agalactiae was detected only in one patient, based on PCR. In conclusion, in the present study, the PCR method was more sensitive and rapid than culture for detecting the infectious agents in BM. For this reason, this diagnosis method is recommended for BM. Copyright © 2016. Published by Elsevier Taiwan.

  20. Distribution of 10 periodontal bacterial species in children and adolescents over a 7-year period.

    PubMed

    Nakano, K; Miyamoto, E; Tamura, K; Nemoto, H; Fujita, K; Nomura, R; Ooshima, T

    2008-10-01

    There is scant information available regarding the distribution of periodontal bacterial species in children and adolescents over an extended period. The purpose of this study was to compare bacterial profiles in the same individuals over a period of 7 years. Twenty-six children and adolescents from whom dental plaque and saliva specimens were obtained during both the first (1999-2000) and second (2006-2007) periods, were analyzed. Bacterial DNA was extracted from each specimen and the presence of 10 periodontal bacterial species was determined using a PCR method, with a focus on the red complex species of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Subjects with red complex species in saliva specimens obtained during the second collection possessed a significantly higher number of total bacterial species than those without. The detection rate of the red complex species in the second collection period samples was significantly greater in subjects who had two or more species detected in samples taken during the first collection compared with the other subjects. Subjects possessing red complex species may be at possible risk for infection with a high number of periodontal bacterial species during adolescent and younger adult years.

  1. Differences in Carbohydrates Utilization and Antibiotic Resistance Between Streptococcus macedonicus and Streptococcus thermophilus Strains Isolated from Dairy Products in Italy.

    PubMed

    Tarrah, Armin; Treu, Laura; Giaretta, Sabrina; Duarte, Vinicius; Corich, Viviana; Giacomini, Alessio

    2018-06-18

    Streptococcus thermophilus and S. macedonicus are the only two species of the genus related to food productions so far known. In the present study, eight S. thermophilus and seven S. macedonicus strains isolated from dairy environments in Italy were compared in order to evidence possible species-specific technological characteristics. Their capability to use lactose, galactose, fructose, and glucose, sugars commonly present in foods and two carbohydrates considered as prebiotics, xylose and inulin, along with the respective growth kinetics were studied. Results showed a luxuriant growth on lactose and different behaviors on galactose, glucose, and fructose. No growth on inulin and xylose was recorded, which is a positive feature for strains intended to be used as starter cultures. Growth parameters, namely, λ, µ max , and N max , were estimated by using the Gompertz model. Antibiotic resistance to 14 drugs revealed an overall similar behavior between the two species with only a marked difference regarding gentamycin. Antimicrobial activity was also tested against six deleterious bacterial strains, but none of the strains evidenced inhibitory capabilities. The results presented here could be helpful to compare technological potentialities of the two species and to choose strains of the most suitable species for selected microbiological food transformations.

  2. Purification of preparative quantities of group B Streptococcus type III oligosaccharides.

    PubMed

    Paoletti, L C; Johnson, K D

    1995-06-30

    Many bacterial capsular polysaccharides are regularly repeating units of oligosaccharides. Bacterial oligosaccharides have been used in neoglycoconjugate vaccines and as reagents in the study of specific antibody binding. Unfortunately, separation methods have not been adequate for the purification of preparative quantities of bacterial oligosaccharides. Here we describe a size-exclusion procedure that resulted in the resolution of group B Streptococcus type III oligosaccharides composed of 4-25 sugars.

  3. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival.

    PubMed

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent; Hiron, Aurélia

    2016-12-15

    The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital.

    PubMed

    Moles, Laura; Gómez, Marta; Jiménez, Esther; Bustos, Gerardo; de Andrés, Javier; Melgar, Ana; Escuder, Diana; Fernández, Leónides; Del Campo, Rosa; Rodríguez, Juan Miguel

    2017-01-01

    Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella , and Escherichia . The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis . Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium , and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella , and Streptococcus were the most abundant. Own mother's milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them.

  5. Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital

    PubMed Central

    Moles, Laura; Gómez, Marta; Jiménez, Esther; Bustos, Gerardo; de Andrés, Javier; Melgar, Ana; Escuder, Diana; Fernández, Leónides; del Campo, Rosa; Rodríguez, Juan Miguel

    2017-01-01

    Studies focused on the stomach microbiota are relatively scarce, and most of them are focused on the adult population. The aim of this work is to describe the bacterial communities inhabiting the gastric content (GC) of preterm neonates. For that purpose, GC samples were collected weekly from a total of 13 preterm neonates during their first month of life within their hospital stay. Samples were analyzed by using both culture-dependent and -independent techniques. The former allowed the isolation of bacteria belonging mainly to the genera Enterococcus, Staphylococcus, Streptococcus, Serratia, Klebsiella, and Escherichia. The cultured dominant species in the GC samples during all the hospitalization period were Enterococcus faecalis and Staphylococcus epidermidis. Multilocus sequence typing (MLST) analysis revealed the presence of high-risk clonal complexes associated with the hospital environment, which may colonize enteral feeding tubes. Similarly, the 16S rRNA sequencing showed that Streptococcus, Staphylococcus, Lactobacillus, Enterococcus, Corynebacterium, and Propionibacterium were the dominant genera present at 75% of the gastric samples. However, the genera Serratia, Klebsiella, and Streptococcus were the most abundant. Own mother’s milk (OMM) and donor milk (DM) were collected after their pass through the external feeding tubes to assess their bacterial content. OMM and DM had a similar bacterial pattern to GC. Based on these data, the GC of preterm neonates is dominated by Proteobacteria and Firmicutes and harbors high-risk bacterial clones, which may colonize enteral feeding tubes, and therefore the feeds that pass through them. PMID:28459051

  6. Sequential necrotizing fasciitis caused by the monomicrobial pathogens Streptococcus equisimilis and extended-spectrum beta-lactamase-producing Escherichia coli.

    PubMed

    Endo, Akiko; Matsuoka, Ryosuke; Mizuno, Yasushi; Doi, Asako; Nishioka, Hiroaki

    2016-08-01

    Necrotizing fasciitis is a rapidly progressing bacterial infection of the superficial fascia and subcutaneous tissue that is associated with a high mortality rate and is caused by a single species of bacteria or polymicrobial organisms. Escherichia coli is rarely isolated from patients with monomicrobial disease. Further, there are few reports of extended-spectrum beta-lactamase (ESBL)-producing E. coli associated with necrotizing fasciitis. We report here our treatment of an 85-year-old man who was admitted because of necrotizing fasciitis of his right thigh. Streptococcus equisimilis was detected as a monomicrobial pathogen, and the infection was cured by amputation of the patient's right leg and the administration of antibiotics. However, 5 days after discontinuing antibiotic therapy, he developed necrotizing fasciitis on his right upper limb and died. ESBL-producing E. coli was the only bacterial species isolated from blood and skin cultures. This case demonstrates that ESBL-producing E. coli can cause monomicrobial necrotizing fasciitis, particularly during hospitalization and that a different bacterial species can cause disease shortly after a previous episode. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics

    PubMed Central

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  8. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.

    PubMed

    Cavalcanti, Indira M G; Nobbs, Angela H; Ricomini-Filho, Antônio Pedro; Jenkinson, Howard F; Del Bel Cury, Altair A

    2016-04-01

    Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    PubMed

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    PubMed Central

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  11. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains.

    PubMed

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-04-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli.

  12. An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains

    PubMed Central

    Pichon, Christophe; du Merle, Laurence; Caliot, Marie Elise; Trieu-Cuot, Patrick; Le Bouguénec, Chantal

    2012-01-01

    Characterization of small non-coding ribonucleic acids (sRNA) among the large volume of data generated by high-throughput RNA-seq or tiling microarray analyses remains a challenge. Thus, there is still a need for accurate in silico prediction methods to identify sRNAs within a given bacterial species. After years of effort, dedicated software were developed based on comparative genomic analyses or mathematical/statistical models. Although these genomic analyses enabled sRNAs in intergenic regions to be efficiently identified, they all failed to predict antisense sRNA genes (asRNA), i.e. RNA genes located on the DNA strand complementary to that which encodes the protein. The statistical models enabled any genomic region to be analyzed theorically but not efficiently. We present a new model for in silico identification of sRNA and asRNA candidates within an entire bacterial genome. This model was successfully used to analyze the Gram-negative Escherichia coli and Gram-positive Streptococcus agalactiae. In both bacteria, numerous asRNAs are transcribed from the complementary strand of genes located in pathogenicity islands, strongly suggesting that these asRNAs are regulators of the virulence expression. In particular, we characterized an asRNA that acted as an enhancer-like regulator of the type 1 fimbriae production involved in the virulence of extra-intestinal pathogenic E. coli. PMID:22139924

  13. New bacterial species associated with chronic periodontitis.

    PubMed

    Kumar, P S; Griffen, A L; Barton, J A; Paster, B J; Moeschberger, M L; Leys, E J

    2003-05-01

    Recent investigations of the human subgingival oral flora based on ribosomal 16S cloning and sequencing have shown many of the bacterial species present to be novel species or phylotypes. The purpose of the present investigation was to identify potential periodontal pathogens among these newly identified species and phylotypes. Species-specific ribosomal 16S primers for PCR amplification were developed for detection of new species. Associations with chronic periodontitis were observed for several new species or phylotypes, including uncultivated clones D084 and BH017 from the Deferribacteres phylum, AU126 from the Bacteroidetes phylum, Megasphaera clone BB166, clone X112 from the OP11 phylum, and clone I025 from the TM7 phylum, and the named species Eubacterium saphenum, Porphyromonas endodontalis, Prevotella denticola, and Cryptobacterium curtum. Species or phylotypes more prevalent in periodontal health included two uncultivated phylotypes, clone W090 from the Deferribacteres phylum and clone BU063 from the Bacteroidetes, and named species Atopobium rimae and Atopobium parvulum.

  14. Bacterial-biota dynamics of eight bryophyte species from different ecosystems

    PubMed Central

    Koua, Faisal Hammad Mekky; Kimbara, Kazuhide; Tani, Akio

    2014-01-01

    Despite the importance of bryophyte-associated microorganisms in various ecological aspects including their crucial roles in the soil-enrichment of organic mass and N2 fixation, nonetheless, little is known about the microbial diversity of the bryophyte phyllospheres (epi-/endophytes). To get insights into bacterial community structures and their dynamics on the bryophyte habitats in different ecosystems and their potential biological roles, we utilized the 16S rRNA gene PCR-DGGE and subsequent phylogenetic analyses to investigate the bacterial community of eight bryophyte species collected from three distinct ecosystems from western Japan. Forty-two bacterial species belonging to γ-proteobacteria and Firmicutes with 71.4% and 28.6%, respectively, were identified among 90 DGGE gel band population. These DGGE-bands were assigned to 13 different genera with obvious predomination the genus Clostridium with 21.4% from the total bacterial community. These analyses provide new insights into bryophyte-associated bacteria and their relations to the ecosystems. PMID:25737654

  15. A Murine Model of Group B Streptococcus Vaginal Colonization.

    PubMed

    Patras, Kathryn A; Doran, Kelly S

    2016-11-16

    Streptococcus agalactiae (group B Streptococcus, GBS), is a Gram-positive, asymptomatic colonizer of the human gastrointestinal tract and vaginal tract of 10 - 30% of adults. In immune-compromised individuals, including neonates, pregnant women, and the elderly, GBS may switch to an invasive pathogen causing sepsis, arthritis, pneumonia, and meningitis. Because GBS is a leading bacterial pathogen of neonates, current prophylaxis is comprised of late gestation screening for GBS vaginal colonization and subsequent peripartum antibiotic treatment of GBS-positive mothers. Heavy GBS vaginal burden is a risk factor for both neonatal disease and colonization. Unfortunately, little is known about the host and bacterial factors that promote or permit GBS vaginal colonization. This protocol describes a technique for establishing persistent GBS vaginal colonization using a single β-estradiol pre-treatment and daily sampling to determine bacterial load. It further details methods to administer additional therapies or reagents of interest and to collect vaginal lavage fluid and reproductive tract tissues. This mouse model will further the understanding of the GBS-host interaction within the vaginal environment, which will lead to potential therapeutic targets to control maternal vaginal colonization during pregnancy and to prevent transmission to the vulnerable newborn. It will also be of interest to increase our understanding of general bacterial-host interactions in the female vaginal tract.

  16. The Cryptic Competence Pathway in Streptococcus pyogenes Is Controlled by a Peptide Pheromone

    PubMed Central

    Mashburn-Warren, Lauren; Morrison, Donald A.

    2012-01-01

    Horizontal gene transfer is an important means of bacterial evolution that is facilitated by transduction, conjugation, and natural genetic transformation. Transformation occurs after bacterial cells enter a state of competence, where naked DNA is acquired from the extracellular environment. Induction of the competent state relies on signals that activate master regulators, causing the expression of genes involved in DNA uptake, processing, and recombination. All streptococcal species contain the master regulator SigX and SigX-dependent effector genes required for natural genetic transformation; however, not all streptococcal species have been shown to be naturally competent. We recently demonstrated that competence development in Streptococcus mutans requires the type II ComRS quorum-sensing circuit, comprising an Rgg transcriptional activator and a novel peptide pheromone (L. Mashburn-Warren, D. A. Morrison, and M. J. Federle, Mol. Microbiol. 78:589–606, 2010). The type II ComRS system is shared by the pyogenic, mutans, and bovis streptococci, including the clinically relevant pathogen Streptococcus pyogenes. Here, we describe the activation of sigX by a small-peptide pheromone and an Rgg regulator of the type II ComRS class. We confirm previous reports that SigX is functional and able to activate sigX-dependent gene expression within the competence regulon, and that SigX stability is influenced by the cytoplasmic protease ClpP. Genomic analyses of available S. pyogenes genomes revealed the presence of intact genes within the competence regulon. While this is the first report to show natural induction of sigX, S. pyogenes remained nontransformable under laboratory conditions. Using radiolabeled DNA, we demonstrate that transformation is blocked at the stage of DNA uptake. PMID:22730123

  17. Endocarditis caused by Streptococcus canis: an emerging zoonosis?

    PubMed

    Lacave, Guillaume; Coutard, Aymeric; Troché, Gilles; Augusto, Sandrine; Pons, Stéphanie; Zuber, Benjamin; Laurent, Virginie; Amara, Marlène; Couzon, Brigitte; Bédos, Jean-Pierre; Pangon, Béatrice; Grimaldi, David

    2016-02-01

    We report a human case of infective endocarditis caused by Streptococcus canis. Identification was carried out from positive blood culture using mass spectrometry and SodA gene sequencing. S. canis related zoonotic invasive infections may have been previously underdiagnosed due to inadequate identification of group G Streptococcus species.

  18. A new checkerboard panel for testing bacterial markers in periodontal disease.

    PubMed

    Dahlén, G; Leonhardt, A

    2006-02-01

    Various microbiological methods have been used for testing bacterial markers for periodontitis and periodontal disease progression. Most studies have used only a limited number of well recognized bacterial species. The purpose of the present study was to evaluate the association of 13 more recently identified bacterial species in a new panel in comparison with 12 previously more recognized periodontotopathogens ('old panel') using the 'checkerboard' DNA-DNA hybridization method. Fifty individuals were chosen who showed at least one site with a probing pocket depth of 6 mm or more (disease) and bleeding on probing and at least one site with a probing pocket depth of 3 mm and without bleeding on probing (health). One diseased and one healthy site on each individual were sampled with the paperpoint technique and the samples were processed in the checkerboard technique against deoxigenin-labeled whole genomic probes to 25 subgingival species representing 12 well recognized and 13 newly identified periodontitis associated species. Twenty-four (out of 25) species were detected more frequently in the subgingival plaque of diseased than healthy sites both at score 1 (> 10(4)) and score 3 (> 10(5)). A significant difference at the higher score (score 3) was noticed for all species of the old panel except for three (Streptococcus intermedius, Selenomonas noxia, and Eikenella corrodens). Of the species in the new panel only Prevotella tannerae, Filifactor alocis, and Porphyromonas endodontalis showed a statistical significant difference between diseased and healthy sites. It was concluded that P. tannerae, F. alocis, and P. endodontalis should be added to the 12 species used for routine diagnostics of periodontitis-associated bacterial flora.

  19. Frequency and antimicrobial susceptibility of aerobic bacterial vaginal isolates.

    PubMed

    Tariq, Nabia; Jaffery, Tara; Ayub, Rukhsana; Alam, Ali Yawar; Javid, Mahmud Haider; Shafique, Shamsa

    2006-03-01

    To determine the frequency and antimicrobial susceptibility of aerobic bacterial isolates from high vaginal swab cultures. Cross-sectional survey. Shifa International Hospital, Islamabad, from January 2003 to February 2004. The subjects included 136 symptomatic women attending Obstetrics and Gynecology Out-Patient Department. A proforma was filled to document the demographic details, presenting complaint and examination findings. High vaginal swabs were taken for gram staining, culture and antimicrobial sensitivity testing using standard microbiologic techniques. Normal flora was isolated in 30% of the cases, followed by Candida spp. (21.3%), Enterococcus spp. (14.7%), E.coli (10.2%), Beta hemolytic Streptococcus spp. (7.3%), Staphylococcus spp. (4.4%), Enterobacter spp. (4.4%), while Streptococcus pyogenes, Staphylococcus epidermidis and Klebsiella spp. were isolated 1.5% each. Enterococcus, Staphylococcus and Streptococcus were mostly sensitive to penicillin and amoxicillin while E.coli and Klebsiella were sensitive to (piperacillin-Tazobactum, Imipenem and vancomycin. Enterococci species showed significant resistance to aminoglycoside antibiotics (68.8% to 81.3%) resistance to vancomycin was 5%. Thirty percent of symptomatic patients had normal flora on culture. Candida spp was the most frequent pathogen isolated. Co-amoxiclav should be used as empiric therapy until culture-sensitivity report is available.

  20. Nutritionally Variant Streptococci Interfere with Streptococcus mutans Adhesion Properties and Biofilm Formation.

    PubMed

    Angius, Fabrizio; Madeddu, Maria Antonietta; Pompei, Raffaello

    2015-04-01

    The bacterial species Streptococcus mutans is known as the main cause of dental caries in humans. Therefore, much effort has focused on preventing oral colonization by this strain or clearing it from oral tissues. The oral cavity is colonized by several bacterial species that constitute the commensal oral flora, but none of these is able to interfere with the cariogenic properties of S. mutans. This paper describes the interfering ability of some nutritionally variant streptococcal strains (NVS) with S. mutans adhesion to glass surfaces and also to hydroxylapatite. In mixed cultures, NVS induce a complete inhibition of S. mutans microcolony formation on cover glass slides. NVS can also block the adherence of radiolabeled S. mutans to hydroxylapatite in the presence of both saliva and sucrose. The analysis of the action mechanism of NVS demonstrated that NVS are more hydrophobic than S. mutans and adhere tightly to hard surfaces. In addition, a cell-free culture filtrate of NVS was also able to interfere with S. mutans adhesion to hydroxylapatite. Since NVS are known to secrete some important bacteriolytic enzymes, we conclude that NVS can be a natural antagonist to the cariogenic properties of S. mutans.

  1. Prevalence of β-hemolytic Streptococcus in children with special health care needs.

    PubMed

    Morais, Viviane Martha Santos de; Orsi, Alice Ramos; Maranhão, Fernanda Cristina de Albuquerque; Castro, Therezita Maria Peixoto Patury Galvão; Castro, Karina Cavalcante Beltrão de; Silva, Denise Maria Wanderlei

    2012-10-01

    Pharyngotonsillitis by β-hemolytic Streptococcus mostly affects children and immunocompromised, being Streptococcus pyogenes (Group A) the most common agent in bacterial pharyngotonsillitis. This work targeted the research of β-hemolytic Streptococcus Group-A (SBHGA) and No-A (SBHGNA) in the oropharynx of individuals with special health needs from the APAE (Maceió-AL). A prospective study with oropharynx samples from patients with Down syndrome and other mental disorders (test) and students from a private school (control) aged 5-15 years. Cultures in blood agar (5%) were identified through Gram/catalase tests and bacitracin/trimethoprim-sulfamethoxazole disk diffusion method, applying the chi-squared statistical analysis. A total of 222 bacterial colonies were isolated in 74 individuals from APAE and 65 in the control group. In the test group, previous episodes of pharyngotonsillitis were reported by 36.49% (27/74) and 9.46% (7/74) were diagnosed with symptoms and/or signs suggestive of oropharynx infection. No positive sample of S. pyogenes was confirmed at APAE, being all samples classified as SBHGNA, with 5 SBHGA in the control group. The early identification of β-hemolytic Streptococcus is important for the fast treatment of pharyngotonsillitis and the absence of S. pyogenes avoid future suppurative or not-suppurative sequels in the group from APAE.

  2. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract.

    PubMed

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2', 7'-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results.

  3. Antibacterial activity and mechanism of action of Monarda punctata essential oil and its main components against common bacterial pathogens in respiratory tract

    PubMed Central

    Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min

    2014-01-01

    The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2’, 7’-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results. PMID:25550774

  4. Streptococcus penaeicida sp. nov., isolated from a diseased farmed Pacific white shrimp (Penaeus vannamei).

    PubMed

    Morales-Covarrubias, Maria Soledad; Del Carmen Bolan-Mejía, María; Vela Alonso, Ana Isabel; Fernandez-Garayzabal, Jose F; Gomez-Gil, Bruno

    2018-05-01

    Strain CAIM 1838 T , isolated from the hepatopancreas of a cultured diseased Pacific white shrimp (Penaeus vannamei), was subjected to characterization by a polyphasic taxonomic approach. On the basis of 16S rRNA gene sequence analysis, strain CAIM 1838 T was most closely related to Streptococcus bovimastitidis 99.3 % and to other species of the Pyogenes clade of Streptococcus with lower similarity values. Average nucleotide identity values and the genome-to-genome distance of strain CAIM 1838 T , as compared with the type strains, confirmed the separate species status with closely related species of the genus Streptococcus and were all below the thresholds to delimit a species, 93.1 and 49.4 %, respectively. The DNA G+C content was 38.1 mol%. Differential phylogenetic distinctiveness together with phenotypic properties obtained in this study revealed that strain CAIM 1838 T could be differentiated from the closely related species. Based on these results it is proposed that strain CAIM 1838 T represents a novel species in the genus Streptococcus, for which the name Streptococcus penaeicida sp. nov is proposed (type strain, CAIM 1838 T =CECT 8596 T ,=DSM26545 T ), is proposed.

  5. Bacterial biofilm composition in caries and caries-free subjects.

    PubMed

    Wolff, D; Frese, C; Maier-Kraus, T; Krueger, T; Wolff, B

    2013-01-01

    Certain major pathogens such as Streptococcus mutans, Lactobacillus spp. and others have been reported to be involved in caries initiation and progression. Yet, in addition to those leading pathogens, microbial communities seem to be much more diverse and individually differing. The aim of this study, therefore, was to analyze the bacterial composition of carious dentin and the plaque of caries-free patients by using a custom-made, real-time quantitative polymerase chain reaction assay (RQ-PCR). The study included 26 patients with caries and 28 caries-free controls. Decayed tooth substance and plaque samples were harvested. Bacterial DNA was extracted and tested for the presence of 43 bacterial species or species groups using RQ-PCR. Relative quantification revealed that Propionibacterium acidifaciens was significantly more abundant in caries samples than were other microorganisms (fold change 169.12, p = 0.023). In the caries-free samples, typical health-associated species were significantly more prevalent. Unsupervised hierarchical cluster analysis showed a high abundance of P. acidifaciens in caries subjects and distinct but individually differing bacterial clusters in the caries-free subjects. The distribution of 11 bacteria allowed full discrimination between caries and caries-free subjects. Within the investigated cohort, P. acidifaciens was the only pathogen significantly more abundant in caries subjects. Cluster analysis yielded a diverse flora in caries-free subjects, whereas it was narrowed down to a small range of a few outcompeting members in caries subjects. Copyright © 2012 S. Karger AG, Basel.

  6. Comprehensive Analysis of Bacterial Flora in Postoperative Maxillary Cyst Fluid by 16S rRNA Gene and Culture Methods

    PubMed Central

    Sano, Naoto; Yamashita, Yoshio; Fukuda, Kazumasa; Taniguchi, Hatsumi; Goto, Masaaki; Miyamoto, Hiroshi

    2012-01-01

    Intracystic fluid was aseptically collected from 11 patients with postoperative maxillary cyst (POMC), and DNA was extracted from the POMC fluid. Bacterial species were identified by sequencing after cloning of approximately 580 bp of the 16S rRNA gene. Identification of pathogenic bacteria was also performed by culture methods. The phylogenetic identity was determined by sequencing 517–596 bp in each of the 1139 16S rRNA gene clones. A total of 1114 clones were classified while the remaining 25 clones were unclassified. A total of 103 bacterial species belonging to 42 genera were identified in POMC fluid samples by 16S rRNA gene analysis. Species of Prevotella (91%), Neisseria (73%), Fusobacterium (73%), Porphyromonas (73%), and Propionibacterium (73%) were found to be highly prevalent in all patients. Streptococcus mitis (64%), Fusobacterium nucleatum (55%), Propionibacterium acnes (55%), Staphylococcus capitis (55%), and Streptococcus salivarius (55%) were detected in more than 6 of the 11 patients. The results obtained by the culture method were different from those obtained by 16S rRNA gene analysis, but both approaches may be necessary for the identification of pathogens, especially of bacteria that are difficult to detect by culture methods, and the development of rational treatments for patients with POMC. PMID:22685668

  7. Population Diversity and Dynamics of Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis in the Upper Respiratory Tracts of Adults, Determined by a Nonculture Strategy▿

    PubMed Central

    Bek-Thomsen, Malene; Tettelin, Hervé; Hance, Ioana; Nelson, Karen E.; Kilian, Mogens

    2008-01-01

    We reinvestigated the clonal diversity and dynamics of Streptococcus mitis and two other abundant members of the commensal microbiota of the upper respiratory tract, Streptococcus oralis and Streptococcus infantis, to obtain information about the origin of frequently emerging clones in this habitat. A culture-independent method was used, based on cloning and sequencing of PCR amplicons of the housekeeping gene gdh, which shows remarkable, yet species-specific, genetic polymorphism. Samples were collected from all potential ecological niches in the oral cavity and pharynx of two adults on two occasions separated by 2 years. Based on analysis of close to 10,000 sequences, significant diversity was observed in populations of all three species. Fluctuations in the relative proportions of individual clones and species were observed over time. While a few clones dominated, the proportions of most clones were very small. The results show that the frequent turnover of S. mitis, S. oralis, and S. infantis clones observed by cultivation can be explained by fluctuations in the relative proportions of clones, most of which are below the level of detection by the traditional culture technique, possibly combined with loss and acquisition from contacts. These findings provide a platform for understanding the mechanisms that govern the balance within the complex microbiota at mucosal sites and between the microbiota and the mucosal immune system of the host. PMID:18316382

  8. The bacterial species definition in the genomic era

    PubMed Central

    Konstantinidis, Konstantinos T; Ramette, Alban; Tiedje, James M

    2006-01-01

    The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction. PMID:17062412

  9. Predominant bacterial species in subgingival plaque in dogs.

    PubMed

    Dahlén, G; Charalampakis, G; Abrahamsson, I; Bengtsson, L; Falsen, E

    2012-06-01

    The dog has been used extensively for experimental and microbiological studies on periodontitis and peri-implantitis without detailed knowledge about the predominant flora of the subgingival plaque. This study was designed to evaluate the predominant cultivable bacterial species in dogs and compare them phenotypically and genotypically with corresponding human species. Four subgingival samples were taken from two upper premolars in each of six Labrador retrievers. The samples from each dog were processed for anaerobic culture. From the samples of each dog, the five or six predominating bacteria based on colony morphology were selected and pure cultured. Each of the strains was characterized by Gram stain, anaerobic/aerobic growth and API-ZYM test. Eighteen strains showing clear-cut phenotypic differences were further classified based on DNA sequencing technology. Cross-reactions of DNA probes from human and dog strains were also tested against a panel of both human and dog bacterial species. Thirty-one strains in the dogs were isolated and characterized. They represented 21 different species, of which six belonged to the genus Porphyromonas. No species was found consistently in the predominant flora of all six dogs. Porphyromonas crevioricanis and Fusobacterium canifelinum were the two most prevalent species in predominant flora in dogs. DNA probes from human and dog species cross-reacted to some extent with related strains from humans and dogs; however, distinct exceptions were found. The predominant cultural subgingival flora in dogs shows great similarities with the subgingival bacteria from humans at the genus level, but distinct differences at the species level; however, a genetic relatedness could be disclosed for most strains investigated. © 2011 John Wiley & Sons A/S.

  10. Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants.

    PubMed

    Shinozaki-Kuwahara, Noriko; Saito, Masanori; Hirasawa, Masatomo; Takada, Kazuko

    2014-11-01

    Two strains were isolated from oral cavity samples of healthy elephants. The isolates were Gram-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequence analysis suggested classification of these organisms in the genus Streptococcus with Streptococcus criceti ATCC 19642(T) and Streptococcus orisuis NUM 1001(T) as their closest phylogenetic neighbours with 98.2 and 96.9% gene sequence similarity, respectively. When multi-locus sequence analysis using four housekeeping genes, groEL, rpoB, gyrB and sodA, was carried out, similarity of concatenated sequences of the four housekeeping genes from the new isolates and Streptococcus mutans was 89.7%. DNA-DNA hybridization experiments suggested that the new isolates were distinct from S. criceti and other species of the genus Streptococcus. On the basis of genotypic and phenotypic differences, it is proposed that the novel isolates are classified in the genus Streptococcus as representatives of Streptococcus oriloxodontae sp. nov. The type strain of S. oriloxodontae is NUM 2101(T) ( =JCM 19285(T) =DSM 27377(T)). © 2014 IUMS.

  11. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis.

    PubMed

    Kumar, Purnima S; Griffen, Ann L; Moeschberger, Melvin L; Leys, Eugene J

    2005-08-01

    Most studies of the bacterial etiology of periodontitis have used either culture-based or targeted DNA approaches, and so it is likely that pathogens remain undiscovered. The purpose of this study was to use culture-independent, quantitative analysis of biofilms associated with chronic periodontitis and periodontal health to identify pathogens and beneficial species. Samples from subjects with periodontitis and controls were analyzed using ribosomal 16S cloning and sequencing. Several genera, many of them uncultivated, were associated with periodontitis, the most numerous of which were gram positive, including Peptostreptococcus and Filifactor. The genera Megasphaera and Desulfobulbus were elevated in periodontitis, and the levels of several species or phylotypes of Campylobacter, Selenomonas, Deferribacteres, Dialister, Catonella, Tannerella, Streptococcus, Atopobium, Eubacterium, and Treponema were elevated in disease. Streptococcus and Veillonella spp. were found in high numbers in all samples and accounted for a significantly greater fraction of the microbial community in healthy subjects than in those with periodontitis. The microbial profile of periodontal health also included the less-abundant genera Campylobacter, Abiotrophia, Gemella, Capnocytophaga, and Neisseria. These newly identified candidates outnumbered Porphyromonas gingivalis and other species previously implicated as periodontopathogens, and it is not clear if newly identified and more numerous species may play a more important role in pathogenesis. Finally, more differences were found in the bacterial profile between subjects with periodontitis and healthy subjects than between deep and shallow sites within the same subject. This suggests that chronic periodontitis is the result of a global perturbation of the oral bacterial ecology rather than a disease-site specific microbial shift.

  12. Pediatric bacterial meningitis in Japan, 2013-2015 - 3-5 years after the wide use of Haemophilus influenzae type b and Streptococcus pneumoniae conjugated vaccines.

    PubMed

    Shinjoh, Masayoshi; Yamaguchi, Yoshio; Iwata, Satoshi

    2017-07-01

    Haemophilus influenzae type b (Hib) vaccine and pneumococcal conjugated vaccine (PCV) have been widely used since 2010 in Japan when both vaccines were supported by the regional governments, and they were covered as routine recommended vaccines in 2013. The incidence of bacterial meningitis due to these organisms decreased in 2011 and 2012, but meningitis due to Streptococcus agalactiae and Escherichia coli remained unchanged. We planned to confirm whether the incidence also decreased in subsequent years. We analyzed the epidemiological and clinical data for 2013-2015, and compared the information obtained in the previous nationwide survey database and our previous reports. We also investigated the risk factors for disease outcome. In the 2013-2015 surveys, 407 patients from 366 hospitals from all prefectures were evaluated. S. agalactiae (33%), Streptococcus pneumoniae (25%), and E. coli (10%) were the main organisms. The total number of patients hospitalized with bacterial meningitis per 1000 admissions decreased from 1.19 in 2009-2010 to 0.37 in 2013-2015 (p < 0.001). The incidence of H. influenzae and S. pneumoniae meningitis significantly decreased from 0.66 in 2009-2010 to 0.01 in 2013-2015, and from 0.30 to 0.09, respectively (p < 0.001). Only 0-2 cases with Neisseria meningitidis were reported each year throughout 2001-2015. The fatality rates for H. influenzae, S. pneumoniae, S. agalactiae, and E. coli in 2013-2015 were 0.0, 4.1, 3.1, and 2.6%, respectively. Risk factors for death and sequelae were consciousness disturbance, convulsion, low CSF glucose, and Staphylococcus sp. as a causative organism (p < 0.01). Hib vaccine and PCV have decreased the rate of bacterial meningitis. S. agalactiae has subsequently become the most common cause of bacterial meningitis in Japan. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Bacterial diskospondylitis in juvenile mink from 2 Ontario mink farms.

    PubMed

    Martínez, Jorge; Vidaña, Beatriz; Cruz-Arambulo, Robert; Slavic, Durda; Tapscott, Brian; Brash, Marina L

    2013-09-01

    Nine juvenile mink with hind-limb paresis/paralysis from 2 Ontario farms were submitted for necropsy. Diagnostic tests revealed spinal compression and severe thoracic diskospondylitis with intralesional Gram-positive coccoid bacterial colonies. Streptococcus canis, Streptococcus dysgalactiae subsp. equisimilis, and hemolytic Staphylococcus spp. were isolated from vertebral lesions.

  14. Factor H-IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen Streptococcus pyogenes.

    PubMed

    Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David

    2017-12-01

    Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de; Salamon, Achim; Adam, Stefanie

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiationmore » of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.« less

  16. Potentiality of standardized extract and isolated flavonoids from Zuccagnia punctata for the treatment of respiratory infections by Streptococcus pneumoniae: in vitro and in vivo studies.

    PubMed

    Zampini, I C; Villena, J; Salva, S; Herrera, M; Isla, M I; Alvarez, S

    2012-03-27

    Zuccagnia punctata Cav. (Fabaceae) is a monotypic species distributed in western Argentina and is traditionally used for the treatment of bacterial and fungal infections. The aim of this study was to demonstrated the antibacterial activity of the Zuccagnia punctata standardized extract and the structurally related non-methoxylated flavonoids with similar pattern of substitution and differences in ring C present in this plant species: 7-hydroxyflavanone (HF), 2',4'-dihydroxychalcone (DHC) and 3,7-dihydroxyflavone (DHF), against Streptococcus pneumoniae clinical isolates using in vitro and in vivo models. MIC values of natural products were determined by agar macrodilution method. In vivo activities were investigated in a Streptococcus pneumoniae infection model in mice. Lung and blood samples were obtained for bacterial cell counts. The serum was used by biochemical analysis (alanine transaminase, aspartate transaminase, urea and creatinine) in order to evaluate the toxicity of natural products. All samples showed antimicrobial activity in vitro with MIC values between 50 and 500μg/ml. Zuccagnia punctata extract (1mg/mice) and HF (1mg/mice) significantly reduced the number of viable Streptococcus pneumoniae in lung (p<0.01) while lower quantities has not effect. Therefore, the present study has shown that intake once or twice a day of 1mg of Zuccagnia punctata extract or HF for seven days did not result in toxicity. Our results showed that Zuccagnia punctata extract as well as one of its isolated flavonoids, 7-hydroxyflavanone, could be useful for the development of a novel respiratory infections treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    PubMed

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  18. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.

    PubMed

    Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M

    2008-10-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.

  19. Bacterial diskospondylitis in juvenile mink from 2 Ontario mink farms

    PubMed Central

    Martínez, Jorge; Vidaña, Beatriz; Cruz-Arambulo, Robert; Slavic, Durda; Tapscott, Brian; Brash, Marina L.

    2013-01-01

    Nine juvenile mink with hind-limb paresis/paralysis from 2 Ontario farms were submitted for necropsy. Diagnostic tests revealed spinal compression and severe thoracic diskospondylitis with intralesional Gram-positive coccoid bacterial colonies. Streptococcus canis, Streptococcus dysgalactiae subsp. equisimilis, and hemolytic Staphylococcus spp. were isolated from vertebral lesions. PMID:24155490

  20. Molecular Epidemiology and Genomics of Group A Streptococcus

    PubMed Central

    Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé

    2014-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818

  1. Interferon α-Enhanced Clearance of Group A Streptococcus Despite Neutropenia.

    PubMed

    Uchiyama, Satoshi; Keller, Nadia; Schlaepfer, Erika; Grube, Christina; Schuepbach, Reto A; Speck, Roberto F; Zinkernagel, Annelies S

    2016-07-15

    Neutrophils and monocytes are crucial for controlling bacterial infections. More-frequent bacterial infections are accordingly encountered in neutropenic patients undergoing chemotherapy. This is not the case for pegylated interferon α (IFN-α)-induced neutropenia. We hypothesized that IFN-α induces a compensatory innate antibacterial state that prevents bacterial infections despite the neutropenia. To investigate whether patients with hepatitis C virus infection treated with IFN-α killed group A Streptococcus (GAS) better than before initiating therapy, whole blood was used to perform ex vivo GAS killing assays before, during, and after IFN-α therapy. We found that IFN-α therapy enhanced GAS killing in whole blood ex vivo despite the decreased neutrophil and monocyte numbers during IFN-α therapy. IFN-α also boosted neutrophil- and monocyte-mediated GAS killing in vitro. Underlying mechanisms included increased production of the antibacterial properdin, a regulator of the complement activation, as well as reactive oxygen species. These findings help to explain the rather discrepant facts of neutropenia but preserved antibacterial immune defenses in patients treated with IFN-α. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. Prophage Lysin Ply30 Protects Mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus Infections

    PubMed Central

    Tang, Fang; Li, Dezhi; Wang, Haojin; Ma, Zhe; Lu, Chengping

    2015-01-01

    Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to <0.3 and <0.5, respectively, within 1 h. The results of plate viability assays showed that treated bacteria suffered a 1- to 2-log decrease in CFU within 1 h. The optimal concentration of Ply30 was 50 μg/ml, and the optimal pH was 7. Moreover, Ply30 maintained high activity over a wide pH range (pH 6 to 10). The MICs of Ply30 against Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci. PMID:26253669

  3. Prophage lysin Ply30 protects mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus infections.

    PubMed

    Tang, Fang; Li, Dezhi; Wang, Haojin; Ma, Zhe; Lu, Chengping; Dai, Jianjun

    2015-11-01

    Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to <0.3 and <0.5, respectively, within 1 h. The results of plate viability assays showed that treated bacteria suffered a 1- to 2-log decrease in CFU within 1 h. The optimal concentration of Ply30 was 50 μg/ml, and the optimal pH was 7. Moreover, Ply30 maintained high activity over a wide pH range (pH 6 to 10). The MICs of Ply30 against Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Draft Genome Sequences of Three Novel Low-Abundance Species Strains Isolated from Kefir Grain.

    PubMed

    Kim, Yongkyu; Blasche, Sonja; Patil, Kiran R

    2017-09-28

    We report here the genome sequences of three novel bacterial species strains- Bacillus kefirresidentii Opo, Rothia kefirresidentii KRP, and Streptococcus kefirresidentii YK-isolated from kefir grains collected in Germany. The draft genomes of these isolates were remarkably dissimilar (average nucleotide identities, 77.80%, 89.01%, and 92.10%, respectively) to those of the previously sequenced strains. Copyright © 2017 Kim et al.

  5. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  6. Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis.

    PubMed

    Song, Jae-Hoon; Ko, Kwan Soo; Lee, Ji-Young; Baek, Jin Yang; Oh, Won Sup; Yoon, Ha Sik; Jeong, Jin-Yong; Chun, Jongsik

    2005-06-30

    To find potential targets of novel antimicrobial agents, we identified essential genes of Streptococcus pneumoniae using comparative genomics and allelic replacement mutagenesis. We compared the genome of S. pneumoniae R6 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, and Staphylococcus aureus, and selected 693 candidate target genes with > 40% amino acid sequence identity to the corresponding genes in at least two of the other species. The 693 genes were disrupted and 133 were found to be essential for growth. Of these, 32 encoded proteins of unknown function, and we were able to identify orthologues of 22 of these genes by genomic comparisons. The experimental method used in this study is easy to perform, rapid and efficient for identifying essential genes of bacterial pathogens.

  7. Streptococcus mutans: a new Gram-positive paradigm?

    PubMed Central

    Quivey, Robert G.; Koo, Hyun; Abranches, Jacqueline

    2013-01-01

    Despite the enormous contributions of the bacterial paradigms Escherichia coli and Bacillus subtilis to basic and applied research, it is well known that no single organism can be a perfect representative of all other species. However, given that some bacteria are difficult, or virtually impossible, to cultivate in the laboratory, that some are recalcitrant to genetic and molecular manipulation, and that others can be extremely dangerous to manipulate, the use of model organisms will continue to play an important role in the development of basic research. In particular, model organisms are very useful for providing a better understanding of the biology of closely related species. Here, we discuss how the lifestyle, the availability of suitable in vitro and in vivo systems, and a thorough understanding of the genetics, biochemistry and physiology of the dental pathogen Streptococcus mutans have greatly advanced our understanding of important areas in the field of bacteriology such as interspecies biofilms, competence development and stress responses. In this article, we provide an argument that places S. mutans, an organism that evolved in close association with the human host, as a novel Gram-positive model organism. PMID:23393147

  8. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion.

    PubMed

    Okahashi, Nobuo; Nakata, Masanobu; Sakurai, Atsuo; Terao, Yutaka; Hoshino, Tomonori; Yamaguchi, Masaya; Isoda, Ryutaro; Sumitomo, Tomoko; Nakano, Kazuhiko; Kawabata, Shigetada; Ooshima, Takashi

    2010-01-08

    Streptococcus sanguinis is a predominant bacterium in the human oral cavity and occasionally causes infective endocarditis. We identified a unique cell surface polymeric structure named pili in this species and investigated its functions in regard to its potential virulence. Pili of S. sanguinis strain SK36 were shown to be composed of three distinctive pilus proteins (PilA, PilB, and PilC), and a pili-deficient mutant demonstrated reduced bacterial adherence to HeLa and human oral epithelial cells. PilC showed a binding ability to fibronectin, suggesting that pili are involved in colonization by this species. In addition, ATCC10556, a standard S. sanguinis strain, was unable to produce pili due to defective pilus genes, which indicates a diversity of pilus expression among various S. sanguinis strains. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Use of tuf Sequences for Genus-Specific PCR Detection and Phylogenetic Analysis of 28 Streptococcal Species

    PubMed Central

    Picard, François J.; Ke, Danbing; Boudreau, Dominique K.; Boissinot, Maurice; Huletsky, Ann; Richard, Dave; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.

    2004-01-01

    A 761-bp portion of the tuf gene (encoding the elongation factor Tu) from 28 clinically relevant streptococcal species was obtained by sequencing amplicons generated using broad-range PCR primers. These tuf sequences were used to select Streptococcus-specific PCR primers and to perform phylogenetic analysis. The specificity of the PCR assay was verified using 102 different bacterial species, including the 28 streptococcal species. Genomic DNA purified from all streptococcal species was efficiently detected, whereas there was no amplification with DNA from 72 of the 74 nonstreptococcal bacterial species tested. There was cross-amplification with DNAs from Enterococcus durans and Lactococcus lactis. However, the 15 to 31% nucleotide sequence divergence in the 761-bp tuf portion of these two species compared to any streptococcal tuf sequence provides ample sequence divergence to allow the development of internal probes specific to streptococci. The Streptococcus-specific assay was highly sensitive for all 28 streptococcal species tested (i.e., detection limit of 1 to 10 genome copies per PCR). The tuf sequence data was also used to perform extensive phylogenetic analysis, which was generally in agreement with phylogeny determined on the basis of 16S rRNA gene data. However, the tuf gene provided a better discrimination at the streptococcal species level that should be particularly useful for the identification of very closely related species. In conclusion, tuf appears more suitable than the 16S ribosomal RNA gene for the development of diagnostic assays for the detection and identification of streptococcal species because of its higher level of species-specific genetic divergence. PMID:15297518

  10. Patterns of isolation of common gram positive bacterial pathogens and their susceptibilities to antimicrobial agents in Jimma Hospital.

    PubMed

    Gebreselassie, Solomon

    2002-04-01

    Gram positive bacteria are frequently emerging as antibiotic resistant pathogens, causing serious infections than ever before in the ill and debilitated patients. The pattern of isolation and the antimicrobial susceptibilities of common Gram positive cocci including Staphylococcus aureus, coagulase negative staphylococcus (CoNS), Streptococcus pyogenes, Enterococcus species and Streptococcus pneumoniae was investigated between January 1997 and June 2000 in Jimma Hospital. Of the 500 specimens collected from children and adults, 116 (23.2%) consisted of one or more of the above organisms. The following strains: Staphylococcus aureus, 47 (40.5%), CoNS, 36 (31.0%), Streptococcus pneumoniae, 26 (22.4%) Streptococcus pyogenes, 5 (4.3%) and Streptococcus faecalis, 2(1.7%) were isolated from different specimens including pus, sputum, urine, stool, blood and oro/nasopharyngeal swabs of patients. The in vitro activities of 14 different antibiotics including penicillin G, ampicillin, cloxacillin, cephalothin, gentamicin, kanamycin, tetracycline, chloramphenicol, erythromycin, trimethoprim-sulfamethoxazole, streptomycin, methicillin, vancomycin and clindamycin was determined against the clinical bacterial isolates. The antimicrobial activities were evaluated by agar diffusion technique using Mueller-Hinton agar according to NCCLS recommendations. The majority of the pathogens, 59(50.9%) were recovered from upper respiratory tract infections and 17 (14.6%) from the lower respiratory tract. The resistance patterns of S. aureus, CoNS, S. pneumoniae and enterococci to penicillin was 91.5%, 94.4%, 7.7% and 100% respectively. Penicillin, ampicillin and cloxacillin showed low effects (< 60%) on both S. aureus and CoNS. Multi-drug resistance was observed in all the gram-positive isolates, especially higher in staphylococcus species. All isolates of S. aureus (100%) were susceptible to vancomycin, clindamycin and gentamicin. In order to reduce morbidity and mortality due to antibiotic

  11. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    PubMed Central

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  12. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans.

    PubMed

    Liu, Shiyu; Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin; Cheng, Lei; Li, Mingyun

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans , and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers.

  13. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”

    PubMed Central

    Tettelin, Hervé; Masignani, Vega; Cieslewicz, Michael J.; Donati, Claudio; Medini, Duccio; Ward, Naomi L.; Angiuoli, Samuel V.; Crabtree, Jonathan; Jones, Amanda L.; Durkin, A. Scott; DeBoy, Robert T.; Davidsen, Tanja M.; Mora, Marirosa; Scarselli, Maria; Margarit y Ros, Immaculada; Peterson, Jeremy D.; Hauser, Christopher R.; Sundaram, Jaideep P.; Nelson, William C.; Madupu, Ramana; Brinkac, Lauren M.; Dodson, Robert J.; Rosovitz, Mary J.; Sullivan, Steven A.; Daugherty, Sean C.; Haft, Daniel H.; Selengut, Jeremy; Gwinn, Michelle L.; Zhou, Liwei; Zafar, Nikhat; Khouri, Hoda; Radune, Diana; Dimitrov, George; Watkins, Kisha; O'Connor, Kevin J. B.; Smith, Shannon; Utterback, Teresa R.; White, Owen; Rubens, Craig E.; Grandi, Guido; Madoff, Lawrence C.; Kasper, Dennis L.; Telford, John L.; Wessels, Michael R.; Rappuoli, Rino; Fraser, Claire M.

    2005-01-01

    The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for ≈80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes. PMID:16172379

  14. Identification of non-streptococcal organisms from human dental plaque grown on the Streptococcus-selective medium mitis-salivarius agar.

    PubMed

    Kim, Yeon-Hee; Lee, Si Young

    2015-02-01

    Mitis-salivarius (MS) agar has been used widely in microbial epidemiological studies because oral viridans streptococci can be selectively grown on this medium. Even though the previous findings reported the limited selecting power of MS agar for streptococcus strains, the identities of non-streptococcal strains from human oral samples which can grow on this medium are not clear yet. In this study, we identified non-streptococcal organisms grown on MS agar plates by polymerase chain reaction (PCR) amplification and sequencing of the 16S ribosomal RNA (rRNA) gene. Eighty bacterial colonies on MS plates were isolated from plaque samples, and bacterial identification was achieved with the rapid ID 32 Strep system and mini API reader. The bacterial colonies identified as non-streptococci by the API system were selected for further identification. The 16S rRNA gene was amplified by PCR and verified using DNA sequencing analysis for identification. Sequences were compared with those of reference organisms in the genome database of the National Center for Biotechnology Information using the Basic Local Alignment Search Tool (BLAST). Among the 11 isolated non-streptococcal strains on MS plates, 3 strains were identified as Actinomyces naeslundii, 7 strains were identified as Actinomyces oris and 1 strain were identified as Actinomyces sp. using Blastn. In this study, we showed that some oral Actinomyces species can grow on Streptococcus-selective MS agar plates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis.

    PubMed

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms.

  16. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis

    PubMed Central

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778

  17. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  18. Comparative analysis of innate immune responses to Streptococcus phocae strains in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Salazar, Soraya; Oliver, Cristian; Yáñez, Alejandro J; Avendaño-Herrera, Ruben

    2016-04-01

    Streptococcus phocae subsp. salmonis is a Gram-positive bacterium that causes mortality only in Atlantic salmon (Salmo salar) farmed in Chile, even when this species is co-cultured with rainbow trout (Oncorhynchus mykiss). This susceptibility could be determined by innate immune response components and their responses to bacterial infection. This fish pathogen shares subspecies status with Streptococcus phocae subsp. phocae isolated from seals. The present study compared innate immune system mechanisms in Atlantic salmon and rainbow trout when challenged with different S. phocae, including two isolates from Atlantic salmon (LM-08-Sp and LM-13-Sp) and two from seal (ATCC 51973(T) and P23). Streptococcus phocae growth was evaluated in the mucus and serum of both species, with rainbow trout samples evidencing inhibitory effects. Lysozyme activity supported this observation, with significantly higher (p < 0.01) expression in rainbow trout serum and mucus as compared to Atlantic salmon. No differences were found in phagocytic capacity between fish species when stimulated with ATCC 51973(T) and P23. Against all S. phocae strains, rainbow trout and Atlantic salmon showed up to two-fold increased bactericidal activity, and rainbow trout demonstrated up to three-fold greater reactive oxygen species production in macrophages. In conclusion, the non-specific humoral and cellular barriers of Atlantic salmon were immunologically insufficient against S. phocae subsp. salmonis, thereby facilitating streptococcosis. Moreover, the more robust response of rainbow trout to S. phocae could not be attributed to any specific component of the innate immune system, but was rather the consequence of a combined response by the evaluated components. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome.

    PubMed

    Garcia, S S; Blackledge, M S; Michalek, S; Su, L; Ptacek, T; Eipers, P; Morrow, C; Lefkowitz, E J; Melander, C; Wu, H

    2017-07-01

    Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.

  20. Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women

    PubMed Central

    Tamrakar, Renuka; Yamada, Takashi; Furuta, Itsuko; Cho, Kazutoshi; Morikawa, Mamoru; Yamada, Hideto; Sakuragi, Noriaki; Minakami, Hisanori

    2007-01-01

    Background Bacterial vaginosis (BV), the etiology of which is still uncertain, increases the risk of preterm birth. Recent PCR-based studies suggested that BV is associated with complex vaginal bacterial communities, including many newly recognized bacterial species in non-pregnant women. Methods To examine whether these bacteria are also involved in BV in pregnant Japanese women, vaginal fluid samples were taken from 132 women, classified as normal (n = 98), intermediate (n = 21), or BV (n = 13) using the Nugent gram stain criteria, and studied. DNA extracted from these samples was analyzed for bacterial sequences of any Lactobacillus, four Lactobacillus species, and four BV-related bacteria by PCR with primers for 16S ribosomal DNA including a universal Lactobacillus primer, Lactobacillus species-specific primers for L. crispatus, L. jensenii, L. gasseri, and L. iners, and BV-related bacterium-specific primers for BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Results The prevalences of L. crispatus, L. jensenii, and L. gasseri were significantly higher, while those of BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium were significantly lower in the normal group than in the BV group. Unlike other Lactobacillus species, the prevalence of L. iners did not differ between the three groups and women with L. iners were significantly more likely to have BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium. Linear regression analysis revealed associations of BVAB2 and Megasphaera with Nugent score, and multivariate regression analyses suggested a close relationship between Eggerthella-like bacterium and BV. Conclusion The BV-related bacteria, including BVAB2, Megasphaera, Leptotrichia, and Eggerthella-like bacterium, are common in the vagina of pregnant Japanese women with BV. The presence of L. iners may be correlated with vaginal colonization by these BV-related bacteria. PMID:17986357

  1. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus.

    PubMed

    Jensen, Anders; Scholz, Christian F P; Kilian, Mogens

    2016-11-01

    The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.

  2. Streptococcus pyogenes translocates across an epithelial barrier.

    PubMed

    Sumitomo, Tomoko

    2017-01-01

    Streptococcus pyogenes is a β-hemolytic organism responsible for a wide variety of human diseases that commonly occur as self-limiting purulent diseases of the pharynx and skin. Although the occurrence of invasive infections by S. pyogenes is rare, mortality rates remain high even with progressive medical therapy. As a prerequisite for causing the severe invasive disease, S. pyogenes must invade underlying sterile tissues by translocating across the epithelial barrier. In this study, streptolysin S and SpeB were identified as the novel factors that facilitate bacterial translocation via degradation of intercellular junctions. Furthermore, we found that S. pyogenes exploits host plasminogen for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions. Here, I would like to show our study on bacterial translocation across the epithelial barrier through paracellular route.

  3. Effects of iron-oxide nanoparticles on compound biofilms of streptococcus gordonii and fusobacterium nucleatum

    NASA Astrophysics Data System (ADS)

    Nguyen, Jane Q.; Withers, Nathan J.; Alas, Gema; Senthil, Arjun; Minetos, Christina; Jaiswal, Nikita; Ivanov, Sergei A.; Huber, Dale L.; Smolyakov, Gennady A.; Osiński, Marek

    2018-02-01

    The human mouth is a host of a large gamut of bacteria species, with over 700 of different bacteria strains identified. Most of these bacterial species are harmless, some are beneficial (such as probiotics assisting in food digestion), but some are responsible for various diseases, primarily tooth decay and gum diseases such as gingivitis and periodontitis. Dental plaque has a complicated structure that varies from patient to patient, but a common factor in most cases is the single species of bacterium acting as a secondary colonizer, namely Fusobacterium nucleatum, while the actual disease is caused by a variety of tertiary colonizers. We hypothesize that destruction of a compound biofilm containing Fusobacterium nucleatum will prevent tertiary colonizers (oral pathogens) from establishing a biofilm, and thus will protect the patient from developing gingivitis and periodontitis. In this paper, we report on the effects of exposure of compound biofilms of a primary colonizer Streptococcus gordonii combined with Fusobacterium nucleatum to iron oxide nanoparticles as possible bactericidal agent.

  4. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  5. Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species

    USGS Publications Warehouse

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C; Clostio, Rachel W; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  6. Plants of the fynbos biome harbour host species-specific bacterial communities.

    PubMed

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities.

    PubMed

    Scholz, Christian F P; Jensen, Anders

    2017-01-01

    The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

  8. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China.

    PubMed

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.

  9. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China

    PubMed Central

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments. PMID:27695084

  10. Acanthamoeba castellanii interactions with Streptococcus pneumoniae and Streptococcus pyogenes.

    PubMed

    Siddiqui, Ruqaiyyah; Yee Ong, Timothy Yu; Jung, Suk Yul; Khan, Naveed Ahmed

    2017-12-01

    Among the genus Streptococcus, S. pyogenes and S. pneumoniae are the major causes of pharyngitis, impetigo, pneumonia and meningitis in humans. Streptococcus spp. are facultative anaerobes that are nutritionally fastidious, yet survive in the environment and target the predisposed population. Antibacterial disinfectants have been partially effective only, indicating the need for novel preventative measures and to understand mechanisms of bacterial resistance. Acanthamoeba is a free-living protist that is known to harbour microbial pathogens, provide shelter, and assist in their transmission to susceptible population. The overall aim of this study was to determine whether S. pyogenes and S. pneumoniae can interact with A. castellanii by associating, invading, and surviving inside trophozoites and cysts. It was observed that both S. pyogenes and S. pneumoniae were able to associate as well as invade and/or taken up by the phagocytic A. castellanii trophozoite. Notably, S. pyogenes and S. pneumoniae survived the encystation process, avoided phagocytosis, multiplied, and exhibited higher recovery from the mature cysts, compared with the trophozoite stage (approximately 2 bacteria per amoebae ratio for cyst stage versus 0.02 bacteria per amoeba ration for trophozoite stage). As Acanthamoeba cysts are resilient and can disperse through the air, A. castellanii can act as a vector in providing shelter, facilitating growth and possibly genetic exchanges. In addition, these interactions may contribute to S. pyogenes and S. pneumoniae survival in harsh environments, and transmission to susceptible population and possibly affecting their virulence. Future studies will determine the molecular mechanisms associated with Acanthamoeba interactions with Streptococcus and the evolution of pathogenic bacteria and in turn expedite the discovery of novel therapeutic and/or preventative measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Group B Streptococcus and Streptococcus suis Capsular Polysaccharides Induce Chemokine Production by Dendritic Cells via Toll-Like Receptor 2- and MyD88-Dependent and -Independent Pathways

    PubMed Central

    Calzas, Cynthia; Goyette-Desjardins, Guillaume; Lemire, Paul; Gagnon, Fleur; Lachance, Claude; Van Calsteren, Marie-Rose

    2013-01-01

    Streptococcus agalactiae (also known as group B Streptococcus [GBS]) and Streptococcus suis are encapsulated streptococci causing severe septicemia and meningitis. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. The mechanisms underlying anti-CPS antibody responses are not fully elucidated, but the biochemistry of CPSs, particularly the presence of sialic acid, may have an immunosuppressive effect. We investigated the ability of highly purified S. suis and GBS native (sialylated) CPSs to activate dendritic cells (DCs), which are crucial actors in the initiation of humoral immunity. The influence of CPS biochemistry was studied using CPSs extracted from different serotypes within these two streptococcal species, as well as desialylated CPSs. No interleukin-1β (IL-1β), IL-6, IL-12p70, tumor necrosis factor alpha (TNF-α), or IL-10 production was observed in S. suis or GBS CPS-stimulated DCs. Moreover, these CPSs exerted immunosuppressive effects on DC activation, as a diminution of gamma interferon (IFN-γ)-induced B cell-activating factor of the tumor necrosis factor family (BAFF) expression was observed in CPS-pretreated cells. However, S. suis and GBS CPSs induced significant production of CCL3, via partially Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88 (MyD88)-dependent pathways, and CCL2, via TLR-independent mechanisms. No major influence of CPS biochemistry was observed on the capacity to induce chemokine production by DCs, indicating that DCs respond to these CPSs in a patterned way rather than a structure-dedicated manner. PMID:23774593

  12. Bacterial gene transfer by natural genetic transformation in the environment.

    PubMed Central

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation. PMID:7968924

  13. Acquisition through horizontal gene transfer of plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 points towards the dairy origin of the species.

    PubMed

    Papadimitriou, Konstantinos; Anastasiou, Rania; Maistrou, Eleni; Plakas, Thomas; Papandreou, Nikos C; Hamodrakas, Stavros J; Ferreira, Stéphanie; Supply, Philip; Renault, Pierre; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Streptococcus macedonicus is an intriguing streptococcal species whose most frequent source of isolation is fermented foods similarly to Streptococcus thermophilus. However, S. macedonicus is closely related to commensal opportunistic pathogens of the Streptococcus bovis/Streptococcus equinus complex. We analyzed the pSMA198 plasmid isolated from the dairy strain Streptococcus macedonicus ACA-DC 198 in order to provide novel clues about the main ecological niche of this bacterium. pSMA198 belongs to the narrow host range pCI305/pWV02 family found primarily in lactococci and to the best of our knowledge it is the first such plasmid to be reported in streptococci. Comparative analysis of the pSMA198 sequence revealed a high degree of similarity with plasmids isolated from Lactococcus lactis strains deriving from milk or its products. Phylogenetic analysis of the pSMA198 Rep showed that the vast majority of closely related proteins derive from lactococcal dairy isolates. Additionally, cloning of the pSMA198 ori in L. lactis revealed a 100% stability of replication over 100 generations. Both pSMA198 and the chromosome of S. macedonicus exhibit a high percentage of potential pseudogenes, indicating that they have co-evolved under the same gene decay processes. We identified chromosomal regions in S. macedonicus that may have originated from pSMA198, also supporting a long co-existence of the two replicons. pSMA198 was also found in divergent biotypes of S. macedonicus and in strains isolated from dispersed geographic locations (e.g. Greece and Switzerland) showing that pSMA198's acquisition is not a recent event. Here we propose that S. macedonicus acquired plasmid pSMA198 from L. lactis via an ancestral genetic exchange event that took place most probably in milk or dairy products. We provide important evidence that point towards the dairy origin of this species.

  14. The role of respiratory viruses in the etiology of bacterial pneumonia

    PubMed Central

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-01-01

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. PMID:26884414

  15. The usefulness of biotyping in the determination of selected pathogenicity determinants in Streptococcus mutans

    PubMed Central

    2014-01-01

    Background Streptococcus mutans is known to be a primary etiological factor of dental caries, a widespread and growing disease in Polish children. Recognition of novel features determining the pathogenicity of this pathogen may contribute to understanding the mechanisms of bacterial infections. The goal of the study was to determine the activity of prephenate dehydrogenase (PHD) and to illuminate the role of the enzyme in S. mutans pathogenicity. The strains were biotyped based on STREPTOtest 24 biochemical identification tests and the usefulness of biotyping in the determination of S. mutans pathogenicity determinants was examined. Results Out of ninety strains isolated from children with deciduous teeth fifty three were classified as S. mutans species. PDH activity was higher (21.69 U/mg on average) in the experimental group compared to the control group (5.74 U/mg on average) (P <0.001). Moreover, it was demonstrated that biotype I, established basing on the biochemical characterization of the strain, was predominant (58.5%) in oral cavity streptococcosis. Its dominance was determined by higher PDH activity compared to biotypes II and III (P = 0.0019). Conclusions The usefulness of biotyping in the determination of Streptococcus mutans pathogenicity determinants was demonstrated. The obtained results allow for better differentiation of S. mutans species and thus may contribute to recognition of pathogenic bacteria transmission mechanisms and facilitate treatment. PMID:25096795

  16. The normal vaginal and uterine bacterial microbiome in giant pandas (Ailuropoda melanoleuca).

    PubMed

    Yang, Xin; Cheng, Guangyang; Li, Caiwu; Yang, Jiang; Li, Jianan; Chen, Danyu; Zou, Wencheng; Jin, SenYan; Zhang, Hemin; Li, Desheng; He, Yongguo; Wang, Chengdong; Wang, Min; Wang, Hongning

    2017-06-01

    While the health effects of the colonization of the reproductive tracts of mammals by bacterial communities are widely known, there is a dearth of knowledge specifically in relation to giant panda microbiomes. In order to investigate the vaginal and uterine bacterial diversity of healthy giant pandas, we used high-throughput sequence analysis of portions of the 16S rRNA gene, based on samples taken from the vaginas (GPV group) and uteri (GPU group) of these animals. Results showed that the four most abundant phyla, which contained in excess of 98% of the total sequences, were Proteobacteria (59.2% for GPV and 51.4% for GPU), Firmicutes (34.4% for GPV and 23.3% for GPU), Actinobacteria (5.2% for GPV and 14.0% for GPU) and Bacteroidetes (0.3% for GPV and 10.3% for GPU). At the genus level, Escherichia was most abundant (11.0%) in the GPV, followed by Leuconostoc (8.7%), Pseudomonas (8.0%), Acinetobacter (7.3%), Streptococcus (6.3%) and Lactococcus (6.0%). In relation to the uterine samples, Janthinobacterium had the highest prevalence rate (20.2%), followed by Corynebacterium (13.2%), Streptococcus (19.6%), Psychrobacter (9.3%), Escherichia (7.5%) and Bacteroides (6.2%). Moreover, both Chao1 and abundance-based coverage estimator (ACE) species richness indices, which were operating at the same sequencing depth for each sample, demonstrated that GPV had more species richness than GPU, while Simpson and Shannon indices of diversity indicated that GPV had the higher bacterial diversity. These findings contribute to our understanding of the potential influence abnormal reproductive tract microbial communities have on negative pregnancy outcomes in giant pandas. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis.

    PubMed

    Jung, Chiau-Jing; Zheng, Quan-Hau; Shieh, Ya-Hsiung; Lin, Chi-Shuan; Chia, Jean-San

    2009-11-01

    Streptococcus mutans, a commensal of the human oral cavity, can survive in the bloodstream and cause infective endocarditis (IE). However, the virulence factors associated with this manifestation of disease are not known. Here, we demonstrate that AtlA, an autolysin of S. mutans is a newly identified fibronectin (Fn) binding protein and contributes to bacterial resistance to phagocytosis and survival in the bloodstream. Interestingly, prior exposure to plasma at low concentrations was sufficient to enhance bacterial survival in the circulation. Calcium ions at physiological plasma concentrations induced maturation of AtlA from the 104-90 kDa isoform resulting in increased Fn binding and resistance to phagocytosis. An isogenic mutant strain defective in AtlA expression exhibited reduced survival and virulence when tested in a rat model of IE compared with the wild-type and complemented strains. The data presented suggest that plasma components utilized by S. mutans enhanced survival in the circulation and AtlA is a virulence factor associated with infective endocarditis.

  18. Prevalence of Corynebacterial 16S rRNA Sequences in Patients with Bacterial and “Nonbacterial” Prostatitis

    PubMed Central

    Tanner, Michael A.; Shoskes, Daniel; Shahed, Asha; Pace, Norman R.

    1999-01-01

    The etiology of chronic prostatitis syndromes in men is controversial, particularly when positive cultures for established uropathogens are lacking. Although identification of bacteria in prostatic fluid has relied on cultivation and microscopy, most microorganisms in the environment, including some human pathogens, are resistant to cultivation. We report here on an rRNA-based molecular phylogenetic approach to the identification of bacteria in prostate fluid from prostatitis patients. Positive bacterial signals were seen for 65% of patients with chronic prostatitis overall. Seven of 11 patients with bacterial signals but none of 6 patients without bacterial signals were cured with antibiotic-based therapy. Results indicate the occurrence in the prostate fluid of a wide spectrum of bacterial species representing several genera. Most rRNA genes were closely related to those of species belonging to the genera Corynebacterium, Staphylococcus, Peptostreptococcus, Streptococcus, and Escherichia. Unexpectedly, a wide diversity of Corynebacterium species was found in high proportion compared to the proportions of other bacterial species found. A subset of these 16S rRNA sequences represent those of undescribed species on the basis of their positions in phylogenetic trees. These uncharacterized organisms were not detected in control samples, suggesting that the organisms have a role in the disease or are the consequence of the disease. These studies show that microorganisms associated with prostatitis generally occur as complex microbial communities that differ between patients. The results also indicate that microbial communities distinct from those associated with prostatitis may occur at low levels in normal prostatic fluid. PMID:10325338

  19. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    PubMed

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases.

    PubMed

    Sebastián, María; Anoz-Carbonell, Ernesto; Gracia, Begoña; Cossio, Pilar; Aínsa, José Antonio; Lans, Isaías; Medina, Milagros

    2018-12-01

    The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.

  1. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species

    PubMed Central

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C.; Clostio, Rachel W.; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4–V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont. PMID:27092120

  2. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth.

    PubMed

    Kristula, M A; Dou, Z; Toth, J D; Smith, B I; Harvey, N; Sabo, M

    2008-05-01

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., and Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.

  3. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristula, M.A.; Dou, Z.; Toth, J.D.

    2008-05-15

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., andmore » Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.« less

  4. Evaluation of colorimetric loop-mediated isothermal amplification assay for visual detection of Streptococcus agalactiae and Streptococcus iniae in tilapia.

    PubMed

    Suebsing, R; Kampeera, J; Tookdee, B; Withyachumnarnkul, B; Turner, W; Kiatpathomchai, W

    2013-10-01

    Streptococcus agalactiae and Strep. iniae are bacterial pathogens that cause streptococcosis in many fish species. An accelerated colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of calcein was established, and the transmission and detection of Strep. agalactiae and Strep. iniae in tilapia under natural aquatic environment were investigated. A positive reaction was observed by a colour change from orange to green through the naked eyes after completion at 63°C for 30 min with 10 times higher sensitivity than that of nested PCR assays and without cross-amplification with other fish bacterial pathogens. All sample types of Nile and red tilapia (broodstock, fertilized egg, fry) were Strep. agalactiae- and Strep. iniae positive by this new method, implying that they could be vertically transmitted. With its application for screening broodstock and fry before stocking and for monitoring fish health in grow-out ponds, the method would become very useful in fish farming industry. The application of colorimetric LAMP with pre-addition of calcein offers simple, rapid and sensitive technique with applicability for small field laboratories. This technique explored the possible vertical transmission mode of Strep. agalactiae and Strep. iniae under natural aquatic environment. It could be such preliminary data provided for the screening broodstock before breeding and/or the specific-pathogen-free production. © 2013 The Society for Applied Microbiology.

  5. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  6. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection

    PubMed Central

    Madsen, Anne Mette; Alwan, Taif; Ørberg, Anders; Uhrbrand, Katrine; Jørgensen, Marie Birk

    2016-01-01

    A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the

  7. Novel Regulatory Small RNAs in Streptococcus pyogenes

    PubMed Central

    Tesorero, Rafael A.; Yu, Ning; Wright, Jordan O.; Svencionis, Juan P.; Cheng, Qiang; Kim, Jeong-Ho; Cho, Kyu Hong

    2013-01-01

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a Gram-positive bacterial pathogen that has shown complex modes of regulation of its virulence factors to cause diverse diseases. Bacterial small RNAs are regarded as novel widespread regulators of gene expression in response to environmental signals. Recent studies have revealed that several small RNAs (sRNAs) have an important role in S. pyogenes physiology and pathogenesis by regulating gene expression at the translational level. To search for new sRNAs in S. pyogenes, we performed a genomewide analysis through computational prediction followed by experimental verification. To overcome the limitation of low accuracy in computational prediction, we employed a combination of three different computational algorithms (sRNAPredict, eQRNA and RNAz). A total of 45 candidates were chosen based on the computational analysis, and their transcription was analyzed by reverse-transcriptase PCR and Northern blot. Through this process, we discovered 7 putative novel trans-acting sRNAs. Their abundance varied between different growth phases, suggesting that their expression is influenced by environmental or internal signals. Further, to screen target mRNAs of an sRNA, we employed differential RNA sequencing analysis. This study provides a significant resource for future study of small RNAs and their roles in physiology and pathogenesis of S. pyogenes. PMID:23762235

  8. An Affymetrix Microarray Design for Microbial Genotyping

    DTIC Science & Technology

    2009-10-01

    sanguinis SK36 232 Streptococcus sanguinis HPT sanguinis 5 Streptococcus suis 05ZYH33 138 Streptococcus suis 98 HAH33 65 Streptococcus thermophilus...Rickettsia species, plasmids pBC16 and pLS1. Sequences representing bacterial toxins and antimicrobial resistance (e.g. antibiotic markers) were also...Also included were regions that were constant within a species but differed between species, virulence genes, and antibiotic resistance genes. 2.3

  9. [Bacterial flora and mycosis of the vagina in women with symptoms of vaginal inflammation].

    PubMed

    Dybaś, Irena; Sidor-Wójtowicz, Anna; Kozioł-Montewka, Maria

    2005-05-01

    To estimate the microbiological profile of vaginal flora in 30 women with gynecologic problems and 20 pregnant women complaining about pathological symptoms {pruritus, burning, vaginal discharge}. The discharge from posterior vaginal vault was examined microbiologically on the Columbia Agar with sheep blood, MacConkey and Sabourand cultures incubated of 48 hours in the temperature of 37 degrees C. Bacterial infections were detected in 33 cases (66%), 12 of these women (24%) lived in urban, 21 (42%) in rural environment. From bacteria isolated from the vagina, most often because at 14 women stepped out Streptococcus agalactiae, at 11 Enterococcus faecalis at 8 Escherichia coli. In 5 cases bacterial inflammation was caused by two kinds of bacterium. At two women stepped out both Enterococcus faecalis and Escherichia coli. In single cases it was Klebsiella pneumoniae and Proteus vulgaris, Escherichia coli and Streptococcus agalactiae. In all cases of inflammation mycosis was called out by from Candida albicans. One ascertained it at 14 among all given an examination women. Mixed inflammations called out both by mycosis and bacterial stepped out in 3 cases in age of 21-30. At two women it was Candida albicans and Streptococcus agalactiae, at one inflammation mycosis accompanied Enterococcus faecalis. The common reason of vaginitis are bacterial infections caused by Streptococcus agalactiae, Enterococcus faecalis, E coli. Both, place of living and women' s age influence the type of etiological factor.

  10. Lung abscess due to Streptococcus pneumoniae: a case series and brief review of the literature.

    PubMed

    Nicolini, Antonello; Cilloniz, Catia; Senarega, Renata; Ferraioli, Gianluca; Barlascini, Cornelius

    2014-01-01

    Anaerobes used to be the most common cause of community-acquired lung abscess, and Streptococcus species used to be the second most common cause. In recent years, this has been changing. Klebsiella pneumoniae is now an increasing cause of community- acquired lung abscess, but Streptococcus species continue to be major pathogens. Necrotizing pneumonia has generally been regarded as a rare complication of pneumococcal infection in adults. Type 3 Streptococcus pneumoniae was the single most common type implicated in necrosis; however, many other serotypes were implicated. This entity predominately infects children, but is present also in adults. Lung abscess in adults due to Streptococcus pneumoniae is not common. In this regard we present a case series of pulmonary cavitation due to Streptococcus pneumoniae and discuss the possible pathogenic mechanism of the disease.

  11. Assessment of bacterial contamination of lipstick using pyrosequencing.

    PubMed

    Lee, So Y; Lee, Si Y

    As soon as they are exposed to the environment, cosmetics become contaminated with microorganisms, and this contamination accumulates with increased use. In this study, we employed pyrosequencing to investigate the diversity of bacteria found on lipstick. Bacterial DNA was extracted from 20 lipstick samples and mixed in equal ratios for pyrosequencing analysis. As a result, 105 bacterial genera were detected, four of which ( Leifsonia , Methylobacterium , Streptococcus , and Haemophilus ) were predominant in 92% of the 19,863 total sequence reads. Potentially pathogenic genera such as Staphylococcus , Pseudomonas , Escherichia , Salmonella , Corynebacterium , Mycobacterium , and Neisseria accounted for 27.6% of the 105 genera. The most commonly identified oral bacteria belonged to the Streptococcus genus, although other oral genera such as Actinomyces , Fusobacterium , Porphyromonas , and Lactobacillus were also detected.

  12. Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus.

    PubMed

    Beres, Stephen B; Richter, Ellen W; Nagiec, Michal J; Sumby, Paul; Porcella, Stephen F; DeLeo, Frank R; Musser, James M

    2006-05-02

    In recent years we have studied the relationship between strain genotypes and patient phenotypes in group A Streptococcus (GAS), a model human bacterial pathogen that causes extensive morbidity and mortality worldwide. We have concentrated our efforts on serotype M3 organisms because these strains are common causes of pharyngeal and invasive infections, produce unusually severe invasive infections, and can exhibit epidemic behavior. Our studies have been hindered by the lack of genome-scale phylogenies of multiple GAS strains and whole-genome sequences of multiple serotype M3 strains recovered from individuals with defined clinical phenotypes. To remove some of these impediments, we sequenced to closure the genome of four additional GAS strains and conducted comparative genomic resequencing of 12 contemporary serotype M3 strains representing distinct genotypes and phenotypes. Serotype M3 strains are a single phylogenetic lineage. Strains from asymptomatic throat carriers were significantly less virulent for mice than sterile-site isolates and evolved to a less virulent phenotype by multiple genetic pathways. Strain persistence or extinction between epidemics was strongly associated with presence or absence, respectively, of the prophage encoding streptococcal pyrogenic exotoxin A. A serotype M3 clone significantly underrepresented among necrotizing fasciitis cases has a unique frameshift mutation that truncates MtsR, a transcriptional regulator controlling expression of genes encoding iron-acquisition proteins. Expression microarray analysis of this clone confirmed significant alteration in expression of genes encoding iron metabolism proteins. Our analysis provided unprecedented detail about the molecular anatomy of bacterial strain genotype-patient phenotype relationships.

  13. Menaquinone analogs inhibit growth of bacterial pathogens.

    PubMed

    Schlievert, Patrick M; Merriman, Joseph A; Salgado-Pabón, Wilmara; Mueller, Elizabeth A; Spaulding, Adam R; Vu, Bao G; Chuang-Smith, Olivia N; Kohler, Petra L; Kirby, John R

    2013-11-01

    Gram-positive bacteria cause serious human illnesses through combinations of cell surface and secreted virulence factors. We initiated studies with four of these organisms to develop novel topical antibacterial agents that interfere with growth and exotoxin production, focusing on menaquinone analogs. Menadione, 1,4-naphthoquinone, and coenzymes Q1 to Q3 but not menaquinone, phylloquinone, or coenzyme Q10 inhibited the growth and to a greater extent exotoxin production of Staphylococcus aureus, Bacillus anthracis, Streptococcus pyogenes, and Streptococcus agalactiae at concentrations of 10 to 200 μg/ml. Coenzyme Q1 reduced the ability of S. aureus to cause toxic shock syndrome in a rabbit model, inhibited the growth of four Gram-negative bacteria, and synergized with another antimicrobial agent, glycerol monolaurate, to inhibit S. aureus growth. The staphylococcal two-component system SrrA/B was shown to be an antibacterial target of coenzyme Q1. We hypothesize that menaquinone analogs both induce toxic reactive oxygen species and affect bacterial plasma membranes and biosynthetic machinery to interfere with two-component systems, respiration, and macromolecular synthesis. These compounds represent a novel class of potential topical therapeutic agents.

  14. Streptococcus suis infection

    PubMed Central

    Feng, Youjun; Zhang, Huimin; Wu, Zuowei; Wang, Shihua; Cao, Min; Hu, Dan; Wang, Changjun

    2014-01-01

    Streptococcus suis (S. suis) is a family of pathogenic gram-positive bacterial strains that represents a primary health problem in the swine industry worldwide. S. suis is also an emerging zoonotic pathogen that causes severe human infections clinically featuring with varied diseases/syndromes (such as meningitis, septicemia, and arthritis). Over the past few decades, continued efforts have made significant progress toward better understanding this zoonotic infectious entity, contributing in part to the elucidation of the molecular mechanism underlying its high pathogenicity. This review is aimed at presenting an updated overview of this pathogen from the perspective of molecular epidemiology, clinical diagnosis and typing, virulence mechanism, and protective antigens contributing to its zoonosis. PMID:24667807

  15. Activity of nadifloxacin (OPC-7251) and seven other antimicrobial agents against aerobic and anaerobic Gram-positive bacteria isolated from bacterial skin infections.

    PubMed

    Nenoff, P; Haustein, U-F; Hittel, N

    2004-10-01

    The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.

  16. Temporal changes in species interactions in simple aquatic bacterial communities

    PubMed Central

    2012-01-01

    Background Organisms modify their environment and in doing so change the quantity and possibly the quality of available resources. Due to the two-way relationship between organisms and their resource environment, and the complexity it brings to biological communities, measuring species interactions reliably in any biological system is a challenging task. As the resource environment changes, the intensity and even the sign of interactions may vary in time. We used Serratia marcescens and Novosphingobium capsulatum bacteria to study how the interaction between resource environment and organisms influence the growth of the bacterial species during circa 200 generations. We used a sterile-filtering method to measure how changes in resource environment are reflected in growth rates of the two species. Results Changes in the resource environment caused complex time and species composition-dependent effects on bacterial growth performance. Variation in the quality of the growth medium indicated existence of temporally fluctuating within-species facilitation and inhibition, and between-species asymmetric facilitation. Conclusions The interactions between the community members could not be fully predicted based only on the knowledge of the growth performance of each member in isolation. Growth dynamics in sterile-filtered samples of the conditioned growth medium can reveal both biologically meaningful changes in resource availability and temporally changing facilitative resource-mediated interactions between study species. This is the first study we are aware of where the filter-sterilization – growth assay method is applied to study the effect of long-term changes in the environment on species interactions. PMID:22984961

  17. Molecular characterization of the presence of Eubacterium spp and Streptococcus spp in endodontic infections.

    PubMed

    Fouad, A F; Kum, K-Y; Clawson, M L; Barry, J; Abenoja, C; Zhu, Q; Caimano, M; Radolf, J D

    2003-08-01

    Eubacterium spp. and Streptococcus spp. are virulent, commonly identified microorganisms in endodontic infections. The purpose of this study was to use molecular methods to identify these organisms in 22 infected root canals that include eight cases with preoperative clinical symptoms and five cases with a history of diabetes mellitus. The presence of Streptococcus spp. and Eubacterium spp. was examined using two sets of PCR primers specific with multiple species within the respective genera. Positive specimens had their PCR products sequenced and phylogenetically analyzed to identify the specific species. Sixteen specimens (73%) contained Eubacterium spp. and nine (41%) were positive for Streptococcus spp. Eubacterium infirmum was the most prevalent Eubacterium sp. This organism was significantly associated with a history of diabetes (OR = 9.6; P = 0.04). Streptococcus anginosus was the most common Streptococcus sp., but neither it nor any of the other streptococci were significantly associated with the clinical parameters evaluated.

  18. Streptococcus pyogenes pharyngeal colonization resulting in recurrent, prepubertal vulvovaginitis.

    PubMed

    Hansen, Megan T; Sanchez, Veronica T; Eyster, Kathleen; Hansen, Keith A

    2007-10-01

    Recurrent, prepubertal, vaginal infections are an uncommon, troublesome problem for the patient and her family. Failure of initial therapy to alleviate vulvovaginitis may be related to vulvar skin disease, foreign body, sexual abuse, pinworms, reactions to medications, anatomic anomalies, or allergies. This report describes a case of recurrent Streptococcus pyogenes vulvovaginitis secondary to presumed vaginal re-inoculation from pharyngeal colonization. A 4-yr-old presented with one year of culture proven, recurrent Streptococcus pyogenes vulvovaginitis. Her symptoms repeatedly resolved with penicillin therapy, but continued to recur following cessation of antibiotic therapy. Evaluation included physical examination, trans-abdominal pelvic ultrasound, and vaginoscopy which all revealed normal upper and lower genital tract anatomy. Both the patient and her mother demonstrated culture proven, Group A Streptococcus pharyngeal colonization. Because of the possibility of repeated inoculations of the vaginal area from the colonized pharynx, they were both treated for decolonization with a regimen of amoxicillin and rifampin for ten days. Following this therapy there was resolution of vaginal symptoms with no further recurrence. Follow-up pharyngeal culture done on both mother and child on their last visit were negative for Group A Streptococcus. This case demonstrated an unusual specific cause of recurrent vaginitis resulting from presumed self or maternal re-inoculation with group A beta-hemolytic streptococcus from pharyngeal colonization. Group A beta-hemolytic streptococcus are consistently sensitive to penicillin, but up to 25% of acute pharyngitis cases treated with penicillin having continued asymptomatic, bacterial carriage within the nasopharynx. Thus initial alleviation of symptoms in a patient with Group A beta-hemolytic vulvovaginitis treated with penicillin, can have continued asymptomatic pharyngeal colonization which can result in recurrence of the

  19. Influence of time, toothpaste and saliva in the retention of Streptococcus mutans and Streptococcus sanguinis on different toothbrushes

    PubMed Central

    SCHMIDT, Julia Caroline; BUX, Miriam; FILIPUZZI-JENNY, Elisabeth; KULIK, Eva Maria; WALTIMO, Tuomas; WEIGER, Roland; WALTER, Clemens

    2014-01-01

    Objectives The intraoral transmission of cariogenic and periodontopathogenic species seems to be facilitated by contaminated toothbrushes and other oral hygiene devices. The aim of this investigation was to analyze the in vitro retention and survival rate of Streptococcus mutans and Streptococcus sanguinis on different toothbrushes. The impacts of human saliva and antimicrobial toothpaste on these parameters were further evaluated. Material and Methods Part I: Four toothbrushes (Colgate 360°, Curaprox CS5460 ultra soft, elmex InterX, Trisa Flexible Head3) were contaminated by S. mutans DSM 20523 or S. sanguinis DSM 20068 suspensions for three minutes. Bacteria were removed from the toothbrushes after either three minutes (T0) or 24 hours (T24) of dry storage and grown on Columbia blood agar plates for the quantification of colony-forming units (CFUs). Part II: The effects of saliva from a caries-active or a caries-inactive person and of toothpaste containing 0.12% chlorhexidine digluconate were also tested. Results Part I: After three minutes of dry storage, approximately one percent of the bacteria were still detectable on the toothbrushes. After 24 hours, S. sanguinis exhibited a more pronounced decrease in viable cell numbers compared with S. mutans but the differences were not significant (Kruskal-Wallis test, p>0.05). Part II: The addition of human saliva from a caries-active or caries-inactive person slightly increased the retention of both streptococcal species at T0. The use of toothpaste had no influence on the amount of viable streptococci at T0, but it reduced the microbial load after 24 hours of storage. There were only slight nonsignificant differences (p>0.05) between the four toothbrushes. Conclusions In vitro bacterial retention and survival of S. sanguinis and S. mutans on different toothbrushes occurred. Within the limitations of this study, the use of human saliva or an antimicrobial toothpaste did not lead to significant differences in the

  20. Streptococcus Adherence and Colonization

    PubMed Central

    Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2009-01-01

    Summary: Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a “coat of many colors,” enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed. PMID:19721085

  1. Chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of animal bacterial pathogens.

    PubMed

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-05-01

    To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains.

  2. STREPTOCOCCUS: A WORLDWIDE FISH HEALTH PROBLEM

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae and S. agalactiae are important emergent pathogens that affect many fish species worldwide, especially in warm-water regions. In marine and freshwater systems, these Gram-positive bacteria cause significant economic losses, estimated at hundreds of millions of dollars annually. ...

  3. Diversity of human small intestinal Streptococcus and Veillonella populations.

    PubMed

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

    2013-08-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives

    PubMed Central

    Kilian, Mogens; Poulsen, Knud; Blomqvist, Trinelise; Håvarstein, Leiv S.; Bek-Thomsen, Malene; Tettelin, Hervé; Sørensen, Uffe B. S.

    2008-01-01

    Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts. PMID:18628950

  5. Positive and negative associations between bacterial species in dental root canals.

    PubMed

    Gomes, B P; Drucker, D B; Lilley, J D

    1994-01-01

    Significant associations have been previously reported between certain pairs of bacterial species isolated from human dental root canals. The aim of this study was to examine microbiologically a more extensive series of cases, with particular reference to obligate anaerobes which accounted for 64% of total isolations. A total of 65 different species was isolated and individual root canals yielded a maximum of eleven bacterial species. Highly significant positive associations (p < 0.001) were found between Peptostreptococcus spp. and Prevotella spp., between Peptostreptococcus spp. and P. melaninogenica, between P. micros and Prevotella spp., P. micros and P. melaninogenica and between Prevotella spp. and Eubacterium spp., all with an ODDS ratio of > 9.0. In contrast, negative and highly significant associations (p < 0.01) were found only between the four species pairs: B. vulgatus/F. necrophorum, P. magnus/Bifidobacterium spp., B. gracilis/F. nucleatum and between B. gracilis/Fusobacterium spp.; all with an ODDS ratio of < 0.5. Some previously published associations were confirmed and some new associations were found, while some negative associations became apparent.

  6. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans

    PubMed Central

    Moye, Zachary D.; Zeng, Lin; Burne, Robert A.

    2014-01-01

    The nature of the oral cavity and host behaviors has mandated that the oral microbiota evolve mechanisms for coping with environmental fluctuations, especially changes in the type and availability of carbohydrates. In the case of human dental caries, the presence of excess carbohydrates is often responsible for altering the local environment to be more favorable for species associated with the initiation and progression of disease, including Streptococcus mutans. Some of the earliest endeavors to understand how cariogenic species respond to environmental perturbations were carried out using chemostat cultivation, which provides fine control over culture conditions and bacterial behaviors. The development of genome-scale methodologies has allowed for the combination of sophisticated cultivation technologies with genome-level analysis to more thoroughly probe how bacterial pathogens respond to environmental stimuli. Recent investigations in S. mutans and other closely related streptococci have begun to reveal that carbohydrate metabolism can drastically impact pathogenic potential and highlight the important influence that nutrient acquisition has on the success of pathogens; inside and outside of the oral cavity. Collectively, research into pathogenic streptococci, which have evolved in close association with the human host, has begun to unveil the essential nature of careful orchestration of carbohydrate acquisition and catabolism to allow the organisms to persist and, when conditions allow, initiate or worsen disease. PMID:25317251

  7. [Microbiology of bronchoalveolar lavage in infants with bacterial community-acquired pneumonia with poor outcome].

    PubMed

    García-Elorriaga, Guadalupe; Palma-Alaniz, Laura; García-Bolaños, Carlos; Ruelas-Vargas, Consuelo; Méndez-Tovar, Socorro; Del Rey-Pineda, Guillermo

    Community-acquired pneumonia (CAP) is one of the most common infectious causes of morbidity and mortality in children <5 years of age. The aim of the study was to clarify the bacterial etiologic diagnosis in infants with CAP. A prospective, cross-sectional and descriptive study in patients 6 months to 2 years 11 months of age with CAP with poor outcome was conducted. Patients were admitted to the Pediatric Pneumology Service and underwent bronchoscopy with bronchoalveolar lavage (BAL), taking appropriate measures during the procedure to limit the risk of contamination. Aerobic bacteria isolated were Moraxella sp. 23%, Streptococcus mitis 23%, Streptococcus pneumoniae 18%, Haemophilus influenzae 12%, Streptococcus oralis 12%, and Streptococcus salivarius 12%. In contrast to other reports, we found Moraxella sp. to be a major bacterial pathogen, possibly because of improved detection with bronchoscopy plus BAL. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  8. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    NASA Astrophysics Data System (ADS)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  9. [Septic arthritis caused by Streptococcus suis].

    PubMed

    Hedegaard, Sofie Sommer; Zaccarin, Matthias; Lindberg, Jens

    2013-05-27

    Streptococcus suis is a global endemic swine pathogen. S. suis can cause meningitis, endocarditis and severe sepsis in humans, who are exposed to swine. Human infection with S. suis was first reported in 1968, since then, human infections have been sporadic although an outbreak in China counted 215 cases. In a rare case of disseminated arthritis we found that correct clinical diagnosis was difficult due to unspecific symptomatology and slow growing bacterial culture. However, conducting thorough examinations is crucial, and if treated correctly the outcome is favourable.

  10. Streptococcus suis meningoencephalitis with seizure from raw pork ingestion: a case report.

    PubMed

    Wongjittraporn, Suwarat; Teerasukjinda, Ornusa; Yee, Melvin; Chung, Heath H

    2014-09-01

    Streptococcus suis meningoencephalitis is a rare but increasingly important condition. Good history taking will give clues to the diagnosis. This is the fourth case report in the United States. A 52-year-old Filipino man who recently returned from a trip to the Philippines was admitted with classic symptoms of bacterial meningitis. His cerebrospinal fluid culture grew Streptococcus suis. His clinical course was complicated by seizures, hearing loss, and permanent tinnitus. Clinicians should be aware of this emerging disease especially in patients with recent travel history to endemic areas. Early recognition and appropriate management could potentially prevent complications.

  11. Steroids in bacterial meningitis: yes.

    PubMed

    Benninger, Felix; Steiner, Israel

    2013-02-01

    Bacterial meningitis is an infectious condition associated with severe morbidity and mortality, even with rapid diagnosis and appropriate antibiotic therapy. Despite decrease in the rate of bacterial meningitis brought about by vaccination programs against Haemophilus influenzae type-B and Streptococcus pneumonia, the incidence of meningitis is still unacceptably high and acute treatment remains the mainstay of therapy. The infection is accompanied by intense inflammatory response, which may carry deleterious effects upon the tissue. This led to the possibility of adjuvant corticosteroid therapy, as an anti-inflammatory agent, in bacterial meningitis. The debate focuses on the rational and evidence supporting and refuting such an approach.

  12. Acquisition through Horizontal Gene Transfer of Plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 Points towards the Dairy Origin of the Species

    PubMed Central

    Papadimitriou, Konstantinos; Anastasiou, Rania; Maistrou, Eleni; Plakas, Thomas; Papandreou, Nikos C.; Hamodrakas, Stavros J.; Ferreira, Stéphanie; Supply, Philip; Renault, Pierre; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Background Streptococcus macedonicus is an intriguing streptococcal species whose most frequent source of isolation is fermented foods similarly to Streptococcus thermophilus. However, S. macedonicus is closely related to commensal opportunistic pathogens of the Streptococcus bovis/Streptococcus equinus complex. Methodology/Principal Findings We analyzed the pSMA198 plasmid isolated from the dairy strain Streptococcus macedonicus ACA-DC 198 in order to provide novel clues about the main ecological niche of this bacterium. pSMA198 belongs to the narrow host range pCI305/pWV02 family found primarily in lactococci and to the best of our knowledge it is the first such plasmid to be reported in streptococci. Comparative analysis of the pSMA198 sequence revealed a high degree of similarity with plasmids isolated from Lactococcus lactis strains deriving from milk or its products. Phylogenetic analysis of the pSMA198 Rep showed that the vast majority of closely related proteins derive from lactococcal dairy isolates. Additionally, cloning of the pSMA198 ori in L. lactis revealed a 100% stability of replication over 100 generations. Both pSMA198 and the chromosome of S. macedonicus exhibit a high percentage of potential pseudogenes, indicating that they have co-evolved under the same gene decay processes. We identified chromosomal regions in S. macedonicus that may have originated from pSMA198, also supporting a long co-existence of the two replicons. pSMA198 was also found in divergent biotypes of S. macedonicus and in strains isolated from dispersed geographic locations (e.g. Greece and Switzerland) showing that pSMA198’s acquisition is not a recent event. Conclusions/Significance Here we propose that S. macedonicus acquired plasmid pSMA198 from L. lactis via an ancestral genetic exchange event that took place most probably in milk or dairy products. We provide important evidence that point towards the dairy origin of this species. PMID:25584532

  13. Quantitative real-time polymerase chain reaction for Streptococcus mutans and Streptococcus sobrinus in dental plaque samples and its association with early childhood caries.

    PubMed

    Choi, Eun-Jung; Lee, Sung-Hoon; Kim, Young-Jae

    2009-03-01

    Streptococcus mutans and Streptococcus sobrinus are closely associated with the development of early childhood caries (ECC). Recently, quantitative real-time polymerase chain reaction (qRT-PCR) has been used for rapid and accurate quantification of these bacterial species. This study aims to detect quantitatively the levels of S. mutans and S. sobrinus in plaque samples by qRT-PCR, and to assess their association with the prevalence of ECC in Korean preschool children. One hundred and five children (71 months old or younger) were examined and classified into three groups (caries-free, ECC, severe ECC). Dental plaque samples were collected and qRT-PCR was conducted using oligonucleotide primers specific for glucosyltransferase gene (S. mutans-gtfB, S. sobrinus-gtfU) and universal primer. Pearson's correlation test was conducted to evaluate the relationship between the dmfs (decayed, missing, or filled surfaces primary teeth) scores and the microbiological findings. There was a significant difference between the levels of S. mutans and S. sobrinus in the plaque samples of the three groups (P < 0.05). The proportion of S. sobrinus to S. mutans showed strong correlation to the dmfs scores (r = 0.748, P < 0.05). The qRT-PCR results of this study showed that children with ECC had higher level of S. mutans and S. sobrinus in their dental plaque samples. The children with higher ratio of S. sobrinus to S. mutans in their dental plaque showed higher incidence of ECC.

  14. Host species shapes the co-occurrence patterns rather than diversity of stomach bacterial communities in pikas.

    PubMed

    Li, Huan; Li, Tongtong; Tu, Bo; Kou, Yongping; Li, Xiangzhen

    2017-07-01

    The mammalian stomach acts as an important barrier against ingested pathogens into the entire gastrointestinal tract, thereby playing a key role in host health. However, little is known regarding to the stomach microbial compositions in wild mammals and the factors that may influence the community compositions. Using high-throughput sequencing of the 16S rRNA gene, we characterized the stomach bacterial community compositions, diversity, and interactions in two common pika (Ochotona sp.) species in China, including Plateau pikas (Ochotona curzoniae) and Daurian pikas (Ochotona daurica) living in the Qinghai-Tibet Plateau and the Inner Mongolia Grassland, respectively. The bacterial communities can be divided into two distinct phylogenetic clusters. The most dominant bacteria in cluster I were unclassified bacteria. Cluster II was more diverse, predominantly consisting of Bacteroidetes, followed by unclassified bacteria, Firmicutes and Proteobacteria. Three dominant genera (Prevotella, Oscillospira, and Ruminococcus) in pika stomachs were significantly enriched in cluster II. In addition, seasons, host species, and sampling sites as well as body weight and sex had no significant impacts on the composition and diversity of pika stomach communities. Interestingly, Plateau pikas harbored a more complex bacterial network than Daurian pikas, and these two pika species showed different co-occurrence patterns. These results suggested that the pika stomach harbors a diverse but relatively stable and unique bacterial community, which is independent on host (host species, body weight, and sex) and measured environmental factors (sampling sites and seasons). Interestingly, host species shapes the microbial interactions rather than diversity of stomach bacterial communities in pikas, reflecting specific niche adaptation of stomach bacterial communities through species interactions.

  15. Bacterial Adherence and Dwelling Probability: Two Drivers of Early Alveolar Infection by Streptococcus pneumoniae Identified in Multi-Level Mathematical Modeling

    PubMed Central

    Santos, Guido; Lai, Xin; Eberhardt, Martin; Vera, Julio

    2018-01-01

    Pneumococcal infection is the most frequent cause of pneumonia, and one of the most prevalent diseases worldwide. The population groups at high risk of death from bacterial pneumonia are infants, elderly and immunosuppressed people. These groups are more vulnerable because they have immature or impaired immune systems, the efficacy of their response to vaccines is lower, and antibiotic treatment often does not take place until the inflammatory response triggered is already overwhelming. The immune response to bacterial lung infections involves dynamic interactions between several types of cells whose activation is driven by intracellular molecular networks. A feasible approach to the integration of knowledge and data linking tissue, cellular and intracellular events and the construction of hypotheses in this area is the use of mathematical modeling. For this paper, we used a multi-level computational model to analyse the role of cellular and molecular interactions during the first 10 h after alveolar invasion of Streptococcus pneumoniae bacteria. By “multi-level” we mean that we simulated the interplay between different temporal and spatial scales in a single computational model. In this instance, we included the intracellular scale of processes driving lung epithelial cell activation together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis, we combined systematic model simulations with logistic regression analysis and decision trees to find genotypic-phenotypic signatures that explain differences in bacteria strain infectivity. According to our simulations, pneumococci benefit from a high dwelling probability and a high proliferation rate during the first stages of infection. In addition to this, the model predicts that during the very early phases of infection the bacterial capsule could be an impediment to the establishment of the alveolar infection because it impairs bacterial colonization. PMID:29868515

  16. Bacterial Adherence and Dwelling Probability: Two Drivers of Early Alveolar Infection by Streptococcus pneumoniae Identified in Multi-Level Mathematical Modeling.

    PubMed

    Santos, Guido; Lai, Xin; Eberhardt, Martin; Vera, Julio

    2018-01-01

    Pneumococcal infection is the most frequent cause of pneumonia, and one of the most prevalent diseases worldwide. The population groups at high risk of death from bacterial pneumonia are infants, elderly and immunosuppressed people. These groups are more vulnerable because they have immature or impaired immune systems, the efficacy of their response to vaccines is lower, and antibiotic treatment often does not take place until the inflammatory response triggered is already overwhelming. The immune response to bacterial lung infections involves dynamic interactions between several types of cells whose activation is driven by intracellular molecular networks. A feasible approach to the integration of knowledge and data linking tissue, cellular and intracellular events and the construction of hypotheses in this area is the use of mathematical modeling. For this paper, we used a multi-level computational model to analyse the role of cellular and molecular interactions during the first 10 h after alveolar invasion of Streptococcus pneumoniae bacteria. By "multi-level" we mean that we simulated the interplay between different temporal and spatial scales in a single computational model. In this instance, we included the intracellular scale of processes driving lung epithelial cell activation together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis, we combined systematic model simulations with logistic regression analysis and decision trees to find genotypic-phenotypic signatures that explain differences in bacteria strain infectivity. According to our simulations, pneumococci benefit from a high dwelling probability and a high proliferation rate during the first stages of infection. In addition to this, the model predicts that during the very early phases of infection the bacterial capsule could be an impediment to the establishment of the alveolar infection because it impairs bacterial colonization.

  17. Analysis of Inter-Individual Bacterial Variation in Gut of Cicada Meimuna mongolica (Hemiptera: Cicadidae)

    PubMed Central

    Zhou, Wenting; Nan, Xiaoning; Zheng, Zhou; Wei, Cong; He, Hong

    2015-01-01

    Intestinal bacterial community plays a crucial role in the nutrition, development, survival, and reproduction of insects. When compared with other insects with piercing-sucking mouthparts, the habitats of cicada nymphs and adults are totally different. However, little is known about the differences in the gut bacterial communities in the nymphs and adults within any cicada species. The diversity of bacteria in the gut of nymphs and adults of both genders of Meimuna mongolica (Distant) was studied using the denaturing gradient gel electrophoresis (DGGE) method. Few inter-individual variations among gut microbiota were observed, suggesting that M. mongolica typically harbors a limited and consistent suite of bacterial species. Bacteria in the genera Pseudomonas and Enterobacter were the predominant components of the gut microflora of M. mongolica at all life stages. Bacteria of Pantoea, Streptococcus, and Uruburuella were also widespread in the cicada samples but at relatively lower concentrations. The relative stability and similarity of the PCR-DGGE patterns indicate that all individuals of this cicada species harbor a characteristic bacterial community which is independent from developmental stages and genders. Related endosymbionts that could be harbored in bacteromes of cicadas were not detected in any gut samples, which could be related to the cicada species and the distribution of these endosymbionts in the cicada cavity, or due to some of the possible limitations of PCR-DGGE community profiling. It is worthwhile to further address if related cicada endosymbiont clades distribute in the alimentary canals and other internal organs through diagnostic PCR using group-specific primer sets. PMID:26411784

  18. Streptococcus azizii sp. nov., isolated from naïve weanling mice.

    PubMed

    Shewmaker, Patricia Lynn; Whitney, Anne M; Gulvik, Christopher A; Lipman, Neil S

    2017-12-01

    Three isolates of a previously reported novel catalase-negative, Gram-stain-positive, coccoid, alpha-haemolytic, Streptococcus species that were associated with meningoencephalitis in naïve weanling mice were further evaluated to confirm their taxonomic status and to determine additional phenotypic and molecular characteristics. Comparative 16S rRNA gene sequence analysis showed nearly identical intra-species sequence similarity (≥99.9 %), and revealed the closest phylogenetically related species, Streptococcus acidominimus and Streptococcuscuniculi, with 97.0 and 97.5 % sequence similarity, respectively. The rpoB, sodA and recN genes were identical for the three isolates and were 87.6, 85.7 and 82.5 % similar to S. acidominimus and 89.7, 86.2 and 80.7 % similar to S. cuniculi, respectively. In silico DNA-DNA hybridization analyses of mouse isolate 12-5202 T against S. acidominimus CCUG 27296 T and S. cuniculi CCUG 65085 T produced estimated values of 26.4 and 25.7 % relatedness, and the calculated average nucleotide identity values were 81.9 and 81.7, respectively. These data confirm the taxonomic status of 12-5202 T as a distinct Streptococcus species, and we formally propose the type strain, Streptococcusazizii 12-5202 T (=CCUG 69378 T =DSM 103678 T ). The genome of Streptococcus azizii sp. nov. 12-5202 T contains 2062 total genes with a size of 2.34 Mbp, and an average G+C content of 42.76 mol%.

  19. Massive Infection of Seabird Ticks with Bacterial Species Related to Coxiella burnetii

    PubMed Central

    Dietrich, Muriel; Lebarbenchon, Camille; Jaeger, Audrey; Le Rouzic, Céline; Bastien, Matthieu; Lagadec, Erwan; McCoy, Karen D.; Pascalis, Hervé; Le Corre, Matthieu; Dellagi, Koussay; Tortosa, Pablo

    2014-01-01

    Seabird ticks are known reservoirs of bacterial pathogens of medical importance; however, ticks parasitizing tropical seabirds have received less attention than their counterparts from temperate and subpolar regions. Recently, Rickettsia africae was described to infect seabird ticks of the western Indian Ocean and New Caledonia, constituting the only available data on bacterial pathogens associated with tropical seabird tick species. Here, we combined a pyrosequencing-based approach with a classical molecular analysis targeting bacteria of potential medical importance in order to describe the bacterial community in two tropical seabird ticks, Amblyomma loculosum and Carios (Ornithodoros) capensis. We also investigated the patterns of prevalence and host specificity within the biogeographical context of the western Indian Ocean islands. The bacterial community of the two tick species was characterized by a strong dominance of Coxiella and Rickettsia. Our data support a strict Coxiella-host tick specificity, a pattern resembling the one found for Rickettsia spp. in the same two seabird tick species. Both the high prevalence and stringent host tick specificity suggest that these bacteria may be tick symbionts with probable vertical transmission. Detailed studies of the pathogenicity of these bacteria will now be required to determine whether horizontal transmission can occur and to clarify their status as potential human pathogens. More generally, our results show that the combination of next generation sequencing with targeted detection/genotyping approaches proves to be efficient in poorly investigated fields where research can be considered to be starting from scratch. PMID:24657860

  20. Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation.

    PubMed

    Jiménez, Natalia; Barcenilla, José María; de Felipe, Félix López; de Las Rivas, Blanca; Muñoz, Rosario

    2014-01-01

    The gene in the locus GALLO_1609 from Streptococcus gallolyticus UCN34 was cloned and expressed as an active protein in Escherichia coli BL21 (DE3). The protein was named TanSg1 since it shows similarity to bacterial tannases previously described. The recombinant strain produced His-tagged TanSg1 which was purified by affinity chromatography. Purified TanSg1 protein showed tannase activity, having a specific activity of 577 U/mg which is 41 % higher than the activity of Lactobacillus plantarum tannase. Remarkably, TanSg1 displayed optimum catalytic activity at pH 6-8 and 50-70 °C and showed high stability over a broad range of temperatures. It retained 25 % of its relative activity after prolonged incubation at 45 °C. The specific activity of TanSg1 is enhanced by the divalent cation Ca(2+) and is dramatically reduced by Zn(2+) and Hg(2+). The enzyme was highly specific for gallate and protocatechuate esters and showed no catalytic activity against other phenolic esters. The protein TanSg1 hydrolyzes efficiently tannic acid, a complex and polymeric gallotanin, allowing its complete conversion to gallic acid, a potent antioxidant. From its biochemical properties, TanSg1 is a tannase with potential industrial interest regarding the biodegradation of tannin waste or its bioconversion into biologically active products.

  1. Production of recombinant streptokinase from Streptococcus pyogenes isolate and its potential for thrombolytic therapy.

    PubMed

    Assiri, Abdullah S; El-Gamal, Basiouny A; Hafez, Elsayed E; Haidara, Mohamed A

    2014-12-01

    To produce an effective recombinant streptokinase (rSK) from pathogenic Streptococcus pyogenes isolate in yeast, and evaluate its potential for thrombolytic therapy. This study was conducted from November 2012 to December 2013 at King Khalid University, Abha, Kingdom of Saudi Arabia (KSA). Throat swabs collected from 45 pharyngitis patients in Asser Central Hospital, Abha, KSA were used to isolate Streptococcus pyogenes. The bacterial DNA was used for amplification of the streptokinase gene (1200 bp). The gene was cloned and in vitro transcribed in an eukaryotic expression vector that was transformed into yeast Pichia pastoris SMD1168, and the rSK protein was purified and tested for its thrombolytic activity. The Streptococcus pyogenes strain was isolated and its DNA nucleotide sequence revealed similarity to other Streptococcus pyogenes in the Gene bank. Sequencing of the amplified gene based on DNA nucleotide sequence revealed a SK gene closely related to other SK genes in the Gene bank. However, based on deduced amino acids sequence, the gene formed a separate cluster different from clusters formed by other examined genes, suggesting a new bacterial isolate and accordingly a new gene. The purified protein showed 82% clot lysis compared to a commercial SK (81%) at an enzyme concentration of 2000 U/ml. The present yeast rSK showed similar thrombolytic activity in vitro as that of a commercial SK, suggesting its potential for thrombolytic therapy and large scale production. 

  2. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  3. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  4. Splendore-Hoeppli phenomenon in a cat with osteomyelitis caused by Streptococcus species.

    PubMed

    França, Silvia de Araujo; Braga, Juliana Fortes Vilarinho; Moreira, Matheus Vilardo Loes; Silva, Vitor Cesar Martins; Souza, Erick Ferry; Pereira, Luiz Carlos; Rezende, Cleuza Maria de Faria; Ecco, Roselene

    2014-02-01

    A 9-month-old male neutered mixed-breed cat had a history of chronic lameness of the right hind limb, which was non-responsive to antibiotic treatment. Hematologic analysis revealed marked neutrophilia and mild monocytosis. Radiography revealed extensive loss of cortical bone, and replacement with irregular and disorganized bone. There was loss of the normal cortico-medullary distinction, and the medullary cavity had an irregular radiodensity suggestive of osteomyelitis. Surgical curettage and antibiotics did not improve the clinical condition, and amputation was performed. Grossly, the skin over the right tibia was ulcerated with a viscous and granular exudate. At histopathology, there was marked diffuse pyogranulomatous dermatitis, myositis, periostitis and osteomyelitis associated with Splendore-Hoeppli phenomenon. In addition, there was marrow osteoproliferation and multifocal cortical loss, reabsorption, fibroplasia and endosteal bone formation. Gram staining revealed myriad slightly elongated Gram-positive bacteria, arranged in pairs or single chains, confirmed by polymerase chain reaction as Streptococcus species.

  5. Streptococcus himalayensis sp. nov., isolated from the respiratory tract of Marmota himalayana.

    PubMed

    Niu, Lina; Lu, Shan; Lai, Xin-He; Hu, Shoukui; Chen, Cuixia; Zhang, Gui; Yang, Jing; Jin, Dong; Wang, Yi; Lan, Ruiting; Lu, Gang; Xie, Yingping; Ye, Changyun; Xu, Jianguo

    2017-02-01

    Five strains of Gram-positive-staining, catalase-negative, coccus-shaped, chain-forming organisms isolated separately from the respiratory tracts of five Marmota himalayana animals in the Qinghai-Tibet Plateau of China were subjected to phenotypic and molecular taxonomic analyses. Comparative analysis of the 16S rRNA gene indicated that these singular organisms represent a new member of the genus Streptococcus, being phylogenetically closest to Streptococcus marmotae DSM 101995T (98.4 % similarity). The groEL, sodA and rpoB sequence analysis showed interspecies similarity values between HTS2T and Streptococcus. marmotae DSM 101995T, its closest phylogenetic relative based on 16S rRNA gene sequences, of 98.2, 78.8 and 93.7 %, respectively. A whole-genome phylogenetic tree built from 82 core genes of genomes from 16 species of the genus Streptococcus validated that HTS2T forms a distinct subline and exhibits specific phylogenetic affinity with S. marmotae. In silico DNA-DNA hybridization of HTS2T showed an estimated DNA reassociation value of 40.5 % with Streptococcus. marmotae DSM 101995T. On the basis of their phenotypic characteristics and phylogenetic findings, it is proposed that the five isolates be classified as representatives of a novel species of the genus Streptococcus, Streptococcus himalayensis sp. nov. The type strain is HTS2T (=DSM 101997T=CGMCC 1.15533T). The genome of Streptococcus himalayensis sp. nov. strain HTS2T contains 2195 genes with a size of 2 275 471 bp and a mean DNA G+C content of 41.3 mol%.

  6. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    PubMed Central

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  7. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  8. Production and Properties of Bacteriocin-Like Inhibitory Substances from the Swine Pathogen Streptococcus suis Serotype 2

    PubMed Central

    Mélançon, D.; Grenier, D.

    2003-01-01

    Streptococcus suis serotype 2 is a major pathogen found in the upper respiratory tract of swine. In this study, isolates of this bacterial species were tested for the production of bacteriocin-like inhibitory substances (BLIS). Of the 38 strains tested, four inhibited the growth of other S. suis isolates according to a deferred-antagonism plate assay. Interestingly, three of the strains were originally isolated from healthy carrier pigs and were considered nonvirulent. Three isolates (94-623, 90-1330, and AAH4) that produced BLIS in liquid broth were selected for further characterization. None of the inhibitory activities was related to the production of either organic acids or hydrogen peroxide. The BLIS produced by these strains were heat stable and proteinase K, pronase, and elastase sensitive but were trypsin and chymotrypsin resistant. They were stable at pH 2 and 12 and had molecular masses in the range of 14 to 30 kDa. Maximum production was observed during the mid-log phase. Following a curing procedure with novobiocin, only 90-1330 lost the ability to produce BLIS, suggesting that the BLIS might be plasmid encoded. Analysis of the inhibitory spectra revealed that the BLIS-producing strains also inhibited the growth of Actinobacillus minor, Actinobacillus porcinus, Enterococcus durans, Micrococcus luteus, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. dysgalactiae, Streptococcus equi subsp. zooepidemicus, and S. dysgalactiae subsp. equisimilis. This study reports for the first time the ability of the swine pathogen S. suis serotype 2 to produce BLIS with the characteristics of classic bacteriocins. Further studies are required to investigate the possibility of using bacteriocin-producing strains to prevent swine infections caused by virulent strains of S. suis serotype 2. PMID:12902232

  9. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    PubMed Central

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for each) were examined for chlorhexidine digluconate effects on biofilm formation and planktonic growth using microtiter plates. In all of the examined strains in the presence of chlorhexidine digluconate, biofilm development and planktonic growth were affected at the same concentrations of the disinfectant. Results: Chlorhexidine digluconate inhibited the planktonic growth of different bacterial species at sub-MICs. But they were able to induce biofilm development of the E. coli, Salmonella spp., S. aureus and Str. agalactiae strains. Conclusions: Bacterial resistance against chlorhexidine is increasing. Sub-MIC doses of chlorhexidine digluconate can stimulate the formation of biofilm strains. PMID:24872940

  10. Phenotypic, Genotypic, and Antimicrobial Characteristics of Streptococcus halichoeri Isolates from Humans, Proposal To Rename Streptococcus halichoeri as Streptococcus halichoeri subsp. halichoeri, and Description of Streptococcus halichoeri subsp. hominis subsp. nov., a Bacterium Associated with Human Clinical Infections.

    PubMed

    Shewmaker, P L; Whitney, A M; Humrighouse, B W

    2016-03-01

    Phenotypic, genotypic, and antimicrobial characteristics of six phenotypically distinct human clinical isolates that most closely resembled the type strain of Streptococcus halichoeri isolated from a seal are presented. Sequencing of the 16S rRNA, rpoB, sodA, and recN genes; comparative whole-genome analysis; conventional biochemical and Rapid ID 32 Strep identification methods; and antimicrobial susceptibility testing were performed on the human isolates, the type strain of S. halichoeri, and type strains of closely related species. The six human clinical isolates were biochemically indistinguishable from each other and showed 100% 16S rRNA, rpoB, sodA, and recN gene sequence similarity. Comparative 16S rRNA gene sequencing analysis revealed 98.6% similarity to S. halichoeri CCUG 48324(T), 97.9% similarity to S. canis ATCC 43496(T), and 97.8% similarity to S. ictaluri ATCC BAA-1300(T). A 3,530-bp fragment of the rpoB gene was 98.8% similar to the S. halichoeri type strain, 84.6% to the S. canis type strain, and 83.8% to the S. ictaluri type strain. The S. halichoeri type strain and the human clinical isolates were susceptible to the antimicrobials tested based on CLSI guidelines for Streptococcus species viridans group with the exception of tetracycline and erythromycin. The human isolates were phenotypically distinct from the type strain isolated from a seal; comparative whole-genome sequence analysis confirmed that the human isolates were S. halichoeri. On the basis of these results, a novel subspecies, Streptococcus halichoeri subsp. hominis, is proposed for the human isolates and Streptococcus halichoeri subsp. halichoeri is proposed for the gray seal isolates. The type strain of the novel subspecies is SS1844(T) = CCUG 67100(T) = LMG 28801(T). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes.

    PubMed

    Hanski, E; Caparon, M

    1992-07-01

    Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.

  12. Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild.

    PubMed

    Chou, Lee Yiung; Clarke, Charles M; Dykes, Gary A

    2014-10-01

    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.

  13. Levofloxacin-resistant-Streptococcus mitis endophthalmitis: a unique presentation of bacterial endocarditis.

    PubMed

    Dinani, Amreen; Ktaich, Nessrine; Urban, Carl; Rubin, David

    2009-10-01

    Endogenous endophthalmitis is a rare complication of infective endocarditis and has been decreasing due to the availability of effective antibiotics. We highlight a case of endogenous endophthalmitis due to levofloxacin-resistant Streptococcus mitis presenting as infective endocarditis. Endogenous endophthalmitis should be considered as a manifestation of an underlying systemic disease, especially in patients who present with non-specific signs and symptoms with no obvious source of precipitating infection.

  14. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing.

    PubMed

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2012-10-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.

  15. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  16. Bacterial Call to Arms for Warfare at the Infection Site.

    PubMed

    Cabral, Vitor; Xavier, Karina B

    2018-03-14

    Bacterial sensing is important for perceiving environmental cues and activating responses. In this issue of Cell Host & Microbe, Hertzog et al. (2018) show that group A Streptococcus can couple the ability to respond to host cues with autoinduction of a quorum sensing system, leading to killing of bacterial competitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Bacterial infections have been linked to malignancies due to their ability to induce chronic inflammation. We investigated the association of oral bacteria in oral squamous cell carcinoma (OSCC/tumor) tissues and compared with adjacent non-tumor mucosa sampled 5 cm distant from the same patient (n = 10). By using culture-independent 16S rRNA approaches, denaturing gradient gel electrophoresis (DGGE) and cloning and sequencing, we assessed the total bacterial diversity in these clinical samples. Results DGGE fingerprints showed variations in the band intensity profiles within non-tumor and tumor tissues of the same patient and among the two groups. The clonal analysis indicated that from a total of 1200 sequences characterized, 80 bacterial species/phylotypes were detected representing six phyla, Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Actinobacteria and uncultivated TM7 in non-tumor and tumor libraries. In combined library, 12 classes, 16 order, 26 families and 40 genera were observed. Bacterial species, Streptococcus sp. oral taxon 058, Peptostreptococcus stomatis, Streptococcus salivarius, Streptococcus gordonii, Gemella haemolysans, Gemella morbillorum, Johnsonella ignava and Streptococcus parasanguinis I were highly associated with tumor site where as Granulicatella adiacens was prevalent at non-tumor site. Streptococcus intermedius was present in 70% of both non-tumor and tumor sites. Conclusions The underlying changes in the bacterial diversity in the oral mucosal tissues from non-tumor and tumor sites of OSCC subjects indicated a shift in bacterial colonization. These most prevalent or unique bacterial species/phylotypes present in tumor tissues may be associated with OSCC and needs to be further investigated with a larger sample size. PMID:22817758

  18. Impact of grassland management regimes on bacterial endophyte diversity differs with grass species.

    PubMed

    Wemheuer, F; Wemheuer, B; Kretzschmar, D; Pfeiffer, B; Herzog, S; Daniel, R; Vidal, S

    2016-04-01

    Most plant species are colonized by endophytic bacteria. Despite their importance for plant health and growth, the response of these bacteria to grassland management regimes is still not understood. Hence, we investigated the bacterial community structure in three agricultural important grass species Dactylis glomerata L., Festuca rubra L. and Lolium perenne L. with regard to fertilizer application and different mowing frequencies. For this purpose, above-ground plant material was collected from the Grassland Management Experiment (GrassMan) in Germany in September 2010 and 2011. DNA was extracted from surface-sterilized plant tissue and subjected to 16S rRNA gene PCRs. Endophytic community structures were assessed by denaturing gradient gel electrophoresis (DGGE)-based analysis of obtained PCR products. DGGE fingerprints revealed that fertilizer application significantly altered the endophytic communities in L. perenne and F. rubra but not in D. glomerata. Although no direct effect of mowing was observed, mowing frequencies in combination with fertilizer application had a significant impact on endophyte bacterial community structures. However, this effect was not observed for all three grass species in both years. Therefore, our results showed that management regimes changed the bacterial endophyte communities, but this effect was plant-specific and varied over time. Endophytic bacteria play an important role in plant health and growth. However, studies addressing the influence of grassland management regimes on these bacteria in above-ground plant parts are still missing. In this study, we present first evidence that fertilizer application significantly impacted bacterial community structures in three agricultural important grass species, whereas mowing had only a minor effect. Moreover, this effect was plant-specific and thus not visible for all grass species in each year. Consequently, this study sheds new light into the complex interaction of microbes and

  19. Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species.

    PubMed

    Khan, S Sudheer; Mukherjee, Amitava; Chandrasekaran, N

    2011-10-01

    Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of <0.5 M. A very less adsorption was observed at pH 9 and NaCl concentration >0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Occurrence and Evolution of the Paralogous Zinc Metalloproteases IgA1 Protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and Related Commensal Species

    PubMed Central

    Bek-Thomsen, Malene; Poulsen, Knud; Kilian, Mogens

    2012-01-01

    ABSTRACT The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. PMID:23033471

  1. Primer prueba de desafio controlado en tilapia del Nilo Para Resistencia a Streptococcus iniae

    USDA-ARS?s Scientific Manuscript database

    Intensification of tilapia production has resulted in disease outbreaks that negatively affect commercial fish farmers. One bacterial pathogen that commonly causes losses in tilapia production is Streptococcus iniae. Control and prevention of S. iniae can be difficult and requires an integrated fish...

  2. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  3. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    PubMed

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Bacterial species colonizing the vagina of healthy women are not associated with race.

    PubMed

    Beamer, May A; Austin, Michele N; Avolia, Hilary A; Meyn, Leslie A; Bunge, Katherine E; Hillier, Sharon L

    2017-06-01

    The vaginal microbiota of 36 white versus 25 black asymptomatic women were compared using both cultivation-dependent and -independent identification. Significant differences by race were found in colonization and density of bacterial species. However, exclusion of 12 women with bacterial vaginosis by Nugent criteria resulted in no significant differences by race. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Metastatic infectious disease and clinical outcome in Staphylococcus aureus and Streptococcus species bacteremia.

    PubMed

    Vos, Fidel J; Kullberg, Bart Jan; Sturm, Patrick D; Krabbe, Paul F M; van Dijk, Arie P J; Wanten, Geert J A; Oyen, Wim J G; Bleeker-Rovers, Chantal P

    2012-03-01

    Early detection of metastatic infection in patients with Gram-positive bacteremia is important as morbidity and mortality are higher in the presence of these foci, probably due to incomplete eradication of clinically silent foci during initial treatment. We performed a prospective study in 115 patients with Staphylococcus aureus or Streptococcus species bacteremia with at least 1 risk factor for the development of metastatic foci, such as community acquisition, treatment delay, persistently positive blood cultures for >48 hours, and persistent fever >72 hours after initiation of treatment. An intensive search for metastatic infectious foci was performed including ¹⁸F-fluorodeoxyglucose-positron emission tomography in combination with low-dose computed tomography scanning for optimizing anatomical correlation (FDG-PET/CT) and echocardiography in the first 2 weeks of admission. Metastatic infectious foci were detected in 84 of 115 (73%) patients. Endocarditis (22 cases), endovascular infections (19 cases), pulmonary abscesses (16 cases), and spondylodiscitis (11 cases) were diagnosed most frequently. The incidence of metastatic infection was similar in patients with Streptococcus species and patients with S. aureus bacteremia. Signs and symptoms guiding the attending physician in the diagnostic workup were present in only a minority of cases (41%). An unknown portal of entry, treatment delay >48 hours, and the presence of foreign body material were significant risk factors for developing metastatic foci. Mean C-reactive protein levels on admission were significantly higher in patients with metastatic infectious foci (74 vs. 160 mg/L). FDG-PET/CT was the first technique to localize metastatic infectious foci in 35 of 115 (30%) patients. As only a minority of foci were accompanied by guiding signs or symptoms, the number of foci revealed by symptom-guided CT, ultrasound, and magnetic resonance imaging remained low. Mortality tended to be lower in patients without

  6. In silico analysis of candidate proteins sharing homology with Streptococcus agalactiae proteins and their role in male infertility.

    PubMed

    Parida, Rajeshwari; Samanta, Luna

    2017-02-01

    Leukocytospermia is a physiologic condition defined as human semen with a leukocyte count of >1 x 10 6 cells/ml that is often correlated with male infertility. Moreover, bacteriospermia has been associated with leukocytospermia ultimately leading to male infertility. We have found that semen samples with >1 x 10 6 /ml leukocytes and/or bacteriospermia have oxidative predominance as evidenced by augmented protein carbonyl and lipid peroxidation status of the semen which is implicated in sperm dysfunction. It has been reported that Streptococcus agalactiae is present in bacteriospermic samples. Previous research has shown that human leukocyte antigen beta chain paralog (HLA-DRB) alleles interact best with the infected sperm cells rather than the non-infected cells. Little is known about the interaction of major histocompatibility complex (MHC) present on leukocytes with the sperm upon bacterial infection and how it induces an immunological response which we have addressed by epitope mapping. Therefore, we examined MHC class II derived bacterial peptides which might have human sperm-related functional aspects. Twenty-two S. agalactiae proteins were obtained from PUBMED protein database for our study. Protein sequences with more than two accession numbers were aligned using CLUSTAL Omega to check their conservation pattern. Each protein sequence was then analyzed for T-cell epitope prediction against HLA-DRB alleles using the immune epitope database (IEDB) analysis tool. Out of a plethora of peptides obtained from this analysis, peptides corresponding to proteins of interest such as DNA binding response regulator, hyaluronate lyase and laminin binding protein were screened against the human proteome using Blastp. Interestingly, we have found bacterial peptides sharing homology with human peptides deciphering some of the important sperm functions. Antibodies raised against these probable bacterial antigens of fertility will not only help us understand the mechanism of

  7. Short communication: technological and genotypic comparison between Streptococcus macedonicus and Streptococcus thermophilus strains coming from the same dairy environment.

    PubMed

    Blaiotta, G; Sorrentino, A; Ottombrino, A; Aponte, M

    2011-12-01

    The species Streptococcus thermophilus is widely used for the preparation of several dairy products, and its technological contribution is clear. On the other hand, although Streptococcus macedonicus was first described more than 10 yr ago and, despite the scientific interest around this issue, the exact role of Strep. macedonicus in cheese making has yet to be clarified. In this study, 121 strains belonging to both species and isolated from the same dairy environment were genetically characterized by random amplification of polymorphic DNA (RAPD)-PCR and compared for the main biochemical features of technological interest, such as acid production, galactose utilization, citrate metabolism, exopolysaccharide production, and lipolytic, ureolytic, exocellular proteolytic, and decarboxylasic activities. Analysis by RAPD-PCR highlighted a remarkable genotypic heterogeneity among strains in both species, and, at a similarity level of 78%, all the isolates and reference strains of Strep. thermophilus grouped together and were well separated from the strains of Strep. macedonicus, confirming that these 2 species are different microbial entities. Comparison between genetic and phenotypic or biotechnological data did not reveal any relationships. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry.

    PubMed

    Angelakis, Emmanouil; Million, Matthieu; Henry, Mireille; Raoult, Didier

    2011-10-01

    Probiotic food is manufactured by adding probiotic strains simultaneously with starter cultures in fermentation tanks. Here, we investigate the accuracy and feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for bacterial identification at the species level in probiotic food and yoghurts. Probiotic food and yoghurts were cultured in Columbia and Lactobacillus specific agar and tested by quantitative real-time PCR (qPCR) for the detection and quantification of Lactobacillus sp. Bacterial identification was performed by MALDI-TOF analysis and by amplification and sequencing of tuf and 16S rDNA genes. We tested 13 probiotic food and yoghurts and we identified by qPCR that they presented 10(6) to 10(7) copies of Lactobacillus spp. DNA/g. All products contained very large numbers of living bacteria varying from 10(6) to 10(9) colony forming units/g. These bacteria were identified as Lactobacillus casei, Lactococcus lactis, Bifidobacterium animalis, Lactobacillus delbrueckii, and Streptococcus thermophilus. MALDI-TOF MS presented 92% specificity compared to the molecular assays. In one product we found L. lactis, instead of Bifidus spp. which was mentioned on the label and for another L. delbrueckii and S. thermophilus instead of Bifidus spp. MALDI-TOF MS allows a rapid and accurate bacterial identification at the species level in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. Practical Application:  MALDI-TOF MS is rapid and specific for the identification of bacteria in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. © 2011 Institute of Food Technologists®

  9. Humoral Immunity to Commensal Oral Bacteria in Human Infants: Salivary Secretory Immunoglobulin A Antibodies Reactive with Streptococcus mitis biovar 1, Streptococcus oralis, Streptococcus mutans, and Enterococcus faecalis during the First Two Years of Life

    PubMed Central

    Cole, Michael F.; Bryan, Stacey; Evans, Mishell K.; Pearce, Cheryl L.; Sheridan, Michael J.; Sura, Patricia A.; Wientzen, Raoul L.; Bowden, George H. W.

    1999-01-01

    Secretory immunoglobulin A (SIgA) antibodies reactive with the pioneer oral streptococci Streptococcus mitis biovar 1 and Streptococcus oralis, the late oral colonizer Streptococcus mutans, and the pioneer enteric bacterium Enterococcus faecalis in saliva samples from 10 human infants from birth to age 2 years were analyzed. Low levels of salivary SIgA1 and SIgA2 antibodies reactive with whole cells of all four species were detected within the first month after birth, even though S. mutans and E. faecalis were not recovered from the mouths of the infants during the study period. Although there was a fivefold increase in the concentration of SIgA between birth and age 2 years, there were no differences between the concentrations of SIgA1 and SIgA2 antibodies reactive with the four species over this time period. When the concentrations of SIgA1 and SIgA2 antibodies reactive with all four species were normalized to the concentrations of SIgA1 and SIgA2 in saliva, SIgA1 and SIgA2 antibodies reactive with these bacteria showed a significant decrease from birth to 2 years of age. Adsorption of each infant’s saliva with cells of one species produced a dramatic reduction of antibodies recognizing the other three species. Sequential adsorption of saliva samples removed all SIgA antibody to the bacteria, indicating that the SIgA antibodies were directed to antigens shared by all four species. The induction by the host of a limited immune response to common antigens that are likely not involved in adherence may be among the mechanisms that commensal streptococci employ to persist in the oral cavity. PMID:10085031

  10. rpoB Gene Sequence-Based Identification of Aerobic Gram-Positive Cocci of the Genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella

    PubMed Central

    Drancourt, Michel; Roux, Véronique; Fournier, Pierre-Edouard; Raoult, Didier

    2004-01-01

    We developed a new molecular tool based on rpoB gene (encoding the beta subunit of RNA polymerase) sequencing to identify streptococci. We first sequenced the complete rpoB gene for Streptococcus anginosus, S. equinus, and Abiotrophia defectiva. Sequences were aligned with these of S. pyogenes, S. agalactiae, and S. pneumoniae available in GenBank. Using an in-house analysis program (SVARAP), we identified a 740-bp variable region surrounded by conserved, 20-bp zones and, by using these conserved zones as PCR primer targets, we amplified and sequenced this variable region in an additional 30 Streptococcus, Enterococcus, Gemella, Granulicatella, and Abiotrophia species. This region exhibited 71.2 to 99.3% interspecies homology. We therefore applied our identification system by PCR amplification and sequencing to a collection of 102 streptococci and 60 bacterial isolates belonging to other genera. Amplicons were obtained in streptococci and Bacillus cereus, and sequencing allowed us to make a correct identification of streptococci. Molecular signatures were determined for the discrimination of closely related species within the S. pneumoniae-S. oralis-S. mitis group and the S. agalactiae-S. difficile group. These signatures allowed us to design a S. pneumoniae-specific PCR and sequencing primer pair. PMID:14766807

  11. Evolving trends of neonatal and childhood bacterial meningitis in northern Taiwan.

    PubMed

    Lin, Meng-Chin; Chiu, Nan-Chang; Chi, Hsin; Ho, Che-Sheng; Huang, Fu-Yuan

    2015-06-01

    The epidemiology of bacterial meningitis varies in different areas, age groups, and times. To know the trend of neonatal and childhood bacterial meningitis in northern Taiwan, we performed this 29-year-long assessment. Eligible patients were aged 18 years or younger, hospitalized in Mackay Memorial Hospital between 1984 and 2012, and proven by positive cerebrospinal fluid bacterial cultures. Analysis included the patient numbers and pathogens in different age groups, periods, complications, and outcomes. Males were predominant in all the age groups through the years. Almost half of the patients were in the neonatal period. Patient numbers went up in the early study period and declined after 1993-1997. Group B Streptococcus and Escherichia coli were the most common pathogens in neonates, whereas in childhood were Streptococcus pneumoniae and Haemophilus influenzae type b (Hib). Patient numbers of Group B Streptococcus, S. pneumoniae, and Hib meningitis declined in the late study period, but E. coli meningitis increased. The mortality rate decreased but sequela rate increased. Among the four most common pathogens, S. pneumoniae had the worst outcome and had highest mortality rate. All Hib meningitis patients survived, but their sequela rate was the highest. This study provides an epidemiological data on trends of neonatal and childhood bacterial meningitis in northern Taiwan during the past 29 years, including male and neonatal predominance, decrease of total patient number in recent years, change of major pathogens, and declined mortality but raised morbidity. Copyright © 2013. Published by Elsevier B.V.

  12. Identification of Streptococcus suis Meningitis through Population-Based Surveillance, Togo, 2010-2014.

    PubMed

    Tall, Haoua; Njanpop-Lafourcade, Berthe-Marie; Mounkoro, Didier; Tidjani, Loukoumane; Agbenoko, Kodjo; Alassani, Issifou; Amidou, Moussa; Tamekloe, Stanislas; Laing, Kenneth G; Witney, Adam A; Hinds, Jason; van der Linden, Mark P G; Gessner, Bradford D; Moïsi, Jennifer C

    2016-07-01

    During 2010-2014, we enrolled 511 patients with suspected bacterial meningitis into surveillance in 2 districts of northern Togo. We identified 15 persons with Streptococcus suis infection; 10 had occupational contact with pigs, and 12 suffered neurologic sequelae. S. suis testing should be considered in rural areas of the African meningitis belt.

  13. Etiology of acute otitis media and serotype distribution of Streptococcus pneumoniae and Haemophilus influenzae in Chilean children <5 years of age

    PubMed Central

    Rosenblut, Andres; Napolitano, Carla; Pereira, Angelica; Moreno, Camilo; Kolhe, Devayani; Lepetic, Alejandro; Ortega-Barria, Eduardo

    2017-01-01

    Abstract The impact of bacterial conjugate vaccines on acute otitis media (AOM) is affected by several factors including population characteristics, bacterial etiology and vaccine conjugation method, carrier, and coverage. This study estimated the baseline etiology, distribution, and antibiotic susceptibility of bacterial serotypes that causes AOM in children aged <5 years in a public setting in Santiago, Chile. Children aged ≥3 months and <5 years referred to the physician for treatment of AOM episodes (with an onset of symptoms <72 h) were enrolled between September 2009 and September 2010. Middle ear fluid (MEF) was collected by tympanocentesis or by otorrhea for identification and serotyping of bacteria. Antibacterial susceptibility was tested using E-test (etrack: 112671). Of 160 children (mean age 27.10 ± 15.83 months) with AOM episodes, 164 MEF samples (1 episode each from 156 children; 2 episodes each from 4 children) were collected. Nearly 30% of AOM episodes occurred in children aged 12 to 23 months. Streptococcus pneumoniae (41.7% [58/139]) and Haemophilus influenzae (40.3% [56/139]) were predominant among the cultures that showed bacterial growth (85% [139/164]). All Streptococcus pneumoniae positive episodes were serotyped, 19F (21%) and 14 (17%) were the predominant serotypes; all Haemophilus influenzae strains were nontypeable. Streptococcus pneumoniae were resistant to penicillin (5%) and erythromycin (33%); Haemophilus influenzae were resistant to ampicillin (14%) and cefuroxime and cefotaxime (2% each). AOM in Chilean children is predominantly caused by Streptococcus pneumoniae and nontypeable Haemophilus influenzae. Use of a broad spectrum vaccine against these pathogens might aid the reduction of AOM in Chile. PMID:28178138

  14. Vaccine development for protection against systemic infections with Streptococcus suis and Haemophilus parasuis in swine

    USDA-ARS?s Scientific Manuscript database

    Both Streptococcus suis and Haemophilus parasuis are important invasive bacterial pathogens of swine, commonly causing meningitis, arthritis, polyserositis, and septicemia. Due to the presence of many serotypes and high genotypic variability, efficacious vaccines are not readily available. We are us...

  15. Effect of species, breed, and age on bacterial load in bovine and bubaline semen

    PubMed Central

    Sannat, Chandrahas; Nair, Ajit; Sahu, S. B.; Sahasrabudhe, S. A.; Kumar, Ashish; Gupta, Amit Kumar; Shende, R. K.

    2015-01-01

    Aim: The present study was conducted to investigate the effect of species, breed and age on bacterial load in fresh and frozen semen of Cattle and Buffalo bull. Materials and Methods: Present study covered 56 cow and 10 buffalo bulls stationed at Central Semen Station Anjora, Durg (Chhattisgarh). Impact of breeds on bacterial load in semen was assessed using six breeds of cattle viz. Sahiwal, Gir, Red Sindhi, Tharparkar, Jersey and Holstein Friesian (HF) cross. Cow bulls were categorized into four different groups based on their age (<4 years, 4-5 years, 5-6 years and > 6 years) to study variation among age groups. Bacterial load was measured in fresh and frozen semen samples from these bulls using the standard plate count (SPC) method and count was expressed as colony forming unit (CFU) per ml of semen. Results: Higher bacterial load was reported in fresh (2.36 × 104 ± 1943 CFU/ml) and frozen (1.00 × 10 ± 90 CFU/ml) semen of cow bulls as compared to buffalo bulls (1.95 × 104 ± 2882 and 7.75 × 102 ± 160 CFU/ml in fresh and frozen semen, respectively). Jersey bull showed significantly higher bacterial count (p < 0.05) both in fresh (4.07 × 104 ± 13927 CFU/ml) and frozen (1.92 × 103 ± 178 CFU/ml) semen followed by HF cross, Sahiwal, Gir, Red Sindhi and Tharparkar bull. Bulls aged < 4 years and more than 6 years yielded increased bacterial load in their semen. Although a minor variation was reported between species and among age groups, no significant differences were measured. Conclusion: Bacterial load in semen did not differ significantly between species and age groups; however significant variation was reported among different breeds. Bulls of Jersey breed showed significantly higher bacterial load in semen as compared to the crossbred and indigenous bull. PMID:27047115

  16. Characterization of a Multipeptide Lantibiotic Locus in Streptococcus pneumoniae.

    PubMed

    Maricic, Natalie; Anderson, Erica S; Opipari, AnneMarie E; Yu, Emily A; Dawid, Suzanne

    2016-01-26

    Bacterial communities are established through a combination of cooperative and antagonistic interactions between the inhabitants. Competitive interactions often involve the production of antimicrobial substances, including bacteriocins, which are small antimicrobial peptides that target other community members. Despite the nearly ubiquitous presence of bacteriocin-encoding loci, inhibitory activity has been attributed to only a small fraction of gene clusters. In this study, we characterized a novel locus (the pld locus) in the pathogen Streptococcus pneumoniae that drives the production of a bacteriocin called pneumolancidin, which has broad antimicrobial activity. The locus encodes an unusual tandem array of four inhibitory peptides, three of which are absolutely required for antibacterial activity. The three peptide sequences are similar but appear to play distinct roles in regulation and inhibition. A modification enzyme typically found in loci encoding a class of highly modified bacteriocins called lantibiotics was required for inhibitory activity. The production of pneumolancidin is controlled by a two-component regulatory system that is activated by the accumulation of modified peptides. The locus is located on a mobile element that has been found in many pneumococcal lineages, although not all elements carry the pld genes. Intriguingly, a minimal region containing only the genes required for pneumolancidin immunity was found in several Streptococcus mitis strains. The pneumolancidin-producing strain can inhibit nearly all pneumococci tested to date and provided a competitive advantage in vivo. These peptides not only represent a unique strategy for bacterial competition but also are an important resource to guide the development of new antimicrobials. Successful colonization of a polymicrobial host surface is a prerequisite for the subsequent development of disease for many bacterial pathogens. Bacterial factors that directly inhibit the growth of neighbors

  17. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. [Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses].

    PubMed

    Spicher, G; Peters, J

    1976-12-01

    The resistence of different microorganisms to formaldehyde was determined. As test objects served gram-negative and gram-positive vegetative germs (Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella paratyphi-B, Staphylococcus aureus, Streptococcus faecalis), bacterial spores (Bacillus cereus, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis), fungi (Aspergillus niger, Candida albicans), bacteriophages (Escherichia coli phages, T1, T2, T3), and viruses (adenovirus, poliomyelitis virus, vaccinia virus). For the studies, suspensions of germs were exposed at identical temperature (20 degrees C) and pH (7.0). The microbicidal effect of formaldehyde was measured by the decrease of the proportion of germs capable of multiplication in the suspension (lg (N/N0); where: N0 equals initial number of germs capable of multiplication; N equals number of germs capable of multiplication after exposure to formaldehyde). For all germs the dependence of the microbicidal effect on the concentration of formaldehyde was determined. In all experiments, the duration of exposure was two hours. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella paratyphi-B were found to be more susceptible than Staphylococcus aureus (vf. Fig. 1 A). The strains of Pseudomonas aeruginosa used were widely varying as to their susceptibility. To obtain equal microbicidal effects, concentrations of formaldehyde almost three times as high had to be used for the most resistant strain than were necessary for the most susceptible strain of Pseudomonas aeruginosa. All strains of Klebsiella pneumoniae examined were found to have an identical resistence to formaldehyde. Streptococcus faecalis was even more resistant to formaldehyde than Staphylococcus aureus. In the case of Streptococcus faecalis, a concentration of formaldehyde about three times as high had to be used to obtain microbicidal effects of identical magnitude. For the killing of Candida albicans cells concentrations of

  19. Fluoroquinolone Treatment and Susceptibility of Isolates From Bacterial Keratitis

    PubMed Central

    Ray, Kathryn J.; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E.; Sun, Catherine Q.; McLeod, Stephen D.; Acharya, Nisha R.; Lietman, Thomas M.

    2013-01-01

    Objective To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. Methods The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Results Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold–higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P <.001). Fourth-generation fluoroquinolones were associated with a 3.48-fold–higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P <.001). Conclusion This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. PMID:23307105

  20. Fluoroquinolone treatment and susceptibility of isolates from bacterial keratitis.

    PubMed

    Ray, Kathryn J; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E; Sun, Catherine Q; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M

    2013-03-01

    To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold-higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P < .001). Fourth-generation fluoroquinolones were associated with a 3.48-fold-higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P < .001). This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. clinicaltrials.gov Identifier: NCT00324168.

  1. Analysis of Inter-Individual Bacterial Variation in Gut of Cicada Meimuna mongolica (Hemiptera: Cicadidae).

    PubMed

    Zhou, Wenting; Nan, Xiaoning; Zheng, Zhou; Wei, Cong; He, Hong

    2015-01-01

    Intestinal bacterial community plays a crucial role in the nutrition, development, survival, and reproduction of insects. When compared with other insects with piercing-sucking mouthparts, the habitats of cicada nymphs and adults are totally different. However, little is known about the differences in the gut bacterial communities in the nymphs and adults within any cicada species. The diversity of bacteria in the gut of nymphs and adults of both genders of Meimuna mongolica (Distant) was studied using the denaturing gradient gel electrophoresis (DGGE) method. Few inter-individual variations among gut microbiota were observed, suggesting that M. mongolica typically harbors a limited and consistent suite of bacterial species. Bacteria in the genera Pseudomonas and Enterobacter were the predominant components of the gut microflora of M. mongolica at all life stages. Bacteria of Pantoea, Streptococcus, and Uruburuella were also widespread in the cicada samples but at relatively lower concentrations. The relative stability and similarity of the PCR-DGGE patterns indicate that all individuals of this cicada species harbor a characteristic bacterial community which is independent from developmental stages and genders. Related endosymbionts that could be harbored in bacteromes of cicadas were not detected in any gut samples, which could be related to the cicada species and the distribution of these endosymbionts in the cicada cavity, or due to some of the possible limitations of PCR-DGGE community profiling. It is worthwhile to further address if related cicada endosymbiont clades distribute in the alimentary canals and other internal organs through diagnostic PCR using group-specific primer sets. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. Bacterial pneumonia as an influenza complication.

    PubMed

    Martin-Loeches, Ignacio; van Someren Gréve, Frank; Schultz, Marcus J

    2017-04-01

    The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.

  3. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    PubMed Central

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-01-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  4. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection.

    PubMed

    Loof, Torsten G; Deicke, Christin; Medina, Eva

    2014-01-01

    The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit.

  5. Identification of a Supramolecular Functional Architecture of Streptococcus mutans Adhesin P1 on the Bacterial Cell Surface*

    PubMed Central

    Heim, Kyle P.; Sullan, Ruby May A.; Crowley, Paula J.; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F.; Brady, L. Jeannine

    2015-01-01

    P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. PMID:25666624

  6. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface.

    PubMed

    Heim, Kyle P; Sullan, Ruby May A; Crowley, Paula J; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F; Brady, L Jeannine

    2015-04-03

    P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Streptococcus pneumoniae Can Utilize Multiple Sources of Hyaluronic Acid for Growth

    PubMed Central

    Marion, Carolyn; Stewart, Jason M.; Tazi, Mia F.; Burnaugh, Amanda M.; Linke, Caroline M.; Woodiga, Shireen A.

    2012-01-01

    The mechanisms by which Streptococcus pneumoniae obtains carbohydrates for growth during airway colonization remain to be elucidated. The low concentration of free carbohydrates in the normal human airway suggests that pneumococci must utilize complex glycan structures for growth. The glycosaminoglycan hyaluronic acid is present on the apical surface of airway epithelial cells. As pneumococci express a hyaluronate lyase (Hyl) that cleaves hyaluronic acid into disaccharides, we hypothesized that during colonization pneumococci utilize the released carbohydrates for growth. Hyaluronic acid supported significant pneumococcal growth in an hyl-dependent manner. A phosphoenolpyruvate-dependent phosphotransferase system (PTS) and an unsaturated glucuronyl hydrolase (Ugl) encoded downstream of hyl are also essential for growth on hyaluronic acid. This genomic arrangement is present in several other organisms, suggesting conservation of the utilization mechanism between species. In vivo experiments support the hypothesis that S. pneumoniae utilizes hyaluronic acid as a carbon source during colonization. We also demonstrate that pneumococci can utilize the hyaluronic acid capsule of other bacterial species for growth, suggesting an alternative carbohydrate source for pneumococcal growth. Together, these data support a novel function for pneumococcal degradation of hyaluronic acid in vivo and provide mechanistic details of growth on this glycosaminoglycan. PMID:22311922

  8. The effect of bacterial environmental and metabolic stresses on a laser-induced breakdown spectroscopy (LIBS) based identification of Escherichia coli and Streptococcus viridans.

    PubMed

    Mohaidat, Qassem; Palchaudhuri, Sunil; Rehse, Steven J

    2011-04-01

    In this paper we investigate the effect that adverse environmental and metabolic stresses have on the laser-induced breakdown spectroscopy (LIBS) identification of bacterial specimens. Single-pulse LIBS spectra were acquired from a non-pathogenic strain of Escherichia coli cultured in two different nutrient media: a trypticase soy agar and a MacConkey agar with a 0.01% concentration of deoxycholate. A chemometric discriminant function analysis showed that the LIBS spectra acquired from bacteria grown in these two media were indistinguishable and easily discriminated from spectra acquired from two other non-pathogenic E. coli strains. LIBS spectra were obtained from specimens of a nonpathogenic E. coli strain and an avirulent derivative of the pathogen Streptococcus viridans in three different metabolic situations: live bacteria reproducing in the log-phase, bacteria inactivated on an abiotic surface by exposure to bactericidal ultraviolet irradiation, and bacteria killed via autoclaving. All bacteria were correctly identified regardless of their metabolic state. This successful identification suggests the possibility of testing specimens that have been rendered safe for handling prior to LIBS identification. This would greatly enhance personnel safety and lower the cost of a LIBS-based diagnostic test. LIBS spectra were obtained from pathogenic and non-pathogenic bacteria that were deprived of nutrition for a period of time ranging from one day to nine days by deposition on an abiotic surface at room temperature. All specimens were successfully classified by species regardless of the duration of nutrient deprivation. © 2011 Society for Applied Spectroscopy

  9. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    PubMed

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility

    PubMed Central

    Whitten, Miranda M A; Davies, Charlotte E; Kim, Anita; Tlusty, Michael; Wootton, Emma C; Chistoserdov, Andrei; Rowley, Andrew F

    2014-01-01

    Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation. Culture-independent molecular techniques revealed diversity in the bacterial communities of cuticle biofilms both within and between the two lobster species, and identified three bacterial genera associated with shell lesions plus two putative beneficial bacterial species (detected exclusively in healthy cuticle or healing damaged cuticle). In an experimental aquarium shared between American and European lobsters, heterospecific transmission of potentially pathogenic bacteria appeared to be very limited; however, the claws of European lobsters were more likely to develop lesions when reared in the presence of American lobsters. Aquarium biofilms were also examined but revealed no candidate pathogens for environmental transmission. Aquimarina sp. ‘homaria’ (a potential pathogen associated with a severe epizootic form of shell disease) was detected at a much higher prevalence among American than European lobsters, but its presence correlated more with exacerbation of existing lesions rather than with lesion initiation. PMID:24817518

  11. A Novel Pheromone Quorum-Sensing System Controls the Development of Natural Competence in Streptococcus thermophilus and Streptococcus salivarius▿ †

    PubMed Central

    Fontaine, Laetitia; Boutry, Céline; de Frahan, Marie Henry; Delplace, Brigitte; Fremaux, Christophe; Horvath, Philippe; Boyaval, Patrick; Hols, Pascal

    2010-01-01

    In streptococcal species, the key step of competence development is the transcriptional induction of comX, which encodes the alternative sigma factor σX, which positively regulates genes necessary for DNA transformation. In Streptococcus species belonging to the mitis and mutans groups, induction of comX relies on the activation of a three-component system consisting of a secreted pheromone, a histidine kinase, and a response regulator. In Streptococcus thermophilus, a species belonging to the salivarius group, the oligopeptide transporter Ami is essential for comX expression under competence-inducing conditions. This suggests a different regulation pathway of competence based on the production and reimportation of a signal peptide. The objective of our work was to identify the main actors involved in the early steps of comX induction in S. thermophilus LMD-9. Using a transcriptomic approach, four highly induced early competence operons were identified. Among them, we found a Rgg-like regulator (Ster_0316) associated with a nonannotated gene encoding a 24-amino-acid hydrophobic peptide (Shp0316). Through genetic deletions, we showed that these two genes are essential for comX induction. Moreover, addition to the medium of synthetic peptides derived from the C-terminal part of Shp0316 restored comX induction and transformation of a Shp0316-deficient strain. These peptides also induced competence in S. thermophilus and Streptococcus salivarius strains that are poorly transformable or not transformable. Altogether, our results show that Ster_0316 and Shp0316, renamed ComRS, are the two members of a novel quorum-sensing system responsible for comX induction in species from the salivarius group, which differs from the classical phosphorelay three-component system identified previously in streptococci. PMID:20023010

  12. Streptococcus sinensis may react with Lancefield group F antiserum.

    PubMed

    Woo, Patrick C Y; Teng, Jade L L; Leung, Kit-wah; Lau, Susanna K P; Tse, Herman; Wong, Beatrice H L; Yuen, Kwok-yung

    2004-11-01

    Lancefield group F streptococci have been found almost exclusively as members of the 'Streptococcus milleri' group, although they have been reported very occasionally in some other streptococcal species. Among 302 patients with bacteraemia caused by viridans streptococci over a 6-year period, three cases were caused by Streptococcus sinensis (type strain HKU4T, HKU5 and HKU6). All three patients had infective endocarditis complicating their underlying chronic rheumatic heart diseases. Gene sequencing showed no base differences between the 16S rRNA gene sequences of HKU5 and HKU6 and that of HKU4T. All three strains were Gram-positive, non-spore-forming cocci arranged in chains. All grew on sheep blood agar as alpha-haemolytic, grey colonies of 0.5-1 mm in diameter after 24 h incubation at 37 degrees C in ambient air. Lancefield grouping revealed that HKU5 and HKU6 were Lancefield group F, but HKU4T was non-groupable with Lancefield groups A, B, C, D, F or G antisera. HKU4T was identified by the Vitek system (GPI), API system (20 STREP) and ATB system (ID32 STREP) as 99 % Streptococcus intermedius, 51.3 % S. intermedius and 99.9 % Streptococcus anginosus, respectively. Using the same tests, HKU5 was identified as 87 % Streptococcus sanguinis/Streptococcus gordonii, 59 % Streptococcus salivarius and 99.6 % S. anginosus, respectively, and HKU6 as 87 % S. sanguinis/S. gordonii, 77 % Streptococcus pneumoniae and 98.3 % S. anginosus, respectively. The present data revealed that a proportion of Lancefield group F streptococci could be S. sinensis. Lancefield group F streptococci should not be automatically reported as 'S. milleri'.

  13. Using PCR-based detection and genotyping to trace Streptococcus salivarius meningitis outbreak strain to oral flora of radiology physician assistant.

    PubMed

    Srinivasan, Velusamy; Gertz, Robert E; Shewmaker, Patricia L; Patrick, Sarah; Chitnis, Amit S; O'Connell, Heather; Benowitz, Isaac; Patel, Priti; Guh, Alice Y; Noble-Wang, Judith; Turabelidze, George; Beall, Bernard

    2012-01-01

    We recently investigated three cases of bacterial meningitis that were reported from a midwestern radiology clinic where facemasks were not worn during spinal injection of contrast agent during myelography procedures. Using pulsed field gel electrophoresis we linked a case strain of S. salivarius to an oral specimen of a radiology physician assistant (RPA). We also used a real-time PCR assay to detect S. salivarius DNA within a culture-negative cerebrospinal fluid (CSF) specimen. Here we extend this investigation through using a nested PCR/sequencing strategy to link the culture-negative CSF specimen to the case strain. We also provide validation of the real-time PCR assay used, demonstrating that it is not solely specific for Streptococcus salivarius, but is also highly sensitive for detection of the closely related oral species Streptococcus vestibularis. Through using multilocus sequence typing and 16S rDNA sequencing we further strengthen the link between the CSF case isolate and the RPA carriage isolate. We also demonstrate that the newly characterized strains from this study are distinct from previously characterized S. salivarius strains associated with carriage and meningitis.

  14. Phenotypic and genotypic discrepancy of Streptococcus pneumoniae strains isolated from Asian countries.

    PubMed

    Ko, Kwan Soo; Oh, Won Sup; Peck, Kyong Ran; Lee, Jang Ho; Lee, Nam Yong; Song, Jae-Hoon

    2005-07-01

    Non-typeable isolates of Streptococcus pneumoniae collected from Asian countries were characterized by optochin susceptibility test, bile solubility test, multilocus sequence typing of housekeeping genes, amplification of virulence-related genes, 16S rDNA-RsaI digestion, and 16S rDNA sequencing. Six of 54 non-typeable pneumococcal isolates showed divergence of gene sequences of recP and xpt from typical pneumococcal strains. Of these six atypical pneumococcal strains, two showed different results in optochin susceptibility or bile solubility test from typical pneumococcal strains. All six isolates showed high sequence dissimilarities of multilocus sequence typing, 16S rDNA sequences, and lytA sequences from typical S. pneumoniae strains. Data from this study suggest that classic tests such as optochin susceptibility and bile solubility tests may lead to incorrect identification of S. pneumoniae. These atypical strains may belong to different bacterial species from S. pneumoniae.

  15. Horizontal Transfer of Segments of the 16S rRNA Genes between Species of the Streptococcus anginosus Group

    PubMed Central

    Schouls, Leo M.; Schot, Corrie S.; Jacobs, Jan A.

    2003-01-01

    The nature in variation of the 16S rRNA gene of members of the Streptococcus anginosus group was investigated by hybridization and DNA sequencing. A collection of 708 strains was analyzed by reverse line blot hybridization. This revealed the presence of distinct reaction patterns representing 11 different hybridization groups. The 16S rRNA genes of two strains of each hybridization group were sequenced to near-completion, and the sequence data confirmed the reverse line blot hybridization results. Closer inspection of the sequences revealed mosaic-like structures, strongly suggesting horizontal transfer of segments of the 16S rRNA gene between different species belonging to the Streptococcus anginosus group. Southern blot hybridization further showed that within a single strain all copies of the 16S rRNA gene had the same composition, indicating that the apparent mosaic structures were not PCR-induced artifacts. These findings indicate that the highly conserved rRNA genes are also subject to recombination and that these events may be fixed in the population. Such recombination may lead to the construction of incorrect phylogenetic trees based on the 16S rRNA genes. PMID:14645285

  16. Bacterial profile in primary teeth with necrotic pulp and periapical lesions.

    PubMed

    da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo; Faria, Gisele; de Souza-Gugelmin, Maria Cristina Monteiro; Ito, Izabel Yoko

    2006-01-01

    The objective of this study was to evaluate the bacterial profile in root canals of human primary teeth with necrotic pulp and periapical lesions using bacterial culture. A total of 20 primary teeth with necrotic pulp and radiographically visible radiolucent areas in the region of the bone furcation and/or the periapical region were selected. After crown access, 4 sterile absorbent paper points were introduced sequentially into the root canal for collection of material. After 30 s, the paper points were removed and placed in a test tube containing reduced transport fluid (RTF) and were sent for microbiological evaluation. Anaerobic microorganisms were found in 100% of the samples, black-pigmented bacilli in 30%, aerobic microorganisms in 60%, streptococci in 85%, gram-negative aerobic rods in 15% and staphylococci were not quantified. Mutans streptococci were found in 6 root canals (30%), 5 canals with Streptococcus mutans and 1 canal with Streptococcus mutans and Streptococcus sobrinus. It was concluded that in root canals of human primary teeth with necrotic pulp and periapical lesions, the infection is polymicrobial with predominance of anaerobic microorganisms.

  17. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells.

    PubMed

    Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro

    2010-06-01

    Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.

  18. The role of respiratory viruses in the etiology of bacterial pneumonia: An ecological perspective.

    PubMed

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-02-15

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  19. Parasitism enhances susceptibility to bacterial infection in tilapia

    USDA-ARS?s Scientific Manuscript database

    Gyrodactylus is a small elongate monogenetic parasite that mainly lives on the skin and gills of freshwater fish. Gyrodactylus causes mechanical injuries on fish epithelium that can lead to fish mortality under crowded conditions. Streptococcus iniae is a severe bacterial pathogen and the economic l...

  20. Recognition of Streptococcus pseudoporcinus Colonization in Women as a Consequence of Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Group B Streptococcus Identification.

    PubMed

    Suwantarat, Nuntra; Grundy, Maureen; Rubin, Mayer; Harris, Renee; Miller, Jo-Anne; Romagnoli, Mark; Hanlon, Ann; Tekle, Tsigereda; Ellis, Brandon C; Witter, Frank R; Carroll, Karen C

    2015-12-01

    During a 14-month period of using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for group B streptococcus (GBS) identification, we recovered 32 (1%) Streptococcus pseudoporcinus isolates from 3,276 GBS screening cultures from female genital sources (25 isolates from pregnant women and 7 from nonpregnant women). An additional two S. pseudoporcinus isolates were identified from a urine culture and a posthysterectomy wound culture. These isolates were found to cross-react with three different GBS antigen agglutination kits, PathoDx (Remel) (93%), Prolex (Pro-Lab Diagnostics) (38%), and Streptex (Remel) (53%). New approaches to bacterial identification in routine clinical microbiology laboratories may affect the prevalence of S. pseudoporcinus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. [Streptococcus pyogenes--much more than the aetiological agent of scarlet fever].

    PubMed

    Stock, Ingo

    2009-11-01

    The grampositive bacterium S. pyogenes (beta-haemolytic group A Streptococcus) is a natural colonizer of the human oropharynx mucous membrane and one of the most common agents of infectious diseases in humans. S. pyogenes causes the widest range of disease in humans among all bacterial pathogens. It is responsible for various skin infections such as impetigo contagiosa and erysipelas, and localized mucous membrane infections of the oropharynx (e. g. tonsillitis and pharyngitis). Betahaemolytic group A Streptococcus causes also invasive diseases such as sepses including puerperal sepsis. Additionally, S. pyogenes induces toxin-mediated syndromes, i. e. scarlet fever, streptococcal toxic shock syndrome (STSS) and necrotizing fasciitis (NF). STSS and NF are severe, frequently fatal diseases that have emerged in Europe and Northern America during the last two decades. Finally, some immunpathological diseases such as acute rheumatic fever and glomerulonephritis also result from S. pyogenes infections. Most scientists recommend penicillins (benzylpenicillin, phenoxymethylpenicllin) as drugs of first choice for treatment of Streptococcus tonsillopharyngitis and scarlet fever. Erysipelas and some other skin infections should be treated with benzylpenicillin. Intensive care measurements are needed for treatment of severe toxin-mediated S. pyogenes diseases. These measurements include the elimination of internal bacterial foci, concomitant application of clindamycin and benzylpenicillin and suitable treatment of shock symptoms. Management of immunpathological diseases requires antiphlogistical therapy. Because of the wide distribution of S. pyogenes in the general population and the lack of an effective vaccine, possibilities for prevention allowing a suitable protection for diseases due to S. pyogenes are very limited.

  2. Group A Streptococcus tissue invasion by CD44-mediated cell signalling

    NASA Astrophysics Data System (ADS)

    Cywes, Colette; Wessels, Michael R.

    2001-12-01

    Streptococcus pyogenes (also known as group A Streptococcus, GAS), the agent of streptococcal sore throat and invasive soft-tissue infections, attaches to human pharyngeal or skin epithelial cells through specific recognition of its hyaluronic acid capsular polysaccharide by the hyaluronic-acid-binding protein CD44 (refs 1, 2). Because ligation of CD44 by hyaluronic acid can induce epithelial cell movement on extracellular matrix, we investigated whether molecular mimicry by the GAS hyaluronic acid capsule might induce similar cellular responses. Here we show that CD44-dependent GAS binding to polarized monolayers of human keratinocytes induced marked cytoskeletal rearrangements manifested by membrane ruffling and disruption of intercellular junctions. Transduction of the signal induced by GAS binding to CD44 on the keratinocyte surface involved Rac1 and the cytoskeleton linker protein ezrin, as well as tyrosine phosphorylation of cellular proteins. Studies of bacterial translocation in two models of human skin indicated that cell signalling triggered by interaction of the GAS capsule with CD44 opened intercellular junctions and promoted tissue penetration by GAS through a paracellular route. These results support a model of host cytoskeleton manipulation and tissue invasion by an extracellular bacterial pathogen.

  3. Capsular Sialic Acid of Streptococcus suis Serotype 2 Binds to Swine Influenza Virus and Enhances Bacterial Interactions with Virus-Infected Tracheal Epithelial Cells

    PubMed Central

    Wang, Yingchao; Gagnon, Carl A.; Savard, Christian; Music, Nedzad; Srednik, Mariela; Segura, Mariela; Lachance, Claude; Bellehumeur, Christian

    2013-01-01

    Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease. Influenza virus produces a contagious infection in pigs which is frequently complicated by bacterial coinfections, leading to significant economic impacts. In this study, the effect of a preceding swine influenza H1N1 virus (swH1N1) infection of swine tracheal epithelial cells (NTPr) on the ability of S. suis serotype 2 to adhere to, invade, and activate these cells was evaluated. Cells preinfected with swH1N1 showed bacterial adhesion and invasion levels that were increased more than 100-fold compared to those of normal cells. Inhibition studies confirmed that the capsular sialic acid moiety is responsible for the binding to virus-infected cell surfaces. Also, preincubation of S. suis with swH1N1 significantly increased bacterial adhesion to/invasion of epithelial cells, suggesting that S. suis also uses swH1N1 as a vehicle to invade epithelial cells when the two infections occur simultaneously. Influenza virus infection may facilitate the transient passage of S. suis at the respiratory tract to reach the bloodstream and cause bacteremia and septicemia. S. suis may also increase the local inflammation at the respiratory tract during influenza infection, as suggested by an exacerbated expression of proinflammatory mediators in coinfected cells. These results give new insight into the complex interactions between influenza virus and S. suis in a coinfection model. PMID:24082069

  4. Genital tract shedding of herpes simplex virus type 2 in women: effects of hormonal contraception, bacterial vaginosis, and vaginal group B Streptococcus colonization.

    PubMed

    Cherpes, Thomas L; Melan, Melissa A; Kant, Jeffrey A; Cosentino, Lisa A; Meyn, Leslie A; Hillier, Sharon L

    2005-05-15

    Genital infections due to herpes simplex virus type 2 (HSV-2) are characterized by frequent reactivation and shedding of the virus and by the attendant risk of transmission to sexual partners. We investigated the effects of vaginal coinfections and hormonal contraceptive use on genital tract shedding of HSV-2 in women. A total of 330 HSV-2-seropositive women were followed every 4 months for a year. At each visit, one vaginal swab specimen was obtained for detection of HSV-2 by polymerase chain reaction, a second vaginal swab specimen was obtained for detection of group B Streptococcus (GBS) organisms and yeast by culture, and a vaginal smear was obtained for the diagnosis of bacterial vaginosis by Gram staining. HSV-2 DNA was detected in 88 (9%) of 956 vaginal swab specimens. Independent predictors of genital tract shedding of HSV-2 were HSV-2 seroconversion during the previous 4 months (adjusted odds ratio [aOR], 3.0; 95% confidence interval [CI], 1.3-6.8), bacterial vaginosis (aOR, 2.3; 95% CI, 1.3-4.0), high-density vaginal GBS colonization (aOR, 2.2; 95% CI, 1.3-3.8), and use of hormonal contraceptives (aOR, 1.8; 95% CI, 1.1-2.8). The present study identifies hormonal contraceptive use, bacterial vaginosis, and high-density vaginal GBS colonization as risk factors for genital tract shedding of HSV-2 in women. Because hormonal contraceptives are used by millions of women worldwide and because bacterial vaginosis and vaginal GBS colonization are common vaginal conditions, even modest associations with HSV-2 shedding would result in substantial attributable risks for transmission of the virus.

  5. Complete Genome Sequence of Streptococcus pneumoniae Strain A026, a Clinical Multidrug-Resistant Isolate Carrying Tn2010

    PubMed Central

    Sui, Zhihai; Zhou, Wenqing; Yao, Kaihu; Liu, Li; Zhang, Gang; Yang, Yonghong

    2013-01-01

    Streptococcus pneumoniae is a primary cause of bacterial infection in humans. Here, we present the complete genome sequence of S. pneumoniae strain A026, which is a multidrug-resistant strain isolated from cerebrospinal fluid. PMID:24336372

  6. Health-Associated Niche Inhabitants as Oral Probiotics: The Case of Streptococcus dentisani

    PubMed Central

    López-López, Arantxa; Camelo-Castillo, Anny; Ferrer, María D.; Simon-Soro, Áurea; Mira, Alex

    2017-01-01

    Oral diseases, including dental caries and periodontitis, are among the most prevalent diseases worldwide and develop as a consequence of a microbial dysbiosis. Several bacterial strains are being tested as potential oral health-promoting organisms, but usually they are species isolated from niches other than the site where they must exert its probiotic action, typically from fecal samples. We hypothesize that oral inhabitants associated to health conditions will be more effective than traditional, gut-associated probiotic species in key aspects such as colonization of the oral site where disease takes place or the possession of oral health promoting functions, as well as more practical issues like safety and toxicity, and establishing proper doses for administration. As an example of these active colonizers, we describe the case of Streptococcus dentisani, a new streptococcal species isolated from dental plaque of caries-free individuals. We have detected it in 98% of dental plaque samples from healthy individuals and, as expected, it does not produce any toxic secondary metabolite and does not survive a simulated stomach digestion, preventing potential secondary effects. Besides, this species has a double probiotic action, as it inhibits the growth of major oral pathogens through the production of bacteriocins, and also buffers acidic pH (the primary cause of dental caries) through an arginolytic pathway. We propose the use of S. dentisani as a promising probiotic against tooth decay. PMID:28344574

  7. Aciduricity and acid tolerance mechanisms of Streptococcus anginosus.

    PubMed

    Sasaki, Minoru; Kodama, Yoshitoyo; Shimoyama, Yu; Ishikawa, Taichi; Kimura, Shigenobu

    2018-04-17

    Although Streptococcus anginosus constitutes a proportion of the normal flora of the gastrointestinal and genital tracts, and the oral cavity, it has been reported that S. anginosus infection could be closely associated with abscesses at various body sites, infective endocarditis, and upper gastrointestinal cancers. The colonization in an acidic environment due to the aciduricity of S. anginosus could be the etiology of the systemic infection of the bacteria. To elucidate the aciduricity and acid tolerance mechanisms of the microbe, we examined the viability and growth of S. anginosus under acidic conditions. The viabilities of S. anginosus NCTC 10713 and Streptococcus mutans ATCC 25175 at pH 4.0 showed as being markedly higher than those of Streptococcus sanguinis ATCC 10556, Streptococcus gordonii ATCC 10558, and Streptococcus mitis ATCC 49456; however, the viability was partially inhibited by dicyclohexylcarbodiimide, an H + -ATPase inhibitor, suggesting that H + -ATPase could play a role in the viability of S. anginosus under acidic conditions. In addition, S. anginosus NCTC 10713 could grow at pH 5.0 and showed a marked arginine deiminase (ADI) activity, unlike its ΔarcA mutant, deficient in the gene encoding ADI, and other streptococcal species, which indicated that ADI could also be associated with aciduricity. These results suggest that S. anginosus has significant aciduric properties, which can be attributed to these enzyme activities.

  8. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    PubMed

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.

  9. Investigation of In vitro Mineral forming bacterial isolates from supragingival calculus.

    PubMed

    Baris, O; Demir, T; Gulluce, M

    2017-12-01

    Although it is known that bacterial mechanisms are involved in dental calculus formation, which is a predisposing factor in periodontal diseases, there have been few studies of such associations, and therefore, information available is limited. The purpose of this study was to isolate and identify aerobic bacteria responsible for direct calcification from supragingival calculus samples. The study was conducted using supragingival calculus samples from patients with periodontal disease, which was required as part of conventional treatment. Isolations were performed by sampling the supragingival calculus with buffer and inoculating the samples on media on which crystallization could be observed. The 16S recombinant DNA of the obtained pure cultures was then amplified and sequenced. A few bacterial species that have not previously been associated with mineralization or identified on bacterial plaque or calculus were detected. The bacteria that caused mineralization an aerobic environment are identified as Neisseria flava, Aggregatibacter segnis, Streptococcus tigurinus, and Morococcus cerebrosus. These findings proved that bacteria potentially play a role in the etiopathology of supragingival calculus. The association between the effects of the identified bacteria on periodontal diseases and calculus formation requires further studies.

  10. Identification of Streptococcus suis Meningitis through Population-Based Surveillance, Togo, 2010–2014

    PubMed Central

    Tall, Haoua; Njanpop-Lafourcade, Berthe-Marie; Mounkoro, Didier; Tidjani, Loukoumane; Agbenoko, Kodjo; Alassani, Issifou; Amidou, Moussa; Tamekloe, Stanislas; Laing, Kenneth G.; Witney, Adam A.; Hinds, Jason; van der Linden, Mark P.G.; Gessner, Bradford D.

    2016-01-01

    During 2010–2014, we enrolled 511 patients with suspected bacterial meningitis into surveillance in 2 districts of northern Togo. We identified 15 persons with Streptococcus suis infection; 10 had occupational contact with pigs, and 12 suffered neurologic sequelae. S. suis testing should be considered in rural areas of the African meningitis belt. PMID:27314251

  11. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe

    PubMed Central

    Skaljac, Marisa; Zanic, Katja; Puizina, Jasna; Lepen Pleic, Ivana; Ghanim, Murad

    2017-01-01

    Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia), which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar) Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium) known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies. PMID:29053633

  12. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe.

    PubMed

    Skaljac, Marisa; Kanakala, Surapathrudu; Zanic, Katja; Puizina, Jasna; Pleic, Ivana Lepen; Ghanim, Murad

    2017-10-20

    Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia), which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar) Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium) known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies.

  13. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans

    PubMed Central

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-01-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668

  14. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human serologic response, and gene transcription.

    PubMed

    Reid, S D; Green, N M; Buss, J K; Lei, B; Musser, J M

    2001-06-19

    Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

  15. Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility.

    PubMed

    Whitten, Miranda M A; Davies, Charlotte E; Kim, Anita; Tlusty, Michael; Wootton, Emma C; Chistoserdov, Andrei; Rowley, Andrew F

    2014-06-01

    Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation. Culture-independent molecular techniques revealed diversity in the bacterial communities of cuticle biofilms both within and between the two lobster species, and identified three bacterial genera associated with shell lesions plus two putative beneficial bacterial species (detected exclusively in healthy cuticle or healing damaged cuticle). In an experimental aquarium shared between American and European lobsters, heterospecific transmission of potentially pathogenic bacteria appeared to be very limited; however, the claws of European lobsters were more likely to develop lesions when reared in the presence of American lobsters. Aquarium biofilms were also examined but revealed no candidate pathogens for environmental transmission. Aquimarina sp. 'homaria' (a potential pathogen associated with a severe epizootic form of shell disease) was detected at a much higher prevalence among American than European lobsters, but its presence correlated more with exacerbation of existing lesions rather than with lesion initiation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Inhibitory effects of antiseptic mouthrinses on Streptococcus mutans, Streptococcus sanguinis and Lactobacillus acidophilus.

    PubMed

    Evans, A; Leishman, S J; Walsh, L J; Seow, W K

    2015-06-01

    Oral antiseptics are valuable in controlling oral infections caused by cariogenic bacteria. The aim of this study was to investigate the effects of mouthrinses and pure antiseptic compounds on Streptococcus mutans and non-mutans bacteria (Streptococcus sanguinis and Lactobacillus acidophilus). The agar diffusion assay was employed to determine bacterial growth inhibition. Commercial mouthrinses containing chlorhexidine gluconate (0.2%), cetylpyridinium chloride (0.05%) and sodium fluoride (0.05%) produced statistically similar growth inhibition of S. mutans, S. sanguinis and L. acidophilus (with zones of inhibition ranging from 7.56 ± 0.52 mm to 7.39 ± 0.53 mm, 17.44 ± 0.94 mm to 18.31 ± 0.62 mm and 8.61 ± 1.43 to 8.67 ± 1.43 mm respectively, p > 0.05). The chlorhexidine mouthwash produced the greatest mean growth inhibition of S. sanguinis and S. mutans compared to all other mouthrinses tested (p < 0.01). The minimum concentrations at which inhibition against S. mutans could be detected were chlorhexidine gluconate at 0.005% (wt/vol), cetylpyridinium chloride 0.01% (wt/ vol), povidone iodine 10% (wt/vol) and sodium hypochlorite 0.5% (vol/vol). Chlorhexidine (0.01%), cetylpyridinium chloride (0.01%), povidone iodine (10%) and sodium hypochlorite (0.5%) are effective at inhibiting the growth of S. mutans, S. sanguinis and L. acidophilus. © 2015 Australian Dental Association.

  17. Periorbital Necrotizing Fasciitis Secondary to Candida parapsilosis and Streptococcus pyogenes.

    PubMed

    Zhang, Matthew; Chelnis, James; Mawn, Louise A

    Necrotizing fasciitis is most often caused by either polymicrobial bacterial infections or by Gram-positive organisms, such as Streptococcus or Staphylococcus; however, rare cases of fungal necrotizing fasciitis have been reported. Candida parapsilosis is an emerging fungal pathogen. This fungus grows in either a yeast or pseudohyphal form. C. parapsilosis has been reported to cause keratitis, intraocular infection, and seeding of frontalis slings. C. parapsilosis is a commensal of human skin and can be acquired by nosocomial spread. Necrotizing fasciitis due to Candida has rarely been reported, but to date C. parapsilosis has not been identified as the causative organism in necrotizing fasciitis. This is the first documented case of human periocular soft tissue infection by C. parapsilosis, and also the first report providing evidence of mycotic infection in a necrotizing fasciitis concurrently infected by Streptococcus pyogenes.

  18. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection

    PubMed Central

    Loof, Torsten G.; Deicke, Christin; Medina, Eva

    2014-01-01

    The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit. PMID:25309880

  19. GROUP B STREPTOCOCCUS: PREVALENCE IN A NON-OBSTETRIC POPULATION

    PubMed Central

    LECLAIR, Catherine M.; HART, Ashley E.; GOETSCH, Martha F.; CARPENTIER, Heather; JENSEN, Jeffrey T.

    2010-01-01

    Objective: To establish and compare the prevalence of Group B streptococcus (GBS) colonization in the vaginas of non-obstetric women with and without vaginitis. Materials and Methods: Cross-sectional analysis Group B streptococcus vaginal culture status of non-pregnant, estrogen-replete women ≥18 years presenting for annual gynecological exams or vaginal infection. Subjects were classified into 3 groups: no vaginitis (NV) if symptoms were absent and exam was normal, common vaginitis (CV) if microscopic exam revealed yeast, bacterial vaginosis or trichomonads, or inflammatory vaginitis (IV) if exam revealed inflammation and immature squamous cells, but no pathogens. Results: Of the 215 women recruited: 147 (68.4%) showed no evidence of vaginitis, 41 (19.1%) had CV, and 27 (12.6%) showed evidence of IV. The overall prevalence rate of GBS was 22.8%. Vaginitis was associated with a significantly increased risk of GBS colonization [Adjusted OR: CV 2.7 (1.1-6.2); IV 2.9 (1.1-8.0)]. Logistic regression revealed pH >4.5, presence of abnormal discharge on exam and a women's complaint of current symptoms to be significant predicators of the presence of GBS. Conclusion: GBS colonization occurs more commonly in women with vaginitis. This suggests that disruption of the normal vaginal bacterial environment is an important predictor for GBS colonization. PMID:20592549

  20. Survival of selected bacterial species in sterilized activated carbon filters and biological activated carbon filters.

    PubMed Central

    Rollinger, Y; Dott, W

    1987-01-01

    The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects. PMID:3579281

  1. Impact of experimental human pneumococcal carriage on nasopharyngeal bacterial densities in healthy adults.

    PubMed

    Shak, Joshua R; Cremers, Amelieke J H; Gritzfeld, Jenna F; de Jonge, Marien I; Hermans, Peter W M; Vidal, Jorge E; Klugman, Keith P; Gordon, Stephen B

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study's sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute.

  2. Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    PubMed Central

    Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.

    2011-01-01

    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912

  3. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    PubMed

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. Copyright © 2016. Published by Elsevier Ltd.

  4. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159

    PubMed Central

    Zeng, Lin; Culp, David J.

    2018-01-01

    ABSTRACT Transposon mutagenesis coupled with next-generation DNA sequencing (Tn-seq) is a powerful tool for discovering regions of the genome that are required for the survival of bacteria in different environments. We adapted this technique to the dental caries pathogen Streptococcus mutans UA159 and identified 11% of the genome as essential, with many genes encoding products required for replication, translation, lipid metabolism, and cell wall biogenesis. Comparison of the essential genome of S. mutans UA159 with those of selected other streptococci for which such information is available revealed several metabolic pathways and genes that are required in S. mutans, but not in some Streptococcus spp. We further identified genes that are essential for sustained growth in rich or defined medium, as well as for persistence in vivo in a rodent model of oral infection. Collectively, our results provide a novel and comprehensive view of the genes required for essential processes of S. mutans, many of which could represent potential targets for therapeutics. IMPORTANCE Tooth decay (dental caries) is a common cause of pain, impaired quality of life, and tooth loss in children and adults. It begins because of a compositional change in the microorganisms that colonize the tooth surface driven by repeated and sustained carbohydrate intake. Although several bacterial species are associated with tooth decay, Streptococcus mutans is the most common cause. Therefore, it is important to identify biological processes that contribute to the survival of S. mutans in the human mouth, with the aim of disrupting the processes with antimicrobial agents. We successfully applied Tn-seq to S. mutans, discovering genes that are required for survival, growth, and persistence, both in laboratory environments and in a mouse model of tooth decay. This work highlights new avenues for the control of an important human pathogen. PMID:29435491

  5. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae.

    PubMed

    Qi, Zhitao; Wu, Ping; Zhang, Qihuan; Wei, Youchuan; Wang, Zisheng; Qiu, Ming; Shao, Rong; Li, Yao; Gao, Qian

    2016-02-01

    Soiny mullet (Liza haematocheila) is becoming an economically important aquaculture mugilid species in China and other Asian countries. However, increasing incidences of bacterial pathogenic diseases has greatly hampered the production of the soiny mullet. Deeper understanding of the soiny mullet immune system and its related genes in response to bacterial infections are necessary for disease control in this species. In this study, the transcriptomic profile of spleen from soiny mullet challenged with Streptococcus dysgalactiae was analyzed by Illumina-based paired-end sequencing method. After assembly, 86,884 unique transcript fragments (unigenes) were assembled, with an average length of 991 bp. Approximately 41,795 (48.1%) unigenes were annotated in the nr NCBI database and 57.9% of the unigenes were similar to that of the Nile tilapia. A total of 24,299 unigenes were categorized into three Gene Ontology (GO) categories (molecular function, cellular component and biological process), 13,570 unigenes into 25 functional Clusters of Orthologous Groups of proteins (COG) categories, and 30,547 unigenes were grouped into 258 known pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Following S. dysgalactiae infection, 11,461 differentially expressed unigenes were identified including 4658 up-regulated unigenes and 6803 down-regulated unigenes. Significant enrichment analysis of these differentially expressed unigenes identified major immune related pathways, including the Toll-like receptor, complement and coagulation cascades, T cell receptor signaling pathway and B cell receptor signaling pathway. In addition, 24,813 simple sequence repeats (SSRs) and 127,503 candidate single nucleotide polymorphisms (SNPs) were identified from the mullet spleen transcriptome. To this date, this study has globally analyzed the transcriptome profile from the spleen of L. haematocheila after S. dysgalactiae infection. Therefore, the results of our study

  6. Relationship between Oral Malodor and the Global Composition of Indigenous Bacterial Populations in Saliva ▿

    PubMed Central

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Shimazaki, Yoshihiro; Yoneda, Masahiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2010-01-01

    Oral malodor develops mostly from the metabolic activities of indigenous bacterial populations within the oral cavity, but whether healthy or oral malodor-related patterns of the global bacterial composition exist remains unclear. In this study, the bacterial compositions in the saliva of 240 subjects complaining of oral malodor were divided into groups based on terminal-restriction fragment length polymorphism (T-RFLP) profiles using hierarchical cluster analysis, and the patterns of the microbial community composition of those exhibiting higher and lower malodor were explored. Four types of bacterial community compositions were detected (clusters I, II, III, and IV). Two parameters for measuring oral malodor intensity (the concentration of volatile sulfur compounds in mouth air and the organoleptic score) were noticeably lower in cluster I than in the other clusters. Using multivariate analysis, the differences in the levels of oral malodor were significant after adjustment for potential confounding factors such as total bacterial count, mean periodontal pocket depth, and tongue coating score (P < 0.001). Among the four clusters with different proportions of indigenous members, the T-RFLP profiles of cluster I were implicated as the bacterial populations with higher proportions of Streptococcus, Granulicatella, Rothia, and Treponema species than those of the other clusters. These results clearly correlate the global composition of indigenous bacterial populations with the severity of oral malodor. PMID:20228112

  7. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    PubMed Central

    Cabugao, Kristine G.; Timm, Collin M.; Carrell, Alyssa A.; Childs, Joanne; Lu, Tse-Yuan S.; Pelletier, Dale A.; Weston, David J.; Norby, Richard J.

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability (p-value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  8. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest.

    PubMed

    Cabugao, Kristine G; Timm, Collin M; Carrell, Alyssa A; Childs, Joanne; Lu, Tse-Yuan S; Pelletier, Dale A; Weston, David J; Norby, Richard J

    2017-01-01

    Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds. However, the activity of these enzymes depends on several edaphic factors including P availability, tree species, and microbial communities. Thus, phosphatase activity in both roots and the root microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. To relate phosphatase activity of roots and bacteria in tropical forests, we measured phosphatase activity in roots and bacterial isolates as well as bacterial community composition from the rhizosphere. Three forests in the Luquillo Mountains of Puerto Rico were selected to represent a range of soil P availability as measured using the resin P method. Within each site, a minimum of three tree species were chosen to sample. Root and bacterial phosphatase activity were both measured using a colorimetric assay with para-nitrophenyl phosphate as a substrate for the phosphomonoesterase enzyme. Both root and bacterial phosphatase were chiefly influenced by tree species. Though tree species was the only significant factor in root phosphatase activity, there was a negative trend between soil P availability and phosphatase activity in linear regressions of average root phosphatase and resin P. Permutational multivariate analysis of variance of bacterial community composition based on 16S amplicon sequencing indicated that bacterial composition was strongly controlled by soil P availability ( p -value < 0.05). These results indicate that although root and bacterial phosphatase activity were influenced by tree species; bacterial

  9. The whole is greater than the sum of its parts: dental plaque bacterial interactions can affect the virulence properties of cariogenic Streptococcus mutans.

    PubMed

    Kuramitsu, Howard K; Wang, Bing-Yan

    2011-06-01

    It has been well established that dental caries results from the accumulation of dental plaque on tooth surfaces. Several decades of in vitro and as well as clinical studies have identified Streptococcus mutans as an important etiological agent in carious lesion formation. In addition, a variety of approaches have suggested that interactions between the bacterial components of biofilms can influence the properties of such polymicrobial structures. Therefore, it is likely that the mere presence of S. mutans in dental plaque does not alone account for the cariogenic potential of such biofilms. Recent studies have indicated that several bacteria commonly found in dental plaque can influence either the viability and/or virulence properties of S. mutans. This review will summarize some of the more recent findings in this regard as well as their implications for the development of novel anti-caries strategies.

  10. Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme.

    PubMed

    Jans, Christoph; de Wouters, Tomas; Bonfoh, Bassirou; Lacroix, Christophe; Kaindi, Dasel Wambua Mulwa; Anderegg, Janine; Böck, Désirée; Vitali, Sabrina; Schmid, Thomas; Isenring, Julia; Kurt, Fabienne; Kogi-Makau, Wambui; Meile, Leo

    2016-06-21

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and

  11. Interaction between M-Like Protein and Macrophage Thioredoxin Facilitates Antiphagocytosis for Streptococcus equi ssp. zooepidemicus

    PubMed Central

    Ma, Zhe; Zhang, Hui; Zheng, Junxi; Li, Yue; Yi, Li; Fan, Hongjie; Lu, Chengping

    2012-01-01

    Streptococcus equi ssp. zooepidemicus (S. zooepidemicus, S.z) is one of the common pathogens that can cause septicemia, meningitis, and mammitis in domesticated species. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. The interaction between SzP of S. zooepidemicus and porcine thioredoxin (TRX) was identified by the yeast two-hybrid and further confirmed by co-immunoprecipitation. SzP interacted with both reduced and the oxidized forms of TRX without inhibiting TRX activity. Membrane anchored SzP was able to recruit TRX to the surface, which would facilitate the antiphagocytosis of the bacteria. Further experiments revealed that TRX regulated the alternative complement pathway by inhibiting C3 convertase activity and associating with factor H (FH). TRX alone inhibited C3 cleavage and C3a production, and the inhibitory effect was additive when FH was also present. TRX inhibited C3 deposition on the bacterial surface when it was recruited by SzP. These new findings indicated that S. zooepidemicus used SzP to recruit TRX and regulated the alternative complement pathways to evade the host immune phagocytosis. PMID:22384152

  12. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  13. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  14. Bacterial Co-infection in Hospitalized Children with Mycoplasma pneumoniae Pneumonia.

    PubMed

    Song, Qing; Xu, Bao-Ping; Shen, Kun-Ling

    2016-10-08

    To describe the frequency and impact of bacterial co-infections in children hospitalized with Mycoplasma pneumoniae pneumonia. Retrospective, descriptive study. Tertiary-care hospital in Beijing, China. 8612 children admitted to Beijing Childrens Hospital from June 2006 to June 2014. According to the testing results of etiology we divided the cases into pure M. pneumoniae infection group and mixed bacterial infection group. We analyzed clinical features, hospital expenses and differences between these two groups. 173 (2%) of included children had bacterial coinfection. 56.2% of bacterial pathogens were identified as Streptococcus pneumoniae. The most common bacterium causing co-infection in children with M. pneumoniae pneumonia was S. pneumoniae.

  15. Bacterial and fungal endophthalmitis in upper Egypt: related species and risk factors.

    PubMed

    Gharamah, A A; Moharram, A M; Ismail, M A; Al-Hussaini, A K

    2012-08-01

    To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  16. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  17. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  18. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    NASA Astrophysics Data System (ADS)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  19. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.

    PubMed

    Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G

    2015-06-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.

  20. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes

    PubMed Central

    Ong, Cheryl-lynn Y.; Walker, Mark J.; McEwan, Alastair G.

    2015-01-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways. PMID:26028191

  1. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India

    PubMed Central

    Trojan, Rugira; Razdan, Lovely

    2016-01-01

    We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacter spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli, K. pneumoniae, A. baumannii, and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa, P. mirabilis, and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription. PMID:27872643

  2. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India.

    PubMed

    Trojan, Rugira; Razdan, Lovely; Singh, Nasib

    2016-01-01

    We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacte r spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli , K. pneumoniae , A. baumannii , and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa , P. mirabilis , and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription.

  3. Oral Bacterial Deactivation Using a Low-Temperature Atmospheric Argon Plasma Brush

    PubMed Central

    Yang, Bo; Chen, Jierong; Yu, Qingsong; Li, Hao; Lin, Mengshi; Mustapha, Azlin; Hong, Liang; Wang, Yong

    2010-01-01

    Summary Objectives To study the plasma treatment effects on deactivation effectiveness of oral bacteria. Methods A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria. Results The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 seconds for S. mutans and within 5 minutes for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280nm and 260nm, respectively. Conclusion The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention, etc. PMID:20951184

  4. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    PubMed

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Streptococcus agalactiae vaginitis: nonhemolytic variant on the Liofilchem® Chromatic StreptoB.

    PubMed

    Savini, Vincenzo; Marrollo, Roberta; D'Antonio, Marianna; D'Amario, Claudio; Fazii, Paolo; D'Antonio, Domenico

    2013-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) vaginal pathogenicity is not uniformly acknowledged throughout the literature; accordingly, in women, genital itching and burning, along with leukorrhea are commonly and almost exclusively referred to bacterial vaginosis, candidiasis and trichomoniasis. Conversely, GBS virulence for vagina was recognized in the past, as the organism has been observed to potentially cause local inflammation and discharge, as well as lactobacilli rarefaction. We depict here a case where a nonhemolytic (γ-hemolytic) GBS strain was found to be the etiologic agent of vaginal infection. Such uncommon S. agalactiae phenotypes are hard to be recognized and may be therefore responsible for misdiagnosing and underestimation of GBS vaginitis prevalence; here, we had the support of the Liofilchem(®) Chromatic StreptoB medium, that successfully detected such an atypical variant.

  6. Streptococcus agalactiae vaginitis: nonhemolytic variant on the Liofilchem® Chromatic StreptoB

    PubMed Central

    Savini, Vincenzo; Marrollo, Roberta; D’Antonio, Marianna; D’Amario, Claudio; Fazii, Paolo; D’Antonio, Domenico

    2013-01-01

    Streptococcus agalactiae (group B Streptococcus, GBS) vaginal pathogenicity is not uniformly acknowledged throughout the literature; accordingly, in women, genital itching and burning, along with leukorrhea are commonly and almost exclusively referred to bacterial vaginosis, candidiasis and trichomoniasis. Conversely, GBS virulence for vagina was recognized in the past, as the organism has been observed to potentially cause local inflammation and discharge, as well as lactobacilli rarefaction. We depict here a case where a nonhemolytic (γ-hemolytic) GBS strain was found to be the etiologic agent of vaginal infection. Such uncommon S. agalactiae phenotypes are hard to be recognized and may be therefore responsible for misdiagnosing and underestimation of GBS vaginitis prevalence; here, we had the support of the Liofilchem® Chromatic StreptoB medium, that successfully detected such an atypical variant. PMID:23923091

  7. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR.

    PubMed

    Lazzi, C; Rossetti, L; Zago, M; Neviani, E; Giraffa, G

    2004-01-01

    To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.

  8. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    PubMed

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  9. Insight into the Evolution of the Histidine Triad Protein (HTP) Family in Streptococcus

    PubMed Central

    Pan, Xiu-Zhen; Wang, Bin; Chen, Jian-Qun

    2013-01-01

    The Histidine Triad Proteins (HTPs), also known as Pht proteins in Streptococcus pneumoniae, constitute a family of surface-exposed proteins that exist in many pathogenic streptococcal species. Although many studies have revealed the importance of HTPs in streptococcal physiology and pathogenicity, little is known about their origin and evolution. In this study, after identifying all htp homologs from 105 streptococcal genomes representing 38 different species/subspecies, we analyzed their domain structures, positions in genome, and most importantly, their evolutionary histories. By further projecting this information onto the streptococcal phylogeny, we made several major findings. First, htp genes originated earlier than the Streptococcus genus and gene-loss events have occurred among three streptococcal groups, resulting in the absence of the htp gene in the Bovis, Mutans and Salivarius groups. Second, the copy number of htp genes in other groups of Streptococcus is variable, ranging from one to four functional copies. Third, both phylogenetic evidence and domain structure analyses support the division of two htp subfamilies, designated as htp I and htp II. Although present mainly in the pyogenic group and in Streptococcus suis, htp II members are distinct from htp I due to the presence of an additional leucine-rich-repeat domain at the C-terminus. Finally, htp genes exhibit a faster nucleotide substitution rate than do housekeeping genes. Specifically, the regions outside the HTP domains are under strong positive selection. This distinct evolutionary pattern likely helped Streptococcus to easily escape from recognition by host immunity. PMID:23527301

  10. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition

    PubMed Central

    Lefébure, Tristan; Stanhope, Michael J

    2007-01-01

    Background The genus Streptococcus is one of the most diverse and important human and agricultural pathogens. This study employs comparative evolutionary analyses of 26 Streptococcus genomes to yield an improved understanding of the relative roles of recombination and positive selection in pathogen adaptation to their hosts. Results Streptococcus genomes exhibit extreme levels of evolutionary plasticity, with high levels of gene gain and loss during species and strain evolution. S. agalactiae has a large pan-genome, with little recombination in its core-genome, while S. pyogenes has a smaller pan-genome and much more recombination of its core-genome, perhaps reflecting the greater habitat, and gene pool, diversity for S. agalactiae compared to S. pyogenes. Core-genome recombination was evident in all lineages (18% to 37% of the core-genome judged to be recombinant), while positive selection was mainly observed during species differentiation (from 11% to 34% of the core-genome). Positive selection pressure was unevenly distributed across lineages and biochemical main role categories. S. suis was the lineage with the greatest level of positive selection pressure, the largest number of unique loci selected, and the largest amount of gene gain and loss. Conclusion Recombination is an important evolutionary force in shaping Streptococcus genomes, not only in the acquisition of significant portions of the genome as lineage specific loci, but also in facilitating rapid evolution of the core-genome. Positive selection, although undoubtedly a slower process, has nonetheless played an important role in adaptation of the core-genome of different Streptococcus species to different hosts. PMID:17475002

  11. Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses.

    PubMed

    Li, Jing; Zheng, Yi; Xu, Haiyan; Xi, Xiaoxia; Hou, Qiangchuan; Feng, Shuzhen; Wuri, Laga; Bian, Yanfei; Yu, Zhongjie; Kwok, Lai-Yu; Sun, Zhihong; Sun, Tiansong

    2017-01-09

    In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy. Across the Kazakhstan cheese samples, a total of 238 bacterial species belonging to 14 phyla and 140 genera were identified. Lactococcus lactis (28.93%), Lactobacillus helveticus (26.43%), Streptococcus thermophilus (12.18%) and Lactobacillus delbrueckii (12.15%) were the dominant bacterial species for these samples. To further evaluate the cheese bacterial diversity of Kazakhstan cheeses in comparison with those from other geographic origins, 16S rRNA datasets of 36 artisanal cheeses from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy were retrieved from public databases. The cheese bacterial microbiota communities were largely different across sample origins. By principal coordinate analysis (PCoA) and multivariate analysis of variance (MANOVA), the structure of the Kazakhstan artisanal cheese samples was found to be different from those of the other geographic origins. Furthermore, the redundancy analysis (RDA) identified 16 bacterial OTUs as the key variables responsible for such microbiota structural difference. Our results together suggest that the diversity of bacterial communities in different groups is stratified by geographic region. This study does not only provide novel information on the bacterial microbiota of traditional artisanal cheese of Kazakhstan at species level, but also interesting insights into the bacterial diversity of artisanal

  12. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  13. Isolation of bacterial skin flora of healthy sheep, with comparison between frequent and minimal human handling.

    PubMed

    Haarstad, Amy C; Eisenschenk, Melissa C; Heinrich, Nicole A; Weese, J Scott; McKeever, Patrick J

    2014-06-01

    Few data are available regarding skin bacterial flora of healthy sheep and meticillin-resistant Staphylococcus carriage. To compare skin, ear and mucosal bacterial populations between minimally and frequently handled sheep; to determine whether the frequency of meticillin-resistant Staphylococcus aureus varied between groups. One hundred and three healthy feedlot and show sheep from eight farms. Swabs were collected from the dorsum, right ear and right nostril of each sheep. Two groups from each farm were evaluated, except from one farm, which had only one group. Bacterial isolates were identified to the genus or species level using phenotypic analysis or matrix-associated laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing and spa typing were performed on isolates of S. aureus. Sixteen bacterial genera were identified and 11 staphylococcal species, including S. aureus. The skin and mucosal bacterial flora were compared between the groups. The only statistically significant difference in bacteria was Streptococcus spp. on the dorsum (P = 0.0088), with carriage being more common in frequently handled sheep. Antimicrobial susceptibility testing did not find meticillin-resistant S. aureus. There was no significant difference in S. aureus carriage in the ear (P = 0.33), nostril (P = 0.43) or dorsum (P = 0.053) between frequently and minimally handled sheep. The S. aureus isolates belonged to six different spa types. Three were of the ST398 lineage. Sheep are a potential source of livestock-associated meticillin-sensitive Staphylococcus aureus ST398. © 2014 ESVD and ACVD.

  14. Antimicrobial activity of commercially available essential oils against Streptococcus mutans.

    PubMed

    Chaudhari, Lalit Kumar D; Jawale, Bhushan Arun; Sharma, Sheeba; Sharma, Hemant; Kumar, C D Mounesh; Kulkarni, Pooja Adwait

    2012-01-01

    Many essential oils have been advocated for use in complementary medicine for bacterial and fungal infections. However, few of the many claims of therapeutic efficacy have been validated adequately by either in vitro testing or in vivo clinical trials. To study the antibacterial activity of nine commercially available essential oils against Streptococcus mutans in vitro and to compare the antibacterial activity between each material. Nine pure essential oils; wintergreen oil, lime oil, cinnamon oil, spearmint oil, peppermint oil, lemongrass oil, cedarwood oil, clove oil and eucalyptus oil were selected for the study. Streptococcus mutans was inoculated at 37ºC and seeded on blood agar medium. Agar well diffusion assay was used to measure antibacterial activity. Zone of inhibition was measured around the filter paper in millimeters with vernier caliper. Cinnamon oil showed highest activity against Streptococcus mutans followed by lemongrass oil and cedarwood oil. Wintergreen oil, lime oil, peppermint oil and spearmint oil showed no antibacterial activity. Cinnamon oil, lemongrass oil, cedarwood oil, clove oil and eucalyptus oil exhibit antibacterial property against S. mutans. The use of these essential oils against S. mutans can be a viable alternative to other antibacterial agents as these are an effective module used in the control of both bacteria and yeasts responsible for oral infections.

  15. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    PubMed

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Sequencing of the variable region of rpsB to discriminate between Streptococcus pneumoniae and other streptococcal species.

    PubMed

    Wyllie, Anne L; Pannekoek, Yvonne; Bovenkerk, Sandra; van Engelsdorp Gastelaars, Jody; Ferwerda, Bart; van de Beek, Diederik; Sanders, Elisabeth A M; Trzciński, Krzysztof; van der Ende, Arie

    2017-09-01

    The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease ( n = 101) and from carriage ( n = 103), and on non-typeable pneumococci from asymptomatic individuals ( n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae , targeting cpsA , lytA , piaB , ply , Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae , whereas assays targeting cpsA , ply , Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates. © 2017 The Authors.

  17. Sequencing of the variable region of rpsB to discriminate between Streptococcus pneumoniae and other streptococcal species

    PubMed Central

    Pannekoek, Yvonne; Bovenkerk, Sandra; van Engelsdorp Gastelaars, Jody; Ferwerda, Bart; van de Beek, Diederik; Sanders, Elisabeth A. M.; Trzciński, Krzysztof; van der Ende, Arie

    2017-01-01

    The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae. Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease (n = 101) and from carriage (n = 103), and on non-typeable pneumococci from asymptomatic individuals (n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae, targeting cpsA, lytA, piaB, ply, Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae, whereas assays targeting cpsA, ply, Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates. PMID:28931649

  18. Strain Level Streptococcus Colonization Patterns during the First Year of Life

    PubMed Central

    Wright, Meredith S.; McCorrison, Jamison; Gomez, Andres M.; Beck, Erin; Harkins, Derek; Shankar, Jyoti; Mounaud, Stephanie; Segubre-Mercado, Edelwisa; Mojica, Aileen May R.; Bacay, Brian; Nzenze, Susan A.; Kimaro, Sheila Z. M.; Adrian, Peter; Klugman, Keith P.; Lucero, Marilla G.; Nelson, Karen E.; Madhi, Shabir; Sutton, Granger G.; Nierman, William C.; Losada, Liliana

    2017-01-01

    Pneumococcal pneumonia has decreased significantly since the implementation of the pneumococcal conjugate vaccine (PCV), nevertheless, in many developing countries pneumonia mortality in infants remains high. We have undertaken a study of the nasopharyngeal (NP) microbiome during the first year of life in infants from The Philippines and South Africa. The study entailed the determination of the Streptococcus sp. carriage using a lytA qPCR assay, whole metagenomic sequencing, and in silico serotyping of Streptococcus pneumoniae, as well as 16S rRNA amplicon based community profiling. The lytA carriage in both populations increased with infant age and lytA+ samples ranged from 24 to 85% of the samples at each sampling time point. We next developed informatic tools for determining Streptococcus community composition and pneumococcal serotype from metagenomic sequences derived from a subset of longitudinal lytA-positive Streptococcus enrichment cultures from The Philippines (n = 26 infants, 50% vaccinated) and South African (n = 7 infants, 100% vaccinated). NP samples from infants were passaged in enrichment media, and metagenomic DNA was purified and sequenced. In silico capsular serotyping of these 51 metagenomic assemblies assigned known serotypes in 28 samples, and the co-occurrence of serotypes in 5 samples. Eighteen samples were not typeable using known serotypes but did encode for capsule biosynthetic cluster genes similar to non-encapsulated reference sequences. In addition, we performed metagenomic assembly and 16S rRNA amplicon profiling to understand co-colonization dynamics of Streptococcus sp. and other NP genera, revealing the presence of multiple Streptococcus species as well as potential respiratory pathogens in healthy infants. A range of virulence and drug resistant elements were identified as circulating in the NP microbiomes of these infants. This study revealed the frequent co-occurrence of multiple S. pneumoniae strains along with Streptococcus sp

  19. A Novel Role for Pro-Coagulant Microvesicles in the Early Host Defense against Streptococcus pyogenes

    PubMed Central

    Oehmcke, Sonja; Westman, Johannes; Malmström, Johan; Mörgelin, Matthias; Olin, Anders I.; Kreikemeyer, Bernd; Herwald, Heiko

    2013-01-01

    Previous studies have shown that stimulation of whole blood or peripheral blood mononuclear cells with bacterial virulence factors results in the sequestration of pro-coagulant microvesicles (MVs). These particles explore their clotting activity via the extrinsic and intrinsic pathway of coagulation; however, their pathophysiological role in infectious diseases remains enigmatic. Here we describe that the interaction of pro-coagulant MVs with bacteria of the species Streptococcus pyogenes is part of the early immune response to the invading pathogen. As shown by negative staining electron microscopy and clotting assays, pro-coagulant MVs bind in the presence of plasma to the bacterial surface. Fibrinogen was identified as a linker that, through binding to the M1 protein of S. pyogenes, allows the opsonization of the bacteria by MVs. Surface plasmon resonance analysis revealed a strong interaction between pro-coagulant MVs and fibrinogen with a KD value in the nanomolar range. When performing a mass-spectrometry-based strategy to determine the protein quantity, a significant up-regulation of the fibrinogen-binding integrins CD18 and CD11b on pro-coagulant MVs was recorded. Finally we show that plasma clots induced by pro-coagulant MVs are able to prevent bacterial dissemination and possess antimicrobial activity. These findings were confirmed by in vivo experiments, as local treatment with pro-coagulant MVs dampens bacterial spreading to other organs and improved survival in an invasive streptococcal mouse model of infection. Taken together, our data implicate that pro-coagulant MVs play an important role in the early response of the innate immune system in infectious diseases. PMID:23935504

  20. Arginine-Ornithine Antiporter ArcD Controls Arginine Metabolism and Interspecies Biofilm Development of Streptococcus gordonii*♦

    PubMed Central

    Sakanaka, Akito; Kuboniwa, Masae; Takeuchi, Hiroki; Hashino, Ei; Amano, Atsuo

    2015-01-01

    Arginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source. Here, we generated an S. gordonii ΔarcD mutant to explore the role of ArcD in physiological homeostasis and bacterial cross-feeding. First, we confirmed that S. gordonii ArcD plays crucial roles for mediating arginine uptake and promoting bacterial growth, particularly under arginine-limited conditions. Next, metabolomic profiling and transcriptional analysis of the ΔarcD mutant revealed that deletion of this gene caused intracellular accumulation of ornithine leading to malfunction of the ADS and suppression of de novo arginine biosynthesis. The mutant strain also showed increased susceptibility to low pH stress due to reduced production of ammonia. Finally, accumulation of Fusobacterium nucleatum was found to be significantly decreased in biofilm formed by the ΔarcD mutant as compared with the wild-type strain, although ornithine supplementation restored fusobacterium biovolume in dual-species biofilms with the ΔarcD mutant and also enhanced single species biofilm development by F. nucleatum. Our results are the first direct evidence showing that S. gordonii ArcD modulates not only alkali and energy production but also interspecies interaction with F. nucleatum, thus initiating a middle stage of periodontopathic biofilm formation, by metabolic cross-feeding. PMID:26085091

  1. Large scale genomic analysis shows no evidence for pathogen adaptation between the blood and cerebrospinal fluid niches during bacterial meningitis

    PubMed Central

    Lees, John A.; Kremer, Philip H. C.; Manso, Ana S.; Croucher, Nicholas J.; Ferwerda, Bart; Serón, Mercedes Valls; Oggioni, Marco R.; Parkhill, Julian; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2017-01-01

    Recent studies have provided evidence for rapid pathogen genome diversification, some of which could potentially affect the course of disease. We have previously described such variation seen between isolates infecting the blood and cerebrospinal fluid (CSF) of a single patient during a case of bacterial meningitis. Here, we performed whole-genome sequencing of paired isolates from the blood and CSF of 869 meningitis patients to determine whether such variation frequently occurs between these two niches in cases of bacterial meningitis. Using a combination of reference-free variant calling approaches, we show that no genetic adaptation occurs in either invaded niche during bacterial meningitis for two major pathogen species, Streptococcus pneumoniae and Neisseria meningitidis. This study therefore shows that the bacteria capable of causing meningitis are already able to do this upon entering the blood, and no further sequence change is necessary to cross the blood–brain barrier. Our findings place the focus back on bacterial evolution between nasopharyngeal carriage and invasion, or diversity of the host, as likely mechanisms for determining invasiveness. PMID:28348877

  2. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars.

    PubMed

    Xu, He; Hao, Wenjing; Zhou, Qiong; Wang, Wenhong; Xia, Zhongkui; Liu, Chuan; Chen, Xiaochi; Qin, Man; Chen, Feng

    2014-01-01

    Our primary objective is to phylogenetically characterize the supragingival plaque bacterial microbiome of children prior to eruption of second primary molars by pyrosequencing method for studying etiology of early childhood caries. Supragingival plaque samples were collected from 10 caries children and 9 caries-free children. Plaque DNA was extracted, used to generate DNA amplicons of the V1-V3 hypervariable region of the bacterial 16S rRNA gene, and subjected to 454-pyrosequencing. On average, over 22,000 sequences per sample were generated. High bacterial diversity was noted in the plaque of children with caries [170 operational taxonomical units (OTU) at 3% divergence] and caries-free children (201 OTU at 3% divergence) with no significant difference. A total of 8 phyla, 15 classes, 21 orders, 30 families, 41 genera and 99 species were represented. In addition, five predominant phyla (Firmicute, Fusobacteria, Proteobacteria, Bacteroidetes and Actinobacteria) and seven genera (Leptotrichia, Streptococcus, Actinomyces, Prevotella, Porphyromonas, Neisseria, and Veillonella) constituted a majority of contents of the total microbiota, independent of the presence or absence of caries. Principal Component Analysis (PCA) presented that caries-related genera included Streptococcus and Veillonella; while Leptotrichia, Selenomonas, Fusobacterium, Capnocytophaga and Porphyromonas were more related to the caries-free samples. Neisseria and Prevotella presented approximately in between. In both groups, the degree of shared organism lineages (as defined by species-level OTUs) among individual supragingival plaque microbiomes was minimal. Our study represented for the first time using pyrosequencing to elucidate and monitor supragingival plaque bacterial diversity at such young age with second primary molar unerrupted. Distinctions were revealed between caries and caries-free microbiomes in terms of microbial community structure. We observed differences in abundance for

  3. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis

    PubMed Central

    Xu, Yifan; Itzek, Andreas

    2014-01-01

    Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm. PMID:25280752

  4. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  5. Development of primer sets for loop-mediated isothermal amplification that enables rapid and specific detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    USDA-ARS?s Scientific Manuscript database

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three ...

  6. The disease complex of the gypsy moth. II. Aerobic bacterial pathogens

    Treesearch

    J.D. Podgwaite; R.W. Campbell

    1972-01-01

    Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...

  7. Rapid detection of Streptococcus pneumoniae by real-time fluorescence loop-mediated isothermal amplification

    PubMed Central

    Guo, Xu-Guang; Zhou, Shan

    2014-01-01

    Background and aim of study A significant human pathogenic bacterium, Streptococcus pneumoniae was recognized as a major cause of pneumonia, and is the subject of many humoral immunity studies. Diagnosis is generally made based on clinical suspicion along with a positive culture from a sample from virtually any place in the body. But the testing time is too long. This study is to establish a rapid diagnostic method to identification of Streptococcus pneumoniae. Methods Our laboratory has recently developed a new platform called real-amp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of Streptococcus pneumonia. Two pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the Streptococcus pneumoniae. The amplification was carried out at 63 degree Celsius using SYBR Green for 60 minutes with the tube scanner set to collect fluorescence signals. Clinical samples of Streptococcus pneumoniae and other bacteria were used to determine the sensitivity and specificity of the primers by comparing with traditional culture method. Results The new set of primers consistently detected in laboratory-maintained isolates of Streptococcus pneumoniae from our hospital. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting Streptococcus pneumoniae. Conclusions This study demonstrates that the Streptococcus pneumoniae LAMP primers developed here have the ability to accurately detect Streptococcus pneumoniae infections by real-time fluorescence LAMP. PMID:25276360

  8. Identification of a Novel Host-Specific IgM Protease in Streptococcus suis

    PubMed Central

    Seele, Jana; Singpiel, Alena; Spoerry, Christian; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter

    2013-01-01

    Streptococcus suis serotype 2 is a highly invasive, extracellular pathogen in pigs with the capacity to cause severe infections in humans. This study was initiated by the finding that IgM degradation products are released after opsonization of S. suis. The objective of this work was to identify the bacterial factor responsible for IgM degradation. The results of this study showed that a member of the IdeS family, designated IdeSsuis (Immunoglobulin M-degrading enzyme of S. suis), is responsible and sufficient for IgM cleavage. Recombinant IdeSsuis was found to degrade only IgM but neither IgG nor IgA. Interestingly, Western blot analysis revealed that IdeSsuis is host specific, as it exclusively cleaves porcine IgM but not IgM from six other species, including a closely related member of the Suidae family. As demonstrated by flow cytometry and immunofluorescence microscopy, IdeSsuis modulates binding of IgM to the bacterial surface. IdeSsuis is the first prokaryotic IgM-specific protease described, indicating that this enzyme is involved in a so-far-unknown mechanism of host-pathogen interaction at an early stage of the host immune response. Furthermore, cleavage of porcine IgM by IdeSsuis is the first identified phenotype reflecting functional adaptation of S. suis to pigs as the main host. PMID:23243300

  9. Treatment of bacterial meningitis: an update.

    PubMed

    Shin, Seon Hee; Kim, Kwang Sik

    2012-10-01

    The introduction of protein conjugate vaccines for Haemophilus influenzae type b (Hib), Streptococcus pneumoniae (S. pneumoniae) and Neisseria meningitidis (N. menigitidis) has changed the epidemiology of bacterial meningitis. Bacterial meningitis continues to be an important cause of mortality and morbidity, and our incomplete knowledge of its pathogenesis and emergence of antimicrobial resistant bacteria contribute to such mortality and morbidity. An early empiric antibiotic treatment is critical for the management of patients with bacterial meningitis. This article gives an overview on optimal treatment strategies of bacterial meningitis, along with considerations of new insights on epidemiology, clinical and laboratory findings supportive of bacterial meningitis, chemoprophylaxis, selection of initial antimicrobial agents for suspected bacterial meningitis, antimicrobial resistance and utility of new antibiotics, status on anti-inflammatory agents and adjunctive therapy, and pathogenesis of bacterial meningitis. Prompt treatment of bacterial meningitis with an appropriate antibiotic is essential. Optimal antimicrobial treatment of bacterial meningitis requires bactericidal agents able to penetrate the blood-brain barrier (BBB), with efficacy in cerebrospinal fluid (CSF). Several new antibiotics have been introduced for the treatment of meningitis caused by resistant bacteria, but their use in human studies has been limited. More complete understanding of the microbial and host interactions that are involved in the pathogenesis of bacterial meningitis and associated neurologic sequelae is likely to help in developing new strategies for the prevention and therapy of bacterial meningitis.

  10. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    PubMed

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Highly efficient production of hyaluronic acid by Streptococcus zooepidemicus R42 derived from heterologous expression of bacterial haemoglobin and mutant selection.

    PubMed

    Lu, J F; Zhu, Y; Sun, H L; Liang, S; Leng, F F; Li, H Y

    2016-04-01

    During Streptococcus zooepidemicus fermentation, most carbon sources are used to synthesize lactic acid, which can inhibit strain growth and hyaluronic acid production. Here, we expressed bacterial haemoglobin (Vhb) in Strep. zooepidemicus. Due to highly efficient oxygen use, only 15·26 g l(-1) lactic acid was produced, which is 0·73 times the quantity produced by the control strain. Compared with the control strain (1·61 g l(-1) ), hyaluronic acid (HA) production in this strain did not substantially increase, only to 2·16 g l(-1) . Next, we used a series of N-methyl-N'-nitro-N-nitroso-guanidine (NTG) treatments and selection programmes. Finally, we generated a hyaluronidase-negative and rifampin-resistant mutant strain that produces high levels of HA. The optimum carbon concentration for maximum hyaluronic acid production is only 30 g l(-1) of sucrose, which is lower than the control strain (60 g l(-1) ). The oxygen transfer rate coefficient KL a increased significantly to 372 ± 53 h(-1) from 18 ± 4 h(-1) of the control. The optimum carbon source for this strain is 21 g l(-1) of sucrose, 9 g l(-1) of maltose and 5 g l(-1) of glutamic acid. Hyaluronic acid accumulated at 6·7 g l(-1) in the culture broth. However, the molecular weight of HA decreased from 1835 KDa (Control) to 429 kDa. The prepared low-molecular weight HA could function as potential antiangiogenic substances, antiviral and antitumour agents to possibly be used as functional food ingredients. Hyaluronic acid (HA) has been used for a wide range of applications in health, cosmetic and clinical fields. During fermentation of Streptococcus to produce HA, 80-85% of the carbon source is used to produce lactic acid and acetic acid, and only approx. 5 and 10% of the carbon source is used to produce HA and biomass respectively. Here, we expressed bacteria haemoglobin (Vhb) in Streptococcus zooepidemicus, which can dramatically inhibit lactic acid production. After NTG

  12. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo

    PubMed Central

    Perez, Antonia C.; Pang, Bing; King, Lauren B.; Tan, Li; Murrah, Kyle A.; Reimche, Jennifer L.; Wren, John T.; Richardson, Stephen H.; Ghandi, Uma; Swords, W. Edward

    2014-01-01

    Otitis media is an extremely common pediatric ailment caused by opportunists that reside within the nasopharynx. Inflammation within the upper airway can promote ascension of these opportunists into the middle ear chamber. Otitis media can be chronic/recurrent in nature, and a wealth of data indicates that in these cases the bacteria persist within biofilms. Epidemiological data demonstrates most cases of otitis media are polymicrobial, which may have significant impact on antibiotic resistance. In this study, we used in vitro biofilm assays and rodent infection models to examine the impact of polymicrobial infection with Moraxella catarrhalis and Streptococcus pneumoniae (pneumococcus) on biofilm resistance to antibiotic treatment and persistence in vivo. Consistent with prior work, M. catarrhalis conferred beta-lactamase dependent passive protection from beta-lactam killing to pneumococci within polymicrobial biofilms. Moreover, pneumococci increased resistance of M. catarrhalis to macrolide killing in polymicrobial biofilms. However, pneumococci increased colonization in vivo by M. catarrhalis in a quorum signal-dependent manner. We also found that co-infection with M. catarrhalis affects middle ear ascension of pneumococci in both mice and chinchillas. Therefore, we conclude that residence of M. catarrhalis and pneumococci within the same biofilm community significantly impacts resistance to antibiotic treatment and bacterial persistence in vivo. PMID:24391058

  13. Impact of Experimental Human Pneumococcal Carriage on Nasopharyngeal Bacterial Densities in Healthy Adults

    PubMed Central

    Shak, Joshua R.; Cremers, Amelieke J. H.; Gritzfeld, Jenna F.; de Jonge, Marien I.; Hermans, Peter W. M.; Vidal, Jorge E.; Klugman, Keith P.; Gordon, Stephen B.

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study’s sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute. PMID:24915552

  14. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  15. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  16. Linkage Analyses of Extracellular Glucans from Streptococcus sanguis and Streptococcus mitior

    PubMed Central

    Freedman, M.; Birkhed, D.; Coykendall, A.; Rizzo, D.

    1979-01-01

    Similar α-(1→6) linkage-rich, soluble, extracellular glucans have been isolated from six strains of two genetically distinct groups of Streptococcus sanguis and three strains of Streptococcus mitior. PMID:457265

  17. Human Milk Oligosaccharides Exhibit Antimicrobial and Antibiofilm Properties against Group B Streptococcus.

    PubMed

    Ackerman, Dorothy L; Doster, Ryan S; Weitkamp, Jörn-Hendrik; Aronoff, David M; Gaddy, Jennifer A; Townsend, Steven D

    2017-08-11

    Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial pathogen that causes invasive infections in both children and adults. During pregnancy, GBS is a significant cause of infection of the fetal membranes (chorioamnionitis), which can lead to intra-amniotic infection, preterm birth, stillbirth, and neonatal sepsis. Recently, breastfeeding has been thought to represent a potential mode of GBS transmission from mother to newborn, which might increase the risk for late-onset sepsis. Little is known, however, about the molecular components of breast milk that may support or prevent GBS colonization. In this study, we examine how human milk oligosaccharides (HMOs) affect the pathogenesis of GBS. HMOs from discrete donor samples were isolated and profiled by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Growth and biofilm assays show that HMOs from mothers of specific milk groups can modulate the growth and biofilm formation of GBS. High-resolution field-emission gun scanning electron microscopy (SEM) and confocal laser scanning microscopy confirmed the quantitative biofilm assays and demonstrated cell arrangement perturbations in bacterial cultures treated with specific oligosaccharides. These findings demonstrate that HMOs affect the growth and cell biology of GBS. Finally, this study provides the first example of HMOs functioning as antibiofilm agents against GBS.

  18. Community acquired bacterial pneumonia: aetiology, laboratory detection and antibiotic susceptibility pattern.

    PubMed

    Akter, Sonia; Shamsuzzaman, S M; Jahan, Ferdush

    2014-08-01

    This cross sectional study was conducted to identify the common bacterial causes of community acquired pneumonia (CAP) from sputum and blood by culture and polymerase chain reaction (PCR) and to evaluate the effectiveness of these tests. A total of 105 sputum and blood samples were collected from patients with pneumonia on clinical suspicion. Common causative bacterial agents of pneumonia were detected by Gram staining, cultures, biochemical tests and PCR. Among 55 sputum culture positive cases, a majority (61.82%) of the patients were in the age group between 21-50 years and the ratio between male and female was 2.5:1. Most (61.90%) of the cases were from the lower socio-economic group. Out of 105 samples, 23 (37.12%) were positive by Gram stain, 29 (27.62%) yielded growth in culture media and 37 (35.24%) were positive by PCR for Streptococcus pneumoniae and Haemophilus influenzae. Streptococcus pneumoniae was the most common aetiological agent (19.05%) followed by Klebsiella pneumoniae (13.33%), Haemophilus influenzae (8.57%) and Pseudomonas aeruginosa (5.71%). Multiplex PCR is a useful technique for rapid diagnosis of bacterial causes of pneumonia directly from sputum and blood. Considering culture as a gold standard, the sensitivity of PCR was 96.55% and specificity was 88.15%. More than 80% of Streptococcus pneumoniae isolates were found to be sensitive to ampicillin, amoxycillinclavulanate, and ceftriaxone. Susceptibilities to other antimicrobials ranged from 65% for azithromycin to 70% for levofloxacin. On the other hand, the Gram negative organisms were more sensitive to meropenem, ceftriaxone, amoxycillin-clavulanate and amikacin.

  19. Bacterial infection of the lower respiratory tract in 34 horses.

    PubMed

    Racklyeft, D J; Love, D N

    2000-08-01

    To investigate associations between the bacteriology and aspects of history, clinical presentation, outcome and pathology of lower respiratory tract disease of 34 horses. Detailed aerobic and anaerobic bacteriological investigations were performed on clinical specimens from horses with pneumonia, lung abscessation and necrotic pneumonia with or without pleurisy in an attempt to identify those bacteria that might contribute to the initiation and progression of infection. Bacteria were cultured from 33 of the 34 horses. In ten cases, only aerobic/facultatively anaerobic isolates were cultured while aerobic/facultatively anaerobic bacteria and obligately anaerobic bacteria were isolated in the other 23 cases. Moderate to large numbers of anaerobic bacteria were isolated only when the estimated duration of illness was at least five days. Bacteria were not cultured from 12 of the pleural fluid samples but were always cultured from pulmonary samples (either transtracheal aspirates from live horses or pulmonary lesions at necropsy). Streptococcus equi subsp zooepidemicus was isolated in the three cases where only one bacterial species was cultured. In the other 30 cases, multiple species were isolated. These included most often and in greatest numbers, Streptococcus equi subsp zooepidemicus, Pasteurellaceae, Escherichia coli, anaerobic cocci, Eubacterium fossor, Bacteroides tectum, Prevotella heparinolytica, Fusobacterium spp, and pigmented members of the genera Prevotella and Porphyromonas. Aerobic/facultatively anaerobic organisms were isolated from 97% of horses, while obligately anaerobic organisms were cultured from 68% of horses. There was no association between the isolation of any specific bacterium and the outcome of disease. However, obligately anaerobic bacteria (such as anaerobic cocci, Bacteroides tectum, P heparinolytica and Fusobacterium spp) and the facultatively anaerobic species Escherichia coli, were recovered more commonly from horses that died or were

  20. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria

    PubMed Central

    White, Phillipa C.; Milward, Michael R.; Cooper, Paul R.

    2017-01-01

    ABSTRACT Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii, stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. PMID:28947649

  1. Modulation of Neutrophil Extracellular Trap and Reactive Oxygen Species Release by Periodontal Bacteria.

    PubMed

    Hirschfeld, Josefine; White, Phillipa C; Milward, Michael R; Cooper, Paul R; Chapple, Iain L C

    2017-12-01

    Oral bacteria are the main trigger for the development of periodontitis, and some species are known to modulate neutrophil function. This study aimed to explore the release of neutrophil extracellular traps (NETs), associated antimicrobial proteins, and reactive oxygen species (ROS) in response to periodontal bacteria, as well as the underlying pathways. Isolated peripheral blood neutrophils were stimulated with 19 periodontal bacteria. NET and ROS release, as well as the expression of NET-bound antimicrobial proteins, elastase, myeloperoxidase, and cathepsin G, in response to these species was measured using fluorescence-based assays. NET and ROS release was monitored after the addition of NADP (NADPH) oxidase pathway modulators and inhibitors of Toll-like receptors (TLRs). Moreover, bacterial entrapment by NETs was visualized microscopically, and bacterial killing was assessed by bacterial culture. Certain microorganisms, e.g., Veillonella parvula and Streptococcus gordonii , stimulated higher levels of ROS and NET release than others. NETs were found to entrap, but not kill, all periodontal bacteria tested. NADPH oxidase pathway modulators decreased ROS production but not NET production in response to the bacteria. Interestingly, TLR inhibitors did not impact ROS and NET release. These data suggest that the variability in the neutrophil response toward different bacteria may contribute to the pathogenesis of periodontal diseases by mechanisms such as bacterial avoidance of host responses and activation of neutrophils. Moreover, our results indicate that bacterium-stimulated NET release may arise in part via NADPH oxidase-independent mechanisms. The role of TLR signaling in bacterium-induced ROS and NET release needs to be further elucidated. Copyright © 2017 American Society for Microbiology.

  2. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    PubMed Central

    2012-01-01

    Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia) and Souinet arboreta (North of Tunisia) were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively), four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae, S. agalactiae, S. pyogenes

  3. Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence▿

    PubMed Central

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P.; Munro, Cindy L.; Xu, Ping

    2008-01-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis. PMID:18390999

  4. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence.

    PubMed

    Ge, Xiuchun; Kitten, Todd; Chen, Zhenming; Lee, Sehmi P; Munro, Cindy L; Xu, Ping

    2008-06-01

    Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis.

  5. Risk factors for community-acquired bacterial meningitis.

    PubMed

    Lundbo, Lene Fogt; Benfield, Thomas

    2017-06-01

    Bacterial meningitis is a significant burden of disease and mortality in all age groups worldwide despite the development of effective conjugated vaccines. The pathogenesis of bacterial meningitis is based on complex and incompletely understood host-pathogen interactions. Some of these are pathogen-specific, while some are shared between different bacteria. We searched the database PubMed to identify host risk factors for bacterial meningitis caused by the pathogens Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae type b, because they are three most common causative bacteria beyond the neonatal period. We describe a number of risk factors; including socioeconomic factors, age, genetic variation of the host and underlying medical conditions associated with increased susceptibility to invasive bacterial infections in both children and adults. As conjugated vaccines are available for these infections, it is of utmost importance to identify high risk patients to be able to prevent invasive disease.

  6. High-level fluorescence labeling of gram-positive pathogens.

    PubMed

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  7. High-Level Fluorescence Labeling of Gram-Positive Pathogens

    PubMed Central

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration. PMID:21731607

  8. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae)

    PubMed Central

    Zheng, Zhou; Wang, Dandan; He, Hong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the “filter chamber + conical segment” of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative

  9. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae).

    PubMed

    Zheng, Zhou; Wang, Dandan; He, Hong; Wei, Cong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the "filter chamber + conical segment" of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative for

  10. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans

    PubMed Central

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans. PMID:27293453

  11. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population.

    PubMed

    Qi, Z; Cao, H; Jiang, H; Zhao, J; Tang, Z

    2016-01-01

    To use microarrays to detect 11 selected bacteria in infected root canals, revealing bacterial combinations that are associated with clinical symptoms and signs of primary endodontic infections in a Chinese population. DNA was extracted from 90 samples collected from the root canals of teeth with primary endodontic infections in a Chinese population, and the 16S rRNA gene was amplified by polymerase chain reaction (PCR). The PCR products were hybridized to microarrays containing specific oligonucleotide probes targeting 11 species, and the arrays were screened with a confocal laser scanner. Pearson's chi-squared test and cluster analysis were performed to investigate the associations between the bacterial combinations and clinical symptoms and signs using SAS 8.02. Seventy-seven samples (86%) yielded at least one of the 11 target species. Parvimonas micra (56%), Porphyromonas endodontalis (51%), Tannerella forsythia (48%), Prevotella intermedia (44%) and Porphyromonas gingivalis (37%) were the most prevalent taxa and were often concomitant. The following positive associations were found between the bacterial combinations and clinical features: P. endodontalis and T. forsythia with abscess; P. gingivalis and P. micra with sinus tract; P. gingivalis and P. endodontalis or P. micra and P. endodontalis with abscess and sinus tract; and the combination of P. endodontalis, P. micra, T. forsythia and P. gingivalis with sinus tract (P < 0.05). Various combinations of P. micra, P. endodontalis, T. forsythia and P. gingivalis may contribute to abscesses or sinus tracts of endodontic origin with bacterial synergism in a Chinese population. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Periodic Colony Formation by Bacterial Species Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Wakita, Jun-ichi; Shimada, Hirotoshi; Itoh, Hiroto; Matsuyama, Tohey; Matsushita, Mitsugu

    2001-03-01

    We have investigated the periodic colony growth of bacterial species Bacillus subtilis. A colony grows cyclically with the interface repeating an advance (migration phase) and a rest (consolidation phase) alternately on a surface of semi-solid agar plate under appropriate environmental conditions, resulting in a concentric ring-like colony. It was found from macroscopic observations that the characteristic quantities for the periodic growth such as the migration time, the consolidation time and the terrace spacing do not depend so much on nutrient concentration Cn, but do on agar concentration Ca. The consolidation time was a weakly increasing function of Ca, while the migration time and the terrace spacing were, respectively, weakly and strongly decreasing function of Ca. Overall, the cycle (migration-plus-consolidation) time seems to be constant, and does not depend so much on both Cn and Ca. Microscopically, bacterial cells inside the growing front of a colony keep increasing their population during both migration and consolidation phases. It was also confirmed that their secreting surfactant called surfactin does not affect their periodic growth qualitatively, i.e., mutant cells which cannot secrete surfactin produce a concentric ring-like colony. All these results suggest that the diffusion of the nutrient and the surfactin are irrelevant to their periodic growth.

  13. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    PubMed

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Subdural empyema in bacterial meningitis.

    PubMed

    Jim, Kin K; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2012-11-20

    To evaluate the occurrence, treatment, and outcome of subdural empyema complicating community-acquired bacterial meningitis in adults. Case series from a prospective nationwide cohort study from Dutch hospitals from 2006 to 2011. Subdural empyema was diagnosed in 28 of 1,034 episodes (2.7%), and was present on admission in 10 episodes and diagnosed during admission in 18. Predisposing conditions were present in 26 patients (93%), and consisted of otitis or sinusitis in 21 patients (75%). In all these patients the otitis or sinusitis spread to the subdural space. Twenty-three patients (82%) presented with neurologic symptoms (paresis, focal seizures, dysesthesia contralateral to the empyema). Streptococcus pneumoniae was identified in 26 patients (93%) and Streptococcus pyogenes in 1 (3%); 1 patient had negative CSF cultures. Clinical course was frequently complicated with seizures (50%), focal neurologic abnormalities (54%), and hearing impairment (39%), causing an unfavorable outcome in 19 episodes (68%). Neurosurgical evacuation of the empyema was performed in 5 patients, all with considerable midline shift. Although rare, subdural empyema must be considered in patients with community-acquired bacterial meningitis and otitis or sinusitis, focal neurologic deficits, or epileptic seizures. S pneumoniae is the predominant causative organism and neurosurgical intervention should be regarded as first-choice therapy in patients with empyema causing midline shift and focal neurologic abnormalities or a decreased level of consciousness.

  16. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands

    PubMed Central

    Kouki, Annika; Pieters, Roland J.; Nilsson, Ulf J.; Loimaranta, Vuokko; Finne, Jukka; Haataja, Sauli

    2013-01-01

    Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections. PMID:24833053

  17. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium

    PubMed Central

    Wen, Zezhang T.; Liao, Sumei; Bitoun, Jacob P.; De, Arpan; Jorgensen, Ashton; Feng, Shihai; Xu, Xiaoming; Chain, Patrick S. G.; Caufield, Page W.; Koo, Hyun; Li, Yihong

    2017-01-01

    Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001), while biofilms by L. fermentum reduced by >1-log (P < 0.001). L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001), but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001), as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community. PMID:29326887

  18. The in situ bacterial production of fluorescent organic matter; an investigation at a species level.

    PubMed

    Fox, B G; Thorn, R M S; Anesio, A M; Reynolds, D M

    2017-11-15

    Aquatic dissolved organic matter (DOM) plays an essential role in biogeochemical cycling and transport of organic matter throughout the hydrological continuum. To characterise microbially-derived organic matter (OM) from common environmental microorganisms (Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa), excitation-emission matrix (EEM) fluorescence spectroscopy was employed. This work shows that bacterial organisms can produce fluorescent organic matter (FOM) in situ and, furthermore, that the production of FOM differs at a bacterial species level. This production can be attributed to structural biological compounds, specific functional proteins (e.g. pyoverdine production by P. aeruginosa), and/or metabolic by-products. Bacterial growth curve data demonstrates that the production of FOM is fundamentally related to microbial metabolism. For example, the majority of Peak T fluorescence (> 75%) is shown to be intracellular in origin, as a result of the building of proteins for growth and metabolism. This underpins the use of Peak T as a measure of microbial activity, as opposed to bacterial enumeration as has been previously suggested. This study shows that different bacterial species produce a range of FOM that has historically been attributed to high molecular weight allochthonous material or the degradation of terrestrial FOM. We provide definitive evidence that, in fact, it can be produced by microbes within a model system (autochthonous), providing new insights into the possible origin of allochthonous and autochthonous organic material present in aquatic systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Streptococcus gordonii pheromone s.g.cAM373 may influence the reservoir of antibiotic resistance determinants of Enterococcus faecalis origin in the oral metagenome.

    PubMed

    Mansfield, Jillian M; Herrmann, Paul; Jesionowski, Amy M; Vickerman, M Margaret

    2017-11-01

    Streptococcus gordonii produces a pheromone heptapeptide, s.g.cAM373, which induces a conjugative mating response in Enterococcus faecalis cells carrying the responsive plasmid, pAM373. We investigated the extent of this intergeneric signaling on DNA acquisition by streptococcal species likely to cohabit oral biofilms. E. faecalis/pAM373/pAMS470 cells were incubated with synthetic s.g.cAM373, reverse peptide s.g.cAM373-R, or peptide-free medium and examined for their abilities to transfer plasmid DNA to streptococcal species in the presence of DNase. Preinduction of E. faecalis donors with s.g.cAM373 resulted in transconjugation frequencies in non-pheromone producing strains of Streptococcus mutans, Streptococcus sanguinis, Streptococcus anginosus, and Streptococcus suis that were significantly higher than frequencies when donors were preincubated with s.g.cAM373-R or medium alone. Peptide-mediated communication between commensal streptococci and E. faecalis carrying pheromone-responsive plasmids may facilitate conjugative DNA transfer to bystander species, and influence the reservoir of antibiotic resistance determinants of enterococcal origin in the oral metagenome.

  20. Prevalence and antimicrobial resistance pattern of bacterial meningitis in Egypt

    PubMed Central

    Shaban, Lamyaa; Siam, Rania

    2009-01-01

    Infectious diseases are the leading cause of morbidity and mortality in the developing world. In Egypt bacterial diseases constitute a great burden, with several particular bacteria sustaining the leading role of multiple serious infections. This article addresses profound bacterial agents causing a wide array of infections including but not limited to pneumonia and meningitis. The epidemiology of such infectious diseases and the prevalence of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae are reviewed in the context of bacterial meningitis. We address prevalent serotypes in Egypt, antimicrobial resistance patterns and efficacy of vaccines to emphasize the importance of periodic surveillance for appropriate preventive and treatment strategies. PMID:19778428

  1. Molecular genetics of Streptococcus thermophilus.

    PubMed

    Mercenier, A

    1990-09-01

    The metabolism and genetics of Streptococcus thermophilus (presently Streptococcus salivarius ssp. thermophilus) have only been investigated recently despite its widespread use in milk fermentation processes. The development of recombinant DNA technology has allowed impressive progress to be made in the knowledge of thermophilic dairy streptococci. In particular, it has permitted a careful analysis of phenotypically altered variants which were derived from a mother strain by plasmid or chromosomal DNA reorganization. While natural phage defense mechanisms of S. thermophilus remain poorly documented, information on the bacteriophages responsible for fermentation failures has accumulated. The lysogenic state of two S. thermophilus strains has also been demonstrated for the first time. Gene transfer techniques for this species have been established and improved to the point that targeted manipulation of their chromosomal determinants is now feasible. Cloning and expression vectors have been constructed, and a few heterologous genes were successfully expressed in S. thermophilus. The first homologous genes, involved in carbohydrate utilization, have been cloned and sequenced, shedding some light on the molecular organization of key metabolic steps.

  2. Novel model for multispecies biofilms that uses rigid gas-permeable lenses.

    PubMed

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Ebersole, Jeffrey L; Novak, Karen F

    2011-05-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.

  3. Novel Model for Multispecies Biofilms That Uses Rigid Gas-Permeable Lenses ▿

    PubMed Central

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Ebersole, Jeffrey L.; Novak, Karen F.

    2011-01-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues. PMID:21421785

  4. Identification and characterization of bacterial symbionts in three species of filth fly parasitoids.

    PubMed

    Betelman, Kfir; Caspi-Fluger, Ayelet; Shamir, Maayan; Chiel, Elad

    2017-09-01

    Facultative bacterial symbionts are widespread among insects and have diverse effects on their biology. Here, we focused on bacterial symbionts of three ecologically and economically important filth flies parasitoid species-Spalangia cameroni, Spalangia endius and Muscidifurax raptor. Both Spalangia species harbored a Sodalis bacterium that is closely related to Spalangia praecaptivus (a free-living bacterium) and to Sodalis symbionts of weevils. This is the only case of Sodalis infection in the important order Hymenoptera. We also found, for the first time in this parasitoid guild, a Rickettsia infecting the two Spalangia spp., albeit in much higher prevalence in S. cameroni. Molecular and phylogenetic analyses revealed that it is closely related to Rickettsia felis and other Rickettsia species from the 'transitional' group. All three parasitoid species harbored Wolbachia. Using multi-locus sequence typing, we found that M. raptor harbors a single Wolbachia strain whereas the Spalangia spp. have multiple strains. By controlled crossings, we found that Wolbachia infection in S. endius causes incomplete cytoplasmic incompatibility and increased longevity, thereby promoting Wolbachia's spread. In contrast, no effects of Wolbachia on the reproduction and longevity of M. raptor were found. This study underscores the diversity and nature of symbiotic interactions between microbes and insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage.

    PubMed

    Yue, Lifang; Lv, Hexin; Zhen, Jing; Jiang, Shengping; Jia, Shiru; Shen, Shigang; Gao, Lu; Dai, Yujie

    2016-04-28

    Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.

  6. Novel bacterial ADP-ribosylating toxins: structure and function

    PubMed Central

    Simon, Nathan C.; Aktories, Klaus; Barbieri, Joseph T.

    2018-01-01

    Preface Bacterial ADP-ribosyltransferase toxins (bARTTs) transfer ADP-ribose to eukaryotic proteins to promote bacterial pathogenesis. In this review we use prototype bARTTs, such as diphtheria and pertussis toxins, as references for the characterization of several new bARTTs from human, insect, and plant pathogens, which were identified recently through bioinformatic analyses. Several of these toxins, including Cholix toxin from Vibrio cholerae, SpyA from Streptococcus pyogenes, HopU1 from Pseudomonas syringae, and the Tcc toxins from Photorhabdus luminescens, ADP-ribosylate novel substrates and possess unique organizations, which distinguish them from the reference toxins. The characterization of these toxins extends our appreciation for the variety of structure-function properties possessed by bARTTs and their roles in bacterial pathogenesis. PMID:25023120

  7. Development and use of species-specific oligonucleotide probes for differentiation of Streptococcus uberis and Streptococcus parauberis.

    PubMed Central

    Bentley, R W; Leigh, J A; Collins, M D

    1993-01-01

    Oligonucleotide probes specific for 16S rRNA and capable of differentiating Streptococcus uberis and S. parauberis from each other and other esculin-hydrolyzing streptococci were developed. Use of a mini-RNA extraction technique for gram-positive cocci associated with bovine mastitis has allowed the probes to be used for identification of esculin-hydrolyzing streptococci from two dairy herds at the Institute for Animal Health, Compton, United Kingdom. One hundred seventy-nine of 206 isolates were identified as S. uberis, 3 were identified as S. parauberis, and 24 were not identified. Isolates not identified by the probes were tested biochemically and found to be mainly Enterococcus faecium, E. faecalis, or S. bovis. Images PMID:8417033

  8. Comparison of direct-plating and broth-enrichment culture methods for detection of potential bacterial pathogens in respiratory secretions.

    PubMed

    Kaur, Ravinder; Wischmeyer, Jareth; Morris, Matthew; Pichichero, Michael E

    2017-11-01

    We compared the recovery of potential respiratory bacterial pathogens and normal flora from nasopharyngeal specimens collected from children during health and at the onset of acute otitis media (AOM) by selective direct-plating and overnight broth-enrichment. Overall, 3442 nasal wash (NW) samples collected from young children were analysed from a 10-year prospective study. NWs were cultured by (1) direct-plating to TSAII/5 % sheep blood agar and chocolate agar plates and (2) overnight broth-enrichment in BacT/ALERT SA-broth followed by plating. Standard microbiology techniques were applied to identify three dominant respiratory bacterial pathogens: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu) and Moraxella catarrhalis (Mcat) as well as two common nasal flora, Staphylococcus aureus (SA) and alpha-haemolytic Streptococci (AHS).Results/Key findings. Direct-plating of NW resulted in isolation of Spn from 37.8 %, Hflu from 13.6 % and Mcat from 33.2 % of samples. In comparison, overnight broth-enrichment isolated fewer Spn (30.1 %), Hflu (6.2 %) and Mcat (16.2 %) (P<0.001-0.0001). Broth-enrichment resulted in significant increased isolation of SA (6.0 %) and AHS (30.1 %) (P<0.0001). Competition between bacterial species in broth when both species were detected by direct-plating was assessed, and it was found that SA and AHS out-competed other species during broth-enrichment when samples were collected from healthy children but not during AOM. In middle ear fluids (MEF) at the onset of AOM, broth-enrichment resulted in higher recovery of Spn (+10.4 %, P<0.001), Hflu (+4.4 %, P=0.39) and Mcat (+13.5 %, <0.001). Broth-enrichment significantly reduces the accurate detection of bacterial respiratory pathogens and increases identification of SA and AHS in NW. Broth-enrichment improves detection of bacterial respiratory pathogens in MEF samples.

  9. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    PubMed

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  10. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.

    PubMed

    Ge, Xiuchun; Kitten, Todd; Munro, Cindy L; Conrad, Daniel H; Xu, Ping

    2010-07-26

    Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.

  11. Pooled Protein Immunization for Identification of Cell Surface Antigens in Streptococcus sanguinis

    PubMed Central

    Ge, Xiuchun; Kitten, Todd; Munro, Cindy L.; Conrad, Daniel H.; Xu, Ping

    2010-01-01

    Background Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. Methods and Findings We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. Conclusions The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases. PMID:20668678

  12. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2.

    PubMed

    Tang, Jiaqi; Wang, Changjun; Feng, Youjun; Yang, Weizhong; Song, Huaidong; Chen, Zhihai; Yu, Hongjie; Pan, Xiuzhen; Zhou, Xiaojun; Wang, Huaru; Wu, Bo; Wang, Haili; Zhao, Huamei; Lin, Ying; Yue, Jianhua; Wu, Zhenqiang; He, Xiaowei; Gao, Feng; Khan, Abdul Hamid; Wang, Jian; Zhao, Guo-Ping; Wang, Yu; Wang, Xiaoning; Chen, Zhu; Gao, George F

    2006-05-01

    Streptococcus suis serotype 2 (S. suis 2, SS2) is a major zoonotic pathogen that causes only sporadic cases of meningitis and sepsis in humans. Most if not all cases of Streptococcal toxic shock syndrome (STSS) that have been well-documented to date were associated with the non-SS2 group A streptococcus (GAS). However, a recent large-scale outbreak of SS2 in Sichuan Province, China, appeared to be caused by more invasive deep-tissue infection with STSS, characterized by acute high fever, vascular collapse, hypotension, shock, and multiple organ failure. We investigated this outbreak of SS2 infections in both human and pigs, which took place from July to August, 2005, through clinical observation and laboratory experiments. Clinical and pathological characterization of the human patients revealed the hallmarks of typical STSS, which to date had only been associated with GAS infection. Retrospectively, we found that this outbreak was very similar to an earlier outbreak in Jiangsu Province, China, in 1998. We isolated and analyzed 37 bacterial strains from human specimens and eight from pig specimens of the recent outbreak, as well as three human isolates and two pig isolates from the 1998 outbreak we had kept in our laboratory. The bacterial isolates were examined using light microscopy observation, pig infection experiments, multiplex-PCR assay, as well as restriction fragment length polymorphisms (RFLP) and multiple sequence alignment analyses. Multiple lines of evidence confirmed that highly virulent strains of SS2 were the causative agents of both outbreaks. We report, to our knowledge for the first time, two outbreaks of STSS caused by SS2, a non-GAS streptococcus. The 2005 outbreak was associated with 38 deaths out of 204 documented human cases; the 1998 outbreak with 14 deaths out of 25 reported human cases. Most of the fatal cases were characterized by STSS; some of them by meningitis or severe septicemia. The molecular mechanisms underlying these human STSS

  13. Escape from the competence state in Streptococcus mutans is governed by the bacterial population density.

    PubMed

    Dufour, D; Villemin, C; Perry, J A; Lévesque, C M

    2016-12-01

    Horizontal gene transfer through natural DNA transformation is an important evolutionary mechanism among bacteria. Transformation requires that the bacteria are physiologically competent to take and incorporate free DNA directly from the environment. Although natural genetic transformation is a remarkable feature of many naturally competent bacteria, the process is energetically expensive for the cells. Consequently, a tight control of the competence state is necessary. The objective of the present work was to help decipher the molecular mechanisms regulating the escape from the competence state in Streptococcus mutans, the principal etiological agent responsible for tooth decay in humans. Our results showed that the cessation of competence in S. mutans was abrupt, and did not involve the accumulation of a competence inhibitor nor the depletion of a competence activator in the extracellular environment. The competence state was repressed at high cell population density via concomitant repression of sigX gene encoding the master regulator of the competence regulon. Co-culture experiments performed with oral and non-oral bacteria showed that S. mutans assesses its own population density and also the microbial density of its surroundings to regulate its competence escape. Interestingly, neither the intra-species and extra-species quorum-sensing systems nor the other 13 two-component regulatory systems identified in S. mutans were involved in the cell-density-dependent escape of the competence state. Altogether, our results suggest a complex mechanism regulating the competence shut-off involving cell-density-dependent repression of sigX through an as yet undefined system, and possibly SigX protein stability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Density Interactions between Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus in the Nasopharynx of Young Peruvian Children

    PubMed Central

    Chien, Yu-Wen; Vidal, Jorge E.; Grijalva, Carlos G.; Bozio, Catherine; Edwards, Kathryn M.; Williams, John V.; Griffin, Marie R.; Verastegui, Hector; Hartinger, Stella M.; Gil, Ana I.; Lanata, Claudio F.; Klugman, Keith P.

    2012-01-01

    Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus are commonly carried in the nasopharynx (NP) of young children, and have been speculated to interact with each other. Although earlier studies used cultures alone to assess these interactions, the addition of real-time quantitative polymerase chain reaction (qPCR) provides further insight into these interactions. We compared results of culture and qPCR for the detection of these three bacteria in 446 NP samples collected from 360 healthy young children in a prospective cohort study in the Peruvian Andes. Patterns of concurrent bacterial colonization were studied using repeated measures logistic regression models with generalized estimating equations. Spearman correlation coefficients were employed to assess correlations among bacterial densities. At a bacterial density <105 colony forming units (CFU)/ml measured by qPCR, culture detected significantly less carriers (P<0.0001) for all three pathogens, than at a bacterial density >105 CFU/ml. In addition, there was a positive association between S. pneumoniae and H. influenzae colonization measured by both culture (OR 3.11 – 3.17, p < 0.001) and qPCR (OR 1.95 – 1.97, p < 0.01). The densities of S. pneumoniae and H. influenzae, measured by qPCR, were positively correlated (correlation coefficient 0.32, p < 0.001). A negative association was found between the presence of S. pneumoniae and S. aureus in carriage with both culture (OR 0.45, p = 0.024) and qPCR (OR 0.61, p < 0.05). The impact of density on detection by culture and the observed density-related interactions support use of qPCR in additional studies to examine vaccine effects on diverse bacterial species. PMID:22935873

  15. Density interactions among Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus in the nasopharynx of young Peruvian children.

    PubMed

    Chien, Yu-Wen; Vidal, Jorge E; Grijalva, Carlos G; Bozio, Catherine; Edwards, Kathryn M; Williams, John V; Griffin, Marie R; Verastegui, Hector; Hartinger, Stella M; Gil, Ana I; Lanata, Claudio F; Klugman, Keith P

    2013-01-01

    Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus are commonly carried in the nasopharynx of young children, and have been speculated to interact with each other. Although earlier studies used cultures alone to assess these interactions, the addition of real-time quantitative polymerase chain reaction (qPCR) provides further insight into these interactions. We compared results of culture and qPCR for the detection of these 3 bacteria in 446 nasopharynx samples collected from 360 healthy young children in a prospective cohort study in the Peruvian Andes. Patterns of concurrent bacterial colonization were studied using repeated measures logistic regression models with generalized estimating equations. Spearman correlation coefficients were used to assess correlations among bacterial densities. At a bacterial density <10 colony forming units/mL measured by qPCR, culture detected significantly less carriers (P < 0.0001) for all 3 pathogens, than at a bacterial density >10 colony forming units/mL. In addition, there was a positive association between S. pneumoniae and H. influenzae colonization measured by both culture (odds ratio [OR] 3.11-3.17, P < 0.001) and qPCR (OR 1.95-1.97, P < 0.01). The densities of S. pneumoniae and H. influenzae, measured by qPCR, were positively correlated (correlation coefficient 0.32, P < 0.001). A negative association was found between the presence of S. pneumoniae and Staphylococcus aureus in carriage with both culture (OR 0.45, P = 0.024) and qPCR (OR 0.61, P < 0.05). The impact of density on detection by culture and the observed density-related interactions support use of qPCR in additional studies to examine vaccine effects on diverse bacterial species.

  16. Streptococcus iniae, a Human and Animal Pathogen: Specific Identification by the Chaperonin 60 Gene Identification Method

    PubMed Central

    Goh, Swee Han; Driedger, David; Gillett, Sandra; Low, Donald E.; Hemmingsen, Sean M.; Amos, Mayben; Chan, David; Lovgren, Marguerite; Willey, Barbara M.; Shaw, Carol; Smith, John A.

    1998-01-01

    It was recently reported that Streptococcus iniae, a bacterial pathogen of aquatic animals, can cause serious disease in humans. Using the chaperonin 60 (Cpn60) gene identification method with reverse checkerboard hybridization and chemiluminescent detection, we identified correctly each of 12 S. iniae samples among 34 aerobic gram-positive isolates from animal and clinical human sources. PMID:9650992

  17. Nonspecific Bacterial Flora Isolated from the Body Surface and Inside Ixodes ricinus Ticks.

    PubMed

    Okła, Hubert; Sosnowska, Malwina; Jasik, Krzysztof P; Słodki, Jan; Wojtyczka, Robert D

    2012-09-28

    Ixodes ricinus and other representatives of the order Ixodida are vectors of typical pathogens: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilium, Babesia spp., a tick-borne encephalitis virus, and other microorganisms which are important from a medical and veterinary point of view. The presented study focuses on the verification of nonspecific bacterial flora of I. ricinus. We analyzed ticks collected in a forest region in Silesia, an industrial district in Poland. Methods of classical microbiology and biochemical assays (API 20 NE test, API Staph test and MICRONAUT System) were used for isolation and identification of microorganisms living on the body surface of I. ricinus and inside ticks. The results show the presence of various bacteria on the surface and inside ticks' bodies. During the study, we isolated Acinetobacter lwoffi, Pseudomonas fluorescens, Aeromonas hydrophila, Achromobacter denitrificans, Alcaligenes faecalis, Stenotrophomonas maltophilia, Pseudomonas oryzihabitans, Micrococcus spp., Kocuria varians, Staphylococcus lentus, Kocuria kristinae, Streptococcus pneumoniae, Rhizobium radiobacter, Staphylococcus xylosus. Majority of the isolated species are non-pathogenic environmental microorganisms, but some of the isolated bacterial strains could cause severe infections.

  18. The Unculturables: targeted isolation of bacterial species associated with canine periodontal health or disease from dental plaque.

    PubMed

    Davis, Ian J; Bull, Christopher; Horsfall, Alexander; Morley, Ian; Harris, Stephen

    2014-08-01

    The current inability to culture the entirety of observed bacteria is well known and with the advent of ever more powerful molecular tools, that can survey bacterial communities at previously unattainable depth, the gap in our capacity to culture and define all of these species increases exponentially. This gap has essentially become the rate limiting step in determining how the knowledge of which species are present in a sample can be applied to understand the role of these species in an ecosystem or disease process. A case in point is periodontal disease, which is the most widespread oral disease in dogs. If untreated the disease results in significant pain, eventual loss of the dentition and potentially an increased risk of systemic diseases. Previous molecular based studies have identified the bacterial species associated with periodontal disease in dogs; however without cultured strains from many of these species it has not been possible to study whether they play a role in the disease process. Using a quantitative polymerase chain reaction (qPCR) directed approach a range of microbiological media were screened and optimized to enrich for previously uncultivated target species. A systematic screening methodology was then employed to isolate the species of interest. In cases where the target species were not cultivable in isolation, helper strains grown underneath a nitrocellulose membrane were used to provide the necessary growth factors. This guided media optimization approach enabled the purification of 14 species, 8 of which we had previously been unable to cultivate in isolation. It is also applicable to the targeted isolation of isolates from species that have previously been cultured (for example to study intra-species variation) as demonstrated by the successful isolation of 6 targeted isolates of already cultured species. To our knowledge this is the first time this combination of qPCR guided media optimization, strategic screening and helper strain

  19. Species Differentiation of Group D Streptococci

    PubMed Central

    Papavassiliou, J.

    1962-01-01

    Three hundred and fourteen strains of group D streptococci were studied by means of a number of tests. The majority of the strains were identified as Streptococcus faecalis (83 strains), Streptococcus faecium (131 strains), or Streptococcus bovis (32 strains). Several strains (47 or nearly 15%) either shared characteristics of two species or were completely atypical. S. faecalis and S. bovis were more easily identified than S. faecium, which is not sharply defined from the other species and could be subdivided into several fermentative types on the basis of fermentation of arabinose, mannitol, sorbitol, glycerol, and sucrose. The value of some characteristics in species identification is discussed. Growth in the presence of potassium tellurite 1:2,500 and in the presence of 6.5% NaCl and fermentation of arabinose, glycerol, and raffinose are very important tests for the identification of the three species. The reduction of tetrazolium salts, the reduction of litmus milk, and the fermentation of sorbitol may serve as complementary tests for the same purpose. For the differentiation of these three species the “pattern of reactions” is more important than single tests. PMID:14483707

  20. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  1. Fluoride Penetration and Clearance Are Higher in Exopolysaccharide-Containing Bacterial Pellets.

    PubMed

    Spinola, Manuela S; Nóbrega, Diego Figueiredo; Del Bel Cury, Altair Antoninha; Ricomini Filho, Antonio Pedro; Cury, Jaime Aparecido; Tenuta, Livia Maria Andaló

    2018-06-06

    Extracellular polysaccharides (EPS) could increase the penetration of fluoride through dental biofilm, reducing its cariogenicity. We measured the concentration of fluoride in EPS-containing (EPS+) or not-containing (EPS-) Streptococcus mutans bacterial pellets resembling test biofilms, before and up to 60 min after a 0.05% NaF rinse in situ. Fluoride penetration and clearance were higher in EPS+ bacterial pellets. The data suggest that EPS enhances fluoride penetration, but also accelerates fluoride clearance from dental biofilms. © 2018 S. Karger AG, Basel.

  2. Novel Genes Required for the Fitness of Streptococcus pyogenes in Human Saliva

    PubMed Central

    Zhu, Luchang; Charbonneau, Amelia R. L.; Waller, Andrew S.; Olsen, Randall J.; Beres, Stephen B.

    2017-01-01

    ABSTRACT Streptococcus pyogenes (group A streptococcus [GAS]) causes 600 million cases of pharyngitis each year. Despite this considerable disease burden, the molecular mechanisms used by GAS to infect, cause clinical pharyngitis, and persist in the human oropharynx are poorly understood. Saliva is ubiquitous in the human oropharynx and is the first material GAS encounters in the upper respiratory tract. Thus, a fuller understanding of how GAS survives and proliferates in saliva may provide valuable insights into the molecular mechanisms at work in the human oropharynx. We generated a highly saturated transposon insertion mutant library in serotype M1 strain MGAS2221, a strain genetically representative of a pandemic clone that arose in the 1980s and spread globally. The transposon mutant library was exposed to human saliva to screen for GAS genes required for wild-type fitness in this clinically relevant fluid. Using transposon-directed insertion site sequencing (TraDIS), we identified 92 genes required for GAS fitness in saliva. The more prevalent categories represented were genes involved in carbohydrate transport/metabolism, amino acid transport/metabolism, and inorganic ion transport/metabolism. Using six isogenic mutant strains, we confirmed that each of the mutants was significantly impaired for growth or persistence in human saliva ex vivo. Mutants with an inactivated Spy0644 (sptA) or Spy0646 (sptC) gene had especially severe persistence defects. This study is the first to use of TraDIS to study bacterial fitness in human saliva. The new information we obtained will be valuable for future translational maneuvers designed to prevent or treat human GAS infections. IMPORTANCE The human bacterial pathogen Streptococcus pyogenes (group A streptococcus [GAS]) causes more than 600 million cases of pharyngitis annually worldwide, 15 million of which occur in the United States. The human oropharynx is the primary anatomic site for GAS colonization and infection

  3. Microcapsules on Streptococcus mutans serotypes by electron microscopy.

    PubMed

    Grenier, E M; Gray, R H; Loesche, W J; Eveland, W C

    1977-02-01

    Extracellular microcapsules have been demonstrated on cells of most serotypes of Streptococcus mutans by electron microscopy, using bacterial strains of the various serotypes and peroxidase labeled or unlabeled immune serum. A correlation was noted between the amount of capsular substance on the strains of S mutans examined and degree of antigenicity as expressed by the indirect fluorescent antibody (FA) title. A serotype d strain was shown to lose both antigenicity as determined by the FA reaction and capsular material as seen by electron microscopy with repeated in vitro passage. When 10% unheated rabbit serum was added to the medium, antigenicity and capsular material were restored.

  4. A Critical Role of Zinc Importer AdcABC in Group A Streptococcus-Host Interactions During Infection and Its Implications for Vaccine Development.

    PubMed

    Makthal, Nishanth; Nguyen, Kimberly; Do, Hackwon; Gavagan, Maire; Chandrangsu, Pete; Helmann, John D; Olsen, Randall J; Kumaraswami, Muthiah

    2017-07-01

    Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP) to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Alterations of Bacteroides sp., Neisseria sp., Actinomyces sp., and Streptococcus sp. populations in the oropharyngeal microbiome are associated with liver cirrhosis and pneumonia.

    PubMed

    Lu, Haifeng; Qian, Guirong; Ren, Zhigang; Zhang, Chunxia; Zhang, Hua; Xu, Wei; Ye, Ping; Yang, Yunmei; Li, Lanjuan

    2015-06-23

    The microbiomes of humans are associated with liver and lung inflammation. We identified and verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia. Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis. Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and the value of Shannon's diversity and evenness index increased significantly in patients with cirrhosis and pneumonia versus others (p < 0.001, versus healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Moreover, we identified variants of Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides, Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia versus others (p < 0.001, versus Healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Alterations of Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal microbiome were associated with liver cirrhosis and pneumonia.

  6. Cheating fosters species co-existence in well-mixed bacterial communities

    PubMed Central

    Leinweber, Anne; Fredrik Inglis, R; Kümmerli, Rolf

    2017-01-01

    Explaining the enormous biodiversity observed in bacterial communities is challenging because ecological theory predicts that competition between species occupying the same niche should lead to the exclusion of less competitive community members. Competitive exclusion should be particularly strong when species compete for a single limiting resource or live in unstructured habitats that offer no refuge for weaker competitors. Here, we describe the ‘cheating effect’, a form of intra-specific competition that can counterbalance between-species competition, thereby fostering biodiversity in unstructured habitats. Using experimental communities consisting of the strong competitor Pseudomonas aeruginosa (PA) and its weaker counterpart Burkholderia cenocepacia (BC), we show that co-existence is impossible when the two species compete for a single limiting resource, iron. However, when introducing a PA cheating mutant, which specifically exploits the iron-scavenging siderophores produced by the PA wild type, we found that biodiversity was preserved under well-mixed conditions where PA cheats could outcompete the PA wild type. Cheating fosters biodiversity in our system because it creates strong intra-specific competition, which equalizes fitness differences between PA and BC. Our study identifies cheating – typically considered a destructive element – as a constructive force in shaping biodiversity. PMID:28060362

  7. Isolation of Streptococcus tigurinus - a novel member of Streptococcus mitis group from a case of periodontitis.

    PubMed

    Dhotre, Shree V; Mehetre, Gajanan T; Dharne, Mahesh S; Suryawanshi, Namdev M; Nagoba, Basavraj S

    2014-08-01

    Streptococcus tigurinus is a new member of the Streptococcus viridians group and is closely related to Streptococcus mitis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae, Streptococcus oralis, and Streptococcus infantis. The type strain AZ_3a(T) of S. tigurinus was originally isolated from a patient with infective endocarditis. Accurate identification of S. tigurinus is facilitated only by newer molecular methods like 16S rRNA gene analysis. During the course of study on bacteraemia and infective endocarditis with reference to periodontitis and viridians group of streptococci, a strain of S. tigurinus isolated from subgingival plaque of a patient with periodontitis identified by 16S rRNA gene analysis, which was originally identified as Streptococcus pluranimalium by Vitek 2. Confirmation by 16S rRNA gene analysis showed 99.39% similarity (1476/1485 bp) with S. tigurinus AZ_3a(T) (AORU01000002). To the best of our knowledge, this is the first report of isolation of S. tigurinus from the oral cavity of a periodontitis patient. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. In vitro and in vivo anti-microbial activity evaluation of inactivated cells of Lactobacillus salivarius CECT 5713 against Streptococcus mutans.

    PubMed

    Sañudo, Ana I; Luque, Roberto; Díaz-Ropero, Mª Paz; Fonollá, Juristo; Bañuelos, Óscar

    2017-12-01

    Defining the etiology of dental caries is a complex problem. The microbiological approach has included Streptococcus mutans as one of the bacterial species involved in this disease. This research investigates the inhibitory effects of heat-inactivated Lactobacillus salivarius CECT 5713 against S. mutans using in vitro and in vivo assays. On the one hand, the effect of non-viable L. salivarius CECT 5713 on the in vitro adhesion of S. mutans to hydroxyapatite discs was evaluated. On the other hand, levels of Streptococcus mutans, amount of salivary flow and salivary pH before and after taking the rinse with the non-viable L. salivarius CECT 5713 in healthy volunteers were assessed (self-controlled open-label pilot study). The levels of S. mutans seemed to decrease in the in vitro and in vivo assays (p<0.05). The in vitro effect of non-viable L. salivarius was maintained until 36 months of storage. In addition, the reduction of S. mutans salivary concentration in the volunteers was statistically significant from the third day until two weeks of treatment. Heat-inactivated L. salivarius CECT 5713 prevents S. mutans adhesion to hydroxyapatite and could be used as a strategy to reduce the salivary concentration of this oral pathogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Multiplex polymerase chain reaction assay developed to diagnose adult bacterial meningitis in Taiwan.

    PubMed

    Lee, Chi-Tsung; Hsiao, Kuang-Ming; Chen, Jin-Cherng; Su, Cheng-Chuan

    2015-11-01

    Acute bacterial meningitis causes high morbidity and mortality; the associated clinical symptoms often are insensitive or non-specific; and the pathogenic bacteria are geographically diverse. Clinical diagnosis requires a rapid and accurate methodology. This study aimed to develop a new multiplex polymerase chain reaction (mPCR) assay to detect simultaneously six major bacteria that cause adult bacterial meningitis in Taiwan: Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii. Species-specific primers for the six bacteria were developed using reference strains. The specificities of the mPCRs for these bacteria were validated, and the sensitivities were evaluated via serial dilutions. The mPCR assay specifically detected all of the six pathogens, particularly with sensitivities of 12 colony forming units (CFU)/mL, 90 CFU/mL, and 390 CFU/mL for E. coli, S. pneumoniae, and K. pneumoniae, respectively. This mPCR assay is a rapid and specific tool to detect the six major bacterial pathogens that cause acute adult meningitis in Taiwan, particularly sensitive for detecting E. coli, S. pneumoniae, and K. pneumoniae. The assay may facilitate early diagnosis and guidance for antimicrobial therapy for adult patients with this deadly disease in Taiwan. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  10. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo.

    PubMed

    Perez, Antonia C; Pang, Bing; King, Lauren B; Tan, Li; Murrah, Kyle A; Reimche, Jennifer L; Wren, John T; Richardson, Stephen H; Ghandi, Uma; Swords, W Edward

    2014-04-01

    Otitis media (OM) is an extremely common pediatric ailment caused by opportunists that reside within the nasopharynx. Inflammation within the upper airway can promote ascension of these opportunists into the middle ear chamber. OM can be chronic/recurrent in nature, and a wealth of data indicates that in these cases, the bacteria persist within biofilms. Epidemiological data demonstrate that most cases of OM are polymicrobial, which may have significant impact on antibiotic resistance. In this study, we used in vitro biofilm assays and rodent infection models to examine the impact of polymicrobial infection with Moraxella catarrhalis and Streptococcus pneumoniae (pneumococcus) on biofilm resistance to antibiotic treatment and persistence in vivo. Consistent with prior work, M. catarrhalis conferred beta-lactamase-dependent passive protection from beta-lactam killing to pneumococci within polymicrobial biofilms. Moreover, pneumococci increased resistance of M. catarrhalis to macrolide killing in polymicrobial biofilms. However, pneumococci increased colonization in vivo by M. catarrhalis in a quorum signal-dependent manner. We also found that co-infection with M. catarrhalis affects middle ear ascension of pneumococci in both mice and chinchillas. Therefore, we conclude that residence of M. catarrhalis and pneumococci within the same biofilm community significantly impacts resistance to antibiotic treatment and bacterial persistence in vivo. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles.

    PubMed

    Kilian, Mogens; Riley, David R; Jensen, Anders; Brüggemann, Holger; Tettelin, Hervé

    2014-07-22

    The bacterium Streptococcus pneumoniae is one of the leading causes of fatal infections affecting humans. Intriguingly, phylogenetic analysis shows that the species constitutes one evolutionary lineage in a cluster of the otherwise commensal Streptococcus mitis strains, with which humans live in harmony. In a comparative analysis of 35 genomes, including phylogenetic analyses of all predicted genes, we have shown that the pathogenic pneumococcus has evolved into a master of genomic flexibility while lineages that evolved into the nonpathogenic S. mitis secured harmonious coexistence with their host by stabilizing an approximately 15%-reduced genome devoid of many virulence genes. Our data further provide evidence that interspecies gene transfer between S. pneumoniae and S. mitis occurs in a unidirectional manner, i.e., from S. mitis to S. pneumoniae. Import of genes from S. mitis and other mitis, anginosus, and salivarius group streptococci ensured allelic replacements and antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae. Our study explains how the unique structural diversity of the pneumococcal capsule emerged and conceivably will continue to increase and reveals a striking example of the fragile border between the commensal and pathogenic lifestyles. While genomic plasticity enabling quick adaptation to environmental stress is a necessity for the pathogenic streptococci, the commensal lifestyle benefits from stability. Importance: One of the leading causes of fatal infections affecting humans, Streptococcus pneumoniae, and the commensal Streptococcus mitis are closely related obligate symbionts associated with hominids. Faced with a shortage of accessible hosts, the two opposing lifestyles evolved in parallel. We have shown that the nonpathogenic S. mitis secured harmonious coexistence with its host by stabilizing a reduced genome devoid of many virulence genes

  12. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    USDA-ARS?s Scientific Manuscript database

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  13. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus.

    PubMed

    Gilmer, Daniel B; Schmitz, Jonathan E; Euler, Chad W; Fischetti, Vincent A

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pyogenes (group A streptococcus [GrAS]) cause serious and sometimes fatal human diseases. They are among the many Gram-positive pathogens for which resistance to leading antibiotics has emerged. As a result, alternative therapies need to be developed to combat these pathogens. We have identified a novel bacteriophage lysin (PlySs2), derived from a Streptococcus suis phage, with broad lytic activity against MRSA, vancomycin-intermediate S. aureus (VISA), Streptococcus suis, Listeria, Staphylococcus simulans, Staphylococcus epidermidis, Streptococcus equi, Streptococcus agalactiae (group B streptococcus [GBS]), S. pyogenes, Streptococcus sanguinis, group G streptococci (GGS), group E streptococci (GES), and Streptococcus pneumoniae. PlySs2 has an N-terminal cysteine-histidine aminopeptidase (CHAP) catalytic domain and a C-terminal SH3b binding domain. It is stable at 50 °C for 30 min, 37 °C for >24 h, 4°C for 15 days, and -80 °C for >7 months; it maintained full activity after 10 freeze-thaw cycles. PlySs2 at 128 μg/ml in vitro reduced MRSA and S. pyogenes growth by 5 logs and 3 logs within 1 h, respectively, and exhibited a MIC of 16 μg/ml for MRSA. A single, 2-mg dose of PlySs2 protected 92% (22/24) of the mice in a bacteremia model of mixed MRSA and S. pyogenes infection. Serially increasing exposure of MRSA and S. pyogenes to PlySs2 or mupirocin resulted in no observed resistance to PlySs2 and resistance to mupirocin. To date, no other lysin has shown such notable broad lytic activity, stability, and efficacy against multiple, leading, human bacterial pathogens; as such, PlySs2 has all the characteristics to be an effective therapeutic.

  14. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-Positive Genus Streptococcus

    PubMed Central

    Chen, Chen; Gao, George F.

    2012-01-01

    A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus Streptococcus. We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans. PMID:23056296

  15. Cloning-Independent and Counterselectable Markerless Mutagenesis System in Streptococcus mutans▿

    PubMed Central

    Xie, Zhoujie; Okinaga, Toshinori; Qi, Fengxia; Zhang, Zhijun; Merritt, Justin

    2011-01-01

    Insertion duplication mutagenesis and allelic replacement mutagenesis are among the most commonly utilized approaches for targeted mutagenesis in bacteria. However, both techniques are limited by a variety of factors that can complicate mutant phenotypic studies. To circumvent these limitations, multiple markerless mutagenesis techniques have been developed that utilize either temperature-sensitive plasmids or counterselectable suicide vectors containing both positive- and negative-selection markers. For many species, these techniques are not especially useful due to difficulties of cloning with Escherichia coli and/or a lack of functional negative-selection markers. In this study, we describe the development of a novel approach for the creation of markerless mutations. This system employs a cloning-independent methodology and should be easily adaptable to a wide array of Gram-positive and Gram-negative bacterial species. The entire process of creating both the counterselection cassette and mutation constructs can be completed using overlapping PCR protocols, which allows extremely quick assembly and eliminates the requirement for either temperature-sensitive replicons or suicide vectors. As a proof of principle, we used Streptococcus mutans reference strain UA159 to create markerless in-frame deletions of 3 separate bacteriocin genes as well as triple mutants containing all 3 deletions. Using a panel of 5 separate wild-type S. mutans strains, we further demonstrated that the procedure is nearly 100% efficient at generating clones with the desired markerless mutation, which is a considerable improvement in yield compared to existing approaches. PMID:21948849

  16. Bacterial meningitis post-PCV7: declining incidence and treatment.

    PubMed

    Kowalsky, Rachel H; Jaffe, David M

    2013-06-01

    The epidemiology of bacterial meningitis in the United States has changed tremendously in the past 20 years. Since the introduction of the Haemophilus influenzae type b vaccine in 1988, the incidence of H. influenzae type b meningitis has declined by at least 97%, and Streptococcus pneumoniae has emerged as the most common etiologic agent. The PCV7 (7-valent pneumococcal conjugate vaccine [Prevnar]; Wyeth Pharmaceuticals) vaccine, which targets 7 pneumococcal serotypes, was introduced in 2000 and has had an enormous impact on both the incidence and epidemiology of bacterial meningitis. This article reviews the impact of the PCV7 vaccine and the most up-to-date evidence on diagnosis and empiric therapy of suspected bacterial meningitis in the current day.

  17. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  18. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis.

    PubMed

    Fulde, Marcus; Willenborg, Joerg; Huber, Claudia; Hitzmann, Angela; Willms, Daniela; Seitz, Maren; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2014-01-01

    The arginine-ornithine antiporter (ArcD) is part of the Arginine Deiminase System (ADS), a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-(13)C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT) strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth in chemically defined media supplemented with arginine when compared to the WT strain, suggesting that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  19. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis

    PubMed Central

    Fulde, Marcus; Willenborg, Joerg; Huber, Claudia; Hitzmann, Angela; Willms, Daniela; Seitz, Maren; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2014-01-01

    The arginine-ornithine antiporter (ArcD) is part of the Arginine Deiminase System (ADS), a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-13C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT) strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth in chemically defined media supplemented with arginine when compared to the WT strain, suggesting that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host. PMID:25161959

  20. Fungal corneal ulcer and bacterial orbital cellulitis occur as complications of bacterial endophthalmitis after cataract surgery in an immunocompetent patient.

    PubMed

    Kim, Eun Chul; Kim, Man Soo; Kang, Nam Yeo

    2013-03-01

    To report a case of fungal corneal ulcer and bacterial orbital cellulitis as complications of bacterial endophthalmitis following cataract surgery. A 51-year-old man underwent anterior chamber irrigation and aspiration in the left eye one day after cataract surgery because of bacterial endophthalmitis. Marked lid swelling with purulent discharge was developed after 5 days. Slit lamp examination showed generalized corneal ulcer and pus in the total anterior chamber. A computerized tomography scan showed left retrobulbar fat stranding with thickened optic disc. Streptococcus pneumonia was cultured from corneal scraping, vireous, and subconjunctival pus. The patient improved gradually with antibiotics treatments, but the corneal ulcer did not fully recover 2 months after cataract surgery. Candida albicans was detected in repetitive corneal culture. After antifungal and antibacterial therapy, the corneal epithelium had healed, but phthisis bulbi had developed. Fungal corneal ulcer and bacterial orbital cellulitis can occur as complications of endophthalmitis in an immunocompetent patient.

  1. Complete Genome Sequence of the Pigmented Streptococcus thermophilus Strain JIM8232

    PubMed Central

    Delorme, Christine; Bartholini, Claire; Luraschi, Mélanie; Pons, Nicolas; Loux, Valentin; Almeida, Mathieu; Guédon, Eric; Gibrat, Jean-François; Renault, Pierre

    2011-01-01

    Streptococcus thermophilus is a dairy species commonly used in the manufacture of cheese and yogurt. Here, we report the complete sequence of S. thermophilus strain JIM8232, isolated from milk and which produces a yellow pigment, an atypical trait for this bacterium. PMID:21914889

  2. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes.

    PubMed

    Wassel, Mariem O; Khattab, Mona A

    2017-07-01

    Using natural products can be a cost-effective approach for caries prevention especially in low income countries where dental caries is highly prevalent and the resources are limited. Specially prepared dental varnishes containing propolis, miswak, and chitosan nanoparticles (CS-NPs) with or without sodium fluoride (NaF) were assessed for antibacterial effect against Streptococcus mutans ( S. mutans ) using disk diffusion test. In addition, the protective effect of a single pretreatment of primary teeth enamel specimens against in vitro bacterial induced enamel demineralization was assessed for 3 days. All natural products containing varnishes inhibited bacterial growth significantly better than 5% NaF varnish, with NaF loaded CS-NPs (CSF-NPs) showing the highest antibacterial effect, though it didn't significantly differ than those of other varnishes except miswak ethanolic extract (M) varnish. Greater inhibitory effect was noted with varnish containing freeze dried aqueous miswak extract compared to that containing ethanolic miswak extract, possibly due to concentration of antimicrobial substances by freeze drying. Adding natural products to NaF in a dental varnish showed an additive effect especially compared to fluoride containing varnish. 5% NaF varnish showed the best inhibition of demineralization effect. Fluoride containing miswak varnish (MF) and CSF-NPs varnish inhibited demineralization significantly better than all experimental varnishes, especially during the first 2 days, though CSF-NPs varnish had a low fluoride concentration, probably due to better availability of fluoride ions and the smaller size of nanoparticles. Incorporating natural products with fluoride into dental varnishes can be an effective approach for caries prevention, especially miswak and propolis when financial resources are limited.

  3. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less

  4. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  5. [Rapid identification of meningitis due to bacterial pathogens].

    PubMed

    Ubukata, Kimiko

    2013-01-01

    We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.

  6. EXPLOSIVE RADIATION OF A BACTERIAL SPECIES GROUP

    PubMed Central

    Morlon, Hélène; Kemps, Brian D.; Plotkin, Joshua B.; Brisson, Dustin

    2013-01-01

    The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life. PMID:22834754

  7. Emission of bacterial bioaerosols from a composting facility in Maharashtra, India.

    PubMed

    Pahari, Arnab Kumar; Dasgupta, Debdeep; Patil, Rashmi S; Mukherji, Suparna

    2016-07-01

    This study was undertaken to quantify and characterize size-segregated bacterial bioaerosols both on-site and off-site of a waste treatment facility (WTF) in Maharashtra employing windrow composting. Viable bacterial bioaerosols on nutrient agar (NA) and actinomycetes isolation agar (AIA) were quantified after sampling using Anderson-six stage impactor. Viable bacterial bioaerosols were identified based on 16S rDNA sequencing. Approximately, 16-34% of the total viable bacteria collected at the WTF were in the size range 0.65-2.1μm that can penetrate deep into the respiratory tract and also represents bacteria present in free form. Thus, 66-84% of bacterial bioaerosols were associated with coarse airborne particles greater than 2.1μm. A total of 24 bacterial species were isolated and characterized through gram staining. Among these 25% were gram negative and 75% were gram positive. The predominant bacterial genera were Bacillus, Streptococcus, Staphylococcus, Acinetobacter and Kocuria. The mean on-site concentration of total viable bacteria on NA and AIA and airborne particles (PM2.5 and PM10) were higher than the corresponding off-site values. The mean on-site concentration of viable bacteria on NA and AIA were in the range of 3.8×10(3) to 5.4×10(4)CFU/m(3) and 9.8×10(3) to 1.2×10(5)CFU/m(3), respectively, during activity period. Good correlation (R(2)=0.999) was observed between total bioaerosols and aerosols (PM10) collected using Anderson impactor and High volume sampler, respectively. Sampling size segregated aerosols using the Siotus personal cascade impactor indicated higher association of bacteria with the coarse fraction (greater than 2.5μm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Vaccination against group B streptococcus.

    PubMed

    Heath, Paul T; Feldman, Robert G

    2005-04-01

    Streptococcus agalactiae (Group B streptococcus) is an important cause of disease in infants, pregnant women, the elderly and in immunosuppressed adults. An effective vaccine is likely to prevent the majority of infant disease (both early and late onset), as well as Group B streptococcus-related stillbirths and prematurity, to avoid the current real and theoretical limitations of intrapartum antibiotic prophylaxis, and to be cost effective. The optimal time to administer such a vaccine would be in the third trimester of pregnancy. The main limitations on the production of a Group B streptococcus vaccine are not technical or scientific, but regulatory and legal. A number of candidates including capsular conjugate vaccines using traditional carrier proteins such as tetanus toxoid and mutant diphtheria toxin CRM197, as well as Group B streptococcus-specific proteins such as C5a peptidase, protein vaccines using one or more Group B streptococcus surface proteins and mucosal vaccines, have the potential to be successful vaccines. The capsular conjugate vaccines using tetanus and CRM197 carrier proteins are the most advanced candidates, having already completed Phase II human studies including use in the target population of pregnant women (tetanus toxoid conjugate), however, no definitive protein conjugates have yet been trialed. However, unless the regulatory environment is changed specifically to allow the development of a Group B streptococcus vaccine, it is unlikely that one will ever reach the market.

  9. Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail.

    PubMed

    Geeraerts, Wim; Pothakos, Vasileios; De Vuyst, Luc; Leroy, Frédéric

    2017-08-01

    Pork-based cooked products, such as cooked hams, are economically valuable foods that are vulnerable to bacterial spoilage, even when applying cooling and modified atmosphere packaging (MAP). Besides a common presence of Brochothrix thermosphacta, their microbiota are usually dominated by lactic acid bacteria (LAB). Yet, the exact LAB species diversity can differ considerably among products. In this study, 42 sliced cooked pork samples were acquired from three different Belgian supermarkets to map their bacterial heterogeneity. The community compositions of the dominant bacterial species were established by analysing a total of 702 isolates from selective agar media by (GTG) 5 -PCR fingerprinting followed by gene sequencing. Most of the isolates belonged to the genera Carnobacterium, Lactobacillus, and Leuconostoc, with Leuconostoc carnosum and Leuconostoc gelidum subsp. gelidum being the most dominant members. The diversity of the dominant bacterial species varied when comparing samples from different production facilities and, in some cases, even within the same product types. Although LAB consistently dominated the microbiota of sliced cooked pork products in the Belgian market, results indicated that bacterial diversity needs to be addressed on the level of product composition and batch variation. Dedicated studies will be needed to substantiate potential links between such variability and microbial composition. For instance, the fact that higher levels of lactobacilli were associated with the presence of potassium lactate (E326) may be suggestive of selective pressure but needs to be validated, as this finding referred to a single product only. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Highly pathogenic beta-hemolytic streptococcal infections in cats from an institutionalized hoarding facility and a multi-species comparison.

    PubMed

    Morrow, Becky L; McNatt, Rachel; Joyce, Lindsay; McBride, Shelley; Morgan, Daniel; Tressler, Chelsey; Mellits, Cara

    2016-04-01

    Two hundred and thirty-four cats removed from an institutionalized hoarding facility (IHF) demonstrated severe, atypical pyogenic infections. The objective of this study was to document the various syndromes and determine the etiology of the infections. All cats were evaluated initially after removal from the IHF and on a daily basis for at least 15 months. Samples were collected and sent for culture/susceptibility and histopathology to commercial laboratories or stored at -20(o)C. PCR was performed using universal bacterial primers to amplify the 16S-23S rRNA intergenic spacer region. PCR products were sequenced to determine the identity of the bacteria. Multiple pyogenic syndromes were documented, including abscesses of the paws and carpal/tarsal regions in 82 cats, acute rhinitis with profuse purulent nasal discharge in 68 cats and cervical lymphadenitis with abscessation unassociated with any wounding in 51 cats. Many cats exhibited septic arthritis with total joint destruction, necrotizing fasciitis, meningitis, otitis and septic shock, often leading to death. These infections appeared to be caused by beta-hemolytic streptococci (BHS) based on initial culture results (n = 10), though speciation was unclear and some samples (n = 6) produced no growth. Based on PCR results (n = 26), Streptococcus canis was the only bacterial species or the dominant species identified in each sample, and was the only species present in all the regions associated with the pyogenic infections. Horizontal gene transfer and loss of the cell wall may account for the discrepancy between the culture and PCR results and the highly pathogenic nature of S canis in this particular population of cats. A large-scale hoarding situation with multiple animal species, overcrowding, stress and mixing of animals from many geographical regions created ideal conditions for these events to occur. The specific virulence factors present may be more useful in predicting the pathophysiology of BHS

  11. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle.

    PubMed

    Paduch, Jan-Hendrik; Mohr, Elmar; Krömker, Volker

    2013-05-01

    Several mastitis-causing pathogens are able to colonize the bovine teat canal. The objective of this study was to investigate the association between the treatment of sawdust bedding with a commercial alkaline conditioner and the bacterial counts on teat skin and in the teat canal. The study used a crossover design. Ten lactating Holstein cows that were free of udder infections and mastitis were included in the study. The animals were bedded on either untreated sawdust or sawdust that had been treated with a hydrated lime-based conditioner. Once a day, fresh bedding material was added. After 3 weeks, the bedding material was removed from the cubicles, fresh bedding material was provided, and the cows were rotated between the two bedding material groups. Teat skin and teat canals were sampled using the wet and dry swab technique after weeks 1, 2, 3, 4, 5 and 6. Staphylococcus aureus, Streptococcus uberis, Escherichia coli and other coliform bacteria were detected in the resulting agar plate cultures. The treatment of the bedding material was associated with the teat skin bacterial counts of Str. uberis, Esch. coli and other coliform bacteria. An association was also found between the bedding material and the teat canal bacterial counts of coliform bacteria other than Esch. coli. For Staph. aureus, no associations with the bedding material were found. In general, the addition of a hydrated lime-based conditioner to sawdust reduces the population sizes of environmental pathogens on teat skin and in teat canals.

  12. N-Acetyl-L-cysteine Effects on Multi-species Oral Biofilm Formation and Bacterial Ecology

    PubMed Central

    Rasmussen, Karin; Nikrad, Julia; Reilly, Cavan; Li, Yuping; Jones, Robert S.

    2015-01-01

    Future therapies for the treatment of dental decay have to consider the importance of preserving bacterial ecology while reducing biofilm adherence to teeth. A multi-species plaque derived (MSPD) biofilm model was used to assess how concentrations of N-acetyl-L-cysteine (0, 0.1%, 1%, 10%) affected the growth of complex oral biofilms. Biofilms were grown (n=96) for 24 hours on hydroxyapatite disks in BMM media with 0.5% sucrose. Bacterial viability and biomass formation was examined on each disk using a microtiter plate reader. In addition, fluorescence microscopy and Scanning Electron Microscopy was used to qualitatively examine the effect of NAC on bacterial biofilm aggregation, extracellular components, and bacterial morphology. The total biomass was significantly decreased after exposure of both 1% (from 0.48, with a 95% confidence interval of (0.44, 0.57) to 0.35, with confidence interval (0.31, 0.38)) and 10% NAC (0.14 with confidence interval (0.11, 0.17)). 16S rRNA amplicon sequencing analysis indicated that 1% NAC reduced biofilm adherence while preserving biofilm ecology. PMID:26518358

  13. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    USDA-ARS?s Scientific Manuscript database

    Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...

  14. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    PubMed Central

    Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

  15. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    PubMed

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  16. Amplicon sequencing of bacterial microbiota in abortion material from cattle.

    PubMed

    Vidal, Sara; Kegler, Kristel; Posthaus, Horst; Perreten, Vincent; Rodriguez-Campos, Sabrina

    2017-10-10

    Abortions in cattle have a significant economic impact on animal husbandry and require prompt diagnosis for surveillance of epizootic infectious agents. Since most abortions are not epizootic but sporadic with often undetected etiologies, this study examined the bacterial community present in the placenta (PL, n = 32) and fetal abomasal content (AC, n = 49) in 64 cases of bovine abortion by next generation sequencing (NGS) of the 16S rRNA gene. The PL and AC from three fetuses of dams that died from non-infectious reasons were included as controls. All samples were analyzed by bacterial culture, and 17 were examined by histopathology. We observed 922 OTUs overall and 267 taxa at the genus level. No detectable bacterial DNA was present in the control samples. The microbial profiles of the PL and AC differed significantly, both in their composition (PERMANOVA), species richness and Chao-1 (Mann-Whitney test). In both organs, Pseudomonas was the most abundant genus. The combination of NGS and culture identified opportunistic pathogens of interest in placentas with lesions, such as Vibrio metschnikovii, Streptococcus uberis, Lactococcus lactis and Escherichia coli. In placentas with lesions where culturing was unsuccessful, Pseudomonas and unidentified Aeromonadaceae were identified by NGS displaying high number of reads. Three cases with multiple possible etiologies and placentas presenting lesions were detected by NGS. Amplicon sequencing has the potential to uncover unknown etiological agents. These new insights on cattle abortion extend our focus to previously understudied opportunistic abortive bacteria.

  17. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food.

    PubMed

    Irwin, Sally V; Fisher, Peter; Graham, Emily; Malek, Ashley; Robidoux, Adriel

    2017-01-01

    Sulfites and other preservatives are considered food additives to limit bacterial contamination, and are generally regarded as safe for consumption by governmental regulatory agencies at concentrations up to 5000 parts per million (ppm). Consumption of bactericidal and bacteriostatic drugs have been shown to damage beneficial bacteria in the human gut and this damage has been associated with several diseases. In the present study, bactericidal and bacteriostatic effects of two common food preservatives, sodium bisulfite and sodium sulfite, were tested on four known beneficial bacterial species common as probiotics and members of the human gut microbiota. Lactobacillus species casei, plantarum and rhamnosus, and Streptococcus thermophilus were grown under optimal environmental conditions to achieve early log phase at start of experiments. Bacterial cultures were challenged with sulfite concentrations ranging between 10 and 3780 ppm for six hours. To establish a control, a culture of each species was inoculated into media containing no sulfite preservative. By two hours of exposure, a substantial decrease (or no increase) of cell numbers (based on OD600 readings) were observed for all bacteria types, in concentrations of sulfites between 250-500 ppm, compared to cells in sulfite free media. Further testing using serial dilution and drop plates identified bactericidal effects in concentrations ranging between 1000-3780 ppm on all the Lactobacillus species by 4 hours of exposure and bactericidal effects on S. thermophilus in 2000ppm NaHSO3 after 6 hours of exposure.

  18. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food

    PubMed Central

    2017-01-01

    Sulfites and other preservatives are considered food additives to limit bacterial contamination, and are generally regarded as safe for consumption by governmental regulatory agencies at concentrations up to 5000 parts per million (ppm). Consumption of bactericidal and bacteriostatic drugs have been shown to damage beneficial bacteria in the human gut and this damage has been associated with several diseases. In the present study, bactericidal and bacteriostatic effects of two common food preservatives, sodium bisulfite and sodium sulfite, were tested on four known beneficial bacterial species common as probiotics and members of the human gut microbiota. Lactobacillus species casei, plantarum and rhamnosus, and Streptococcus thermophilus were grown under optimal environmental conditions to achieve early log phase at start of experiments. Bacterial cultures were challenged with sulfite concentrations ranging between 10 and 3780 ppm for six hours. To establish a control, a culture of each species was inoculated into media containing no sulfite preservative. By two hours of exposure, a substantial decrease (or no increase) of cell numbers (based on OD600 readings) were observed for all bacteria types, in concentrations of sulfites between 250–500 ppm, compared to cells in sulfite free media. Further testing using serial dilution and drop plates identified bactericidal effects in concentrations ranging between 1000–3780 ppm on all the Lactobacillus species by 4 hours of exposure and bactericidal effects on S. thermophilus in 2000ppm NaHSO3 after 6 hours of exposure. PMID:29045472

  19. Comparison on conjunctival sac bacterial flora of the seniors with dry eye in Ganzi autonomous prefecture

    PubMed Central

    Zhang, Yue; Liu, Zhi-Rong; Chen, Hui; Fan, Ying-Chuan; Duo, Ji; Zheng, Hong; Wang, Guang-Jin; Li, Yu-Chan; Jiachu, Dan-Ba; Zewang, Ge-Ma

    2013-01-01

    AIM To compare the bacterial flora in palpebral conjunctiva of xerophthalmia seniors of Tibetan, Yi and Han, and analyze the differences and similarities of the bacteria. METHODS The test subjects were selected from 2 Tibetan, 2 Yi and 3 Han populated places, respectively. Total 222 seniors (444 eyes) with dry eye were examined. Secretion was collected from the palpebral conjunctiva of the subjects and then inoculated onto a blood agar plate. After 48h of incubation, the bacteria were examined for the differences and similarities between different ethnics. RESULTS There was no significant difference (P>0.05) of Gram stain characterization, dominant bacteria and number of the bacterial species present in oxrophthalmia patients among Tibetan, Yi and Han nationalities. The bacteria presented in all groups include staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa. The bacteria detected from the two of three ethnic groups were staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae, and staphylococcus heads. The incidence rate of bacteria-associated dry eye in Tibetan population was significantly lower than that of Han and Yi population. CONCLUSION There is no significant difference in the bacteria flora of palpebral conjunctiva observed among dry eye elder populations of Tibetan, Yi and Han people. All of staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa, staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae and staphylococcus heads are common bacteria flora of the three nationalities inhibiting in this area. PMID:23991377

  20. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.

    PubMed

    Ellepola, K; Liu, Y; Cao, T; Koo, H; Seneviratne, C J

    2017-09-01

    Streptococcus mutans is a biofilm-forming oral pathogen commonly associated with dental caries. Clinical studies have shown that S. mutans is often detected with Candida albicans in early childhood caries. Although the C. albicans presence has been shown to enhance bacterial accumulation in biofilms, the influence of S. mutans on fungal biology in this mixed-species relationship remains largely uncharacterized. Therefore, we aimed to investigate how the presence of S. mutans influences C. albicans biofilm development and coexistence. Using a newly established haploid biofilm model of C. albicans, we found that S. mutans augmented haploid C. albicans accumulation in mixed-species biofilms. Similarly, diploid C. albicans also showed enhanced biofilm formation in the presence of S. mutans. Surprisingly, the presence of S. mutans restored the biofilm-forming ability of C. albicans bcr1Δ mutant and bcr1Δ/Δ mutant, which is known to be severely defective in biofilm formation when grown as single species. Moreover, C. albicans hyphal growth factor HWP1 as well as ALS1 and ALS3, which are also involved in fungal biofilm formation, were upregulated in the presence of S. mutans. Subsequently, we found that S. mutans-derived glucosyltransferase B (GtfB) itself can promote C. albicans biofilm development. Interestingly, GtfB was able to increase the expression of HWP1, ALS1, and ALS3 genes in the C. albicans diploid wild-type SC5314 and bcr1Δ/Δ, leading to enhanced fungal biofilms. Hence, the present study demonstrates that a bacterial exoenzyme (GtfB) augments the C. albicans counterpart in mixed-species biofilms through a BCR1-independent mechanism. This novel finding may explain the mutualistic role of S. mutans and C. albicans in cariogenic biofilms.