Sample records for bacterial strain h5

  1. Identification of a new steroid degrading bacterial strain H5 from the Baltic Sea and isolation of two estradiol inducible genes.

    PubMed

    Sang, Yingying; Xiong, Guangming; Maser, Edmund

    2012-03-01

    The presence of steroid hormones in the aquatic environment is potentially threatening the population dynamics of all kinds of sea animals and public health. Environmental estrogens in water have been reported to be associated with abnormal sexual development and abnormal feminizing responses in some animals. New approaches for the bioremediation of steroid hormones from the environment are therefore urgently sought. We have previously isolated a steroid degrading bacterial strain (H5) from the Baltic Sea, at Kiel, Germany. In the present investigation, 16S rRNA analysis showed that marine strain H5 belongs to the genus Vibrio, family Vibrionaceae and class Gamma-Proteobacteria. To enable identification of steroid inducible genes from bacterial strain H5, a library was constructed of H5 chromosomal DNA fragments cloned into a fluorescent reporter (pKEGFP-2). A reporter plasmid pK3α-4.6-EGFP3 containing the estrogen-inducible gene 3α-hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) from Comamonas testosteroni (C. testosteroni) was created as a positive control. Steroid induction could be detected by a microplate fluorescence reader, when the plasmids were transformed into Escherichia coli (E. coli) HB101 cells. With our meta-genomic pKEGFP-2 approach, we identified two estradiol-inducible genes from marine strain H5, which are obviously involved in steroid degradation. Sequencing of the pKEGFP-2 inserts and data base research at NCBI revealed that one gene corresponds to 3-ketosteroid-delta-1-dehydrogenase from several Mycobacterium strains, while the other showed high similarity to carboxylesterase in Sebadella termitidis and Brachyspira murdochii. Both 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase are one of the first enzymes in steroid degradation. In addition, we identified a strain H5 specific DNA sequence of 480bp which allows sensitive PCR detection and quantification of strain H5 bacteria in "unknown" seawater samples. Currently, the

  2. Physiological changes induced in four bacterial strains following oxidative stress.

    PubMed

    Baatout, S; De Boever, P; Mergeay, M

    2006-01-01

    In order to study the behaviour and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential usefulness in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123, 3,3'-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxyflurorescein diacetate succinimidyl ester (5(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. Membrane potential, esterase activity, intracellular pH and production of superoxide anion production were considerably modified at high H2O2 concentrations in all four strains. In conclusion, we show that a range of significant physiological alterations occurs when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are useful for monitoring the changes induced not only by oxidative stress but also by other

  3. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2.

    PubMed

    Anjaneya, O; Souche, S Yogesh; Santoshkumar, M; Karegoudar, T B

    2011-06-15

    Two different bacterial strains capable of decolorizing a highly water soluble azo dye Metanil Yellow were isolated from dye contaminated soil sample collected from Atul Dyeing Industry, Bellary, India. The individual bacterial strains Bacillus sp. AK1 and Lysinibacillus sp. AK2 decolorized Metanil Yellow (200 mg L(-1)) completely within 27 and 12h respectively. Various parameters like pH, temperature, NaCl and initial dye concentrations were optimized to develop an economically feasible decolorization process. The maximum concentration of Metanil Yellow (1000 mg L(-1)) was decolorized by strains AK2 and AK1 within 78 and 84 h respectively. These strains could decolorize Metanil Yellow over a broad pH range 5.5-9.0; the optimum pH was 7.2. The decolorization of Metanil Yellow was most efficient at 40°C and confirmed by UV-visible spectroscopy, TLC, HPLC and GC/MS analysis. Further, both the strains showed the involvement of azoreductase in the decolorization process. Phytotoxicity studies of catabolic products of Metanil Yellow on the seeds of chick pea and pigeon pea revealed much reduction in the toxicity of metabolites as compared to the parent dye. These results indicating the effectiveness of strains AK1 and AK2 for the treatment of textile effluents containing azo dyes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042

    PubMed Central

    2018-01-01

    ABSTRACT Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae, cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli, out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue (hns2). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae. IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool. PMID

  5. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042.

    PubMed

    Prieto, A; Bernabeu, M; Aznar, S; Ruiz-Cruz, S; Bravo, A; Queiroz, M H; Juárez, A

    2018-01-01

    Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae , cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli , out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue ( hns2 ). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae . IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool.

  6. Transport processes and mutual interactions of three bacterial strains in saturated porous media

    NASA Astrophysics Data System (ADS)

    Stumpp, Christine; Lawrence, John R.; Hendry, M. Jim; Maloszewski, Pitor

    2010-05-01

    Transport processes of the bacterial strains Klebsiella oxytoca, Burkholderia cepacia G4PR-1 and Pseudomonas sp #5 were investigated in saturated column experiments to study the differences in transport characteristics and the mutual interactions of these strains during transport. Soil column experiments (114 mm long x 33 mm in diameter) were conducted with constant water velocities (3.9-5.7 cm/h) through a medium to coarse grained silica sand. All experiments were performed in freshly packed columns in quadruplicate. Chloride was used as tracer to determine the mean transit time, dispersivity and flow rate. It was injected as a pulse into the columns together with the bacterial strains suspended in artificial groundwater medium. In the first setup, each strain was investigated alone. In the second setup, transport processes were performed injecting two strains simultaneously. Finally, the transport characteristics were studied in successive experiments when one bacterium was resident on the sand grains prior to the introduction of the second strain. In all experiments the peak C/Co bacterial concentrations were attenuated with respect to the conservative tracer chloride and a well defined tailing was observed. A one dimensional mathematical model for advective-dispersive transport that accounts for irreversible and reversible sorption was used to analyze the bacterial breakthrough curves and tailing patterns. It was shown that the sorption parameters were different for the three strains that can be explained by the properties of the bacteria. For the species Klebsiella oxytoca and Burkholderia cepacia G4PR-the transport parameters were mostly in the same range independent of the experimental setup. However, Pseudomonas sp #5, which is a motile bacterium, showed differences in the breakthrough curves and sorption parameters during the experiments. The simultaneous and successive experiments indicated an influence on the reversible sorption processes when another

  7. Bacterial strain changes during chronic otitis media surgery.

    PubMed

    Kim, G J; Yoo, S; Han, S; Bu, J; Hong, Y; Kim, D-K

    2017-09-01

    Cultures obtained from pre-operative middle-ear swabs from patients with chronic otitis media have traditionally been used to guide antibiotic selection. This study investigated changes in the bacterial strains of the middle ear during chronic otitis media surgery. Pre-operative bacterial cultures of otorrhoea, and peri-operative cultures of the granulation tissue in either the middle ear or mastoid cavity, were obtained. Post-operative cultures were selectively obtained when otorrhoea developed after surgery. Bacterial growth was observed in 45.5 per cent of pre-operative cultures, 13.5 per cent of peri-operative cultures and 4.5 per cent of post-operative cultures. Methicillin-resistant Staphylococcus aureus was identified as the most common bacteria in all pre-operative (32.4 per cent), peri-operative (52.4 per cent) and post-operative (71.4 per cent) tests, and the percentage of Methicillin-resistant S aureus increased from the pre- to the post-operative period. The bacterial culture results for post-operative otorrhoea showed low agreement with those for pre-operative or peri-operative culture, and strain re-identification was required.

  8. Protection Afforded by a Recombinant Turkey Herpesvirus-H5 Vaccine Against the 2014 European Highly Pathogenic H5N8 Avian Influenza Strain.

    PubMed

    Steensels, M; Rauw, F; van den Berg, Th; Marché, S; Gardin, Y; Palya, V; Lambrecht, B

    2016-05-01

    A highly pathogenic avian influenza (HPAI) H5N8 (clade 2.3.4.4) virus, circulating in Asia (South Korea, Japan, and southern China) since the beginning of 2014, reached the European continent in November 2014. Germany, the Netherlands, the United Kingdom, Italy, and Hungary confirmed H5N8 infection of poultry farms of different species and of several wild bird species. Unlike the Asian highly pathogenic (HP) H5N1, this HP H5N8 also went transatlantic and reached the American West Coast by the end of 2014, affecting wild birds as well as backyard and commercial poultry. This strain induces high mortality and morbidity in Galliformes, whereas wild birds seem only moderately affected. A recombinant turkey herpesvirus (rHVT) vector vaccine expressing the H5 gene of a clade 2.2 H5N1 strain (rHVT-H5) previously demonstrated a highly efficient clinical protection and reduced viral excretion against challenge with Asian HP H5N1 strains of various clades (2.2, 2.2.1, 2.2.1.1, 2.1.3, 2.1.3.2, and 2.3.2.1) and was made commercially available in various countries where the disease is endemic. To evaluate the protective efficacy of the rHVT-H5 vaccine against the first German H5N8 turkey isolate (H5N8 GE), a challenge experiment was set up in specific-pathogen-free (SPF) chickens, and the clinical and excretional protection was evaluated. SPF chickens were vaccinated subcutaneously at 1 day old and challenged oculonasally at 4 wk of age with two viral dosages, 10(5) and 10(6) 50% egg infective doses. Morbidity and mortality were monitored daily in unvaccinated and vaccinated groups, whereas viral shedding by oropharyngeal and cloacal routes was evaluated at 2, 5, 9, and 14 days postinoculation (dpi). Serologic monitoring after vaccination and challenge was also carried out. Despite its high antigenic divergence of the challenge H5N8 strain, a single rHVT-H5 vaccine administration at 1 day old resulted in a full clinical protection against challenge and a significant reduction

  9. Halogenated 2,5-pyrrolidinediones: synthesis, bacterial mutagenicity in Ames tester strain TA-100 and semi-empirical molecular orbital calculations.

    PubMed

    Freeman, B A; Wilson, R E; Binder, R G; Haddon, W F

    2001-02-20

    The chloroimide 3,3-dichloro-4-(dichloromethylene)-2,5-pyrrolidinedione, a tetrachloroitaconimide, is the principal mutagen produced by chlorination of simulated poultry chiller water. It is the second most potent mutagenic disinfection by-product of chlorination ever reported. Six of seven new synthetic analogs of this compound are direct-acting mutagens in Ames tester strain TA-100. Computed energies of the lowest unoccupied molecular orbital (E(LUMO)) and of the radical anion stability (DeltaH(f)(rad)-DeltaH(f)) from MNDO-PM3 for the chloroimides show a quantitative correlation with the Ames TA-100 bacterial mutagenicity values. The molar mutagenicities of these direct acting mutagenic imides having an exocyclic double bond fit the same linear correlation (lnM(m) vs. E(LUMO); lnM(m) vs. DeltaH(f)(rad)--DeltaH(f)) as the chlorinated 2(5H)-furanones, including the potent mutagen MX, 3-chloro-4-(dichloro-methyl)-5-hydroxy-2(5H)-furanone, a by-product of water chlorination and paper bleaching with chlorine. Mutagenicity data for related haloimides having endocyclic double bonds are also given. For the same number of chlorine atoms, the imides with endocyclic double bonds have significantly higher Ames mutagenicity compared to their structural analogs with exocyclic double bonds, but do not follow the same E(LUMO) or DeltaH(f)(rad)-DeltaH(f) correlation as the exocyclic chloroimides and the chlorinated 2(5H)-furanones.

  10. Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H.

    PubMed

    Wang, Jinxing; Liang, Jidong; Gao, Sha

    2018-05-10

    Many bacterial strains have been demonstrated to biodegrade lignin for contaminant removal or resource regeneration. The goal of this study was to investigate the biodegradation amount and associated pathways of three lignin monomers, vanillic, p-coumaric, and syringic acid by strain Sphingobacterium sp. HY-H. Vanillic, p-coumaric, and syringic acid degradation with strain HY-H was estimated as 88.71, 76.67, and 72.78%, respectively, after 96 h. Correspondingly, the same three monomers were associated with a COD removal efficiency of 87.30, 55.17, and 67.23%, and a TOC removal efficiency of 82.14, 61.03, and 43.86%. The results of GC-MS, HPLC, FTIR, and enzyme activities show that guaiacol and o-dihydroxybenzene are key intermediate metabolites of the vanillic acid and syringic acid degradation. p-Hydroxybenzoic acid is an important intermediate metabolite for p-coumaric and syringic acid degradation. LiP and MnP play an important role in the degradation of lignin monomers and their intermediate metabolites. One possible pathway is that strain HY-H degrades lignin monomers into guaiacol (through decarboxylic and demethoxy reaction) or p-hydroxybenzoic acid (through side-chain oxidation); then guaiacol demethylates to o-dihydroxybenzene. The p-hydroxybenzoic acid and o-dihydroxybenzene are futher through ring cleavage reaction to form small molecule acids (butyric, valproic, oxalic acid, and propionic acid) and alcohols (ethanol and ethanediol), then these acids and alcohols are finally decomposed into CO 2 and H 2 O through the tricarboxylic acid cycle. If properly optimized and controlled, the strain HY-H may play a role in breaking down lignin-related compounds for biofuel and chemical production.

  11. Serotyping of Actinobacillus pleuropneumoniae serotype 5 strains using a monoclonal-based polystyrene agglutination test.

    PubMed Central

    Dubreuil, J D; Letellier, A; Stenbaek, E; Gottschalk, M

    1996-01-01

    A polystyrene agglutination test has been developed for serotyping Actinobacillus pleuropneumoniae serotype 5a and 5b strains. Protein A-coated polystyrene microparticles were sensitized with a murine monoclonal antibody recognizing an epitope on serotype 5 LPS-O chain as shown by SDS-PAGE and Western blotting. A total of 205 A. pleuropneumoniae, strains including all 12 serotype reference strains and 13 strains representing 8 common bacterial species associated with swine or related to A. pleuropneumoniae, were tested by mixing 25 microL of polystyrene reagent with the same volume of a dense suspension of bacterial cells grown for 18 h. All A. pleuropneumoniae strains had been previously serotyped using standard procedures. The polystyrene agglutination test was rapid (less than 3 min) and easy to perform. Overall a very good correlation (97.3%) with the standard techniques was found. The sensitized polystyrene particles were stable for at least 6 mo. Images Figure 1. PMID:8825998

  12. Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses.

    PubMed

    Kandeil, Ahmed; Moatasim, Yassmin; Gomaa, Mokhtar R; Shehata, Mahmoud M; El-Shesheny, Rabeh; Barakat, Ahmed; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-04

    Avian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells. To investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens. We observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding. Our findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Variation in bacterial ATP concentration during rapid changes in extracellular pH and implications for the activity of attached bacteria.

    PubMed

    Albert, Lynal S; Brown, Derick G

    2015-08-01

    In this study we investigated the relationship between a rapid change in extracellular pH and the alteration of bacterial ATP concentration. This relationship is a key component of a hypothesis indicating that bacterial bioenergetics - the creation of ATP from ADP via a proton gradient across the cytoplasmic membrane - can be altered by the physiochemical charge-regulation effect, which results in a pH shift at the bacteria's surface upon adhesion to another surface. The bacterial ATP concentration was measured during a rapid change in extracellular pH from a baseline pH of 7.2 to pH values between 3.5 and 10.5. Experiments were conducted with four neutrophilic bacterial strains, including the Gram-negative Escherichia coli and Pseudomonas putida and the Gram-positive Bacillus subtilis and Staphylococcus epidermidis. A change in bulk pH produced an immediate response in bacterial ATP, demonstrating a direct link between changes in extracellular pH and cellular bioenergetics. In general, the shifts in ATP were similar across the four bacterial strains, with results following an exponential relationship between the extracellular pH and cellular ATP concentration. One exception occurred with S. epidermidis, where there was no variation in cellular ATP at acidic pH values, and this finding is consistent with this species' ability to thrive under acidic conditions. These results provide insight into obtaining a desired bioenergetic response in bacteria through (i) the application of chemical treatments to vary the local pH and (ii) the selection and design of surfaces resulting in local pH modification of attached bacteria via the charge-regulation effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Beneficial role of hydrophytes in removing Cr(VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium.

    PubMed

    Faisal, Muhammad; Hasnain, Shahida

    2005-01-01

    This study deals with the use of three chromium-resistant bacterial strains (Ochrobactrum intermedium CrT-1, Brevibacterium CrT-13, and CrM-1) in conjunction with Eichornia crassipes for the removal of toxic chromium from wastewater. Bacterial strains resulted in reduced uptake of chromate into inoculated plants as compared to noninoculated control plants. In the presence of different heavy metals, chromium uptake into the plants was 28.7 and 7.15% less at an initial K2CrO4 concentration of 100 and 500 microg ml(-1) in comparison to a metal free chromium solution. K2CrO4 uptake into the plant occurred at different pHs tested, but maximum uptake was observed at pH 5. Nevertheless, the bacterial strains caused some decrease in chromate uptake into the plants, but the combined effect of plants and bacterial strains conduce more removal of Cr(VI) from the solution.

  15. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    PubMed

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  17. Complete Genome Sequence of Lactobacillus rhamnosus Strain BPL5 (CECT 8800), a Probiotic for Treatment of Bacterial Vaginosis.

    PubMed

    Chenoll, Empar; Codoñer, Francisco M; Martinez-Blanch, Juan F; Ramón, Daniel; Genovés, Salvador; Menabrito, Marco

    2016-04-21

    ITALIC! Lactobacillus rhamnosusBPL5 (CECT 8800), is a probiotic strain suitable for the treatment of bacterial vaginosis. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insight into its functional activity. Copyright © 2016 Chenoll et al.

  18. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  19. Identification and characterisation of potential biofertilizer bacterial strains

    NASA Astrophysics Data System (ADS)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  20. Stable coexistence of five bacterial strains as a cellulose-degrading community.

    PubMed

    Kato, Souichiro; Haruta, Shin; Cui, Zong Jun; Ishii, Masaharu; Igarashi, Yasuo

    2005-11-01

    A cellulose-degrading defined mixed culture (designated SF356) consisting of five bacterial strains (Clostridium straminisolvens CSK1, Clostridium sp. strain FG4, Pseudoxanthomonas sp. strain M1-3, Brevibacillus sp. strain M1-5, and Bordetella sp. strain M1-6) exhibited both functional and structural stability; namely, no change in cellulose-degrading efficiency was observed, and all members stably coexisted through 20 subcultures. In order to investigate the mechanisms responsible for the observed stability, "knockout communities" in which one of the members was eliminated from SF356 were constructed. The dynamics of the community structure and the cellulose degradation profiles of these mixed cultures were determined in order to evaluate the roles played by each eliminated member in situ and its impact on the other members of the community. Integration of each result gave the following estimates of the bacterial relationships. Synergistic relationships between an anaerobic cellulolytic bacterium (C. straminisolvens CSK1) and two strains of aerobic bacteria (Pseudoxanthomonas sp. strain M1-3 and Brevibacillus sp. strain M1-5) were observed; the aerobes introduced anaerobic conditions, and C. straminisolvens CSK1 supplied metabolites (acetate and glucose). In addition, there were negative relationships, such as the inhibition of cellulose degradation by producing excess amounts of acetic acid by Clostridium sp. strain FG4, and growth suppression of Bordetella sp. strain M1-6 by Brevibacillus sp. strain M1-5. The balance of the various types of relationships (both positive and negative) is thus considered to be essential for the stable coexistence of the members of this mixed culture.

  1. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes.

    PubMed

    Sánchez-Castro, Iván; Amador-García, Ahinara; Moreno-Romero, Cristina; López-Fernández, Margarita; Phrommavanh, Vannapha; Nos, Jeremy; Descostes, Michael; Merroun, Mohamed L

    2017-01-01

    The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Algicidal activity against red-tide algaes by marine bacterial strain N3 isolated from a HABs area, southern China].

    PubMed

    Shi, Rong-jun; Huang, Hong-hui; Qi, Zhan-hui; Hu, Wei-an; Tian, Zi-yang; Dai, Ming

    2013-05-01

    A marine algicidal bacterium N3 was isolated from a HABs area in Mirs Bay, a subtropical bay, in southern China. Algicidal activity and algicidal mode against Phaeodactylum tricornutum, Scrippsiella trochoidea, Prorocentrum micans and Skeletonema costatum were observed by the liquid infection method. The results showed that there were no algicidal activities against P. tricornutum and S. costatum. However, when the bacterial volume fractions were 2% and 10% , S. trochoidea and P. micans could be killed, respectively. S. trochoidea cells which were exposed to strain N3 became irregular in shape and the cellular components lost their integrity and were decomposed. While, the P. micans cells became inflated and the cellular components aggregated, followed by cell lysis. Strain N3 killed S. trochoidea and P. micans directly, and the algicidal activities of the bacterial strain N3 was concentration-dependent. To S. trochoidea, 2% (V/V) of bacteria in algae showed the strongest algicidal activity, all of the S. trochoidea cells were killed within 120 h. But the growth rates of cells, in the 1% and 0. 1% treatment groups, were only slightly lower than that in the control group. In all treatment groups, the densities of strain N3 were in declining trends. While, to P. micans, 10% and 5% of bacteria in algae showed strong algicidal activities, 78% and 70% of the S. trochoidea were killed within 120 h, respectively. However, the number of S. trochoidea after exposure to 1% of bacterial cultures still increased up to 5 incubation days. And in the three treatment groups, the densities of strain N3 experienced a decrease process. The isolated strain N3 was identified as Bacillus sp. by morphological observation, physiological and biochemical characterization, and homology comparisons based on 16S rRNA sequences.

  3. Biodegradation of malathion, α- and β-endosulfan by bacterial strains isolated from agricultural soil in Veracruz, Mexico.

    PubMed

    Jimenez-Torres, Catya; Ortiz, Irmene; San-Martin, Pablo; Hernandez-Herrera, R Idalia

    2016-12-01

    The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO 2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.

  4. Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2.

    PubMed

    Duan, J; Huo, X; Du, W J; Liang, J D; Wang, D Q; Yang, S C

    2016-01-01

    An anaerobic kraft lignin (KL)-degrading bacterial strain was isolated from sludge of a pulp and paper mill. It was characterized as Acetoanaerobium sp. WJDL-Y2 by 16S rRNA gene sequencing. The maximum KL degradation capability of strain Y2 was determined to be 24·9% on a COD basis under an optimal condition with temperature of 31·5°C, initial pH of 6·8 and KL to nitrogen (as NH4 Cl) ratio of 6·5 by mass. Growth kinetic studies showed that the KL tolerance of strain Y2 was relatively high (Ki  = 8120·45 mg l(-1) ). Analysing KL degradation products by GC-MS revealed the formation of low-molecular-weight aromatic compounds (LMWACs), including benzene-propanoic acid, syringic acid and ferulic acid. This indicates that strain Y2 can oxidize lignin structure's p-hydroxyphenyl (H) units, guaiacyl (G) units and syringyl (S). In addition, the inoculated sample also contained low-molecular acid compounds, such as hexanoic acid, adipic acid and 2-hydroxybutyric acid, further validating strain Y2's ability to degrade KL. Kraft lignin containing effluents discharged from pulp and paper industries causes serious environmental pollution in developing countries. Due to the immense environmental adaptability and biochemical versatility, bacterial ligninolytic potential deserve to be studied for application in effluent treatment of pulp and paper industry. In this study, an anaerobic lignin-degrading bacterium, Acetoanaerobium sp. WJDL-Y2 (accession no. KF176997),was isolated from the sludge of a pulp and paper mill. Strain Y2 can play an important role in treating pulp and paper wastewater, as well as breaking down materials for biofuel and chemical production. © 2015 The Society for Applied Microbiology.

  5. Isolation, screening and molecular identification of novel bacterial strain removing methylene blue from water solutions

    NASA Astrophysics Data System (ADS)

    Kilany, Mona

    2017-11-01

    The potentially deleterious effects of methylene blue (MB) on human health drove the interest in its removal promptly. Bioremediation is an effective and eco friendly for removing MB. Soil bacteria were isolated and examined for their potential to remove MB. The most potent bacterial candidate was characterized and identified using 16S rRNA sequence technique. The evolutionary history of the isolate was conducted by maximum likelihood method. Some physiochemical parameters were optimized for maximum decolorization. Decolorization mechanism and microbial toxicity study of MB (100 mg/l) and by-products were investigated. Participation of heat killed bacteria in color adsorption have been investigated too. The bacterial isolate was identified as Stenotrophomonas maltophilia strain Kilany_MB 16S ribosomal RNA gene with 99% sequence similarity. The sequence was submitted to NCBI (Accession number = KU533726). Phylogeny depicted the phylogenetic relationships between 16S ribosomal RNA gene, partial sequence (1442 bp), of the isolated strain and other strains related to Stenotrophomonas maltophilia in the GenBank database. The optimal conditions were investigated to be pH 5 at 30 °C, after 24 h using 5 mg/l MB showing optimum decolorization percentage (61.3%). Microbial toxicity study demonstrated relative reduction in the toxicity of MB decolorized products on test bacteria. Mechanism of color removal was proved by both biosorption and biodegradation, where heat-killed and live cells showed 43 and 52% of decolorization, respectively, as a maximum value after 24-h incubation. It was demonstrated that the mechanism of color removal is by adsorption. Therefore, good performance of S maltophilia in MB color removal reinforces the exploitation of these bacteria in environmental clean-up and restoration of the ecosystem.

  6. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  7. pH feedback and phenotypic diversity within bacterial functional groups of the human gut.

    PubMed

    Kettle, Helen; Donnelly, Ruairi; Flint, Harry J; Marion, Glenn

    2014-02-07

    Microbial diversity in the human colon is very high with apparently large functional redundancy such that within each bacterial functional group there are many coexisting strains. Modelling this mathematically is problematic since strains within a functional group are often competing for the same limited number of resources and therefore competitive exclusion theory predicts a loss of diversity over time. Here we investigate, through computer simulation, a fluctuation dependent mechanism for the promotion of diversity. A variable pH environment caused by acidic by-products of bacterial growth on a fluctuating substrate coupled with small differences in acid tolerance between strains promotes diversity under both equilibrium and far-from-equilibrium conditions. Under equilibrium conditions pH fluctuations and relative nonlinearity in pH limitation among strains combine to prevent complete competitive exclusion. Under far-from-equilibrium conditions, loss of diversity through extinctions is made more difficult because pH cycling leads to fluctuations in the competitive ranking of strains, thereby helping to equalise fitness. We assume a trade-off between acid tolerance and maximum growth rate so that our microbial system consists of strains ranging from specialists to generalists. By altering the magnitude of the effect of the system on its pH environment (e.g. the buffering capacity of the colon) and the pattern of incoming resource we explore the conditions that promote diversity. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    PubMed

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  9. [Co-occurence of indol-producing bacterial strains in the vagina of women infected with Chlamydia trachomatis].

    PubMed

    Romanik, Małgorzata; Martirosian, Gayane; Wojciechowska-Wieja, Anna; Cieślik, Katarzyna; Kaźmierczak, Wojciech

    2007-08-01

    The aim of this study was to determine if cervicitis, caused by Chlamydia trachomatis (C. trachomatis), has an influence on the frequency of occurrence of selected aerobic and anaerobic bacterial strains, connected with etiology of aerobic vaginitis (AV) and bacterial vaginosis (BV). Indole-producing bacteria have received particular attention due to their possibly inductive role in chronic cervicitis caused by C. trachomatis. The swabs from vagina and cervical canal have been obtained from 122 women (aged 18-40). The presence of C. trachomatis antigen had been detected and diagnosed with the help of direct immunofluorescence, BV with Amesl and Nugent criteria, whereas the AV with Donders criteria. The identification of the bacterial strains isolated from vagina has been performed according to classical microbiological diagnostics. Disruption of vaginal microflora (4-10 in Nugent score) was determined in 11,5% of observed women. AV was diagnosed in 4.5% women with chlamydial cervicitis, BV was diagnosed in 10.9% and 5.45% of these women, on the basis of Amsel and Nugent criteria respectively. Indole-producing bacterial strains connected with BV and AV (Peptostreptococcus anaerobius, Propionibacterium acnes, Escherichia coli) have been isolated significantly more often from vagina of women infected with C trachomatis (p = 0.0405, chi2 = 4.20) and these findings confirm co-importance of indole-producing bacterial strains in cervicitis caused by C trachomatis .

  10. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  11. Survival and interaction of Escherichia coli O104:H4 on Arabidopsis thaliana and lettuce (Lactuca sativa) in comparison to E. coli O157:H7: Influence of plant defense response and bacterial capsular polysaccharide.

    PubMed

    Jang, Hyein; Matthews, Karl R

    2018-06-01

    Shiga toxin-producing Escherichia coli (STEC) has been associated with illnesses and outbreaks linked to fresh vegetables, prompting a growing public health concern. Most studies regarding interactions of STEC on fresh produce focused on E. coli O157:H7. Limited information is available about survival or fitness of E. coli O104:H4, non-O157 pathogen that was linked to one of the largest outbreaks of hemolytic uremic syndrome in 2011. In this study, survival of E. coli O104:H4 was evaluated on Arabidopsis thaliana plant and lettuce for 5 days compared with E. coli O157:H7, and expression of pathogenesis-realted gene (PR1; induction of plant defense response) was examined by reverse transcription quantitative PCR, and potential influence of capsular polysaccharide (CPS) on the bacterial fitness on plant was investigated. Populations of E. coli O104:H4 strains (RG1, C3493, and LpfA) on Arabidopsis and lettuce were significantly (P < 0.05) greater than those of E. coli O157:H7 strains (7386 and sakai) at day 5 post-inoculation, indicating E. coli O104:H4 may have better survival ability on the plants. In addition, the E. coli O104:H4 strains produced significantly (P < 0.05) higher amounts of CPS compared with the E. coli O157:H7 strains. RG1 strain (1.5-fold) initiated significantly (P < 0.05) lower expression of PR1 gene indicating induction of plant defense response compared with E. coli O157:H7 strains 7386 (2.9-fold) and sakai (2.7-fold). Collectively, the results in this study suggests that different level of CPS production and plant defense response initiated by each STEC strain might influence the bacterial survival or persistence on plants. The present study provides better understanding of survival behavior of STEC, particularly E. coli O104:H4, using a model plant and vegetable under pre-harvest conditions with plant defense response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen acidosis in vitro.

    PubMed

    Long, M; Feng, W J; Li, P; Zhang, Y; He, R X; Yu, L H; He, J B; Jing, W Y; Li, Y M; Wang, Z; Liu, G W

    2014-02-01

    The aim of this study was to examine the effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 (M. elsdenii H6F32) on ruminal pH and the lactic acid concentrations in simulated rumen acidosis conditions in vitro. A mixed culture of ruminal bacteria, buffer, and primarily degradable substrates was inoculated with equal numbers of M. elsdenii H6 or M. elsdenii H6F32. The pH and lactic acid concentrations in the mixed culture were determined at 0, 2, 4, 6, 8, 10, 12, 14, 16, and 18 h of incubation. Acid-tolerant M. elsdenii H6F32 reduced the accumulation of lactic acid and increased the pH value. These results indicate that acid-tolerant M. elsdenii H6F32 could be a potential candidate for preventing rumen acidosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. MUTAGENIC AND CLASTOGENIC PROPERTIES OF 3-CHLORO-4-(DICHLOROMETHYL)-5-HYDROXY-2(5H)-FURANONE: A POTENT BACTERIAL MUTAGEN IN DRINKING WATER

    EPA Science Inventory

    3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was found to be a direct-acting mutagen in the Ames test for strains TA1535, TA1538, TA92, TA97, TA98, TA100 and TA102. The highest mutagenic response (approximately 13,000 revertants/nmol) was seen in strain TA100. The TA...

  14. Production and Reutilization of Fluorescent Dissolved Organic Matter by a Marine Bacterial Strain, Alteromonas macleodii

    PubMed Central

    Goto, Shuji; Tada, Yuya; Suzuki, Koji; Yamashita, Youhei

    2017-01-01

    The recalcitrant fraction of marine dissolved organic matter (DOM) plays an important role in carbon storage on the earth’s surface. Bacterial production of recalcitrant DOM (RDOM) has been proposed as a carbon sequestration process. It is still unclear whether bacterial physiology can affect RDOM production. In this study, we conducted a batch culture using the marine bacterial isolate Alteromonas macleodii, a ubiquitous gammaproteobacterium, to evaluate the linkage between bacterial growth and DOM production. Glucose (1 mmol C L-1) was used as the sole carbon source, and the bacterial number, the DOM concentration in terms of carbon, and the excitation–emission matrices (EEMs) of DOM were monitored during the 168-h incubation. The incubation period was partitioned into the exponential growth (0–24 h) and stationary phases (24–168 h) based on the growth curve. Although the DOM concentration decreased during the exponential growth phase due to glucose consumption, it remained stable during the stationary phase, corresponding to approximately 4% of the initial glucose in terms of carbon. Distinct fluorophores were not evident in the EEMs at the beginning of the incubation, but DOM produced by the strain exhibited five fluorescent peaks during exponential growth. Two fluorescent peaks were similar to protein-like fluorophores, while the others could be categorized as humic-like fluorophores. All fluorophores increased during the exponential growth phase. The tryptophan-like fluorophore decreased during the stationary phase, suggesting that the strain reused the large exopolymer. The tyrosine-like fluorophore seemed to be stable during the stationary phase, implying that the production of tyrosine-containing small peptides through the degradation of exopolymers was correlated with the reutilization of the tyrosine-like fluorophore. Two humic-like fluorophores that showed emission maxima at the longer wavelength (525 nm) increased during the stationary phase

  15. The highly virulent 2006 Norwegian EHEC O103:H25 outbreak strain is related to the 2011 German O104:H4 outbreak strain.

    PubMed

    L'Abée-Lund, Trine M; Jørgensen, Hannah J; O'Sullivan, Kristin; Bohlin, Jon; Ligård, Goro; Granum, Per Einar; Lindbäck, Toril

    2012-01-01

    In 2006, a severe foodborne EHEC outbreak occured in Norway. Seventeen cases were recorded and the HUS frequency was 60%. The causative strain, Esherichia coli O103:H25, is considered to be particularly virulent. Sequencing of the outbreak strain revealed resemblance to the 2011 German outbreak strain E. coli O104:H4, both in genome and Shiga toxin 2-encoding (Stx2) phage sequence. The nucleotide identity between the Stx2 phages from the Norwegian and German outbreak strains was 90%. During the 2006 outbreak, stx(2)-positive O103:H25 E. coli was isolated from two patients. All the other outbreak associated isolates, including all food isolates, were stx-negative, and carried a different phage replacing the Stx2 phage. This phage was of similar size to the Stx2 phage, but had a distinctive early phage region and no stx gene. The sequence of the early region of this phage was not retrieved from the bacterial host genome, and the origin of the phage is unknown. The contaminated food most likely contained a mixture of E. coli O103:H25 cells with either one of the phages.

  16. The Highly Virulent 2006 Norwegian EHEC O103:H25 Outbreak Strain Is Related to the 2011 German O104:H4 Outbreak Strain

    PubMed Central

    L'Abée-Lund, Trine M.; Jørgensen, Hannah J.; O'Sullivan, Kristin; Bohlin, Jon; Ligård, Goro; Granum, Per Einar; Lindbäck, Toril

    2012-01-01

    In 2006, a severe foodborne EHEC outbreak occured in Norway. Seventeen cases were recorded and the HUS frequency was 60%. The causative strain, Esherichia coli O103:H25, is considered to be particularly virulent. Sequencing of the outbreak strain revealed resemblance to the 2011 German outbreak strain E. coli O104:H4, both in genome and Shiga toxin 2-encoding (Stx2) phage sequence. The nucleotide identity between the Stx2 phages from the Norwegian and German outbreak strains was 90%. During the 2006 outbreak, stx2-positive O103:H25 E. coli was isolated from two patients. All the other outbreak associated isolates, including all food isolates, were stx-negative, and carried a different phage replacing the Stx2 phage. This phage was of similar size to the Stx2 phage, but had a distinctive early phage region and no stx gene. The sequence of the early region of this phage was not retrieved from the bacterial host genome, and the origin of the phage is unknown. The contaminated food most likely contained a mixture of E. coli O103:H25 cells with either one of the phages. PMID:22403614

  17. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    PubMed

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  18. Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution.

    PubMed

    Zhu, Ling; Shahid, Muhammad A; Markham, John; Browning, Glenn F; Noormohammadi, Amir H; Marenda, Marc S

    2018-02-02

    The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.

  19. Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α-amylase producing strain

    PubMed Central

    Fooladi, J; Sajjadian, A

    2010-01-01

    Background Screening is a routine procedure for isolation of microorganisms which are able to produce special metabolites. Purified thermostable α-amylase from bacterial sources is widely used in different industries. In this study we analyzed samples collected from three different hot springs in Iran to detect any strains capable of producing thermostable α-amylase. Materials and Methods Hot water samples from Larijan (67°C, pH 6.5), Mahallat (46°C, pH 7), and Meshkinshahr (82°C, pH 6), were cultivated in screening starch agar plates and incubated at 65°C for 24 hours. Thereafter, the plates were stained with Gram's iodine solution. Results and Discussion The bacterial colonies from the Meshkinshahr hot-spring produced the largest haloforming zone. Based on the phenotypic tests, the strain was identified as Bacillus sp. The culture condition was optimized for biosynthesis of α-amylase. The enzyme was produced at maximum level when it was incubated at 70°C in the presence of soluble starch (1%) at pH 6. The addition of calcium (10 mM) and peptone (1%) to the mineral medium, shortened the lag period and improved the growth and α-amylase synthesis. The addition of glucose (1%) to the culture greatly diminished the syntheses of α -amylase. Importantly, the enzyme extract retained 100% activity when incubated for 45 minutes at 100°C. Conclusion The Meshkinshahr hot-spring is rich in the Bacillus spp thermostable α-amylase producing strain of the thermophilic bacterial population. Iranian hot-springs like Meshkinshahr, have large microbial storages and can be used as sources of different biological products like enzymes. The enzyme which was produced with Bacillus sp. could hydrolyse polymers like starch and was used at laboratory scale successfully. PMID:22347550

  20. Genome comparison of three serovar 5 pathogenic strains of Haemophilus parasuis: insights into an evolving swine pathogen.

    PubMed

    Bello-Ortí, Bernardo; Aragon, Virginia; Pina-Pedrero, Sonia; Bensaid, Albert

    2014-09-01

    Haemophilus parasuis is the causative agent of Glässer's disease, a systemic disorder characterized by polyarthritis, polyserositis and meningitis in pigs. Although it is well known that H. parasuis serovar 5 is the most prevalent serovar associated with the disease, the genetic differences among strains are only now being discovered. Genomes from two serovar 5 strains, SH0165 and 29755, are already available. Here, we present the draft genome of a third H. parasuis serovar 5 strain, the formal serovar 5 reference strain Nagasaki. An in silico genome subtractive analysis with full-length predicted genes of the three H. parasuis serovar 5 strains detected 95, 127 and 95 strain-specific genes (SSGs) for Nagasaki, SH0165 and 29755, respectively. We found that the genomic diversity within these three strains was high, in part because of a high number of mobile elements. Furthermore, a detailed analysis of large sequence polymorphisms (LSPs), encompassing regions ranging from 2 to 16 kb, revealed LSPs in virulence-related elements, such as a Toll-IL receptor, the AcrA multidrug efflux protein, an ATP-binding cassette (ABC) transporter, lipopolysaccharide-synthetizing enzymes and a tripartite ATP-independent periplasmic (TRAP) transporter. The whole-genome codon adaptation index (CAI) was also calculated and revealed values similar to other well-known bacterial pathogens. In addition, whole-genome SNP analysis indicated that nucleotide changes tended to be increased in membrane-related genes. This analysis provides further evidence that the genome of H. parasuis has been subjected to multiple lateral gene transfers (LGTs) and to fine-tuning of virulence factors, and has the potential for accelerated genome evolution. © 2014 The Authors.

  1. Draft genome sequence of two Shingopyxis sp. strains H107 and H115 isolated from a chloraminated drinking water distriburion system simulator

    EPA Pesticide Factsheets

    Draft genome sequence of two Shingopyxis sp. strains H107 and H115 isolated from a chloraminated drinking water distriburion system simulatorThis dataset is associated with the following publication:Gomez-Alvarez, V., S. Pfaller , and R. Revetta. Draft Genome of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator. Genome Announcements. American Society for Microbiology, Washington, DC, USA, 4(2): e00183-16, (2016).

  2. Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain.

    PubMed

    Dave, Mabel N; Silva, Juan E; Eliçabe, Ricardo J; Jeréz, María B; Filippa, Verónica P; Gorlino, Carolina V; Autenrieth, Stella; Autenrieth, Ingo B; Di Genaro, María S

    2016-11-01

    Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Growth advantage of Escherichia coli O104:H4 strains on 5-N-acetyl-9-O-acetyl neuraminic acid as a carbon source is dependent on heterogeneous phage-Borne nanS-p esterases.

    PubMed

    Saile, Nadja; Schwarz, Lisa; Eißenberger, Kristina; Klumpp, Jochen; Fricke, Florian W; Schmidt, Herbert

    2018-06-01

    Enterohemorrhagic E. coli (EHEC) are serious bacterial pathogens which are able to cause a hemorrhagic colitis or the life-threatening hemolytic-uremic syndrome (HUS) in humans. EHEC strains can carry different numbers of phage-borne nanS-p alleles that are responsible for acetic acid release from mucin from bovine submaxillary gland and 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac 2 ), a carbohydrate present in mucin. Thus, Neu5,9Ac 2 can be transformed to 5-N-acetyl neuraminic acid, an energy source used by E. coli strains. We hypothesize that these NanS-p proteins are involved in competitive growth of EHEC in the gastrointestinal tract of humans and animals. The aim of the current study was to demonstrate and characterize the nanS-p alleles of the 2011 E. coli O104:H4 outbreak strain LB226692 and analyze whether the presence of multiple nanS-p alleles in the LB226692 genome causes a competitive growth advantage over a commensal E. coli strain. We detected and characterized five heterogeneous phage-borne nanS-p alleles in the genome of E. coli O104:H4 outbreak strain LB226692 by in silico analysis of its genome. Furthermore, successive deletion of all nanS-p alleles, subsequent complementation with recombinant NanS-p13-His, and in vitro co-culturing experiments with the commensal E. coli strain AMC 198 were conducted. We could show that nanS-p genes of E. coli O104:H4 are responsible for growth inhibition of strain AMC 198, when Neu5,9Ac 2 was used as sole carbon source in co-culture. The results of this study let us suggest that multiple nanS-p alleles may confer a growth advantage by outcompeting other E. coli strains in Neu5,9Ac 2 rich environments, such as mucus in animal and human gut. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth.

    PubMed

    Jeong, Hyung Uk; Mun, Hye Yeon; Oh, Hyung Keun; Kim, Seung Bum; Yang, Kwang Yeol; Kim, Iksoo; Lee, Hyang Burm

    2010-08-01

    To identify novel bioinsecticidal agents, a bacterial strain, Serratia sp. EML-SE1, was isolated from a dead larva of the lepidopteran diamondback moth (Plutella xylostella) collected from a cabbage field in Korea. In this study, the insecticidal activity of liquid cultures in Luria-Bertani broth (LBB) and nutrient broth (NB) of a bacterial strain, Serratia sp. EML-SE1 against thirty 3rd and 4th instar larvae of the diamondback moth was investigated on a Chinese cabbage leaf housed in a round plastic cage (Ø 10 x 6 cm). 72 h after spraying the cabbage leaf with LBB and NB cultures containing the bacterial strain, the mortalities of the larvae were determined to be 91.7% and 88.3%, respectively. In addition, the insecticidal activity on potted cabbage containing 14 leaves in a growth cage (165 x 83 x 124 cm) was found to be similar to that of the plastic cage experiment. The results of this study provided valuable information on the insecticidal activity of the liquid culture of a Serratia species against the diamondback moth.

  5. StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees.

    PubMed

    Roosaare, Märt; Vaher, Mihkel; Kaplinski, Lauris; Möls, Märt; Andreson, Reidar; Lepamets, Maarja; Kõressaar, Triinu; Naaber, Paul; Kõljalg, Siiri; Remm, Maido

    2017-01-01

    Fast, accurate and high-throughput identification of bacterial isolates is in great demand. The present work was conducted to investigate the possibility of identifying isolates from unassembled next-generation sequencing reads using custom-made guide trees. A tool named StrainSeeker was developed that constructs a list of specific k -mers for each node of any given Newick-format tree and enables the identification of bacterial isolates in 1-2 min. It uses a novel algorithm, which analyses the observed and expected fractions of node-specific k -mers to test the presence of each node in the sample. This allows StrainSeeker to determine where the isolate branches off the guide tree and assign it to a clade whereas other tools assign each read to a reference genome. Using a dataset of 100 Escherichia coli isolates, we demonstrate that StrainSeeker can predict the clades of E. coli with 92% accuracy and correct tree branch assignment with 98% accuracy. Twenty-five thousand Illumina HiSeq reads are sufficient for identification of the strain. StrainSeeker is a software program that identifies bacterial isolates by assigning them to nodes or leaves of a custom-made guide tree. StrainSeeker's web interface and pre-computed guide trees are available at http://bioinfo.ut.ee/strainseeker. Source code is stored at GitHub: https://github.com/bioinfo-ut/StrainSeeker.

  6. Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes.

    PubMed

    Ye, N-F; Lü, F; Shao, L-M; Godon, J-J; He, P-J

    2007-10-01

    To estimate the effect of pH on the structures of bacterial community during fermentation of vegetable wastes and to investigate the relationship between bacterial community dynamics and product distribution. The bacterial communities in five batch tests controlled at different pH values [uncontrolled (about pH 4), 5, 6, 7 and 8] were monitored by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP). The two fingerprinting methods provided consistent results and principal component analysis indicated a close similarity of bacterial community at pH 7 and 8 in addition to those at pH 4-6. This clustering also corresponded to dominant metabolic pathway. Thus, pH 7-8 shifted from alcohol-forming to acid-forming, especially butyric acid, whereas both alcohol-forming and acid-forming dominated at pH 5-6, and at pH 4, fermentation was inhibited. Shannon-weaver index was calculated to analyse the DGGE profiles, which revealed that the bacterial diversities at pH 7 and 8 were the highest while those at pH 5 and 4 (uncontrolled) were the lowest. According to sequencing results of the bands excised from DGGE gels, lactic acid bacteria and Clostridium sp. were predominant at all pH values, but varieties in species were observed as pH changed and time prolonged. The bacterial community during fermentation was materially influenced by pH and the diverse product distribution was related to the shift of different bacterial population. The study reveals that the impact of pH on fermentation product distribution is implemented primarily by changes of bacterial community. It also provides information about the comparison of two fingerprinting methods, DGGE and SSCP.

  7. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    PubMed

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  8. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  9. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  10. Bacterial CS2 Hydrolases from Acidithiobacillus thiooxidans Strains Are Homologous to the Archaeal Catenane CS2 Hydrolase

    PubMed Central

    Smeulders, Marjan J.; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R. M.; Hermans, John; Jetten, Mike S. M.

    2013-01-01

    Carbon disulfide (CS2) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS2 is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO2) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS2-polluted airstreams. We report on the mechanism of bacterial CS2 conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS2 hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS2 hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS2 hydrolases within the β-CA family. Unlike CAs, the CS2 hydrolases did not hydrate CO2 but converted CS2 and COS with H2O to H2S and CO2. The CS2 hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS2 hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS2 hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS2 hydrolases based on the structure of Acidianus strain A1-3 CS2 hydrolase suggest that the A. thiooxidans strain G8 CS2 hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation. PMID:23836868

  11. Adherence of Escherichia coli O157:H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions

    PubMed Central

    Yin, Xianhua; Feng, Yanni; Wheatcroft, Roger; Chambers, James; Gong, Joshua; Gyles, Carlton L.

    2011-01-01

    The objectives of this study were to determine the effect of bacterial culture conditions on adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 in vivo to pig enterocytes and to compare the results with adherence in vitro to cultured HEp-2 and IPEC-J2 cells. Growth of O157:H7 in MacConkey broth (MB) resulted in almost no adherence to both HEp-2 and IPEC-J2 cells; prior exposure of the bacteria to pH 2.5 reduced adherence. There was greater adherence by bacteria from static cultures than by those from shaken cultures and by bacteria cultured in brain–heart infusion (BHI) plus NaHCO3 (BHIN) than by bacteria cultured in BHI. In contrast, in pig ileal loops, bacteria cultured in MB adhered well to enterocytes, and prior exposure to pH 2.5 had no effect on adherence. Among several media tested for their effect on bacterial adherence in the pig intestine, MB and BHIN proved to be the best. Bacterial adherence was dose-dependent and was more extensive in the ileum than in the colon. This study demonstrated that there are remarkable differences between culture conditions that promote adherence of an EHEC O157:H7 strain in vitro and in vivo, that culture conditions profoundly affect adherence to epithelial cells in vitro and in vivo, and that pig ileal loops are better suited to adherence studies than are colon loops. PMID:21731177

  12. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    PubMed

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The

  13. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    PubMed Central

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  14. A novel hemagglutinin protein produced in bacteria protects chickens against H5N1 highly pathogenic avian influenza viruses by inducing H5 subtype-specific neutralizing antibodies

    PubMed Central

    Sączyńska, Violetta; Romanik, Agnieszka; Florys, Katarzyna; Cecuda-Adamczewska, Violetta; Kęsik-Brodacka, Małgorzata; Śmietanka, Krzysztof; Olszewska, Monika; Domańska-Blicharz, Katarzyna; Minta, Zenon; Szewczyk, Bogusław; Płucienniczak, Grażyna; Płucienniczak, Andrzej

    2017-01-01

    The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of

  15. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany.

    PubMed

    Harder, Timm; Maurer-Stroh, Sebastian; Pohlmann, Anne; Starick, Elke; Höreth-Böntgen, Detlef; Albrecht, Karin; Pannwitz, Gunter; Teifke, Jens; Gunalan, Vithiagaran; Lee, Raphael T C; Sauter-Louis, Carola; Homeier, Timo; Staubach, Christoph; Wolf, Carola; Strebelow, Günter; Höper, Dirk; Grund, Christian; Conraths, Franz J; Mettenleiter, Thomas C; Beer, Martin

    2015-05-01

    Highly pathogenic avian influenza (H5N8) virus, like the recently described H5N8 strain from Korea, was detected in November 2014 in farmed turkeys and in a healthy common teal (Anas crecca) in northeastern Germany. Infected wild birds possibly introduced this virus.

  16. Immunogenicity of Salmonella enterica serovar Enteritidis virulence protein, InvH, and cross-reactivity of its antisera with Salmonella strains.

    PubMed

    Dehghani, Behzad; Rasooli, Iraj; Gargari, Seyed Latif Mousavi; Nadooshan, Mohammad Reza Jalali; Owlia, Parviz; Nazarian, Shahram

    2013-02-22

    Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 10(4) LD(50). The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Functional Characterization of Probiotic Potential of Novel Pigmented Bacterial Strains for Aquaculture Applications.

    PubMed

    Jinendiran, Sekar; Boopathi, Seenivasan; Sivakumar, Natesan; Selvakumar, Gopal

    2017-11-27

    The bioprospecting proficient of novel pigmented probiotic strains with respect to aquaculture industry was unexplored hitherto. In this study, we investigated the probiotic potential of novel pigmented bacterial strains isolated from the indigenous soil sediments in their vicinal habitats, which were screened for their antimicrobial activity against aquatic pathogens using agar well diffusion assay. The strains namely Exiguobacterium acetylicum (S01), Aeromonas veronii (V03), and Chryseobacterium joostei (V04) were phenotypically identified and confirmed by 16S rRNA gene sequence analysis. Further characterization revealed that strains S01 and V03 survive relatively in lower pH and higher bile salt concentrations and possess good adherence ability and broad-spectrum antibiotic susceptibility. The isolate S01 exhibited the higher adhesion ability to hydrocarbons (82%) and mannose-specific adhesion (msa) gene expression. Additionally, the probiotic effects were evaluated in Artemia nauplii fed with algae supplemented with S01, V03, and V04 strains (2.7 × 10 7  cfu/mL) for 3 days under axenic environment. We observed a significant increase (p < 0.05) in the survival rate of Artemia nauplii treated with S01 (83 ± 5%) and V03 (55 ± 5%), whereas the survival rate was only 30 ± 0% in the untreated group. Moreover, the individual length (IL) was increased in treated group S01 (156.7 ± 2.2 μm), V03 (146.1 ± 3.4 μm), and V04 (134.4 ± 2.5 μm) compared with untreated group (116.0 ± 4.8 μm). Our results revealed that E. acetylicum S01 exhibits desirable functional probiotic attributes compared to A. veronii and C. joostei and it would be a promising probiotic strain, which can be efficiently used in the aquaculture applications.

  18. CAMBerVis: visualization software to support comparative analysis of multiple bacterial strains.

    PubMed

    Woźniak, Michał; Wong, Limsoon; Tiuryn, Jerzy

    2011-12-01

    A number of inconsistencies in genome annotations are documented among bacterial strains. Visualization of the differences may help biologists to make correct decisions in spurious cases. We have developed a visualization tool, CAMBerVis, to support comparative analysis of multiple bacterial strains. The software manages simultaneous visualization of multiple bacterial genomes, enabling visual analysis focused on genome structure annotations. The CAMBerVis software is freely available at the project website: http://bioputer.mimuw.edu.pl/camber. Input datasets for Mycobacterium tuberculosis and Staphylocacus aureus are integrated with the software as examples. m.wozniak@mimuw.edu.pl Supplementary data are available at Bioinformatics online.

  19. Synergistic Degradation of Linuron by a Bacterial Consortium and Isolation of a Single Linuron-Degrading Variovorax Strain

    PubMed Central

    Dejonghe, Winnie; Berteloot, Ellen; Goris, Johan; Boon, Nico; Crul, Katrien; Maertens, Siska; Höfte, Monica; De Vos, Paul; Verstraete, Willy; Top, Eva M.

    2003-01-01

    The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture. PMID:12620840

  20. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    PubMed Central

    2009-01-01

    Background The Lactic Acid Bacteria (LAB) are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD) are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i) the initial cultivable LAB strain diversity in the human gut, and (ii) the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156) contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p < 0.05). Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be evaluated using a high

  1. Bacteria meets influenza A virus: A bioluminescence mouse model of Escherichia coli O157:H7 following influenza A virus/Puerto Rico/8/34 (H1N1) strain infection.

    PubMed

    Wang, Zhongyi; Chi, Hang; Wang, Xiwen; Li, Wenliang; Li, Zhiping; Li, Jiaming; Fu, Yingying; Lu, Bing; Xia, Zhiping; Qian, Jun; Liu, Linna

    2018-01-01

    Objective To develop a bioluminescence-labelled bacterial infection model to monitor the colonization and clearance process of Escherichia coli O157:H7 in the lungs of mice following influenza A virus/Puerto Rico/8/34 (H1N1) strain (IAV/PR8) infection. Methods BALB/c mice were administered IAV/PR8 or 0.01 M phosphate-buffered saline (PBS; pH 7.4) intranasally 4 days prior to intranasal administration of 1 × 10 7 colony-forming units (CFU) of E. coli O157:H7-lux. Whole-body bioluminescent signals were monitored at 10 min, 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Lung bioluminescent signals and bacterial load (CFU/g) were monitored at 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Results Prior IAV/PR8 infection of mice resulted in a higher level of bacterial colonization and a lower rate of bacterial clearance from the lungs compared with mice treated with PBS. There were also consistent findings between the bioluminescence imaging and the CFU measurements in terms of identifying bacterial colonization and monitoring the clearance dynamics of E. coli O157:H7-lux in mouse lungs. Conclusion This novel bioluminescence-labelled bacterial infection model rapidly detected bacterial colonization of the lungs and monitored the clearance dynamics of E. coli O157:H7-lux following IAV/PR8 infection.

  2. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    PubMed Central

    Kapczynski, Darrell R.; Tumpey, Terrence M.; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tretyakova, Irina; Pushko, Peter

    2016-01-01

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus. PMID:26868083

  4. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    PubMed

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  5. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  6. Tracking bacterial infection of macrophages using a novel red-emission pH sensor.

    PubMed

    Jin, Yuguang; Tian, Yanqing; Zhang, Weiwen; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-10-01

    The relationship between bacteria and host phagocytic cells is key to the induction of immunity. To visualize and monitor bacterial infection, we developed a novel bacterial membrane permeable pH sensor for the noninvasive monitoring of bacterial entry into murine macrophages. The pH sensor was constructed using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) as an electron-withdrawing group and aniline as an electron-donating group. A piperazine moiety was used as the pH-sensitive group. Because of the strong electron-donating and -withdrawing units conjugated in the sensing moiety M, the fluorophore emitted in the red spectral window, away from the autofluorescence regions of the bacteria. Following the engulfment of sensor-labeled bacteria by macrophages and their subsequent merger with host lysosomes, the resulting low-pH environment enhances the fluorescence intensity of the pH sensors inside the bacteria. Time-lapse analysis of the fluorescent intensity suggested significant heterogeneity of bacterial uptake among macrophages. In addition, qRT-PCR analysis of the bacterial 16 S rRNA gene expression within single macrophage cells suggested that the 16 S rRNA of the bacteria was still intact 120 min after they had been engulfed by macrophages. A toxicity assay showed that the pH sensor has no cytotoxicity towards either E. coli or murine macrophages. The sensor shows good repeatability, a long lifetime, and a fast response to pH changes, and can be used for a variety of bacteria.

  7. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  8. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  9. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis

    PubMed Central

    Molina-Ramírez, Carlos; Castro, Margarita; Osorio, Marlon; Torres-Taborda, Mabel; Gómez, Beatriz; Zuluaga, Robin; Gómez, Catalina; Gañán, Piedad; Rojas, Orlando J.; Castro, Cristina

    2017-01-01

    Bacterial cellulose (BC) is a polymer obtained by fermentation with microorganism of different genera. Recently, new producer species have been discovered, which require identification of the most important variables affecting cellulose production. In this work, the influence of different carbon sources in BC production by a novel low pH-resistant strain Komagataeibacter medellinensis was established. The Hestrin-Schramm culture medium was used as a reference and was compared to other media comprising glucose, fructose, and sucrose, used as carbon sources at three concentrations (1, 2, and 3% w/v). The BC yield and dynamics of carbon consumption were determined at given fermentation times during cellulose production. While the carbon source did not influence the BC structural characteristics, different production levels were determined: glucose > sucrose > fructose. These results highlight considerations to improve BC industrial production and to establish the BC property space for applications in different fields. PMID:28773001

  10. Escherichia coli strains expressing H12 antigens demonstrate an increased ability to attach to abiotic surfaces as compared with E. coli strains expressing H7 antigens.

    PubMed

    Goulter, Rebecca M; Taran, Elena; Gentle, Ian R; Gobius, Kari S; Dykes, Gary A

    2014-07-01

    The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  12. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    PubMed

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Synthesis and biological evaluation of novel 5-aryl-4-(5-nitrofuran-2-yl)-pyrimidines as potential anti-bacterial agents.

    PubMed

    Verbitskiy, Egor V; Baskakova, Svetlana A; Gerasimova, Natal'ya A; Evstigneeva, Natal'ya P; Zil'berberg, Natal'ya V; Kungurov, Nikolay V; Kravchenko, Marionella A; Skornyakov, Sergey N; Pervova, Marina G; Rusinov, Gennady L; Chupakhin, Oleg N; Charushin, Valery N

    2017-07-01

    A facile two-step synthetic approach to fluorinated and non-fluorinated 5-aryl-4-(5-nitrofuran-2-yl)-pyrimidines from readily available 5-bromo-4-(furan-2-yl)pyrimidine has been developed. All synthesized compounds were screened in vitro for their antibacterial activities against twelve various bacterial strains. It is demonstrated that some of these compounds exhibited significant antibacterial activities against strains Neisseria gonorrhoeae and Staphylococcus aureus, comparable and even higher with that commercial drug Spectinomycin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications.

    PubMed

    Della-Bianca, Bianca E; de Hulster, Erik; Pronk, Jack T; van Maris, Antonius J A; Gombert, Andreas K

    2014-12-01

    Selected Saccharomyces cerevisiae strains are used in Brazil to produce the hitherto most energetically efficient first-generation fuel ethanol. Although genome and some transcriptome data are available for some of these strains, quantitative physiological data are lacking. This study investigates the physiology of S. cerevisiae strain PE-2, widely used in the Brazilian fuel ethanol industry, in comparison with CEN.PK113-7D, a reference laboratory strain, focusing on tolerance to low pH and acetic acid stress. Both strains were grown in anaerobic bioreactors, operated as batch, chemostat or dynamic continuous cultures. Despite their different backgrounds, biomass and product formation by the two strains were similar under a range of conditions (pH 5 or pH < 3, with or without 105 mM acetic acid added). PE-2 displayed a remarkably higher fitness than CEN.PK113-7D during batch cultivation on complex Yeast extract - Peptone - Dextrose medium at low pH (2.7). Kinetics of viability loss of non-growing cells, incubated at pH 1.5, indicated a superior survival of glucose-depleted PE-2 cells, when compared with either CEN.PK113-7D or a commercial bakers' strain. These results indicate that the sulfuric acid washing step, used in the fuel ethanol industry to decrease bacterial contamination due to non-aseptic operation, might have exerted an important selective pressure on the microbial populations present in such environments. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Screening host proteins required for bacterial adherence after H9N2 virus infection.

    PubMed

    Ma, Li-Li; Sun, Zhen-Hong; Xu, Yu-Lin; Wang, Shu-Juan; Wang, Hui-Ning; Zhang, Hao; Hu, Li-Ping; Sun, Xiao-Mei; Zhu, Lin; Shang, Hong-Qi; Zhu, Rui-Liang; Wei, Kai

    2018-01-01

    H9N2 subtype low pathogenic avian influenza virus (LPAIV) is distributed worldwide and causes great economic losses in the poultry industry, especially when complicated with other bacterial infections. Tissue damages caused by virus infection provide an opportunity for bacteria invasion, but this mechanism is not sufficient for low pathogenic strains. Moreover, although H9N2 virus infection was demonstrated to promote bacterial infection in several studies, its mechanism remained unclear. In this study, infection experiments in vivo and in vitro demonstrated that the adhesion of Escherichia coli (E. coli) to host cells significantly increased after H9N2 virus infection, and this increase was not caused by pathological damages. Subsequently, we constructed a late chicken embryo infection model and used proteomics techniques to analyze the expression of proteins associated with bacterial adhesion after H9N2 virus infection. A total of 279 significantly differential expressed proteins were detected through isobaric tags for relative and absolute quantitation (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analysis. The results of Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed proteins were enriched in host innate immunity; cell proliferation, differentiation, and apoptosis; and pathogenicity-related signaling pathways. Finally, we screened out several proteins, such as TGF-β1, integrins, cortactin, E-cadherin, vinculin, and fibromodulin, which were probably associated with bacterial adhesion. The study analyzed the mechanism of secondary bacterial infection induced by H9N2 virus infection from a novel perspective, which provided theoretical and data support for investigating the synergistic infection mechanism between the H9N2 virus and bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Structure activity relationship of C-2 ether substituted 1,5-naphthyridine analogs of oxabicyclooctane-linked novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-5).

    PubMed

    Singh, Sheo B; Kaelin, David E; Meinke, Peter T; Wu, Jin; Miesel, Lynn; Tan, Christopher M; Olsen, David B; Lagrutta, Armando; Fukuda, Hideyuki; Kishii, Ryuta; Takei, Masaya; Takeuchi, Tomoko; Takano, Hisashi; Ohata, Kohei; Kurasaki, Haruaki; Nishimura, Akinori; Shibata, Takeshi; Fukuda, Yasumichi

    2015-09-01

    Oxabicyclooctane linked novel bacterial topoisomerase inhibitors (NBTIs) are new class of recently reported broad-spectrum antibacterial agents. They target bacterial DNA gyrase and topoisomerase IV and bind to a site different than quinolones. They show no cross-resistance to known antibiotics and provide opportunity to combat drug-resistant bacteria. A structure activity relationship of the C-2 substituted ether analogs of 1,5-naphthyridine oxabicyclooctane-linked NBTIs are described. Synthesis and antibacterial activities of a total of 63 analogs have been summarized representing alkyl, cyclo alkyl, fluoro alkyl, hydroxy alkyl, amino alkyl, and carboxyl alkyl ethers. All compounds were tested against three key strains each of Gram-positive and Gram-negative bacteria as well as for hERG binding activities. Many key compounds were also tested for the functional hERG activity. Six compounds were evaluated for efficacy in a murine bacteremia model of Staphylococcus aureus infection. Significant tolerance for the ether substitution (including polar groups such as amino and carboxyl) at C-2 was observed for S. aureus activity however the same was not true for Enterococcus faecium and Gram-negative strains. Reduced clogD generally showed reduced hERG activity and improved in vivo efficacy but was generally associated with decreased overall potency. One of the best compounds was hydroxy propyl ether (16), which mainly retained the potency, spectrum and in vivo efficacy of AM8085 associated with the decreased hERG activity and improved physical property. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Molecular Characterization of H.pylori Strains and Biomarkers in Gastric Cancer

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0274 TITLE: Molecular Characterization of H.pylori Strains and Biomarkers in Gastric Cancer PRINCIPAL INVESTIGATOR...SUBTITLE Molecular Characterization of H.pylori Strains and Biomarkers in Gastric Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0274 5c...different individuals develop different gastroduodenal diseases. Our objectives are (1) to determine genetic features present in Hp GC isolates not

  18. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    PubMed Central

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  19. Substrate utilization profiles of bacterial strains in plankton from the River Warnow, a humic and eutrophic river in north Germany.

    PubMed

    Freese, Heike M; Eggert, Anja; Garland, Jay L; Schumann, Rhena

    2010-01-01

    Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i. e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy.

  20. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    PubMed

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor.

    PubMed

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    2007-04-01

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  2. Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  3. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa

    PubMed Central

    Venter, Marietjie; Treurnicht, Florette K.; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A.; Thomas, Juno; Blumberg, Lucille

    2017-01-01

    Background Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Methods Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42 000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Results Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. Conclusion (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. PMID:28934458

  4. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  5. Role of overexpressed CFA/I fimbriae in bacterial swimming

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, SangMu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  6. Role of overexpressed CFA/I fimbriae in bacterial swimming.

    PubMed

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  7. Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community.

    PubMed

    Al-Dhabaan, Fahad Abdullah M; Bakhali, Ali Hassan

    2017-05-01

    Routine manufacture, detonation and disposal of explosives in land and groundwater have resulted in complete pollution. Explosives are xenobiotic compounds, being toxic to biological systems, and their recalcitrance leads to persistence in the environment. The methods currently used for the remediation of explosive contaminated sites are expensive and can result in the formation of toxic products. The present study aimed to investigate the bacterial strains using the Biolog plates in the soil from the Riyadh community. The microbial strains were isolated using the spread plate technique and were identified using the Biolog method. In this study we have analyzed from bacterial families of soil samples, obtained from the different sites in 5 regions at Explosive Institute. Our results conclude that Biolog MicroPlates were developed for the rapid identification of bacterial isolates by sole-carbon source utilization and can be used for the identification of bacteria. Out of five communities, only four families of bacteria indicate that the microbial community lacks significant diversity in region one from the Riyadh community in Saudi Arabia. More studies are needed to be carried out in different regions to validate our results.

  8. Evaluation of vaginal pH for detection of bacterial vaginosis

    PubMed Central

    Hemalatha, R.; Ramalaxmi, Baru Anantha; Swetha, Eluru; Balakrishna, N.; Mastromarino, Paola

    2013-01-01

    Background & objectives: Bacterial vaginosis (BV) is highly prevalent among women in reproductive age group. Little information exists on routine vaginal pH measurement in women with BV. We undertook this study to assess the utility of vaginal pH determination for initial evaluation of bacterial vaginosis. Methods: In this cross-sectional study vaginal swabs were collected from women with complaints of white discharge, back ache and pain abdomen attending a government hospital and a community health clinic, and subjected to vaginal pH determination, Gram stain, wet mount and whiff test. Nugent score and Amsel criteria were used for BV confirmation. Results: Of the 270 women included in the analysis, 154 had BV based on Nugents’ score. The mean vaginal pH in women with BV measured by pH strips and pH glove was 5 and 4.9, respectively. The vaginal pH was significantly higher in women with BV. Vaginal discharge was prevalent in 84.8 per cent women, however, only 56.8 per cent of these actually had BV by Nugent score (NS). Presence of clue cells and positive whiff test were significant for BV. Vaginal pH >4.5 by pH strips and pH Glove had a sensitivity of 72 and 79 per cent and specificity of 60 and 53 per cent, respectively to detect BV. Among the combination criteria, clue cells and glove pH >4.5 had highest sensitivity and specificity to detect BV. Interpretation & conclusions: Vaginal pH determination is relatively sensitive, but less specific in detecting women with BV. Inclusion of whiff test along with pH test reduced the sensitivity, but improved specificity. Both, the pH strip and pH glove are equally suitable for screening women with BV on outpatient basis. PMID:24135180

  9. A comparison of Shiga-toxin 2 bacteriophage from classical enterohemorrhagic Escherichia coli serotypes and the German E. coli O104:H4 outbreak strain.

    PubMed

    Laing, Chad R; Zhang, Yongxiang; Gilmour, Matthew W; Allen, Vanessa; Johnson, Roger; Thomas, James E; Gannon, Victor P J

    2012-01-01

    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors.

  10. A Comparison of Shiga-Toxin 2 Bacteriophage from Classical Enterohemorrhagic Escherichia coli Serotypes and the German E. coli O104:H4 Outbreak Strain

    PubMed Central

    Laing, Chad R.; Zhang, Yongxiang; Gilmour, Matthew W.; Allen, Vanessa; Johnson, Roger; Thomas, James E.; Gannon, Victor P. J.

    2012-01-01

    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors. PMID:22649523

  11. Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture.

    PubMed

    Singh, Shail; Chandra, R; Patel, D K; Reddy, M M K; Rai, Vibhuti

    2008-09-01

    Mixed culture of two bacterial strains Bacillus sp. and Serratia marcescens showed potential pentachlorophenol (PCP) degradation and decolorisation of pulp paper mill effluent. The physico-chemical quality of pulp paper mill effluent has been analyzed after 168 h incubation period degraded by mixed culture. The study revealed that it has decreased high load of BOD, COD, TS, TDS, TSS, sulphate, phosphate, total nitrogen, total phenols, metals and different salts (i.e. chloride, sodium, nitrate, potassium) at 168 h incubation period. PCP degradation in pulp paper mill effluent was confirmed by HPLC analysis. Mixed culture was found to degrade PCP up to (94%) present in pulp paper mill effluent with 1% glucose and 0.5% peptone (w/v) at 30+/-1 degrees C, pH 8.0+/-0.2 at 120 rpm in 168 h incubation period. The simultaneous release of chloride ion up to 1,200 mg/l at 168 h emphasized the bacterial dechlorination in the medium. The pulp paper mill effluent degradation was also supported by decline in pH, AOX (absorbable organic halides), color, D.O., BOD, COD and PCP. The analysis of pulp paper mill effluent degradation products by GC-MS analysis revealed the formation of low molecular weight compound like 2-chlorophenol (RT=3.8 min) and tetrachlorohydroquinone (RT=11.86 min) from PCP extracted degraded sample. Further, mixed culture may be used for bioremediation of PCP containing pulp paper mill waste in the environment.

  12. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI...

  13. Isolation of an H5N8 Highly Pathogenic Avian Influenza Virus Strain from Wild Birds in Seoul, a Highly Urbanized Area in South Korea.

    PubMed

    Kwon, Jung-Hoon; Lee, Dong-Hun; Jeong, Jei-Hyun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Sol; Gwon, Gyeong-Bin; Lee, Sang-Won; Choi, In-Soo; Song, Chang-Seon

    2017-07-01

    Asian-lineage H5 highly pathogenic avian influenza viruses (HPAIV) have caused recurrent outbreaks in poultry and wild birds. In January 2014, H5N8 HPAIV caused outbreaks in South Korea and subsequently spread to East Asia, Europe, and North America. We report the isolation of an H5N8 HPAIV strain from wild birds in Seoul, the most-developed city in South Korea. We analyzed the complete genome sequence of this isolate and estimated its origin using a phylogenetic analysis. The Seoul H5N8 isolate clustered phylogenetically with strains isolated from migratory wild birds but was distinct from Korean poultry isolates. This H5N8 virus was likely introduced into the urbanized city by migratory wild birds. Therefore, wild bird habitats in urbanized areas should be carefully monitored for HPAIV.

  14. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  15. Amplicon Sequencing of the slpH Locus Permits Culture-Independent Strain Typing of Lactobacillus helveticus in Dairy Products

    PubMed Central

    Moser, Aline; Wüthrich, Daniel; Bruggmann, Rémy; Eugster-Meier, Elisabeth; Meile, Leo; Irmler, Stefan

    2017-01-01

    The advent of massive parallel sequencing technologies has opened up possibilities for the study of the bacterial diversity of ecosystems without the need for enrichment or single strain isolation. By exploiting 78 genome data-sets from Lactobacillus helveticus strains, we found that the slpH locus that encodes a putative surface layer protein displays sufficient genetic heterogeneity to be a suitable target for strain typing. Based on high-throughput slpH gene sequencing and the detection of single-base DNA sequence variations, we established a culture-independent method to assess the biodiversity of the L. helveticus strains present in fermented dairy food. When we applied the method to study the L. helveticus strain composition in 15 natural whey cultures (NWCs) that were collected at different Gruyère, a protected designation of origin (PDO) production facilities, we detected a total of 10 sequence types (STs). In addition, we monitored the development of a three-strain mix in raclette cheese for 17 weeks. PMID:28775722

  16. Protective Efficacy of an H5N1 Inactivated Vaccine Against Challenge with Lethal H5N1, H5N2, H5N6, and H5N8 Influenza Viruses in Chickens.

    PubMed

    Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan

    2016-05-01

    The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses.

  17. Phylogenetic and molecular analysis of highly pathogenic avian influenza H5N8 and H5N5 viruses detected in Poland in 2016-2017.

    PubMed

    Świętoń, Edyta; Śmietanka, Krzysztof

    2018-06-19

    Sixty-five poultry outbreaks and sixty-eight events in wild birds were reported during the highly pathogenic H5N8/H5N5 avian influenza epidemic in Poland in 2016-2017. The analysis of all gene segment sequences of selected strains revealed cocirculation of at least four different genome configurations (genotypes) generated through reassortment of clade 2.3.4.4 H5N8 viruses detected in Russia and China in mid-2016. The geographical and temporal distribution of three H5N8 genotypes indicates separate introductions. Additionally, an H5N5 virus with a different gene configuration was detected in wild birds. The compilation of the results with those from studies on the virus' diversity in Germany, Italy and the Netherlands revealed that Europe was affected by at least eight different H5N8/H5N5 reassortants. Analysis of the HA gene sequence of a larger subset of samples showed its diversification corresponding to the genotype classification. The close relationship between poultry and wild bird strains from the same locations observed in several cases points to wild birds as the primary source of the outbreaks in poultry. © 2018 Blackwell Verlag GmbH.

  18. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    PubMed

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    PubMed

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  20. 1,2-Benzisoselenazol-3(2H)-one Derivatives As a New Class of Bacterial Urease Inhibitors.

    PubMed

    Macegoniuk, Katarzyna; Grela, Ewa; Palus, Jerzy; Rudzińska-Szostak, Ewa; Grabowiecka, Agnieszka; Biernat, Monika; Berlicki, Łukasz

    2016-09-08

    Urease inhibitors are considered promising compounds for the treatment of ureolytic bacterial infections, particularly infections resulting from Helicobacter pylori in the gastric tract. Herein, we present the synthesis and the inhibitory activity of novel and highly effective organoselenium compounds as inhibitors of Sporosarcina pasteurii and Helicobacter pylori ureases. These studied compounds represent a class of competitive reversible urease inhibitors. The most active compound, 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen), displayed Ki values equal to 2.11 and 226 nM against S. pasteurii and H. pylori enzymes, respectively, indicating ebselen as one of the most potent low-molecular-weight inhibitors of bacterial ureases reported to date. Most of these molecules penetrated through the cell membrane of the Gram-negative bacteria Escherichia coli (pGEM::ureOP) in vitro. Furthermore, whole-cell studies on the H. pylori J99 reference strain confirmed the high efficiency of the examined organoselenium compounds as urease inhibitors against pathogenic bacteria.

  1. Effectiveness of 5-Pyrrolidone-2-carboxylic Acid and Copper Sulfate Pentahydrate Association against Drug Resistant Staphylococcus Strains.

    PubMed

    Governa, Paolo; Miraldi, Elisabetta; De Fina, Gianna; Biagi, Marco

    2016-04-01

    Bacterial resistance is an ongoing challenge for pharmacotherapy and pharmaceutical chemistry. Staphylococcus aureus is the bacterial species which makes it most difficult to treat skin and soft tissue infections and it is seen in thousands of hospitalization cases each year. Severe but often underrated infectious diseases, such as complicated nasal infections, are primarily caused by MRSA and S. epidermidis too. With the aim of studying new drugs with antimicrobial activity and effectiveness on drug resistant Staphylococcus strains, our attention in this study was drawn on the activity of a new association between two natural products: 5-pyrrolidone-2-carboxylic acid (PCA), naturally produced by certain Lactobacillus species, and copper sulfate pentahydrate (CS). The antimicrobial susceptibility test was conducted taking into account 12 different Staphylococcus strains, comprising 6 clinical isolates and 6 resistant strains. PCA 4%, w/w, and CS 0.002%, w/w, association in distilled water solution was found to have bactericidal activity against all tested strains. Antimicrobial kinetics highlighted that PCA 4%, w/w, and CS 0.002% association could reduce by 5 log10 viable bacterial counts of MRSA and oxacillin resistant S. epidennidis in less than 5 and 3 minutes respectively. Microscopic investigations suggest a cell wall targeting mechanism of action. Being very safe and highly tolerated, the natural product PCA and CS association proved to be a promising antimicrobial agent to treat Staphylococcus related infections.

  2. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    PubMed

    O'Farrell, Brian; Haase, Jana K; Velayudhan, Vimalkumar; Murphy, Ronan A; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  3. Transforming Microbial Genotyping: A Robotic Pipeline for Genotyping Bacterial Strains

    PubMed Central

    Velayudhan, Vimalkumar; Murphy, Ronan A.; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost. PMID:23144721

  4. Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels.

    PubMed

    Guan, Xuefang; Xu, Qingxian; Zheng, Yi; Qian, Lei; Lin, Bin

    To screen for and characterize lactic acid bacteria strains with the ability to produce fermented milk and reduce cholesterol levels. The strains were isolated from traditional fermented milk in China. In vitro and in vivo evaluation of cholesterol-reduction were used to identify and verify strains of interest. Characteristics were analyzed using spectrophotometry and plate counting assays. The isolate HLX37 consistently produced fermented milk with strong cholesterol-reducing properties was identified as Lactobacillus plantarum (accession number: KR105940) and was thus selected for further study. The cholesterol reduction by strain HLX37 was 45.84%. The isolates were acid-tolerant at pH 2.5 and bile-tolerant at 0.5% (w/v) in simulated gastric juice (pH 2.5) for 2h and in simulated intestinal fluid (pH 8.0) for 3h. The auto-aggregation rate increased to 87.74% after 24h, while the co-aggregation with Escherichia coli DH5 was 27.76%. Strain HLX37 was intrinsically resistant to antibiotics such as penicillin, tobramycin, kanamycin, streptomycin, vancomycin and amikacin. Compared with rats in the model hyperlipidemia group, the total cholesterol content in the serum and the liver as well as the atherogenic index of rats in the viable fermented milk group significantly decreased by 23.33%, 32.37% and 40.23%, respectively. Fewer fat vacuoles and other lesions in liver tissue were present in both the inactivated and viable fermented milk groups compared to the model group. These studies indicate that strain HLX37 of L. plantarum demonstrates probiotic potential, potential for use as a candidate for commercial use for promoting health. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Hardness does not affect the physiological responses of wild and domestic strains of diploid and triploid rainbow trout Oncorhynchus mykiss to short-term exposure to pH 9.5.

    PubMed

    Thompson, W A; Rodela, T M; Richards, J G

    2016-08-01

    This study examined the effects of water hardness on the physiological responses associated with high pH exposure in multiple strains of diploid and triploid rainbow trout Oncorhynchus mykiss. To accomplish this, three wild strains and one domesticated strain of diploid and triploid O. mykiss were abruptly transferred from control soft water (City of Vancouver dechlorinated tap water; pH 6·7; [CaCO3 ] < 17·9 mg l(-1) ) to control soft water (handling control), high pH soft water (pH5; [CaCO3 ] < 17·9 mg l(-1) ), or high pH hard water (pH5; [CaCO3 ] = 320 mg l(-1) ) followed by sampling at 24 h for physiological measurements. There was a significant effect of ploidy on loss of equilibrium (LOE) over the 24 h exposure, with only triploid O. mykiss losing equilibrium at high pH in both soft and hard water. Furthermore, exposure to pH5 resulted in significant decreases in plasma sodium and chloride, and increases in plasma and brain ammonia with no differences between soft and hard water. There was no significant effect of strain on LOE, but there were significant differences between strains in brain ammonia and plasma cortisol. Overall, there were no clear protective effects of hardness on high pH exposure in these strains of O. mykiss. © 2016 The Fisheries Society of the British Isles.

  6. Rapid identification of ESKAPE bacterial strains using an autonomous microfluidic device.

    PubMed

    Ho, Jack Y; Cira, Nate J; Crooks, John A; Baeza, Josue; Weibel, Douglas B

    2012-01-01

    This article describes Bacteria ID Chips ('BacChips'): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm(2). After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics.

  7. Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device

    PubMed Central

    Ho, Jack Y.; Cira, Nate J.; Crooks, John A.; Baeza, Josue; Weibel, Douglas B.

    2012-01-01

    This article describes Bacteria ID Chips (‘BacChips’): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm2. After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics. PMID:22848451

  8. Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5.

    PubMed

    Shariati J, Vahid; Malboobi, Mohammad Ali; Tabrizi, Zeinab; Tavakol, Elahe; Owilia, Parviz; Safari, Maryam

    2017-11-15

    In this study, we provide a comparative genomic analysis of Pantoea agglomerans strain P5 and 10 closely related strains based on phylogenetic analyses. A next-generation shotgun strategy was implemented using the Illumina HiSeq 2500 technology followed by core- and pan-genome analysis. The genome of P. agglomerans strain P5 contains an assembly size of 5082485 bp with 55.4% G + C content. P. agglomerans consists of 2981 core and 3159 accessory genes for Coding DNA Sequences (CDSs) based on the pan-genome analysis. Strain P5 can be grouped closely with strains PG734 and 299 R using pan and core genes, respectively. All the predicted and annotated gene sequences were allocated to KEGG pathways. Accordingly,  genes involved in plant growth-promoting (PGP) ability, including phosphate solubilization, IAA and siderophore production, acetoin and 2,3-butanediol synthesis and bacterial secretion, were assigned. This study provides an in-depth view of the PGP characteristics of strain P5, highlighting its potential use in agriculture as a biofertilizer.

  9. Prolonged excretion of a low-pathogenicity H5N2 avian influenza virus strain in the Pekin duck

    PubMed Central

    Carranza-Flores, José Manuel; Padilla-Noriega, Luis; Loza-Rubio, Elizabeth

    2013-01-01

    H5N2 strains of low-pathogenicity avian influenza virus (LPAIV) have been circulating for at least 17 years in some Mexican chicken farms. We measured the rate and duration of viral excretion from Pekin ducks that were experimentally inoculated with an H5N2 LPAIV that causes death in embryonated chicken eggs (A/chicken/Mexico/2007). Leghorn chickens were used as susceptible host controls. The degree of viral excretion was evaluated with real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) using samples from oropharyngeal and cloacal swabs. We observed prolonged excretion from both species of birds lasting for at least 21 days. Prolonged excretion of LPAIV A/chicken/Mexico/2007 is atypical. PMID:23820212

  10. Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11.

    PubMed

    Moreira, Irina S; Bessa, Vânia S; Murgolo, Sapia; Piccirillo, Clara; Mascolo, Giuseppe; Castro, Paula M L

    2018-05-15

    Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory pharmaceutical which is detected in the environment at concentrations which can pose a threat to living organisms. In this study, biodegradation of DCF was assessed using the bacterial strain Labrys portucalensis F11. Biotransformation of 70% of DCF (1.7-34 μM), supplied as the sole carbon source, was achieved in 30 days. Complete degradation was reached via co-metabolism with acetate, over a period of 6 days for 1.7 µM and 25 days for 34 μM of DCF. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. DCF degradation by strain F11 proceeds mainly by hydroxylation reactions; the formation of benzoquinone imine species seems to be a central step in the degradation pathway. Moreover, this is the first report that identified conjugated metabolites, resulting from sulfation reactions of DCF by bacteria. Stoichiometric liberation of chlorine and no detection of metabolites at the end of the experiments are strong indications of complete degradation of DCF by strain F11. To the best of our knowledge this is the first report that points to complete degradation of DCF by a single bacterial strain isolated from the environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells

    PubMed Central

    2012-01-01

    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection. PMID:23157617

  12. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells.

    PubMed

    Mussá, Tufária; Rodríguez-Cariño, Carolina; Sánchez-Chardi, Alejandro; Baratelli, Massimiliano; Costa-Hurtado, Mar; Fraile, Lorenzo; Domínguez, Javier; Aragon, Virginia; Montoya, María

    2012-11-16

    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.

  13. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    PubMed

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. [Ecological treatment of bacterial vaginosis and vaginitis with Bio-three].

    PubMed

    Chimura, T

    1998-12-01

    Ecological treatment of bacterial vaginosis and vaginitis with a Bio-three was studied, and the following results were obtained. 1. A total of 16 women with bacterial vaginosis and vaginitis were treated with intravaginal application of 2 g of Bio-three (E. faecalis T-110, C. butyricum TO-A, B. mesentericus TO-A, pH 6.9 +/- 0.3). The effect of the treatment was evaluated 3 days after administration by monitoring the vaginal discharge and bacteriological assessment. 2. The clinical improvement was evaluated and the decreases of vaginal discharge and vaginal redness were significant and vaginal pH was lowered significantly (5.29 +/- 0.24 vs. 4.31 +/- 0.37, p < 0.05). In the vaginal discharge 35 strains of bacteria were detected, but 3 days after administration, 16/30 strains of Gram-positive bacteria, and 2 strains of Gram-negative bacteria disappeared. As for the overall bacteriological effects, 7/16 cases were eradicated, 1 case was partly eradicated, 6 cases were replaced. These findings indicated that the Bio-three therapy was effective in both clinical and bacteriological responses.

  15. Platelet-rich plasma affects bacterial growth in vitro.

    PubMed

    Mariani, Erminia; Filardo, Giuseppe; Canella, Valentina; Berlingeri, Andrea; Bielli, Alessandra; Cattini, Luca; Landini, Maria Paola; Kon, Elizaveta; Marcacci, Maurilio; Facchini, Andrea

    2014-09-01

    Platelet-rich plasma (PRP), a blood derivative rich in platelets, is a relatively new technique used in tissue regeneration and engineering. The increased quantity of platelets makes this formulation of considerable value for their role in tissue healing and microbicidal activity. This activity was investigated against five of the most important strains involved in nosocomial infections (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Streptococcus faecalis) to understand the prophylactic role of pure (P)-PRP. Microbicidal proteins released from activated P-PRP platelets were also determined. The microbicidal activity of P-PRP and platelet-poor plasma (PPP) was evaluated on different concentrations of the five bacterial strains incubated for 1, 2, 4 and 18 h and plated on agar for 18-24 h. P-PRP and PPP-released microbicidal proteins were evaluated by means of multiplex bead-based immunoassays. P-PRP and PPP inhibited bacterial growth for up to 2 h of incubation. The effect of P-PRP was significantly higher than that of PPP, mainly at the low seeding concentrations and/or shorter incubation times, depending on the bacterial strain. Chemokine (C-C motif) ligand-3, chemokine (C-C motif) ligand-5 and chemokine (C-X-C motif) ligand-1 were the molecules mostly related to Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus faecalis inhibition. Escherichia coli and Klebsiella pneumoniae were less influenced. The present results show that P-PRP might supply an early protection against bacterial contaminations during surgical interventions because the inhibitory activity is already evident from the first hour of treatment, which suggests that physiological molecules supplied in loco might be important in the time frame needed for the activation of the innate immune response. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa.

    PubMed

    Iqbal, Aneela; Arshad, Muhammad; Hashmi, Imran; Karthikeyan, Raghupathy; Gentry, Terry J; Schwab, Arthur Paul

    2017-06-13

    The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L -1 ; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L -1 . Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L -1 . However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L -1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10 -2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10 -2  h -1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.

  17. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1.

    PubMed

    Leng, Yifei; Bao, Jianguo; Chang, Gaofeng; Zheng, Han; Li, Xingxing; Du, Jiangkun; Snow, Daniel; Li, Xu

    2016-11-15

    Although several abiotic processes have been reported that can transform antibiotics, little is known about whether and how microbiological processes may degrade antibiotics in the environment. This work isolated one tetracycline degrading bacterial strain, Stenotrophomonas maltophilia strain DT1, and characterized the biotransformation of tetracycline by DT1 under various environmental conditions. The biotransformation rate was the highest when the initial pH was 9 and the reaction temperature was at 30°C, and can be described using the Michaelis-Menten model under different initial tetracycline concentrations. When additional substrate was present, the substrate that caused increased biomass resulted in a decreased biotransformation rate of tetracycline. According to disk diffusion tests, the biotransformation products of tetracycline had lower antibiotic potency than the parent compound. Six possible biotransformation products were identified, and a potential biotransformation pathway was proposed that included sequential removal of N-methyl, carbonyl, and amine function groups. Results from this study can lead to better estimation of the fate and transport of antibiotics in the environment and has the potential to be utilized in designing engineering processes to remove tetracycline from water and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Factors influencing bacterial adhesion to contact lenses.

    PubMed

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  19. Factors influencing bacterial adhesion to contact lenses

    PubMed Central

    Dutta, Debarun; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220

  20. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    PubMed

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable

  1. H5N1-SeroDetect EIA and rapid test: a novel differential diagnostic assay for serodiagnosis of H5N1 infections and surveillance.

    PubMed

    Khurana, Surender; Sasono, Pretty; Fox, Annette; Nguyen, Van Kinh; Le, Quynh Mai; Pham, Quang Thai; Nguyen, Tran Hien; Nguyen, Thanh Liem; Horby, Peter; Golding, Hana

    2011-12-01

    Continuing evolution of highly pathogenic (HP) H5N1 influenza viruses in wild birds with transmission to domestic poultry and humans poses a pandemic threat. There is an urgent need for a simple and rapid serological diagnostic assay which can differentiate between antibodies to seasonal and H5N1 strains and that could provide surveillance tools not dependent on virus isolation and nucleic acid technologies. Here we describe the establishment of H5N1 SeroDetect enzyme-linked immunosorbent assay (ELISA) and rapid test assays based on three peptides in HA2 (488-516), PB1-F2 (2-75), and M2e (2-24) that are highly conserved within H5N1 strains. These peptides were identified by antibody repertoire analyses of H5N1 influenza survivors in Vietnam using whole-genome-fragment phage display libraries (GFPDLs). To date, both platforms have demonstrated high levels of sensitivity and specificity in detecting H5N1 infections (clade 1 and clade 2.3.4) in Vietnamese patients as early as 7 days and up to several years postinfection. H5N1 virus-uninfected individuals in Vietnam and the United States, including subjects vaccinated with seasonal influenza vaccines or with confirmed seasonal virus infections, did not react in the H5N1-SeroDetect assays. Moreover, sera from individuals vaccinated with H5N1 subunit vaccine with moderate anti-H5N1 neutralizing antibody titers did not react positively in the H5N1-SeroDetect ELISA or rapid test assays. The simple H5N1-SeroDetect ELISA and rapid tests could provide an important tool for large-scale surveillance for potential exposure to HP H5N1 strains in both humans and birds.

  2. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  3. Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties.

    PubMed

    Di Candilo, M; Bonatti, P M; Guidetti, C; Focher, B; Grippo, C; Tamburini, E; Mastromei, G

    2010-01-01

    To study the effect of selected bacterial strains on hemp water-retting and properties of retted fibre. The trials were performed in laboratory tanks. The traditional water-retting process, without inoculum addition, was compared to a process modified by inoculating water tanks with two selected pectinolytic bacteria: the anaerobic strain Clostridium sp. L1/6 and the aerobic strain Bacillus sp. ROO40B. Six different incubation times were compared. Half the fibre obtained from each tank was combed. Micromorphological analyses were performed by scanning electron microscopy on uncombed and combed fibres. Moreover, organoleptic and chemical analyses of uncombed fibres were performed. The inoculum, besides speeding up the process, significantly improved the fibre quality. The fibre was not damaged by mechanical hackling, thanks to the good retting level obtained by the addition of selected strains, differently to what happened with the traditionally retted fibre. The best fibre quality was obtained after 3-4 days of retting with the addition of the bacterial inoculum. Retting is the major limitation to an efficient production of high-quality hemp fibres. The water-retting process and fibre quality were substantially improved by simultaneously inoculating water tanks with two selected pectinolytic strains.

  4. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography

    PubMed Central

    Nayfach, Stephen; Rodriguez-Mueller, Beltran; Garud, Nandita

    2016-01-01

    We present the Metagenomic Intra-species Diversity Analysis System (MIDAS), which is an integrated computational pipeline for quantifying bacterial species abundance and strain-level genomic variation, including gene content and single-nucleotide polymorphisms (SNPs), from shotgun metagenomes. Our method leverages a database of more than 30,000 bacterial reference genomes that we clustered into species groups. These cover the majority of abundant species in the human microbiome but only a small proportion of microbes in other environments, including soil and seawater. We applied MIDAS to stool metagenomes from 98 Swedish mothers and their infants over one year and used rare SNPs to track strains between hosts. Using this approach, we found that although species compositions of mothers and infants converged over time, strain-level similarity diverged. Specifically, early colonizing bacteria were often transmitted from an infant’s mother, while late colonizing bacteria were often transmitted from other sources in the environment and were enriched for spore-formation genes. We also applied MIDAS to 198 globally distributed marine metagenomes and used gene content to show that many prevalent bacterial species have population structure that correlates with geographic location. Strain-level genetic variants present in metagenomes clearly reveal extensive structure and dynamics that are obscured when data are analyzed at a coarser taxonomic resolution. PMID:27803195

  5. Biofilm formation by Shiga toxin-producing Escherichia coli O157:H7 and Non-O157 strains and their tolerance to sanitizers commonly used in the food processing environment.

    PubMed

    Wang, Rong; Bono, James L; Kalchayanand, Norasak; Shackelford, Steven; Harhay, Dayna M

    2012-08-01

    Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens. Among these, E. coli O157:H7 is the most frequently isolated STEC serotype responsible for foodborne diseases. However, the non-O157 serotypes have been associated with serious outbreaks and sporadic diseases as well. It has been shown that various STEC serotypes are capable of forming biofilms on different food or food contact surfaces that, when detached, may lead to cross-contamination. Bacterial cells at biofilm stage also are more tolerant to sanitizers compared with their planktonic counterparts, which makes STEC biofilms a serious food safety concern. In the present study, we evaluated the potency of biofilm formation by a variety of STEC strains from serotypes O157:H7, O26:H11, and O111:H8; we also compared biofilm tolerance with two types of common sanitizers, a quaternary ammonium chloride-based sanitizer and chlorine. Our results demonstrated that biofilm formation by various STEC serotypes on a polystyrene surface was highly strain-dependent, whereas the two non-O157 serotypes showed a higher potency of pellicle formation at air-liquid interfaces on a glass surface compared with serotype O157:H7. Significant reductions of viable biofilm cells were achieved with sanitizer treatments. STEC biofilm tolerance to sanitization was strain-dependent regardless of the serotypes. Curli expression appeared to play a critical role in STEC biofilm formation and tolerance to sanitizers. Our data indicated that multiple factors, including bacterial serotype and strain, surface materials, and other environmental conditions, could significantly affect STEC biofilm formation. The high potential for biofilm formation by various STEC serotypes, especially the strong potency of pellicle formation by the curli-positive non-O157 strains with high sanitization tolerance, might contribute to bacterial colonization on food contact surfaces, which may result in downstream product

  6. [Characterization of a bacterial biocontrol strain 1404 and its efficacy in controlling postharvest citrus anthracnose].

    PubMed

    Wang, Qian; Hu, Chunjin; Ke, Fanggang; Huang, Siliang; Li, Qiqin

    2010-09-01

    Anthracnose caused by Colletotrichum gloeosporioides (Penz.) Sacc. is a main disease in citrus production. To develop an effective biocontrol measure against citrus postharvest anthracnose, we screened antagonistic microbes and obtained a bacterial strain 1404 from the rhizospheric soil of chili plants in Nanning city, Guangxi, China. The objectives of the present study were to: (1) identify and characterize the antagonistic bacterium; and (2) to evaluate the efficacy of the antagonistic strain in controlling citrus postharvest anthracnose disease. Strain 1404 was identified by comparing its 16S rDNA sequence with related bacteria from GenBank database, as well as analyzing its morphological, physiological and biochemical characters. The antagonistic stability of the strain 1404 was determined by continuously transferring it on artificial media. The effect of the strain on suppressing citrus anthracnose at postharvest stage was tested by stab inoculation method. The 16S rDNA of strain 1404 was amplified with primers PF1 (5'-AGAGTTTGATCATGGCTCAG-3') and PR1 (5'-TACGGTTACCTTGTTACGACTT-3') and its sequence submitted to GenBank (accession number: GU361113). Strain 1404 clustered with the GenBank-derived Brevibacillus brevis strains in the 16S-rDNA-sequence-based phylogenetic tree at 100% bootstrap level. The morphological traits, physiological and biochemical characters of strain 1404 agreed with that of Brevibacillus brevis. Less change in the suppressive ability of antagonist against growth of Colletotrichum gloeosporioides was observed during four continuous transfers on artificial media. The average control efficacy of the strain was 64. 9 % against the disease 20 days after the antagonist application. Strain 1404 was identified as Brevibacillus brevis based on its morphological traits, phyiological and biochemical characters as well as 16S rDNA sequence analysis. The antagonist was approved to be a promising biocontrol agent. This is the first report of

  7. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    PubMed

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  8. Substituted 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones as novel anti-MRSA agents: synthesis, SAR, and in-vitro assessment.

    PubMed

    Diwakar, Santosh D; Bhagwat, Sachin S; Shingare, Murlidhar S; Gill, Charansing H

    2008-08-15

    In search for a new antibacterial agent with improved antimicrobial spectrum and potency, we designed and synthesized a series of novel 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones 7a-h by convergent synthesis approach. All the synthesized compounds were assayed for their in-vitro antibacterial activities against gram-negative and gram-positive bacteria. The preliminary structure-activity relationship, to elucidate the essential structure requirements for the antimicrobial activity that results into anti-MRSA (methicillin-resistant S. aureus) potential, has been described. Amongst the synthesized compounds 7d, 7e, 7f and 7h were found to possess activity against methicillin-resistant S. aureus in addition to the activity against other bacterial strains such as E. faecalis, S. pneumoniae, and E. coli.

  9. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  10. Evaluation of indigenous bacterial strains for biocontrol of the frogeye leaf spot of soya bean caused by Cercospora sojina.

    PubMed

    Simonetti, E; Carmona, M A; Scandiani, M M; García, A F; Luque, A G; Correa, O S; Balestrasse, K B

    2012-08-01

    Assessment of biological control of Cercospora sojina, causal agent of frogeye leaf spot (FLS) of soya bean, using three indigenous bacterial strains, BNM297 (Pseudomonas fluorescens), BNM340 and BNM122 (Bacillus amyloliquefaciens). From cultures of each bacterial strain, cell suspensions and cell-free supernatants were obtained and assayed to determine their antifungal activity against C. sojina. Both mycelial growth and spore germination in vitro were more strongly inhibited by bacterial cell suspensions than by cell-free supernatants. The Bacillus strains BNM122 and BNM340 inhibited the fungal growth to a similar degree (I ≈ 52-53%), while cells from P. fluorescens BNM297 caused a lesser reduction (I ≈ 32-34%) in the fungus colony diameter. The foliar application of the two Bacillus strains on soya bean seedlings, under greenhouse conditions, significantly reduced the disease severity with respect to control soya bean seedlings and those sprayed with BNM297. This last bacterial strain was not effective in controlling FLS in vivo. Our data demonstrate that the application of antagonistic bacteria may be a promising and environmentally friendly alternative to control the FLS of soya bean.   To our knowledge, this is the first report of biological control of C. sojina by using native Bacillus strains. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  11. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3.

    PubMed

    Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung; Hiramatsu, Keiichi

    2013-12-01

    Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10(-6) or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate.

  12. Comprehensive Identification of Mutations Responsible for Heterogeneous Vancomycin-Intermediate Staphylococcus aureus (hVISA)-to-VISA Conversion in Laboratory-Generated VISA Strains Derived from hVISA Clinical Strain Mu3

    PubMed Central

    Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung

    2013-01-01

    Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10−6 or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate. PMID:24018261

  13. Optimisation of culture composition for glyphosate degradation by Burkholderia vietnamiensis strain AQ5-12.

    PubMed

    Manogaran, Motharasan; Shukor, Mohd Yunus; Yasid, Nur Adeela; Khalil, Khalilah Abdul; Ahmad, Siti Aqlima

    2018-02-01

    The herbicide glyphosate is often used to control weeds in agricultural lands. However, despite its ability to effectively kill weeds at low cost, health problems are still reported due to its toxicity level. The removal of glyphosate from the environment is usually done by microbiological process since chemical process of degradation is ineffective due to the presence of highly stable bonds. Therefore, finding glyphosate-degrading microorganisms in the soil of interest is crucial to remediate this glyphosate. Burkholderia vietnamiensis strain AQ5-12 was found to have glyphosate-degrading ability. Optimisation of biodegradation condition was carried out utilising one factor at a time (OFAT) and response surface methodology (RSM). Five parameters including carbon and nitrogen source, pH, temperature and glyphosate concentration were optimised. Based on OFAT result, glyphosate degradation was observed to be optimum at fructose concentration of 6, 0.5 g/L ammonia sulphate, pH 6.5, temperature of 32 °C and glyphosate concentration at 100 ppm. Meanwhile, RSM resulted in a better degradation with 92.32% of 100 ppm glyphosate compared to OFAT. The bacterium was seen to tolerate up to 500 ppm glyphosate while increasing concentration results in reduced degradation and bacterial growth rate.

  14. Isolation and characterization of a novel 2-methyl-4-chlorophenoxyacetic acid-degrading Enterobacter sp. strain SE08.

    PubMed

    Tan, Lin; Hu, Qiulong; Xiong, Xingyao; Su, Xiaojun; Huang, Yanning; Jiang, Ziwei; Zhou, Qingming; Zhao, Songyi; Zeng, Wei-ai

    2013-10-01

    A bacterial strain (SE08) capable of utilizing 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole carbon and energy source for growth was isolated by continuous enrichment culturing in minimal salt medium (MSM) from a long term MCPA exposed soil. This bacterial strain was identified as Enterobacter sp. based on morphological, physiological and biochemical tests, as well as 16S rRNA sequence analysis. Its ability to degrade MCPA was determined using high performance liquid chromatography. The strain SE08 can tolerate unusually high MCPA concentrations (125-2000mg/L). The influences of culturing factors (initial concentration, pH, and temperature) on the bacterial growth and substrate degradation were studied. The results showed that the optimal MCPA degradation occurred at an MCPA concentration of 500mg/L, 30°C and pH 6.0. Under these conditions, 68.5 percent of MCPA in MSM was degraded by SE08, and the OD600nm reached 0.64 after culturing for 72h. The degradation of MCPA could be enhanced by addition of both carbon and nitrogen sources. At an initial MCPA concentration of 500mg/L, when 5g/L glucose and 2.5g/L yeast extract were added into the MSM media, the MCPA degradation was significantly increased to 83.8 percent, and OD600nm was increased to 1.09 after incubation at 30°C and pH 6.0 for 72h. This is the first study showing that an Enterobacter sp. strain is capable of degrading MCPA, which might provide a new approach for the remediation of MCPA contaminated soil and contribute to the limited knowledge about the function of Enterobacter species. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  15. Mutagenic and clastogenic properties of 3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone: a potent bacterial mutagen in drinking water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, J.R.; Blazak, W.F.; Knohl, R.B.

    1987-01-01

    3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was found to be a direct-acting mutagen in the Ames test for strains TA1535, TA1538, TA92, TA97, TA98, TA100 and TA102. The highest mutagenic response (approximately 13,000 revertants/nmol) was seen in strain TA100. The TA100 response was six- to tenfold higher than in TA98, TA97, and TA102, and 100- to 500-fold higher than in TA1535, TA92, and TA1538. The addition of a 9,000 x g supernatant fraction (S-9) from livers of polychlorinated biphenyl-treated rats, along with cofactors for NADPH generation, resulted in a 90% reduction in the TA100 mutagenicity. MX induced chromosomal aberrations in Chinese hamster ovary cellsmore » after 6-8 hr exposure without S-9 at a dose as low as 4 micrograms/ml, and after 2 hr exposure with S-9 at a dose of 75 micrograms/ml. The oral dose of MX lethal to 50% (LD50) in Swiss-Webster mice was determined to be 128 mg/kg. MX did not induce micronuclei in mouse bone marrow when administered by oral gavage at doses up to 70% of the LD50.« less

  16. Direct Sequence Detection of Structured H5 Influenza Viral RNA

    PubMed Central

    Kerby, Matthew B.; Freeman, Sarah; Prachanronarong, Kristina; Artenstein, Andrew W.; Opal, Steven M.; Tripathi, Anubhav

    2008-01-01

    We describe the development of sequence-specific molecular beacons (dual-labeled DNA probes) for identification of the H5 influenza subtype, cleavage motif, and receptor specificity when hybridized directly with in vitro transcribed viral RNA (vRNA). The cloned hemagglutinin segment from a highly pathogenic H5N1 strain, A/Hanoi/30408/2005(H5N1), isolated from humans was used as template for in vitro transcription of sense-strand vRNA. The hybridization behavior of vRNA and a conserved subtype probe was characterized experimentally by varying conditions of time, temperature, and Mg2+ to optimize detection. Comparison of the hybridization rates of probe to DNA and RNA targets indicates that conformational switching of influenza RNA structure is a rate-limiting step and that the secondary structure of vRNA dominates the binding kinetics. The sensitivity and specificity of probe recognition of other H5 strains was calculated from sequence matches to the National Center for Biotechnology Information influenza database. The hybridization specificity of the subtype probes was experimentally verified with point mutations within the probe loop at five locations corresponding to the other human H5 strains. The abundance frequencies of the hemagglutinin cleavage motif and sialic acid recognition sequences were experimentally tested for H5 in all host viral species. Although the detection assay must be coupled with isothermal amplification on the chip, the new probes form the basis of a portable point-of-care diagnostic device for influenza subtyping. PMID:18403607

  17. Synthesis of a novel alginate-rubber joint immobilization strains H-1 and its application in removal of Pb (II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Huidong; Huo, Kaili; Li, Xiaolei; Zhang, Lin; Yun, Yueqing; Song, Lei; Bai, Runying; Liu, Yuhong

    2018-02-01

    In this study, a novel alginate-rubber-strains immobilized beads (ARSIBs) was synthesized at the optimum conditions that the concentration of sodium alginate was 4%; the volume of bacterial suspension was 75%; the quality of rubber powder was 3.2%; the crosslinking time was 24 h by the orthogonal experiments. The optimum conditions for Pb (II) adsorption were 1.2% ARSIBs, 100 mg L-1 initial concentrations, pH 5 and 3 h contact time. The equilibrium data were well fitted by the Freundlich isotherm model. The biosorption process was nearly consistent with the pseudo-second-order model. Meanwhile, the biosorption mechanism could be that Pb (II) was adsorbed by the hydroxyl and carboxyl, finally precipitated with phosphate in the form of NaPb4(PO4)3, Pb5(PO4)3(OH) and Pb(H2PO4)2 based on the spectra of FTIR and XRD, respectively. In addition, the stability of ARSIBs was enhanced due to the addition to the rubber powder in the process of wastewater treatment.

  18. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction

    PubMed Central

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J. Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd_Allah, Elsayed Fathi

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion. PMID:29023528

  19. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    PubMed

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  20. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.

    PubMed

    Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L

    2014-01-28

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions

  1. Influenza A(H5N8) virus isolation in Russia, 2014.

    PubMed

    Marchenko, Vasiliy Y; Susloparov, Ivan M; Kolosova, Nataliya P; Goncharova, Nataliya I; Shipovalov, Andrey V; Durymanov, Alexander G; Ilyicheva, Tatyana N; Budatsirenova, Lubov V; Ivanova, Valentina K; Ignatyev, Georgy A; Ershova, Svetlana N; Tulyahova, Valeriya S; Mikheev, Valeriy N; Ryzhikov, Alexander B

    2015-11-01

    In this study, we report the isolation of influenza A(H5N8) virus from a Eurasian wigeon (Anas penelope) in Sakha Republic of the Russian Far East. The strain A/wigeon/Sakha/1/2014 (H5N8) has been shown to be pathogenic for mammals. It is similar to the strains that caused outbreaks in wild birds and poultry in Southeast Asia and Europe in 2014.

  2. Bioremediation of PCB-contaminated shallow river sediments: The efficacy of biodegradation using individual bacterial strains and their consortia.

    PubMed

    Horváthová, Hana; Lászlová, Katarína; Dercová, Katarína

    2018-02-01

    Elimination of dangerous toxic and hydrophobic chlorinated aromatic compounds, mainly PCBs from the environment, is one of the most important aims of the environmental biotechnologies. In this work, biodegradation of an industrial mixture of PCBs (Delor 103, equivalent to Aroclor 1242) was performed using bacterial consortia composed of four bacterial strains isolated from the historically PCB-contaminated sediments and characterized as Achromobacter xylosoxidans, Stenotrophomonas maltophilia, Ochrobactrum anthropi and Rhodococcus ruber. The objective of this research was to determine the biodegradation ability of the individual strains and artificially prepared consortia composed of two or three bacterial strains mentioned above. Based on the growth parameters, six consortia were constructed and inoculated into the historically contaminated sediment samples collected in the efflux canal of Chemko Strážske plant - the former producer of the industrial mixtures of PCBs. The efficacy of the biotreatment, namely bioaugmentation, was evaluated by determination of ecotoxicity of treated and non-treated sediments. The most effective consortia were those containing the strain R. ruber. In the combination with A. xylosoxidans, the biodegradation of the sum of the indicator congeners was 85% and in the combination with S. maltophilia nearly 80%, with inocula applied in the ratio 1:1 in both cases. Consortium containing the strain R. ruber and S. maltophilia showed pronounced degradation of the highly chlorinated PCB congeners. Among the consortia composed of three bacterial strains, only that consisting of O. anthropi, R. ruber and A. xylosoxidans showed higher biodegradation (73%). All created consortia significally reduced the toxicity of the contaminated sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems

    PubMed Central

    Gomaa, Ahmed A.; Klumpe, Heidi E.; Luo, Michelle L.; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L.

    2014-01-01

    ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. PMID:24473129

  4. Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil.

    PubMed

    Hussain, Sabir; Sørensen, Sebastian R; Devers-Lamrani, Marion; El-Sebai, Talaat; Martin-Laurent, Fabrice

    2009-11-01

    The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized by a bacterial culture isolated from an agricultural soil regularly exposed to IPU. Molecular analysis of the bacterial culture by DNA fingerprinting, cloning and sequencing of the 16S rRNA genes revealed that it consisted of six different members among whom the dominant was related to Sphingomonas sp. Six bacterial strains belonging to genera Ancylobacter, Pseudomonas, Stenotrophomonas, Methylobacterium, Variovorax and Agrobacterium were isolated from the IPU-degrading culture. None of these were able to degrade IPU in pure culture and only the intact culture sustained the ability to mineralize IPU. The composition of the culture appeared stable suggesting that yet unknown interactions are involved in the IPU mineralization. IPU degradation involved the transitory accumulation of three known IPU metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropylaniline and their further degradation. Thus, it indicates a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain. This culture did not degrade other structurally related phenylurea herbicides. The degrading activity of the bacterial culture was deeply influenced by the pH, being completely inhibited at pH 5.5 and optimal at pH 7.5.

  5. Isolation and identification of efficient Egyptian malathion-degrading bacterial isolates.

    PubMed

    Hamouda, S A; Marzouk, M A; Abbassy, M A; Abd-El-Haleem, D A; Shamseldin, Abdelaal

    2015-03-01

    Bacterial isolates degrading malathion were isolated from the soil and agricultural waste water due to their ability to grow on minimal salt media amended with malathion as a sole carbon source. Efficiencies of native Egyptian bacterial malathion-degrading isolates were investigated and the study generated nine highly effective malathion-degrading bacterial strains among 40. Strains were identified by partial sequencing of 16S rDNA analysis. Comparative analysis of 16S rDNA sequences revealed that these bacteria are similar with the genus Acinetobacter and Bacillus spp. and RFLP based PCR of 16S rDNA gave four different RFLP patterns among strains with enzyme HinfI while with enzyme HaeI they gave two RFLP profiles. The degradation rate of malathion in liquid culture was estimated using gas chromatography. Bacterial strains could degrade more than 90% of the initial malathion concentration (1000 ppm) within 4 days. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparative safety, immunogenicity, and efficacy of several anti-H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine).

    PubMed

    Gambaryan, Alexandra S; Lomakina, Natalia F; Boravleva, Elizaveta Y; Kropotkina, Ekaterina A; Mashin, Vadim V; Krasilnikov, Igor V; Klimov, Alexander I; Rudenko, Larisa G

    2012-05-01

    Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non-glycoprotein genes of the experimental live vaccines were from H2N2 cold-adapted master strain A/Leningrad/134/17/57 (VN-Len and Ku-Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN-Gull and Ku-Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold-adapted H1N1 vaccine reduced the mortality near to zero level. The high yield, safety, and protectivity of VN-Len and Ku-Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses. © 2011 Blackwell Publishing Ltd.

  7. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.).

    PubMed

    Costerousse, Benjamin; Schönholzer-Mauclaire, Laurie; Frossard, Emmanuel; Thonar, Cécile

    2018-01-01

    Soil and plant inoculation with heterotrophic zinc-solubilizing bacteria (ZSB) is considered a promising approach for increasing zinc (Zn) phytoavailability and enhancing crop growth and nutritional quality. Nevertheless, it is necessary to understand the underlying bacterial solubilization processes to predict their repeatability in inoculation strategies. Acidification via gluconic acid production remains the most reported process. In this study, wheat rhizosphere soil serial dilutions were plated on several solid microbiological media supplemented with scarcely soluble Zn oxide (ZnO), and 115 putative Zn-solubilizing isolates were directly detected based on the formation of solubilization halos around the colonies. Eight strains were selected based on their Zn solubilization efficiency and siderophore production capacity. These included one strain of Curtobacterium , two of Plantibacter , three strains of Pseudomonas , one of Stenotrophomonas , and one strain of Streptomyces In ZnO liquid solubilization assays, the presence of glucose clearly stimulated organic acid production, leading to medium acidification and ZnO solubilization. While solubilization by Streptomyces and Curtobacterium was attributed to the accumulated production of six and seven different organic acids, respectively, the other strains solubilized Zn via gluconic, malonic, and oxalic acids exclusively. In contrast, in the absence of glucose, ZnO dissolution resulted from proton extrusion (e.g., via ammonia consumption by Plantibacter strains) and complexation processes (i.e., complexation with glutamic acid in cultures of Curtobacterium ). Therefore, while gluconic acid production was described as a major Zn solubilization mechanism in the literature, this study goes beyond and shows that solubilization mechanisms vary among ZSB and are strongly affected by growth conditions. IMPORTANCE Barriers toward a better understanding of the mechanisms underlying zinc (Zn) solubilization by bacteria

  8. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    PubMed Central

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C. B.; Jacobsen, Carsten S.

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha-1. We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha-1 to alkaline at 167 t ha-1. Bacterial numbers significantly increased up to a wood ash dose of 22 t ha-1 followed by significant decrease at 167 t ha-1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha-1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha-1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha-1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be directly

  9. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition.

    PubMed

    Bang-Andreasen, Toke; Nielsen, Jeppe T; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C B; Jacobsen, Carsten S

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha -1 . We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha -1 to alkaline at 167 t ha -1 . Bacterial numbers significantly increased up to a wood ash dose of 22 t ha -1 followed by significant decrease at 167 t ha -1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha -1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha -1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha -1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be

  10. Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine)

    PubMed Central

    Gambaryan, Alexandra S.; Lomakina, Natalia F.; Boravleva, Elizaveta Y.; Kropotkina, Ekaterina A.; Mashin, Vadim V.; Krasilnikov, Igor V.; Klimov, Alexander I.; Rudenko, Larisa G.

    2011-01-01

    Please cite this paper as: Gambaryan et al. (2011) Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models. Parallel testing of killed and live H5 vaccine. Influenza and Other Respiratory Viruses 6(3), 188–195. Objective  Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Method  Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non‐glycoprotein genes of the experimental live vaccines were from H2N2 cold‐adapted master strain A/Leningrad/134/17/57 (VN‐Len and Ku‐Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN‐Gull and Ku‐Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. Results  All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold‐adapted H1N1 vaccine reduced the mortality near to zero level. Conclusions  The high yield, safety, and protectivity of VN‐Len and Ku‐Len made them promising strains for the production of inactivated and live

  11. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities.

    PubMed

    Read, Daniel S; Matzke, Marianne; Gweon, Hyun S; Newbold, Lindsay K; Heggelund, Laura; Ortiz, Maria Diez; Lahive, Elma; Spurgeon, David; Svendsen, Claus

    2016-03-01

    Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.

  12. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation.

  13. Specificity of monoclonal antibodies to strains of Dickeya sp. that cause bacterial heart rot of pineapple.

    PubMed

    Peckham, Gabriel D; Kaneshiro, Wendy S; Luu, Van; Berestecky, John M; Alvarez, Anne M

    2010-10-01

    During a severe outbreak of bacterial heart rot that occurred in pineapple plantations on Oahu, Hawaii, in 2003 and years following, 43 bacterial strains were isolated from diseased plants or irrigation water and identified as Erwinia chrysanthemi (now Dickeya sp.) by phenotypic, molecular, and pathogenicity assays. Rep-PCR fingerprint patterns grouped strains from pineapple plants and irrigation water into five genotypes (A-E) that differed from representatives of other Dickeya species, Pectobacterium carotovorum and other enteric saprophytes isolated from pineapple. Monoclonal antibodies produced following immunization of mice with virulent type C Dickeya sp. showed only two specificities. MAb Pine-1 (2D11G1, IgG1 with kappa light chain) reacted to all 43 pineapple/water strains and some reference strains (D. dianthicola, D. chrysanthemi, D. paradisiaca, some D. dadantii, and uncharacterized Dickeya sp.) but did not react to reference strains of D. dieffenbachiae, D. zeae, or one of the two Malaysian pineapple strains. MAb Pine-2 (2A7F2, IgG3 with kappa light chain) reacted to all type B, C, and D strains but not to any A or E strains or any reference strains except Dickeya sp. isolated from Malaysian pineapple. Pathogenicity tests showed that type C strains were more aggressive than type A strains when inoculated during cool months. Therefore, MAb Pine-2 distinguishes the more virulent type C strains from less virulent type A pineapple strains and type E water strains. MAbs with these two specificities enable development of rapid diagnostic tests that will distinguish the systemic heart rot pathogen from opportunistic bacteria associated with rotted tissues. Use of the two MAbs in field assays also permits the monitoring of a known subpopulation and provides additional decision tools for disease containment and management practices.

  14. Specific Detection of Enteroaggregative Hemorrhagic Escherichia coli O104:H4 Strains by Use of the CRISPR Locus as a Target for a Diagnostic Real-Time PCR

    PubMed Central

    Delannoy, Sabine; Beutin, Lothar; Burgos, Ylanna

    2012-01-01

    In 2011, a large outbreak of an unusual bacterial strain occurred in Europe. This strain was characterized as a hybrid of an enteroaggregative Escherichia coli (EAEC) and a Shiga toxin-producing E. coli (STEC) strain of the serotype O104:H4. Here, we present a single PCR targeting the clustered regularly interspaced short palindromic repeats locus of E. coli O104:H4 (CRISPRO104:H4) for specific detection of EAEC STEC O104:H4 strains from different geographical locations and time periods. The specificity of the CRISPRO104:H4 PCR was investigated using 1,321 E. coli strains, including reference strains for E. coli O serogroups O1 to O186 and flagellar (H) types H1 to H56. The assay was compared for specificity using PCR assays targeting different O104 antigen-encoding genes (wbwCO104, wzxO104, and wzyO104). The PCR assays reacted with all types of E. coli O104 strains (O104:H2, O104:H4, O104:H7, and O104:H21) and with E. coli O8 and O9 strains carrying the K9 capsular antigen and were therefore not specific for detection of the EAEC STEC O104:H4 type. A single PCR developed for the CRISPRO104:H4 target was sufficient for specific identification and detection of the 48 tested EAEC STEC O104:H4 strains. The 35 E. coli O104 strains expressing H types other than H4 as well as 8 E. coli strains carrying a K9 capsular antigen tested all negative for the CRISPRO104:H4 locus. Only 12 (0.94%) of the 1,273 non-O104:H4 E. coli strains (serotypes Ont:H2, O43:H2, O141:H2, and O174:H2) reacted positive in the CRISPRO104:H4 PCR (99.06% specificity). PMID:22895033

  15. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  16. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    PubMed

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  17. [Construction and characterization of enterohemorrhagic Escherichia coli O157:H7 ppk- deleted strain].

    PubMed

    Han, Peng; Sun, Qi; Zhao, Suhui; Zhang, Qiwei; Wan, Chengsong

    2014-06-01

    To construct enterohemorrhagic Escherichia coli (EHEC) O157: H7 ppk gene deletion strains and study its biological characteristics. The gene fragment of kanamycin resistance was amplified using a pair of homologous arm primers whose 5' and 3' ends were homologous with ppk gene and kanamycin resistance gene, respectively. EHEC O157: H7 EDL933w competent strains were prepared and transformed via electroporation with the amplification products. The ppk gene was replaced by kanamycin resistance gene using pKD46-mediated Red recombination system. The recombinant strain was confirmed by PCR and sequencing, and its morphology, growth ability and adhesion were assessed using Gram staining, OD600 value and Giemsa staining. We established a ppk-deleted EHEC O157:H7 EDL933w strain with kanamycin resistance and compared the biological characteristics of the wild-type and mutant strains, which may facilitate further study of the regulatory mechanism of ppk gene.

  18. Characterization of cross-clade monoclonal antibodies against H5N1 highly pathogenic avian influenza virus and their application to the antigenic analysis of diverse H5 subtype viruses.

    PubMed

    Gronsang, Dulyatad; Bui, Anh N; Trinh, Dai Q; Bui, Vuong N; Nguyen, Khong V; Can, Minh X; Omatsu, Tsutomu; Mizutani, Tetsuya; Nagai, Makoto; Katayama, Yukie; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2017-08-01

    H5N1 highly pathogenic avian influenza viruses (HPAIVs) are a threat to both animal and public health and require specific and rapid detection for prompt disease control. We produced three neutralizing anti-hemagglutinin (HA) monoclonal antibodies (mAbs) using two clades (2.2 and 2.5) of the H5N1 HPAIV isolated in Japan. Blocking immunofluorescence tests showed that each mAb recognized different epitopes; 3B5.1 and 3B5.2 mAbs against the clade 2.5 virus showed cross-clade reactivity to all 26 strains from clades 1, 2.2, 2.3.2.1, 2.3.2.1a, b, c and 2.3.4, suggesting that the epitope(s) recognized are conserved. Conversely, the 1G5 mAb against the clade 2.2 virus showed reactivity to only clades 1, 2.3.4 and 2.5 strains. An analysis of escape mutants, and some clades of the H5N1 viruses recognized by 3B5.1 and 3B5.2 mAbs, suggested that the mAbs bind to an epitope, including amino acid residues at position 162 in the HA1 protein (R162 and K162). Unexpectedly, however, when five Eurasian-origin H5 low-pathogenic AIV (LPAIV) strains with R162 were examined (EA-nonGsGD clade) as well as two American-origin strains (Am-nonGsGD clade), the mAb recognized only EA-nonGsGD clade strains. The R162 and K162 residues in the HA1 protein were highly conserved among 36 of the 43 H5N1 clades reported, including clades 2.3.2.1a and 2.3.2.1c that are currently circulating in Asia, Africa and Europe. The amino acid residues (158-PTIKRSYNNTNQE-170) in the HA1 protein are probably an epitope responsible for the cross-clade reactivity of the mAbs, considering the epitopes reported elsewhere. The 3B5.1 and 3B5.2 mAbs may be useful for the specific detection of H5N1 HPAIVs circulating in the field.

  19. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    PubMed Central

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R.; Elliott, Geoffrey N.; Sprent, Janet I.; Young, J. Peter W.; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes. PMID:16269788

  20. Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America.

    PubMed

    Chen, Wen-Ming; de Faria, Sergio M; Straliotto, Rosângela; Pitard, Rosa M; Simões-Araùjo, Jean L; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R; Elliott, Geoffrey N; Sprent, Janet I; Young, J Peter W; James, Euan K

    2005-11-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other beta-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known beta-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.

  1. Biotransformation of 4-chloro-2-nitrophenol into 5-chloro-2-methylbenzoxazole by a marine Bacillus sp. strain MW-1.

    PubMed

    Arora, Pankaj Kumar; Jain, Rakesh Kumar

    2012-04-01

    Decolourization, detoxification and biotransformation of 4-chloro-2-nitrophenol (4C2NP) by Bacillus sp. strain MW-1 were studied. This strain decolorized 4C2NP only in the presence of an additional carbon source. On the basis of thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS), 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole were identified as metabolites. Resting cells depleted 4C2NP with stoichiometric formation of 5-chloro-2-methyl benzoxazole. This is the first report of the formation of 5-chloro-2-methylbenzoxazole from 4C2NP by any bacterial strain.

  2. Quorum-sensing contributes to virulence, twitching motility, seed attachment and biofilm formation in the wild type strain Aac-5 of Acidovorax citrulli

    USDA-ARS?s Scientific Manuscript database

    Acidovorax citrulli is a seed-borne pathogen that causes bacterial fruit blotch of cucurbits including melon and watermelon. We investigated the roles of quorum sensing in the wild-type group II strain Aac-5 of A. citrulli by generating aacR and aacI knockout mutants and their complementation strain...

  3. Effect of spinach cultivar and bacterial adherence factors on survival of Escherichia coli O157:H7 on spinach leaves.

    PubMed

    Macarisin, Dumitru; Patel, Jitendra; Bauchan, Gary; Giron, Jorge A; Ravishankar, Sadhana

    2013-11-01

    Similar to phytopathogens, human bacterial pathogens have been shown to colonize the plant phylloplane. In addition to environmental factors, such as temperature, UV, relative humidity, etc., the plant cultivar and, specifically, the leaf blade morphological characteristics may affect the persistence of enteropathogens on leafy greens. This study was conducted to evaluate the effect of cultivar-dependent leaf topography and the role of strain phenotypic characteristics on Escherichia coli O157:H7 persistence on organic spinach. Spinach cultivars Emilia, Lazio, Space, and Waitiki were experimentally inoculated with the foodborne E. coli O157:H7 isolate EDL933 and its isogenic mutants deficient in cellulose, curli, or both curli and cellulose production. Leaves of 6-week-old plants were inoculated with 6.5 log CFU per leaf in a biosafety level 2 growth chamber. At 0, 1, 7, and 14 days, E. coli O157:H7 populations were determined by plating on selective medium and verified by laser scanning confocal microscopy. Leaf morphology (blade roughness and stoma density) was evaluated by low-temperature and variable-pressure scanning electron microscopy. E. coli O157:H7 persistence on spinach was significantly affected by cultivar and strain phenotypic characteristics, specifically, the expression of curli. Leaf blade roughness and stoma density influenced the persistence of E. coli O157:H7 on spinach. Cultivar Waitiki, which had the greatest leaf roughness, supported significantly higher E. coli O157:H7 populations than the other cultivars. These two morphological characteristics of spinach cultivars should be taken into consideration in developing intervention strategies to enhance the microbial safety of leafy greens.

  4. Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75% have a higher growth probability under low pH conditions than E. coli O157:H7 strain ATCC 43888.

    PubMed

    Haberbeck, L U; Oliveira, R C; Vivijs, B; Wenseleers, T; Aertsen, A; Michiels, C; Geeraerd, A H

    2015-02-01

    This study investigated the variation in growth/no growth boundaries of 188 Escherichia coli strains. Experiments were conducted in Luria-Bertani media under 36 combinations of lactic acid (LA) (0 and 25 mM), pH (3.8, 3.9, 4.0, 4.1, 4.2 and 4.3 for 0 mM LA and 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 for 25 mM LA) and temperature (20, 25 and 30 °C). After 3 days of incubation, growth was monitored through optical density measurements. For each strain, a so-called purposeful selection approach was used to fit a logistic regression model that adequately predicted the likelihood for growth. Further, to assess the growth/no growth variability for all the strains at once, a generalized linear mixed model was fitted to the data. Strain was fitted as a fixed factor and replicate as a random blocking factor. E. coli O157:H7 strain ATCC 43888 was used as reference strain allowing a comparison with the other strains. Out of the 188 strains tested, 140 strains (∼75%) presented a significantly higher probability of growth under low pH conditions than the O157:H7 strain ATCC 43888, whereas 20 strains (∼11%) showed a significantly lower probability of growth under high pH conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections

    NASA Astrophysics Data System (ADS)

    Le, Anh-Tuan; Tam Le, Thi; Quy Nguyen, Van; Hoang Tran, Huy; Dang, Duc Anh; Tran, Quang Huy; Vu, Dinh Lam

    2012-12-01

    In this work we have demonstrated a powerful disinfectant ability of colloidal silver nanoparticles (NPs) for the prevention of gastrointestinal bacterial infections. The silver NPs colloid was synthesized by a UV-enhanced chemical precipitation. Two gastrointestinal bacterial strains of Escherichia coli (ATCC 43888-O157:k-:H7) and Vibrio cholerae (O1) were used to verify the antibacterial activity of the as-prepared silver NPs colloid by means of surface disinfection assay in agar plates and turbidity assay in liquid media. Transmission electron microscopy was also employed to analyze the ultrastructural changes of bacterial cells caused by silver NPs. Noticeably, our silver NPs colloid displayed a highly effective bactericidal effect against two tested gastrointestinal bacterial strains at a silver concentration as low as ˜3 mg l-1. More importantly, the silver NPs colloid showed an enhancement of antibacterial activity and long-lasting disinfectant effect as compared to conventional chloramin B (5%) disinfection agent. These advantages of the as-prepared colloidal silver NPs make them very promising for environmental treatments contaminated with gastrointestinal bacteria and other infectious pathogens. Moreover, the powerful disinfectant activity of silver-containing materials can also help in controlling and preventing further outbreak of diseases.

  6. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014.

    PubMed

    Bouwstra, R J; Koch, G; Heutink, R; Harders, F; van der Spek, A; Elbers, A R; Bossers, A

    2015-07-02

    Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus strains causing outbreaks in Dutch poultry farms in 2014 provides evidence for separate introduction of the virus in four outbreaks in farms located 16-112 km from each other and for between-farm transmission between the third and fourth outbreak in farms located 550 m from each other. In addition, the analysis showed that all European and two Japanese H5N8 virus strains are very closely related and seem to originate from a calculated common ancestor, which arose between July and September 2014. Our findings suggest that the Dutch outbreak virus strain 'Ter Aar' and the first German outbreak strain from 2014 shared a common ancestor. In addition, the data indicate that the Dutch outbreak viruses descended from an H5N8 virus that circulated around 2009 in Asia, possibly China, and subsequently spread to South Korea and Japan and finally also to Europe. Evolution of the virus seemed to follow a parallel track in Japan and Europe, which supports the hypothesis that H5N8 virus was exchanged between migratory wild waterfowl at their breeding grounds in Siberia and from there was carried by migrating waterfowl to Europe.

  7. Haemophilus parasuis serovar 5 Nagasaki strain adheres and invades PK-15 cells.

    PubMed

    Frandoloso, Rafael; Martínez-Martínez, Sonia; Gutiérrez-Martín, César B; Rodríguez-Ferri, Elías F

    2012-01-27

    Haemophilus parasuis is the agent responsible for causing Glässer's disease, which is characterized by fibrinous polyserositis, polyarthritis and meningitis in pigs. The purpose of this study was to investigate the in vitro ability of two H. parasuis serovars of different virulence (serovar 5, Nagasaki strain, highly virulent, belonging to serovar 5, and SW114 strain, nonvirulent, belonging to serovar 3) to adhere to and invade porcine kidney epithelial cells (PK-15 line). Nagasaki strain was able to attach at high levels from 60 to 180 min of incubation irrespective of the concentrations compared (10(7)-10(10)CFU), and a substantial increase of surface projections could be seen in PK-15 cells by scanning electron microscopy. This virulent strain was also able to invade effectively these epithelial cells, and the highest invasion capacity was reached at 180 min of infection. On the contrary, nonvirulent SW114 strain hardly adhered to PK-15 cells, and it did not invade these cells, thus suggesting that adherence and invasion of porcine kidney epithelial cells could be a virulence mechanism involved in the lesions caused by H. parasuis Nagasaki strain in this organ. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds. PMID:27609931

  9. Characterization of bacterial strains isolated from a beef-processing plant following cleaning and disinfection - Influence of isolated strains on biofilm formation by Sakaï and EDL 933 E. coli O157:H7.

    PubMed

    Marouani-Gadri, Nesrine; Augier, Gladys; Carpentier, Brigitte

    2009-07-31

    The objective of this study was to investigate the effects on Escherichia coli O157:H7 biofilm formation of bacteria isolated from meat site surfaces following cleaning and disinfection. We first isolated and identified, to the genus level, strains of the latter organisms. Samples were obtained by swabbing the surfaces of equipment or floors over areas ranging from 315 to 3200 cm(2) in a slaughter hall, a meat cutting room and a meat boning room of a meat-processing plant. The number of bacteria recovered from these surfaces ranged from <1 to> 10(5) CFU/cm(2). In the slaughter hall, stainless steel was in one case one of the most contaminated materials and in other cases one of the less contaminated. The same observation was made for conveyor belts made of polyvinyl chloride in the boning room. Dominant genera in the meat plant were Staphylococcus and Bacillus which were both 34% of the isolates from the slaughter hall and 14 and 4% respectively of the isolates from the cutting room. Randomly selected isolates of each of the genera recovered from the slaughter hall were cultured with E. coli O157:H7 in meat exudate at 15 degrees C to form dual-organism biofilms on polyurethane. In all cases but one, the isolates increased the numbers of attached E. coli O157:H7. The effects ranged from 0.37 to 1.11 for EDL 933 strain and from 0.19 to 1.38 log (CFU/cm(2)) for Sakaï strain. This is the first time that a resident microbiota of a meat-processing plant has been shown to have a favourable effect on E. coli O157:H7 colonization of a solid surface, which is of great interest from a food safety standpoint.

  10. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine.

    PubMed

    Zaheer, Rahat; Dugat-Bony, Eric; Holman, Devon; Cousteix, Elodie; Xu, Yong; Munns, Krysty; Selinger, Lorna J; Barbieri, Rutn; Alexander, Trevor; McAllister, Tim A; Selinger, L Brent

    2017-01-01

    Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders.

  11. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine

    PubMed Central

    Cousteix, Elodie; Xu, Yong; Munns, Krysty; Selinger, Lorna J.; Barbieri, Rutn; Alexander, Trevor; McAllister, Tim A.; Selinger, L. Brent

    2017-01-01

    Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders. PMID:28141846

  12. Comparisons of Internal Behavior after Exposure to Flavobacterium psychrophilum between Two Ayu (Plecoglossus altivelis altivelis) Strains Showing Different Cumulative Mortality to Bacterial Cold Water Disease

    PubMed Central

    KAGEYAMA, Tetsushi; KUWADA, Tomonori; OHARA, Kenichi; NOUNO, Aya; UMINO, Tetsuya; FURUSAWA, Shuichi

    2013-01-01

    ABSTRACT Bacterial cold water disease (BCWD) in ayu (Plecoglossus altivelis altivelis) has a serious impact on aquaculture and fisheries. There is known to be a significant difference among ayu strains with regard to mortality caused by BCWD. In this study, the immune response of different ayu strains against Flavobacterium psychrophilum infection was observed. One strain was resistant to infection by F. psychrophilum, and the other was susceptible to infection by the same bacteria. The number of bacteria in the body was observed in each ayu strain, and the change in bacterial counts was similar. However, there was a significant difference in bacterial count in the spleen between the two strains on days 6, 9, 12 and 15 after exposure. To observe the immune response against F. psychrophilum, agglutination assay using serum was performed. An agglutination reaction in the resistant ayu strain was observed in 4 out of 6 ayu on day 6 after exposure, while no reactions in the susceptible ayu strain were observed in any sampled fish until day 12. However, some reactions in the susceptible ayu strain were observed in surviving ayu. These results indicate that there is a correlation between the presence of bacterial multiplication and agglutination reaction against F. psychrophilum. PMID:23902927

  13. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too.

    PubMed

    Tripathi, Binu M; Kim, Mincheol; Singh, Dharmesh; Lee-Cruz, Larisa; Lai-Hoe, Ang; Ainuddin, A N; Go, Rusea; Rahim, Raha Abdul; Husni, M H A; Chun, Jongsik; Adams, Jonathan M

    2012-08-01

    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.

  14. GC–MS-Based Metabonomic Profiling Displayed Differing Effects of Borna Disease Virus Natural Strain Hu-H1 and Laboratory Strain V Infection in Rat Cortical Neurons

    PubMed Central

    Liu, Siwen; Bode, Liv; Zhang, Lujun; He, Peng; Huang, Rongzhong; Sun, Lin; Chen, Shigang; Zhang, Hong; Guo, Yujie; Zhou, Jingjing; Fu, Yuying; Zhu, Dan; Xie, Peng

    2015-01-01

    Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. Previous studies have revealed that metabolic perturbations are associated with BDV infection. However, the pathophysiological effects of different viral strains remain largely unknown. Rat cortical neurons infected with human strain BDV Hu-H1, laboratory BDV Strain V, and non-infected control (CON) cells were cultured in vitro. At day 12 post-infection, a gas chromatography coupled with mass spectrometry (GC–MS) metabonomic approach was used to differentiate the metabonomic profiles of 35 independent intracellular samples from Hu-H1-infected cells (n = 12), Strain V-infected cells (n = 12), and CON cells (n = 11). Partial least squares discriminant analysis (PLS-DA) was performed to demonstrate discrimination between the three groups. Further statistical testing determined which individual metabolites displayed significant differences between groups. PLS-DA demonstrated that the whole metabolic pattern enabled statistical discrimination between groups. We identified 31 differential metabolites in the Hu-H1 and CON groups (21 decreased and 10 increased in Hu-H1 relative to CON), 35 differential metabolites in the Strain V and CON groups (30 decreased and 5 increased in Strain V relative to CON), and 21 differential metabolites in the Hu-H1 and Strain V groups (8 decreased and 13 increased in Hu-H1 relative to Strain V). Comparative metabonomic profiling revealed divergent perturbations in key energy and amino acid metabolites between natural strain Hu-H1 and laboratory Strain V of BDV. The two BDV strains differentially alter metabolic pathways of rat cortical neurons in vitro. Their systematic classification provides a valuable template for improved BDV strain definition in future studies. PMID:26287181

  15. The infant rat as a model of bacterial meningitis.

    PubMed

    Moxon, E R; Glode, M P; Sutton, A; Robbins, J B

    1977-08-01

    The pathogenesis of bacterial meningitis was studied in infant rats. Intranasal intoculation of greater than 10(3) Haemophilus influenzae type b resulted in an incidence of bacteremia that was directly related to the size of hte challenge inoculum. The temporal and quantitative relationship of bacteremia to meningitis indicated that bacteria spread to the meninges by the hematogenous route and that the magnitude of bacteremia was a primary determinant in the development of meningitis. In a sparate series of experiments, infant rats that were fed Escherichia coli strain C94 (O7:K1:H-) became colonized and developed bacteremia and meningitis, but invasive disease was rare when rats were fed E. Coli strain Easter (O75:K100:H5). A comparison of intranasal vs. oral challenge indicated that the nasopharynx was the most effective route for inducing H. influenzae bacteremia, whereas the gastrointestinal route was the more effective challenge route for the E. coli K1 serotype.

  16. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1.

    PubMed

    Maia, Alexandra S; Tiritan, Maria Elizabeth; Castro, Paula M L

    2018-07-15

    Fluoroquinolones are a class of antibiotics widely prescribed in both human and veterinary medicine of high environmental concern and characterized as environmental micropollutants due to their ecotoxicity and persistence and antibacterial resistance potential. Ofloxacin and levofloxacin are chiral fluoroquinolones commercialized as racemate and in enantiomerically pure form, respectively. Since the pharmacological properties and toxicity of the enantiomers may be very different, understanding the stereochemistry of these compounds should be a priority in environmental monitoring. This work presents the biodegradation of racemic ofloxacin and its (S)-enantiomer levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1 at a laboratory-scale microcosm following the removal and the behavior of the enantiomers. Strain F11 could degrade both antibiotics almost completely when acetate was supplied regularly to the cultures. Enrichment of the (R)-enantiomer was observed in FP1 and F11 cultures supplied with ofloxacin. Racemization was observed in the biodegradation of the pure (S)-ofloxacin (levofloxacin) by strain F11, which was confirmed by liquid chromatography - exact mass spectrometry. Biodegradation of ofloxacin at 450 µg L -1 by both bacterial strains expressed good linear fits (R 2 > 0.98) according to the Rayleigh equation. The enantiomeric enrichment factors were comprised between - 22.5% to - 9.1%, and - 18.7% to - 9.0% in the biodegradation of ofloxacin by strains F11 and FP1, respectively, with no significant differences for the two bacteria under the same conditions. This is the first time that enantioselective biodegradation of ofloxacin and levofloxacin by single bacteria is reported. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle.

    PubMed

    Goto, Hiroko; Qadis, Abdul Qadir; Kim, Yo-Han; Ikuta, Kentaro; Ichijo, Toshihiro; Sato, Shigeru

    2016-11-01

    Effects of a bacterial probiotic (BP) on ruminal fermentation and plasma metabolites were evaluated in four Holstein cattle (body weight, 645 ± 62 kg; mean ± SD) with induced subacute ruminal acidosis (SARA). SARA was induced by feeding a SARA-inducing diet, and thereafter, 20, 50 or 100 g per head of a commercial BP was administered for 7 consecutive days during the morning feeding. Cattle without BP served as the control. The 24-hr mean ruminal pH in the control was lower, whereas those in the BP groups administered 20 or 50 g were significantly higher compared to the control from days 2 to 7. Circadian patterns of the 1-hr mean ruminal pH were identical (6.4-6.8) among all cattle receiving BP. Although the mean minimum pH in the control on day -7 and day 0 was <5.8, the pH in the treatment groups on day 7 was >5.8 and significantly higher than that of the control group ( >5.2). Ruminal volatile fatty acid (VFA) concentrations were not affected by BP treatment; however, the BP groups had lower lactic acid levels compared with the control group at 20:00 on day 7. Additionally, non-esterified fatty acid levels decreased from 8:00 to 20:00 in all BP groups on day 7. These results suggest that administration of 20 to 50 g of a multi-strain BP for 7 days might improve the low pH and high lactic acid level of the ruminal fluid in SARA cattle.

  18. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle

    PubMed Central

    GOTO, Hiroko; QADIS, Abdul Qadir; KIM, Yo-Han; IKUTA, Kentaro; ICHIJO, Toshihiro; SATO, Shigeru

    2016-01-01

    Effects of a bacterial probiotic (BP) on ruminal fermentation and plasma metabolites were evaluated in four Holstein cattle (body weight, 645 ± 62 kg; mean ± SD) with induced subacute ruminal acidosis (SARA). SARA was induced by feeding a SARA-inducing diet, and thereafter, 20, 50 or 100 g per head of a commercial BP was administered for 7 consecutive days during the morning feeding. Cattle without BP served as the control. The 24-hr mean ruminal pH in the control was lower, whereas those in the BP groups administered 20 or 50 g were significantly higher compared to the control from days 2 to 7. Circadian patterns of the 1-hr mean ruminal pH were identical (6.4–6.8) among all cattle receiving BP. Although the mean minimum pH in the control on day –7 and day 0 was <5.8, the pH in the treatment groups on day 7 was >5.8 and significantly higher than that of the control group ( >5.2). Ruminal volatile fatty acid (VFA) concentrations were not affected by BP treatment; however, the BP groups had lower lactic acid levels compared with the control group at 20:00 on day 7. Additionally, non-esterified fatty acid levels decreased from 8:00 to 20:00 in all BP groups on day 7. These results suggest that administration of 20 to 50 g of a multi-strain BP for 7 days might improve the low pH and high lactic acid level of the ruminal fluid in SARA cattle. PMID:27430197

  19. Influence of isolated bacterial strains on the in situ biodegradation of endosulfan and the reduction of endosulfan- contaminated soil toxicity.

    PubMed

    Kong, Lingfen; Zhang, Yu; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Du, Zhongkun; Zhang, Cheng

    2018-09-30

    The recently discovered endosulfan-degrading bacterial strains Pusillimonas sp. JW2 and Bordetella petrii NS were isolated from endosulfan-polluted water and soil environments. The optimal conditions for the growth and biodegradation activity of the strains JW2 and NS were studied in detail. In addition, the ability of the strains JW2 and NS to biodegrade endosulfan in soils during in situ bioremediation experiments was investigated. At a concentration of 2 mg of endosulfan per kilogram of soil, both JW2 and NS had positive effects on the degradation of endosulfan; JW2 degraded 100% and 91.5% of α- and β-endosulfan, respectively, and NS degraded 95.1% and 90.3% of α- and β-endosulfan, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of soil samples showed the successful colonization of JW2 and NS, and the toxicity of the soil decreased, as determined by single-cell gel electrophoresis (SCGE) assays of Eiseniafetida and micronucleus (MN) assays of Viciafaba root tip cells. Furthermore, the metabolic products of the bacterially degraded endosulfan from the in situ experiments were identified as endosulfan ether and lactone. This study provided potentially foundational backgrounds information for the remediation of endosulfan-contaminated soil. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Efficacy of an AS03A-adjuvanted split H5N1 influenza vaccine against an antigenically distinct low pathogenic H5N1 virus in pigs.

    PubMed

    De Vleeschauwer, Annebel R; Baras, Benoît; Kyriakis, Constantinos S; Jacob, Valérie; Planty, Camille; Giannini, Sandra L; Mossman, Sally; Van Reeth, Kristien

    2012-08-10

    We used the pig model of influenza to examine the efficacy of an AS03(A)-adjuvanted split H5N1 (A/Indonesia/05/2005) vaccine against challenge with a low pathogenic (LP) H5N1 avian influenza (AI) virus (duck/Minnesota/1525/1981) with only 85% amino acid homology in its HA1. Influenza seronegative pigs were vaccinated twice intramuscularly with adjuvanted vaccine at 3 antigen doses, unadjuvanted vaccine or placebo. All pigs were challenged 4 weeks after the second vaccination and euthanized 2 days later. After 2 vaccinations, all pigs in the adjuvanted vaccine groups had high hemagglutination inhibiting (HI) antibody titers to the vaccine strain (160-640), and lower antibody titers to the A/Vietnam/1194/04 H5N1 strain and to 2 LP H5 viruses with 90-91% amino acid homology to the vaccine strain (20-160). Eight out of 12 pigs had HI titers (10-20) to the challenge virus immediately before challenge. Neuraminidase inhibiting antibodies to the challenge virus were detected in most pigs (7/12) and virus neutralizing antibodies in all pigs. There was no antigen-dose dependent effect on the antibody response among the pigs immunized with adjuvanted H5N1 vaccines. After challenge, these pigs showed a complete clinical protection, reduced lung lesions and a significant protection against virus replication in the respiratory tract. Though the challenge virus showed only moderate replication efficiency in pigs, our study suggests that AS03(A)-adjuvanted H5N1 vaccine may confer a broader protection than generally assumed. The pros and cons of the pig as an H5N1 challenge model are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    PubMed Central

    Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

    2012-01-01

    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

  2. Heterosubtypic anti-avian H5N1 influenza antibodies in intravenous immunoglobulins from globally separate populations protect against H5N1 infection in cell culture

    PubMed Central

    Sullivan, John S; Selleck, Paul W; Downton, Teena; Boehm, Ingrid; Axell, Anna-Maree; Ayob, Yasmin; Kapitza, Natalie M; Dyer, Wayne; Fitzgerald, Anna; Walsh, Bradley; Lynch, Garry W

    2009-01-01

    With antigenically novel epidemic and pandemic influenza strains persistently on the horizon it is of fundamental importance that we understand whether heterosubtypic antibodies gained from exposures to circulating human influenzas exist and can protect against emerging novel strains. Our studies of IVIG obtained from an infection-naive population (Australian) enabled us to reveal heterosubtypic influenza antibodies that cross react with H5N1. We now expand those findings for an Australian donor population to include IVIG formulations from a variety of northern hemisphere populations. Examination of IVIGs from European and South East-Asian (Malaysian) blood donor populations further reveal heterosubtypic antibodies to H5N1 in humans from different global regions. Importantly these protect against highly pathogenic avian H5N1 infection in vitro, albeit at low titres of inhibition. Although there were qualitative and quantitative differences in binding and protection between globally different formulations, the heterosubtypic antibody activities for the respective IVIGs were in general quite similar. Of particular note because of the relative geographic proximity to the epicentre of H5N1 and the majority of human infections, was the similarity in the antibody binding responses between IVIGs from the Malayan peninsula, Europe and Australia. These findings highlight the value of employing IVIGs for the study of herd immunity, and particularly heterosubtypic antibody responses to viral antigens such as those conserved between circulating human influenzas and emerging influenza strains such as H5N1. They also open a window into a somewhat ill defined arena of antibody immunity, namely heterosubtypic immunity. PMID:20076794

  3. [Screening and optimization of cholesterol conversion strain].

    PubMed

    Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong

    2014-10-04

    Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.

  4. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat.

    PubMed

    Dholakiya, Riddhi N; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15-C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria ( Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria ( Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H 2 O 2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria , isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  5. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    PubMed Central

    Dholakiya, Riddhi N.; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H.; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  6. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil.

    PubMed

    Adhikari, Dinesh; Jiang, Tianyi; Kawagoe, Taiki; Kai, Takamitsu; Kubota, Kenzo; Araki, Kiwako S; Kubo, Motoki

    2017-12-04

    Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil's ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper) in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples ( R ² = 0.25), and this relationship became significantly stronger at near-neutral pH (6.0-7.3; R ² = 0.67). No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0) or alkaline (pH > 7.3) pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH ( R ² = 0.72 and 0.73, respectively), as well as for Ca at alkaline pH ( R ² = 0.64). Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  7. Bio sorption of strontium from aqueous solution by New Strain Bacillus sp. GTG-83

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Ghafourian, H.

    Attempt was made to isolate bacterial strains capable of removing Sr biologically. In this study we collected ten different water samples from naturally radioactive spring Neydasht in Iran and bacterial strains samples isolated. Initial screening of a total of 50 bacterial isolates resulted in selection of one strain. The strain showed maximum adsorption capacity with 55 mg Sr/g dry wt. It was tentatively identified as Bacillus sp. according to morphological and biochemical properties and called strain GTG-83. Studies indicated that Bacillus sp. GTG-83 was able to grow aerobically in the presence of 50 mM SrCl{sub 2} but showed severe growthmore » inhibition at levels above that concentration. The bio-sorption capacity of Bacillus sp. GTG-83 strongly depends on solution pH, and the maximum Sr sorption capacity of Bacillus sp. GTG-83 were obtained at pH 10 independent of the absence or the presence of increasing concentrations of salt (MgCl{sub 2}). Sr-salt bio-sorption studies were also performed at this pH values. Equilibrium uptakes of Sr increased with increasing Sr concentrations up to 250 mg/l for Bacillus sp. GTG-83. Maximum bio-sorption of Sr was obtained at temperatures in the range of 30-35 deg. C. Bacillus sp. GTG-83 bio-sorbed 97 mg Sr/g dry wt at 100 mg/l initial Sr concentration without salt medium (MgCl{sub 2}). When salt concentration (MgCl{sub 2}) increased to 15% (w/v), these values dropped to 23.6 mg Sr/g dry wt at the same conditions. Uptake of Sr within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter. (authors)« less

  8. Isolation and Molecular Characterization of Novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading Bacteria from Sugarcane Farm Soils

    PubMed Central

    Rayu, Smriti; Nielsen, Uffe N.; Nazaries, Loïc; Singh, Brajesh K.

    2017-01-01

    Chlorpyrifos (CP) is one of the most widely used organophosphate pesticides in agriculture worldwide, but its extensive use has led to the contamination of various soil and water systems. Microbial bioremediation is considered to be one of the most viable options for the removal of CP from the environment; however, little is known about the soil bacterial diversity that degrade CP. Sequential soil and liquid culture enrichments enabled the isolation of bacterial CP degraders with sequence homologies to Xanthomonas sp., Pseudomonas sp., and Rhizobium sp. The efficacy of the three isolated strains: Xanthomonas sp. 4R3-M1, Pseudomonas sp. 4H1-M3, and Rhizobium sp. 4H1-M1 was further investigated for biodegradation of CP and its primary metabolic product, 3,5,6-trichloro-2-pyridinol (TCP). The results indicate that all three bacterial strains almost completely metabolized CP (10 mg/L) and TCP, occurring as a metabolic degradation product, in mineral salt media as a sole source of carbon and nitrogen. The isolated bacterial strains Xanthomonas sp. 4R3-M1 and Pseudomonas sp. 4H1-M3 could also degrade TCP (10 mg/L) as a sole carbon and nitrogen source, when provided externally. Thus, these bacterial strains may be effective in practical application of bioremediation of both CP and TCP. PMID:28421040

  9. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain.

    PubMed

    Amigo, Natalia; Zhang, Qi; Amadio, Ariel; Zhang, Qunjie; Silva, Wanderson M; Cui, Baiyuan; Chen, Zhongjian; Larzabal, Mariano; Bei, Jinlong; Cataldi, Angel

    2016-01-01

    Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.

  10. Diversity of Shiga Toxin-Producing Escherichia coli (STEC) O26:H11 Strains Examined via stx Subtypes and Insertion Sites of Stx and EspK Bacteriophages

    PubMed Central

    Bonanno, Ludivine; Loukiadis, Estelle; Mariani-Kurkdjian, Patricia; Oswald, Eric; Garnier, Lucille; Michel, Valérie

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that may be responsible for severe human infections. Only a limited number of serotypes, including O26:H11, are involved in the majority of serious cases and outbreaks. The main virulence factors, Shiga toxins (Stx), are encoded by bacteriophages. Seventy-four STEC O26:H11 strains of various origins (including human, dairy, and cattle) were characterized for their stx subtypes and Stx phage chromosomal insertion sites. The majority of food and cattle strains possessed the stx1a subtype, while human strains carried mainly stx1a or stx2a. The wrbA and yehV genes were the main Stx phage insertion sites in STEC O26:H11, followed distantly by yecE and sbcB. Interestingly, the occurrence of Stx phages inserted in the yecE gene was low in dairy strains. In most of the 29 stx-negative E. coli O26:H11 strains also studied here, these bacterial insertion sites were vacant. Multilocus sequence typing of 20 stx-positive or stx-negative E. coli O26:H11 strains showed that they were distributed into two phylogenetic groups defined by sequence type 21 (ST21) and ST29. Finally, an EspK-carrying phage was found inserted in the ssrA gene in the majority of the STEC O26:H11 strains but in only a minority of the stx-negative E. coli O26:H11 strains. The differences in the stx subtypes and Stx phage insertion sites observed in STEC O26:H11 according to their origin might reflect that strains circulating in cattle and foods are clonally distinct from those isolated from human patients. PMID:25819955

  11. The FhaB/FhaC two-partner secretion system is involved in adhesion of Acinetobacter baumannii AbH12O-A2 strain

    PubMed Central

    Pérez, A.; Merino, M.; Rumbo-Feal, S.; Álvarez-Fraga, L.; Vallejo, J. A.; Beceiro, A.; Ohneck, E. J.; Mateos, J.; Fernández-Puente, P.; Actis, L. A.; Poza, M.; Bou, G.

    2017-01-01

    ABSTRACT Acinetobacter baumannii is a hospital-acquired pathogen that shows an extraordinary capacity to stay in the hospital environment. Adherence of the bacteria to eukaryotic cells or to abiotic surfaces is the first step for establishing an infection. The A. baumannii strain AbH12O-A2 showed an exceptional ability to adhere to A549 epithelial cells. The AbFhaB/FhaC 2-partner secretion (TPS) system involved in adhesion was discovered after the screening of the recently determined A. baumannii AbH12O-A2 strain genome (CP009534.1). The AbFhaB is a large exoprotein which transport to the bacterial surface is mediated by the AbFhaC protein. In the present study, the role of this TPS system in the AbH12O-A2 adherence phenotype was investigated. The functional inactivation of this 2-partner secretion system was addressed by analyzing the outer membrane vesicles (OMV) proteomic profile from the wild-type strain and its derivative mutant AbH12O-A2ΔfhaC demonstrating that AbFhaB is no longer detected in the absence of AbFhaC. Scanning electron microscopy (SEM) and adhesion experiments demonstrated that inactivation of the AbFhaB/FhaC system significantly decreases bacterial attachment to A549 alveolar epithelial cells. Moreover, it has been demonstrated that this 2-partner secretion system is involved in fibronectin-mediated adherence of the A. baumannii AbH12O-A2 isolate. Finally, we report that the AbFhaB/FhaC system is involved in virulence when tested using invertebrate and vertebrate hosts. These data suggest the potential role that this AbFhaB/FhaC secretion system could play in the pathobiology of A. baumannii. PMID:27858524

  12. The FhaB/FhaC two-partner secretion system is involved in adhesion of Acinetobacter baumannii AbH12O-A2 strain.

    PubMed

    Pérez, A; Merino, M; Rumbo-Feal, S; Álvarez-Fraga, L; Vallejo, J A; Beceiro, A; Ohneck, E J; Mateos, J; Fernández-Puente, P; Actis, L A; Poza, M; Bou, G

    2017-08-18

    Acinetobacter baumannii is a hospital-acquired pathogen that shows an extraordinary capacity to stay in the hospital environment. Adherence of the bacteria to eukaryotic cells or to abiotic surfaces is the first step for establishing an infection. The A. baumannii strain AbH12O-A2 showed an exceptional ability to adhere to A549 epithelial cells. The AbFhaB/FhaC 2-partner secretion (TPS) system involved in adhesion was discovered after the screening of the recently determined A. baumannii AbH12O-A2 strain genome (CP009534.1). The AbFhaB is a large exoprotein which transport to the bacterial surface is mediated by the AbFhaC protein. In the present study, the role of this TPS system in the AbH12O-A2 adherence phenotype was investigated. The functional inactivation of this 2-partner secretion system was addressed by analyzing the outer membrane vesicles (OMV) proteomic profile from the wild-type strain and its derivative mutant AbH12O-A2ΔfhaC demonstrating that AbFhaB is no longer detected in the absence of AbFhaC. Scanning electron microscopy (SEM) and adhesion experiments demonstrated that inactivation of the AbFhaB/FhaC system significantly decreases bacterial attachment to A549 alveolar epithelial cells. Moreover, it has been demonstrated that this 2-partner secretion system is involved in fibronectin-mediated adherence of the A. baumannii AbH12O-A2 isolate. Finally, we report that the AbFhaB/FhaC system is involved in virulence when tested using invertebrate and vertebrate hosts. These data suggest the potential role that this AbFhaB/FhaC secretion system could play in the pathobiology of A. baumannii.

  13. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688

    PubMed Central

    Dijkman, Willem P.

    2014-01-01

    In the search for useful and renewable chemical building blocks, 5-hydroxymethylfurfural (HMF) has emerged as a very promising candidate, as it can be prepared from sugars. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a substitute for petroleum-based terephthalate in polymer production. On the basis of a recently identified bacterial degradation pathway for HMF, candidate genes responsible for selective HMF oxidation have been identified. Heterologous expression of a protein from Methylovorus sp. strain MP688 in Escherichia coli and subsequent enzyme characterization showed that the respective gene indeed encodes an efficient HMF oxidase (HMFO). HMFO is a flavin adenine dinucleotide-containing oxidase and belongs to the glucose-methanol-choline-type flavoprotein oxidase family. Intriguingly, the activity of HMFO is not restricted to HMF, as it is active with a wide range of aromatic primary alcohols and aldehydes. The enzyme was shown to be relatively thermostable and active over a broad pH range. This makes HMFO a promising oxidative biocatalyst that can be used for the production of FDCA from HMF, a reaction involving both alcohol and aldehyde oxidations. PMID:24271187

  14. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    PubMed Central

    Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2008-01-01

    Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase

  15. Strain H2-419-4 of Haematococcus pluvialis induced by ethyl methanesulphonate and ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Sun, Yanhong; Liu, Jianguo; Zhang, Xiaoli; Lin, Wei

    2008-05-01

    Two strains H2-410 and H2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% and 20% increase in biomass compared to wild type, respectively. Then H2-419-4, a fast cell growth and high astaxanthin accumulation strain, was obtained by exposing the strain H2-419 to ultraviolet radiation (UV) further. The total biomass, the astaxanthin content per cell, astaxanthin production of H2-419-4 showed 68%, 28%, and 120% increase compared to wild H. pluvialis 2, respectively. HPLC (High Performance Liquid Chromatography) data showed also an obvious proportional variation of different carotenoid compositions in the extracts of H2-419-4 and the wild type, although no peak of carotenoids appeared or disappeared. Therefore, the main compositions in strain H2-419-4, like its wild one, were free of astaxanthin, monoester, and diester of astaxanthin. The asexual reproduction in survivors after exposed to UV was not synchronous, and different from the normal synchronous asexual reproduction as the mother cells were motile instead of non-motile. Interestingly, some survivors from UV irradiation produced many mini-spores (or gamete?), the spores moved away from the mother cell gradually 4 or 5 days later. This is quite similar to sexual reproduction described by Elliot in 1934. However, whether this was sexual reproduction remains questionable, as no mating process has been observed.

  16. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt

    PubMed Central

    Sun, Xuepiao; Zheng, Peng; Zhang, Jiaming

    2015-01-01

    Banana Fusarium wilt (also known as Panama disease) is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4). Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt. PMID:26133557

  17. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  18. Anaerobic Dehalogenation of Chloroanilines by Dehalococcoides mccartyi Strain CBDB1 and Dehalobacter Strain 14DCB1 via Different Pathways as Related to Molecular Electronic Structure.

    PubMed

    Zhang, Shangwei; Wondrousch, Dominik; Cooper, Myriel; Zinder, Stephen H; Schüürmann, Gerrit; Adrian, Lorenz

    2017-04-04

    Dehalococcoides mccartyi strain CBDB1 and Dehalobacter strain 14DCB1 are organohalide-respiring microbes of the phyla Chloroflexi and Firmicutes, respectively. Here, we report the transformation of chloroanilines by these two bacterial strains via dissimilar dehalogenation pathways and discuss the underlying mechanism with quantum chemically calculated net atomic charges of the substrate Cl, H, and C atoms. Strain CBDB1 preferentially removed Cl doubly flanked by two Cl or by one Cl and NH 2 , whereas strain 14DCB1 preferentially dechlorinated Cl that has an ortho H. For the CBDB1-mediated dechlorination, comparative analysis with Hirshfeld charges shows that the least-negative Cl discriminates active from nonactive substrates in 14 out of 15 cases and may represent the preferred site of primary attack through cob(I)alamin. For the latter trend, three of seven active substrates provide strong evidence, with partial support from three of the remaining four substrates. Regarding strain 14DCB1, the most positive carbon-attached H atom discriminates active from nonactive chloroanilines in again 14 out of 15 cases. Here, regioselectivity is governed for 10 of the 11 active substrates by the most positive H attached to the highest-charge (most positive or least negative) aromatic C carrying the Cl to be removed. These findings suggest the aromatic ring H as primary site of attack through the supernucleophile Co(I), converting an initial H bond to a full electron transfer as start of the reductive dehalogenation. For both mechanisms, one- and two-electron transfer to Cl (strain CBDB1) or H (strain 14DCB1) are compatible with the presently available data. Computational chemistry research into reaction intermediates and pathways may further aid in understanding the bacterial reductive dehalogenation at the molecular level.

  19. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    PubMed

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors

    PubMed Central

    Mellor, Kate C.; Meyer, Anne; Elkholly, Doaa A.; Fournié, Guillaume; Long, Pham T.; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H.; Vergne, Timothée; Pfeiffer, Dirk U.; Stevens, Kim B.

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north–south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches. PMID:29675418

  1. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors.

    PubMed

    Mellor, Kate C; Meyer, Anne; Elkholly, Doaa A; Fournié, Guillaume; Long, Pham T; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H; Vergne, Timothée; Pfeiffer, Dirk U; Stevens, Kim B

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north-south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches.

  2. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    USGS Publications Warehouse

    Harvey, Ronald W.; Metge, David W.; Barber, Larry B.; Aiken, George R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  3. Molecular aspects of bacterial pH sensing and homeostasis

    PubMed Central

    Krulwich, Terry A.; Sachs, George; Padan, Etana

    2011-01-01

    Diverse mechanisms for pH-sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments whose pH is below 3 or above 11. Here we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH-homeostasis. These insights may help us better target certain pathogens and better harness the capacities of environmental bacteria. PMID:21464825

  4. pH value promotes growth of Staphylococcus epidermidis in platelet concentrates.

    PubMed

    Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2008-05-01

    The platelet (PLT) storage lesion is characterized metabolically by a pH value associated with lactic acid generation. PLT storage conditions support the growth of Staphylococcus epidermidis, the most common organism implicated in bacterial contamination of PLT concentrates (PCs). Here, different factors that influence bacterial growth in PCs are discussed and the relation between pH values of PCs and citrate plasma (CP) is studied, with emphasis on bacterial proliferation. The PLT lesion with regard to pH decrease and lactic acid production was monitored during storage and correlated to bacterial proliferation properties. A total of 115 coagulase-negative staphylococci, especially S. epidermidis isolates, were characterized for their proliferation in different blood components (CP, buffy coat-derived, and apheresis PCs). Furthermore, the influence of donor-specific, product-specific, species-specific, and strain-specific factors on bacterial proliferation was investigated. PCs showed a lower pH value in comparison to plasma during storage. Bacterial proliferation in PCs and the failure to grow in CP were determined with all organisms tested. No correlation to donor-specific, species-specific, or strain-specific factors was observed. Lowering the pH of CP resulted in bacterial proliferation, whereas a pH increase in the PC unit inhibited the proliferation of S. epidermidis. With emphasis on bacterial proliferation, the significant difference between PC and CP is the presence of metabolizing PLTs. The pH values of stored PLTs, but not those of stored plasma, support the growth of S. epidermidis.

  5. Synthesis, crystal structure, DFT studies, acid dissociation constant, and antimicrobial activity of methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl)carbamothioyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate

    NASA Astrophysics Data System (ADS)

    Nural, Yahya; Gemili, Muge; Seferoglu, Nurgul; Sahin, Ertan; Ulger, Mahmut; Sari, Hayati

    2018-05-01

    A novel bicyclic thiohydantoin fused to pyrrolidine compound, methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl)carbamothioyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate, was synthesized by the cyclization reaction of dimethyl 5,5-diphenylpyrrolidine-2,4-dicarboxylate and 4-chlorophenyl isothiocyanate in the presence of 4-(dimethylamino)pyridine to form methyl 2-(4-chlorophenyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate with concomitant addition reaction of the 4-chlorophenyl isothiocyanate in 79% yield. The structural characterization was performed by NMR, FT-IR, MS and HRMS techniques, and the stereochemistry of the compound was determined by single crystal X-ray diffraction study. In addition, the molecular structure and 1H and 13C NMR chemical shifts of the compound were obtained with the density functional theory and Hartree-Fock calculations. Acid dissociation constants of the compound were determined using potentiometric titration method in 25% (v/v) dimethyl sulfoxide-water hydroorganic solvent at 25 ± 0.1 °C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Four acid dissociation constants were obtained for the compound, and we suggest that these acid dissociation constants are related to the NH, for two groups of enthiols and enol groups. Antimicrobial activity study was performed against S. aureus, B. subtilis, A. hydrophila, E. coli and A. baumannii as bacterial standard strains, and against M. tuberculosis H37Rv as mycobacterial strain. The compound exhibited antibacterial activity in the range of 31.25-62.5 μg/mL, and antimycobacterial activity with a MIC value of 40 μg/mL against the indicated strains.

  6. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea.

    PubMed

    Kim, Jeong Myeong; Roh, An-Sung; Choi, Seung-Chul; Kim, Eun-Jeong; Choi, Moon-Tae; Ahn, Byung-Koo; Kim, Sun-Kuk; Lee, Young-Han; Joa, Jae-Ho; Kang, Seong-Soo; Lee, Shin Ae; Ahn, Jae-Hyung; Song, Jaekyeong; Weon, Hang-Yeon

    2016-12-01

    Soil microorganisms play an essential role in soil ecosystem processes such as organic matter decomposition, nutrient cycling, and plant nutrient availability. The land use for greenhouse cultivation has been increasing continuously, which involves an intensive input of agricultural materials to enhance productivity; however, relatively little is known about bacterial communities in greenhouse soils. To assess the effects of environmental factors on the soil bacterial diversity and community composition, a total of 187 greenhouse soil samples collected across Korea were subjected to bacterial 16S rRNA gene pyrosequencing analysis. A total of 11,865 operational taxonomic units at a 97% similarity cutoff level were detected from 847,560 sequences. Among nine soil factors evaluated; pH, electrical conductivity (EC), exchangeable cations (Ca 2+ , Mg 2+ , Na + , and K + ), available P 2 O 5 , organic matter, and NO 3 -N, soil pH was most strongly correlated with bacterial richness (polynomial regression, pH: R 2 = 0.1683, P < 0.001) and diversity (pH: R 2 = 0.1765, P < 0.001). Community dissimilarities (Bray-Curtis distance) were positively correlated with Euclidean distance for pH and EC (Mantel test, pH: r = 0.2672, P < 0.001; EC: r = 0.1473, P < 0.001). Among dominant phyla (> 1%), the relative abundances of Proteobacteria, Gemmatimonadetes, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were also more strongly correlated with pH and EC values, compared with other soil cation contents, such as Ca 2+ , Mg 2+ , Na + , and K + . Our results suggest that, despite the heterogeneity of various environmental variables, the bacterial communities of the intensively cultivated greenhouse soils were particularly influenced by soil pH and EC. These findings therefore shed light on the soil microbial ecology of greenhouse cultivation, which should be helpful for devising effective management strategies to enhance soil microbial diversity and improving crop

  7. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5.

    PubMed

    DeFilippi, Stefanie; Groulx, Emma; Megalla, Merna; Mohamed, Rowida; Avis, Tyler J

    2018-04-01

    Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.

  8. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  9. Quantitative transmission characteristics of different H5 low pathogenic avian influenza viruses in Muscovy ducks.

    PubMed

    Niqueux, Éric; Picault, Jean-Paul; Amelot, Michel; Allée, Chantal; Lamandé, Josiane; Guillemoto, Carole; Pierre, Isabelle; Massin, Pascale; Blot, Guillaume; Briand, François-Xavier; Rose, Nicolas; Jestin, Véronique

    2014-01-10

    EU annual serosurveillance programs show that domestic duck flocks have the highest seroprevalence of H5 antibodies, demonstrating the circulation of notifiable avian influenza virus (AIV) according to OIE, likely low pathogenic (LP). Therefore, transmission characteristics of LPAIV within these flocks can help to understand virus circulation and possible risk of propagation. This study aimed at estimating transmission parameters of four H5 LPAIV (three field strains from French poultry and decoy ducks, and one clonal reverse-genetics strain derived from one of the former), using a SIR model to analyze data from experimental infections in SPF Muscovy ducks. The design was set up to accommodate rearing on wood shavings with a low density of 1.6 ducks/m(2): 10 inoculated ducks were housed together with 15 contact-exposed ducks. Infection was monitored by RNA detection on oropharyngeal and cloacal swabs using real-time RT-PCR with a cutoff corresponding to 2-7 EID50. Depending on the strain, the basic reproduction number (R0) varied from 5.5 to 42.7, confirming LPAIV could easily be transmitted to susceptible Muscovy ducks. The lowest R0 estimate was obtained for a H5N3 field strain, due to lower values of transmission rate and duration of infectious period, whereas reverse-genetics derived H5N1 strain had the highest R0. Frequency and intensity of clinical signs were also variable between strains, but apparently not associated with longer infectious periods. Further comparisons of quantitative transmission parameters may help to identify relevant viral genetic markers for early detection of potentially more virulent strains during surveillance of LPAIV. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    PubMed Central

    Santos, Anderson F.; Valle, Roberta S.; Pacheco, Clarissa A.; Alvarez, Vanessa M.; Seldin, Lucy; Santos, André L.S.

    2013-01-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties. PMID:24688526

  11. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    PubMed

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  12. Motility of Colwellia psychrerythraea Strain 34H at Subzero Temperatures

    PubMed Central

    Junge, Karen; Eicken, Hajo; Deming, Jody W.

    2003-01-01

    We examined the Arctic bacterium Colwellia psychrerythraea strain 34H for motility at temperatures from −1 to −15°C by using transmitted-light microscopy in a temperature-controlled laboratory. The results, showing motility to −10°C, indicate much lower temperatures to be permissive of motility than previously reported (5°C), with implications for microbial activity in frozen environments. PMID:12839815

  13. Bacterial succession during curing process of a skate (Dipturus batis) and isolation of novel strains.

    PubMed

    Reynisson, E; Thornór Marteinsson, V; Jónsdóttir, R; Magnússon, S H; Hreggvidsson, G O

    2012-08-01

    To study the succession of cultivated and uncultivated microbes during the traditional curing process of skate. The microbial diversity was evaluated by sequencing 16Sr RNA clone libraries and cultivation in variety of media from skate samples taken periodically during a 9-day curing process. A pH shift was observed (pH 6·64-9·27) with increasing trimethylamine (2·6 up to 75·6 mg N per 100 g) and total volatile nitrogen (TVN) (from 58·5 to 705·8 mg N per 100 g) but with relatively slow bacterial growth. Uncured skate was dominated by Oceanisphaera and Pseudoalteromonas genera but was substituted after curing by Photobacterium and Aliivibrio in the flesh and Pseudomonas on the skin. Almost 50% of the clone library is derived from putative undiscovered species. Cultivation and enrichment strategies resulted in isolation of putatively new species belonging to the genera Idiomarina, Rheinheimera, Oceanisphaera, Providencia and Pseudomonas. The most abundant genera able to hydrolyse urea to ammonia were Oceanisphaera, Psychrobacter, Pseudoalteromonas and isolates within the Pseudomonas genus. The curing process of skate is controlled and achieved by a dynamic bacterial community where the key players belong to Oceanisphaera, Pseudoalteromonas, Photobacterium, Aliivibrio and Pseudomonas. For the first time, the bacterial population developments in the curing process of skate are presented and demonstrate a reservoir of many yet undiscovered bacterial species. No Claim to Norwegian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  14. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Venkatachalam; Sànchez i Nogué, Violeta; van Niel, Ed W. J.

    Here, lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotypemore » involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 +/- 5 h to yield 0.45 +/- 0.01 g ethanol g glucose -1) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination.« less

  15. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae

    DOE PAGES

    Narayanan, Venkatachalam; Sànchez i Nogué, Violeta; van Niel, Ed W. J.; ...

    2016-08-26

    Here, lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotypemore » involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 +/- 5 h to yield 0.45 +/- 0.01 g ethanol g glucose -1) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination.« less

  16. Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore.

    PubMed

    Simek, Karel; Kasalický, Vojtech; Hornák, Karel; Hahn, Martin W; Weinbauer, Markus G

    2010-03-01

    We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.

  17. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis.

    PubMed

    Benforte, Florencia C; Colonnella, Maria A; Ricardi, Martiniano M; Solar Venero, Esmeralda C; Lizarraga, Leonardo; López, Nancy I; Tribelli, Paula M

    2018-01-01

    Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.

  18. 5-Fluorouracil-resistant strain of Methanobacterium thermoautotrophicum.

    PubMed

    Nagle, D P; Teal, R; Eisenbraun, A

    1987-09-01

    Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wild type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype.

  19. 5-Fluorouracil-resistant strain of Methanobacterium thermoautotrophicum.

    PubMed Central

    Nagle, D P; Teal, R; Eisenbraun, A

    1987-01-01

    Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wild type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype. PMID:3624203

  20. Characterization of herbaspirillum- and limnobacter-related strains isolated from young volcanic deposits in miyake-jima island, Japan.

    PubMed

    Lu, Hongsheng; Fujimura, Reiko; Sato, Yoshinori; Nanba, Kenji; Kamijo, Takashi; Ohta, Hiroyuki

    2008-01-01

    The role of microbes in the early development of ecosystems on new volcanic materials seems to be crucial to primary plant succession but is not well characterized. Here we analyzed the bacterial community colonizing 22-year-old volcanic deposits of the Miyake-jima Island (Japan) using culture-based and 16S rRNA gene clone library methods. The majority of 91 bacterial isolates were placed phylogenetically in two clusters (A and B) of the Betaproteobacteria. Cluster A (82% of isolates) was related to the genus Limnobacter and Cluster B (9%) was affiliated with the Herbaspirillum clade. The clone library analysis supported the predominance of Cluster B rather than Cluster A. Strain KP1-50 of Cluster B was able to grow on a mineral medium under an atmosphere of H(2), O(2), and CO(2) (85:5:10), and characterized by its large-subunit gene of ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL) and nitrogenase reductase gene (nifH). In contrast, strains of Cluster A did not grow chemolithoautotrophically with H(2), O(2), and CO(2) but increased their cell biomass with the addition of thiosulfate to the succinate medium, suggesting the use of thiosulfate as an energy source. From phenotypic characterization, it was suggested that the Cluster A and B strains were novel species in the genus Limnobacter and Herbaspirillum, respectively.

  1. Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants.

    PubMed

    Haidar, Badrul; Ferdous, Mahbuba; Fatema, Babry; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul; Khan, Haseena

    2018-03-01

    Endophytes are bacterial or fungal organisms associated with plants in an obligate or facultative manner. In order to maintain a stable symbiosis, many of the endophytes produce compounds that promote plant growth and help them adapt better to the environment. This study was conducted to explore the potential of jute bacterial endophytes for their growth promotion ability in direct and indirect ways. A total of 27 different bacterial species were identified from different varieties of a jute plant (Corchorus olitorius) and different parts of the plant (leaf, root, seed, and seedling) based on 16S rRNA gene sequence. Two of the isolates showed ACC deaminase activity with Staphylococcus pasteuri strain MBL_B3 and Ralstonia solanacearum strain MBL_B6 producing 18.1 and 8.08 μM mg -1  h -1 α-ketobutyrate respectively while eighteen had the ACC deaminase gene (acdS). Fourteen were positive for siderophore activity while Kocuria sp. strain MBL_B19 (133.36 μg/ml) and Bacillus sp. strain MBL_B17 (124.72 μg/ml) showed high IAA production ability. Seven bacterial strains were able to fix nitrogen with only one testing positive for nifH gene. Five isolates exhibited phosphorus utilization ability with Bacillus sp. strain MBL_B17 producing 218.47 μg P/ml. Three bacteria were able to inhibit the growth of a phytopathogen, Macrophomina phaseolina and among them Bacillus subtilis strain MBL_B4 was found to be the most effective, having 82% and 53% of relative inhibition ratio (RIR) and percent growth inhibition (PGI) values respectively. Nine bacteria were tested for their in vivo growth promotion ability and most of these isolates increased seed germination potential and vigour index significantly. Bacillus subtilis strain MBL_B13 showed 26.8% more vigour index than the control in which no bacterial inoculum was used. All inoculants were found to increase the dry weight of jute seedlings in comparison to the control plants and the most increase in fresh weight

  2. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    PubMed

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  3. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    PubMed

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  4. [Isolation, identification and characterization of a diethylstilbestrol-degrading bacterial strain Serratia sp].

    PubMed

    Xu, Ran-Fang; Sun, Min-Xia; Liu, Juan; Wang, Hong; Li, Xin; Zhu, Xue-Zhu; Ling, Wan-Ting

    2014-08-01

    Utilizing the diethylstilbestrol (DES)-degrading bacteria to biodegrade DES is a most reliable technique for cleanup of DES pollutants from the environment. However, little information is available heretofore on the isolation of DES-degrading bacteria and their DES removal performance in the environment. A novel bacterium capable of degrading DES was isolated from the activated sludge of a wastewater treatment plant. According to its morphology, physiochemical characteristics, and 16S rDNA sequence analysis, this strain was identified as Serratia sp.. The strain was an aerobic bacterium, and it could degrade 68.3% of DES (50 mg x L(-1)) after culturing for 7 days at 30 degrees C, 150 r x min(-1) in shaking flasks. The optimal conditions for DES biodegradation by the obtained strain were 30 degrees C, 40-60 mg x L(-1) DES, pH 7.0, 5% of inoculation volume, 0 g x L(-1) of added NaCl, and 10 mL of liquid medium volume in 100 mL flask.

  5. Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum.

    PubMed

    Paarup, Maiken; Friedrich, Michael W; Tindall, Brian J; Finster, Kai

    2006-01-01

    A psychrotolerant, obligate anaerobic, acetogenic bacterium designated strain SyrA5 was isolated from black anoxic sediment of a brackish fjord. Cells were Gram-positive, non-sporeforming rods. The isolate utilized H(2)/CO(2), CO, fructose, glucose, ethanol, ethylene glycol, glycerol, pyruvate, lactate, betaine and the methyl-groups of several methoxylated benzoic derivatives such as syringate, trimethoxybenzoate and vallinate. The optimum temperature for growth was 29 degrees C, whilst slow growth occurred at 2 degrees C. The strain grew optimally with NaCl concentrations below 2.7% (w/v), but growth occurred up to 4.3% (w/v) NaCl. Growth was observed in the range from pH 5.9 to 8.5, optimum at pH 8. The G+C content was 44.1 mol%. Based upon 16S rRNA gene sequence analysis and DNA-DNA reassociation studies, the organism was classified in the genus Acetobacterium. Strain SyrA5 shared a 16S rRNA sequence similarity with A. carbinolicum of 100%, a fthfs gene (which codes for the N5,N10 tetrahydrofolate synthetase) sequence identity of 98.5-98.7% (amino acid sequence similarities were 99.4-100%) and a RNA-DNA hybridization homology of 64-68%. Despite a number of phenotypic differences between strain SyrA5 and A. carbinolicum we propose including strain SyrA5 as a subspecies of A. carbinolicum for which we propose the name Acetobacterium carbinolicum subspecies kysingense. The type strain is SyrA5 (=DSM 16427(T), ATCC BAA-990).

  6. Construction and heterologous expression of a truncated Haemagglutinin (HA) protein from the avian influenza virus H5N1 in Escherichia coli.

    PubMed

    Chee Wei, T; Nurul Wahida, A G; Shaharum, S

    2014-12-01

    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.

  7. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.

    PubMed

    Kamke, Janine; Soni, Priya; Li, Yang; Ganesh, Siva; Kelly, William J; Leahy, Sinead C; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2017-08-08

    Ruminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH 4 /kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype. Rumen microbiome metagenomic and metatranscriptomic data were analysed by Gene Set Enrichment, sparse partial least squares regression and the Wilcoxon Rank Sum test to estimate correlations between specific KEGG bacterial pathways/genes and high methane yield in sheep. KEGG genes enriched in high methane yield sheep were reassembled from raw reads and existing contigs and analysed by MEGAN to predict their phylogenetic origin. Protein coding sequences from Succinivibrio dextrinosolvens strains were analysed using Effective DB to predict bacterial type III secreted proteins. The effect of S. dextrinosolvens strain H5 growth on methane formation by rumen methanogens was explored using co-cultures. Detailed analysis of the rumen microbiomes of high methane yield sheep shows that gene and transcript abundances of bacterial type III secretion system genes are positively correlated with methane yield in sheep. Most of the bacterial type III secretion system genes could not be assigned to a particular bacterial group, but several genes were affiliated with the genus Succinivibrio, and searches of bacterial genome sequences found that strains of S. dextrinosolvens were part of a small group of rumen bacteria that encode this type of secretion system. In co-culture experiments, S. dextrinosolvens strain H5 showed a growth-enhancing effect on a methanogen belonging to the order Methanomassiliicoccales, and inhibition of a representative of the Methanobrevibacter gottschalkii clade. This is the first report of bacterial type III secretion system genes being associated with high

  8. Sub-optimal pH Preadaptation Improves the Survival of Lactobacillus plantarum Strains and the Malic Acid Consumption in Wine-Like Medium

    PubMed Central

    Succi, Mariantonietta; Pannella, Gianfranco; Tremonte, Patrizio; Tipaldi, Luca; Coppola, Raffaele; Iorizzo, Massimo; Lombardi, Silvia Jane; Sorrentino, Elena

    2017-01-01

    Forty-two oenological strains of Lb. plantarum were assessed for their response to ethanol and pH values generally encountered in wines. Strains showed a higher variability in the survival when exposed to low pH (3.5 or 3.0) than when exposed to ethanol (10 or 14%). The study allowed to individuate the highest ethanol concentration (8%) and the lowest pH value (4.0) for the growth of strains, even if the maximum specific growth rate (μmax) resulted significantly reduced by these conditions. Two strains (GT1 and LT11) preadapted to 2% ethanol and cultured up to 14% of ethanol showed a higher growth than those non-preadapted when they were cultivated at 8% of ethanol. The evaluation of the same strains preadapted to low pH values (5.0 and 4.0) and then grown at pH 3.5 or 3.0 showed only for GT1 a sensitive μmax increment when it was cultivated in MRS at pH 3 after a preadaptation to pH 5.0. The survival of GT1 and LT11 was evaluated in Ringer's solution at 14% ethanol after a long-term adaptation in MRS with 2% ethanol or in MRS with 2% ethanol acidified at pH 5.0 (both conditions, BC). Analogously, the survival was evaluated at pH 3.5 after a long-term adaptation in MRS at pH 5.0 or in MRS BC. The impact of the physiologic state (exponential phase vs stationary phase) on the survival was also evaluated. Preadapted cells showed the same behavior of non-preadapted cells only when cultures were recovered in the stationary phase. Mathematical functions were individuated for the description of the survival of GT1 and LT11 in MRS at 14% ethanol or at pH 3.5. Finally, a synthetic wine (SW) was used to assess the behavior of Lb. plantarum GT1 and LT11 preadapted in MRS at 2% ethanol or at pH 5.0 or in BC. Only GT1 preadapted to pH 5.0 and collected in the stationary phase showed constant values of microbial counts after incubation for 15 days at 20°C. In addition, after 15 days the L-malic acid resulted completely degraded and the pH value increased of about 0.3 units

  9. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-03-01

    Plant growth promoting (PGP) bacterial strains possess different mechanisms to improve plant development under common environmental stresses, and are therefore often used as inoculants in soil phytoremediation processes. The aims of the present work were to study the effects of a collection of plant growth promoting bacterial strains on plant development, antioxidant enzyme activities and nutritional status of Cytisus striatus and/or Lupinus luteus plants a) growing in perlite under non-stress conditions and b) growing in diesel-contaminated soil. For this, two greenhouse experiments were designed. Firstly, C. striatus and L. luteus plants were grown from seeds in perlite, and periodically inoculated with 6 PGP strains, either individually or in pairs. Secondly, L. luteus seedlings were grown in soil samples of the A and B horizons of a Cambisol contaminated with 1.25% (w/w) of diesel and inoculated with best PGP inoculant selected from the first experiment. The results indicated that the PGP strains tested in perlite significantly improved plant growth. Combination treatments provoked better growth of L. luteus than the respective individual strains, while individual inoculation treatments were more effective for C. striatus. L. luteus growth in diesel-contaminated soil was significantly improved in the presence of PGP strains, presenting a 2-fold or higher increase in plant biomass. Inoculants did not provoke significant changes in plant nutritional status, with the exception of a subset of siderophore-producing and P-solubilising bacterial strains that resulted in significantly modification of Fe or P concentrations in leaf tissues. Inoculants did not cause significant changes in enzyme activities in perlite experiments, however they significantly reduced oxidative stress in contaminated soils suggesting an improvement in plant tolerance to diesel. Some strains were applied to non-host plants, indicating a non-specific performance of their plant growth promotion

  10. Toll-like receptor prestimulation increases phagocytosis of Escherichia coli DH5alpha and Escherichia coli K1 strains by murine microglial cells.

    PubMed

    Ribes, Sandra; Ebert, Sandra; Czesnik, Dirk; Regen, Tommy; Zeug, Andre; Bukowski, Stephanie; Mildner, Alexander; Eiffert, Helmut; Hanisch, Uwe-Karsten; Hammerschmidt, Sven; Nau, Roland

    2009-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality. When an infection occurs, Toll-like receptors (TLRs) expressed by microglial cells can recognize pathogen-associated molecular patterns and activate multiple steps in the inflammatory response that coordinate the brain's local defense, such as phagocytosis of invading pathogens. An upregulation of the phagocytic ability of reactive microglia could improve the host defense in immunocompromised patients against pathogens such as E. coli. Here, murine microglial cultures were stimulated with the TLR agonists Pam(3)CSK(4) (TLR1/TLR2), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9) for 24 h. Upon stimulation, levels of tumor necrosis factor alpha and the neutrophil chemoattractant CXCL1 were increased, indicating microglial activation. Phagocytic activity was studied after adding either E. coli DH5alpha or E. coli K1 strains. After 60 and 90 min of bacterial exposure, the number of ingested bacteria was significantly higher in cells prestimulated with TLR agonists than in unstimulated controls (P < 0.01). Addition of cytochalasin D, an inhibitor of actin polymerization, blocked >90% of phagocytosis. We also analyzed the ability of microglia to kill the ingested E. coli strains. Intracellularly surviving bacteria were quantified at different time points (90, 150, 240, and 360 min) after 90 min of phagocytosis. The number of bacteria killed intracellularly after 6 h was higher in cells primed with the different TLR agonists than in unstimulated microglia. Our data suggest that microglial stimulation by the TLR system can increase bacterial phagocytosis and killing. This approach could improve central nervous system resistance to infections in immunocompromised patients.

  11. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation.

    PubMed

    Uhlich, Gaylen A; Rogers, Donna P; Mosier, Derek A

    2010-08-01

    In a previous study we showed that an Escherichia coli O157:H7 strain that was unable to form biofilm was retained in large numbers in dual-strain biofilms formed with an E. coli O-:H4 companion strain. In this study we tested additional companion strains for their ability to retain E. coli O157:H7 strain 0475s. Companion strains producing biofilm that withstood aggressive washes were able to significantly increase serotype O157:H7 retention. Dual-strain biofilms with certain companion strains retained higher percentages of strain 0475s, and that ability was independent of biofilm total cell numbers. Tests with additional non-biofilm-forming E. coli O157:H7 strains showed that enhancement by companion strains was not unique to strain 0475s. Experiments using an E. coli companion strain with deletions of various curli and cellulose genes indicated that dual-strain biofilm formation was dependent on companion strain properties. Strain 0475s was not able to generate biofilm or persist on plastic when grown in broth with a biofilm-forming companion and separated by a 0.2 microm porous membrane, indicating a requirement for intimate contact with the companion strain. When dual-strain biofilms and planktonic cells were challenged with 5% H(2)O(2), strain 0475 showed greater survival in biofilms with certain companion strains compared to the corresponding planktonic cells. The results of this study indicate that non-biofilm-forming E. coli O157:H7 strains are retained on solid surfaces associated with biofilms generated by companion strains. However, properties other than biofilm mass enable certain companion strains to retain greater numbers of E. coli O157:H7.

  12. Physiological changes induced in bacteria following pH stress as a model for space research

    NASA Astrophysics Data System (ADS)

    Baatout, Sarah; Leys, Natalie; Hendrickx, Larissa; Dams, Annik; Mergeay, Max

    2007-02-01

    The physiology of the environmental bacterium Cupriavidus metallidurans CH34 (previously Ralstonia metallidurans) is being studied in comparison to the clinical model bacterium Escherichia coli in order to understand its behaviour and resistance under extreme conditions (pH, temperature, etc.). This knowledge is of importance in the light of the potential use and interest of this strain for space biology and bioremediation. Flow cytometry provides powerful means to measure a wide range of cell characteristics in microbiological research. In order to estimate physiological changes associated with pH stress, flow cytometry was employed to estimate the extent of damage on cell size, membrane integrity and potential, and production of superoxides in the two bacterial strains. Suspensions of C. metallidurans and E. coli were submitted to a 1-h pH stress (2 to 12). For flow cytometry, fluorochromes, including propidium iodide, 3, 3'-dihexyloxacarbocyanine iodide and hydroethidine were chosen as analytical parameters for identifying the physiological state and the overall fitness of individual cells. A physiologic state of the bacterial population was assessed with a Coulter EPICS XL analyser based on the differential uptakes of these fluorescent stains. C. metallidurans cells exhibited a different staining intensity than E. coli cells. For both bacterial strains, the physiological status was only slightly affected between pH 6 and 8 in comparison with pH 7 which represents the reference pH. Moderate physiological damage could be observed at pH 4 and 5 as well as at pH 9 in both strains. At pH 2, 10 and 12, membrane permeability and potential and superoxide anion production were increased to high levels showing dramatic physiological changes. It is apparent that a range of significant physiological alterations occurs after pH stress. Fluorescent staining methods coupled with flow cytometry are useful and complementary for monitoring physiological changes induced not only

  13. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey

    PubMed Central

    Yalcin, Seda Karasu; Yesim Ozbas, Z.

    2008-01-01

    The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL−1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL−1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30°C. Optimum temperature range for glycerol production was determined as 25-30°C for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30°C. Maximum glycerol concentrations at 30°C were obtained as 8.5 and 7.6 gL−1 for Kalecik 1 and Narince 3, respectively. PMID:24031225

  15. Gram-Negative Bacterial Wound Infections

    DTIC Science & Technology

    2016-07-01

    coli, K. pneumoniae and P. aeruginosa, it showed antibacterial activity against all A. baumannii tested strains, including MRSN and non-MRSN isolates...models showed that Ga-PPIX has significant antibacterial activity by inhibiting the metabolism of iron A. baumannii could scavenge from host’s...concentration significantly reduced bacterial viability, while 40 µg/ml killed all bacteria after 24-h incubation. The antibacterial activity of Ga-PPIX

  16. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Survivial Strategies in Bacterial Range Expansions

    NASA Astrophysics Data System (ADS)

    Frey, Erwin

    2014-03-01

    Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.

  18. Antibodies Against the Current Influenza A(H1N1) Vaccine Strain Do Not Protect Some Individuals From Infection With Contemporary Circulating Influenza A(H1N1) Virus Strains.

    PubMed

    Petrie, Joshua G; Parkhouse, Kaela; Ohmit, Suzanne E; Malosh, Ryan E; Monto, Arnold S; Hensley, Scott E

    2016-12-15

    During the 2013-2014 influenza season, nearly all circulating 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) strains possessed an antigenically important mutation in hemagglutinin (K166Q). Here, we performed hemagglutination-inhibition (HAI) assays, using sera collected from 382 individuals prior to the 2013-2014 season, and we determined whether HAI titers were associated with protection from A(H1N1)pdm09 infection. Protection was associated with HAI titers against an A(H1N1)pdm09 strain possessing the K166Q mutation but not with HAI titers against the current A(H1N1)pdm09 vaccine strain, which lacks this mutation. These data indicate that contemporary A(H1N1)pdm09 strains are antigenically distinct from the current A(H1N1)pdm09 vaccine strain. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  19. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  20. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5

  1. Direct detection of various pathogens by loop-mediated isothermal amplification assays on bacterial culture and bacterial colony.

    PubMed

    Yan, Muxia; Li, Weidong; Zhou, Zhenwen; Peng, Hongxia; Luo, Ziyan; Xu, Ling

    2017-01-01

    In this work, loop-mediated isothermal amplification based detection assay using bacterial culture and bacterial colony for various common pathogens direct detection had been established, evaluated and further applied. A total of five species of common pathogens and nine detection targets (tlh, tdh and trh for V. Parahaemolyticus, rfbE, stx1 and stx2 for E. coli, oprI for P. aeruginosa, invA for Salmonella and hylA for L. monocytogenes) were performed on bacterial culture and bacterial colony LAMP. To evaluate and optimize this assay, a total of 116 standard strains were included. Then, for each detected targets, 20 random selected strains were applied. Results were determined through both visual observation of the changed color by naked eye and electrophoresis, which increased the accuracy of survey. The minimum adding quantity of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 45 min with 25 μl reaction volume. The detection limit of bacterial culture LAMP and PCR assay were determined to be 10 2 and 10 4 or 10 5  CFU/reaction, respectively. No false positive amplification was observed when subjecting the bacterial -LAMP assay to 116 reference strains. This was the first report of colony-LAMP and culture-LAMP assay, which had been demonstrated to be a fast, reliable, cost-effective and simple method on detection of various common pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence.

    PubMed

    Koide, Tie; Zaini, Paulo A; Moreira, Leandro M; Vêncio, Ricardo Z N; Matsukuma, Adriana Y; Durham, Alan M; Teixeira, Diva C; El-Dorry, Hamza; Monteiro, Patrícia B; da Silva, Ana Claudia R; Verjovski-Almeida, Sergio; da Silva, Aline M; Gomes, Suely L

    2004-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.

  3. DNA Microarray-Based Genome Comparison of a Pathogenic and a Nonpathogenic Strain of Xylella fastidiosa Delineates Genes Important for Bacterial Virulence†

    PubMed Central

    Koide, Tie; Zaini, Paulo A.; Moreira, Leandro M.; Vêncio, Ricardo Z. N.; Matsukuma, Adriana Y.; Durham, Alan M.; Teixeira, Diva C.; El-Dorry, Hamza; Monteiro, Patrícia B.; da Silva, Ana Claudia R.; Verjovski-Almeida, Sergio; da Silva, Aline M.; Gomes, Suely L.

    2004-01-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease. PMID:15292146

  4. Characterization and efficacy determination of commercially available Central American H5N2 avian influenza vaccines for poultry.

    PubMed

    Eggert, Dawn; Thomas, Colleen; Spackman, Erica; Pritchard, Nikki; Rojo, Francisco; Bublot, Michel; Swayne, David E

    2010-06-23

    A poultry vaccination program was implemented in Central America beginning in January 1995 to control both H5N2 low (LPAI) and high pathogenicity avian influenza. This study was conducted to identify seed strain composition and the efficacy of 10 commercially available H5 vaccines against challenge with H5N2 LPAI viruses isolated from Latin America in 2003. The original 1994 vaccine seed virus in commercial inactivated vaccines did not significantly reduce challenge virus shed titers. However, two seed strains of inactivated vaccines, genetically more closely related to the challenge virus, did significantly reduce titers of challenge virus shed from respiratory tract. In addition, a live recombinant fowlpox virus vaccine containing a more distantly related Eurasian lineage H5 gene insert significantly reduced respiratory shedding as compared to sham vaccinates. These results demonstrate the feasibility of identifying vaccine seed strains in commercial finished products for regulatory verification and the need for periodic challenge testing against current field strains in order to select efficacious vaccine seed strains. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains.

    PubMed

    Rohde, Christine; Resch, Grégory; Pirnay, Jean-Paul; Blasdel, Bob G; Debarbieux, Laurent; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Almeida, Gabriel Magno de Freitas; Makalatia, Khatuna; Malik, Danish J; Mašlaňová, Ivana; Merabishvili, Maia; Pantucek, Roman; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-04-05

    Phage therapy is increasingly put forward as a "new" potential tool in the fight against antibiotic resistant infections. During the "Centennial Celebration of Bacteriophage Research" conference in Tbilisi, Georgia on 26-29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.

  6. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains

    PubMed Central

    Rohde, Christine; Resch, Grégory; Blasdel, Bob G.; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Makalatia, Khatuna; Malik, Danish J.; Mašlaňová, Ivana; Merabishvili, Maia; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-01-01

    Phage therapy is increasingly put forward as a “new” potential tool in the fight against antibiotic resistant infections. During the “Centennial Celebration of Bacteriophage Research” conference in Tbilisi, Georgia on 26–29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application. PMID:29621199

  7. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    PubMed Central

    Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045

  8. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    PubMed

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  9. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains

    DOE PAGES

    Whitman, William B.; Woyke, Tanja; Klenk, Hans-Peter; ...

    2015-05-17

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Here in this paper, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while theymore » are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity« less

  10. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains

    PubMed Central

    2015-01-01

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Herein, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while they are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity. PMID:26203337

  11. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitman, William B.; Woyke, Tanja; Klenk, Hans-Peter

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Here in this paper, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while theymore » are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity« less

  12. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses.

    PubMed

    Merroun, Mohamed L; Nedelkova, Marta; Ojeda, Jesus J; Reitz, Thomas; Fernández, Margarita López; Arias, José M; Romero-González, María; Selenska-Pobell, Sonja

    2011-12-15

    This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    PubMed Central

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  14. Vibration responses of h-BN sheet to charge doping and external strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei; Yang, Yu; Zheng, Fawei

    2013-12-07

    Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of h-BN sheet to charge doping and external strains. It is found that under hole doping, the phonon frequencies of the ZO and TO branches at different wave vector q shift linearly with different slopes. Under electron doping, although the phonon frequencies shift irregularly, the shifting values are different at different phonon wave vectors. Interestingly, we find that external strain can restrain the irregular vibration responses of h-BN sheet to electron doping. The critical factor is revealed to be the relative position ofmore » the nearly free electron and boron p{sub z} states of h-BN sheet. Under external strains, the vibration responses of h-BN sheet are also found to be highly dependent on the phonon branches. Different vibration modes at different q points are revealed to be responsible for the vibration responses of h-BN sheet to charge doping and external strain. Our results point out a new way to detect the doping or strain status of h-BN sheet by measuring the vibration frequencies at different wave vector.« less

  15. Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures.

    PubMed

    Guérin, Alizée; Rønning, Helene Thorsen; Dargaignaratz, Claire; Clavel, Thierry; Broussolle, Véronique; Mahillon, Jacques; Granum, Per Einar; Nguyen-The, Christophe

    2017-08-01

    Besides Bacillus cereus, some strains of the psychrotolerant, potentially foodborne pathogen Bacillus weihenstephanensis can produce the emetic toxine (cereulide). This toxin is a heat- and acid-stable cyclic dodecadepsipeptide that causes food intoxication with vomiting. However, some severe clinical cases with lethal outcomes have been described. If cereulide can be produced during refrigerated storage, it will not be inactivated by reheating food, representing an important risk of food intoxication for consumers. In this paper, we determined the capacity of the B. weihenstephanensis strains BtB2-4 and MC67 to grow and produce cereulide on agar media at temperatures from 8 °C to 25 °C and at a pH from 5.4 to 7.0. At 8 °C, strain BtB2-4 produced quantifiable amounts of cereulide, whereas the limit of detection was reached for strain MC67. For BtB2-4, cereulide production increased 5-fold between 8 °C and 10-15 °C and by more than 100-fold between 15 °C and 25 °C. At temperatures of 10 °C and higher, cereulide concentrations were within the range of those reported by previous works in foods implicated in emetic poisoning. At 25 °C, decreasing the pH to 5.4 reduced cereulide production by strain BtB2-4 by at least 20-fold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Epidemiology and antibiotic resistance of bacterial meningitis in Dapaong, northern Togo.

    PubMed

    Karou, Simplice D; Balaka, Abago; Bamoké, Mitiname; Tchelougou, Daméhan; Assih, Maléki; Anani, Kokou; Agbonoko, Kodjo; Simpore, Jacques; de Souza, Comlan

    2012-11-01

    To assess the seasonality of the bacterial meningitis and the antibiotic resistance of incriminated bacteria over the last three years in the northern Togo. From January 2007 to January 2010, 533 cerebrospinal fluids (CSF) samples were collected from patients suspected of meningitis in the Regional Hospital of Dapaong (northern Togo). After microscopic examination, samples were cultured for bacterial identification and antibiotic susceptibility. The study included 533 patients (306 male and 227 female) aged from 1 day to 55 years [average age (13.00±2.07) years]. Bacterial isolation and identification were attempted for 254/533 (47.65%) samples. The bacterial species identified were: Neisseria meningitidis A (N. meningitidis A) (58.27%), Neisseria meningitidis W135 (N. meningitidis W135) (7.09%), Streptococcus pneumoniae (S. pneumoniae) (26.77%), Haemophilus influenza B (H. influenza B) (6.30%) and Enterobacteriaceae (1.57%). The results indicated that bacterial meningitis occur from November to May with a peak in February for H. influenzae and S. pneumoniae and March for Neisseriaceae. The distribution of positive CSF with regards to the age showed that subjects between 6 and 12 years followed by subjects of 0 to 5 years were most affected with respective frequencies of 67.82% and 56.52% (P<0.001). Susceptibility tests revealed that bacteria have developed resistance to several antibiotics including aminosides (resistance rate >20% for both bacterial strains), macrolides (resistance rate > 30% for H. influenzae) quinolones (resistance rate >15% for H. influenzae and N. meningitidis W135). Over three years, the prevalence of S. pneumoniae significantly increased from 8.48% to 73.33% (P<0.001), while the changes in the prevalence of H. influenzae B were not statistically significant: 4.24%, vs. 8.89%, (P = 0.233). Our results indicate that data in African countries differ depending on geographical location in relation to the African meningitis belt. This underlines

  17. Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis

    PubMed Central

    2009-01-01

    Background The maintenance of internal pH in bacterial cells is challenged by natural stress conditions, during host infection or in biotechnological production processes. Comprehensive transcriptomic and proteomic analyses has been conducted in several bacterial model systems, yet questions remain as to the mechanisms of pH homeostasis. Results Here we present the comprehensive analysis of pH homeostasis in C. glutamicum, a bacterium of industrial importance. At pH values between 6 and 9 effective maintenance of the internal pH at 7.5 ± 0.5 pH units was found. By DNA microarray analyses differential mRNA patterns were identified. The expression profiles were validated and extended by 1D-LC-ESI-MS/MS based quantification of soluble and membrane proteins. Regulators involved were identified and thereby participation of numerous signaling modules in pH response was found. The functional analysis revealed for the first time the occurrence of oxidative stress in C. glutamicum cells at neutral and low pH conditions accompanied by activation of the iron starvation response. Intracellular metabolite pool analysis unraveled inhibition of the TCA and other pathways at low pH. Methionine and cysteine synthesis were found to be activated via the McbR regulator, cysteine accumulation was observed and addition of cysteine was shown to be toxic under acidic conditions. Conclusions Novel limitations for C. glutamicum at non-optimal pH values were identified by a comprehensive analysis on the level of the transcriptome, proteome, and metabolome indicating a functional link between pH acclimatization, oxidative stress, iron homeostasis, and metabolic alterations. The results offer new insights into bacterial stress physiology and new starting points for bacterial strain design or pathogen defense. PMID:20025733

  18. Diversities and similarities in pH dependency among bacterial NhaB-like Na+/H+ antiporters.

    PubMed

    Kiriyama, Wakako; Honma, Kei; Hiratsuka, Tomoaki; Takahashi, Itsuka; Nomizu, Takahiro; Takashima, Yuta; Ohtsuka, Masataka; Takahashi, Daiki; Moriyama, Kazuya; Mori, Sayoko; Nishiyama, Shiho; Fukuhara, Masahiro; Nakamura, Tatsunosuke; Shigematsu, Toru; Yamaguchi, Toshio

    2013-10-01

    NhaB-like antiporters were the second described class of Na(+)/H(+) antiporters, identified in bacteria more than 20 years ago. While nhaB-like gene sequences have been found in a number of bacterial genomes, only a few of the NhaB-like antiporters have been functionally characterized to date. Although earlier studies have identified a few pH-sensitive and -insensitive NhaB-like antiporters, the mechanisms that determine their pH responses still remain elusive. In this study, we sought to investigate the diversities and similarities among bacterial NhaB-like antiporters, with particular emphasis on their pH responsiveness. Our phylogenetic analysis of NhaB-like antiporters, combined with pH profile analyses of activities for representative members of several phylogenetic groups, demonstrated that NhaB-like antiporters could be classified into three distinct types according to the degree of their pH dependencies. Interestingly, pH-insensitive NhaB-like antiporters were only found in a limited proportion of enterobacterial species, which constitute a subcluster that appears to have diverged relatively recently among enterobacterial NhaB-like antiporters. Furthermore, kinetic property analyses of NhaB-like antiporters at different pH values revealed that the degree of pH sensitivity of antiport activities was strongly correlated with the magnitude of pH-dependent change in apparent Km values, suggesting that the dramatic pH sensitivities observed for several NhaB-like antiporters might be mainly due to the significant increases of apparent Km at lower pH. These results strongly suggested the possibility that the loss of pH sensitivity of NhaB-like antiporters had occurred relatively recently, probably via accumulation of the mutations that impair pH-dependent change of Km in the course of molecular evolution.

  19. In vitro responses to avian influenza H5 by human CD4 T-cells*

    PubMed Central

    Cusick, Matthew F; Wang, Shuping; Eckels, David D

    2009-01-01

    To address the question of whether human T-cells are capable of recognizing novel isolates of influenza virus, in vitro responses to recombinant antigens and synthetic peptides derived from the sequences of H1, H3, and H5 were examined in a cohort of 64 individuals selected from a healthy blood donor population. Humans respond in vitro to H1 and H3 following exposure through natural infection and vaccination. Responses to H5 were well correlated with those to H1 or H3 and thus a significant repertoire of H5-responsive T-cells is present in many individuals; clear non-responders to H1, H3, and H5, however, do exist. Differences were observed in the cytokine responses to H1, H3, and H5; whereas both IL-2 and IFN-γ production characteristic of memory responses were observed for H1 and H3, H5-specific responses elicited primarily IL-2 and little or no IFN-γ consistent with a naïve T cell phenotype. Responses to all influenza HA were restricted by HLA-DR molecules. To address the structural basis for T-cell recognition of H1 and H5, overlapping synthetic peptides were used to identify epitopes and to determine whether recognition of H5 was limited to homologous sequences in H1, the most closely related HA phylogenetically. Although responses were generally correlated, no complete structural overlap was observed. These results suggest that helper T cell cross reactivity between different influenza strains may impart cross-protection to H5N1 strain of influenza. PMID:19841175

  20. High prevalence of multiple strain colonization of Helicobacter pylori in Korean patients: DNA diversity among clinical isolates from the gastric corpus, antrum and duodenum.

    PubMed

    Kim, Jeong Wook; Kim, Jae Gyu; Chae, Seok Lae; Cha, Young Joo; Park, Sill Moo

    2004-03-01

    The aims of our study were to determine the correlation of the strain variation and degree of homogeneity of infecting Helicobacter pylori (H. pylori) with their disease outcomes, and the relevance of duodenal H. pylori expression of cagA and/or vacA gene to the development of duodenal ulcer in Korean patients. One hundred and twenty bacterial colonies isolated from different anatomical sites of the stomach and duodenum were used. The study population was consisted of 40 Korean patients, 21 with duodenal ulcer, 7 with gastric ulcer, 3 with combined gastric and duodenal ulcer, and 9 with chronic gastritis. Genomic characteristics of each strain were analyzed by random amplified polymorphic DNA (RAPD) fingerprinting. The cagA and vacA genes were detected by polymerase chain reaction (PCR). PCR-based RAPD was proved to be a reliable method for the discrimination of individual bacterial genomic characteristics. Genomic fingerprinting showed a varying degree of inter- and intra-patient variation. Thirteen patients (32.5%) were colonized by a single strain throughout the corpus, antrum and duodenum, whereas the other 27 (67.5%) harbored multiple H. pylori strains. Thirty-six isolates (90.0%) each from the corpus and antrum, and 34 (85.0%) from the duodenum, expressed the cagA gene. The prevalence of duodenal H. pylori expression of the cagA gene was not different between patients with chronic gastritis and those with duodenal ulcer. All isolates were positive for both genes vacA s1 and vacA s1a. These results suggested that many of the H. pylori-infected Korean patients were actually colonized with mixed populations of different H. pylori strains and that the prevalence of duodenal H. pylori expression of the cagA and/or vacA gene was not correlated with the development of duodenal ulcer in Korean patients.

  1. Long-term survival of Streptococcus pyogenes in rich media is pH-dependent

    PubMed Central

    McShan, William M.

    2012-01-01

    The mechanisms that allow Streptococcus pyogenes to survive and persist in the human host, often in spite of antibiotic therapy, remain poorly characterized. Therefore, the determination of culture conditions for long-term studies is crucial to advancement in this field. Stationary cultures of S. pyogenes strain NZ131 and its spontaneous small-colony variant OK171 were found to survive in rich medium for less than 2 weeks, and this inability to survive resulted from the acidification of the medium to below pH 5.5, which the cells did not tolerate for longer than 6–7 days. The growth of NZ131 resulted in acidification of the culture to below pH 5.5 by the onset of stationary phase, and the loss of viability occurred in a linear fashion. These results were also found to be true for M49 strain CS101 and for M1 strain SF370. The S. pyogenes strains could be protected from killing by the addition of a buffer that stabilized the pH of the medium at pH 6.5, ensuring bacterial survival to at least 70 days. By contrast, increasing the glucose added to the medium accelerated the loss of culture viability in strain NZ131 but not OK171, suggesting that the small-colony variant is altered in glucose uptake or metabolism. Similarly, acidification of the medium prior to inoculation or at the middle of exponential phase resulted in growth inhibition of all strains. These results suggest that control of the pH is crucial for establishing long-term cultures of S. pyogenes. PMID:22361943

  2. Occurrence of trans monounsaturated and polyunsaturated fatty acids in Colwellia psychrerythraea strain 34H.

    PubMed

    Hashimoto, Mikako; Orikasa, Yoshitake; Hayashi, Hidenori; Watanabe, Kentaro; Yoshida, Kiyohito; Okuyama, Hidetoshi

    2015-07-01

    Colwellia psychrerythraea strain 34H is an obligately psychrophilic bacterium that has been used as a model cold-adapted microorganism because of its psychrophilic growth profile, significant production of cold-active enzymes, and cryoprotectant extracellular polysaccharide substances. However, its fatty acid components, particularly trans unsaturated fatty acids and long-chain polyunsaturated fatty acids (LC-PUFAs), have not been fully investigated. In this study, we biochemically identified Δ9-trans hexadecenoic acid [16:1(9t)] and LC-PUFAs such as docosahexaenoic acid. These results are comparable with the fact that the strain 34H genome sequence includes pfa and cti genes that are responsible for the biosynthesis of LC-PUFAs and trans unsaturated fatty acids, respectively. Strain 34H cells grown under static conditions at 5 °C had higher levels of 16:1(9t) than those grown under shaken conditions, and this change was accompanied by an antiparallel decrease in the levels of Δ9-cis hexadecenoic acid [16:1(9c)], suggesting that the cis-to-trans isomerization reaction of 16:1(9c) is activated under static (microanaerobic) culture conditions, that is, the enzyme could be activated by the decreased dissolved oxygen concentration of cultures. On the other hand, the levels of LC-PUFAs were too low (less than 3% of the total), even for cells grown at 5 °C, to evaluate their cold-adaptive function in this bacterium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modified Newcastle disease virus vectors expressing the H5 hemagglutinin induce enhanced protection against highly pathogenic H5N1 avian influenza virus in chickens

    PubMed Central

    Kim, Shin-Hee; Paldurai, Anandan; Xiao, Sa; Collins, Peter L.; Samal, Siba K.

    2016-01-01

    Naturally-occurring attenuated strains of Newcastle disease virus (NDV) are being developed as vaccine vectors for use in poultry and humans. However, some NDV strains, such as Beaudette C (BC), may retain too much virulence in poultry for safe use, and more highly attenuated strains may be suboptimally immunogenic. We therefore modified the BC strain by changing the multibasic cleavage site sequence of the F protein to the dibasic sequence of avirulent strain LaSota. Additionally, the BC, F, and HN proteins were modified in several ways to enhance virus replication. These modified BC-derived vectors and the LaSota strain were engineered to express the hemagglutin (HA) protein of H5N1 highly pathogenic influenza virus (HPAIV). In general, the modified BC-based vectors expressing HA replicated better than LaSota/HA, and expressed higher levels of HA protein. Pathogenicity tests indicated that all the modified viruses were highly attenuated in chickens. Based on in vitro characterization, two of the modified BC vectors were chosen for evaluation in chickens as vaccine vectors against H5N1 HPAIV A/Vietnam/1203/04. Immunization of chickens with rNDV vector vaccines followed by challenge with HPAIV demonstrated high levels of protection against clinical disease and mortality. However, only those chickens immunized with modified BC/HA in which residues 271–330 from the F protein had been replaced with the corresponding sequence from the NDV AKO strain conferred complete protection against challenge virus shedding. Our findings suggest that this modified rNDV can be used safely as a vaccine vector with enhanced replication, expression, and protective efficacy in avian species, and potentially in humans. PMID:24968158

  4. Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012.

    PubMed

    Huang, S Y; Yang, J R; Lin, Y J; Yang, C H; Cheng, M C; Liu, M T; Wu, H S; Chang, F Y

    2015-10-01

    In Taiwan, avian influenza virus (AIV) subtypes H5N2, H6N1 and H7N3 have been identified in domestic poultry, and several strains of these subtypes have become endemic in poultry. To evaluate the potential of avian-to-human transmission due to occupational exposure, an exploratory analysis of AIV antibody status in poultry workers was conducted. We enrolled 670 poultry workers, including 335 live poultry vendors (LPVs), 335 poultry farmers (PFs), and 577 non-poultry workers (NPWs). Serum antibody titres against various subtypes of viruses were analysed and compared. The overall seropositivity rates in LPVs and PFs were 2·99% (10/335) and 1·79% (6/335), respectively, against H5N2; and 0·6% (2/335) and 1·19% (4/335), respectively, for H7N3 virus. Of NPWs, 0·35% (2/577) and 0·17% (1/577) were seropositive for H5N2 and H7N3, respectively. Geographical analysis revealed that poultry workers whose workplaces were near locations where H5N2 outbreaks in poultry have been reported face greater risks of being exposed to viruses that result in elevated H5N2 antibody titres. H6N1 antibodies were detected in only one PF, and no H7N9 antibodies were found in the study subjects. Subclinical infections caused by H5N2, H6N1 and H7N3 viruses were thus identified in poultry workers in Taiwan. Occupational exposure is associated with a high risk of AIV infection, and the seroprevalence of particular avian influenza strains in humans reflects the endemic strains in poultry in this region.

  5. A theoretical insight into H accumulation and bubble formation by applying isotropic strain on the W-H system under a fusion environment

    NASA Astrophysics Data System (ADS)

    Han, Quan-Fu; Liu, Yue-Lin; Zhang, Ying; Ding, Fang; Lu, Guang-Hong

    2018-04-01

    The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.

  6. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens.

    PubMed

    Wang, Jichun; Ge, Aimin; Xu, Mengwei; Wang, Zhisheng; Qiao, Yongfeng; Gu, Yiqi; Liu, Chang; Liu, Yamei; Hou, Jibo

    2015-08-13

    Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEV(C-KCE)). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 10(6) TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 10(7) TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 10(6) TCID50 DEV-vectored vaccine. We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEV(C-KCE). (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEV(C-KCE) affects neither the growth kinetics of the virus nor its

  7. Bacterial keratitis: a prospective clinical and microbiological study

    PubMed Central

    Schaefer, F.; Bruttin, O.; Zografos, L.; Guex-Crosier, Y.

    2001-01-01

    AIM—To define the clinical and microbiological profile of bacterial keratitis at the Jules Gonin Eye Hospital and to test the in vitro bacterial resistance.
METHODS—Patients presenting with bacterial keratitis were prospectively followed; clinical features (age, risk factors, visual acuity) and response to therapy were analysed. Bacteriological profile was determined and the sensitivity/resistance of isolated strains were tested towards 12 ocular antibiotics (NCCLS disc diffusion test).
RESULTS—85 consecutive patients (mean age 44.3 (SD 20.7) years) were prospectively enrolled from 1 March 1997 to 30 November 1998. The following risk factors were identified: contact lens wear, 36%; blepharitis, 21%; trauma, 20%; xerophthalmia, 15%; keratopathies, 8%; and eyelid abnormalities, 6%. The most commonly isolated bacteria were Staphylococcus epidermidis, 40%; Staphylococcus aureus, 22%; Streptococcus pneumoniae, 8%; others Streptococcus species, 5%; Pseudomonas, 9%; Moraxella and Serratia marcescens, 5% each; Bacillus, Corynebacterium, Alcaligenes xyloxidans, Morganella morganii, and Haemophilus influenza, 1% each. 1-15% of strains were resistant to fluoroquinolones, 13-22% to aminoglycosides, 37% to cefazolin, 18% to chloramphenicol, 54% to polymyxin B, 51% to fusidic acid, and 45% to bacitracin. Five of the 85 patients (5.8%) had a poor clinical outcome with a visual loss of one or more lines of visual acuity.
CONCLUSION—Fluoroquinolones appear to be the therapy of choice for bacterial keratitis, but, based upon these in vitro studies, some strains may be resistant.

 PMID:11423460

  8. The Appropriate Combination of Hemagglutinin and Neuraminidase Prompts the Predominant H5N6 Highly Pathogenic Avian Influenza Virus in Birds.

    PubMed

    Wang, Xiuhui; Zeng, Zhaoyong; Zhang, Zaoyue; Zheng, Yi; Li, Bo; Su, Guanming; Li, Huanan; Huang, Lihong; Qi, Wenbao; Liao, Ming

    2018-01-01

    Haemagglutinin (HA) and neuraminidase (NA) are two vital surface glycoproteins of influenza virus. The HA of H5N6 highly pathogenic avian influenza virus is divided into Major/H5 and Minor/H5, and its NA consists of short stalk NA and full-length stalk NA. The strain combined with Major/H5 and short stalk NA account for 76.8% of all strains, and the proportion was 23.0% matched by Minor/H5 and full-length stalk NA. Our objective was to investigate the influence of HA-NA matching on the biological characteristics and the effects of the epidemic trend of H5N6 on mice and chickens. Four different strains combined with two HAs and two NAs of the represented H5N6 viruses with the fixed six internal segments were rescued and analyzed. Plaque formation, NA activity of infectious particles, and virus growth curve assays, as well as a saliva acid receptor experiment, with mice and chickens were performed. We found that all the strains can replicate well on Madin-Darby canine kidney (MDCK) cells and chicken embryo fibroblasts (CEF) cells, simultaneously, mice and infection group chickens were complete lethal. However, the strain combined with Major/H5 and short stalk N6 formed smaller plaque on MDCK, showed a moderate replication ability in both MDCK and CEF, and exhibited a higher survival rate among the contact group of chickens. Conversely, strains with opposite biological characters which combined with Minor/H5 and short stalk N6 seldom exist in nature. Hence, we drew the conclusion that the appropriate combination of Major/H5 and short stalk N6 occur widely in nature with appropriate biological characteristics for the proliferation and transmission, whereas other combinations of HA and NA had a low proportion and even have not yet been detected.

  9. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  10. Physiological and genetic analyses of inbred mouse strains with a type I iodothyronine 5' deiodinase deficiency.

    PubMed

    Berry, M J; Grieco, D; Taylor, B A; Maia, A L; Kieffer, J D; Beamer, W; Glover, E; Poland, A; Larsen, P R

    1993-09-01

    Inbred mouse strains differ in their capacity to deiodinate iododioxin and iodothyronines, with strains segregating into high or low activity groups. Metabolism of iododioxin occurs via the type I iodothyronine 5'deiodinase (5'DI), one of two enzymes that metabolize thyroxine (T4) to 3,5,3'-triiodothyronine (T3). Recombinant inbred strains derived from crosses between high and low activity strains exhibit segregation characteristic of a single allele difference. Hepatic and renal 5'DI mRNA in a high (C57BL/6J) and low (C3H/HeJ) strain paralleled enzyme activity and concentration, in agreement with a recent report. 5'DI-deficient mice had twofold higher serum free T4 but normal free T3 and thyrotropin. Brown adipose tissue 5'DII was invariant between the two strains. Southern analyses using a 5'DI probe identified a restriction fragment length variant that segregated with 5'DI activity in 33 of 35 recombinant inbred strains derived from four different pairs of high and low activity parental strains. Recombination frequencies using previously mapped loci allowed assignment of the 5'DI gene to mouse chromosome 4 and identified its approximate chromosomal position. We propose the symbol Dio1 to denote the mouse 5'DI gene. Conserved linkage between this segment of mouse chromosome 4 and human HSA1p predicts this location for human Dio1.

  11. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    PubMed

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.

  12. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    PubMed Central

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-01-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  13. Novel Sequence-Based Mapping of Recently Emerging H5NX Influenza Viruses Reveals Pandemic Vaccine Candidates

    PubMed Central

    Anderson, Christopher S.; DeDiego, Marta L.; Thakar, Juilee; Topham, David J.

    2016-01-01

    Recently, an avian influenza virus, H5NX subclade 2.3.4.4, emerged and spread to North America. This subclade has frequently reassorted, leading to multiple novel viruses capable of human infection. Four cases of human infections, three leading to death, have already occurred. Existing vaccine strains do not protect against these new viruses, raising a need to identify new vaccine candidate strains. We have developed a novel sequence-based mapping (SBM) tool capable of visualizing complex protein sequence data sets using a single intuitive map. We applied SBM on the complete set of avian H5 viruses in order to better understand hemagglutinin protein variance amongst H5 viruses and identify any patterns associated with this variation. The analysis successfully identified the original reassortments that lead to the emergence of this new subclade of H5 viruses, as well as their known unusual ability to re-assort among neuraminidase subtypes. In addition, our analysis revealed distinct clusters of 2.3.4.4 variants that would not be covered by existing strains in the H5 vaccine stockpile. The results suggest that our method may be useful for pandemic candidate vaccine virus selection. PMID:27494186

  14. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77.

    PubMed

    Li, Yi-Ping; Ramirez, Santseharay; Mikkelsen, Lotte; Bukh, Jens

    2015-01-01

    The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed efficient infectious cell culture systems for these genotype 1a strains by using the HCV-1/SF9_A and H77C in vivo infectious clones. We initially adapted a genome with the HCV-1 5'UTR-NS5A (where UTR stands for untranslated region) and the JFH1 NS5B-3'UTR (5-5A recombinant), including the genotype 2a-derived mutations F1464L/A1672S/D2979G (LSG), to grow efficiently in Huh7.5 cells, thus identifying the E2 mutation S399F. The combination of LSG/S399F and reported TNcc(1a)-adaptive mutations A1226G/Q1773H/N1927T/Y2981F/F2994S promoted adaptation of the full-length HCV-1 clone. An HCV-1 recombinant with 17 mutations (HCV1cc) replicated efficiently in Huh7.5 cells and produced supernatant infectivity titers of 10(4.0) focus-forming units (FFU)/ml. Eight of these mutations were identified from passaged HCV-1 viruses, and the A970T/I1312V/C2419R/A2919T mutations were essential for infectious particle production. Using CD81-deficient Huh7 cells, we further demonstrated the importance of A970T/I1312V/A2919T or A970T/C2419R/A2919T for virus assembly and that the I1312V/C2419R combination played a major role in virus release. Using a similar approach, we found that NS5B mutation F2994R, identified here from culture-adapted full-length TN viruses and a common NS3 helicase mutation (S1368P) derived from viable H77C and HCV-1 5-5A recombinants, initiated replication and culture adaptation of H77C containing LSG and TNcc(1a)-adaptive mutations. An H77C recombinant harboring 19 mutations (H77Ccc) replicated and spread efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. Hepatitis C virus (HCV) was discovered in 1989 with

  15. A freshwater bacterial strain, Shewanella sp. Lzh-2, isolated from Lake Taihu and its two algicidal active substances, hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2, 3-indolinedione.

    PubMed

    Li, Zhenghua; Lin, Shengqin; Liu, Xianglong; Tan, Jing; Pan, Jianliang; Yang, Hong

    2014-05-01

    Cyanobacterial blooms have become a serious problem in Lake Taihu during the last 20 years, and Microcystis aeruginosa and Synechococcus sp. are the two dominant species in cyanobacterial blooms of Lake Taihu. A freshwater bacterial strain, Shewanella sp. Lzh-2, with strong algicidal properties against harmful cyanobacteria was isolated from Lake Taihu. Two substances with algicidal activity secreted extracellularly by Shewanella sp. Lzh-2, S-2A and S-2B, were purified from the bacterial culture of strain Lzh-2 using ethyl acetate extraction, column chromatography, and high performance liquid chromatography (HPLC) in turn. The substances S-2A and S-2B were identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2, 3-indolinedione (isatin), respectively, based on liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and hydrogen-nuclear magnetic resonance (H-NMR) analyses, making this the first report of their algicidal activity toward cyanobacteria. S-2A (hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) had no algicidal effects against Synechococcus sp. BN60, but had a high level of algicidal activity against M. aeruginosa 9110. The LD50 value of S-2A against M. aeruginosa 9110 was 5.7 μg/ml. S-2B (2, 3-indolinedione) showed a potent algicidal effect against both M. aeruginosa 9110 and Synechococcus sp. BN60, and the LD50 value of S-2B against M. aeruginosa 9110 and Synechococcus sp. BN60 was 12.5 and 34.2 μg/ml, respectively. Obvious morphological changes in M. aeruginosa 9110 and Synechococcus sp. BN60 were observed after they were exposed to S-2A (or S-2B) for 24 h. Approximately, the algicidal activity, the concentration of S-2A and S-2B, and the cell density of Lzh-2 were positively related to each other during the cocultivation process. Overall, these findings increase our knowledge about algicidal substances secreted by algicidal bacteria and indicate that strain Lzh-2 and its two algicidal substances have the

  16. Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis.

    PubMed

    Raghuwanshi, Shailendra; Dutt, Kakoli; Gupta, Pritesh; Misra, Swati; Saxena, Rajendra Kumar

    2011-06-01

    An indigenously isolated strain of Bacillus sphaericus was found to produce 1.21 IU/ml of tannase under unoptimized conditions. Optimizing the process one variable at a time resulted in the production of 7.6 IU/ml of tannase in 48 h in the presence of 1.5% tannic acid. A 9.26-fold increase in tannase production was achieved upon further optimization using response surface methodology (RSM), a statistical approach. This increase led to a production level of 11.2I U/ml in medium containing 2.0% tannic acid, 2.5% galactose, 0.25% ammonium chloride, and 0.1% MgSO(4) pH 6.0 incubated at 37°C and 100 rpm for 48 h with a 2.0% inoculum level. Scaling up tannase production in a 30-l bioreactor resulted in the production of 16.54 IU/ml after 36 h. Thus far, this tannase production is the highest reported in this bacterial strain. Partially purified tannase exhibited an optimum pH of 5.0 with activity in the pH range of 3 to 8; 50°C was the optimal temperature for activity. Efficient conversion of tannic acid to purified gallic acid (90.80%) was achieved through crystallization. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Design, synthesis and biological evaluation of novel aryldiketo acids with enhanced antibacterial activity against multidrug resistant bacterial strains.

    PubMed

    Cvijetić, Ilija N; Verbić, Tatjana Ž; Ernesto de Resende, Pedro; Stapleton, Paul; Gibbons, Simon; Juranić, Ivan O; Drakulić, Branko J; Zloh, Mire

    2018-01-01

    Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Factors affecting the rate of breakdown of bacterial protein in rumen fluid.

    PubMed

    Wallace, R J; McPherson, C A

    1987-09-01

    1. The cellular proteins of Butyrivibrio fibrisolvens, Lactobacillus casei, Megasphaera elsdenii, Selenomonas ruminantium and Streptococcus bovis were labelled by growth in the presence of L-[14C]leucine, and the breakdown of labelled protein was measured in incubations of these bacteria with rumen fluid to which unlabelled 5 mM-L-leucine was added. The rate of protein breakdown was estimated from the rate of release of radioactivity into acid-soluble material. 2. Protein breakdown occurred at different rates in different species. The mean rates for B. fibrisolvens, L. casei, M. elsdenii, Sel. ruminantium and Str. bovis were 28.6, 18.1, 17.7, 10.5 and 5.3%/h respectively in samples of strained rumen fluid (SRF) with different protozoal populations. Rates of 3%/h or less were found in SRF from ciliate-free sheep or in faunated SRF from which protozoa had been removed by centrifugation. Further removal of mixed rumen bacteria had little effect. Suspensions of washed protozoa degraded bacterial protein at rates which were of the same order as those found in SRF. 3. The rate of breakdown of bacterial protein in different samples of SRF tended to increase as the numbers of small entodiniomorphid protozoa increased. The numbers of larger entodiniomorphs and holotrichs had no obvious influence on this rate. 4. Autoclaved and u.v.-treated bacteria were generally no different from live bacteria in their susceptibility to breakdown in SRF from faunated sheep, indicating that endogenous protein turnover was not a significant cause of bacterial protein catabolism. 5. The rate of bacterial protein breakdown was unrelated to the proteolytic activity of SRF. 6. It was concluded that predation by small protozoa is by far the most important cause of bacterial protein turnover in the rumen, with autolysis, other lytic factors and endogenous proteolysis being of minor importance.

  19. Antibiotic resistance pattern of Helicobacter pylori strains isolated in Italy during 2010-2016.

    PubMed

    Fiorini, Giulia; Zullo, Angelo; Saracino, Ilaria Maria; Pavoni, Matteo; Vaira, Dino

    2018-04-24

    Bacterial resistance toward the most used antibiotics is increasing in Helicobacter pylori strains worldwide. Emergence of multidrug resistance significantly affects the efficacy of standard therapy regimens. Therefore, monitoring for primary antimicrobial resistance is essential for H. pylori management in clinical practice. H. pylori isolates obtained from patients consecutively observed in a single center were tested for primary resistance by using E-test method. Bacterial strains showing MIC values >0.5, >8 and >1 mg/L toward clarithromycin, metronidazole and levofloxacin, respectively, were considered resistant. The trend of antibiotic prevalence, either single or combined, during 2010-2016 was assessed. Antibiotic susceptibility data were available in 1424 (82.3%) out of 1730 tested patients. The overall resistance for all the three antibiotics showed an increasing trend from 2010 to 2013 (clarithromycin: from 19% to 35.6%; metronidazole: from 33.6% to 45.3%; levofloxacin: from 19% to 29.7%; p < .001), when a plateau until 2016 was observed (clarithromycin: 35.9%; metronidazole: 40.2%; levofloxacin: 29.3%). A similar trend occurred for clarithromycin-metronidazole combined resistance rate (2010: 11.4%; 2013: 28.2%; 2016: 21.9%). Our data suggest that prevalence of primary resistance in H. pylori isolates toward the most frequently used antibiotics probably reached a plateau in the last years.

  20. Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates.

    PubMed

    Mora, Azucena; Herrera, Alexandra; Mamani, Rosalia; López, Cecilia; Alonso, María Pilar; Blanco, Jesús E; Blanco, Miguel; Dahbi, Ghizlane; García-Garrote, Fernando; Pita, Julia María; Coira, Amparo; Bernárdez, María Isabel; Blanco, Jorge

    2010-11-01

    To discern the possible spread of the Escherichia coli O25b:H4-ST131 clonal group in poultry and the zoonotic potential of avian strains, we made a retrospective search of our strain collection and compared the findings for those strains with the findings for current strains. Thus, we have characterized a collection of 19 avian O25b:H4-ST131 E. coli strains isolated from 1995 to 2010 which, interestingly, harbored the ibeA gene. Using this virulence gene as a criterion for selection, we compared those 19 avian strains with 33 human O25b:H4-ST131 ibeA-positive E. coli strains obtained from patients with extraintestinal infections (1993 to 2009). All 52 O25b:H4-ST131 ibeA-positive E. coli strains shared the fimH, kpsMII, malX, and usp genes but showed statistically significant differences in nine virulence factors, namely, papGIII, cdtB, sat, and kpsMII K5, which were associated with human strains, and iroN, kpsMII K1, cvaC, iss, and tsh, which were associated with strains of avian origin. The XbaI macrorestriction profiles of the 52 E. coli O25b:H4-ST131 ibeA-positive strains revealed 11 clusters (clusters I to XI) of >85% similarity, with four clusters including strains of human and avian origin. Cluster VII (90.9% similarity) grouped 10 strains (7 avian and 3 human strains) that mostly produced CTX-M-9 and that also shared the same virulence profile. Finally, we compared the macrorestriction profiles of the 12 CTX-M-9-producing O25b:H4-ST131 ibeA strains (7 avian and 5 human strains) identified among the 52 strains with those of 15 human O25b:H4-ST131 CTX-M-14-, CTX-M-15-, and CTX-M-32-producing strains that proved to be negative for ibeA and showed that they clearly differed in the level of similarity from the CTX-M-9-producing strains. In conclusion, E. coli clonal group O25b:H4-ST131 ibeA has recently emerged among avian isolates with the new acquisition of the K1 capsule antigen and includes CTX-M-9-producing strains. This clonal group represents a real

  1. Preliminary data on antibacterial activity of Echinacea purpurea-associated bacterial communities against Burkholderia cepacia complex strains, opportunistic pathogens of Cystic Fibrosis patients.

    PubMed

    Chiellini, Carolina; Maida, Isabel; Maggini, Valentina; Bosi, Emanuele; Mocali, Stefano; Emiliani, Giovanni; Perrin, Elena; Firenzuoli, Fabio; Mengoni, Alessio; Fani, Renato

    2017-03-01

    Burkholderia cepacia complex bacteria (Bcc) represent a serious threat for immune-compromised patient affected by Cystic Fibrosis (CF) since they are resistant to many substances and to most antibiotics. For this reason, the research of new natural compounds able to inhibit the growth of Bcc strains has raised new interest during the last years. A source of such natural compounds is represented by medicinal plants and, in particular, by bacterial communities associated with these plants able to produce molecules with antimicrobial activity. In this work, a panel of 151 (endophytic) bacteria isolated from three different compartments (rhizospheric soil, roots, and stem/leaves) of the medicinal plant Echinacea purpurea were tested (using the cross-streak method) for their ability to inhibit the growth of 10 Bcc strains. Data obtained revealed that bacteria isolated from the roots of E. purpurea are the most active in the inhibition of Bcc strains, followed by bacteria isolated from the rhizospheric soil, and endophytes from stem/leaf compartment. At the same time, Bcc strains of environmental origin showed a higher resistance toward inhibition than the Bcc strains with clinical (i.e. CF patients) origin. Differences in the inhibition activity of E. purpurea-associated bacteria are mainly linked to the environment -the plant compartment- rather than to their taxonomical position. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9.

    PubMed

    Chen, Yongfu; Liu, Wenjun; Xue, Jiangang; Yang, Jie; Chen, Xia; Shao, Yuyu; Kwok, Lai-yu; Bilige, Menghe; Mang, Lai; Zhang, Heping

    2014-11-01

    Hypertension is a major global health issue which elevates the risk of a large world population to chronic life-threatening diseases. The inhibition of angiotensin-converting enzyme (ACE) is an effective target to manage essential hypertension. In this study, the fermentation properties (titratable acidity, free amino nitrogen, and fermentation time) and ACE-inhibitory (ACEI) activity of fermented milks produced by 259 Lactobacillus helveticus strains previously isolated from traditional Chinese and Mongolian fermented foods were determined. Among them, 37 strains had an ACEI activity of over 50%. The concentrations of the antihypertensive peptides, Ile-Pro-Pro and Val-Pro-Pro, were further determined by ultra performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. The change of ACEI activity of the fermented milks of 3 strains exhibiting the highest ACEI activity upon gastrointestinal protease treatment was assayed. Fermented milks produced by strain H9 (IMAU60208) had the highest in vitro ACEI activity (86.4 ± 1.5%), relatively short fermentation time (7.5 h), and detectable Val-Pro-Pro (2.409 ± 0.229 µM) and Ile-Pro-Pro (1.612 ± 0.114 µM) concentrations. Compared with the control, a single oral dose of H9-fermented milk significantly attenuated the systolic, diastolic, and mean blood pressure of spontaneously hypertensive rats (SHR) by 15 to 18 mmHg during the 6 to 12 h after treatment. The long-term daily H9-fermented milk intake over 7 wk exerted significant antihypertensive effect to SHR, but not normotensive rats, and the systolic and diastolic blood pressure were significantly lower, by 12 and 10 mmHg, respectively, compared with the control receiving saline. The feeding of H9-fermented milk to SHR resulted in a significantly higher weight gain at wk 7 compared with groups receiving saline, commercial yogurt, and captopril. Our study identified a novel probiotic L. helveticus strain originated from kurut sampled from Tibet

  3. Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity

    PubMed Central

    Kianoush, Nima; Adler, Christina J.; Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil

    2014-01-01

    Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies. PMID:24675997

  4. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.

    PubMed

    Mishra, Rashmi Ranjan; Prajapati, Sunita; Das, Jyotirmayee; Dangar, Tushar Kanti; Das, Nigamananda; Thatoi, Hrudayanath

    2011-08-01

    Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40°C) and salt concentration (4-12%) having an optimum growth at 37°C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Characterization of Strain Due to Nitrogen Doping Concentration Variations in Heavy Doped 4H-SiC

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Guo, Jianqiu; Raghothamachar, Balaji; Chan, Xiaojun; Kim, Taejin; Dudley, Michael

    2018-02-01

    Highly doped 4H-SiC will show a significant lattice parameter difference with respect to the undoped material. We have applied the recently developed monochromatic contour mapping technique for 4H-SiC crystals to a 4H-SiC wafer crystal characterized by nitrogen doping concentration variation across the whole sample surface using a synchrotron monochromatic x-ray beam. Strain maps of 0008 and - 2203 planes were derived by deconvoluting the lattice parameter variations from the lattice tilt. Analysis reveals markedly different strain values within and out of the basal plane indicating the strain induced by nitrogen doping is anisotropic in the 4H-SiC hexagonal crystal structure. The highest strain calculated along growth direction [0001] and along [1-100] on the closed packed basal plane is up to - 4 × 10-4 and - 2.7 × 10-3, respectively. Using an anisotropic elasticity model by separating the whole bulk crystal into numerous identical rectangular prism units, the measured strain was related to the doping concentration and the calculated highest nitrogen level inside wafer crystal was determined to be 1.5 × 1020 cm-3. This is in agreement with observation of double Shockley stacking faults in the highly doped region that are predicted to nucleate at nitrogen levels above 2 × 1019 cm-3.

  6. Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli DH5α on glycogen structure, accumulation, and bacterial viability.

    PubMed

    Wang, Liang; Regina, Ahmed; Butardo, Vito M; Kosar-Hashemi, Behjat; Larroque, Oscar; Kahler, Charlene M; Wise, Michael J

    2015-05-07

    Glycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation. A series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media. Despite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were

  7. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  8. Coaggregation between probiotic bacteria and caries-associated strains: an in vitro study.

    PubMed

    Twetman, Lisa; Larsen, Ulla; Fiehn, Nils-Erik; Stecksén-Blicks, Christina; Twetman, Svante

    2009-01-01

    To evaluate the in vitro abilities of probiotic bacteria derived from consumer products to coaggregate with caries-associated mutans streptococci. Six lactobacillus strains (L. acidophilus (CCUG 5917), L. plantarum 299v, L. rhamnosus GG and LB21, L. paracasei F19, L. reuteri PTA5289) were cultivated under anaerobic conditions at 37°C in Man Rogosa Sharpe (MSB) broth for 24 h. Four strains of human streptococci (S. mutans Ingbritt, S. mutans (ATCC 25175), S. mutans GS-5, S. sobrinus (ATCC 33478) were similarly grown in Brain Heart Infusion (BHI) broth. A gastrointestinal pathogen (Escherichia coli) was aerobically cultivated on BHI broth as a positive control. After incubation, the bacteria were aerobically harvested, washed, and suspended in 10 mmol/l phosphate-buffered saline (pH 7.2). The probiotic strains were characterized with the API 50 CH system to confirm their identity. Coaggregation was determined by spectrophotometry in mixtures and bacterial suspensions alone after 1, 2, 4, and 24 h and expressed as the aggregation ratio (%). All probiotic strains showed coaggregation abilities with the oral pathogens and the results were strain specific and dependent on time. S. mutans GS-5 exhibited a significantly higher ability to coaggregate with all the probiotic strains than the other mutans streptococci and E. coli. The differences among the probiotic strains were modest with L. acidophilus being the most prone and L. rhamnosus LB21 the least prone to coaggregate with the oral streptococci. The results demonstrated different abilities of lactobacilli-derived probiotic bacteria to coaggregate with selected oral streptococci. Aggregation assays may be a useful complement for screening of probiotic candidates with possible anti-caries properties.

  9. Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat transfer fluid used in thermo-solar plants.

    PubMed

    Blanco-Moreno, Rafael; Sáez, Lara P; Luque-Almagro, Víctor M; Roldán, M Dolores; Moreno-Vivián, Conrado

    2017-03-25

    Thermo-solar plants use eutectic mixtures of diphenyl ether (DE) and biphenyl (BP) as heat transfer fluid (HTF). Potential losses of HTF may contaminate soils and bioremediation is an attractive tool for its treatment. DE- or BP-degrading bacteria are known, but up to now bacteria able to degrade HTF mixture have not been described. Here, five bacterial strains which are able to grow with HTF or its separate components DE and BP as sole carbon sources have been isolated, either from soils exposed to HTF or from rhizospheric soils of plants growing near a thermo-solar plant. The organisms were identified by 16S rRNA gene sequencing as Achromobacter piechaudii strain BioC1, Pseudomonas plecoglossicida strain 6.1, Pseudomonas aeruginosa strains HBD1 and HBD3, and Pseudomonas oleovorans strain HBD2. Activity of 2,3-dihydroxybiphenyl dioxygenase (BphC), a key enzyme of the biphenyl upper degradation pathway, was detected in all isolates. Pseudomonas strains almost completely degraded 2000ppm HTF after 5-day culture, and even tolerated and grew in the presence of 150,000ppm HTF, being suitable candidates for in situ soil bioremediation. Degradation of both components of HTF is of particular interest since in the DE-degrader Sphingomonas sp. SS3, growth on DE or benzoate was strongly inhibited by addition of BP. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Three separate classes of bacterial ice nucleation structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, M.A.; Arellano, F.; Kozloff, L.M.

    1990-05-01

    Studies of the properties of the ice nucleation structure exposed on the surfaces of various bacteria such as Pseudomonas syringae, Erwinia herbicola, or various strains of Ice+ recombinant Escherichia coli have shown that there are clearly three major related but chemically distinct types of structures on these cells. First, the ability of Ice+ cells to nucleate super-cooled D2O has been examined, and it has been found that this ability (relative to the ability of the same cells to nucleate super-cooled H2O) exhibited three characteristic nucleating patterns. The rarest structure, called class A, is found on only a small fraction ofmore » cells in a culture, nucleates H2O at temperatures above -4.4 degrees C, and is an effective nucleator of super-cooled D2O. A second class of structure, called class B, is found on a larger portion of the cells, nucleates H2O between -4.8 and -5.7 degrees C, and is a relatively poor nucleator of super-cooled D2O. The class C structure is found on almost all cells and nucleates at -7.6 degrees C or colder. These three classes of structures were also differentiated by their sensitivities to low concentrations of water-miscible organic solvents such as dioxane or dimethyl sulfoxide. Depending on the specific bacterial strain, the addition of these solvents to bacterial suspensions lowered the nucleation activity of the class A structure by 1,000-fold or more. The nucleation activities of class B structures in the same culture were highly resistant to these compounds and were lowered only by 20 to 40%.« less

  11. Complete Genome Sequence of a Putative New Bacterial Strain, I507, Isolated from the Indian Ocean

    PubMed Central

    Wang, Shu-yan; Wei, Jia-qiang

    2018-01-01

    ABSTRACT Bacterial strain I507 was isolated from the central Indian Ocean and may be a potential novel species, according to the 16S rRNA gene sequence. Here, we present its complete genome sequence and expect that it will provide researchers with valuable information to further understand its classification and function in the future. PMID:29674539

  12. pH-Dependent Antimicrobial Properties of Copper Oxide Nanoparticles in Staphylococcus aureus

    PubMed Central

    Hsueh, Yi-Huang; Tsai, Ping-Han; Lin, Kuen-Song

    2017-01-01

    The antimicrobial properties of CuO nanoparticles have been investigated, but the underlying mechanisms of toxicity remain the subject of debate. Here, we show that CuO nanoparticles exhibit significant toxicity at pH 5 against four different Staphylococcus aureus (S. aureus) strains, including Newman, SA113, USA300, and ATCC6538. At this pH, but not at pH 6 and 7, 5 mM CuO nanoparticles effectively caused reduction of SA113 and Newman cells and caused at least 2 log reduction, whereas 20 mM killed most strains but not USA300. At 5 mM, the nanoparticles were also found to dramatically decrease reductase activity in SA113, Newman, and ATCC6538 cells, but not USA300 cells. In addition, analysis of X-ray absorption near-edge structure and extended X-ray absorption fine structure confirmed that S. aureus cells exposed to CuO nanoparticles contain CuO, indicating that Cu2+ ions released from nanoparticles penetrate bacterial cells and are subsequently oxidized intracellularly to CuO at mildly acidic pH. The CuO nanoparticles were more soluble at pH 5 than at pH 6 and 7. Taken together, the data conclusively show that the toxicity of CuO nanoparticles in mildly acidic pH is caused by Cu2+ release, and that USA300 is more resistant to CuO nanoparticles (NPs) than the other three strains. PMID:28397766

  13. Roles of H2 uptake hydrogenases in Shigella flexneri acid tolerance

    PubMed Central

    McNorton, Mykeshia M.

    2012-01-01

    Hydrogenases play many roles in bacterial physiology, and use of H2 by the uptake-type enzymes of animal pathogens is of particular interest. Hydrogenases have never been studied in the pathogen Shigella, so targeted mutant strains were individually generated in the two Shigella flexneri H2-uptake enzymes (Hya and Hyb) and in the H2-evolving enzyme (Hyc) to address their roles. Under anaerobic fermentative conditions, a Hya mutant strain (hya) was unable to oxidize H2, while a Hyb mutant strain oxidized H2 like the wild-type. A hyc strain oxidized more exogenously added hydrogen than the parent. Fluorescence ratio imaging with dye JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide) showed that the parent strain generated a membrane potential 15 times greater than hya. The hya mutant was also by far the most acid-sensitive strain, being even more acid-sensitive than a mutant strain in the known acid-combating glutamate-dependent acid-resistance pathway (GDAR pathway). In severe acid-challenge experiments, the addition of glutamate to hya restored survivability, and this ability was attributed in part to the GDAR system (removes intracellular protons) by mutant strain (e.g. hya/gadBC double mutant) analyses. However, mutant strain phenotypes indicated that a larger portion of the glutamate-rescued acid tolerance was independent of GadBC. The acid tolerance of the hya strains was aided by adding chloride ions to the growth medium. The whole-cell Hya enzyme became more active upon acid exposure (20 min), based on assays of hyc. Indeed, the very high rates of Shigella H2 oxidation by Hya in acid can supply each cell with 2.4×108 protons min−1. Electrons generated from Hya-mediated H2 oxidation at the inner membrane likely counteract cytoplasmic positive charge stress, while abundant proton pools deposited periplasmically likely repel proton influx during severe acid stress. PMID:22628482

  14. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    PubMed

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes < 0.8 nN. Steric repulsion due to surface polymers was apparently responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  15. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens

    PubMed Central

    Stork, Christoph; Kovács, Beáta; Rózsai, Barnabás; Putze, Johannes; Kiel, Matthias; Dorn, Ágnes; Kovács, Judit; Melegh, Szilvia; Leimbach, Andreas; Kovács, Tamás; Schneider, György; Kerényi, Monika; Emödy, Levente; Dobrindt, Ulrich

    2018-01-01

    Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising

  16. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for

  17. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate.

    PubMed

    Yang, Chu-Fang; Huang, Ci-Ruei

    2016-08-01

    Thermal acid hydrolysis is often used to deal with lignocellulosic biomasses, but 5-hydroxy-methylfurfural (5-HMF) formed during hydrolysis deeply influences downstream fermentation. 2,5-Furan-dicarboxylic acid (FDCA), which is in the list of future important biomass platform molecules can be obtained using 5-HMF biotransformation. Based on the connection between 5-HMF removal in acid hydrolysate and FDCA production, the optimum thermal acid hydrolysis condition for macroalgae Chaetomorpha linum was established. Potential microbes capable of transforming 5-HMF into FDCA were isolated and characterized under various parameters and inoculated into algal hydrolysate to perform 5-HMF biotransformation. The optimum hydrolysis condition was to apply 0.5M HCl to treat 3% algal biomass under 121°C for 15min. Isolated Burkholderia cepacia H-2 could transform 2000mg/L 5-HMF at the initial pH of 7 at 28°C and 1276mg/L FDCA was received. Strain B. cepacia H-2 was suitable for treating the algal hydrolysate without dilution, receiving 989.5mg/L FDCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species.

    PubMed Central

    Genthner, B R; Davis, C L; Bryant, M P

    1981-01-01

    Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains. PMID:6791591

  19. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking.

    PubMed

    Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

    2013-07-01

    Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra- or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish aquaculture. © 2013

  20. Dynamic Strain Aging of Nickel-Base Alloys 800H and 690

    NASA Astrophysics Data System (ADS)

    Moss, Tyler E.; Was, Gary S.

    2012-10-01

    The objective of the current investigation is to characterize the dynamic strain aging (DSA) behavior in alloys 800H and 690. Constant extension rate tests were conducted at strain rates in the range of 10-4 s-1 to 10-7 s-1and temperatures between 295 K and 673 K (22 °C and 400 °C), in an argon atmosphere. Maps for the occurrence of serrated flow as a function of strain rate and temperature were built for both alloys. The enthalpy of serrated flow appearance of alloy 800H was found to be 1.07 ± 0.30 eV.

  1. Complete Genomic Sequences of H3N8 Equine Influenza Virus Strains Used as Vaccine Strains in Japan

    PubMed Central

    Yamanaka, Takashi; Bannai, Hiroshi; Tsujimura, Koji; Kokado, Hiroshi

    2018-01-01

    ABSTRACT We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations. PMID:29567739

  2. Complete Genomic Sequences of H3N8 Equine Influenza Virus Strains Used as Vaccine Strains in Japan.

    PubMed

    Nemoto, Manabu; Yamanaka, Takashi; Bannai, Hiroshi; Tsujimura, Koji; Kokado, Hiroshi

    2018-03-22

    We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations. Copyright © 2018 Nemoto et al.

  3. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.

    PubMed

    Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A

    2009-01-01

    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.

  4. A study of the interaction between H. pylori mice passage strains and gastric epithelial cells.

    PubMed

    Rahman, Inayatur; Idrees, Muhammad; Waqas, Mohammad; Karim, Abdul

    2018-05-01

    Helicobacter pylori (H. pylori) infections are very serious health problem that are further worsened by increasing/developing resistance to the current antibiotics. Therefore, new therapeutic agents are needed for H. pylori eradication. Use of a CD46 derived peptide (P3) as bactericidal agent against H. pylori has shown high activity rate in vivo and this study examines the changes in H. pylori features in response to effect of P3 treatment.AGS cells were infected with H. pylori wild type strain 67:21 and its mice passage strains (P3 treated and untreated strains) and further examined using immunoblotting assay, FACS and Urease activity analysis. Comparatively we found increased level of Urease alpha subunit A (UreA) and alkyl hydroperoxide reductase C (AhpC) proteins for P3 treated strain of H. pylori than its wild type or untreated strain after infection of AGS cells. Conclusion These results suggest that there might be a high rate of adherence to host cells for the P3 treated passage strain than untreated or wild type strain. Our findings also indicate that either adhesins are being changed or H. pylori interaction to the host cells is affected after P3 treatment.

  5. Pathogenesis of novel reassortant avian influenza virus A (H5N8) Isolates in the ferret.

    PubMed

    Kim, Heui Man; Kim, Chi-Kyeong; Lee, Nam-Joo; Chu, Hyuk; Kang, Chun; Kim, Kisoon; Lee, Joo-Yeon

    2015-07-01

    Outbreaks of avian influenza virus H5N8 first occurred in 2014, and spread to poultry farms in Korea. Although there was no report of human infection by this subtype, it has the potential to threaten human public health. Therefore, we evaluated the pathogenesis of H5N8 viruses in ferrets. Two representative Korean H5N8 strains did not induce mortality and significant respiratory signs after an intranasal challenge in ferrets. However, ferrets intratracheally infected with A/broiler duck/Korea/Buan2/2014 virus showed dose-dependent mortality. Although the Korean H5N8 strains were classified as the HPAI virus, possessing multiple basic amino acids in the cleavage site of the hemagglutinin sequence, they did not produce pathogenesis in ferrets challenged intranasally, similar to the natural infection route. These results could be useful for public health by providing the pathogenic characterization of H5N8 viruses. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1.

    PubMed

    Abdelwhab, E M; Grund, Christian; Aly, Mona M; Beer, Martin; Harder, Timm C; Hafez, Hafez M

    2012-02-24

    In Egypt, continuous circulation of highly pathogenic avian influenza (HPAI) H5N1 viruses of clade 2.2.1 in vaccinated commercial poultry challenges strenuous control efforts. Here, vaccine-derived maternal AIV H5 specific immunity in one-day old chicks was investigated as a factor of vaccine failure in long-term blanket vaccination campaigns in broiler chickens. H5 seropositive one-day old chicks were derived from breeders repeatedly immunized with a commercial inactivated vaccine based on the Potsdam/H5N2 strain. When challenged using the antigenically related HPAIV strain Italy/98 (H5N2) clinical protection was achieved until at least 10 days post-hatch although virus replication was not fully suppressed. No protection at all was observed against the Egyptian HPAIV strain EGYvar/H5N1 representing a vaccine escape lineage. Other groups of chicks with maternal immunity were vaccinated once at 3 or 14 days of age using either the Potsdam/H5N2 vaccine or a vaccine based on EGYvar/H5N1. At day 35 of age these chicks were challenged with the Egyptian HPAIV strain EGYcls/H5N1 which co-circulates with EGYvar/H5N1 but does not represent an antigenic drift variant. The Potsdam/H5N2 vaccinated groups were not protected against EGYcls/H5N1 infection while, in contrast, the EGYvar/H5N1 vaccinated chicks withstand challenge with EGYvar/H5N1 infection. In addition, the results showed that maternal antibodies could interfere with the immune response when a homologous vaccine strain was used. Copyright © 2011. Published by Elsevier B.V.

  7. Proanthocyanidins-Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection?

    PubMed

    Jagannathan, Venkataseshan; Viswanathan, Pragasam

    2018-05-18

    Struvite or infection stones are one of the major clinical burdens among urinary tract infection, which occur due to the interaction between microbes and urine mineral components. Numerous urinary tract infection (UTI) causing microbes regulate through biofilm formation for survival from host defense, it is often found difficult in its eradication with simple anti-microbial agents and also the chance of recurrence and resistance development is significantly high. Cranberry consumption and maintenance of urinary tract health have been supported by clinical, epidemiological, and mechanistic studies. It predominantly contains proanthocyanidins that belong to the class of polyphenols with repeating catechin and epicatechin monomeric units. Numerous studies have correlated proanthocyanidin consumption and prevention of bacterial adhesion to uroepithelial cells. Quorum sensing (QS) is the prime mechanism that drives bacteria to coordinate biofilm development and virulence expression. Reports have shown that proanthocyanidins are effective in disrupting cell-cell communication by quenching signal molecules. Overall, this review assesses the merits of proanthocyanidins and its effective oppression on adherence, motility, QS, and biofilm formation of major UTI strains such as Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis by comparing and evaluating results from many significant findings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls ( n=20) and from CMA infants ( n=19) before and after treatment with EHCF with ( n=12) and without ( n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial communitymore » structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. As a result, our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.« less

  9. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    DOE PAGES

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.; ...

    2015-09-22

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls ( n=20) and from CMA infants ( n=19) before and after treatment with EHCF with ( n=12) and without ( n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial communitymore » structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. As a result, our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.« less

  10. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12.

    PubMed

    Hayashi, T; Makino, K; Ohnishi, M; Kurokawa, K; Ishii, K; Yokoyama, K; Han, C G; Ohtsubo, E; Nakayama, K; Murata, T; Tanaka, M; Tobe, T; Iida, T; Takami, H; Honda, T; Sasakawa, C; Ogasawara, N; Yasunaga, T; Kuhara, S; Shiba, T; Hattori, M; Shinagawa, H

    2001-02-28

    Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.

  11. Successful protection against heterologous strains of Haemophilus parasuis: the quest for cross protective factors

    USDA-ARS?s Scientific Manuscript database

    Haemophilus parasuis (H. parasuis) infection in swine causes polyserositis, arthritis, and meningitis. Within the 15 serovars, there is a combination of virulent and nonvirulent strains, which has left the pathogenicity and subsequent protection from H. parasuis disease unclear. Here we used bacteri...

  12. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor.

    PubMed

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-01-01

    Duckweed (family Lemnaceae ) has recently been recognized as an ideal biomass feedstock for biofuel production due to its rapid growth and high starch content, which inspired interest in improving their productivity. Since microbes that co-exist with plants are known to have significant effects on their growth according to the previous studies for terrestrial plants, this study has attempted to understand the plant-microbial interactions of a duckweed, Lemna minor , focusing on the growth promotion/inhibition effects so as to assess the possibility of accelerated duckweed production by modifying co-existing bacterial community. Co-cultivation of aseptic L. minor and bacterial communities collected from various aquatic environments resulted in changes in duckweed growth ranging from -24 to +14% compared to aseptic control. A number of bacterial strains were isolated from both growth-promoting and growth-inhibitory communities, and examined for their co-existing effects on duckweed growth. Irrespective of the source, each strain showed promotive, inhibitory, or neutral effects when individually co-cultured with L. minor . To further analyze the interactions among these bacterial strains in a community, binary combinations of promotive and inhibitory strains were co-cultured with aseptic L. minor , resulting in that combinations of promotive-promotive or inhibitory-inhibitory strains generally showed effects similar to those of individual strains. However, combinations of promotive-inhibitory strains tended to show inhibitory effects while only Aquitalea magnusonii H3 exerted its plant growth-promoting effect in all combinations tested. Significant change in biomass production was observed when duckweed was co-cultivated with environmental bacterial communities. Promotive, neutral, and inhibitory bacteria in the community would synergistically determine the effects. The results indicate the possibility of improving duckweed biomass production via regulation of co

  13. Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution

    PubMed Central

    Creamer, Kaitlin E.; Ditmars, Frederick S.; Basting, Preston J.; Kunka, Karina S.; Hamdallah, Issam N.; Bush, Sean P.; Scott, Zachary; He, Amanda; Penix, Stephanie R.; Gonzales, Alexandra S.; Eder, Elizabeth K.; Camperchioli, Dominic W.; Berndt, Adama; Clark, Michelle W.; Rouhier, Kerry A.

    2016-01-01

    ABSTRACT Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA. Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. IMPORTANCE Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human

  14. Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution.

    PubMed

    Creamer, Kaitlin E; Ditmars, Frederick S; Basting, Preston J; Kunka, Karina S; Hamdallah, Issam N; Bush, Sean P; Scott, Zachary; He, Amanda; Penix, Stephanie R; Gonzales, Alexandra S; Eder, Elizabeth K; Camperchioli, Dominic W; Berndt, Adama; Clark, Michelle W; Rouhier, Kerry A; Slonczewski, Joan L

    2017-01-15

    Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to

  15. Modeling bacterial contamination of fuel ethanol fermentation.

    PubMed

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin < or =2 ppm), but treatment was ineffective at treating infection by a resistant strain of L. fermentum (MIC = 16 ppm). The model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  16. Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste.

    PubMed

    Subudhi, Sanjukta; Batta, Neha; Pathak, Mihirjyoti; Bisht, Varsha; Devi, Arundhuti; Lal, Banwari; Al khulifah, Bader

    2014-10-01

    A bioflocculant-producing bacterial isolate designated as 'TERI-IASST N' was isolated from activated sludge samples collected from an oil refinery. This isolate demonstrated maximum bioflocculation activity (74%) from glucose among 15 different bioflocculant-producing bacterial strains isolated from the sludge samples and identified as Achromobacter sp. based on 16S rRNA gene sequence. Optimization of pH and supplementation of urea as nitrogen source in the production medium enhanced the flocculation activity of strain TERI-IASST N to 84% (at pH 6). This strain revealed maximum flocculation activity (90%) from sucrose compared to the flocculation activity observed from other carbon sources as investigated (glucose, lactose, fructose, maltose and starch). Ca(2+) served as the suitable divalent cation for maximum bioflocculation activity of TERI-IASST strain N. Maximum flocculation activity was observed at optimum C/N ratio of 1. Flocculation activity of this strain decreased to 75% in the presence of heavy metals; Zn, Pb, Ni, Cu and Cd. In addition strain N revealed considerable biosorption of Zn (430mgL(-1)) and Pb (30mgL(-1)). Bioflocculant yield of strain N was 10.5gL(-1). Fourier transform infrared spectrum indicated the presence of carboxyl, hydroxyl, and amino groups, typical of glycoprotein. Spectroscopic analysis of bioflocculant by nuclear magnetic resonance revealed that it is a glycoprotein, consisting of 57% total sugar and 13% protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.

    PubMed

    Sun, Shanshan; Luo, Yijing; Cao, Siyuan; Li, Wenhong; Zhang, Zhongzhi; Jiang, Lingxi; Dong, Hanping; Yu, Li; Wu, Wei-Min

    2013-09-01

    Enterobacter cloacae strain JD, which produces water-insoluble biopolymers at optimal temperature of 30°C, and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at high temperatures by protoplast fusion. The obtained fusant strain ZR3 produced exopolysaccharides at up to 45°C with optimal growth temperature at 35°C. The fusant produced exopolysaccharides of approximately 7.5 g/L or more at pH between 7.0 and 9.0. The feasibility of the enhancement of crude oil recovery with the fusant was tested in a sand-packed column at 40°C. The results demonstrated that bioaugmentation of the fusant was promising approach for MEOR. Mass growth of the fusant was confirmed in fermentor tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.; Cubero, Jaime

    2017-01-01

    Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the

  19. High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences

    PubMed Central

    Morimoto, Yusuke V.; Kami-ike, Nobunori; Miyata, Tomoko; Kawamoto, Akihiro; Kato, Takayuki

    2016-01-01

    ABSTRACT Protons are utilized for various biological activities such as energy transduction and cell signaling. For construction of the bacterial flagellum, a type III export apparatus utilizes ATP and proton motive force to drive flagellar protein export, but the energy transduction mechanism remains unclear. Here, we have developed a high-resolution pH imaging system to measure local pH differences within living Salmonella enterica cells, especially in close proximity to the cytoplasmic membrane and the export apparatus. The local pH near the membrane was ca. 0.2 pH unit higher than the bulk cytoplasmic pH. However, the local pH near the export apparatus was ca. 0.1 pH unit lower than that near the membrane. This drop of local pH depended on the activities of both transmembrane export components and FliI ATPase. We propose that the export apparatus acts as an H+/protein antiporter to couple ATP hydrolysis with H+ flow to drive protein export. PMID:27923921

  20. Neuroinvasive influenza virus A(H5N8) in fattening ducks, Hungary, 2015.

    PubMed

    Bányai, Krisztián; Bistyák, Andrea Tóthné; Thuma, Ákos; Gyuris, Éva; Ursu, Krisztina; Marton, Szilvia; Farkas, Szilvia L; Hortobágyi, Eleonóra; Bacsadi, Árpád; Dán, Ádám

    2016-09-01

    Highly pathogenic avian influenza (HPAI) A virus H5N8 was detected in far east Asian countries during 2014 and emerged in late 2014 in European countries. Hungary reported a HPAI A(H5N8) outbreak during late winter of 2015 at a Pekin duck fattening facility. Epidemiologic monitoring was extended to holdings in neighboring areas and nearby habitats used by wild birds but failed to identify the source of infection. In addition to respiratory symptoms, the affected birds showed lethargy and neuronal signs, including torticollis. Consistent with this finding, influenza A virus antigen was detected in large quantity in the brain. Molecular analysis of the identified strain showed very close genetic relationship (and >99% nucleotide sequence identity) with co-circulating HPAI A(H5N8) strains. A number of unique or rarely detected amino acid changes was detected in the HA (T220I, R512G), the M2 (I39M), the NA (T211I), the NS1 (P85T), and the PB2 (I261V) proteins of the Hungarian strain. Further studies are needed to demonstrate whether any of these mutations can be linked to neuroinvasiveness and neurovirulence in ducks. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential.

    PubMed

    Dwivedi, S; Singh, B R; Al-Khedhairy, A A; Alarifi, S; Musarrat, J

    2010-07-01

    Isolation, characterization and assessment of butachlor-degrading potential of bacterial strain JS-1 in soil. Butachlor-degrading bacteria were isolated using enrichment culture technique. The morphological, biochemical and genetic characteristics based on 16S rDNA sequence homology and phylogenetic analysis confirmed the isolate as Stenotrophomonas acidaminiphila strain JS-1. The strain JS-1 exhibited substantial growth in M9 mineral salt medium supplemented with 3.2 mmol l(-1) butachlor, as a sole source of carbon and energy. The HPLC analysis revealed almost complete disappearance of butachlor within 20 days in soil at a rate constant of 0.17 day(-1) and half-life (t((1/2))) of 4.0 days, following the first-order rate kinetics. The strain JS-1 in stationary phase of culture also produced 21.0 microg ml(-1) of growth hormone indole acetic acid (IAA) in the presence of 500 microg ml(-1) of tryptophan. The IAA production was stimulated at lower concentrations of butachlor, whereas higher concentrations above 0.8 mmol l(-1) were found inhibitory. The isolate JS-1 characterized as Stenotrophomonas acidaminiphila was capable of utilizing butachlor as sole source of carbon and energy. Besides being an efficient butachlor degrader, it substantially produces IAA. The bacterial strain JS-1 has a potential for butachlor remediation with a distinctive auxiliary attribute of plant growth stimulation.

  2. MALDI-TOF-MS with PLS Modeling Enables Strain Typing of the Bacterial Plant Pathogen Xanthomonas axonopodis

    NASA Astrophysics Data System (ADS)

    Sindt, Nathan M.; Robison, Faith; Brick, Mark A.; Schwartz, Howard F.; Heuberger, Adam L.; Prenni, Jessica E.

    2018-02-01

    Matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is a fast and effective tool for microbial species identification. However, current approaches are limited to species-level identification even when genetic differences are known. Here, we present a novel workflow that applies the statistical method of partial least squares discriminant analysis (PLS-DA) to MALDI-TOF-MS protein fingerprint data of Xanthomonas axonopodis, an important bacterial plant pathogen of fruit and vegetable crops. Mass spectra of 32 X. axonopodis strains were used to create a mass spectral library and PLS-DA was employed to model the closely related strains. A robust workflow was designed to optimize the PLS-DA model by assessing the model performance over a range of signal-to-noise ratios (s/n) and mass filter (MF) thresholds. The optimized parameters were observed to be s/n = 3 and MF = 0.7. The model correctly classified 83% of spectra withheld from the model as a test set. A new decision rule was developed, termed the rolled-up Maximum Decision Rule (ruMDR), and this method improved identification rates to 92%. These results demonstrate that MALDI-TOF-MS protein fingerprints of bacterial isolates can be utilized to enable identification at the strain level. Furthermore, the open-source framework of this workflow allows for broad implementation across various instrument platforms as well as integration with alternative modeling and classification algorithms.

  3. Efficacy of pH elevation as a bactericidal strategy for treating ballast water of freight carriers.

    PubMed

    Starliper, Clifford E; Watten, Barnaby J; Iwanowicz, Deborah D; Green, Phyllis A; Bassett, Noel L; Adams, Cynthia R

    2015-05-01

    Treatment of ship ballast water with sodium hydroxide (NaOH) is one method currently being developed to minimize the risk to introduce aquatic invasive species. The bactericidal capability of sodium hydroxide was determined for 148 bacterial strains from ballast water collected in 2009 and 2010 from the M/V Indiana Harbor, a bulk-freight carrier plying the Laurentian Great Lakes, USA. Primary culture of bacteria was done using brain heart infusion agar and a developmental medium. Strains were characterized based on PCR amplification and sequencing of a portion of the 16S rRNA gene. Sequence similarities (99+ %) were determined by comparison with the National Center for Biotechnology Information (NCBI) GenBank catalog. Flavobacterium spp. were the most prevalent bacteria characterized in 2009, comprising 51.1% (24/47) of the total, and Pseudomonas spp. (62/101; 61.4%) and Brevundimonas spp. (22/101; 21.8%) were the predominate bacteria recovered in 2010; together, comprising 83.2% (84/101) of the total. Testing was done in tryptic soy broth (TSB) medium adjusted with 5 N NaOH. Growth of each strain was evaluated at pH 10.0, pH 11.0 and pH 12.0, and 4 h up to 72 h. The median cell count at 0 h for 148 cultures was 5.20 × 10(6) cfu/mL with a range 1.02 × 10(5)-1.60 × 10(8) cfu/mL. The TSB adjusted to pH 10.0 and incubation for less than 24 h was bactericidal to 52 (35.1%) strains. Growth in pH 11.0 TSB for less than 4 h was bactericidal to 131 (88.5%) strains and pH 11.0 within 12 h was bactericidal to 141 (95.3%). One strain, Bacillus horikoshii, survived the harshest treatment, pH 12.0 for 72 h.

  4. Novel Single-Tube Agar-Based Test System for Motility Enhancement and Immunocapture of Escherichia coli O157:H7 by H7 Flagellar Antigen-Specific Antibodies

    PubMed Central

    Murinda, Shelton E.; Nguyen, Lien T.; Ivey, Susan J.; Almeida, Raul A.; Oliver, Stephen P.

    2002-01-01

    This paper describes a novel single-tube agar-based technique for motility enhancement and immunoimmobilization of Escherichia coli O157:H7. Motility indole ornithine medium and agar (0.4%, wt/vol) media containing either nutrient broth, tryptone broth, or tryptic soy broth (TSBA) were evaluated for their abilities to enhance bacterial motility. Twenty-six E. coli strains, including 19 O157:H7 strains, 1 O157:H− strain, and 6 generic E. coli strains, were evaluated. Test bacteria were stab inoculated in the center of the agar column, and tubes were incubated at 37°C for 18 to 96 h. Nineteen to 24 of the 26 test strains (73.1 to 92.3%) were motile in the different media. TSBA medium performed best and was employed in subsequent studies of motility enhancement and H7 flagellar immunocapture. H7 flagellar antiserum (30 and 60 μl) mixed with TSBA was placed as a band (1 ml) in the middle of an agar column separating the top (3-ml) and bottom (3-ml) agar layers. The top agar layer was inoculated with the test bacterial strains. The tubes were incubated at 37°C for 12 to 18 h and for 18 to 96 h. The specificity and sensitivity of the H7 flagellar immunocapture tests were 75 and 100%, respectively. The procedure described is simple and sensitive and could be adapted easily for routine use in laboratories that do not have sophisticated equipment and resources for confirming the presence of H7 flagellar antigens. Accurate and rapid identification of H7 flagellar antigen is critical for the complete characterization of E. coli O157:H7, owing to the immense clinical, public health, and economic significance of this food-borne pathogen. PMID:12454173

  5. Avirulent Marek’s Disease Virus Type 1 Strain 814 Vectored Vaccine Expressing Avian Influenza (AI) Virus H5 Haemagglutinin Induced Better Protection Than Turkey Herpesvirus Vectored AI Vaccine

    PubMed Central

    Cui, Xianlan; Zhao, Yan; Shi, Xingming; Li, Qiaoling; Yan, Shuai; Gao, Ming; Wang, Mei; Liu, Changjun; Wang, Yunfeng

    2013-01-01

    Background Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1. Methodology/Principal Findings A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose. Conclusions/Significance The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry. PMID:23301062

  6. Draft Genome Sequence of Enterohemorrhagic Escherichia coli O157:H7 Strain MC2 Isolated from Cattle in France

    PubMed Central

    Auffret, Pauline; Segura, Audrey; Klopp, Christophe; Bouchez, Olivier; Kérourédan, Monique; Bibbal, Delphine; Brugère, Hubert; Forano, Evelyne

    2017-01-01

    ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) with serotype O157:H7 is a major foodborne pathogen. Here, we report the draft genome sequence of EHEC O157:H7 strain MC2 isolated from cattle in France. The assembly contains 5,400,376 bp that encoded 5,914 predicted genes (5,805 protein-encoding genes and 109 RNA genes). PMID:28983004

  7. Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses

    PubMed Central

    Nayak, Baibaswata; Rout, Subrat N.; Kumar, Sachin; Khalil, Mohammed S.; Fouda, Moustafa M.; Ahmed, Luay E.; Earhart, Kenneth C.; Perez, Daniel R.; Collins, Peter L.; Samal, Siba K.

    2009-01-01

    Background Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens. Methodology/Principal Finding Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1. Conclusion and Significance Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals. PMID:19654873

  8. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  9. Phenotypic signatures arising from unbalanced bacterial growth.

    PubMed

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-08-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.

  10. A proof-of-principle study to identify suitable vaccine seed candidates to combat introductions of Eurasian lineage H5 and H7 subtype avian influenza viruses.

    PubMed

    Beato, Maria Serena; Monne, Isabella; Mancin, Marzia; Bertoli, Elena; Capua, Ilaria

    2010-10-01

    Vaccination against avian influenza (AI) is now included amongst the prevention and control measures recommended by international animal health organizations to combat the disease in poultry. For optimal control of human influenza infections, the antigenic variability within subtypes requires the annual update of seed strains for inclusion in vaccines. The decisions taken are based on serological cross-reactivity of viral strains measured by haemagglutination inhibition (HI) tests. The reason for this is to ensure that the vaccine contains strains that are related antigenically to the current circulating field strain as field viruses evolve or are substituted by variants of distinct antigenicity. Such an annual approach is not viable economically for the poultry industry. In the current study, we have applied a similar HI-based approach to demonstrate, as proof of principle, that cross-reactive strains can be identified. Applying the same approach used by the World Health Organization to investigate antigenic differences among human influenza viruses, we assessed the serological cross-reactivity of a selection of natural H5 and H7 subtype viruses. Analysing HI data, we have identified strains that are cross-reactive and may have the potential to act as seed viruses for future vaccine development. This study should be considered a starting point for a more informed approach to the selection of seed strains for the development of avian influenza vaccines against field infections caused by viruses of H5 and H7 subtypes.

  11. Characterization of Growing Soil Bacterial Communities across a pH gradient Using H218O DNA-Stable Isotope Probing

    NASA Astrophysics Data System (ADS)

    Welty-Bernard, A. T.; Schwartz, E.

    2014-12-01

    Recent studies have established consistent relationships between pH and bacterial diversity and community structure in soils from site-specific to landscape scales. However, these studies rely on DNA or PLFA extraction techniques from bulk soils that encompass metabolically active and inactive, or dormant, communities, and loose DNA. Dormant cells may comprise up to 80% of total live cells. If dormant cells dominate a particular environment, it is possible that previous interpretations of the soil variables assumed to drive communities could be profoundly affected. We used H218O stable isotope probing and bar-coded illumina sequencing of 16S rRNA genes to monitor the response of actively growing communities to changes in soil pH in a soil microcosm over 14 days. This substrate-independent approach has several advantages over 13C or 15N-labelled molecules in that all growing bacteria should be able to make use of water, allowing characterization of whole communities. We hypothesized that Acidobacteria would increasingly dominate the growing community and that Actinobacteria and Bacteroidetes would decline, given previously established responses by these taxa to soil pH. Instead, we observed the reverse. Actinobacteria abundance increased three-fold from 26 to 76% of the overall community as soil pH fell from pH 5.6 to pH 4.6. Shifts in community structure and decreases in diversity with declining soil pH were essentially driven by two families, Streptomyceaca and Microbacteracea, which collectively increased from 2 to 40% of the entire community. In contrast, Acidobacteria as a whole declined although numbers of subdivision 1 remained stable across all soil pH levels. We suggest that the brief incubation period in this SIP study selected for growth of acid-tolerant Actinobacteria over Acidobacteria. Taxa within Actinomycetales have been readily cultured over short time frames, suggesting rapid growth patterns. Conversely, taxa within Acidobacteria have been

  12. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis.

    PubMed

    de Aguiar, Sílvia Cristina; Zeoula, Lucia Maria; do Prado, Odimari Pricila Pires; Arcuri, Pedro Braga; Forano, Evelyne

    2014-11-01

    Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml(-1). C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.

  13. Isolation of a novel strain of Planomicrobium chinense from diesel contaminated soil of tropical environment.

    PubMed

    Das, Reena; Tiwary, Bhupendra N

    2013-09-01

    A novel bacterial strain (B6) degrading high concentration of diesel oil [up to 2.5% (v/v)] was isolated from a site contaminated with petroleum hydrocarbons in the state of Chhattisgarh, India. The strain demonstrated efficient degradation for diesel oil range alkanes (C14 to C36 i.e., mostly linear chain alkanes). It was identified to be 99% similar to Planomicrobium chinense on the basis of partial 16S rRNA gene sequencing and biochemical characteristics. The efficiency of degradation was optimized at pH 7.2 and temperature at 32 °C. GC analysis demonstrated complete mineralization of higher chain alkanes into lower chain alkanes within 96 h. The organism also displayed surface tension reduction by producing stable emulsification on the onset of stationary phase. A multidimensional characteristics of the strain to grow at a high temperature range, resistance to various heavy metals as well as tolerance to moderate concentration of NaCl makes it suitable for bioremediation of soil contaminated with diesel oil in tropical environment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Complete genome sequence of Granulicella tundricola type strain MP5ACTX9T, an Acidobacteria from tundra soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Suman R.; Mannisto, Minna; Starovoytov, Valentin

    2013-01-01

    Granulicella tundricola strain MP5ACTX9T is a novel species of the genus Granulicella in subdivision 1 Acidobacteria. G. tundricola is a predominant member of soil bacterial communities, active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. The organism is a cold-adapted acidophile and a versatile heterotroph that hydro-lyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates, including gene modules encoding for the carbohydrate-active enzyme (CAZy) families for the break-down, utilization and biosynthesis of diverse structural and storage polysaccharides such as plant based carbon polymers. Themore » genome of G. tundricola strain MP5ACTX9T consists of 4,309,151 bp of a circular chromosome and five mega plasmids with a total genome con-tent of 5,503,984 bp. The genome comprises 4,705 protein-coding genes and 52 RNA genes.« less

  15. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    NASA Astrophysics Data System (ADS)

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26-8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18-20.68 mg kg-1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes.

  16. Antarctic ice core samples: culturable bacterial diversity.

    PubMed

    Shivaji, Sisinthy; Begum, Zareena; Shiva Nageswara Rao, Singireesu Soma; Vishnu Vardhan Reddy, Puram V; Manasa, Poorna; Sailaja, Buddi; Prathiba, Mambatta S; Thamban, Meloth; Krishnan, Kottekkatu P; Singh, Shiv M; Srinivas, Tanuku N R

    2013-01-01

    Culturable bacterial abundance at 11 different depths of a 50.26 m ice core from the Tallaksenvarden Nunatak, Antarctica, varied from 0.02 to 5.8 × 10(3) CFU ml(-1) of the melt water. A total of 138 bacterial strains were recovered from the 11 different depths of the ice core. Based on 16S rRNA gene sequence analyses, the 138 isolates could be categorized into 25 phylotypes belonging to phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. All isolates had 16S rRNA sequences similar to previously determined sequences (97.2-100%). No correlation was observed in the distribution of the isolates at the various depths either at the phylum, genus or species level. The 25 phylotypes varied in growth temperature range, tolerance to NaCl, growth pH range and ability to produce eight different extracellular enzymes at either 4 or 18 °C. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a significant proportion of the total fatty acid composition. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide.

    PubMed

    Samanta, Aniruddha; Podder, Soumik; Ghosh, Chandan Kumar; Bhattacharya, Manjima; Ghosh, Jiten; Mallik, Awadesh Kumar; Dey, Arjun; Mukhopadhyay, Anoop Kumar

    2017-08-01

    The present work provides the first ever report on extraordinarily high antibacterial efficacy of phase pure micro-layered calcium hydroxide nanoparticles (LCHNPs) even under dark condition. The LCHNPs synthesized especially in aqueous medium by a simple, inexpensive method show adequate mechanical properties along with the presence of a unique strain tolerant behaviour. The LCHNPs are characterized by FTIR, Raman spectroscopy, XRD, Rietveld analysis, FE-SEM, TEM, TG-DTA, surface area, particle size distribution, zeta potential analysis and nanoindentation techniques. The LCHNPs have 98.1% phase pure hexagonal Ca(OH) 2 as the major phase having micro-layered architecture made up of about ~100-200nm thick individual nano-layers. The nanomechanical properties e.g., nanohardness (H) and Young's modulus (E) of the LCHNPs are found to have a unique load independent behavior. The dielectric responses (e.g., dielectric constant and dielectric loss) and antibacterial properties are evaluated for such LCHNPs. Further, the LCHNPs show much better antibacterial potency against both gram-positive e.g., Staphylococcus aureus (S. aureus) and gram-negative e.g., Pseudomonas putida (P. putida) bacteria even in dark especially, with the lowest ever reported MIC value (e.g., 1 μg ml -1 ) against the P. putida bacterial strain and exhibit ROS mediated antibacterial proficiency. Finally, such LCHNPs has almost ~8-16% inhibition efficacy towards the development of biofilm of these microorganisms quantified by colorimetric detection process. So, such LCHNPs may find potential applications in the areas of healthcare industry and environmental engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    PubMed

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

  19. Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.

    PubMed

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim

    2017-09-01

    To delineate the commonalities and differences in gaseous ligand discrimination among the heme-based sensors with Heme Nitric oxide/OXygen binding protein (H-NOX) scaffold, the binding kinetic parameters for gaseous ligands NO, CO, and O 2 , including K D , k on , and k off , of Shewanella oneidensis H-NOX (So H-NOX) were characterized in detail in this study and compared to those of previously characterized H-NOXs from Clostridium botulinum (Cb H-NOX), Nostoc sp. (Ns H-NOX), Thermoanaerobacter tengcongensis (Tt H-NOX), Vibrio cholera (Vc H-NOX), and human soluble guanylyl cyclase (sGC), an H-NOX analogue. The K D (NO) and K D (CO) of each bacterial H-NOX or sGC follow the "sliding scale rule"; the affinities of the bacterial H-NOXs for NO and CO vary in a small range but stronger than those of sGC by at least two orders of magnitude. On the other hand, each bacterial H-NOX exhibits different characters in the stability of its 6c NO complex, reactivity with secondary NO, stability of oxyferrous heme and autoxidation to ferric heme. A facile access channel for gaseous ligands is also identified, implying that ligand access has only minimal effect on gaseous ligand selectivity of H-NOXs or sGC. This comparative study of the binding parameters of the bacterial H-NOXs and sGC provides a basis to guide future new structural and functional studies of each specific heme sensor with the H-NOX protein fold. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Identification of a new genetic marker in Mycoplasma synoviae vaccine strain MS-H and development of a strategy using polymerase chain reaction and high-resolution melting curve analysis for differentiating MS-H from field strains.

    PubMed

    Zhu, Ling; Konsak, Barbara M; Olaogun, Olusola M; Agnew-Crumptona, Rebecca; Kanci, Anna; Marenda, Marc S; Browning, Glenn F; Noormohammadi, Amir H

    2017-10-01

    Mycoplasma synoviae (MS) is an economically important avian pathogen worldwide, causing subclinical respiratory tract infection and infectious synovitis in chickens and turkeys. A temperature-sensitive (ts + ) live attenuated vaccine MS-H, derived from the Australian field strain 86079/7NS, is now widely used in many countries to control the disease induced by MS. Differentiation of MS-H vaccine from field strains is crucial for monitoring vaccination programs in commercial poultry. Comparison of genomic sequences of MS-H and its parent strain revealed an adenine deletion at nucleotide position 468 of the MS-H oppF-1 gene. This mutation was shown to be unique to MS-H in further comparative analyses of oppF-1 genes of MS-H re-isolates and field strains from Australia and other countries. Based on this single nucleotide, a combination of nested PCR and high-resolution melting (HRM) curve analysis was used to evaluate its potential for use in differentiation of MS-H from field strains. The mean genotype confidence percentages of 99.27 and 48.20 for MS-H and field strains, respectively, demonstrated the high discriminative power of the newly developed assay (oppF PCR-HRM). A set of 13 tracheal swab samples collected from MS-H vaccinated specific pathogen free birds and commercial chicken flocks infected with MS were tested using the oppF PCR-HRM test and results were totally consistent with those obtained using vlhA genotyping. The nested-PCR HRM method established in this study proved to be a rapid, simple and cost effective tool for discriminating the MS-H vaccine strain from Australian and international strains in pure cultures and on tracheal swabs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy.

    PubMed

    Meier-Kolthoff, Jan P; Hahnke, Richard L; Petersen, Jörn; Scheuner, Carmen; Michael, Victoria; Fiebig, Anne; Rohde, Christine; Rohde, Manfred; Fartmann, Berthold; Goodwin, Lynne A; Chertkov, Olga; Reddy, Tbk; Pati, Amrita; Ivanova, Natalia N; Markowitz, Victor; Kyrpides, Nikos C; Woyke, Tanja; Göker, Markus; Klenk, Hans-Peter

    2014-01-01

    Although Escherichia coli is the most widely studied bacterial model organism and often considered to be the model bacterium per se, its type strain was until now forgotten from microbial genomics. As a part of the G enomic E ncyclopedia of B acteria and A rchaea project, we here describe the features of E. coli DSM 30083(T) together with its genome sequence and annotation as well as novel aspects of its phenotype. The 5,038,133 bp containing genome sequence includes 4,762 protein-coding genes and 175 RNA genes as well as a single plasmid. Affiliation of a set of 250 genome-sequenced E. coli strains, Shigella and outgroup strains to the type strain of E. coli was investigated using digital DNA:DNA-hybridization (dDDH) similarities and differences in genomic G+C content. As in the majority of previous studies, results show Shigella spp. embedded within E. coli and in most cases forming a single subgroup of it. Phylogenomic trees also recover the proposed E. coli phylotypes as monophyla with minor exceptions and place DSM 30083(T) in phylotype B2 with E. coli S88 as its closest neighbor. The widely used lab strain K-12 is not only genomically but also physiologically strongly different from the type strain. The phylotypes do not express a uniform level of character divergence as measured using dDDH, however, thus an alternative arrangement is proposed and discussed in the context of bacterial subspecies. Analyses of the genome sequences of a large number of E. coli strains and of strains from > 100 other bacterial genera indicate a value of 79-80% dDDH as the most promising threshold for delineating subspecies, which in turn suggests the presence of five subspecies within E. coli.

  2. Studies on the potent bacterial mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone: aqueous stability, XAD recovery and analytical determination in drinking water and in chlorinated humic acid solutions.

    PubMed

    Meier, J R; Knohl, R B; Coleman, W E; Ringhand, H P; Munch, J W; Kaylor, W H; Streicher, R P; Kopfler, F C

    1987-12-01

    3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was detected by gas chromatography/mass spectrometry in drinking water samples from 3 locations in the U.S.A., and also in a chlorinated humic acid solution. MX appears to account for a significant proportion of the mutagenicity of these samples, as measured in the Ames test using strain TA100 without metabolic activation. Studies on recovery of MX from spiked water samples by XAD-2/8 resin adsorption/acetone elution indicated that sample acidification prior to resin adsorption was essential to the effective recovery of MX. The stability of MX in aqueous solution was pH and temperature dependent. At 23 degrees C the order of stability, based on persistence of mutagenic activity was found to be: pH 2 greater than pH 4 greater than pH 8 greater than pH 6. The half-life at pH 8 and 23 degrees C was 4.6 days. One of the degradation products has been tentatively identified as 2-chloro-3-(dichloromethyl)-4-oxo-2-butenoic acid, an open form of MX which appears to be in the "E" configuration. Overall, these results suggest that MX is formed during water chlorination as a result of reaction of chlorine with humic substances, and that a substantial fraction of the MX formed is likely to persist throughout the distribution system.

  3. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms.

    PubMed

    Yang, Jun; Yang, Yu; Wu, Wei-Min; Zhao, Jiao; Jiang, Lei

    2014-12-02

    Polyethylene (PE) has been considered nonbiodegradable for decades. Although the biodegradation of PE by bacterial cultures has been occasionally described, valid evidence of PE biodegradation has remained limited in the literature. We found that waxworms, or Indian mealmoths (the larvae of Plodia interpunctella), were capable of chewing and eating PE films. Two bacterial strains capable of degrading PE were isolated from this worm's gut, Enterobacter asburiae YT1 and Bacillus sp. YP1. Over a 28-day incubation period of the two strains on PE films, viable biofilms formed, and the PE films' hydrophobicity decreased. Obvious damage, including pits and cavities (0.3-0.4 μm in depth), was observed on the surfaces of the PE films using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The formation of carbonyl groups was verified using X-ray photoelectron spectroscopy (XPS) and microattenuated total reflectance/Fourier transform infrared (micro-ATR/FTIR) imaging microscope. Suspension cultures of YT1 and YP1 (10(8) cells/mL) were able to degrade approximately 6.1 ± 0.3% and 10.7 ± 0.2% of the PE films (100 mg), respectively, over a 60-day incubation period. The molecular weights of the residual PE films were lower, and the release of 12 water-soluble daughter products was also detected. The results demonstrated the presence of PE-degrading bacteria in the guts of waxworms and provided promising evidence for the biodegradation of PE in the environment.

  4. Reintroduction of highly pathogenic avian influenza A/H5N8 virus of clade 2.3.4.4. in Russia.

    PubMed

    Marchenko, Vasiliy Y; Susloparov, Ivan M; Komissarov, Andrey B; Fadeev, Artem; Goncharova, Nataliya I; Shipovalov, Andrey V; Svyatchenko, Svetlana V; Durymanov, Alexander G; Ilyicheva, Tatyana N; Salchak, Lyudmila K; Svintitskaya, Elena P; Mikheev, Valeriy N; Ryzhikov, Alexander B

    2017-05-01

    In the spring of 2016, a loss of wild birds was observed during the monitoring of avian influenza virus activity in the Republic of Tyva. That outbreak was caused by influenza H5N8 virus of clade 2.3.4.4. In the fall, viruses of H5N8 clade 2.3.4.4 were propagated in European countries. This paper presents some results of analysis of the virus strains isolated during the spring and fall seasons in 2016 in the Russian Federation. The investigated strains were highly pathogenic for mice, and some of their antigenic and genetic features differed from those of an H5N8 strain that circulated in 2014 in Russia.

  5. High-Resolution Melting-Curve Analysis of obg Gene to Differentiate the Temperature-Sensitive Mycoplasma synoviae Vaccine Strain MS-H from Non-Temperature-Sensitive Strains

    PubMed Central

    Shahid, Muhammad A.; Markham, Philip F.; Marenda, Marc S.; Agnew-Crumpton, Rebecca; Noormohammadi, Amir H.

    2014-01-01

    Temperature-sensitive (ts +) vaccine strain MS-H is the only live attenuated M. synoviae vaccine commercially available for use in poultry. With increasing use of this vaccine to control M. synoviae infections, differentiation of MS-H from field M. synoviae strains and from rarely occurring non-temperature-sensitive (ts –) MS-H revertants has become important, especially in countries where local strains are indistinguishable from MS-H by sequence analysis of variable lipoprotein haemagglutinin (vlhA) gene. Single nucleotide polymorphisms (SNPs) in the obg of MS-H have been found to associate with ts phenotype. In this study, four PCRs followed by high-resolution melting (HRM)-curve analysis of the regions encompassing these SNPs were developed and evaluated for their potential to differentiate MS-H from 36 M. synoviae strains/isolates. The nested-obg PCR-HRM differentiated ts + MS-H vaccine not only from field M. synoviae strains/isolates but also from ts – MS-H revertants. The mean genotype confidence percentages, 96.9±3.4 and 8.8±11.2 for ts + and ts – strains, respectively, demonstrated high differentiating power of the nested-obg PCR-HRM. Using a combination of nested-obg and obg-F3R3 PCR-HRM, 97% of the isolates/strains were typed according to their ts phenotype with all MS-H isolates typed as MS-H. A set of respiratory swabs from MS-H vaccinated specific pathogen free chickens and M. synoviae infected commercial chicken flocks were tested using obg PCR-HRM system and results were consistent with those of vlhA genotyping. The PCR-HRM system developed in this study, proved to be a rapid and reliable tool using pure M. synoviae cultures as well as direct clinical specimens. PMID:24643035

  6. Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost.

    PubMed

    Charbonneau, David M; Meddeb-Mouelhi, Fatma; Boissinot, Maurice; Sirois, Marc; Beauregard, Marc

    2012-03-01

    Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60-65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.

  7. Season, Irrigation, Leaf Age, and Escherichia coli Inoculation Influence the Bacterial Diversity in the Lettuce Phyllosphere

    PubMed Central

    Williams, Thomas R.; Moyne, Anne-Laure; Harris, Linda J.; Marco, Maria L.

    2013-01-01

    The developmental and temporal succession patterns and disturbance responses of phyllosphere bacterial communities are largely unknown. These factors might influence the capacity of human pathogens to persist in association with those communities on agriculturally-relevant plants. In this study, the phyllosphere microbiota was identified for Romaine lettuce plants grown in the Salinas Valley, CA, USA from four plantings performed over 2 years and including two irrigation methods and inoculations with an attenuated strain of Escherichia coli O157:H7. High-throughput DNA pyrosequencing of the V5 to V9 variable regions of bacterial 16S rRNA genes recovered in lettuce leaf washes revealed that the bacterial diversity in the phyllosphere was distinct for each field trial but was also strongly correlated with the season of planting. Firmicutes were generally most abundant in early season (June) plantings and Proteobacteria comprised the majority of bacteria recovered later in the year (August and October). Comparisons within individual field trials showed that bacterial diversity differed between sprinkler (overhead) and drip (surface) irrigated lettuce and increased over time as the plants grew. The microbiota were also distinct between control and E. coli O157:H7-inoculated plants and between E. coli O157:H7-inoculated plants with and without surviving pathogen cells. The bacterial inhabitants of the phyllosphere therefore appear to be affected by seasonal, irrigation, and biological factors in ways that are relevant for assessments of fresh produce food safety. PMID:23844230

  8. Polarity control of h-BN nanoribbon edges by strain and edge termination.

    PubMed

    Yamanaka, Ayaka; Okada, Susumu

    2017-03-29

    We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.

  9. Viability of 3h grown bacterial micro-colonies after direct Raman identification.

    PubMed

    Mathey, R; Dupoy, M; Espagnon, I; Leroux, D; Mallard, F; Novelli-Rousseau, A

    2015-02-01

    Clinical diagnostics in routine microbiology still mostly relies on bacterial growth, a time-consuming process that prevents test results to be used directly as key decision-making elements for therapeutic decisions. There is some evidence that Raman micro-spectroscopy provides clinically relevant information from a limited amount of bacterial cells, thus holding the promise of reduced growth times and accelerated result delivery. Indeed, bacterial identification at the species level directly from micro-colonies at an early time of growth (6h) directly on their growth medium has been demonstrated. However, such analysis is suspected to be partly destructive and could prevent the further growth of the colony needed for other tests, e.g. antibiotic susceptibility testing (AST). In the present study, we evaluated the effect of the powerful laser excitation used for Raman identification on micro-colonies probed after very short growth times. We show here, using envelope integrity markers (Syto 9 and Propidium Iodide) directly on ultra-small micro-colonies of a few tens of Escherichia coli and Staphylococcus epidermidis cells (3h growth time), that only the cells that are directly impacted by the laser lose their membrane integrity. Growth kinetics experiments show that the non-probed surrounding cells are sometimes also affected but that the micro-colonies keep their ability to grow, resulting in normal aspect and size of colonies after 15h of growth. Thus, Raman spectroscopy could be used for very early (<3h) identification of grown micro-organisms without impairing further antibiotics susceptibility characterization steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains

    PubMed Central

    Khan, Abdul Viqar; Ahmed, Qamar Uddin; Mir, M Ramzan; Shukla, Indu; Khan, Athar Ali

    2011-01-01

    Objective To investigate the antibacterial potential of the polar and non-polar extracts of the seeds of Melia azedarach (M. azedarach) L. (Meliaceae) against eighteen hospital isolated human pathogenic bacterial strains. Methods Petrol, benzene, ethyl acetate, methanol, and aqueous extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were evaluated. Disk diffusion method was followed to evaluate the antibacterial efficacy. Results All extracts of the seeds demonstrated significant antibacterial activity against tested pathogens. Among all extracts, ethyl acetate extract revealed the highest inhibition comparatively. The present study also favored the traditional uses reported earlier. Conclusions Results of this study strongly confirm that the seed extracts of M. azedarach could be effective antibiotics, both in controlling gram-positive and gram-negative human pathogenic infections. PMID:23569812

  11. NS5A inhibitors unmask differences in functional replicase complex half-life between different hepatitis C virus strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benzine, Tiffany; Brandt, Ryan; Lovell, William C.

    We synthesized the Hepatitis C virus (HCV) RNA by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by preformed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOmore » R) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPO S) viruses (e.g. H77S.3 and N.2). Furthermore, in luciferase assays, LPO S HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPO R HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNAdependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPO S H77S.3 and the LPO R H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. The mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPO S and LPO R viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.« less

  12. NS5A inhibitors unmask differences in functional replicase complex half-life between different hepatitis C virus strains

    DOE PAGES

    Benzine, Tiffany; Brandt, Ryan; Lovell, William C.; ...

    2017-06-08

    We synthesized the Hepatitis C virus (HCV) RNA by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by preformed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOmore » R) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPO S) viruses (e.g. H77S.3 and N.2). Furthermore, in luciferase assays, LPO S HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPO R HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNAdependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPO S H77S.3 and the LPO R H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. The mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPO S and LPO R viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.« less

  13. Efficacy of an inactivated bivalent vaccine against the prevalent strains of Newcastle disease and H9N2 avian influenza.

    PubMed

    Zhao, Jing; Yang, Huiming; Xu, Hongjun; Ma, Zengbin; Zhang, Guozhong

    2017-03-16

    Newcastle disease (ND) and avian influenza subtype H9N2 (H9N2 AI) are two of the most important diseases of poultry, causing severe economic losses in the global poultry industry. Vaccination is an effective way to prevent and control the spread of ND virus (NDV) and H9N2 AI virus (AIV), but the antigenic differences between the current circulating strains and the vaccine strains might account for recent ND and H9N2 AI outbreaks in vaccinated poultry flocks. We developed an inactivated bivalent H9N2 and NDV vaccine based on the current prevalent strains of H9N2 AIV and NDV in China and evaluated its efficacy in chickens in this study. The results indicated that the inactivated bivalent vaccine could induce a fast antibody response in vaccinated chickens. The hemagglutination inhibition (HI) titer in the sera increased rapidly, and the highest HI titer was observed at 4 weeks post-vaccination (wpv) with a mean titre of 8.6 log 2 for NDV and 9.5 log 2 for H9N2. Up until 15 wpv, HI titers were still detectable at a high level of over 6 log 2 . The immunized chickens showed no signs of disease after challenge at 3 wpv with the prevalent strains of NDV and H9N2 AIV isolated in 2012-2014. Moreover, viral shedding was completely inhibited in vaccinated chickens after challenge with H9N2 AIV and inhibited by at least 90% with NDV compared to the controls at 5dpc. Our findings suggest that the inactivated NDV and H9N2 vaccine induces a fast and strong antibody response in vaccinated chickens and is efficacious in poultry against NDVs and H9N2 AIVs.

  14. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus

    PubMed Central

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-01-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome. PMID:26038499

  15. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

  16. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    PubMed Central

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26–8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18–20.68 mg kg−1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes. PMID:28051171

  17. Bacterial invasion of HT29-MTX-E12 monolayers: effects of human breast milk.

    PubMed

    Hall, Tim; Dymock, David; Corfield, Anthony P; Weaver, Gillian; Woodward, Mark; Berry, Monica

    2013-02-01

    The supramucosal gel, crucial for gut barrier function, might be compromised in necrotizing enterocolitis (NEC). Breast milk is associated with a reduced incidence of NEC. We compared the effects of human breast milk (BM) versus a neonatal formula, Nutriprem 1 (FF), on adherence, internalisation, and penetration of NEC-associated Escherichia coli through monolayers of mucus producing intestinal cells, HT29-MTX-E12 (E12). E12 cells were grown to confluence on membranes permeable to bacteria. E. coli, reference strain and isolated from a NEC-affected intestine, were cultured in LB broth, labelled with fluorescein and biotinylated. Bacteria were suspended in tissue culture medium (TC) or mixtures of TC with BM or FF and applied to the E12 cultures. Bacterial numbers were assessed by fluorescence. DyLight 650-labelled neutravidin, which cannot cross cell membrane, evaluated extracellular bacteria. Fluorescence of basolateral medium was measured to quantify translocation. Bacterial concentrations were compared using the Mann Whitney U test. After 1h exposure, E12 cultures adhered or internalised more NEC-derived bacteria than standard strain E. coli and more suspended in FF than BM (P<0.001). A greater proportion of NEC-derived bacteria internalised when suspended in TC or BM. In FF, the NEC-derived strain internalised least. More translocation occurred in BM incubations compared to FF in the first 1-4h: NEC-E. coli less than the reference strain. After 24h translocated bacterial populations were equal. In this pilot study, breast milk was associated with relatively less adhesion and internalisation of NEC-associated E. coli to mucus covered E12s compared to formula milk. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Whole genomic analysis of bovine group A rotavirus strains A5-10 and A5-13 provides evidence for close evolutionary relationship with human rotaviruses.

    PubMed

    Komoto, Satoshi; Pongsuwanna, Yaowapa; Tacharoenmuang, Ratana; Guntapong, Ratigorn; Ide, Tomihiko; Higo-Moriguchi, Kyoko; Tsuji, Takao; Yoshikawa, Tetsushi; Taniguchi, Koki

    2016-11-15

    Bovine group A rotavirus (RVA) is an important cause of acute diarrhea in calves worldwide. In order to obtain precise information on the origin and evolutionary dynamics of bovine RVA strains, we determined and analyzed the complete nucleotide sequences of the whole genomes of six archival bovine RVA strains; four Thai strains (RVA/Cow-tc/THA/A5-10/1988/G8P[1], RVA/Cow-tc/THA/A5-13/1988/G8P[1], RVA/Cow-tc/THA/61A/1989/G10P[5], and RVA/Cow-tc/THA/A44/1989/G10P[11]), one American strain (RVA/Cow-tc/USA/B223/1983/G10P[11]), and one Japanese strain (RVA/Cow-tc/JPN/KK3/1983/G10P[11]). On whole genomic analysis, the 11 gene segments of strains A5-10, A5-13, 61A, A44, B223, and KK3 were found to be considerably genetically diverse, but to share a conserved non-G/P genotype constellation except for the NSP1 gene (I2-R2-C2-M2-(A3/11/13/14)-N2-T6-E2-H3), which is commonly found in RVA strains from artiodactyls such as cattle. Furthermore, phylogenetic analysis revealed that most genes of the six strains were genetically related to bovine and bovine-like strains. Of note is that the VP1, VP3, and NSP2 genes of strains A5-10 and A5-13 exhibited a closer relationship with the cognate genes of human DS-1-like strains than those of other RVA strains. Furthermore, the VP6 genes of strains A5-10 and A5-13 appeared to be equally related to both human DS-1-like and bovine strains. Thus, strains A5-10 and A5-13 were suggested to be derived from the same evolutionary origin as human DS-1-like strains, and were assumed to be examples of bovine RVA strains that provide direct evidence for a close evolutionary relationship between bovine and human DS-1-like strains. Our findings will provide important insights into the origin of bovine RVA strains, and into evolutionary links between bovine and human RVA strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Sensitivity of influenza rapid diagnostic tests to H5N1 and 2009 pandemic H1N1 viruses.

    PubMed

    Sakai-Tagawa, Yuko; Ozawa, Makoto; Tamura, Daisuke; Le, Mai thi Quynh; Nidom, Chairul A; Sugaya, Norio; Kawaoka, Yoshihiro

    2010-08-01

    Simple and rapid diagnosis of influenza is useful for making treatment decisions in the clinical setting. Although many influenza rapid diagnostic tests (IRDTs) are available for the detection of seasonal influenza virus infections, their sensitivity for other viruses, such as H5N1 viruses and the recently emerged swine origin pandemic (H1N1) 2009 virus, remains largely unknown. Here, we examined the sensitivity of 20 IRDTs to various influenza virus strains, including H5N1 and 2009 pandemic H1N1 viruses. Our results indicate that the detection sensitivity to swine origin H1N1 viruses varies widely among IRDTs, with some tests lacking sufficient sensitivity to detect the early stages of infection when the virus load is low.

  20. Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6.

    PubMed

    Amoozegar, Mohammad Ali; Ashengroph, Morahem; Malekzadeh, Feridon; Reza Razavi, Mohamad; Naddaf, Saied; Kabiri, Mahboubeh

    2008-01-01

    Among the 49 strains of moderately halophilic bacteria isolated from the salty environments of Iran, a Gram-positive coccus designated as strain QW6 showed high capacity in the removal of toxic oxyanions of tellurium in a wide range of culture medium factors including pH (5.5-10.5), temperature (25-45 degrees C), various salts including NaCl, KCl, and Na(2)SO(4) (0.5-4 M), selenooxyanions (2-10 mM), and at different concentrations of potassium tellurite (0.5-1 mM) under aerobic condition. Phenotypic characterization and phylogenetic analyses based on 16S rDNA sequence comparisons indicated that this strain was a member of the genus Salinicoccus. The maximum tellurite removal was exhibited in 1.5M NaCl at 35 degrees C, while the activity reduced by 53% and 47% at 25 and 45 degrees C, respectively. The optimum pH for removal activity was shown to be 7.5, with 90% and 83% reduced removal capacities at the two extreme values of 5.5 and 10, respectively. The impact of different concentrations of selenooxyanions (2-10 mM) on tellurite removal by strain QW6 was evaluated. The ability of strain QW6 in the removal of tellurite in the presence of 6mM selenite increased by 25%. The concentration of toxic potassium tellurite in the supernatant of the bacterial culture medium decreased by 99% (from 0.5 to 0.005 mM) after 6 days and the color of the medium changed to black due to the formation of less toxic elemental tellurium.

  1. [Association of the pH change of vaginal environment in bacterial vaginosis with presence of Enterococcus faecalis in vagina].

    PubMed

    Jahić, Mahira; Nurkić, Mahmud; Fatusić, Zlatan

    2006-01-01

    Normal pH value of vagina from 3.8 to 4.2 has regulatory and protectors mechanisms of vaginal environment. The change in the pH value indicates to presence of disbalance in the ecosystem of vaginal environment. The value of pH above 4.0 is indicator of the decreased number of lactobacillus bacteria and the increased number of other microorganisms in the vaginal environment. This situation is present in the case of developing of bacterial vaginosis. One of the bacteria which is often isolated from vaginal swabs is Enterococcus faecalis. Aims of this study are to examine presence o f Enterococcus faecalis in vagina in healthy women and womenwith signs of bacterial vaginosis, the most often present signs in patients with bacterial vaginosis and isolated Enterococcus faecalis from vaginal swabs, and to determine whether the change of the pH value of vaginal environment could be indicator for bacterial vaginosis associated with Enterococcus faecalis. In this study there were included 90 patients. To all patients there were done: gynecological survey, determined pH of vaginal environment and color of vaginal secret, amino odor test, and taken vaginal swabs for microbiological examination. Enterococcus faecalis was found in the patients with pH 4.0 in 24.05 % cases, but in the patients with signs of bacterial vaginosis it was found in 52.78 %. Positive findings of Enterococcus faecalis was the most often associated with presence of all tree signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret and positive amino odor test) it is in 60.78 6% cases. With two signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret) Enterococcus faecalis was present in 60 % cases. The only presence of change in the pH>4.0 was associated with Enterococcus faecalis in 52.78 %. This study showed that pH change of vaginal environment was associated with Enterococcus faecalis in bacterial vaginosis in high percentage but it can not be used as the sure sign of presence

  2. Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant.

    PubMed

    Cordova-Rosa, S M; Dams, R I; Cordova-Rosa, E V; Radetski, M R; Corrêa, A X R; Radetski, C M

    2009-05-15

    Time-course performance of a phenol-degrading indigenous bacterial consortium, and of Acinetobacter calcoaceticus var. anitratus, isolated from an industrial coal wastewater treatment plant was evaluated. This bacterial consortium was able to survive in the presence of phenol concentrations as high as 1200mgL(-1) and the consortium was more fast in degrading phenol than a pure culture of the A. calcoaceticus strain. In a batch system, 86% of phenol biodegradation occurred in around 30h at pH 6.0, while at pH 3.0, 95.2% of phenol biodegradation occurred in 8h. A high phenol biodegradation (above 95%) by the mixed culture in a bioreactor was obtained in both continuous and batch systems, but when test was carried out in coke gasification wastewater, no biodegradation was observed after 10 days at pH 9-11 for both pure strain or the isolated consortium. An activated sludge with the same bacterial consortium characterized above was mixed with a textile sludge-contaminated soil with a phenol concentration of 19.48mgkg(-1). After 20 days of bioaugmentation, the remanescent phenol concentration of the sludge-soil matrix was 1.13mgkg(-1).

  3. Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation

    PubMed Central

    Ciafardini, G.; Marsilio, V.; Lanza, B.; Pozzi, N.

    1994-01-01

    Oleuropein (Chemical Abstracts Service registry number 32619-42-4), a bitter-tasting secoiridoid glucoside commonly found in leaves of the olive tree as well as in olives (Olea europaea L.), was found to be hydrolyzed by the β-glucosidase (EC 3.2.1.2.1) produced by oleuropeinolytic Lactobacillus plantarum-type strains. Three strains, designated B17, B20, and B21, were isolated from the brine of naturally ripe olives not treated with alkali. These strains were rod-shaped forms, grown at a pH 3.5 limit, and tolerated 1% oleuropein and 8% NaCl in the growth medium. The β-glucosidase produced hydrolyzed 5-bromo-4-chloro-3-indolyl-β-d-glucopy-ranoside as well as oleuropein. The presence of 2% glucose in the medium inhibited activity by 40 to 50%, depending on the bacterial strain. Chromatographic analysis of the trimethylsilyl derivatives of the products obtained after 7 days of incubation at 30°C of strain B21 showed all the hydrolysis products of oleuropein, i.e., aglycone, iridoid monoterpen, and 3,4-dihydroxyphenylethanol (hydroxytyrosol). Oleuropein and its aglycone after 21 days of incubation decreased to trace levels with the simultaneous increase in concentration of β-3,4-dihydroxyphenylethanol. Images PMID:16349442

  4. Hydrolysis of Oleuropein by Lactobacillus plantarum Strains Associated with Olive Fermentation.

    PubMed

    Ciafardini, G; Marsilio, V; Lanza, B; Pozzi, N

    1994-11-01

    Oleuropein (Chemical Abstracts Service registry number 32619-42-4), a bitter-tasting secoiridoid glucoside commonly found in leaves of the olive tree as well as in olives (Olea europaea L.), was found to be hydrolyzed by the beta-glucosidase (EC 3.2.1.2.1) produced by oleuropeinolytic Lactobacillus plantarum-type strains. Three strains, designated B17, B20, and B21, were isolated from the brine of naturally ripe olives not treated with alkali. These strains were rod-shaped forms, grown at a pH 3.5 limit, and tolerated 1% oleuropein and 8% NaCl in the growth medium. The beta-glucosidase produced hydrolyzed 5-bromo-4-chloro-3-indolyl-beta-d-glucopy-ranoside as well as oleuropein. The presence of 2% glucose in the medium inhibited activity by 40 to 50%, depending on the bacterial strain. Chromatographic analysis of the trimethylsilyl derivatives of the products obtained after 7 days of incubation at 30 degrees C of strain B21 showed all the hydrolysis products of oleuropein, i.e., aglycone, iridoid monoterpen, and 3,4-dihydroxyphenylethanol (hydroxytyrosol). Oleuropein and its aglycone after 21 days of incubation decreased to trace levels with the simultaneous increase in concentration of beta-3,4-dihydroxyphenylethanol.

  5. Synthesis, SAR Study and Evaluation of Mannich and Schiff Bases of Pyrazol-5(4H)-one Moiety Containing 3-(Hydrazinyl)-2-phenylquinazolin-4(3H)-one

    PubMed Central

    Sivakumar, K. K.; Rajasekharan, A.; Rao, R.; Narasimhan, B.

    2013-01-01

    In the present investigation, a series of 12 Mannich bases (QP1-12) and 5 Schiff bases (QSP1-5) of pyrazol-5(4H)-one moiety containing 3-(hydrazinyl)-2-phenylquinazolin-4(3H)-one has been synthesized and characterized by physicochemical as well as spectral means. The synthesized Mannich and Schiff bases were screened for their preliminary antimicrobial activity against Gram-positive and Gram-negative bacterial as well as fungal strains by the determination of zone of inhibition. Mannich bases (QP1-12) were found to be more potent antibacterial agents against Gram-positive bacteria, whereas Schiff bases (QSP1-5) were more potent against Gram-negative bacteria and fungi. Minimum inhibitory concentration result demonstrated that Mannich base compound (QP7) having ortho -OH and para -COOH group showed some improvement in antibacterial activity (minimum inhibitory concentration of 48.88×10−3 μM/ml) among the tested Gram-positive organisms and it also exhibit minimum inhibitory concentration of value of 12.22×10−3 μM/ml for Klebsiella pneumoniae. The antitubercular activity of synthesized compounds against Mycobacterium tuberculosis (H37Rv) was determined using microplate alamar blue assay. Compound QP11 showed appreciable antitubercular activity (minimum inhibitory concentration of 6.49×10−3 μM/ml) which was more active than the standard drugs, ethambutol (minimum inhibitory concentration of 7.60×10−3 μM/ml) and ciprofloxacin (9.4×10−3 μM/ml). Compounds QP11, QP9, QSP1, QSP2, and QSP5 have good selective index and may be selected as a lead compound for the development of novel antitubercular agents. PMID:24302802

  6. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil.

    PubMed

    Coppotelli, B M; Ibarrolaza, A; Del Panno, M T; Morelli, I S

    2008-02-01

    The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.

  7. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice

    PubMed Central

    Pulit-Penaloza, Joanna A.; Sun, Xiangjie; Creager, Hannah M.; Zeng, Hui; Belser, Jessica A.; Maines, Taronna R.

    2015-01-01

    ABSTRACT A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. IMPORTANCE In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and

  8. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.

    PubMed

    Shi, Handuo; Colavin, Alexandre; Lee, Timothy K; Huang, Kerwyn Casey

    2017-02-01

    Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.

  9. Purification and Characterization of a Cyclomaltodextrin Glucanotransferase From Paenibacillus campinasensis Strain H69-3

    NASA Astrophysics Data System (ADS)

    Alves-Prado, Heloiza Ferreira; Gomes, Eleni; da Silva, Roberto

    A cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19) from a newly isolated alkalophilic and moderately thermophilic Paenibacillus campinasensis strain H69-3 was purified as a homogeneous protein from culture supernatant. Cyclomaltodextrin glucanotransferase was produced during submerged fermentation at 45°C and purified by gel filtration on Sephadex G50 ion exchange using a Q-Sepharose column and ion exchange using a Mono-Q column. The molecular weight of the purified enzyme was 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the pI was 5.3. The optimum pH for enzyme activity was 6.5, and it was stable in the pH range 6.0-11.5. The optimum temperature was 65°C at pH 6.5, and it was thermally stable up to 60°C without substrate during 1 h in the presence of 10 mM CaCl2 The enzyme activity increased in the presence of Co2+, Ba2+, and Mn2+. Using maltodextrin as substrate, the K m and K cat were 1.65 mg/mL and 347.9 μmol/mg-min, respectively.

  10. Efficacy of pH elevation as a bactericidal strategy for treating ballast water of freight carriers

    PubMed Central

    Starliper, Clifford E.; Watten, Barnaby J.; Iwanowicz, Deborah D.; Green, Phyllis A.; Bassett, Noel L.; Adams, Cynthia R.

    2015-01-01

    Treatment of ship ballast water with sodium hydroxide (NaOH) is one method currently being developed to minimize the risk to introduce aquatic invasive species. The bactericidal capability of sodium hydroxide was determined for 148 bacterial strains from ballast water collected in 2009 and 2010 from the M/V Indiana Harbor, a bulk-freight carrier plying the Laurentian Great Lakes, USA. Primary culture of bacteria was done using brain heart infusion agar and a developmental medium. Strains were characterized based on PCR amplification and sequencing of a portion of the 16S rRNA gene. Sequence similarities (99+ %) were determined by comparison with the National Center for Biotechnology Information (NCBI) GenBank catalog. Flavobacterium spp. were the most prevalent bacteria characterized in 2009, comprising 51.1% (24/47) of the total, and Pseudomonas spp. (62/101; 61.4%) and Brevundimonas spp. (22/101; 21.8%) were the predominate bacteria recovered in 2010; together, comprising 83.2% (84/101) of the total. Testing was done in tryptic soy broth (TSB) medium adjusted with 5 N NaOH. Growth of each strain was evaluated at pH 10.0, pH 11.0 and pH 12.0, and 4 h up to 72 h. The median cell count at 0 h for 148 cultures was 5.20 × 106 cfu/mL with a range 1.02 × 105–1.60 × 108 cfu/mL. The TSB adjusted to pH 10.0 and incubation for less than 24 h was bactericidal to 52 (35.1%) strains. Growth in pH 11.0 TSB for less than 4 h was bactericidal to 131 (88.5%) strains and pH 11.0 within 12 h was bactericidal to 141 (95.3%). One strain, Bacillus horikoshii, survived the harshest treatment, pH 12.0 for 72 h. PMID:26257948

  11. Biological Characterizations of H5Nx Avian Influenza Viruses Embodying Different Neuraminidases

    PubMed Central

    Yu, Yuandi; Zhang, Zaoyue; Li, Huanan; Wang, Xiuhui; Li, Bo; Ren, Xingxing; Zeng, Zhaoyong; Zhang, Xu; Liu, Shukai; Hu, Pingsheng; Qi, Wenbao; Liao, Ming

    2017-01-01

    The H5 subtype virus of Highly Pathogenic Avian Influenza Virus has caused huge economic losses to the poultry industry and is a threat to human health. Until 2010, H5N1 subtype virus was the major genotype in China. Since 2011, reassortant H5N2, H5N6, and H5N8 viruses were identified in domestic poultry in China. The clade 2.3.4.4 H5N6 and H5N8 AIV has now spread to most of China. Clade 2.3.4.4 H5N6 virus has caused 17 human deaths. However, the prevalence, pathogenicity, and transmissibility of the distinct NA reassortment with H5 subtypes viruses (H5Nx) is unknown. We constructed five clade 2.3.4.4 reassortant H5Nx viruses that shared the same HA and six internal gene segments. The NA gene segment was replaced with N1, N2, N6, ΔN6 (with an 11 amino acid deletion at the 58th to 68th of NA stalk region), and N8 strains, respectively. The reassortant viruses with distinct NAs of clade 2.3.4.4 H5 subtype had different degrees of fitness. All reassortant H5Nx viruses formed plaques on MDCK cell monolayers, but the ΔH5N6 grew more efficiently in mammalian and avian cells. The reassortant H5Nx viruses were more virulent in mice as compared to the H5N2 virus. The H5N6 and H5N8 reassortant viruses exhibited enhanced pathogenicity and transmissibility in chickens as compared to the H5N1 reassortant virus. We suggest that comprehensive surveillance work should be undertaken to monitor the H5Nx viruses. PMID:28659898

  12. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    PubMed Central

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated. PMID:15345453

  13. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    PubMed

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  14. Alignment-free design of highly discriminatory diagnostic primer sets for Escherichia coli O104:H4 outbreak strains.

    PubMed

    Pritchard, Leighton; Holden, Nicola J; Bielaszewska, Martina; Karch, Helge; Toth, Ian K

    2012-01-01

    An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 'positive' E. coli O104:H4 outbreak and 32 'negative' non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput primer design strategies will enable faster, more precise responses to

  15. Alignment-Free Design of Highly Discriminatory Diagnostic Primer Sets for Escherichia coli O104:H4 Outbreak Strains

    PubMed Central

    Bielaszewska, Martina; Karch, Helge; Toth, Ian K.

    2012-01-01

    Background An Escherichia coli O104:H4 outbreak in Germany in summer 2011 caused 53 deaths, over 4000 individual infections across Europe, and considerable economic, social and political impact. This outbreak was the first in a position to exploit rapid, benchtop high-throughput sequencing (HTS) technologies and crowdsourced data analysis early in its investigation, establishing a new paradigm for rapid response to disease threats. We describe a novel strategy for design of diagnostic PCR primers that exploited this rapid draft bacterial genome sequencing to distinguish between E. coli O104:H4 outbreak isolates and other pathogenic E. coli isolates, including the historical hæmolytic uræmic syndrome (HUSEC) E. coli HUSEC041 O104:H4 strain, which possesses the same serotype as the outbreak isolates. Methodology/Principal Findings Primers were designed using a novel alignment-free strategy against eleven draft whole genome assemblies of E. coli O104:H4 German outbreak isolates from the E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium website, and a negative sequence set containing 69 E. coli chromosome and plasmid sequences from public databases. Validation in vitro against 21 ‘positive’ E. coli O104:H4 outbreak and 32 ‘negative’ non-outbreak EHEC isolates indicated that individual primer sets exhibited 100% sensitivity for outbreak isolates, with false positive rates of between 9% and 22%. A minimal combination of two primers discriminated between outbreak and non-outbreak E. coli isolates with 100% sensitivity and 100% specificity. Conclusions/Significance Draft genomes of isolates of disease outbreak bacteria enable high throughput primer design and enhanced diagnostic performance in comparison to traditional molecular assays. Future outbreak investigations will be able to harness HTS rapidly to generate draft genome sequences and diagnostic primer sets, greatly facilitating epidemiology and clinical diagnostics. We expect that high throughput

  16. Genetic features of highly pathogenic avian influenza viruses A(H5N8), isolated from the European part of the Russian Federation.

    PubMed

    Voronina, O L; Ryzhova, N N; Aksenova, E I; Kunda, M S; Sharapova, N E; Fedyakina, I T; Chvala, I A; Borisevich, S V; Logunov, D Yu; Gintsburg, A L

    2018-05-28

    Highly pathogenic avian influenza viruses (HPAIV) A(H5N8) of group B (Gochang1-like) have emerged in the Tyva Republic of eastern Russia in May 2016. Since November 2016, HPAIV A(H5N8) has spread throughout the European part of Russia. Thirty-one outbreaks were reported in domestic, wild and zoo birds in 2017. The present study aimed to perform a comparative analysis of new HPAIV A(H5N8) strains. Phylogenetic analysis revealed four genetically distinct subgroups in HPAIV A(H5N8) from the 2016-2017 season. Russian strains consisted of three subgroups with differences between isolates from Tyva, Siberia (Chany Lake), and the European part of Russia. Strains from the European part of Russia showed the beginnings of divergent evolution. Slight differences of the Voronezh strains were suggested by sensitivity to antiviral compounds. Testing for host-specific mutations in sequenced strains revealed the absence of mutations associated with possible increased tropism/virulence in mammalian species, including humans. Only one residue of polymerase basic-1, 13P, is discussed, because the L13P mutation increased complementary RNA synthesis in mammalian cells. We concluded that the evolution of HPAIV A(H5N8) is continuous. Surveillance in Russia revealed new cases of HPAIV A(H5N8) and led to the elaboration of prevention strategies, which should be implemented. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus

    PubMed Central

    Kilany, Walid H.; Safwat, Marwa; Mohammed, Samy M.; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G.; Shalaby, Azhar G.; Dauphin, Gwenaelle; Hassan, Mohammed K.; Lubroth, Juan; Jobre, Yilma M.

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  18. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    PubMed

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge.

  19. Properties and applications of undecylprodigiosin and other bacterial prodigiosins.

    PubMed

    Stankovic, Nada; Senerovic, Lidija; Ilic-Tomic, Tatjana; Vasiljevic, Branka; Nikodinovic-Runic, Jasmina

    2014-05-01

    The growing demand to fulfill the needs of present-day medicine in terms of novel effective molecules has lead to reexamining some of the old and known bacterial secondary metabolites. Bacterial prodigiosins (prodiginines) have a long history of being re markable multipurpose compounds, best examined for their anticancer and antimalarial activities. Production of prodigiosin in the most common producer strain Serratia marcescens has been described in great detail. However, few reports have discussed the ecophysiological roles of these molecules in the producing strains, as well as their antibiotic and UV-protective properties. This review describes recent advances in the production process, biosynthesis, properties, and applications of bacterial prodigiosins. Special emphasis is put on undecylprodigiosin which has generally been a less studied member of the prodigiosin family. In addition, it has been suggested that proteins involved in undecylprodigiosin synthesis, RedG and RedH, could be a useful addition to the biocatalytic toolbox being able to mediate regio- and stereoselective oxidative cyclization. Judging by the number of recent references (216 for the 2007-2013 period), it has become clear that undecylprodigiosin and other bacterial prodigiosins still hold surprises in terms of valuable properties and applicative potential to medical and other industrial fields and that they still deserve continuing research curiosity.

  20. The internalization of Helicobacter pylori plays a role in the failure of H. pylori eradication.

    PubMed

    Wang, You-Hua; Lv, Zhi-Fa; Zhong, Yao; Liu, Dong-Sheng; Chen, Shu-Ping; Xie, Yong

    2017-02-01

    Helicobacter pylori (H. pylori) internalization involves invasion of cells by the bacterium. Several studies have shown that H. pylori can invade human gastric epithelial cells, immune cells, and Candida yeast in vivo and in vitro. Whether bacterial invasion plays a role in eradication failure is unclear. To investigate the relationship between H. pylori invasion of GES-1 cells and H. pylori eradication failure. Forty-two clinical strains isolated from H. pylori-positive patients with different outcomes after treatment with furazolidone-based therapy were examined (17 failures and 25 successes). The H. pylori strains were shown to be susceptible to amoxicillin and furazolidone, and the patients also exhibited good compliance. Genotyping was performed for cagA and vacA (s and m). The antibiotic susceptibility of the strains to amoxicillin, furazolidone, clarithromycin, metronidazole, and levofloxacin was determined by E-tests. The levels of H. pylori invasion of GES-1 cells were detected by gentamicin colony-forming unit assays. The internalization level in the eradication success group was 5.40±5.78 × 10 -3  cfu/cell, and the median was 6.194 × 10 -3  cfu/cell; the internalization level in the eradication failure group was 8.98±5.40 × 10 -3  cfu/cell, and the median was 10.28 × 10 -3  cfu/cell. The eradication failure group showed a greater invasion level than the eradication success group (P<.05). No significant difference was observed between the susceptible strains and the resistant strains when the internalization levels were compared (P>.05). The results showed that H. pylori invasion of the gastric epithelia might play a role in eradication failure. © 2016 John Wiley & Sons Ltd.

  1. Bacterial desorption from food container and food processing surfaces.

    PubMed

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  2. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  3. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  4. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  5. A theoretical investigation into the strength of N-NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX.

    PubMed

    Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing

    2015-11-01

    Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.

  6. High-Throughput Biosensor Discriminates Between Different Algal H 2-Photoproducing Strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wecker, Matt S. A.; Maria L. Ghirardi

    2014-02-27

    A number of species of microalgae and cyanobacteria photosynthetically produce H 2 gas by coupling water oxidation with the reduction of protons to molecular hydrogen, generating renewable energy from sunlight and water. Photosynthetic H 2 production, however, is transitory, and there is considerable interest in increasing and extending it for commercial applications. Here we report a Petri-plate version of our previous, microplate-based assay that detects photosynthetic H 2 production by algae. The assay consists of an agar overlay of H 2-sensing Rhodobacter capsulatus bacteria carrying a green fluorescent protein that responds to H 2 produced by single algal colonies inmore » the bottom agar layer. The assay distinguishes between algal strains that photoproduce H 2 at different levels under high light intensities, and it does so in a simple, inexpensive, and high-throughput manner. The assay will be useful for screening both natural populations and mutant libraries for strains having increased H 2 production, and useful for identifying various genetic factors that physiologically or genetically alter algal hydrogen production.« less

  7. Tannic acid degradation by Klebsiella strains isolated from goat feces

    PubMed Central

    Tahmourespour, Arezoo; Tabatabaee, Nooroldin; Khalkhali, Hossein; Amini, Imane

    2016-01-01

    Background and Objectives: Tannins are toxic polyphenols that either bind and precipitate or condense proteins. The high tannin content of some plants is the preliminary limitation of using them as a ruminant feed. So, the aim of this study was the isolation and characterization of tannic acid degrading bacterial strains from goat feces before and after feeding on Pistachio-Soft Hulls as tannin rich diet (TRD). Materials and Methods: Bacterial strains capable of utilizing tannic acid as sole carbon and energy source were isolated and characterized from goat feces before and after feeding on TRD. Tannase activity, maximum tolerable concentration and biodegradation potential were assessed. Results: Four tannase positive isolates were identified as Klebsiella pneumoniae. Isolated strains showed the maximum tolerable concentration of 64g/L of tannin. The tannic acid degradation percentage at a concentration of 15.0 g/L reached a maximum of 68% after 24 h incubation, and more than 98% after 72 h incubation. The pH of the medium also decreased along with tannic acid utilization. Conclusions: It is obvious that TRD induced adaptive responses. Thus, while the bacteria were able to degrade and detoxify the tannic acids, they had to adapt in the presence of high concentrations of tannic acid. So, these isolates have an amazing potential for application in bioremediation, waste water treatment, also reduction of tannins antinutritional effects in animal feeds. PMID:27092220

  8. [Variations on hemagglutinin gene of Zhejiang measles virus strains and differences with measles strains circulated both at home and abroad].

    PubMed

    Feng, Yan; Zhong, Shu-ling; Xu, Chang-ping; Lu, Yi-yu

    2013-07-01

    To investigate the variations on hemagglutinin (H) gene of measles virus (MV) in Zhejiang province, and to analyze the differences with strains circulated both at home and abroad. In total, 33 MV strains isolated in Zhejiang province between 1999 and 2011 were collected.RNA of the isolated MV strains was extracted and the complete sequences on H gene were amplified using RT-PCR assay. The products were compared with the Chinese vaccine strain Shanghai-191, which was downloaded from GenBank, and other 95 different MV strains from all over the world. 33 MV strains, isolated from the throat swab specimens collected from MV patients in Zhejiang province during 1999 to 2001, were used to conduct phylogenetic analysis with MV strains circulated in other areas of China during 1993 to 2007. The phylogenetic tree based on H gene sequences showed that all the Zhejiang MV strains located in H1a cluster, and no apparent time series and geographic restrictions were observed. Compared to the referenced vaccine strain Shanghai-191, the average variation rate on nucleotides and amino acids, and the evolutionary rate of H1a viruses from China during 2003 to 2011 were separately 5.15%, 4.44% and 5.81%, which were higher than the rates of H1a viruses during 1965 to 1993 (4.75%, 3.86% and 5.30%), and the rates of viruses during 1994 to 2002 (4.80%, 4.08% and 5.37%).However, the dn/ds ratios of strains within the three time periods were 0.19,0.21 and 0.23 respectively, which indicated that no evidence of positive selection was found on H1a MV strains during 1993 to 2011. A 24 stable amino acid variation sites on H gene was found between H1a viruses during 2003 to 2011 and the vaccine strain Shanghai-191. The largest variation occurred between vaccine and H1a strains, with 0.053 of the p-distance and 26-28 of amino acid mutations.However, only 15 stable amino acid variations were found between vaccine strain and genotype B3 or D4 strains.In addition, significant differences were found

  9. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation.

    PubMed

    Berbegal, Carmen; Peña, Nuria; Russo, Pasquale; Grieco, Francesco; Pardo, Isabel; Ferrer, Sergi; Spano, Giuseppe; Capozzi, Vittorio

    2016-08-01

    Malolactic fermentation (MLF) is a secondary fermentation in wine that usually takes place during or at the end of alcoholic fermentation. Lactobacillus plantarum is able to conduct MLF (particularly under high pH conditions and in co-inoculation with yeasts), and some strains are commercially used as MLF starter cultures. Recent evidences suggest a further use of selected L. plantarum strains for the pre-alcoholic acidification of grape must. In this study, we have carried out an integrated (molecular, technological, and biotechnological) characterization of L. plantarum strains isolated from Apulian wines in order to combine the two protechnological features (MLF performances and must acidification aptitudes). Several parameters such as sugar, pH and ethanol tolerance, resistance to lyophilisation and behaviour in grape must were evaluated. Moreover, the expression of stress gene markers was investigated and was linked to the ability of L. plantarum strains to grow and perform MLF. Co-inoculation of Saccharomyces cerevisiae and L. plantarum in grape must improves the bacterial adaptation to harsh conditions of wine and reduced total fermentation time. For the first time, we applied a polyphasic approach for the characterization of L. plantarum in reason of the MLF performances. The proposed procedure can be generalized as a standard method for the selection of bacterial resources for the design of MLF starter cultures tailored for high pH must. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  11. M13 virus based detection of bacterial infections in living hosts.

    PubMed

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-08-01

    We report a first method for using M13 bacteriophage as a multifunctional scaffold for optically imaging bacterial infections in vivo. We demonstrate that M13 virus conjugated with hundreds of dye molecules (M13-Dye) can target and distinguish pathogenic infections of F-pili expressing and F-negative strains of E. coli. Further, in order to tune this M13-Dye complex suitable for targeting other strains of bacteria, we have used a 1-step reaction for creating an anti-bacterial antibody-M13-Dye probe. As an example, we show anti-S. aureus-M13-Dye able to target and image infections of S. aureus in living hosts, with a 3.7× increase in fluorescence over background. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biodegradation of used engine oil by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 isolated from oil-contaminated soil.

    PubMed

    Ibrahim, Haytham M M

    2016-12-01

    Used engine oil (UEO) constitutes a serious environmental problem due to the difficulty of disposal off or reuse. Ten bacterial strains with biodegradation potential were isolated from UEO-contaminated soil sample using enrichment technique. Two strains which exhibited the highest degradation %, 51 ± 1.2 and 48 ± 1.5, respectively, were selected. Based on the morphological, biochemical characteristics and 16S rRNA sequence analysis, they were identified as Ochrobactrum anthropi HM-1 (accession no: KR360745) and Citrobacter freundii HM-2 (accession no: KR360746). The different conditions which may influence their biodegradation activity, including UEO concentration (1-6 %, v/v), inoculum size (0.5-4 %, v/v), initial pH (6-8), incubation temperature (25-45 °C), and rotation speed (0-200 rpm), were evaluated. The optimum conditions were found to be 2 % UEO, 2 % inoculum size, pH 7.5, incubation temperature 37 °C, and 150 rpm. Under the optimized conditions, strains HM-1, HM-2, and their mixture efficiently degraded UEO, they achieved 65 ± 2.2, 58 ± 2.1, and 80 ± 1.9 %, respectively, after 21 days of incubation. Biodegradation of UEO was confirmed by employing gas chromatography analysis. Gamma radiation (1.5 kGy) enhanced the degradation efficiency of irradiated bacterial mixture (95 ± 2.1 %) as compared to non-irradiated (79 ± 1.6 %). Therefore, strains HM-1 and HM-2 can be employed to develop a cost-effective method for bioremediation of used engine-oil-polluted soil.

  13. Modifying and reacting to the environmental pH can drive bacterial interactions

    PubMed Central

    Ratzke, Christoph

    2018-01-01

    Microbes usually exist in communities consisting of myriad different but interacting species. These interactions are typically mediated through environmental modifications; microbes change the environment by taking up resources and excreting metabolites, which affects the growth of both themselves and also other microbes. We show here that the way microbes modify their environment and react to it sets the interactions within single-species populations and also between different species. A very common environmental modification is a change of the environmental pH. We find experimentally that these pH changes create feedback loops that can determine the fate of bacterial populations; they can either facilitate or inhibit growth, and in extreme cases will cause extinction of the bacterial population. Understanding how single species change the pH and react to these changes allowed us to estimate their pairwise interaction outcomes. Those interactions lead to a set of generic interaction motifs—bistability, successive growth, extended suicide, and stabilization—that may be independent of which environmental parameter is modified and thus may reoccur in different microbial systems. PMID:29538378

  14. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice.

    PubMed

    Pulit-Penaloza, Joanna A; Sun, Xiangjie; Creager, Hannah M; Zeng, Hui; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2015-10-01

    A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and transmission of

  15. Laccase Production from a Temperature and pH Tolerant Fungal Strain of Trametes hirsuta (MTCC 11397).

    PubMed

    Dhakar, Kusum; Pandey, Anita

    2013-01-01

    Laccase production by a temperature and pH tolerant fungal strain (GBPI-CDF-03) isolated from a glacial site in Indian Himalayan Region (IHR) has been investigated. The fungus developed white cottony mass on potato dextrose agar and revealed thread-like mycelium under microscope. ITS region analysis of fungus showed its 100% similarity with Trametes hirsuta. The fungus tolerated temperature from 4 to 48°C ± 2 (25°C opt.) and pH 3-13 (5-7 opt.). Molecular weight of laccase was determined approximately 45 kDa by native PAGE. Amplification of laccase gene fragment (corresponding to the copper-binding conserved domain) contained 200 bp. The optimum pH for laccase production, at optimum growth temperature, was determined between 5.5 and 7.5. In optimization experiments, fructose and ammonium sulfate were found to be the best carbon and nitrogen sources, respectively, for enhancing the laccase production. Production of laccase was favored by high carbon/nitrogen ratio. Addition of CuSO4 (up to 1.0 mM) induced laccase production up to 2-fold, in case of 0.4 mM concentration. Addition of organic solvents also induced the production of laccase; acetone showed the highest (2-fold) induction. The study has implications in bioprospecting of ecologically resilient microbial strains.

  16. Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain).

    PubMed

    Wu, Hui-Juan; Sun, Ling-Bin; Li, Chuan-Biao; Li, Zhong-Zhen; Zhang, Zhao; Wen, Xiao-Bo; Hu, Zhong; Zhang, Yue-Ling; Li, Sheng-Kang

    2014-12-01

    In a previous study, bacterial communities of the intestine in three populations of crabs (wild crabs, pond-raised healthy crabs and diseased crabs) were probed by culture-independent methods. In this study, we examined the intestinal communities of the crabs by bacterial cultivation with a variety of media. A total of 135 bacterial strains were isolated from three populations of mud crabs. The strains were screened for antagonistic activity against Vibrio parahaemolyticus using an agar spot assay. Antagonistic strains were then identified by 16S rRNA gene sequence analysis. Three strains (Bacillus subtilis DCU, Bacillus pumilus BP, Bacillus cereus HL7) with the strongest antagonistic activity were further evaluated for their probiotic characteristics. The results showed that two (BP and DCU) of them were able to survive low pH and high bile concentrations, showed good adherence characteristics and a broad spectrum of antibiotic resistance. The probiotic effects were then tested by feeding juvenile mud crabs (Scylla paramamosain) with foods supplemented with 10(5) CFU/g of BP or DCU for 30 days before being subjected to an immersion challenge with V. parahaemolyticus for 48 h. The treated crabs showed significantly higher expression levels of immune related genes (CAT, proPO and SOD) and activities of respiratory burst than that in controlled groups. Crabs treated with BP and DCU supplemented diets exhibited survival rates of 76.67% and 78.33%, respectively, whereas survival rate was 54.88% in crabs not treated with the probiotics. The data showed that indigenous mud-associated microbiota, such as DCU and BP, have potential application in controlling pathogenic Vibriosis in mud crab aquaculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP.

    PubMed

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A; Beltrán-Hernández, Rosa I; Prieto-García, Francisco; Miranda-López, José M; Franco-Abuín, Carlos M; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-08-06

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L(-1)), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L(-1) dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L(-1) with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  18. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    PubMed

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  19. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth

    PubMed Central

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications. PMID:29117218

  20. Isolation of Escherichia coli 0157:H7 Strain from Fecal Samples of Zoo Animal

    PubMed Central

    Mohammed Hamzah, Aseel; Mohammed Hussein, Aseel; Mahmoud Khalef, Jenan

    2013-01-01

    The isolation and characterization of Escherichia coli O157:H7 strains from 22 out of 174 fecal samples from petting zoo animals representing twenty-two different species (camel, lion, goats, zebra, bear, baboon monkey, Siberian monkey, deer, elk, llama, pony, horses, fox, kangaroo, wolf, porcupine, chickens, tiger, ostrich, hyena, dogs, and wildcats) were investigated. One petting Al-Zawraa zoological society of Baghdad was investigated for E. coli O157:H7 over a 16-month period that spanned two summer and two autumn seasons. Variation in the occurrence of E. coli O157:H7-positive petting zoo animals was observed, with animals being culture positive only in the summer months but not in the spring, autumn, or winter. E. coli O157:H7 isolates were distinguished by agglutination with E. coli O157:H7 latex reagent (Oxoid), identified among the isolates, which showed that multiple E. coli strains were isolated from one petting zoo animal, in which a single animal simultaneously shed multiple E. coli strains; E. coli O157:H7 was isolated only by selective enrichment culture of 2 g of petting zoo animal feces. In contrast, strains other than O157:H7 were cultured from feces of petting zoo animals without enrichment. PMID:24489514

  1. Isolation of Escherichia coli 0157:H7 strain from fecal samples of zoo animal.

    PubMed

    Mohammed Hamzah, Aseel; Mohammed Hussein, Aseel; Mahmoud Khalef, Jenan

    2013-01-01

    The isolation and characterization of Escherichia coli O157:H7 strains from 22 out of 174 fecal samples from petting zoo animals representing twenty-two different species (camel, lion, goats, zebra, bear, baboon monkey, Siberian monkey, deer, elk, llama, pony, horses, fox, kangaroo, wolf, porcupine, chickens, tiger, ostrich, hyena, dogs, and wildcats) were investigated. One petting Al-Zawraa zoological society of Baghdad was investigated for E. coli O157:H7 over a 16-month period that spanned two summer and two autumn seasons. Variation in the occurrence of E. coli O157:H7-positive petting zoo animals was observed, with animals being culture positive only in the summer months but not in the spring, autumn, or winter. E. coli O157:H7 isolates were distinguished by agglutination with E. coli O157:H7 latex reagent (Oxoid), identified among the isolates, which showed that multiple E. coli strains were isolated from one petting zoo animal, in which a single animal simultaneously shed multiple E. coli strains; E. coli O157:H7 was isolated only by selective enrichment culture of 2 g of petting zoo animal feces. In contrast, strains other than O157:H7 were cultured from feces of petting zoo animals without enrichment.

  2. Characterization of the pigment xanthomonadin in the bacterial genus Xanthomonas using micro- and resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.

    2012-06-01

    We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.

  3. Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ.

    PubMed

    Dijk, J A; Stams, A J M; Schraa, G; Ballerstedt, H; de Bont, J A M; Gerritse, J

    2003-11-01

    A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.

  4. Bacterial migration along solid surfaces.

    PubMed Central

    Harkes, G; Dankert, J; Feijen, J

    1992-01-01

    An in vitro system was developed to study the migration of uropathogenic Escherichia coli strains. In this system an aqueous agar gel is placed against a solid surface, allowing the bacteria to migrate along the gel/solid surface interface. Bacterial strains as well as solid surfaces were characterized by means of water contact angle and zeta potential measurements. When glass was used as the solid surface, significantly different migration times for the strains investigated were observed. Relationships among the observed migration times of six strains, their contact angles, and their zeta potentials were found. Relatively hydrophobic strains exhibited migration times shorter than those of hydrophilic strains. For highly negatively charged strains shorter migration times were found than were found for less negatively charged strains. When the fastest-migrating strain with respect to glass was allowed to migrate along solid surfaces differing in hydrophobicity and charge, no differences in migration times were found. Our findings indicate that strategies to prevent catheter-associated bacteriuria should be based on inhibition of bacterial growth rather than on modifying the physicochemical character of the catheter surface. PMID:1622217

  5. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5-.

    PubMed

    Lo, Po-Kam; Lau, Kai-Chung

    2014-04-03

    The ionization energy (IE), electron affinity (EA), and heats of formation (ΔH°f0/ΔH°f298) for cyclopentadienyl radical, cation, and anion, C5H5/C5H5(+)/C5H5(-), have been calculated by wave function-based ab initio CCSDT/CBS approach, which involves approximation to complete basis set (CBS) limit at coupled-cluster level with up to full triple excitations (CCSDT). The zero-point vibrational energy correction, core-valence electronic correction, scalar relativistic effect, and higher-order corrections beyond the CCSD(T) wave function are included in these calculations. The allylic [C5H5((2)A2)] and dienylic [C5H5((2)B1)] forms of cyclopentadienyl radical are considered: the ground state structure exists in the dienyl form and it is about 30 meV more stable than the allylic structure. Both structures are lying closely and are interconvertible along the normal mode of b2 in-plane vibration. The CCSDT/CBS predictions (in eV) for IE[C5H5(+)((3)A1')←C5H5((2)B1)] = 8.443, IE[C5H5(+)((1)A1)←C5H5((2)B1)] = 8.634 and EA[C5H5(-)((1)A1')←C5H5((2)B1)] = 1.785 are consistent with the respective experimental values of 8.4268 ± 0.0005, 8.6170 ± 0.0005, and 1.808 ± 0.006, obtained from photoelectron spectroscopic measurements. The ΔH°f0/ΔH°f298's (in kJ/mol) for C5H5/C5H5(+)/C5H5(-) have also been predicted by the CCSDT/CBS method: ΔH°f0/ΔH°f298[C5H5((2)B1)] = 283.6/272.0, ΔH°f0/ΔH°f298[C5H5(+)((3)A1')] = 1098.2/1086.9, ΔH°f0/ΔH°f298[C5H5(+)((1)A1)] = 1116.6/1106.0, and ΔH°f0/ΔH°f298[C5H5(-)((1)A1')] = 111.4/100.0. The comparisons between the CCSDT/CBS predictions and the experimental values suggest that the CCSDT/CBS procedure is capable of predicting reliable IE(C5H5)'s and EA(C5H5) with uncertainties of ± 17 and ± 23 meV, respectively.

  6. Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 from Cattle in Argentina have Hypervirulent-Like Phenotypes

    PubMed Central

    Amigo, Natalia; Mercado, Elsa; Bentancor, Adriana; Singh, Pallavi; Vilte, Daniel; Gerhardt, Elisabeth; Zotta, Elsa; Ibarra, Cristina; Manning, Shannon D.; Larzábal, Mariano; Cataldi, Angel

    2015-01-01

    The hemolytic uremic syndrome (HUS) whose main causative agent is enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a disease that mainly affects children under 5 years of age. Argentina is the country with the highest incidence of HUS in the world. Cattle are a major reservoir and source of infection with E. coli O157:H7. To date, the epidemiological factors that contribute to its prevalence are poorly understood. Single nucleotide polymorphism (SNP) typing has helped to define nine E. coli O157:H7 clades and the clade 8 strains were associated with most of the cases of severe disease. In this study, eight randomly selected isolates of EHEC O157:H7 from cattle in Argentina were studied as well as two human isolates. Four of them were classified as clade 8 through the screening for 23 SNPs; the two human isolates grouped in this clade as well, while two strains were closely related to strains representing clade 6. To assess the pathogenicity of these strains, we assayed correlates of virulence. Shiga toxin production was determined by an ELISA kit. Four strains were high producers and one of these strains that belonged to a novel genotype showed high verocytotoxic activity in cultured cells. Also, these clade 8 and 6 strains showed high RBC lysis and adherence to epithelial cells. One of the clade 6 strains showed stronger inhibition of normal water absorption than E. coli O157:H7 EDL933 in human colonic explants. In addition, two of the strains showing high levels of Stx2 production and RBC lysis activity were associated with lethality and uremia in a mouse model. Consequently, circulation of such strains in cattle may partially contribute to the high incidence of HUS in Argentina. PMID:26030198

  7. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.

    PubMed

    Lin, Shin-Ping; Huang, Yin-Hsuan; Hsu, Kai-Di; Lai, Ying-Jang; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2016-10-20

    A bacterial cellulose (BC) producing strain isolated from fermented fruit juice was identified as Komagataeibacter intermedius (K. intermedius) FST213-1 by 16s rDNA sequencing analysis and biochemical characteristics test. K. intermedius FST213-1 can produce BC within pH 4-9 and exhibit maximum BC production (1.2g/L) at pH 8 in short-term (4-day) cultivation. Results of Fourier transform infrared spectroscopy, X-ray diffraction, water content, thermogravimetric analysis and mechanical property indicated that BC produced from K. intermedius FST213-1 exhibits higher water content ability (99.5%), lower thermostability (315°C), lower crystallinity (79.3%) and similar mechanical properties in comparison with the specimen from model BC producer, Gluconacetobacter xylinus 23769. Based on these analyses, the novel based-resistant strain K. intermedius FST213-1 can efficiently produce BC, which can be applied for industrial manufacturing with potential features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    PubMed

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).

  9. Biodegradation of furfural by Bacillus subtilis strain DS3.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Lv, Quanxi

    2015-07-01

    An aerobic bacterial strain DS3, capable of growing on furfural as sole carbon source, was isolated from actived sludge of wastewater treatment plant in a diosgenin factory after enrichment. Based on morphological physiological tests as well as 16SrDNA sequence and Biolog analyses it was identified as Bacillus subtilis. The study revealed that strain DS3 utilized furfural, as analyzed by high-performance liquid chromatography (HPLC). Under following conditions: pH 8.0, temperature 35 degrees C, 150 rpm and 10% inoculum, strain DS3 showed 31.2% furfural degradation. Furthermore, DS3 strain was found to tolerate furfural concentration as high as 6000 mg(-1). The ability of Bacillus subtilis strain DS3 to degrade furfural has been demonstrated for the first time in the present study.

  10. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.

    PubMed

    Rao, Minxi; Smith, Brian C; Marletta, Michael A

    2015-05-05

    Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. Bacterial nitric oxide (NO) signaling via heme-nitric oxide/oxygen binding (H-NOX) proteins regulates biofilm formation, playing an important role in protecting bacteria from oxidative stress and other environmental stresses. Biofilms are also an important part of symbiosis, allowing the organism to remain in a

  11. Infrared spectra of the 1-pyridinium (C5H5NH+) cation and pyridinyl (C5H5NH and 4-C5H6N) radicals isolated in solid para-hydrogen.

    PubMed

    Golec, Barbara; Das, Prasanta; Bahou, Mohammed; Lee, Yuan-Pern

    2013-12-19

    Protonated pyridine and its neutral counterparts (C5H6N) are important intermediates in organic and biological reactions and in the atmosphere. We have recorded the IR absorption spectra of the 1-pyridinium (C5H5NH(+)) cation, 1-pyridinyl (C5H5NH), and 4-pyridinyl (4-C5H6N) produced on electron bombardment during matrix deposition of a mixture of pyridine (C5H5N) and p-H2 at 3.2 K; all spectra were previously unreported. The IR features of C5H5NH(+) diminished in intensity after the matrix was maintained in darkness for 15 h, whereas those of C5H5NH and 4-C5H6N radicals increased. Irradiation of this matrix with light at 365 nm diminished lines of C5H5NH(+) and C5H5NH but enhanced lines of 4-C5H6N slightly, whereas irradiation at 405 nm diminished lines of 4-C5H6N significantly. Observed wavenumbers and relative intensities of these species agree satisfactorily with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3LYP/6-31++G(d,p) method. Assignments of C5H5NH and 4-C5H6N radicals were further supported by the observation of similar spectra when a Cl2/C5H5N/p-H2 matrix was irradiated first at 365 nm and then with IR light to generate H atoms to induce the H + C5H5N reaction.

  12. Evaluation of clinical methods for diagnosing bacterial vaginosis.

    PubMed

    Gutman, Robert E; Peipert, Jeffrey F; Weitzen, Sherry; Blume, Jeffrey

    2005-03-01

    To determine whether the current clinical criteria for diagnosing bacterial vaginosis can be simplified by using 2 clinical criteria rather than the standard 3 of 4 criteria (Amsel's criteria). This was a prospective observational study of 269 women undergoing a vaginal examination in the Women's Primary Care Center, Division of Research, or Colposcopy Clinic at Women & Infants Hospital. All 4 clinical criteria for diagnosing bacterial vaginosis were collected, and Gram stain was used as the gold standard. Sensitivity and specificity were calculated for each individual criterion, combinations of criteria, and a colorimetric pH and amine card. Receiver operating characteristic curve was generated to estimate the preferred pH and percentage of clue cells for diagnosing bacterial vaginosis. The prevalence of bacterial vaginosis in our study population was 38.7%. Vaginal pH was the most sensitive of all the criteria, at 89%, and a positive amine odor was the individual criteria with the highest specificity, at 93%. Similar specificity was seen with combinations of 2 criteria and Amsel's criteria. Receiver operating characteristic curve analysis yielded a preferred pH and percentage of clue cells of 5.0 and 20%, respectively. However, a pH of 4.5 or greater improves sensitivity with minimal loss of specificity. The clinical criteria for diagnosing bacterial vaginosis can be simplified to 2 clinical criteria without loss of sensitivity and specificity.

  13. Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia

    PubMed Central

    Song, Joon Y.; Cheong, Hee J.; Heo, Jung Y.; Noh, Ji Y.; Yong, Hwan S.; Kim, Yoon K.; Kang, Eun Y.; Choi, Won S.; Jo, Yu M.; Kim, Woo J.

    2011-01-01

    Please cite this paper as: Song et al. (2011). Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia. Influenza and Other Respiratory Viruses 5(6), e535–e543. Background  Although influenza virus usually involves the upper respiratory tract, pneumonia was seen more frequently with the 2009 pandemic influenza A/H1N1 than with seasonal influenza. Methods  From September 1, 2009, to January 31, 2010, a specialized clinic for patients (aged ≥15 years) with ILI was operated in Korea University Guro Hospital. RT‐PCR assay was performed to diagnose 2009 pandemic influenza A/H1N1. A retrospective case–case–control study was performed to determine the predictive factors for influenza pneumonia and to discriminate concomitant/secondary bacterial pneumonia from primary influenza pneumonia during the 2009–2010 pandemic. Results  During the study period, the proportions of fatal cases and pneumonia development were 0·12% and 1·59%, respectively. Patients with pneumonic influenza were less likely to have nasal symptoms and extra‐pulmonary symptoms (myalgia, headache, and diarrhea) compared to patients with non‐pneumonic influenza. Crackle was audible in just about half of the patients with pneumonic influenza (38·5% of patients with primary influenza pneumonia and 53·3% of patients with concomitant/secondary bacterial pneumonia). Procalcitonin, C‐reactive protein (CRP), and lactate dehydrogenase were markedly increased in patients with influenza pneumonia. Furthermore, procalcitonin (cutoff value 0·35 ng/ml, sensitivity 81·8%, and specificity 66·7%) and CRP (cutoff value 86·5 mg/IU, sensitivity 81·8%, and specificity 59·3%) were discriminative between patients with concomitant/secondary bacterial pneumonia and patients with primary influenza pneumonia. Conclusions  Considering the subtle manifestations of 2009 pandemic

  14. Highly pathogenic influenza H5N1 virus of clade 2.3.2.1c in Western Siberia.

    PubMed

    Marchenko, V Y; Susloparov, I M; Kolosova, N P; Goncharova, N I; Shipovalov, A V; Ilyicheva, T N; Durymanov, A G; Chernyshova, O A; Kozlovskiy, L I; Chernyshova, T V; Pryadkina, E N; Karimova, T V; Mikheev, V N; Ryzhikov, A B

    2016-06-01

    In the spring of 2015, avian influenza virus surveillance in Western Siberia resulted in isolation of several influenza H5N1 virus strains. The strains were isolated from several wild bird species. Investigation of biological features of those strains demonstrated their high pathogenicity for mammals. Phylogenetic analysis of the HA gene showed that the strains belong to clade 2.3.2.1c.

  15. Subcutaneous immunization with inactivated bacterial components and purified protein of Escherichia coli, Fusobacterium necrophorum and Trueperella pyogenes prevents puerperal metritis in Holstein dairy cows.

    PubMed

    Machado, Vinícius Silva; Bicalho, Marcela Luccas de Souza; Meira Junior, Enoch Brandão de Souza; Rossi, Rodolfo; Ribeiro, Bruno Leonardo; Lima, Svetlana; Santos, Thiago; Kussler, Arieli; Foditsch, Carla; Ganda, Erika Korzune; Oikonomou, Georgios; Cheong, Soon Hon; Gilbert, Robert Owen; Bicalho, Rodrigo Carvalho

    2014-01-01

    In this study we evaluate the efficacy of five vaccine formulations containing different combinations of proteins (FimH; leukotoxin, LKT; and pyolysin, PLO) and/or inactivated whole cells (Escherichia coli, Fusobacterium necrophorum, and Trueperella pyogenes) in preventing postpartum uterine diseases. Inactivated whole cells were produced using two genetically distinct strains of each bacterial species (E. coli, F. necrophorum, and T. pyogenes). FimH and PLO subunits were produced using recombinant protein expression, and LKT was recovered from culturing a wild F. necrophorum strain. Three subcutaneous vaccines were formulated: Vaccine 1 was composed of inactivated bacterial whole cells and proteins; Vaccine 2 was composed of proteins only; and Vaccine 3 was composed of inactivated bacterial whole cells only. Two intravaginal vaccines were formulated: Vaccine 4 was composed of inactivated bacterial whole cells and proteins; and Vaccine 5 was composed of PLO and LKT. To evaluate vaccine efficacy, a randomized clinical trial was conducted at a commercial dairy farm; 371 spring heifers were allocated randomly into one of six different treatments groups: control, Vaccine 1, Vaccine 2, Vaccine 3, Vaccine 4 and Vaccine 5. Late pregnant heifers assigned to one of the vaccine groups were each vaccinated twice: at 230 and 260 days of pregnancy. When vaccines were evaluated grouped as subcutaneous and intravaginal, the subcutaneous ones were found to significantly reduce the incidence of puerperal metritis. Additionally, subcutaneous vaccination significantly reduced rectal temperature at 6±1 days in milk. Reproduction was improved for cows that received subcutaneous vaccines. In general, vaccination induced a significant increase in serum IgG titers against all antigens, with subcutaneous vaccination again being more effective. In conclusion, subcutaneous vaccination with inactivated bacterial components and/or protein subunits of E. coli, F. necrophorum and T. pyogenes

  16. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions.

    PubMed

    Elhadidy, Mohamed; Álvarez-Ordóñez, Avelino

    2016-01-01

    The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this

  17. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions

    PubMed Central

    Elhadidy, Mohamed; Álvarez-Ordóñez, Avelino

    2016-01-01

    The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this

  18. In vitro evaluation of cross-strain inhibitory effects of IgY polyclonal antibody against H. pylori.

    PubMed

    Solhi, Roya; Alebouyeh, Masoud; Khafri, Abolfazl; Rezaeifard, Morteza; Aminian, Mahdi

    2017-09-01

    The present study aimed to evaluate in vitro cross-strain inhibitory effects of IgY polyclonal antibody on both growth and urease enzyme of four local strains of H. pylori. Leghorn chickens were immunized with whole cells of four different strains of H. pylori, separately. Rising of specific IgY was detected by ELISA. The IgY purified using polyethylene glycol method and the purity was evaluated by SDS-PAGE and Western blotting. Each strain was treated with its own-specific and also other strain-specific IgYs. The strain-specific IgY could inhibit the growth of specific strains by 49-72% and also other different strains of H. pylori by 29-86%. Our findings revealed that strain-specific IgY could inhibit urease activity of its own by 64-72% and other different strains by 49-79%. These findings confirmed strain-specific and also cross-strain inhibitory effects of the IgY polyclonal antibody on both growth and urease activity of H. pylori. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Large dosage amoxicillin/clavulanate, compared with azithromycin, for the treatment of bacterial acute otitis media in children.

    PubMed

    Hoberman, Alejandro; Dagan, Ron; Leibovitz, Eugene; Rosenblut, Andres; Johnson, Candice E; Huff, Anne; Bandekar, Rajesh; Wynne, Brian

    2005-06-01

    A large dosage pediatric formulation of amoxicillin/clavulanate with an improved pharmacokinetic/pharmacodynamic profile was developed to eradicate many penicillin-resistant strains of Streptococcus pneumoniae and Haemophilus influenzae (including beta-lactamase-producing strains). This randomized, investigator-blinded, multicenter trial examined treatment of bacterial acute otitis media (AOM) in children 6-30 months of age with amoxicillin/clavulanate (90/6.4 mg/kg/d in 2 divided doses for 10 days) versus azithromycin (10 mg/kg for 1 day followed by 5 mg/kg/d for 4 days). Tympanocentesis was performed at entry for bacteriologic assessment, at the on-therapy visit (day 4-6) to determine bacterial eradication and at any time before the end-of-therapy visit (day 12-14) if the child was categorized as experiencing clinical failure. Clinical assessments were performed at the on-therapy, end-of-therapy and follow-up (day 21-25) visits. We enrolled 730 children; AOM pathogens were isolated at baseline for 249 of the amoxicillin/clavulanate group and 245 of the azithromycin group. For children with AOM pathogens at baseline, clinical success rates at the end-of-therapy visit were 90.5% for amoxicillin/clavulanate versus 80.9% for azithromycin (P < 0.01), and those at the on-therapy and follow-up visits were 94.9% versus 88.0% and 80.3% versus 71.1%, respectively (all P < 0.05). At the on-therapy visit, pretherapy pathogens were eradicated for 94.2% of children receiving amoxicillin/clavulanate versus 70.3% of those receiving azithromycin (P < 0.001). Amoxicillin/clavulanate eradicated 96.0% of S. pneumoniae (92.0% of fully penicillin-resistant S. pneumoniae) and 89.7% of H. influenzae (85.7% [6 of 7 cases] of beta-lactamase-positive H. influenzae). Corresponding rates for azithromycin were 80.4% (54.5%) for S. pneumoniae and 49.1% (100% [1 of 1 case]) for H. influenzae (all P < 0.01 for between-drug comparisons). Amoxicillin/clavulanate was clinically and

  20. Colonization of Vitis vinifera by a Green Fluorescence Protein-Labeled, gfp-Marked Strain of Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis of Grapevine

    PubMed Central

    Grall, Sophie; Manceau, Charles

    2003-01-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development. PMID:12676663

  1. Colonization of Vitis vinifera by a green fluorescence protein-labeled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine.

    PubMed

    Grall, Sophie; Manceau, Charles

    2003-04-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.

  2. Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp.

    PubMed

    Ausec, Luka; Črnigoj, Miha; Šnajder, Marko; Ulrih, Nataša Poklar; Mandic-Mulec, Ines

    2015-12-01

    Laccases are oxidoreductases mostly studied in fungi, while bacterial laccases remain poorly studied despite their high genetic diversity and potential for biotechnological application. Our previous bioinformatic analysis identified alkaliphilic bacterial strains Thioalkalivibrio sp. as potential sources of robust bacterial laccases that would be stable at high pH. In the present work, a gene for a laccase-like enzyme from Thioalkalivibrio sp. ALRh was cloned and expressed as a 6× His-tagged protein in Escherichia coli. The purified enzyme was a pH-tolerant laccase stable in the pH range between 2.1 and 9.9 at 20 °C as shown by intrinsic fluorescence emission spectrometry. It had optimal activities at pH 5.0 and pH 9.5 with the laccase substrates 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,6-dimethoxyphenol, respectively. In addition, it could oxidize several other monophenolic compounds and potassium hexacyanoferrate(II) but not tyrosine. It showed highest activity at 50 °C, making it suitable for prolonged incubations at this temperature. The present study shows that Thioalkalivibrio sp. encodes an active, alkaliphilic, and thermo-tolerant laccase and contributes to our understanding of the versatility of bacterial laccase-like multicopper oxidases in general.

  3. Degradation of ethyl mercaptan and its major intermediate diethyl disulfide by Pseudomonas sp. strain WL2.

    PubMed

    Wang, Xiangqian; Wu, Chao; Liu, Nan; Li, Sujing; Li, Wei; Chen, Jianmeng; Chen, Dongzhi

    2015-04-01

    A Pseudomonas sp. strain WL2 that is able to efficiently metabolize ethyl mercaptan (EM) into diethyl disulfide (DEDS) through enzymatic oxidation was isolated from the activated sludge of a pharmaceutical wastewater plant. One hundred percent removal of 113.5 mg L(-1) EM and 110.3 mg L(-1) DEDS were obtained within 14 and 32 h, respectively. A putative EM degradation pathway that involved the catabolism via DEDS was proposed, which indicated DEDS were further mineralized into carbon dioxide (CO2), bacterial cells, and sulfate (SO4 (2-)) through the transformation of element sulfur and ethyl aldehyde. Degradation kinetics for EM and DEDS with different initial concentrations by strain WL2 were evaluated using Haldane-Andrews model with maximum specific degradation rates of 3.13 and 1.33 g g(-1) h(-1), respectively, and maximum degradation rate constants of 0.522 and 0.175 h(-1) using pseudo-first-order kinetic model were obtained. Results obtained that aerobic degradation of EM by strain WL2 was more efficient than those from previous studies. Substrate range studies of strain WL2 demonstrated its ability to degrade several mercaptans, disulfides, aldehydes, and methanol. All the results obtained highlight the potential of strain WL2 for the use in the biodegradation of volatile organic sulfur compounds (VOSCs).

  4. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH.

    PubMed

    Mason, A James; Gasnier, Claire; Kichler, Antoine; Prévost, Gilles; Aunis, Dominique; Metz-Boutigue, Marie-Hélène; Bechinger, Burkhard

    2006-10-01

    The histidine-rich amphipathic cationic peptide LAH4 has antibiotic and DNA delivery capabilities. Here, we explore the interaction of peptides from this family with model membranes as monitored by solid-state (2)H nuclear magnetic resonance and their antibiotic activities against a range of bacteria. At neutral pH, the membrane disruption is weak, but at acidic pH, the peptides strongly disturb the anionic lipid component of bacterial membranes and cause bacterial lysis. The peptides are effective antibiotics at both pH 7.2 and pH 5.5, although the antibacterial activity is strongly affected by the change in pH. At neutral pH, the LAH peptides were active against both methicillin-resistant and -sensitive Staphylococcus aureus strains but ineffective against Pseudomonas aeruginosa. In contrast, the LAH peptides were highly active against P. aeruginosa in an acidic environment, as is found in the epithelial-lining fluid of cystic fibrosis patients. Our results show that modest antibiotic activity of histidine-rich peptides can be dramatically enhanced by inducing membrane disruption, in this case by lowering the pH, and that histidine-rich peptides have potential as future antibiotic agents.

  5. Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21.

    PubMed

    Fu, Shuna; Wang, Fan; Li, Hongyu; Bao, Yixuan; Yang, Yu; Shen, Huifang; Lin, Birun; Zhou, Guangxiong

    2016-11-01

    A new secondary metabolite, (2S,3R)-l-threonine, N-[3-(formylamino)-2-hydroxybenzoyl]-ethyl ester (streptomyceamide C, 1), together with four known compounds 1, 4-dimethyl-3-isopropyl-2,5-piperidinedione (2), cyclo-((S)-Pro-8- hydroxy-(R)-Ile (3), cyclo-((S)-Pro-(R)-Leu (4), and seco-((S)-Pro-(R)-Val) (5), were isolated from the EtOH extract of the fermented mycelium of the marine-derived streptomycete strain H74-21, which was isolated from sea sediment in a mangrove site. The structure of the new compound was established on the basis of its spectroscopic data, including 1D and 2D NMR, HR-TOF-MS. Their antifungal activities against Candida albicans and cytotoxicities against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268 and human lung cancer cell line NCI-H460 were tested. Compounds 1 only displayed cytotoxicity against human breast adenocarcinoma cell line MCF-7 with the IC50 value of 27.0 μg/mL. However, compounds 1-5 do not show antifungal activities at the test concentration of 1 mg/mL, and 2-5 have no cytotoxicities at the test concentration of 50 μg/mL.

  6. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    PubMed

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  7. Cd-Resistant Strains of B. cereus S5 with Endurance Capacity and Their Capacities for Cadmium Removal from Cadmium-Polluted Water

    PubMed Central

    Wu, Huiqing; Wu, Qingping; Wu, Guojie; Gu, Qihui; Wei, Linting

    2016-01-01

    The goal of this study was to identify Cd-resistant bacterial strains with endurance capacity and to evaluate their ability to remove cadmium ions from cadmium-polluted water. The Bacillus cereusS5 strain identified in this study had the closest genetic relationship with B. cereus sp. Cp1 and performed well in the removal of Cd2+ions from solution. The results showed that both the live and dead biomasses of the Cd2+-tolerant B. cereus S5 strain could absorb Cd2+ ions in solution but that the live biomass of the B. cereus S5 strain outperformed the dead biomass at lower Cd2+concentrations. An analysis of the cadmium tolerance genes of B. cereus S5 identified ATPase genes that were associated with cadmium tolerance and involved in the ATP pumping mechanism. The FTIR spectra revealed the presence of amino, carboxyl and hydroxyl groups on the pristine biomass and indicated that the cadmium ion removal ability was related to the structure of the strain. The maximum absorption capacity of the B. cereus S5 strain in viable spore biomass was 70.16 mg/g (dry weight) based on a pseudo-second-order kinetic model fit to the experimental data. The Langmuir and Langmuir-Freundlich isotherm adsorption models fit the cadmium ion adsorption data well, and the kinetic curves indicated that the adsorption rate was second-order. For Cd2+ concentrations (mg/L) of 1–109 mg/L, good removal efficiency (>80%) was achieved using approximately 3.48–10.3 g/L of active spore biomass of the B. cereus S5 strain. A cadmium-tolerant bacteria-activated carbon-immobilized column could be used for a longer duration and exhibited greater treatment efficacy than the control column in the treatment of cadmium-polluted water. In addition, a toxicity assessment using mice demonstrated that the biomass of the B. cereus S5 strain and its fermentation products were non-toxic. Thus, the isolated B. cereus S5 strain can be considered an alternative biological adsorbent for use in emergency responses to

  8. Bacterial genes mutL, mutS, and dcm participate in repair of mismatches at 5-methylcytosine sites.

    PubMed Central

    Lieb, M

    1987-01-01

    Certain amber mutations in the cI gene of bacteriophage lambda appear to recombine very frequently with nearby mutations. The aberrant mutations included C-to-T transitions at the second cytosine in 5'CC(A/T)GG sequences (which are subject to methylation by bacterial cytosine methylase) and in 5'CCAG and 5'CAGG sequences. Excess cI+ recombinants arising in crosses that utilize these mutations are attributable to the correction of mismatches by a bacterial very-short-patch (VSP) mismatch repair system. In the present study I found that two genes required for methyladenine-directed (long-patch) mismatch repair, mutL and mutS, also functioned in VSP mismatch repair; mutH and mutU (uvrD) were dispensable. VSP mismatch repair was greatly reduced in a dcm Escherichia coli mutant, in which 5-methylcytosine was not methylated. However, mismatches in heteroduplexes prepared from lambda DNA lacking 5-methylcytosine were repaired in dcm+ bacteria. These results indicate that the product of gene dcm has a repair function in addition to its methylase activity. PMID:2959653

  9. Characterization of a whole, inactivated influenza (H5N1) vaccine.

    PubMed

    Tada, Yoshikazu

    2008-11-01

    Effective vaccines against the highly pathogenic influenza A/H5N1 virus are being developed worldwide. In Japan, two adjuvanted, inactivated, whole-virion influenza vaccines were recently developed and licensed as mock-up, pre-pandemic vaccine formulations by the Ministry of Health and Labor Welfare of Japan. During the vaccine design and development process, various obstacles were overcome and, in this report, we introduce the non clinical production, immunogenicity data in human and development process that was associated with egg-derived adjuvanted, inactivated, whole-virion influenza A (H5N1) vaccine. Pilot lots of H5N1 vaccine were produced using the avirulent H5N1 reference strain A/Vietnam/1194/2004 (H5N1) NIBRG-14 and administered following adsorption with aluminum hydroxide as an adjuvant. Quality control and formulation stability tests were performed before clinical trials were initiated (phase I-III). The research foundation for microbial diseases of Osaka University (BIKEN) carried out vaccine production, quality control, stability testing and the phase I clinical trial in addition to overseeing the licensing of this vaccine. Mitsubishi Chemical Safety Institute Ltd. carried out the non clinical pharmacological toxicity and safety studies and the Japanese medical association carried out the phase II/III trials. Phase I-III trials took place in 2006. The production processes were well controlled by established tests and validations. Vaccine quality was confirmed by quality control, stability and pre-clinical tests, and the vaccine was approved as a mock-up, pre-pandemic vaccine by the Ministry of Health and Labor Welfare of Japan. Numerous safety and efficacy procedures were carried out prior to the approval of the described vaccine formulation. Some of these procedures were of particular importance e.g., vaccine development, validation, and quality control tests that included strict monitoring of the hemagglutinin (HA) content of the vaccine

  10. Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond

    PubMed Central

    Garita-Cambronero, J.; Sena-Vélez, M.; Palacio-Bielsa, A.

    2014-01-01

    We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus. PMID:24903863

  11. Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain.

    PubMed

    Mora, Azucena; Herrrera, Alexandra; López, Cecilia; Dahbi, Ghizlane; Mamani, Rosalia; Pita, Julia M; Alonso, María P; Llovo, José; Bernárdez, María I; Blanco, Jesús E; Blanco, Miguel; Blanco, Jorge

    2011-09-01

    A Shiga-toxin-producing Escherichia coli (STEC) strain belonging to serotype O104:H4, phylogenetic group B1 and sequence type ST678, with virulence features common to the enteroaggregative E. coli (EAEC) pathotype, was reported as the cause of the recent 2011 outbreak in Germany. The outbreak strain was determined to carry several virulence factors of extraintestinal pathogenic E. coli (ExPEC) and to be resistant to a wide range of antibiotics. There are only a few reports of serotype O104:H4, which is very rare in humans and has never been detected in animals or food. Several research groups obtained the complete genome sequence of isolates of the German outbreak strain as well as the genome sequences of EAEC of serotype O104:H4 strains from Africa. Those findings suggested that horizontal genetic transfer allowed the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli (STEAEC) O104:H4 strain responsible for the outbreak in Germany. Epidemiologic investigations supported a linkage between the outbreaks in Germany and France and traced their origin to fenugreek seeds imported from Africa. However, there has been no isolation of the causative strain O104:H4 from any of the samples of fenugreek seeds analyzed. Following the German outbreak, we conducted a large sampling to analyze the presence of STEC, EAEC, and other types of diarrheagenic E. coli strains in Spanish vegetables. During June and July 2011, 200 vegetable samples from different origins were analyzed. All were negative for the virulent serotype O104:H4 and only one lettuce sample (0.6%) was positive for a STEC strain of serotype O146:H21 (stx1, stx2), considered of low virulence. Despite the single positive case, the hygienic and sanitary quality of Spanish vegetables proved to be quite good. In 195 of the 200 samples (98%), <10 colony-forming units (cfu) of E. coli per gram were detected, and the microbiological levels of all samples were satisfactory (<100 cfu/g). The

  12. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2

    PubMed Central

    Masum, Md. Mahidul Islam; Yang, Yingzi; Li, Bin; Olaitan, Ogunyemi Solabomi; Chen, Jie; Zhang, Yang; Fang, Yushi; Qiu, Wen; Wang, Yanli; Sun, Guochang

    2017-01-01

    The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa. PMID:28934168

  13. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    PubMed Central

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A.; Beltrán-Hernández, Rosa I.; Prieto-García, Francisco; Miranda-López, José M.; Franco-Abuín, Carlos M.; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-01-01

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments. PMID:23924881

  14. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High-Throughput Screening for a Moderately Halophilic Phenol-Degrading Strain and Its Salt Tolerance Response

    PubMed Central

    Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di

    2015-01-01

    A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration) over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478

  16. Homologous and heterologous antigenic matched vaccines containing different H5 hemagglutinins provide variable protection of chickens from the 2014 U.S. H5N8 and H5N2 clade 2.3.4.4 highly pathogenic avian influenza viruses.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary J; Spackman, Erica; Chrzastek, Klaudia; Suarez, David L; Swayne, David E

    2017-11-01

    From December 2014 to June 2015, a novel H5 Eurasian A/goose/Guangdong (Gs/GD) lineage clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in US history resulting in mortality or culling of greater than 48 million poultry. The outbreak renewed interest in developing intervention strategies, including vaccines, for these newly emergent HPAI viruses. In these studies, several existing H5 vaccines or vaccine seed strains with varying genetic relatedness (85-100%) to the 2.3.4.4 HPAI viruses were evaluated for protection in poultry. Chickens received a single dose of either an inactivated whole H5 AI vaccine, or a recombinant fowl poxvirus or turkey herpesvirus-vectored vaccines with H5 AI hemagglutinin gene inserts followed by challenge with either a U.S. wild bird H5N8 (A/gyrfalcon/Washington/40188-6/2014) or H5N2 (A/northern pintail/Washington/40964/2014) clade 2.3.4.4 isolate. Results indicate that most inactivated H5 vaccines provided 100% protection from lethal effects of H5N8 or H5N2 challenge. In contrast, the recombinant live vectored vaccines only provided partial protection which ranged from 40 to 70%. Inactivated vaccine groups, in general, had lower number of birds shedding virus and at lower virus titers then the recombinant vaccine groups. Interestingly, prechallenge antibody titers using the HPAI challenge viruses as antigen in heterologous vaccine groups were typically low (≤2 log 2 ), yet the majority of these birds survived challenge. Taken together, these studies suggest that existing vaccines when used in a single immunization strategy may not provide adequate protection in poultry against the 2.3.4.4 HPAI viruses. Updating the H5 hemagglutinin to be genetically closer to the outbreak virus and/or using a prime-boost strategy may be necessary for optimal protection. Published by Elsevier Ltd.

  17. Selection of Therapeutic H5N1 Monoclonal Antibodies Following IgVH Repertoire Analysis in Mice

    PubMed Central

    Gray, Sean A.; Moore, Margaret; VandenEkart, Emily J.; Roque, Richard P.; Bowen, Richard A.; Van Hoeven, Neal; Wiley, Steven R.; Clegg, Christopher H.

    2016-01-01

    The rapid rate of influenza virus mutation drives the emergence of new strains that inflict serious seasonal epidemics and less frequent, but more deadly, pandemics. While vaccination provides the best protection against influenza, its utility is often diminished by the unpredictability of new pathogenic strains. Consequently, efforts are underway to identify new antiviral drugs and monoclonal antibodies that can be used to treat recently infected individuals and prevent disease in vulnerable populations. Next Generation Sequencing (NGS) and the analysis of antibody gene repertoires is a valuable tool for Ab discovery. Here, we describe a technology platform for isolating therapeutic monoclonal antibodies (MAbs) by analyzing the IgVH repertoires of mice immunized with recombinant H5N1 hemagglutinin (rH5). As an initial proof of concept, 35 IgVH genes selected using a CDRH3 search algorithm, co-expressed in a murine IgG2a expression vector with a panel of germline murine kappa genes, and culture supernatants screened for antigen binding. Seventeen of the 35 IgVH MAbs (49%) bound rH5VN1203 in preliminary screens and 8 of 9 purified MAbs inhibited 3 heterosubtypic strains of H5N1 virus when assayed by HI, and 2 MAbs demonstrated prophylactic and therapeutic activity in virus-challenged mice. This is the first example in which an NGS discovery platform has been used to isolate anti-influenza MAbs with relevant therapeutic activity. PMID:27109194

  18. Monohalogenated ferrocenes C5H5FeC5H4 X (X = Cl, Br and I) and a second polymorph of C5H5FeC5H4I

    PubMed Central

    Romanov, Alexander S.; Mulroy, Joseph M.; Khrustalev, Victor N.; Antipin, Mikhail Yu.; Timofeeva, Tatiana V.

    2009-01-01

    The structures of the three title monosubstituted ferrocenes, namely 1-chloro­ferrocene, [Fe(C5H5)(C5H4Cl)], (I), 1-bromo­ferrocene, [Fe(C5H5)(C5H4Br)], (II), and 1-iodo­ferrocene, [Fe(C5H5)(C5H4I)], (III), were determined at 100 K. The chloro- and bromo­ferrocenes are isomorphous crystals. The new triclinic polymorph [space group P , Z = 4, T = 100 K, V = 943.8 (4) Å3] of iodo­ferrocene, (III), and the previously reported monoclinic polymorph of (III) [Laus, Wurst & Schottenberger (2005 ▶). Z. Kristallogr. New Cryst. Struct. 220, 229–230; space group Pc, Z = 4, T = 100 K, V = 924.9 Å3] were obtained by crystallization from ethanolic solutions at 253 and 303 K, respectively. All four phases contain two independent mol­ecules in the unit cell. The relative orientations of the cyclo­penta­dienyl (Cp) rings are eclipsed and staggered in the independent mol­ecules of (I) and (II), while (III) demonstrates only an eclipsed conformation. The triclinic and monoclinic polymorphs of (III) contain nonbonded inter­molecular I⋯I contacts, causing different packing modes. In the triclinic form of (III), the mol­ecules are arranged in zigzag tetra­mers, while in the monoclinic form the mol­ecules are arranged in zigzag chains along the a axis. Crystallographic data for (III), along with the computed lattice energies of the two polymorphs, suggest that the monoclinic form is more stable. PMID:19893225

  19. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    PubMed

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  20. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation.

    PubMed

    Schwartz, Drew J; Kalas, Vasilios; Pinkner, Jerome S; Chen, Swaine L; Spaulding, Caitlin N; Dodson, Karen W; Hultgren, Scott J

    2013-09-24

    Chaperone-usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and formation of biofilm-like intracellular bacterial communities. The mannose-binding pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH with variant residues outside the binding pocket affect FimH-mediated acute and chronic pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding studies revealed that, whereas all pathoadaptive variants tested displayed the same high affinity for mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated into pilus tip-like, FimCGH complexes. Structural studies have shown that FimH adopts an elongated conformation when complexed with FimC, but, when incorporated into the pilus tip, FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure, were attenuated during chronic bladder infection, implying that FimH's ability to switch between conformations is important in pathogenesis. Our studies argue that positively selected residues modulate fitness during UTI by affecting FimH conformation and function, providing an example of evolutionary tuning of structural dynamics impacting in vivo survival.

  1. Removal of Mercury from Chloralkali Electrolysis Wastewater by a Mercury-Resistant Pseudomonas putida Strain

    PubMed Central

    von Canstein, H.; Li, Y.; Timmis, K. N.; Deckwer, W.-D.; Wagner-Döbler, I.

    1999-01-01

    A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater. PMID:10583977

  2. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1.

    PubMed

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6-12, temperatures of 28-50°C, and NaCl concentrations of 0-16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Mineralization of the Cyclic Nitramine Explosive Hexahydro-1,3,5-Trinitro-1,3,5-Triazine by Gordonia and Williamsia spp.

    PubMed Central

    Thompson, Karen T.; Crocker, Fiona H.; Fredrickson, Herbert L.

    2005-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 μM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 μg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4 greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics. PMID:16332812

  4. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity.

    PubMed

    Kim, Min-Ji; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Jeong, Eun-Ju; Kim, Jong-Guk; Lee, In-Jung

    2017-07-01

    This study was aimed to identify plant growth-promoting bacterial isolates from soil samples and to investigate their ability to improve plant growth and salt tolerance by analysing phytohormones production and phosphate solubilisation. Among the four tested bacterial isolates (I-2-1, H-1-4, H-2-3, and H-2-5), H-2-5 was able to enhance the growth of Chinese cabbage, radish, tomato, and mustard plants. The isolated bacterium H-2-5 was identified as Bacillus amyloliquefaciens H-2-5 based on 16S rDNA sequence and phylogenetic analysis. The secretion of gibberellins (GA 4 , GA 8 , GA 9 , GA 19 , and GA 20 ) from B. amyloliquefaciens H-2-5 and their phosphate solubilisation ability may contribute to enhance plant growth. In addition, the H-2-5-mediated mitigation of short term salt stress was tested on soybean plants that were affected by sodium chloride. Abscisic acid (ABA) produced by the H-2-5 bacterium suppressed the NaCl-induced stress effects in soybean by enhancing plant growth and GA 4 content, and by lowering the concentration of ABA, salicylic acid, jasmonic acid, and proline. These results suggest that GAs, ABA production, and the phosphate solubilisation capacity of B. amyloliquefaciens H-2-5 are important stimulators that promote plant growth through their interaction and also to improve plant growth by physiological changes in soybean at saline soil.

  5. Human macrophage gamma interferon decreases gene expression but not replication of Mycobacterium tuberculosis: analysis of the host-pathogen reciprocal influence on transcription in a comparison of strains H37Rv and CMT97.

    PubMed

    Cappelli, G; Volpe, P; Sanduzzi, A; Sacchi, A; Colizzi, V; Mariani, F

    2001-12-01

    Mycobacterium tuberculosis is an intracellular pathogen that readily survives and replicates in human macrophages (MPhi). Host cells have developed different mycobactericidal mechanisms, including the production of inflammatory cytokines. The aim of this study was to compare the MPhi response, in terms of cytokine gene expression, to infection with the M. tuberculosis laboratory strain H37Rv and the clinical M. tuberculosis isolate CMT97. Both strains induce the production of interleukin-12 (IL-12) and IL-16 at comparable levels. However, the clinical isolate induces a significantly higher and more prolonged MPhi activation, as shown by reverse transcription-PCR analysis of IL-1beta, IL-6, IL-10, transforming growth factor beta, tumor necrosis factor alpha, and gamma interferon (IFN-gamma) transcripts. Interestingly, when IFN-gamma transcription is high, the number of M. tuberculosis genes expressed decreases and vice versa, whereas no mycobactericidal effect was observed in terms of bacterial growth. Expression of 11 genes was also studied in the two M. tuberculosis strains by infecting resting or activated MPhi and compared to bacterial intracellular survival. In both cases, a peculiar inverse correlation between expression of these genes and multiplication was observed. The number and type of genes expressed by the two strains differed significantly.

  6. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation.

    PubMed

    Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth

    2014-08-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.

  7. Highly Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds, Qinghai Lake, China.

    PubMed

    Li, Mingxin; Liu, Haizhou; Bi, Yuhai; Sun, Jianqing; Wong, Gary; Liu, Di; Li, Laixing; Liu, Juxiang; Chen, Quanjiao; Wang, Hanzhong; He, Yubang; Shi, Weifeng; Gao, George F; Chen, Jianjun

    2017-04-01

    In May 2016, a highly pathogenic avian influenza A(H5N8) virus strain caused deaths among 3 species of wild migratory birds in Qinghai Lake, China. Genetic analysis showed that the novel reassortant virus belongs to group B H5N8 viruses and that the reassortment events likely occurred in early 2016.

  8. Prevalence of genes encoding virulence factors among Escherichia coli with K1 antigen and non-K1 E. coli strains.

    PubMed

    Kaczmarek, Agnieszka; Budzynska, Anna; Gospodarek, Eugenia

    2012-10-01

    Multiplex PCR was used to detect genes encoding selected virulence determinants associated with strains of Escherichia coli with K1 antigen (K1(+)) and non-K1 E. coli (K1(-)). The prevalence of the fimA, fimH, sfa/foc, ibeA, iutA and hlyF genes was studied for 134 (67 K1(+) and 67 K1(-)) E. coli strains isolated from pregnant women and neonates. The fimA gene was present in 83.6 % of E. coli K1(+) and in 86.6 % of E. coli K1(-) strains. The fimH gene was present in all tested E. coli K1(+) strains and in 97.0 % of non-K1 strains. E. coli K1(+) strains were significantly more likely to possess the following genes than E. coli K1(-) strains: sfa/foc (37.3 vs 16.4 %, P = 0.006), ibeA (35.8 vs 4.5 %, P<0.001), iutA (82.1 vs 35.8 %, P<0.001) and hlyF (28.4 vs 6.0 %, P<0.001). In conclusion, E. coli K1(+) seems to be more virulent than E. coli K1(-) strains in developing severe infections, thereby increasing possible sepsis or neonatal bacterial meningitis.

  9. Potential Role of Diploscapter sp. Strain LKC25, a Bacterivorous Nematode from Soil, as a Vector of Food-Borne Pathogenic Bacteria to Preharvest Fruits and Vegetables

    PubMed Central

    Gibbs, Daunte S.; Anderson, Gary L.; Beuchat, Larry R.; Carta, Lynn K.; Williams, Phillip L.

    2005-01-01

    Diploscapter, a thermotolerant, free-living soil bacterial-feeding nematode commonly found in compost, sewage, and agricultural soil in the United States, was studied to determine its potential role as a vehicle of Salmonella enterica serotype Poona, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes in contaminating preharvest fruits and vegetables. The ability of Diploscapter sp. strain LKC25 to survive on agar media, in cow manure, and in composted turkey manure and to be attracted to, ingest, and disperse food-borne pathogens inoculated into soil or a mixture of soil and composted turkey manure was investigated. Diploscapter sp. strain LKC25 survived and reproduced in lawns of S. enterica serotype Poona, E. coli O157:H7, and L. monocytogenes on agar media and in cow manure and composted turkey manure. Attraction of Diploscapter sp. strain LKC25 to colonies of pathogenic bacteria on tryptic soy agar within 10, 20, 30, and 60 min and 24 h was determined. At least 85% of the worms initially placed 0.5 to 1 cm away from bacterial colonies migrated to the colonies within 1 h. Within 24 h, ≥90% of the worms were embedded in colonies. The potential of Diploscapter sp. strain LKC25 to shed pathogenic bacteria after exposure to bacteria inoculated into soil or a mixture of soil and composted turkey manure was investigated. Results indicate that Diploscapter sp. strain LKC25 can shed pathogenic bacteria after exposure to pathogens in these milieus. They also demonstrate its potential to serve as a vector of food-borne pathogenic bacteria in soil, with or without amendment with compost, to the surface of preharvest fruits and vegetables in contact with soil. PMID:15870330

  10. Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration.

    PubMed

    Castro, Felipe D; Sedman, Jacqueline; Ismail, Ashraf A; Asadishad, Bahareh; Tufenkji, Nathalie

    2010-06-01

    The effects of dissolved oxygen tension during bacterial growth and acclimation on the cell surface properties and biochemical composition of the bacterial pathogens Escherichia coli O157:H7 and Yersinia enterocolitica are characterized. Three experimental techniques are used in an effort to understand the influence of bacterial growth and acclimation conditions on cell surface charge and the composition of the bacterial cell: (i) electrophoretic mobility measurements; (ii) potentiometric titration; and (iii) ATR-FTIR spectroscopy. Potentiometric titration data analyzed using chemical speciation software are related to measured electrophoretic mobilities at the pH of interest. Titration of bacterial cells is used to identify the major proton-active functional groups and the overall concentration of these cell surface ligands at the cell membrane. Analysis of titration data shows notable differences between strains and conditions, confirming the appropriateness of this tool for an overall charge characterization. ATR-FTIR spectroscopy of whole cells is used to further characterize the bacterial biochemical composition and macromolecular structures that might be involved in the development of the net surficial charge of the organisms examined. The evaluation of the integrated intensities of HPO(2)(-) and carbohydrate absorption bands in the IR spectra reveals clear differences between growth protocols. Taken together, the three techniques seem to indicate that the dissolved oxygen tension during cell growth or acclimation can noticeably influence the expression of cell surface molecules and the measurable cell surface charge, though in a strain-dependent fashion.

  11. Carbon utilization profiles of river bacterial strains facing sole carbon sources suggest metabolic interactions.

    PubMed

    Goetghebuer, Lise; Servais, Pierre; George, Isabelle F

    2017-05-01

    Microbial communities play a key role in water self-purification. They are primary drivers of biogenic element cycles and ecosystem processes. However, these communities remain largely uncharacterized. In order to understand the diversity-heterotrophic activity relationship facing sole carbon sources, we assembled a synthetic community composed of 20 'typical' freshwater bacterial species mainly isolated from the Zenne River (Belgium). The carbon source utilization profiles of each individual strain and of the mixed community were measured in Biolog Phenotype MicroArrays PM1 and PM2A microplates that allowed testing 190 different carbon sources. Our results strongly suggest interactions occurring between our planktonic strains as our synthetic community showed metabolic properties that were not displayed by its single components. Finally, the catabolic performances of the synthetic community and a natural community from the same sampling site were compared. The synthetic community behaved like the natural one and was therefore representative of the latter in regard to carbon source consumption. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Divergent Requirement of Fc-Fcγ Receptor Interactions for In Vivo Protection against Influenza Viruses by Two Pan-H5 Hemagglutinin Antibodies

    PubMed Central

    Wang, Shuangshuang; Ren, Huanhuan; Jiang, Wenbo; Chen, Honglin; Hu, Hongxing; Chen, Zhiwei

    2017-01-01

    ABSTRACT Recent studies have shown that Fc-Fcγ receptor (FcγR) interactions are required for in vivo protection against influenza viruses by broadly reactive anti-hemagglutinin (HA) stem, but not virus strain-specific, anti-receptor binding site (RBS), antibodies (Abs). Since only a few Abs recognizing epitopes in the head region but outside the RBS have been tested against single-challenge virus strains, it remains unknown whether Fc-FcγR interactions are required for in vivo protection by Abs recognizing epitopes outside the RBS and whether the requirement is virus strain specific or epitope specific. In the present study, we therefore investigated the requirements for in vivo protection using two pan-H5 Abs, 65C6 and 100F4. We generated chimeric Abs, 65C6/IgG2a and 100F4/IgG2a, which preferentially engage activating FcγRs, and isogenic forms, 65C6/D265A and 100F4/D265A, which do not bind FcγR. Virus neutralizing activity, binding, antibody-dependent cellular cytotoxicity (ADCC), and in vivo protection of these Abs were compared using three H5 strains, A/Shenzhen/406H/2006 (SZ06), A/chicken/Shanxi/2/2006 (SX06), and A/chicken/Netherlands/14015526/2014 (NE14). We found that all four chimeric Abs bound and neutralized the SZ06 and NE14 strains but poorly inhibited the SX06 strain. 65C6/IgG2a and 100F4/IgG2a, but not 65C6/D265A and 100F4/D265A, mediated ADCC against target cells expressing HA derived from all three virus strains. Interestingly, both 65C6/IgG2a and 65C6/D265A demonstrated comparable protection against all three virus strains in vivo; however, 100F4/IgG2a, but not 100F4/D265A, showed in vivo protection. Thus, we conclude that Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6, and therefore, protection is not virus strain specific but epitope specific. IMPORTANCE Abs play an important role in immune protection against influenza virus infection. Fc-FcγR interactions are required for in vivo protection by broadly

  13. Divergent Requirement of Fc-Fcγ Receptor Interactions for In Vivo Protection against Influenza Viruses by Two Pan-H5 Hemagglutinin Antibodies.

    PubMed

    Wang, Shuangshuang; Ren, Huanhuan; Jiang, Wenbo; Chen, Honglin; Hu, Hongxing; Chen, Zhiwei; Zhou, Paul

    2017-06-01

    Recent studies have shown that Fc-Fcγ receptor (FcγR) interactions are required for in vivo protection against influenza viruses by broadly reactive anti-hemagglutinin (HA) stem, but not virus strain-specific, anti-receptor binding site (RBS), antibodies (Abs). Since only a few Abs recognizing epitopes in the head region but outside the RBS have been tested against single-challenge virus strains, it remains unknown whether Fc-FcγR interactions are required for in vivo protection by Abs recognizing epitopes outside the RBS and whether the requirement is virus strain specific or epitope specific. In the present study, we therefore investigated the requirements for in vivo protection using two pan-H5 Abs, 65C6 and 100F4. We generated chimeric Abs, 65C6/IgG2a and 100F4/IgG2a, which preferentially engage activating FcγRs, and isogenic forms, 65C6/D265A and 100F4/D265A, which do not bind FcγR. Virus neutralizing activity, binding, antibody-dependent cellular cytotoxicity (ADCC), and in vivo protection of these Abs were compared using three H5 strains, A/Shenzhen/406H/2006 (SZ06), A/chicken/Shanxi/2/2006 (SX06), and A/chicken/Netherlands/14015526/2014 (NE14). We found that all four chimeric Abs bound and neutralized the SZ06 and NE14 strains but poorly inhibited the SX06 strain. 65C6/IgG2a and 100F4/IgG2a, but not 65C6/D265A and 100F4/D265A, mediated ADCC against target cells expressing HA derived from all three virus strains. Interestingly, both 65C6/IgG2a and 65C6/D265A demonstrated comparable protection against all three virus strains in vivo ; however, 100F4/IgG2a, but not 100F4/D265A, showed in vivo protection. Thus, we conclude that Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6, and therefore, protection is not virus strain specific but epitope specific. IMPORTANCE Abs play an important role in immune protection against influenza virus infection. Fc-FcγR interactions are required for in vivo protection by broadly

  14. Comparison of antibody and cytokine responses to primary Giardia muris infection in H-2 congenic strains of mice.

    PubMed

    Venkatesan, P; Finch, R G; Wakelin, D

    1996-11-01

    The course of primary infections with Giardia muris differs between BALB and B10 H-2 congenic strains of mice. In the first 3 weeks of infection, there is a more rapid decline in intestinal trophozoite and fecal cyst counts in B10 strains than in BALB strains. To determine whether this difference could be explained by variation in specific antibody responses, both secretory immunoglobulin A (IgA) and serum antibody responses were compared between these strains. No significant differences in the timing, titer, or specificity of secretory or serum antibodies were found. However, on comparing specific anti-G. muris serum IgG subclass responses, we found that B10 strains produced IgG2a while BALB strains produced IgG1, suggesting differential involvement of T helper 1 and 2 subsets of lymphocytes. When cells harvested from mesenteric lymph nodes were stimulated with concanavalin A in vitro, both gamma interferon and interleukin-5 were secreted by cells from B10 mice, but only interleukin-5 was secreted by cells from BALB/c mice. Specific blockade of gamma interferon by monoclonal antibody administered to B10 mice resulted in an enhanced intensity of infection.

  15. Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484

    PubMed Central

    O'Connor, Paula M.; O'Shea, Eileen F.; Guinane, Caitriona M.; O'Sullivan, Orla; Cotter, Paul D.; Hill, Colin

    2015-01-01

    Accumulating evidence suggests that bacteriocin production represents a probiotic trait for intestinal strains to promote dominance, fight infection, and even signal the immune system. In this respect, in a previous study, we isolated from the porcine intestine a strain of Streptococcus hyointestinalis DPC6484 that displays antimicrobial activity against a wide range of Gram-positive bacteria and produces a bacteriocin with a mass of 3,453 Da. Interestingly, the strain was also found to be immune to a nisin-producing strain. Genome sequencing revealed the genetic determinants responsible for a novel version of nisin, designated nisin H, consisting of the nshABTCPRKGEF genes, with transposases encoded between nshP and nshR and between nshK and nshG. A similar gene cluster is also found in S. hyointestinalis LMG14581. Notably, the cluster lacks an equivalent of the nisin immunity gene, nisI. Nisin H is proposed to have the same structure as the prototypical nisin A but differs at 5 amino acid positions—Ile1Phe (i.e., at position 1, nisin A has Ile while nisin H has Phe), Leu6Met, Gly18Dhb (threonine dehydrated to dehydrobutyrine), Met21Tyr, and His31Lys—-and appears to represent an intermediate between the lactococcal nisin A and the streptococcal nisin U variant of nisin. Purified nisin H inhibits a wide range of Gram-positive bacteria, including staphylococci, streptococci, Listeria spp., bacilli, and enterococci. It represents the first example of a natural nisin variant produced by an intestinal isolate of streptococcal origin. PMID:25841003

  16. Cefepime and amikacin synergy in vitro and in vivo against a ceftazidime-resistant strain of Enterobacter cloacae.

    PubMed

    Mimoz, O; Jacolot, A; Padoin, C; Tod, M; Samii, K; Petitjean, O

    1998-03-01

    The activities of cefepime and amikacin alone or in combination against an isogenic pair of Enterobacter cloacae strains (wild type and stably derepressed, ceftazidime-resistant mutant) were compared using an experimental model of pneumonia in non-leucopenic rats. Animals were infected by administering 8.4 log10 cfu of E. cloacae intratracheally, and therapy was initiated 12 h later. At that time, the animals' lungs showed bilateral pneumonia and contained more than 7 log10 E. cloacae cfu/g tissue. Because rats eliminate amikacin and cefepime much more rapidly than humans, renal impairment was induced in all animals to simulate the pharmacokinetic parameters of humans. In-vitro susceptibilities showed an inoculum effect with cefepime proportional to the bacterial titre against the two strains, but more pronounced with the stably derepressed mutant strain, whereas with bacterial concentrations of up to 7 log10 cfu/mL, no inoculum effect was observed with amikacin. In-vitro killing indicated that antibiotic combinations were synergic only at intermediate concentrations. At peak concentrations, the combination was merely as effective as amikacin alone. At trough concentrations, a non-significant trend towards the superiority of the combination over each antibiotic alone was noted. Moreover, cefepime was either bacteriostatic or permitted regrowth of the organisms in the range of antibiotic concentrations tested. Although each antibiotic alone failed to decrease bacterial counts in the lungs, regardless of the susceptibility of the strain used, the combination of both antibiotics was synergic and induced a significant decrease in the lung bacterial count 24 h after starting therapy when compared with tissue bacterial numbers in untreated animals or animals treated with either antibiotic alone. No resistant clones emerged during treatment with any of the antibiotic regimens studied.

  17. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    PubMed

    Alexander, Jeff; Ward, Simone; Mendy, Jason; Manayani, Darly J; Farness, Peggy; Avanzini, Jenny B; Guenther, Ben; Garduno, Fermin; Jow, Lily; Snarsky, Victoria; Ishioka, Glenn; Dong, Xin; Vang, Lo; Newman, Mark J; Mayall, Tim

    2012-01-01

    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  18. Emergence of novel clade 2.3.4 influenza A (H5N1) virus subgroups in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Song, Jianling; Zhang, Wendong; Zhao, Huanyun; Duan, Bofang; Liu, Qingliang; Zeng, Wei; Qiu, Wei; Chen, Gang; Zhang, Yingguo; Fan, Quanshui; Zhang, Fuqiang

    2015-07-01

    From December 2013 to March 2014, a major wave of highly pathogenic avian influenza outbreak occurred in poultry in Yunnan Province, China. We isolated and characterized eight highly pathogenic avian influenza A (H5N1) viruses from poultry. Full genome influenza sequences and analyses have been performed. Sequence analyses revealed that they belonged to clade 2.3.4 but did not fit within the three defined subclades. The isolated viruses were provisional subclade 2.3.4.4e. The provisional subclade 2.3.4.4e viruses with six internal genes from avian influenza A (H5N2) viruses in 2013 were the novel reassortant influenza A (H5N1) viruses which were associated with the outbreak of H5N1 occurred in egg chicken farms in Yunnan Province. The HA genes were similar to subtype H5 viruses isolated from January to March of 2014 in Asia including H5N6 and H5N8. The NA genes were most closely related to A/chicken/Vietnam/NCVD-KA423/2013 (H5N1) from the subclade 2.3.2. The HI assay demonstrated a lack of antigenic relatedness between clades 2.3.4.4e and 2.3.4.1 (RE-5 vaccine strain) or 2.3.2.2 (RE-6 vaccine strain). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Algicidal activity against Skeletonema costatum by marine bacteria isolated from a high frequency harmful algal blooms area in southern Chinese coast.

    PubMed

    Shi, Rongjun; Huang, Honghui; Qi, Zhanhui; Hu, Weian; Tian, Ziyang; Dai, Ming

    2013-01-01

    Four marine bacterial strains P1, P5, N5 and N21 were isolated from the surface water and sediment of Mirs Bay in southern Chinese coast using the liquid infection method with 48-well plates. These bacteria were all shown to have algicidal activities against Skeletonema costatum. Based on morphological observations, biochemical tests and homology comparisons by 16S rDNA sequences, the isolated strains P1, P5, N5 and N21 were identified as Halobacillus sp., Muricauda sp., Kangiella sp. and Roseivirga sp., respectively. Our results showed that bacterial strain P1 killed S. costatum by release of heat labile algicide, while strains P5, N5 and N21 killed them directly. The algicidal processes of four bacterial strains were different. Strains P1, N5 and N21 disrupted the chain structure and S. costatum appeared as single cells, in which the cellular components were aggregated and the individual cells were inflated and finally lysed, while strain P5 decomposed the algal chains directly. We also showed that the algicidal activities of the bacterial strains were concentration-dependent. More specifically, 10 % (v/v) of bacteria in algae showed the strongest algicidal activities, as all S. costatum cells were killed by strains N5 and N21 within 72 h and by strains P1 and P5 within 96 h. 5 % of bacteria in algae also showed significant algicidal activities, as all S. costatum were killed by strains N5, P5 and N21 within 72, 96 and 120 h, respectively, whereas at this concentration, only 73.4 % of S. costatum cells exposed to strain P1 were killed within 120 h. At the concentration of 1 % bacteria in algae, the number of S. costatum cells continued to increase and the growth rate of algae upon exposure to strain N5 was significantly inhibited.

  20. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.

    PubMed

    Peng, Bingyin; Huang, Shuangcheng; Liu, Tingting; Geng, Anli

    2015-05-17

    Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S. cerevisiae through phylogenetic analysis, recombinant yeast strain construction, and xylose fermentation. Phylogenetic analysis of deposited XI sequences showed that XI evolutionary relationship was highly consistent with the bacterial taxonomic orders and quite a few functional XIs in S. cerevisiae were clustered with XIs from mammal gut Bacteroidetes group. An XI from Bacteroides valgutus in this cluster was actively expressed in S. cerevisiae with an activity comparable to the fungal XI from Piromyces sp. Two XI genes were isolated from the environmental metagenome and they were clustered with XIs from environmental Bacteroidetes group. These two XIs could not be expressed in yeast with activity. With the XI from B. valgutus expressed in S. cerevisiae, background yeast strains were optimized by pentose metabolizing pathway enhancement and adaptive evolution in xylose medium. Afterwards, more XIs from the mammal gut Bacteroidetes group, including those from B. vulgatus, Tannerella sp. 6_1_58FAA_CT1, Paraprevotella xylaniphila and Alistipes sp. HGB5, were individually transformed into S. cerevisiae. The known functional XI from Orpinomyces sp. ukk1, a mammal gut fungus, was used as the control. All the resulting recombinant yeast strains were able to ferment xylose. The respiration-deficient strains harboring B. vulgatus and Alistipes sp. HGB5 XI genes respectively obtained specific xylose consumption rate of 0.662 and 0.704 g xylose gcdw(-1) h(-1), and ethanol specific productivity of 0.277 and 0.283 g ethanol gcdw(-1) h(-1), much comparable to those obtained by the control strain carrying Orpinomyces sp. ukk1 XI gene. This study demonstrated that XIs clustered in the

  1. Functional properties of Lactobacillus plantarum strains isolated from Maasai traditional fermented milk products in Kenya.

    PubMed

    Mathara, Julius Maina; Schillinger, Ulrich; Kutima, Phillip M; Mbugua, Samuel K; Guigas, Claudia; Franz, Charles; Holzapfel, Wilhelm H

    2008-04-01

    Lactobacillus plantarum was the major species among the lactic acid bacterial strains isolated from traditional fermented milk of the Maasai in Kenya. Selected strains were characterized for their functional properties using in vitro standard procedures. All strains expressed acid tolerance at pH 2.0 after 2-h exposure of values that ranged from 1% to 100%, while bile tolerance of acid-stressed cells at 0.3% oxgal varied from 30% to 80%. In vitro adhesion to the mucus-secreting cell line HT 29 MTX and binding capacity to extracellular protein matrices was demonstrated for several strains. The four strains tested in a simulated stomach duodenum passage survived with recovery rates ranging from 17% to 100%. Strains were intrinsically resistant to several antibiotics tested. From these in vitro studies, a number of Lb. plantarum strains isolated from the Maasai traditional fermented milk showed probiotic potential. The strains are good candidates for multifunctional starter culture development.

  2. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornholdt, Zachary A.; Prasad, B.V. Venkataram

    2009-04-08

    The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60%more » of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.« less

  3. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells.

    PubMed

    Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M

    2010-06-01

    In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures.

    PubMed

    Patel, Sanjay K S; Kumar, Prasun; Singh, Mamtesh; Lee, Jung-Kul; Kalia, Vipin C

    2015-01-01

    Biological production of hydrogen (H2) and polyhydroxybutyrate (PHB) from pea-shell slurry (PSS) was investigated using defined mixed culture (MMC4, composed of Enterobacter, Proteus, Bacillus spp.). Under batch culture, 19.0LH2/kg of PSS (total solid, TS, 2%w/v) was evolved. Using effluent from the H2 producing stage, Bacillus cereus EGU43 could produce 12.4% (w/w) PHB. Dilutions of PSS hydrolysate containing glucose (0.5%, w/v) resulted in 45-75LH2/kg TS fed and 19.1% (w/w) of PHB content. Under continuous culture, MMC4 immobilized on coconut coir (CC) lead to an H2 yield of 54L/kg TS fed and a PHB content of 64.7% (w/w). An improvement of 2- and 3.7-fold in H2 and PHB yields were achieved in comparison to control. This integrative approach using defined set of bacterial strains can prove effective in producing biomolecules from biowastes. Copyright © 2014. Published by Elsevier Ltd.

  5. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogenss.

    PubMed

    Dec, Marta; Puchalski, Andrzej; Nowaczek, Anna; Wernicki, Andrzej

    2016-03-01

    This study was conducted to identify and evaluate the antimicrobial activity of some Lactobacillus isolates of chicken origin. Among 90 isolates 14 Lactobacillus species were distinguished using MALDI-TOF mass spectrometry and 16S-ARDRA. The dominant species was L. salivarius (34.4%), followed by L. johnsonii (23.3%), L. crispatus (13.3%) and L. reuteri (11.1%). All lactobacilli were screened for antimicrobial activity against wild-type strains of Salmonella enterica, Escherichia coli, and Clostridium perfringens. Results from the agar slab method showed that all Lactobacillus isolates were able to produce active compounds on solid media with antagonistic properties against these pathogens. The highest sensitivity to lactobacilli was observed in C. perfringens strains, and the lowest in E. coli. Lactobacillus salivarius exhibited particularly strong antagonism towards all of the indicator bacteria. Strains of L. ingluviei and L. johnsonii and one strain of L. salivarius (10d) selectively inhibited the growth of C. perfringens. No antimicrobial activity of many Lactobacillus isolates was observed when cell-free culture supernatant was used in a well diffusion assay. All Lactobacillus isolates exhibited the ability to produce H2O2 and proved to be hydrophobic (excluding one of L. salivarius). [Int Microbiol 19(1):57-67 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  6. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    PubMed

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting

  7. Effect of bacterial endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics.

    PubMed

    Koch, Andrea; Knobloch, Jürgen; Dammhayn, Cathrin; Raidl, Maria; Ruppert, Andrea; Hag, Haitham; Rottlaender, Dennis; Müller, Katja; Erdmann, Erland

    2007-11-01

    Epidemiological evidence, in vitro studies and animal models suggest that exposure to the bacterial endotoxin lipopolysaccharide (LPS) can influence the development and severity of asthma. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 and 2 responses, it is unclear whether the LPS ligand TLR 4 is expressed on CD4(+) and CD8(+) T-lymphocytes and if so, whether LPS could modulate the T(H)1 or T(H)2 response in this context. The present authors have, therefore, examined the expression of TLR 4 on peripheral blood CD4(+) and CD8(+) T-lymphocytes using RT-PCR method and FACS analyses. Furthermore, the authors have studied the IL-12-induced expression of the T(H)1-associated cytokine INF-gamma and the IL-4-induced expression of the T(H)2-specific cytokine IL-5 in the presence of LPS using ELISA and compared nine atopic asthmatic subjects and eleven nonatopic normal volunteers. There was an increased anti-CD3/anti-CD28-induced IL-5 expression in T cells of asthmatics compared with normals (p<0.01). In the presence of IL-4 (10 ng/ml), there was an additional increase in IL-5 expression and this additional increase was greater in T cells of normals compared with asthmatics (p<0.05). There was an expression of INF-gamma in anti-CD3/anti-CD28-induced T-lymphocytes without differences between both groups (NS). In the presence of IL-12 (10 ng/ml), there was an increase in INF-gamma release without differences between normals and asthmatics (NS). In the presence of different concentrations of LPS (10 ng/ml, 1 mug/ml), there was a decrease in IL-4-induced IL-5 expression without differences in both groups, indicating an intact T(H)2 response to bacterial endotoxin LPS in asthma. Interestingly, LPS increased the IL-12-induced INF-gamma release in a concentration-dependent manner in T-lymphocytes of normals but this could not be found in T cells of asthmatics, indicating an impaired T(H)1 response to bacterial

  8. Extension of platelet shelf life from 4 to 5 days by implementation of a new screening strategy in Germany.

    PubMed

    Sireis, W; Rüster, B; Daiss, C; Hourfar, M K; Capalbo, G; Pfeiffer, H-U; Janetzko, K; Goebel, M; Kempf, V A J; Seifried, E; Schmidt, M

    2011-10-01

    The Paul-Ehrlich-Institute analysed all fatalities due to bacterial infections between 1997 and 2007. Thereafter, the platelet shelf life was reduced to a maximum of 4 days after blood donation because the majority of all cases of severe transfusion-transmitted bacterial infections occurred with day 5 platelets. The current study compares the analytical sensitivity and the diagnostic specificity of four rapid bacterial detection procedures. Nine transfusion-relevant bacterial strains were spiked in pooled platelets or apheresis platelets at a low concentration (10 CFU/bag). Samples were collected after day 3, day 4 and day 5 and investigated by four rapid bacterial detection methods (modified BacT/ALERT, Bactiflow, FACS method and 16s DNA PCR methods). Seven out of nine bacterial strains were adequately detected by BacT/ALERT, Bactiflow and PCR in apheresis platelets and pooled platelets after sample collection at day 3, day 4 and day 5. For three bacterial strains, analytical sensitivity was reduced for the FACS method. Two bacterial strains did not grow under the storage conditions in either pooled or apheresis platelets. A late sample collection on day 3, day 4 or day 5 after blood donation in combination with a rapid bacterial detection method offers a new opportunity to improve blood safety and reduce errors due to sampling., BacT/ALERT, Bactiflow or 16s ID-NAT are feasible for late bacterial screening in platelets may provide data which support the extension of platelet shelf life in Germany to 5 days. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.

  9. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    PubMed Central

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  10. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    PubMed

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  11. Unusual strain glassy phase in Fe doped Ni2Mn1.5In0.5

    NASA Astrophysics Data System (ADS)

    Nevgi, R.; Priolkar, K. R.

    2018-01-01

    Fe doped Ni2Mn1.5In0.5, particularly, Ni2Mn1.4Fe0.1In0.5, despite having an incommensurate, modulated 7M martensitic structure at room temperature exhibits frequency dependent behavior of storage modulus and loss which obeys the Vogel-Fulcher law as well as shows ergodicity breaking between zero field cooled and field cooled strain measurements just above the transition temperature. Both frequency dependence and ergodicity breaking are characteristics of a strain glassy phase and occur due to the presence of strain domains which are large enough to present signatures of long range martensitic order in diffraction but are non-interacting with other strain domains due to the presence of Fe impurities.

  12. Characterization of a xylanolytic bacterial strain C10 isolated from the rumen of a red deer (Cervus elaphus) closely related of the recently described species Actinomyces succiniciruminis, A. glycerinitolerans, and A. ruminicola.

    PubMed

    Šimůnek, Jiří; Killer, Jiří; Sechovcová, Hana; Šimůnek, Jiří; Pechar, Radko; Rada, Vojtěch; Švec, Pavel; Sedláček, Ivo

    2018-05-01

    Gram-stain-positive, catalase and oxidase-negative and short rod-shaped bacterium C10 with occasional branching was isolated under strictly anaerobic conditions from the rumen fluid of a red deer (Cervus elaphus) in the course of study attempting to uncover new xylanolytic and cellulolytic rumen bacteria inhabiting the digestive tract of wild ruminants in the Czech Republic. The anaerobic M10 medium containing bovine rumen fluid and carboxymethylcellulose as a defined source of organic carbon was used in the process of bacterial isolation. The 16S rRNA gene similarity revealed recently characterized new species Actinomyces succiniciruminis Am4 T (GenBank accession number of the gene retrieved from the complete genome: LK995506) and Actinomyces glycerinitolerans G10 T (GenBank accession number from the complete genome: NZFQTT01000017) as the closest relatives (99.7 and 99.6% gene pairwise identity, respectively), followed by the Actinomyces ruminicola DSM 27982 T (97.2%, in all compared fragment of 41468 pb). Due to the taxonomic affinity of the examined strain to both species A. succiniciruminis and A. glycerinitolerans, its taxonomic status towards these species was evaluated using variable regions of rpsA (length of 519 bp) and rplB (597 bp) gene sequences amplified based on specific primers designed so as to be applicable in differentiation, classification, and phylogeny of Actinomyces species/strains. Comparative analyses using rpsA and rplB showed 98.5 and 97.9% similarities of C10 to A. succiniciruminis, respectively, and 97.5 and 97.6% similarities to A. glycerinitolerans, respectively. Thus, gene identities revealed that the evaluated isolate C10 (=DSM 100236 = LMG 28777) is a little more related to the species A. succiniciruminis isolated from the rumen of a Holstein-Friesian cow than A. glycerinitolerans. Phylogenetic analyses confirmed affinity of strain C10 to both recently characterized species. Unfortunately, they did not allow the bacterial

  13. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  14. [Clinical, epidemiological and microbiological aspects of Mobiluncus sp. in bacterial vaginosis].

    PubMed

    Menolascina, A; Nieves, B; Velazco, E; Rivero, N; Calderas, Z

    1999-05-01

    In this paper, our goal was to determine the optimal isolation conditions, biochemical characterization, and preservation of species of the genus Mobiluncus, associated with bacterial vaginosis in patients attending the family planning clinic. Also, we tried to relate its presence with demographic variables and criteria used in the clinical diagnosis of bacterial diagnosis. The specimen from the posterior fornix were collected and transported to the laboratory in a Stuart medium, one at room temperature and the other at 4 degrees C. These samples were inoculated in anaerobic culture media. Of a total of 92 patients studied, 61 (66.3%) were normal, 28 (30.4%) bacterial vaginosis, and 3 (3.3%) had intermediate vaginosis. There was statistically significant relationship only with intrauterine device use (p = 0.00499). The presence of curved rod, using Gram's method, was significantly related with pH (p = 0.00000) positive amines test (p = 0.00000), and the presence of clue cells (p = 0.00000). Mobiluncus was observed in 23 samples (82%), and the majority (15) using RLK agar (cold enrichment technique). With conventional techniques, we identified 12 strains as Mobiluncus curtisii and 3 strains as Mobiluncus mulieris. The strains of Mobiluncus sp. grew better from litmus milk conserved at -30 degrees C. Isolating Mobiluncus sp. is fairly easy, if the right media and the techniques are used.

  15. Differential expression of isoproterenol-induced salivary polypeptides in two mouse strains that are congenic for the H-2 histocompatibility gene complex.

    PubMed

    López Solís, Remigio O; Weis, Ulrike Kemmerling; Ceballos, Alicia Ramos; Salas, Gustavo Hoecker

    2003-12-01

    Two inbred mouse strains, A/Snell and A.Swiss, which were produced as congenic with regard to the H-2 histocompatibility gene complex, are homozygous for two different groups of isoproterenol-induced salivary polypeptides (IISP). These polypeptides, which have been considered as markers of the hypertrophic growth of the parotid acinar cells, are members of the complex family of salivary proline-rich proteins (PRP) on the basis of both their massive accumulation in the parotid acinar cells in response to chronic isoproterenol, secretory character, high solubility in trichloroacetic acid and metachromatic staining by Coomassie blue. IISP expressed in both mouse strains were identified by unidimensional SDS-polyacrylamide electrophoresis and Coomassie blue staining both in parotid gland homogenates and in whole salivas obtained from mice repeatedly stimulated at 24-h intervals with isoproterenol. Parotid glands from 40 mice (20 A/Snell and 20 A.Swiss) and salivas from 270 mice (200 A/Snell and 70 A.Swiss) were analyzed. One of the congenic strains (A/Snell) expressed five IISP (Mr 65, 61, 51.5, 38, and 37 kDa) and the other strain (A.Swiss) expressed six IISP (Mr 59, 57, 54.5, 46, 36, and 34 kDa). No inter-individual intra-strain variations were observed, thus defining strain-associated patterns of IISP (PRP). Copyright 2003 Wiley-Liss, Inc.

  16. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John E. Aston; William A. Apel; Brady D. Lee

    2010-12-01

    This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells atmore » pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.« less

  17. Purification and characterization of enterocin 62-6, a two-peptide bacteriocin produced by a vaginal strain of Enterococcus faecium: Potential significance in bacterial vaginosis

    PubMed Central

    Dezwaan, Diane C.; Mequio, Michael J.; Littell, Julia S.; Allen, Jonathan P.; Rossbach, Silvia; Pybus, Vivien

    2009-01-01

    A bacteriocin produced by a vaginal isolate of Enterococcus faecium strain 62-6, designated enterocin 62-6, was characterized following purification and DNA sequence analysis and compared to previously described bacteriocins. Enterocin 62-6 was isolated from brain heart infusion (BHI) culture supernatants using ammonium sulfate precipitation followed by elution from a Sepharose cation exchange column using a continuous salt gradient (0.1–0.7 M NaCl). SDS-PAGE of an active column fraction resulted in an electrophoretically pure protein, which corresponded to the growth inhibition of the sensitive Lactobacillus indicator strain in the gel overlay assay. Purified enterocin 62-6 was shown to be heat- and pH-stable, and sensitive to the proteolytic enzymes α-chymotrypsin and pepsin. Results from mass spectrometry suggested that it comprised two peptides of 5206 and 5219±1 Da, which was confirmed by DNA sequence analysis. The characteristics of enterocin 62-6 as a small, heat- and pH-stable, cationic, hydrophobic, two-peptide, plasmid-borne bacteriocin, with an inhibitory spectrum against a broad range of Gram-positive but not Gram-negative bacteria, were consistent with its classification as a class IIc bacteriocin. Furthermore, its wide spectrum of growth inhibitory activity against Gram-positive bacteria of vaginal origin including lactobacilli, and stability under the acidic conditions of the vagina, are consistent with our hypothesis that it could have potential significance in disrupting the ecology of the vaginal tract and pave the way for the establishment of the abnormal microbiota associated with the vaginal syndrome bacterial vaginosis. This is the first class IIc bacteriocin produced by a strain of E. faecium of vaginal origin to be characterized. PMID:19578555

  18. [Results of clinical trials on reactogenicity, safety, and immunogenicity of influenza allantoic intranasal live vaccine "Ultragrivac" (type A/H5N2)].

    PubMed

    Mazurkova, N A; Ryndiuk, N N; Shishkina, L N; Ternovoĭ, V A; Tumanov, Iu V; Bulychev, L E; Skarnovich, M O; Kabanov, A S; Panchenko, S G; Aleĭnikov, R P; Il'ina, T N; Kuzubov, V I; Mel'nikov, S Ia; Mironov, A N; Korovkin, S A; Sergeev, A N; Drozdov, I G

    2010-01-01

    Results of phase II of a clinical trial of the influenza allantoic intranasal live vaccine "Ultragrivac" (type A/H5N2) are presented. The vaccine was developed based on strain /17/Duck/Potsdam/86/92 H5N2 [17/H5] - reassortant of two viruses, /Leningrad/134/17/57 (H2N2) and /Duck/Potsdam/1402-86 (H5N2), obtained from the Virology Department, St. Petersburg Institute of Experimental Medicine.Two schemes of immunization (with revaccination on days 10 and 21) were used. Evaluation of vaccine immunogenicity included determination of local, cellular and humoral immunity. A significant rise in the level of secretory IgA in the nasal cavity of vaccinated volunteers (with revaccination on days 10 and 21) was documented after application of the vaccine. The postvaccination humoral immune response was estimated from the level of significant (4-fold and more) antibody seroconversions, geometric mean titers of antibodies to two strains of influenza virus /17/Duck/Potsdam/86/92 H5N2 [17/H5] and /Chicken/Suzdalka/Nov-11/2005 (H5N1), and their incremental rate. Results of measurement of antibody titers in hemagglutination-inhibition assay are presented, with two antigens being used to analyse all serum samples from volunteers twice vaccinated with influenza vaccine "Ultragrivac" at 10 and 21 day intervals. Result of phase II of this clinical study show that influenza allantoic intranasal live vaccine "Ultragrivac" is nonreactogenic and safe for both vaccinated and surrounding individuals. Moreover, it is sufficiently immunogenic with respect not only to homologous virus A(H5N2) but also to the A(H5N1) strain.

  19. Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil.

    PubMed

    Hussain, Sabir; Devers-Lamrani, Marion; El Azhari, Najoi; Martin-Laurent, Fabrice

    2011-06-01

    The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized in an agricultural soil in France that had been periodically exposed to IPU. Enrichment cultures from samples of this soil isolated a bacterial strain able to mineralize IPU. 16S rRNA sequence analysis showed that this strain belonged to the phylogeny of the genus Sphingomonas (96% similarity with Sphingomonas sp. JEM-14, AB219361) and was designated Sphingomonas sp. strain SH. From this strain, a partial sequence of a 1,2-dioxygenase (catA) gene coding for an enzyme degrading catechol putatively formed during IPU mineralization was amplified. Phylogenetic analysis revealed that the catA sequence was related to Sphingomonas spp. and showed a lack of congruence between the catA and 16S rRNA based phylogenies, implying horizontal gene transfer of the catA gene cluster between soil microbiota. The IPU degrading ability of strain SH was strongly influenced by pH with maximum degradation taking place at pH 7.5. SH was only able to mineralize IPU and its known metabolites including 4-isopropylaniline and it could not degrade other structurally related phenylurea herbicides such as diuron, linuron, monolinuron and chlorotoluron or their aniline derivatives. These observations suggest that the catabolic abilities of the strain SH are highly specific to the metabolism of IPU.

  20. Inhibiting the Growth of Escherichia coli O157:H7 in Beef, Pork, and Chicken Meat using a Bacteriophage

    PubMed Central

    Seo, Jina; Seo, Dong Joo; Oh, Hyejin; Jeon, Su Been; Oh, Mi-Hwa; Choi, Changsun

    2016-01-01

    This study aimed to inhibit Escherichia coli (E. coli) O157:H7 artificially contaminated in fresh meat using bacteriophage. Among 14 bacteriophages, the highly lytic bacteriophage BPECO19 strain was selected to inhibit E. coli O157:H7 in artificially contaminated meat samples. Bacteriophage BPECO19 significantly reduced E. coli O157:H7 bacterial load in vitro in a multiplicity of infection (MOI)-dependent manner. E. coli O157:H7 was completely inhibited only in 10 min in vitro by the treatment of 10,000 MOI BPECO19. The treatment of BPECO19 at 100,000 MOI completely reduced 5 Log CFU/cm2 E. coli O157:H7 bacterial load in beef and pork at 4 and 8h, respectively. In chicken meat, a 4.65 log reduction of E. coli O157:H7 was observed at 4 h by 100,000 MOI. The treatment of single bacteriophage BPECO19 was an effective method to control E. coli O157:H7 in meat samples. PMID:27194926

  1. Design of bactericidal peptides against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus.

    PubMed

    Cruz, Jenniffer; Rondon, Paola; Torres, Rodrigo; Urquiza, Mauricio; Guzman, Fanny; Alvarez, Claudio; Abengozar, Maria Angeles; Sierra, Daniel A; Rivas, Luis; Fernandez-Lafuente, Roberto; Ortiz, Claudia

    2018-05-08

    Antimicrobial peptides are on the first line of defense against pathogenic microorganisms of many living beings. These compounds are considered natural antibiotics that can overcome bacterial resistance to conventional antibiotics. Due to this characteristic, new peptides with improved properties are quite appealing for designing new strategies for fighting pathogenic bacteria Methods: Sixteen designed peptides were synthesized using Fmoc chemistry; five of them are new cationic antimicrobial peptides (CAMPs) designed using a genetic algorithm that optimizes the antibacterial activity based on selected physicochemical descriptors and 11 analog peptides derived from these five peptides were designed and constructed by single amino acid substitutions. These 16 peptides were structurally characterized and their biological activity was determined against Escherichia coli O157:H7 (E. coli O157:H7), and methicillin-resistant strains of Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) were determined Results: These 16 peptides were folded into an α-helix structure in membrane-mimicking environment. Among these 16 peptides, GIBIM-P5S9K (ATKKCGLFKILKGVGKI) showed the highest antimicrobial activity against E. coli O157:H7 (MIC=10µM), methicillin resistant Staphylococcus aureus (MRSA) (MIC=25µM) and Pseudomonas aeruginosa (MIC=10 µM). Peptide GIBIM-P5S9K caused permeabilization of the bacterial membrane at 25 µM as determined by the Sytox Green uptake assay and the labelling of these bacteria by using the fluoresceinated peptide. GIBIM-P5S9K seems to be specific for these bacteria because at 50 µM provoked lower than 40% of erythrocyte hemolysis. New CAMPs have been designed using a genetic algorithm based on selected physicochemical descriptors and single amino acid substitution. These CAMPs interacted quite specifically with the bacterial cell membrane, GIBIM-P5S9K exhibiting high antibacterial activity on Escherichia coli O157:H7, methicillin

  2. A NEW STRAIN OF TRANSMISSIBLE LEUCEMIA IN FOWLS (STRAIN H).

    PubMed

    Ellermann, V

    1921-03-31

    1. A new strain of fowl leucosis has been transmitted through twelve generations of fowls. 2. An increase in virulence was observed during its passage. This was shown in a shortening of the interval between inoculation and death. The increase in virulence does not affect the number of successful inoculations, which remains approximately constant in from 20 to 40 per cent of the birds employed. 3. As with former strains, the disease manifests itself in various forms; i.e., myeloid and intravascular lymphoid types. A single lymphatic case was observed. 4. In several intravascular cases a diminution in the hemolytic power of the serum was established. This phenomenon was absent in a number of myeloid cases. 5. Active immunization cannot be produced by means of the subcutaneous injection of virulent material. 6. The finding of previous experiments that the virus is filterable has been confirmed. 7. The inoculation of human leucemic material into fowls gave negative results.

  3. Growth of bacterial phytopathogens in animal manures.

    PubMed

    Sledz, Wojciech; Zoledowska, Sabina; Motyka, Agata; Kadziński, Leszek; Banecki, Bogdan

    2017-01-01

    Animal manures are routinely applied to agricultural lands to improve crop yield, but the possibility to spread bacterial phytopathogens through field fertilization has not been considered yet. We monitored 49 cattle, horse, swine, sheep or chicken manure samples collected in 14 Polish voivodeships for the most important plant pathogenic bacteria - Ralstonia solanacearum (Rsol), Xanthomonas campestris pv. campestris (Xcc), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pectobacterium atrosepticum (Pba), Erwinia amylovora (Eam), Clavibacter michiganensis subsp. sepedonicus (Cms) and Dickeya sp. (Dsp). All of the tested animal fertilizers were free of these pathogens. Subsequently, the growth dynamics of Pba, Pcc, Rsol, and Xcc in cattle, horse, swine, sheep and chicken manures sterilized either by autoclaving or filtration was evaluated. The investigated phytopathogens did not exhibit any growth in the poultry manure. However, the manure filtrates originating from other animals were suitable for microbial growth, which resulted in the optical density change of 0.03-0.22 reached within 26 h (48 h Rsol, 120 h Xcc), depending on bacterial species and the manure source. Pcc and Pba multiplied most efficiently in the cattle manure filtrate. These bacteria grew faster than Rsol and Xcc in all the tested manure samples, both the filtrates and the autoclaved semi-solid ones. Though the growth dynamics of investigated strains in different animal fertilizers was unequal, all of the tested bacterial plant pathogens were proven to use cattle, horse, swine and sheep manures as the sources of nutrients. These findings may contribute to further research on the alternative routes of spread of bacterial phytopathogens, especially because of the fact that the control of pectionolytic bacteria is only based on preventive methods.

  4. Virtual screening of Indonesian flavonoid as neuraminidase inhibitor of influenza a subtype H5N1

    NASA Astrophysics Data System (ADS)

    Parikesit, A. A.; Ardiansah, B.; Handayani, D. M.; Tambunan, U. S. F.; Kerami, D.

    2016-02-01

    Highly Pathogenic Avian Influenza (HPAI) H5N1 poses a significant threat to animal and human health worldwide. The number of H5N1 infection in Indonesia is the highest during 2005-2013, with a mortality rate up to 83%. A mutation that occurred in H5N1 strain made it resistant to commercial antiviral agents such as oseltamivir and zanamivir, so the more potent antiviral agent is needed. In this study, virtual screening of Indonesian flavonoid as neuraminidase inhibitor of H5N1 was conducted. Total 491 flavonoid compound obtained from HerbalDB were screened. Molecular docking was performed using MOE 2008.10. This research resulted in Guajavin B as the best ligand.

  5. Bacterially mediated mineralization of vaterite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos; Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Gonzalez-Muñoz, Maria Teresa; Rodriguez-Gallego, Manuel

    2007-03-01

    Myxococcus xanthus, a common soil bacterium, plays an active role in the formation of spheroidal vaterite. Bacterial production of CO 2 and NH 3 and the transformation of the NH 3 to NH4+ and OH -, thus increasing solution pH and carbonate alkalinity, set the physicochemical conditions (high supersaturation) leading to vaterite precipitation in the microenvironment around cells, and directly onto the surface of bacterial cells. In the latter case, fossilization of bacteria occurs. Vaterite crystals formed by aggregation of oriented nanocrystals with c-axis normal to the bacterial cell-wall, or to the core of the spherulite when bacteria were not encapsulated. While preferred orientation of vaterite c-axis appears to be determined by electrostatic affinity (ionotropic effect) between vaterite crystal (0001) planes and the negatively charged functional groups of organic molecules on the bacterium cell-wall or on extracellular polymeric substances (EPS), analysis of the changes in the culture medium chemistry as well as high resolution transmission electron microscopy (HRTEM) observations point to polymorph selection by physicochemical (kinetic) factors (high supersaturation) and stabilization by organics, both connected with bacterial activity. The latter is in agreement with inorganic precipitation of vaterite induced by NH 3 and CO 2 addition in the protein-rich sterile culture medium. Our results as well as recent studies on vaterite precipitation in the presence of different types of bacteria suggest that bacterially mediated vaterite precipitation is not strain-specific, and could be more common than previously thought.

  6. Investigation of multimodal forward scatter phenotyping from bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kim, Huisung

    the 2-D spatial density map from the ICMA. The MS-BARDOT can measure multispectral elastic-light-scatter patterns of the bacterial colony and its spectral OD to overcome the inherent limits of the single-wavelength BARDOT. A theoretical model for spectral forward scatter patterns from a bacterial colony based on elastic light scatter is presented. The spectral forward scatter patterns are computed by scalar diffraction theory, and compared with experimental results of three discrete wavelengths (405 nm, 635 nm, and 904 nm). Both model and experiment results show an excellent agreement; a longer wavelength induces a wider ring width, a wider ring gap, a smaller pattern size, and smaller numbers of rings. Further analysis using spatial fast Fourier transform (SFFT) shows a good agreement; the spatial frequencies are increasing towards the inward direction, and the slope is inversely proportional to the incoming wavelength. Four major pathogenic bacterial genera (Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923) and the seven major Escherichia coli serovar (O26, O45, O103, O111, O121, O145, and O157) with 3-4 strains each are measured and analyzed with the proposed instrument and algorithm. The MM-BARDOT can measure six different modalities: 1) light microscopy, 2) 3D morphology map from confocal microscopy, 3) 3D optical density map, 4) spectral forward scattering pattern, 5) spectral OD, 6) surface backward reflection pattern, and 7) fluorescence of a bacterial colony without moving the specimen. A custom-built confocal microscope with a controller which can be easily attached to an infinity-corrected commercial microscope is designed and built. Since the current BARDOT needs additional information from a bacterial colony to enhance the identification/classification ratio for a lower hierarchy of bacterial taxonomy such as serovar or strain level, the approach can offer a

  7. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass.

    PubMed

    Meng, F; Ma, L; Ji, S; Yang, W; Cao, B

    2014-09-01

    Bioconversion of biomass, particularly crop wastes, into biofuels is being developed as an alternative approach in meeting the high energy demand. In this study, a thermophilic bacterial strain BY-3 that exhibits cellulolytic potential was isolated from faecal samples of Tibetan pigs; this strain was identified as Bacillus subtilis. The strain can produce cellulase when grown on various substrates, including carboxymethyl cellulose, rice straw, corn stover, soluble starch and wheat bran. The maximum cellulase activity of the strain was up to 4·323 ± 0·065 U ml(-1) when cultivated in the medium containing corn stover (30 g l(-1) ) for 24 h. The results demonstrated that corn stover is the most suitable substrate for cellulase production by the strain BY-3. The crude cellulase of strain BY-3 was most active at pH 5·5 and 60°C, and the enzyme in acetate buffer (50 mmol l(-1) ) demonstrated a good stability at 60°C for at least 1 h. The crude cellulase exhibited a strong antibacterial activity against Staphylococcus aureus. The strain can be used in cost-efficient cellulase production for bioconversion of agricultural residual biomass into biofuels. The increased consumption of fossil fuels has caused serious energy crisis and environmental problem. Thus, an alternative energy source is necessary. Bioconversion of biomass, particularly agricultural residuals, into value-added bioproducts, such as biofuels and chemical solvents, has received considerable attention. In this study, the newly isolated thermophilic Bacillus subtilis strain BY-3 produces cellulase efficiently with the use of untreated corn stover as a sole carbon source. This strain possesses the thermostable cellulase that is active with diverse crop wastes with a broad pH range and is a highly promising candidate for agricultural waste management. © 2014 The Society for Applied Microbiology.

  8. In vitro combined effect of co-amoxiclav concentrations achievable in serum after a 2000/125 mg oral dose, and polymorphonuclear neutrophils against strains of Streptococcus pneumoniae exhibiting decreased susceptibility to amoxicillin.

    PubMed

    Amores, Raquel; Alou, Luis; Giménez, María José; Sevillano, David; Gómez-Lus, María Luisa; Aguilar, Lorenzo; Prieto, José

    2004-07-01

    The in vitro effect that the presence of components of non-specific immunity (serum plus polymorphonuclear neutrophils) has on the bactericidal activity of co-amoxiclav was explored against Streptococcus pneumoniae strains exhibiting an amoxicillin MIC > or =4 mg/L. Eight penicillin-resistant clinical isolates non-susceptible to co-amoxiclav with MICs of 4 (two strains), 8 (four strains) and 16 mg/L (two strains) were used. Values of MBC were identical to MIC values in all cases. Time-kill curves were performed with co-amoxiclav concentrations achievable in serum after a single oral dose administration of the new 2000/125 mg sustained-release formulation. Results were expressed as percentage of reduction of initial inocula after 3 h incubation. Control curves showed growth with no reduction of initial inocula. Against strains with MIC of 4 and 8 mg/L, the results obtained with the antibiotic alone or with the presence of factors of non-specific immunity were similar, with a weak combined effect due to the intrinsic activity of co-amoxiclav (reductions of initial inocula ranging from 70 to 99.16%). Against strains with MIC of 16 mg/L, the addition of PMN in the presence of serum increased the reduction of bacterial load provided by the aminopenicillin, even at sub-inhibitory concentrations (25.8% versus 51.1% at 0.5 x MIC concentration--8/0.5 mg/L). This combined activity against strains with an amoxicillin MIC of 16 mg/L which decreased the bacterial load may be important in preventing bacterial proliferation within the host and the transmission of resistant clones to others.

  9. Importance of inoculum properties on the structure and growth of bacterial communities during Recolonisation of humus soil with different pH.

    PubMed

    Pettersson, Marie; Bååth, Erland

    2013-08-01

    The relationship between community structure and growth and pH tolerance of a soil bacterial community was studied after liming in a reciprocal inoculum study. An unlimed (UL) humus soil with a pH of 4.0 was fumigated with chloroform for 4 h, after which < 1 % of the initial bacterial activity remained. Half of the fumigated soil was experimentally limed (EL) to a pH of 7.6. Both the UL and the EL soil were then reciprocally inoculated with UL soil or field limed (FL) soil with a pH of 6.2. The FL soil was from a 15-year-old experiment. The structural changes were measured on both bacteria in soil and on bacteria able to grow on agar plates using phospholipids fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analysis. The developing community pH tolerance and bacterial growth were also monitored over time using thymidine incorporation. The inoculum source had a significant impact on both growth and pH tolerance of the bacterial community in the EL soil. These differences between the EL soil inoculated with UL soil and FL soil were correlated to structural changes, as evidenced by both PLFA and DGGE analyses on the soil. Similar correlations were seen to the fraction of the community growing on agar plates. There were, however, no differences between the soil bacterial communities in the unlimed soils with different inocula. This study showed the connection between the development of function (growth), community properties (pH tolerance) and the structure of the bacterial community. It also highlighted the importance of both the initial properties of the community and the selection pressure after environmental changes in shaping the resulting microbial community.

  10. Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste

    NASA Astrophysics Data System (ADS)

    Widowati, E.; Utami, R.; Mahadjoeno, E.; Saputro, G. P.

    2017-04-01

    The aim of this research were to determine the effect of temperature (45°C, 55°C, 65°C) and pH (5.0; 6.0; 7.0) on the increase of total cell count and polygalacturonase enzyme activity produced from raja nangka banana (Musa paradisiaca var. formatypica) peel waste by pectinolytic bacterial Bacillus licheniformis strain GD2a. This research applied two sample repetition and one analysis repetition. The result showed temperature and pH affect total cell count. The total cell count on 45°C and pH 7 recorded the highest number at 9.469 log cell/ml. Temperature and pH also affected pectin concentration at the end of fermentation. The lowest pectin concentration recorded at 45°C and pH 7 was 0.425 %. The highest enzyme activity recorded at 65°C and pH 7 was 0.204 U/ml. The highest enzyme protein concentration was recorded at 65°C and resulted as 0.310 mg/ml on pH 6. The highest specific activity was 19.527 U/mg at 65°C and pH 7. By this result, could be concluded that optimum condition process on polygalacturonase production was at 65°C and pH 7 because it gave highest enzyme activity result (0,204 U/ml).

  11. Synthesis, anti-microbial activity, cytotoxicity of some novel substituted (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs.

    PubMed

    Shankar, Bhookya; Jalapathi, Pochampally; Saikrishna, Balabadra; Perugu, Shaym; Manga, Vijjulatha

    2018-01-09

    There is a dire need for the discovery and development of new antimicrobial agents after several experiments for a better resistance of microorganisms towards antimicrobial agents become a serious health problem for a few years in the past. As benzimidazole possess various types of biological activities, it has been synthesized, in the present study, a new series of (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs by using the condensation and screened for its in vitro antimicrobial activity and cytotoxicity. The synthesized (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl) benzofuran-2-yl)(phenyl)methanone analogs were confirmed by IR, 1 H and 13 C-NMR, MS spectra and HRMS spectral data. The synthesized compounds were evaluated for their in vitro antimicrobial potential against Gram-positive (Bacillus subtilis, Bacillus megaterium, Staph aureus and Streptococcus pyogenes), Gram-negative (Escherichia coli, Proteus vulgaris, Proteus mirabilis and Enterobacter aerogenes) bacterial and fungal (Aspergillus niger, Candida albicans, Fusarium oxysporum, Fusarium solani) strains by disc diffusion method and the minimum inhibitory concentration (MIC) in which it has been recorded in microgram per milliliter in comparison to the reference drugs, ciprofloxacin (antibacterial) and nystatin (antifungal). Further, the cytotoxicity (IC 50 value) has also been assessed on human cervical (HeLa), Supt1 cancer cell lines by using MTT assay. The following screened compounds (4d), (4f), (4g), (4k), (4l), (4o) and (4u) were found to be the best active against all the tested bacterial and fungal strains among all the demonstrated compounds of biological study. The MIC determination was also carried out against bacteria and fungi, the compounds (4f) and (4u) are found to be exhibited excellent potent against bacteria and fungi respectively. The compounds (4f) and (4u) were shown non-toxic in nature after screened for cytotoxicity against the

  12. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches.

    PubMed

    Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V

    2018-04-01

    Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484.

    PubMed

    O'Connor, Paula M; O'Shea, Eileen F; Guinane, Caitriona M; O'Sullivan, Orla; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2015-06-15

    Accumulating evidence suggests that bacteriocin production represents a probiotic trait for intestinal strains to promote dominance, fight infection, and even signal the immune system. In this respect, in a previous study, we isolated from the porcine intestine a strain of Streptococcus hyointestinalis DPC6484 that displays antimicrobial activity against a wide range of Gram-positive bacteria and produces a bacteriocin with a mass of 3,453 Da. Interestingly, the strain was also found to be immune to a nisin-producing strain. Genome sequencing revealed the genetic determinants responsible for a novel version of nisin, designated nisin H, consisting of the nshABTCPRKGEF genes, with transposases encoded between nshP and nshR and between nshK and nshG. A similar gene cluster is also found in S. hyointestinalis LMG14581. Notably, the cluster lacks an equivalent of the nisin immunity gene, nisI. Nisin H is proposed to have the same structure as the prototypical nisin A but differs at 5 amino acid positions-Ile1Phe (i.e., at position 1, nisin A has Ile while nisin H has Phe), Leu6Met, Gly18Dhb (threonine dehydrated to dehydrobutyrine), Met21Tyr, and His31Lys--and appears to represent an intermediate between the lactococcal nisin A and the streptococcal nisin U variant of nisin. Purified nisin H inhibits a wide range of Gram-positive bacteria, including staphylococci, streptococci, Listeria spp., bacilli, and enterococci. It represents the first example of a natural nisin variant produced by an intestinal isolate of streptococcal origin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of pH on the Bacterial Communities

    PubMed Central

    Tu, Xiang; Li, Jianjun; Feng, Rongfang; Sun, Guoping; Guo, Jun

    2016-01-01

    Although biotrickling filters (BTFs) applied under acidic condition to remove H2S from waste gases have been reported, the removal behavior of the acidic BTF under transient condition which was normal in most industry processes, and corresponding bacterial community have not been thoroughly studied. In the present study, two BTFs were run under neutral (BTFn) and acidic (BTFa) conditions, respectively. The results revealed that the removal performance of BTFa under transient condition was superior to that of BTFn; the maximum H2S eliminating capacities (ECs) achieved by BTFa and BTFn were 489.9 g/m3 h and 443.6 g/m3 h, respectively. High-throughput sequencing suggested that pH was the critical factor and several other factors including nutrient and the inlet loadings also had roles in shaping bacterial community structure. Acidithiobacillus was the most abundant bacterial group. The results indicated that BTF acclimation under acidic condition may facilitate generating microbial community with high H2S-degrading capability. PMID:27196300

  15. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain

    PubMed Central

    2011-01-01

    Background Extracellular bacterial lipases received much attention for their substrate specificity and their ability to function under extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of extracellular thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results This study focused on novel strategies to increase extracellular lipolytic enzyme production by a novel Staphylococcus sp. strain ESW. The microorganism needed neutral or alkaline pH values between 7.0 and 12.0 for growth. For pH values outside this range, cell growth seemed to be significantly inhibited. Staphylococcus sp. culture was able to grow within a wide temperature range (from 30 to 55°C). The presence of oils in the culture medium leaded to improvements in cells growth and lipolytic enzyme activity. On the other hand, although chemical surfactants leaded to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. In addition, our results showed that this novel Staphylococcus sp. strain produced biosurfactants simultaneously with lipolytic activity, when soapstock (The main co-product of the vegetable oil refining industry), was used as the sole carbon source. Conclusion A simultaneous biosurfactant and extracellular lipolytic enzymes produced bacterial strain with potential application in soap stock treatment PMID:22078466

  16. Novel phage display-derived H5N1-specific scFvs with potential use in rapid avian flu diagnosis.

    PubMed

    Wu, Jie; Zeng, Xian-Qiao; Zhang, Hong-Bin; Ni, Han-Zhong; Pei, Lei; Zou, Li-Rong; Liang, Li-Jun; Zhang, Xin; Lin, Jin-Yan; Ke, Chang-Wen

    2014-05-01

    The highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype infect poultry and have also been spreading to humans. Although new antiviral drugs and vaccinations can be effective, rapid detection would be more efficient to control the outbreak of infections. In this study, a phage-display library was applied to select antibody fragments for HPAI strain A/Hubei/1/2010. As a result, three clones were selected and sequenced. A hemagglutinin inhibition assay of the three scFvs revealed that none exhibited hemagglutination inhibition activity towards the H5N1 virus, yet they showed a higher binding affinity for several HPAI H5N1 strains compared with other influenza viruses. An ELISA confirmed that the HA protein was the target of the scFvs, and the results of a protein structure simulation showed that all the selected scFvs bound to the HA2 subunit of the HA protein. In conclusion, the three selected scFVs could be useful for developing a specific detection tool for the surveillance of HPAI epidemic strains.

  17. Temporal changes of the bacterial community colonizing wheat straw in the cow rumen.

    PubMed

    Jin, Wei; Wang, Ying; Li, Yuanfei; Cheng, Yanfen; Zhu, Weiyun

    2018-04-01

    This study used Miseq pyrosequencing and scanning electron microscopy to investigate the temporal changes in the bacterial community tightly attached to wheat straw in the cow rumen. The wheat straw was incubated in the rumens and samples were recovered at various times. The wheat straw degradation exhibited three phases: the first degradation phase occurred within 0.5h, and the second degradation phase occurred after 6 h, with a stalling phase occurring between 0.5 and 6 h. Scanning electron microscopy revealed the colonization of the microorganisms on the wheat straw over time. The bacterial communities at 0.5, 6, 24, and 72 h were determined, corresponding to the degradation phases. Firmicutes and Bacteroidetes were the two most dominant phyla in the bacterial communities at the four time points. Principal coordinate analysis (PCoA) showed that the bacterial communities at the four time points were distinct from each other. The wheat straw-associated bacteria stabilized at the phylum level after 0.5h of rumen incubation, and only modest phylum-level and family-level changes were observed for most taxa between 0.5h and 72 h. The relative abundance of the dominant genera, Butyrivibrio, Coprococcus, Ruminococcus, Succiniclasticum, Clostridium, Prevotella, YRC22, CF231, and Treponema, changed significantly over time (P < .05). However, at the genus level, unclassified taxa accounted for 70.3% ± 6.1% of the relative abundance, indicating their probable importance in the degradation of wheat straw as well as in the temporal changes of the bacterial community. Thus, understanding the function of these unclassified taxa is of great importance for targeted improvement of forage use efficiency in ruminants. Collectively, our results revealed distinct degradation phases of wheat straw and corresponding changes in the colonized bacterial community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Anti-Helicobacter pylori activities of selected N-substituted cinnamamide derivatives evaluated on reference and clinical bacterial strains.

    PubMed

    Klesiewicz, Karolina; Karczewska, Elżbieta; Nowak, Paweł; Skiba-Kurek, Iwona; Sito, Edward; Pańczyk, Katarzyna; Koczurkiewicz, Paulina; Żelaszczyk, Dorota; Pękala, Elżbieta; Waszkielewicz, Anna M; Budak, Alicja; Marona, Henryk; Gunia-Krzyżak, Agnieszka

    2018-05-01

    In this study, thirty-five N-substituted derivatives of cinnamic acid amide (cinnamamide) were evaluated for anti-Helicobacter pylori activity using an agar disc-diffusion method. Qualitative screening was performed on a reference H. pylori strain (ATCC 43504), resulting in the identification of the three most active compounds, 8 (R,S-(2E)-3-(4-chlorophenyl)-N-(2-hydroxypropyl)prop-2-enamide, minimal inhibitory concentration, MIC = 7.5 µg/mL), 23 ((2E)-3-(4-chlorophenyl)-N-(2-hydroxycyclohexyl)prop-2-enamide, MIC = 10 µg/mL), and 28 ((2E)-3-(4-chlorophenyl)-N-(4-oxocyclohexyl)prop-2-enamide, MIC = 10 µg/mL). These compounds were further tested on twelve well-characterized clinical strains, yielding MIC values that ranged from 10 to 1000 µg/mL. Preliminary safety assessments of the compounds were made using the MTT viability test for cytotoxicity and Ames test for mutagenicity, which showed them to be generally safe, although compounds 8 and 28 showed mutagenic activity at some of the tested concentrations. The results of this study showed the anti-H. pylori potential of cinnamamide derivatives.

  19. Virulence of Serovar C-1 Strains of Avibacterium paragallinarum.

    PubMed

    Trujillo-Ruíz, H H; Shivaprasad, H L; Morales-Erasto, V; Talavera-Rojas, M; Salgado-Miranda, C; Salazar-García, F; Blackall, P J; Soriano-Vargas, E

    2016-12-01

    The bacterium Avibacterium paragallinarum is the etiologic agent of infectious coryza of chickens. There are nine serovars of A. paragallinarum , and serovar C-1 has emerged in outbreaks of infectious coryza in layer hens in the Americas, with all isolates having been obtained from infectious coryza-vaccinated chickens. In the current study, the clinical and histopathologic outcomes of experimental infections in chickens with A. paragallinarum of serovar C-1 were investigated. The Japanese serovar reference strain, H-18, and a Mexican isolate, ESV-135, were included in the study. No differences in clinical sign scores or morbidity were observed between the two strains. The two bacterial strains caused microscopic lesions of lymphoplasmacytic inflammation in the mucosa of the nasal cavity, infraorbital sinus, and trachea. Similar severe lesions were observed in birds inoculated with both H-18 and ESV-135 strains. The lesions were present 48 hr after inoculation and persisted until day 10 after inoculation. Slight to severe, extensive hemorrhages were observed in the lumen, mucous membranes, and lamina propria of the nasal cavity and infraorbital sinus in most of the chickens inoculated with either the reference strain H-18 or the ESV-135 isolate. Hemorrhages in the upper respiratory tract of chickens experimentally infected with A. paragallinarum are reported here for the first time. The results have confirmed the high virulence of the reference strain H-18 as previously reported and have shown that the Mexican isolate was as virulent as the reference strain. The virulence of A. paragallinarum isolates may play a role in explaining why severe infectious coryza outbreaks are being seen in both vaccinated and nonvaccinated chicken flocks.

  20. Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope.

    PubMed

    Hasim, Sahar; Allison, David P; Mendez, Berlin; Farmer, Abigail T; Pelletier, Dale A; Retterer, Scott T; Campagna, Shawn R; Reynolds, Todd B; Doktycz, Mitchel J

    2018-01-01

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus -derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin's mode of action and a better understanding of its selectivity.