Sample records for bacterial strain-specific induction

  1. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    PubMed

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Strain-Specific Induction of Experimental Autoimmune Prostatitis (EAP) in Mice

    PubMed Central

    Jackson, Christopher M.; Flies, Dallas B.; Mosse, Claudio A.; Parwani, Anil; Hipkiss, Edward L.; Drake, Charles G.

    2013-01-01

    BACKGROUND Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. METHODS Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. RESULTS In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. CONCLUSIONS These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. PMID:23129407

  3. Specificity of monoclonal antibodies to strains of Dickeya sp. that cause bacterial heart rot of pineapple.

    PubMed

    Peckham, Gabriel D; Kaneshiro, Wendy S; Luu, Van; Berestecky, John M; Alvarez, Anne M

    2010-10-01

    During a severe outbreak of bacterial heart rot that occurred in pineapple plantations on Oahu, Hawaii, in 2003 and years following, 43 bacterial strains were isolated from diseased plants or irrigation water and identified as Erwinia chrysanthemi (now Dickeya sp.) by phenotypic, molecular, and pathogenicity assays. Rep-PCR fingerprint patterns grouped strains from pineapple plants and irrigation water into five genotypes (A-E) that differed from representatives of other Dickeya species, Pectobacterium carotovorum and other enteric saprophytes isolated from pineapple. Monoclonal antibodies produced following immunization of mice with virulent type C Dickeya sp. showed only two specificities. MAb Pine-1 (2D11G1, IgG1 with kappa light chain) reacted to all 43 pineapple/water strains and some reference strains (D. dianthicola, D. chrysanthemi, D. paradisiaca, some D. dadantii, and uncharacterized Dickeya sp.) but did not react to reference strains of D. dieffenbachiae, D. zeae, or one of the two Malaysian pineapple strains. MAb Pine-2 (2A7F2, IgG3 with kappa light chain) reacted to all type B, C, and D strains but not to any A or E strains or any reference strains except Dickeya sp. isolated from Malaysian pineapple. Pathogenicity tests showed that type C strains were more aggressive than type A strains when inoculated during cool months. Therefore, MAb Pine-2 distinguishes the more virulent type C strains from less virulent type A pineapple strains and type E water strains. MAbs with these two specificities enable development of rapid diagnostic tests that will distinguish the systemic heart rot pathogen from opportunistic bacteria associated with rotted tissues. Use of the two MAbs in field assays also permits the monitoring of a known subpopulation and provides additional decision tools for disease containment and management practices.

  4. Heat Induction of Prophage φ105 in Bacillus subtilis: Replication of the Bacterial and Bacteriophage Genomes

    PubMed Central

    Armentrout, Richard W.; Rutberg, Lars

    1971-01-01

    A temperature-inducible mutant of temperate Bacillus bacteriophage φ105 was isolated and used to lysogenize a thymine-requiring strain of Bacillus subtilis 168. Synthesis of phage and bacterial deoxyribonucleic acid (DNA) was studied by sucrose gradient centrifugation and density equilibrium centrifugation of DNA extracted from induced bacteria. The distribution of DNA in the gradients was measured by differential isotope and density labeling of DNA before and after induction and by measuring the biological activity of the DNA in genetic transformation, in rescue of phage markers, and in infectivity assays. At early times after induction, but after at least one round of replication, phage DNA remains associated with high-molecular-weight DNA, whereas, later in the infection, phage DNA is associated with material of decreasing molecular weight. Genetic linkage between phage and bacterial markers can be demonstrated in replicated DNA from induced cells. Prophage induction is shown to affect replication of the bacterial chromosome. The overall rate of replication of prelabeled bacterial DNA is identical in temperature-induced lysogenics and in “mock-induced” wild-type φ105 lysogenics. The rate of replication of the bacterial marker phe-1 (and also of nia-38), located close to the prophage in direction of the terminus of the bacterial chromosome, is increased in induced cells, however, relative to other bacterial markers tested. In temperature-inducible lysogenics, where the prophage also carries a ts mutation which blocks phage DNA synthesis, replication of both phage and bacterial DNA stops after about 50% of the phage DNA has replicated once. The results of these experiments suggest that the prophage is not initially excised in induced cells, but rather it is specifically replicated in situ together with adjacent parts of the bacterial chromosome. PMID:5002012

  5. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak.

    PubMed

    Hummel, Aaron W; Doyle, Erin L; Bogdanove, Adam J

    2012-09-01

    Xanthomonas transcription activator-like (TAL) effectors promote disease in plants by binding to and activating host susceptibility genes. Plants counter with TAL effector-activated executor resistance genes, which cause host cell death and block disease progression. We asked whether the functional specificity of an executor gene could be broadened by adding different TAL effector binding elements (EBEs) to it. We added six EBEs to the rice Xa27 gene, which confers resistance to strains of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) that deliver the TAL effector AvrXa27. The EBEs correspond to three other effectors from Xoo strain PXO99(A) and three from strain BLS256 of the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Stable integration into rice produced healthy lines exhibiting gene activation by each TAL effector, and resistance to PXO99(A) , a PXO99(A) derivative lacking AvrXa27, and BLS256, as well as two other Xoo and 10 Xoc strains virulent toward wildtype Xa27 plants. Transcripts initiated primarily at a common site. Sequences in the EBEs were found to occur nonrandomly in rice promoters, suggesting an overlap with endogenous regulatory sequences. Thus, executor gene specificity can be broadened by adding EBEs, but caution is warranted because of the possible coincident introduction of endogenous regulatory elements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation.

    PubMed

    Wakefield, Jennifer; Hassan, Hossam M; Jaspars, Marcel; Ebel, Rainer; Rateb, Mostafa E

    2017-01-01

    The frequent re-isolation of known compounds is one of the major challenges in drug discovery. Many biosynthetic genes are not expressed under standard culture conditions, thus limiting the chemical diversity of microbial compounds that can be obtained through fermentation. On the other hand, the competition during co-cultivation of two or more different microorganisms in most cases leads to an enhanced production of constitutively present compounds or an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain under different fermentation conditions. Herein, we report the dual induction of newly detected bacterial and fungal metabolites by the co-cultivation of the marine-derived fungal isolate Aspergillus fumigatus MR2012 and two hyper-arid desert bacterial isolates Streptomyces leeuwenhoekii strain C34 and strain C58. Co-cultivation of the fungal isolate MR2012 with the bacterial strain C34 led to the production of luteoride D, a new luteoride derivative and pseurotin G, a new pseurotin derivative in addition to the production of terezine D and 11- O -methylpseurotin A which were not traced before from this fungal strain under different fermentation conditions. In addition to the previously detected metabolites in strain C34, the lasso peptide chaxapeptin was isolated under co-culture conditions. The gene cluster for the latter compound had been identified through genome scanning, but it had never been detected before in the axenic culture of strain C34. Furthermore, when the fungus MR2012 was co-cultivated with the bacterial strain C58, the main producer of chaxapeptin, the titre of this metabolite was doubled, while additionally the bacterial metabolite pentalenic acid was detected and isolated for the first time from this strain, whereas the major fungal metabolites that were produced under axenic culture were suppressed. Finally, fermentation of the MR2012 by itself led to the isolation of the new diketopiperazine

  7. Clostridial Strain-Specific Characteristics Associated with Necrotizing Enterocolitis.

    PubMed

    Schönherr-Hellec, Sophia; Klein, Geraldine L; Delannoy, Johanne; Ferraris, Laurent; Rozé, Jean Christophe; Butel, Marie José; Aires, Julio

    2018-04-01

    We aimed at identifying potential bacterial factors linking clostridia with necrotizing enterocolitis (NEC). We compared the phenotypic traits, stress responses, cellular cytotoxicity, and inflammatory capabilities of the largest collection of Clostridium butyricum and Clostridium neonatale strains isolated from fecal samples of NEC preterm neonates (PN) and control PNs. When strain characteristics were used as explanatory variables, a statistical discriminant analysis allowed the separation of NEC and control strains into separate groups. Strains isolated from NEC PN were characterized by a higher viability at 30°C ( P = 0.03) and higher aerotolerance ( P = 0.01), suggesting that NEC strains may have a competitive and/or survival advantage in the environmental gastrointestinal tract conditions of NEC PN. Heat-treated NEC bacteria induced higher production of interleukin-8 in Caco-2 cells ( P = 0.03), suggesting proinflammatory activity. In vitro , bacteria, bacterial components, and fecal filtrates showed variable cytotoxic effects affecting the cellular network and/or cell viability, without specific association with NEC or control samples. Altogether, our data support the existence of a specific clostridial strain signature associated with NEC. IMPORTANCE Clostridia are part of the commensal microbiota in preterm neonates (PN). However, microbiota analyses by culture and metagenomics have linked necrotizing enterocolitis (NEC) and intestinal colonization with clostridial species. Nevertheless, little is known about the specific characteristics that may be shared by clostridia associated with NEC compared to commensal clostridia. Therefore, our goal was to identify specific bacterial factors linking clostridial strains with NEC. We report the existence of a specific bacterial signature associated with NEC and propose that activation of the innate immune response may be a unifying causative mechanism for the development of NEC independent of a specific pathogenic

  8. StrainSeeker: fast identification of bacterial strains from raw sequencing reads using user-provided guide trees.

    PubMed

    Roosaare, Märt; Vaher, Mihkel; Kaplinski, Lauris; Möls, Märt; Andreson, Reidar; Lepamets, Maarja; Kõressaar, Triinu; Naaber, Paul; Kõljalg, Siiri; Remm, Maido

    2017-01-01

    Fast, accurate and high-throughput identification of bacterial isolates is in great demand. The present work was conducted to investigate the possibility of identifying isolates from unassembled next-generation sequencing reads using custom-made guide trees. A tool named StrainSeeker was developed that constructs a list of specific k -mers for each node of any given Newick-format tree and enables the identification of bacterial isolates in 1-2 min. It uses a novel algorithm, which analyses the observed and expected fractions of node-specific k -mers to test the presence of each node in the sample. This allows StrainSeeker to determine where the isolate branches off the guide tree and assign it to a clade whereas other tools assign each read to a reference genome. Using a dataset of 100 Escherichia coli isolates, we demonstrate that StrainSeeker can predict the clades of E. coli with 92% accuracy and correct tree branch assignment with 98% accuracy. Twenty-five thousand Illumina HiSeq reads are sufficient for identification of the strain. StrainSeeker is a software program that identifies bacterial isolates by assigning them to nodes or leaves of a custom-made guide tree. StrainSeeker's web interface and pre-computed guide trees are available at http://bioinfo.ut.ee/strainseeker. Source code is stored at GitHub: https://github.com/bioinfo-ut/StrainSeeker.

  9. In Vivo Visualization of Bacterial Colonization, Antigen Expression, and Specific T-Cell Induction following Oral Administration of Live Recombinant Salmonella enterica Serovar Typhimurium

    PubMed Central

    Bumann, Dirk

    2001-01-01

    Live attenuated Salmonella strains that express a foreign antigen are promising oral vaccine candidates. Numerous genetic modifications have been empirically tested, but their effects on immunogenicity are difficult to interpret since important in vivo properties of recombinant Salmonella strains such as antigen expression and localization are incompletely characterized and the crucial early inductive events of an immune response to the foreign antigen are not fully understood. Here, methods were developed to directly localize and quantitate the in situ expression of an ovalbumin model antigen in recombinant Salmonella enterica serovar Typhimurium using two-color flow cytometry and confocal microscopy. In parallel, the in vivo activation, blast formation, and division of ovalbumin-specific CD4+ T cells were followed using a well-characterized transgenic T-cell receptor mouse model. This combined approach revealed a biphasic induction of ovalbumin-specific T cells in the Peyer's patches that followed the local ovalbumin expression of orally administered recombinant Salmonella cells in a dose- and time-dependent manner. Interestingly, intact Salmonella cells and cognate T cells seemed to remain in separate tissue compartments throughout induction, suggesting a transport of killed Salmonella cells from the colonized subepithelial dome area to the interfollicular inductive sites. The findings of this study will help to rationally optimize recombinant Salmonella strains as efficacious live antigen carriers for oral vaccination. PMID:11402006

  10. [Co-occurence of indol-producing bacterial strains in the vagina of women infected with Chlamydia trachomatis].

    PubMed

    Romanik, Małgorzata; Martirosian, Gayane; Wojciechowska-Wieja, Anna; Cieślik, Katarzyna; Kaźmierczak, Wojciech

    2007-08-01

    The aim of this study was to determine if cervicitis, caused by Chlamydia trachomatis (C. trachomatis), has an influence on the frequency of occurrence of selected aerobic and anaerobic bacterial strains, connected with etiology of aerobic vaginitis (AV) and bacterial vaginosis (BV). Indole-producing bacteria have received particular attention due to their possibly inductive role in chronic cervicitis caused by C. trachomatis. The swabs from vagina and cervical canal have been obtained from 122 women (aged 18-40). The presence of C. trachomatis antigen had been detected and diagnosed with the help of direct immunofluorescence, BV with Amesl and Nugent criteria, whereas the AV with Donders criteria. The identification of the bacterial strains isolated from vagina has been performed according to classical microbiological diagnostics. Disruption of vaginal microflora (4-10 in Nugent score) was determined in 11,5% of observed women. AV was diagnosed in 4.5% women with chlamydial cervicitis, BV was diagnosed in 10.9% and 5.45% of these women, on the basis of Amsel and Nugent criteria respectively. Indole-producing bacterial strains connected with BV and AV (Peptostreptococcus anaerobius, Propionibacterium acnes, Escherichia coli) have been isolated significantly more often from vagina of women infected with C trachomatis (p = 0.0405, chi2 = 4.20) and these findings confirm co-importance of indole-producing bacterial strains in cervicitis caused by C trachomatis .

  11. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F William [Stony Brook, NY

    2009-07-14

    Disclosed is a method for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise, the transcription being under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells. Initially, a culture media is provided which includes: i) an inducer that causes induction of transcription from said promoter in said bacterial cells; and ii) a metabolite that prevents induction by said inducer, the concentration of said metabolite being adjusted so as to substantially preclude induction by said inducer in the early stages of growth of the bacterial culture, but such that said metabolite is depleted to a level that allows induction by said inducer at a later stage of growth. The culture medium is inoculated with a bacterial inoculum, the inoculum comprising bacterial cells containing cloned DNA, the transcription of which is induced by said inducer. The culture is then incubated under conditions appropriate for growth of the bacterial cells.

  12. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  13. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2010-07-20

    A bacterial growth medium for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a lac repressor. Also disclosed is a bacterial growth medium for improving the production of a selenomethionine-containing protein or polypeptide in a bacterial cell, the protein or polypeptide being produced by recombinant DNA techniques from a lac or T7lac promoter, the bacterial cell encoding a vitamin B12-dependent homocysteine methylase. Finally, disclosed is a bacterial growth medium for suppressing auto-induction of expression in cultures of bacterial cells grown batchwise, said transcription being under the control of lac repressor.

  14. STRAIN-SPECIFIC SENSITIVITY TO INDUCTION OF MURINE LUNG TUMORS FOLLOWING IN UTERO EXPOSURE TO 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    We previously demonstrated that different strains of fetal mice were more sensitive to lung tumor induction by 3-methylcholanthrene (MC) than were adults. Offspring from either a D2 x B6D2F1 backcross or from parental Balb/c mice exhibited a similar high incidence of lung tumors ...

  15. Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems

    PubMed Central

    Gomaa, Ahmed A.; Klumpe, Heidi E.; Luo, Michelle L.; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L.

    2014-01-01

    ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. PMID:24473129

  16. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.

    PubMed

    Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L

    2014-01-28

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions

  17. Strain-Specific Properties and T Cells Regulate the Susceptibility to Papilloma Induction by Mus musculus Papillomavirus 1

    PubMed Central

    Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Bonelli, Michael; Lowy, Douglas R.; Schiller, John T.

    2014-01-01

    The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated “MmuPV1”), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific

  18. Induction of Larval Settlement in the Reef Coral Porites astreoides by a Cultivated Marine Roseobacter Strain.

    PubMed

    Sharp, K H; Sneed, J M; Ritchie, K B; Mcdaniel, L; Paul, V J

    2015-04-01

    Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces. © 2015 Marine Biological Laboratory.

  19. Identification of a new steroid degrading bacterial strain H5 from the Baltic Sea and isolation of two estradiol inducible genes.

    PubMed

    Sang, Yingying; Xiong, Guangming; Maser, Edmund

    2012-03-01

    The presence of steroid hormones in the aquatic environment is potentially threatening the population dynamics of all kinds of sea animals and public health. Environmental estrogens in water have been reported to be associated with abnormal sexual development and abnormal feminizing responses in some animals. New approaches for the bioremediation of steroid hormones from the environment are therefore urgently sought. We have previously isolated a steroid degrading bacterial strain (H5) from the Baltic Sea, at Kiel, Germany. In the present investigation, 16S rRNA analysis showed that marine strain H5 belongs to the genus Vibrio, family Vibrionaceae and class Gamma-Proteobacteria. To enable identification of steroid inducible genes from bacterial strain H5, a library was constructed of H5 chromosomal DNA fragments cloned into a fluorescent reporter (pKEGFP-2). A reporter plasmid pK3α-4.6-EGFP3 containing the estrogen-inducible gene 3α-hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) from Comamonas testosteroni (C. testosteroni) was created as a positive control. Steroid induction could be detected by a microplate fluorescence reader, when the plasmids were transformed into Escherichia coli (E. coli) HB101 cells. With our meta-genomic pKEGFP-2 approach, we identified two estradiol-inducible genes from marine strain H5, which are obviously involved in steroid degradation. Sequencing of the pKEGFP-2 inserts and data base research at NCBI revealed that one gene corresponds to 3-ketosteroid-delta-1-dehydrogenase from several Mycobacterium strains, while the other showed high similarity to carboxylesterase in Sebadella termitidis and Brachyspira murdochii. Both 3-ketosteroid-delta-1-dehydrogenase and carboxylesterase are one of the first enzymes in steroid degradation. In addition, we identified a strain H5 specific DNA sequence of 480bp which allows sensitive PCR detection and quantification of strain H5 bacteria in "unknown" seawater samples. Currently, the

  20. Bacterial strain changes during chronic otitis media surgery.

    PubMed

    Kim, G J; Yoo, S; Han, S; Bu, J; Hong, Y; Kim, D-K

    2017-09-01

    Cultures obtained from pre-operative middle-ear swabs from patients with chronic otitis media have traditionally been used to guide antibiotic selection. This study investigated changes in the bacterial strains of the middle ear during chronic otitis media surgery. Pre-operative bacterial cultures of otorrhoea, and peri-operative cultures of the granulation tissue in either the middle ear or mastoid cavity, were obtained. Post-operative cultures were selectively obtained when otorrhoea developed after surgery. Bacterial growth was observed in 45.5 per cent of pre-operative cultures, 13.5 per cent of peri-operative cultures and 4.5 per cent of post-operative cultures. Methicillin-resistant Staphylococcus aureus was identified as the most common bacteria in all pre-operative (32.4 per cent), peri-operative (52.4 per cent) and post-operative (71.4 per cent) tests, and the percentage of Methicillin-resistant S aureus increased from the pre- to the post-operative period. The bacterial culture results for post-operative otorrhoea showed low agreement with those for pre-operative or peri-operative culture, and strain re-identification was required.

  1. Physiological changes induced in four bacterial strains following oxidative stress.

    PubMed

    Baatout, S; De Boever, P; Mergeay, M

    2006-01-01

    In order to study the behaviour and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential usefulness in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123, 3,3'-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxyflurorescein diacetate succinimidyl ester (5(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. Membrane potential, esterase activity, intracellular pH and production of superoxide anion production were considerably modified at high H2O2 concentrations in all four strains. In conclusion, we show that a range of significant physiological alterations occurs when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are useful for monitoring the changes induced not only by oxidative stress but also by other

  2. Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the mannose-adhesin.

    PubMed

    Gross, G; Snel, J; Boekhorst, J; Smits, M A; Kleerebezem, M

    2010-03-01

    Recently, we have identified the mannose-specific adhesin encoding gene (msa) of Lactobacillus plantarum. In the current study, structure and function of this potentially probiotic effector gene were further investigated, exploring genetic diversity of msa in L. plantarum in relation to mannose adhesion capacity. The results demonstrate that there is considerable variation in quantitative in vitro mannose adhesion capacity, which is paralleled by msa gene sequence variation. The msa genes of different L. plantarum strains encode proteins with variable domain composition. Construction of L. plantarum 299v mutant strains revealed that the msa gene product is the key-protein for mannose adhesion, also in a strain with high mannose adhering capacity. However, no straightforward correlation between adhesion capacity and domain composition of Msa in L. plantarum could be identified. Nevertheless, differences in Msa sequences in combination with variable genetic background of specific bacterial strains appears to determine mannose adhesion capacity and potentially affects probiotic properties. These findings exemplify the strain-specificity of probiotic characteristics and illustrate the need for careful and molecular selection of new candidate probiotics.

  3. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    PubMed

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  4. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    PubMed Central

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  5. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography

    PubMed Central

    Nayfach, Stephen; Rodriguez-Mueller, Beltran; Garud, Nandita

    2016-01-01

    We present the Metagenomic Intra-species Diversity Analysis System (MIDAS), which is an integrated computational pipeline for quantifying bacterial species abundance and strain-level genomic variation, including gene content and single-nucleotide polymorphisms (SNPs), from shotgun metagenomes. Our method leverages a database of more than 30,000 bacterial reference genomes that we clustered into species groups. These cover the majority of abundant species in the human microbiome but only a small proportion of microbes in other environments, including soil and seawater. We applied MIDAS to stool metagenomes from 98 Swedish mothers and their infants over one year and used rare SNPs to track strains between hosts. Using this approach, we found that although species compositions of mothers and infants converged over time, strain-level similarity diverged. Specifically, early colonizing bacteria were often transmitted from an infant’s mother, while late colonizing bacteria were often transmitted from other sources in the environment and were enriched for spore-formation genes. We also applied MIDAS to 198 globally distributed marine metagenomes and used gene content to show that many prevalent bacterial species have population structure that correlates with geographic location. Strain-level genetic variants present in metagenomes clearly reveal extensive structure and dynamics that are obscured when data are analyzed at a coarser taxonomic resolution. PMID:27803195

  6. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    PubMed

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The

  7. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes.

    PubMed

    Sánchez-Castro, Iván; Amador-García, Ahinara; Moreno-Romero, Cristina; López-Fernández, Margarita; Phrommavanh, Vannapha; Nos, Jeremy; Descostes, Michael; Merroun, Mohamed L

    2017-01-01

    The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Strain-Specific Features of Extracellular Polysaccharides and Their Impact on Lactobacillus plantarum-Host Interactions.

    PubMed

    Lee, I-Chiao; Caggianiello, Graziano; van Swam, Iris I; Taverne, Nico; Meijerink, Marjolein; Bron, Peter A; Spano, Giuseppe; Kleerebezem, Michiel

    2016-07-01

    Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment, including their

  9. Strain-Specific Features of Extracellular Polysaccharides and Their Impact on Lactobacillus plantarum-Host Interactions

    PubMed Central

    Lee, I-Chiao; Caggianiello, Graziano; van Swam, Iris I.; Taverne, Nico; Meijerink, Marjolein; Bron, Peter A.; Spano, Giuseppe

    2016-01-01

    ABSTRACT Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. IMPORTANCE This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment

  10. Gene regulation mediates host specificity of a bacterial pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2011-12-01

    Many bacterial plant pathogens have a gene-for-gene relationship that determines host specificity. However, there are pathogens such as the xylem-limited bacterium Xylella fastidiosa that do not carry genes considered essential for the gene-for-gene model, such as those coding for a type III secretion system and effector molecules. Nevertheless, X. fastidiosa subspecies are host specific. A comparison of symptom development and host colonization after infection of plants with several mutant strains in two hosts, grapevines and almonds, indicated that X. fastidiosa virulence mechanisms are similar in those plants. Thus, we tested if modification of gene regulation patterns, by affecting the production of a cell-cell signalling molecule (DSF), impacted host specificity in X. fastidiosa. Results show that disruption of the rpfF locus, required for DSF synthesis, in a strain incapable of causing disease in grapevines, leads to symptom development in that host. These data are indicative that the core machinery required for the colonization of grapevines is present in that strain, and that changes in gene regulation alone can lead X. fastidiosa to exploit a novel host. The study of the evolution and mechanisms of host specificity mediated by gene regulation at the genome level could lead to important insights on the emergence of new diseases. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Identification and characterisation of potential biofertilizer bacterial strains

    NASA Astrophysics Data System (ADS)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  12. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2013-03-19

    A method for promoting and suppressing auto-induction of transcription of a cloned gene 1 of bacteriophage T7 in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells.

  14. CAMBerVis: visualization software to support comparative analysis of multiple bacterial strains.

    PubMed

    Woźniak, Michał; Wong, Limsoon; Tiuryn, Jerzy

    2011-12-01

    A number of inconsistencies in genome annotations are documented among bacterial strains. Visualization of the differences may help biologists to make correct decisions in spurious cases. We have developed a visualization tool, CAMBerVis, to support comparative analysis of multiple bacterial strains. The software manages simultaneous visualization of multiple bacterial genomes, enabling visual analysis focused on genome structure annotations. The CAMBerVis software is freely available at the project website: http://bioputer.mimuw.edu.pl/camber. Input datasets for Mycobacterium tuberculosis and Staphylocacus aureus are integrated with the software as examples. m.wozniak@mimuw.edu.pl Supplementary data are available at Bioinformatics online.

  15. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    PubMed Central

    2009-01-01

    Background The Lactic Acid Bacteria (LAB) are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD) are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i) the initial cultivable LAB strain diversity in the human gut, and (ii) the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156) contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p < 0.05). Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be evaluated using a high

  16. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  17. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  18. Substrate utilization profiles of bacterial strains in plankton from the River Warnow, a humic and eutrophic river in north Germany.

    PubMed

    Freese, Heike M; Eggert, Anja; Garland, Jay L; Schumann, Rhena

    2010-01-01

    Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i. e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy.

  19. [The range of antagonistic effects of Lactobacillus bacterial strains on etiologic agents of bacterial vaginosis].

    PubMed

    Strus, M; Malinowska, M

    1999-01-01

    Bacterial vaginosis is caused by uncontrolled sequential overgrowth of some anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia, Bacteroides spp., Peptostreptococcus spp., Mobiluncus sp. usually occurring in stable numbers in the bacterial flora of healthy women. On the other hand, different species of bacteria belonging to the genus Lactobacillus, most frequently L. plantarum, L. rhamnosus and L. acidophilus, form a group of aerobic bacteria dominating in the same environment. The diversity and density of their populations depend on the age and health conditions. Thanks to their antagonistic and adherence properties bacteria of the genus Lactobacillus can maintain a positive balance role in this ecosystem. The aim of this study was to assess the antagonistic properties of Lactobacillus strains isolated from the vagina of healthy women against most common agents of bacterial vaginosis. It was found that nearly all of the tested Lactobacillus strains exerted distinct antagonistic activity against anaerobic bacteria: Gardnerella vaginalis, Prevotella bivia and Peptostreptococcus anaerobius and quite a number also against Gram-negative rods, while only some of them were able to inhibit Gram-positive aerobic cocci as Enterococcus faecalis or Staphylococcus aureus.

  20. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution.

    PubMed

    Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C B; Lakshmipriya, Thangavel; Tang, Thean-Hock

    2015-01-01

    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.

  1. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    PubMed Central

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  2. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    PubMed

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biodegradation of malathion, α- and β-endosulfan by bacterial strains isolated from agricultural soil in Veracruz, Mexico.

    PubMed

    Jimenez-Torres, Catya; Ortiz, Irmene; San-Martin, Pablo; Hernandez-Herrera, R Idalia

    2016-12-01

    The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO 2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.

  4. Transport processes and mutual interactions of three bacterial strains in saturated porous media

    NASA Astrophysics Data System (ADS)

    Stumpp, Christine; Lawrence, John R.; Hendry, M. Jim; Maloszewski, Pitor

    2010-05-01

    Transport processes of the bacterial strains Klebsiella oxytoca, Burkholderia cepacia G4PR-1 and Pseudomonas sp #5 were investigated in saturated column experiments to study the differences in transport characteristics and the mutual interactions of these strains during transport. Soil column experiments (114 mm long x 33 mm in diameter) were conducted with constant water velocities (3.9-5.7 cm/h) through a medium to coarse grained silica sand. All experiments were performed in freshly packed columns in quadruplicate. Chloride was used as tracer to determine the mean transit time, dispersivity and flow rate. It was injected as a pulse into the columns together with the bacterial strains suspended in artificial groundwater medium. In the first setup, each strain was investigated alone. In the second setup, transport processes were performed injecting two strains simultaneously. Finally, the transport characteristics were studied in successive experiments when one bacterium was resident on the sand grains prior to the introduction of the second strain. In all experiments the peak C/Co bacterial concentrations were attenuated with respect to the conservative tracer chloride and a well defined tailing was observed. A one dimensional mathematical model for advective-dispersive transport that accounts for irreversible and reversible sorption was used to analyze the bacterial breakthrough curves and tailing patterns. It was shown that the sorption parameters were different for the three strains that can be explained by the properties of the bacteria. For the species Klebsiella oxytoca and Burkholderia cepacia G4PR-the transport parameters were mostly in the same range independent of the experimental setup. However, Pseudomonas sp #5, which is a motile bacterium, showed differences in the breakthrough curves and sorption parameters during the experiments. The simultaneous and successive experiments indicated an influence on the reversible sorption processes when another

  5. Prophage Induction Is Enhanced and Required for Renal Disease and Lethality in an EHEC Mouse Model

    PubMed Central

    Reynolds, Jared L.; Alteri, Christopher J.; Skinner, Katherine G.; Friedman, Jonathan H.; Eaton, Kathryn A.; Friedman, David I.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC), particularly serotype O157:H7, causes hemorrhagic colitis, hemolytic uremic syndrome, and even death. In vitro studies showed that Shiga toxin 2 (Stx2), the primary virulence factor expressed by EDL933 (an O157:H7 strain), is encoded by the 933W prophage. And the bacterial subpopulation in which the 933W prophage is induced is the producer of Stx2. Using the germ-free mouse, we show the essential role 933W induction plays in the virulence of EDL933 infection. An EDL933 derivative with a single mutation in its 933W prophage, resulting specifically in that phage being uninducible, colonizes the intestines, but fails to cause any of the pathological changes seen with the parent strain. Hence, induction of the 933W prophage is the primary event leading to disease from EDL933 infection. We constructed a derivative of EDL933, SIVET, with a biosensor that specifically measures induction of the 933W prophage. Using this biosensor to measure 933W induction in germ-free mice, we found an increase three logs greater than was expected from in vitro results. Since the induced population produces and releases Stx2, this result indicates that an activity in the intestine increases Stx2 production. PMID:23555250

  6. Stable coexistence of five bacterial strains as a cellulose-degrading community.

    PubMed

    Kato, Souichiro; Haruta, Shin; Cui, Zong Jun; Ishii, Masaharu; Igarashi, Yasuo

    2005-11-01

    A cellulose-degrading defined mixed culture (designated SF356) consisting of five bacterial strains (Clostridium straminisolvens CSK1, Clostridium sp. strain FG4, Pseudoxanthomonas sp. strain M1-3, Brevibacillus sp. strain M1-5, and Bordetella sp. strain M1-6) exhibited both functional and structural stability; namely, no change in cellulose-degrading efficiency was observed, and all members stably coexisted through 20 subcultures. In order to investigate the mechanisms responsible for the observed stability, "knockout communities" in which one of the members was eliminated from SF356 were constructed. The dynamics of the community structure and the cellulose degradation profiles of these mixed cultures were determined in order to evaluate the roles played by each eliminated member in situ and its impact on the other members of the community. Integration of each result gave the following estimates of the bacterial relationships. Synergistic relationships between an anaerobic cellulolytic bacterium (C. straminisolvens CSK1) and two strains of aerobic bacteria (Pseudoxanthomonas sp. strain M1-3 and Brevibacillus sp. strain M1-5) were observed; the aerobes introduced anaerobic conditions, and C. straminisolvens CSK1 supplied metabolites (acetate and glucose). In addition, there were negative relationships, such as the inhibition of cellulose degradation by producing excess amounts of acetic acid by Clostridium sp. strain FG4, and growth suppression of Bordetella sp. strain M1-6 by Brevibacillus sp. strain M1-5. The balance of the various types of relationships (both positive and negative) is thus considered to be essential for the stable coexistence of the members of this mixed culture.

  7. Application of Chemical Genomics to Plant-Bacteria Communication: A High-Throughput System to Identify Novel Molecules Modulating the Induction of Bacterial Virulence Genes by Plant Signals.

    PubMed

    Vandelle, Elodie; Puttilli, Maria Rita; Chini, Andrea; Devescovi, Giulia; Venturi, Vittorio; Polverari, Annalisa

    2017-01-01

    The life cycle of bacterial phytopathogens consists of a benign epiphytic phase, during which the bacteria grow in the soil or on the plant surface, and a virulent endophytic phase involving the penetration of host defenses and the colonization of plant tissues. Innovative strategies are urgently required to integrate copper treatments that control the epiphytic phase with complementary tools that control the virulent endophytic phase, thus reducing the quantity of chemicals applied to economically and ecologically acceptable levels. Such strategies include targeted treatments that weaken bacterial pathogens, particularly those inhibiting early infection steps rather than tackling established infections. This chapter describes a reporter gene-based chemical genomic high-throughput screen for the induction of bacterial virulence by plant molecules. Specifically, we describe a chemical genomic screening method to identify agonist and antagonist molecules for the induction of targeted bacterial virulence genes by plant extracts, focusing on the experimental controls required to avoid false positives and thus ensuring the results are reliable and reproducible.

  8. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.

    PubMed

    Wang, Jun; Tian, Dongsheng; Gu, Keyu; Yang, Xiaobei; Wang, Lanlan; Zeng, Xuan; Yin, Zhongchao

    2017-06-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive bacterial diseases throughout the major rice-growing regions in the world. The rice disease resistance (R) gene Xa10 confers race-specific disease resistance to X. oryzae pv. oryzae strains that deliver the corresponding transcription activator-like (TAL) effector AvrXa10. Upon bacterial infection, AvrXa10 binds specifically to the effector binding element in the promoter of the R gene and activates its expression. Xa10 encodes an executor R protein that triggers hypersensitive response and activates disease resistance. 'Nipponbare' rice carries two Xa10-like genes in its genome, of which one is the susceptible allele of the Xa23 gene, a Xa10-like TAL effector-dependent executor R gene isolated recently from 'CBB23' rice. However, the function of the two Xa10-like genes in disease resistance to X. oryzae pv. oryzae strains has not been investigated. Here, we designated the two Xa10-like genes as Xa10-Ni and Xa23-Ni and characterized their function for disease resistance to rice bacterial blight. Both Xa10-Ni and Xa23-Ni provided disease resistance to X. oryzae pv. oryzae strains that deliver the matching artificially designed TAL effectors (dTALE). Transgenic rice plants containing Xa10-Ni and Xa23-Ni under the Xa10 promoter provided specific disease resistance to X. oryzae pv. oryzae strains that deliver AvrXa10. Xa10-Ni and Xa23-Ni knock-out mutants abolished dTALE-dependent disease resistance to X. oryzae pv. oryzae. Heterologous expression of Xa10-Ni and Xa23-Ni in Nicotiana benthamiana triggered cell death. The 19-amino-acid residues at the N-terminal regions of XA10 or XA10-Ni are dispensable for their function in inducing cell death in N. benthamiana and the C-terminal regions of XA10, XA10-Ni, and XA23-Ni are interchangeable among each other without affecting their function. Like XA10, both XA10-Ni and XA23-Ni locate to the endoplasmic reticulum (ER) membrane

  9. Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations

    PubMed Central

    Garrido-Sanz, Daniel; Manzano, Javier; Martín, Marta; Redondo-Nieto, Miguel; Rivilla, Rafael

    2018-01-01

    Polychlorinated biphenyls (PCBs) are widespread persistent pollutants that cause several adverse health effects. Aerobic bioremediation of PCBs involves the activity of either one bacterial species or a microbial consortium. Using multiple species will enhance the range of PCB congeners co-metabolized since different PCB-degrading microorganisms exhibit different substrate specificity. We have isolated a bacterial consortium by successive enrichment culture using biphenyl (analog of PCBs) as the sole carbon and energy source. This consortium is able to grow on biphenyl, benzoate, and protocatechuate. Whole-community DNA extracted from the consortium was used to analyze biodiversity by Illumina sequencing of a 16S rRNA gene amplicon library and to determine the metagenome by whole-genome shotgun Illumina sequencing. Biodiversity analysis shows that the consortium consists of 24 operational taxonomic units (≥97% identity). The consortium is dominated by strains belonging to the genus Pseudomonas, but also contains betaproteobacteria and Rhodococcus strains. whole-genome shotgun (WGS) analysis resulted in contigs containing 78.3 Mbp of sequenced DNA, representing around 65% of the expected DNA in the consortium. Bioinformatic analysis of this metagenome has identified the genes encoding the enzymes implicated in three pathways for the conversion of biphenyl to benzoate and five pathways from benzoate to tricarboxylic acid (TCA) cycle intermediates, allowing us to model the whole biodegradation network. By genus assignment of coding sequences, we have also been able to determine that the three biphenyl to benzoate pathways are carried out by Rhodococcus strains. In turn, strains belonging to Pseudomonas and Bordetella are the main responsible of three of the benzoate to TCA pathways while the benzoate conversion into TCA cycle intermediates via benzoyl-CoA and the catechol meta-cleavage pathways are carried out by beta proteobacteria belonging to genera such as

  10. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution

    PubMed Central

    Lee, Li Pin; Karbul, Hudzaifah Mohamed; Citartan, Marimuthu; Gopinath, Subash C. B.; Lakshmipriya, Thangavel; Tang, Thean-Hock

    2015-01-01

    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues. PMID:26180812

  11. Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis.

    PubMed

    Popovici, Jean; Comte, Gilles; Bagnarol, Emilie; Alloisio, Nicole; Fournier, Pascale; Bellvert, Floriant; Bertrand, Cédric; Fernandez, Maria P

    2010-04-01

    Plant secondary metabolites, and specifically phenolics, play important roles when plants interact with their environment and can act as weapons or positive signals during biotic interactions. One such interaction, the establishment of mutualistic nitrogen-fixing symbioses, typically involves phenolic-based recognition mechanisms between host plants and bacterial symbionts during the early stages of interaction. While these mechanisms are well studied in the rhizobia-legume symbiosis, little is known about the role of plant phenolics in the symbiosis between actinorhizal plants and Frankia genus strains. In this study, the responsiveness of Frankia strains to plant phenolics was correlated with their symbiotic compatibility. We used Myrica gale, a host species with narrow symbiont specificity, and a set of compatible and noncompatible Frankia strains. M. gale fruit exudate phenolics were extracted, and 8 dominant molecules were purified and identified as flavonoids by high-resolution spectroscopic techniques. Total fruit exudates, along with two purified dihydrochalcone molecules, induced modifications of bacterial growth and nitrogen fixation according to the symbiotic specificity of strains, enhancing compatible strains and inhibiting incompatible ones. Candidate genes involved in these effects were identified by a global transcriptomic approach using ACN14a strain whole-genome microarrays. Fruit exudates induced differential expression of 22 genes involved mostly in oxidative stress response and drug resistance, along with the overexpression of a whiB transcriptional regulator. This work provides evidence for the involvement of plant secondary metabolites in determining symbiotic specificity and expands our understanding of the mechanisms, leading to the establishment of actinorhizal symbioses.

  12. Pseudomonas fluorescens transportome is linked to strain-specific plant growth promotion in Aspen seedlings under nutrient stress

    DOE PAGES

    Shinde, Shalaka; Cumming, Jonathan R.; Collart, Frank R.; ...

    2017-03-21

    Diverse communities of bacteria colonize plant roots and the rhizosphere. Many of these rhizobacteria are symbionts and provide plant growth promotion (PGP) services, protecting the plant from biotic and abiotic stresses and increasing plant productivity by providing access to nutrients that would otherwise be unavailable to roots. In return, these symbiotic bacteria receive photosynthetically-derived carbon (C), in the form of sugars and organic acids, from plant root exudates. PGP activities have been characterized for a variety of forest tree species and are important in C cycling and sequestration in terrestrial ecosystems. The molecular mechanisms of these PGP activities, however, aremore » less well-known. In a previous analysis of Pseudomonas genomes, we found that the bacterial transportome, the aggregate activity of a bacteria's transmembrane transporters, was most predictive for the ecological niche of Pseudomonads in the rhizosphere. Here, we used Populus tremuloides Michx. (trembling aspen) seedlings inoculated with one of three Pseudomonas fluorescens strains (Pf0-1, SBW25, and WH6) and one Pseudomonas protegens (Pf-5) as a laboratory model to further investigate the relationships between the predicted transportomic capacity of a bacterial strain and its observed PGP effects in laboratory cultures. Conditions of low nitrogen (N) or low phosphorus (P) availability and the corresponding replete media conditions were investigated. We measured phenotypic and biochemical parameters of P. tremuloides seedlings and correlated P fluorescens strain-specific transportomic capacities with P. tremuloides seedling phenotype to predict the strain and nutrient environment-specific transporter functions that lead to experimentally observed, strain, and media-specific PGP activities and the capacity to protect plants against nutrient stress. These predicted transportomic functions fall in three groups: (i) transport of compounds that modulate aspen seedling root

  13. Pseudomonas fluorescens transportome is linked to strain-specific plant growth promotion in Aspen seedlings under nutrient stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, Shalaka; Cumming, Jonathan R.; Collart, Frank R.

    Diverse communities of bacteria colonize plant roots and the rhizosphere. Many of these rhizobacteria are symbionts and provide plant growth promotion (PGP) services, protecting the plant from biotic and abiotic stresses and increasing plant productivity by providing access to nutrients that would otherwise be unavailable to roots. In return, these symbiotic bacteria receive photosynthetically-derived carbon (C), in the form of sugars and organic acids, from plant root exudates. PGP activities have been characterized for a variety of forest tree species and are important in C cycling and sequestration in terrestrial ecosystems. The molecular mechanisms of these PGP activities, however, aremore » less well-known. In a previous analysis of Pseudomonas genomes, we found that the bacterial transportome, the aggregate activity of a bacteria's transmembrane transporters, was most predictive for the ecological niche of Pseudomonads in the rhizosphere. Here, we used Populus tremuloides Michx. (trembling aspen) seedlings inoculated with one of three Pseudomonas fluorescens strains (Pf0-1, SBW25, and WH6) and one Pseudomonas protegens (Pf-5) as a laboratory model to further investigate the relationships between the predicted transportomic capacity of a bacterial strain and its observed PGP effects in laboratory cultures. Conditions of low nitrogen (N) or low phosphorus (P) availability and the corresponding replete media conditions were investigated. We measured phenotypic and biochemical parameters of P. tremuloides seedlings and correlated P fluorescens strain-specific transportomic capacities with P. tremuloides seedling phenotype to predict the strain and nutrient environment-specific transporter functions that lead to experimentally observed, strain, and media-specific PGP activities and the capacity to protect plants against nutrient stress. These predicted transportomic functions fall in three groups: (i) transport of compounds that modulate aspen seedling root

  14. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.

    PubMed

    Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia

    2011-06-01

    The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains.

    PubMed

    Rohde, Christine; Resch, Grégory; Pirnay, Jean-Paul; Blasdel, Bob G; Debarbieux, Laurent; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Almeida, Gabriel Magno de Freitas; Makalatia, Khatuna; Malik, Danish J; Mašlaňová, Ivana; Merabishvili, Maia; Pantucek, Roman; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-04-05

    Phage therapy is increasingly put forward as a "new" potential tool in the fight against antibiotic resistant infections. During the "Centennial Celebration of Bacteriophage Research" conference in Tbilisi, Georgia on 26-29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.

  16. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains

    PubMed Central

    Rohde, Christine; Resch, Grégory; Blasdel, Bob G.; Gelman, Daniel; Górski, Andrzej; Hazan, Ronen; Huys, Isabelle; Kakabadze, Elene; Łobocka, Małgorzata; Maestri, Alice; Makalatia, Khatuna; Malik, Danish J.; Mašlaňová, Ivana; Merabishvili, Maia; Rose, Thomas; Štveráková, Dana; Van Raemdonck, Hilde; Verbeken, Gilbert; Chanishvili, Nina

    2018-01-01

    Phage therapy is increasingly put forward as a “new” potential tool in the fight against antibiotic resistant infections. During the “Centennial Celebration of Bacteriophage Research” conference in Tbilisi, Georgia on 26–29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application. PMID:29621199

  17. Induction of Larval Metamorphosis of the Coral Acropora millepora by Tetrabromopyrrole Isolated from a Pseudoalteromonas Bacterium

    PubMed Central

    Tebben, Jan; Tapiolas, Dianne M.; Motti, Cherie A.; Abrego, David; Negri, Andrew P.; Blackall, Linda L.; Steinberg, Peter D.; Harder, Tilmann

    2011-01-01

    The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm−2 in laboratory assays, which is on the order of 0.1 –1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae. PMID:21559509

  18. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2.

    PubMed

    Anjaneya, O; Souche, S Yogesh; Santoshkumar, M; Karegoudar, T B

    2011-06-15

    Two different bacterial strains capable of decolorizing a highly water soluble azo dye Metanil Yellow were isolated from dye contaminated soil sample collected from Atul Dyeing Industry, Bellary, India. The individual bacterial strains Bacillus sp. AK1 and Lysinibacillus sp. AK2 decolorized Metanil Yellow (200 mg L(-1)) completely within 27 and 12h respectively. Various parameters like pH, temperature, NaCl and initial dye concentrations were optimized to develop an economically feasible decolorization process. The maximum concentration of Metanil Yellow (1000 mg L(-1)) was decolorized by strains AK2 and AK1 within 78 and 84 h respectively. These strains could decolorize Metanil Yellow over a broad pH range 5.5-9.0; the optimum pH was 7.2. The decolorization of Metanil Yellow was most efficient at 40°C and confirmed by UV-visible spectroscopy, TLC, HPLC and GC/MS analysis. Further, both the strains showed the involvement of azoreductase in the decolorization process. Phytotoxicity studies of catabolic products of Metanil Yellow on the seeds of chick pea and pigeon pea revealed much reduction in the toxicity of metabolites as compared to the parent dye. These results indicating the effectiveness of strains AK1 and AK2 for the treatment of textile effluents containing azo dyes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation

    PubMed Central

    Noirot-Gros, Marie-Francoise; Shinde, Shalaka; Larsen, Peter E.; Zerbs, Sarah; Korajczyk, Peter J.; Kemner, Kenneth M.; Noirot, Philippe H.

    2018-01-01

    Rhizosphere-associated Pseudomonas fluorescens are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the P. fluorescens strains SBW25, WH6, Pf0-1, and the P. protegens strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled Pseudomonas strain, and root colonization was monitored over a period of 5 weeks. We observed unexpected diversity of bacterial assemblies on seedling roots that changed over time and were strongly affected by root mycorrhization. P. fluorescens SBW25 and WH6 stains developed highly structured biofilms with internal void spaces forming channels. On mycorrhizal roots bacteria appeared encased in a mucilaginous substance in which they aligned side by side in parallel arrangements. The different phenotypic classes of bacterial assemblies observed for the four Pseudomonas strains were summarized in a single model describing transitions between phenotypic classes. Our findings also reveal that bacterial assembly phenotypes are driven by interactions with mucilaginous materials present at roots. PMID:29774013

  20. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    PubMed

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  1. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    PubMed

    O'Farrell, Brian; Haase, Jana K; Velayudhan, Vimalkumar; Murphy, Ronan A; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  2. Transforming Microbial Genotyping: A Robotic Pipeline for Genotyping Bacterial Strains

    PubMed Central

    Velayudhan, Vimalkumar; Murphy, Ronan A.; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost. PMID:23144721

  3. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    PubMed

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable

  4. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity

    PubMed Central

    Bosi, Emanuele; Monk, Jonathan M.; Aziz, Ramy K.; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø.

    2016-01-01

    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus. These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world. PMID:27286824

  5. Quantum dots as strain- and metabolism-specific microbiological labels

    NASA Technical Reports Server (NTRS)

    Kloepfer, J. A.; Mielke, R. E.; Wong, M. S.; Nealson, K. H.; Stucky, G.; Nadeau, J. L.

    2003-01-01

    Biologically conjugated quantum dots (QDs) have shown great promise as multiwavelength fluorescent labels for on-chip bioassays and eukaryotic cells. However, use of these photoluminescent nanocrystals in bacteria has not previously been reported, and their large size (3 to 10 nm) makes it unclear whether they inhibit bacterial recognition of attached molecules and whether they are able to pass through bacterial cell walls. Here we describe the use of conjugated CdSe QDs for strain- and metabolism-specific microbial labeling in a wide variety of bacteria and fungi, and our analysis was geared toward using receptors for a conjugated biomolecule that are present and active on the organism's surface. While cell surface molecules, such as glycoproteins, make excellent targets for conjugated QDs, internal labeling is inconsistent and leads to large spectral shifts compared with the original fluorescence, suggesting that there is breakup or dissolution of the QDs. Transmission electron microscopy of whole mounts and thin sections confirmed that bacteria are able to extract Cd and Se from QDs in a fashion dependent upon the QD surface conjugate.

  6. Induction Specificity and Catabolite Repression of the Early Enzymes in Camphor Degradation by Pseudomonas putida

    PubMed Central

    Hartline, Richard A.; Gunsalus, I. C.

    1971-01-01

    The ability of bornane and substituted bornanes to induce the early enzymes for d(+)-camphor degradation and control of these enzymes by catabolite repression were studied in a strain of a Pseudomonas putida. Bornane and 20 substituted bornane compounds showed induction. Of these 21 compounds, bornane and 8 of the substituted bornanes provided induction without supporting growth. Oxygen, but not nitrogen, enhanced the inductive potency of the unsubstituted bornane ring. All bornanedione isomers caused induction, and those with substituents on each of the three consecutive carbon atoms, including the methyl group at the bridgehead carbon, showed induction without supporting growth. Although it was not possible to obtain experimental data for a case of absolute gratuitous induction by compounds not supporting growth, indirect evidence in support of gratuitous induction is presented. It is proposed that the ability of P. putida to tolerate the unusually high degree of possible gratuitous induction observed for camphor catabolism may be related to the infrequent occurrence of bicyclic ring structures in nature. Survival of an organism with a broad specificity for gratuitous induction is discussed. Glucose and succinate, but not glutamate, produced catabolite repression of the early camphor-degrading enzymes. Pathway enzymes differ in their degree of sensitivity to succinate-provoked catabolite repression. The ability of a compound to produce catabolite repression is not, however, directly related to the duration of the lag period (diauxic lag) between growth on camphor and growth on the repressing compound. PMID:5573731

  7. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  8. Phenotypic signatures arising from unbalanced bacterial growth.

    PubMed

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-08-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.

  9. Impact of Bacillus amyloliquefaciens S13-3 on control of bacterial wilt and powdery mildew in tomato.

    PubMed

    Yamamoto, Shoko; Shiraishi, Soma; Kawagoe, Yumi; Mochizuki, Mai; Suzuki, Shunji

    2015-05-01

    Biological control is a non-hazardous technique to control plant diseases. Researchers have explored microorganisms that show high plant-disease control efficiency for use as biological control agents. A single soil application of Bacillus amyloliquefaciens strain S13-3 suppressed tomato bacterial wilt caused by Ralstonia solanacearum, a soilborne bacterial pathogen, through production of antibiotics augmented possibly by induction of systemic acquired resistance. Soil application also controlled tomato powdery mildew disease through induction of systemic acquired resistance. S13-3 showing bifunctional activity with a single application to soil may be an innovative biological control agent against bacterial wilt and powdery mildew in tomato. © 2014 Society of Chemical Industry.

  10. Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11.

    PubMed

    Moreira, Irina S; Bessa, Vânia S; Murgolo, Sapia; Piccirillo, Clara; Mascolo, Giuseppe; Castro, Paula M L

    2018-05-15

    Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory pharmaceutical which is detected in the environment at concentrations which can pose a threat to living organisms. In this study, biodegradation of DCF was assessed using the bacterial strain Labrys portucalensis F11. Biotransformation of 70% of DCF (1.7-34 μM), supplied as the sole carbon source, was achieved in 30 days. Complete degradation was reached via co-metabolism with acetate, over a period of 6 days for 1.7 µM and 25 days for 34 μM of DCF. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. DCF degradation by strain F11 proceeds mainly by hydroxylation reactions; the formation of benzoquinone imine species seems to be a central step in the degradation pathway. Moreover, this is the first report that identified conjugated metabolites, resulting from sulfation reactions of DCF by bacteria. Stoichiometric liberation of chlorine and no detection of metabolites at the end of the experiments are strong indications of complete degradation of DCF by strain F11. To the best of our knowledge this is the first report that points to complete degradation of DCF by a single bacterial strain isolated from the environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.; Cubero, Jaime

    2017-01-01

    Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the

  12. Creativity and Memory: Effects of an Episodic-Specificity Induction on Divergent Thinking.

    PubMed

    Madore, Kevin P; Addis, Donna Rose; Schacter, Daniel L

    2015-09-01

    People produce more episodic details when imagining future events and solving means-end problems after receiving an episodic-specificity induction-brief training in recollecting details of a recent event-than after receiving a control induction not focused on episodic retrieval. Here we show for the first time that an episodic-specificity induction also enhances divergent creative thinking. In Experiment 1, participants exhibited a selective boost on a divergent-thinking task (generating unusual uses of common objects) after a specificity induction compared with a control induction; by contrast, performance following the two inductions was similar on an object association task thought to involve little divergent thinking. In Experiment 2, we replicated the specificity-induction effect on divergent thinking using a different control induction, and also found that participants performed similarly on a convergent-thinking task following the two inductions. These experiments provide novel evidence that episodic memory is involved in divergent creative thinking. © The Author(s) 2015.

  13. Comparative Genomic Analysis of Xanthomonas axonopodis pv. citrumelo F1, Which Causes Citrus Bacterial Spot Disease, and Related Strains Provides Insights into Virulence and Host Specificity ▿ #

    PubMed Central

    Jalan, Neha; Aritua, Valente; Kumar, Dibyendu; Yu, Fahong; Jones, Jeffrey B.; Graham, James H.; Setubal, João C.; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity. PMID:21908674

  14. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-03-01

    Plant growth promoting (PGP) bacterial strains possess different mechanisms to improve plant development under common environmental stresses, and are therefore often used as inoculants in soil phytoremediation processes. The aims of the present work were to study the effects of a collection of plant growth promoting bacterial strains on plant development, antioxidant enzyme activities and nutritional status of Cytisus striatus and/or Lupinus luteus plants a) growing in perlite under non-stress conditions and b) growing in diesel-contaminated soil. For this, two greenhouse experiments were designed. Firstly, C. striatus and L. luteus plants were grown from seeds in perlite, and periodically inoculated with 6 PGP strains, either individually or in pairs. Secondly, L. luteus seedlings were grown in soil samples of the A and B horizons of a Cambisol contaminated with 1.25% (w/w) of diesel and inoculated with best PGP inoculant selected from the first experiment. The results indicated that the PGP strains tested in perlite significantly improved plant growth. Combination treatments provoked better growth of L. luteus than the respective individual strains, while individual inoculation treatments were more effective for C. striatus. L. luteus growth in diesel-contaminated soil was significantly improved in the presence of PGP strains, presenting a 2-fold or higher increase in plant biomass. Inoculants did not provoke significant changes in plant nutritional status, with the exception of a subset of siderophore-producing and P-solubilising bacterial strains that resulted in significantly modification of Fe or P concentrations in leaf tissues. Inoculants did not cause significant changes in enzyme activities in perlite experiments, however they significantly reduced oxidative stress in contaminated soils suggesting an improvement in plant tolerance to diesel. Some strains were applied to non-host plants, indicating a non-specific performance of their plant growth promotion

  15. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Kidney Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent. PMID:25424545

  16. Distinct antimicrobial peptide expression determines host species-specific bacterial associations

    PubMed Central

    Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian

    2013-01-01

    Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149

  17. Creativity and Memory: Effects of an Episodic Specificity Induction on Divergent Thinking

    PubMed Central

    Madore, Kevin P.; Addis, Donna Rose; Schacter, Daniel L.

    2015-01-01

    After receiving an episodic specificity induction - brief training in recollecting details of a recent event - people produce more episodic details when imagining future events and solving means-end problems than after receiving a control induction not focused on episodic retrieval. Here we show for the first time that an episodic specificity induction also enhances divergent creative thinking. In Experiment 1, participants exhibited a selective boost on a divergent thinking task that involves generating unusual uses of common objects after a specificity induction compared with a control induction; by contrast, performance was similar on an object association task thought to involve little divergent thinking. In Experiment 2, we replicated the specificity induction effect on divergent thinking using a different control induction, and also found that participants performed similarly on a convergent thinking task following both inductions. These experiments provide novel evidence that episodic memory is involved in divergent creative thinking. PMID:26205963

  18. The Human Polymeric Immunoglobulin Receptor Facilitates Invasion of Epithelial Cells by Streptococcus pneumoniae in a Strain-Specific and Cell Type-Specific Manner

    PubMed Central

    Brock, Sean C.; McGraw, Patricia A.; Wright, Peter F.; Crowe Jr., James E.

    2002-01-01

    Streptococcus pneumoniae is a gram-positive bacterial pathogen that causes invasive life-threatening disease worldwide. This organism also commonly colonizes the upper respiratory epithelium in an asymptomatic fashion. To invade, this pathogen must traverse the respiratory epithelial barrier, allowing it to cause disease locally or disseminate hematogenously throughout the body. Previous work has demonstrated that S. pneumoniae choline-binding protein A, a pneumococcal surface protein, interacts specifically with the human polymeric immunoglobulin receptor, which is expressed by cells in the respiratory epithelium. Choline-binding protein A is required for efficient colonization of the nasopharynx in vivo. Additionally, a recent study showed that the R6x laboratory strain of S. pneumoniae invades a human pharyngeal cell line in a human polymeric immunoglobulin receptor-dependent manner. These findings raised the possibility that the interaction between choline-binding protein A and human polymeric immunoglobulin receptor may be a key determinant of S. pneumoniae pathogenesis. However, the strain used in prior invasion studies, R6x, is an unencapsulated, nonpathogenic strain. In the present study we determined the relative ability of strain R6x or pathogenic strains to invade a variety of human polymeric immunoglobulin receptor-expressing epithelial cell lines. The results of this work suggest that human polymeric immunoglobulin receptor-dependent enhanced invasion of epithelial cells by S. pneumoniae is a limited phenomenon that occurs in a strain-specific and cell type-specific manner. PMID:12183558

  19. Induction of gram-negative bacterial growth by neurochemical containing banana (Musa x paradisiaca) extracts.

    PubMed

    Lyte, M

    1997-09-15

    Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.

  20. Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1

    PubMed Central

    Liu, Xiao-ming; Peyton, Kelly J.

    2013-01-01

    Endothelial cells (ECs) are constantly subjected to cyclic strain that arises from periodic change in vessel wall diameter as a result of pulsatile blood flow. Application of physiological levels of cyclic strain inhibits EC apoptosis; however, the underlying mechanism is not known. Since heme oxygenase-1 (HO-1) is a potent inhibitor of apoptosis, the present study investigated whether HO-1 contributes to the antiapoptotic action of cyclic strain. Administration of physiological cyclic strain (6% at 1 Hz) to human aortic ECs stimulated an increase in HO-1 activity, protein, and mRNA expression. The induction of HO-1 was preceded by a rise in reactive oxygen species (ROS) and Nrf2 protein expression. Cyclic strain also stimulated an increase in HO-1 promoter activity that was prevented by mutating the antioxidant responsive element in the promoter or by overexpressing dominant-negative Nrf2. In addition, the strain-mediated induction of HO-1 and activation of Nrf2 was abolished by the antioxidant N-acetyl-l-cysteine. Finally, application of cyclic strain blocked inflammatory cytokine-mediated EC death and apoptosis. However, the protective action of cyclic strain was reversed by the HO inhibitor tin protoporphyrin-IX and was absent in ECs isolated from HO-1-deficient mice. In conclusion, the present study demonstrates that a hemodynamically relevant level of cyclic strain stimulates HO-1 gene expression in ECs via the ROS-Nrf2 signaling pathway to inhibit EC death. The ability of cyclic strain to induce HO-1 expression may provide an important mechanism by which hemodynamic forces promote EC survival and vascular homeostasis. PMID:23604711

  1. Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants.

    PubMed

    Md Setamam, Nursuria; Jaafar Sidik, Norrizah; Abdul Rahman, Zainon; Che Mohd Zain, Che Radziah

    2014-06-30

    Capsicum annuum and Capsicum frutescens, also known as "chilies", belong to the Solanaceae family and have tremendous beneficial properties. The application of hairy root culture may become an alternative method for future development of these species by adding value, such as by increasing secondary metabolites and improving genetic and biochemical stability compared with normal Capsicum plants. Therefore, in this research, different types of explants of both species were infected with various Agrobacterium rhizogenes strains to provide more information about the morphology and induction efficiency of hairy roots. After 2 weeks of in vitro seed germination, young seedling explants were cut into three segments; the cotyledon, hypocotyl, and radical. Then, the explants were co-cultured with four isolated A. rhizogenes strains in Murashige & Skoog culture media (MS) containing decreasing carbenicillin disodium concentrations for one month. In this experiment, thick and short hairy roots were induced at all induction sites of C. annuum while thin, elongated hairy roots appeared mostly at wound sites of C. frutescens. Overall, the hairy root induction percentages of C. frutescens were higher compared with C. annuum. Hairy root initiation was observed earliest using radicles (1st week), followed by cotyledons (2nd week), and hypocotyls (3rd week). Cotyledon explants of both species had the highest induction frequency with all strains compared with the other explants types. Strains ATCC 13333 and ATCC 15834 were the most favourable for C. frutescens while ATCC 43056 and ATCC 43057 were the most favourable for C. annuum. The interactions between the different explants and strains showed significant differences with p-values < 0.0001 in both Capsicum species. Both Capsicum species were amenable to A. rhizogenes infection and hairy root induction is recommended for use as an alternative explants in future plant-based studies.

  2. Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants

    PubMed Central

    2014-01-01

    Background Capsicum annuum and Capsicum frutescens, also known as “chilies”, belong to the Solanaceae family and have tremendous beneficial properties. The application of hairy root culture may become an alternative method for future development of these species by adding value, such as by increasing secondary metabolites and improving genetic and biochemical stability compared with normal Capsicum plants. Therefore, in this research, different types of explants of both species were infected with various Agrobacterium rhizogenes strains to provide more information about the morphology and induction efficiency of hairy roots. After 2 weeks of in vitro seed germination, young seedling explants were cut into three segments; the cotyledon, hypocotyl, and radical. Then, the explants were co-cultured with four isolated A. rhizogenes strains in Murashige & Skoog culture media (MS) containing decreasing carbenicillin disodium concentrations for one month. Results In this experiment, thick and short hairy roots were induced at all induction sites of C. annuum while thin, elongated hairy roots appeared mostly at wound sites of C. frutescens. Overall, the hairy root induction percentages of C. frutescens were higher compared with C. annuum. Hairy root initiation was observed earliest using radicles (1st week), followed by cotyledons (2nd week), and hypocotyls (3rd week). Cotyledon explants of both species had the highest induction frequency with all strains compared with the other explants types. Strains ATCC 13333 and ATCC 15834 were the most favourable for C. frutescens while ATCC 43056 and ATCC 43057 were the most favourable for C. annuum. The interactions between the different explants and strains showed significant differences with p-values < 0.0001 in both Capsicum species. Conclusions Both Capsicum species were amenable to A. rhizogenes infection and hairy root induction is recommended for use as an alternative explants in future plant-based studies. PMID

  3. LEE-encoded regulator (Ler) mutants elicit serotype-specific protection, but not cross protection, against attaching and effacing E. coli strains.

    PubMed

    Zhu, C; Feng, S; Yang, Z; Davis, K; Rios, H; Kaper, J B; Boedeker, E C

    2007-02-26

    We previously showed that single dose orogastric immunization with an attenuated regulatory Lee-encoded regulator (ler) mutant of the rabbit enteropathogenic Escherichia coli (REPEC) strain E22 (O103:H2) protected rabbits from fatal infection with the highly virulent parent strain. In the current study we assessed the degree of homologous (serotype-specific) and heterologous (cross-serotype) protection induced by immunization with REPEC ler mutant strains of differing serotypes, or with a prototype strain RDEC-1 (O15:H-) which expresses a full array of ler up-regulated proteins. We constructed an additional ler mutant using RDEC-1 thus, permitting immunization with a ler mutant of either serotype, O15 or O103, followed by challenge with a virulent REPEC strain of the same or different serotypes. Consistent with our previous data, the current study demonstrated that rabbits immunized with a RDEC-1 ler mutant were protected from challenge with virulent RDEC-H19A (RDEC-1 transduced with Shiga toxin-producing phage H19A) of the same serotype. Rabbits immunized with RDEC-1 or E22 derivative ler mutants demonstrated significant increase in serum antibody titers to the respective whole bacterial cells expressing O antigen but not to the LEE-encoded proteins. However, immunization with the ler mutants of either E22 or RDEC-1 failed to protect rabbits from infections with virulent organisms belonging to different serotypes. In contrast, rabbits immunized with the prototype RDEC-1 were cross protected against challenge with the heterologous E22 strain as shown by normal weight gain, and the absence of clinical signs of disease or characteristic attaching and effacing (A/E) lesions. Immunization with RDEC-1 induced significantly elevated serum IgG titers to LEE-encoded proteins. We thus, demonstrated homologous protection induced by the REPEC ler mutants and heterologous protection by RDEC-1. The observed correlation between elevated immune responses to the LEE

  4. [Induction of PBP2' by antibiotics and disinfectants in MRSE].

    PubMed

    Hen, Karen; Imafuku, Yuji; Yoshida, Hiroshi

    2008-11-01

    Methicilllin-resitant Staphylococcus aureus (MRSA) is still the most important bacterium for hospital infection control, and is known to exhibit beta-lactam resistance. Moreover, the increase in PBP2'-producing methicillin-resistant coagulase-negaive Staphylococcus (MR-CNS), especially methicillin-resistant S. epidermidis (MRSE) has been problematic. In this study, we investigated the induction of PBP2' by MPIPC, other antibiotics and disinfectants in MRSE. The bacterial strains used were MRSE isolated in our clinical laboratory. MRSA-LA 'Seiken' was used for the detection of PBP2'. To investigate induction of PBP2' by MPIPC in MRSE, MRSE was cultured on the medium containing MPIPC at 11 different concentrations from 0.0001 to 6 microg/ml, and PBP2' induction was investigated. Strains in which no induction was noted at a low MPIPC concentration were cultured with other antibiotic discs and discs impregnated with various disinfectants, and PBP2' was detected in colonies that grew around the disc and PBP2' induction was investigated. In the culture on MPIPC-supplemented medium, PBP2' was detected in all strains at 0.01-6 microg/ml. At 0.001 and 0.0001 microg/ml, 8/10 and 4/10 were positive, respectively. Addition of another beta-lactam, particularly cephem antibiotics, induced PBP2' in some strains that were negative at 0.0001 microg/ml. In cultures with disinfectants, inhibition zones were noted, but no PBP2' was induced. PBP2' was induced by a low beta-lactam and was not by disinfectants in MRSE.

  5. Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties.

    PubMed

    Di Candilo, M; Bonatti, P M; Guidetti, C; Focher, B; Grippo, C; Tamburini, E; Mastromei, G

    2010-01-01

    To study the effect of selected bacterial strains on hemp water-retting and properties of retted fibre. The trials were performed in laboratory tanks. The traditional water-retting process, without inoculum addition, was compared to a process modified by inoculating water tanks with two selected pectinolytic bacteria: the anaerobic strain Clostridium sp. L1/6 and the aerobic strain Bacillus sp. ROO40B. Six different incubation times were compared. Half the fibre obtained from each tank was combed. Micromorphological analyses were performed by scanning electron microscopy on uncombed and combed fibres. Moreover, organoleptic and chemical analyses of uncombed fibres were performed. The inoculum, besides speeding up the process, significantly improved the fibre quality. The fibre was not damaged by mechanical hackling, thanks to the good retting level obtained by the addition of selected strains, differently to what happened with the traditionally retted fibre. The best fibre quality was obtained after 3-4 days of retting with the addition of the bacterial inoculum. Retting is the major limitation to an efficient production of high-quality hemp fibres. The water-retting process and fibre quality were substantially improved by simultaneously inoculating water tanks with two selected pectinolytic strains.

  6. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042

    PubMed Central

    2018-01-01

    ABSTRACT Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae, cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli, out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue (hns2). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae. IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool. PMID

  7. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042.

    PubMed

    Prieto, A; Bernabeu, M; Aznar, S; Ruiz-Cruz, S; Bravo, A; Queiroz, M H; Juárez, A

    2018-01-01

    Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae , cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli , out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue ( hns2 ). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae . IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool.

  8. Characterizing RecA-Independent Induction of Shiga toxin2-Encoding Phages by EDTA Treatment

    PubMed Central

    Imamovic, Lejla; Muniesa, Maite

    2012-01-01

    Background The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. Methodology/Principal Findings The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. Conclusions/Significance Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and in the emergence of new pathogenic strains. PMID:22393404

  9. Investigation of prevalence of free Shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages and its correlation with STEC bacterial hosts in a produce-growing area in Salinas, California.

    PubMed

    Liao, Yen-Te; Quintela, Irwin A; Nguyen, Kimberly; Salvador, Alexandra; Cooley, Michael B; Wu, Vivian C H

    2018-01-01

    Shiga toxin-producing E. coli (STEC) causes approximately 265,000 illnesses and 3,600 hospitalizations annually and is highly associated with animal contamination due to the natural reservoir of ruminant gastrointestinal tracts. Free STEC-specific bacteriophages against STEC strains are also commonly isolated from fecal-contaminated environment. Previous studies have evaluated the correlation between the prevalence of STEC-specific bacteriophages and STEC strains to improve animal-associated environment. However, the similar information regarding free STEC-specific bacteriophages prevalence in produce growing area is lacking. Thus, the objectives of this research were to determine the prevalence of STEC-specific phages, analyze potential effects of environmental factors on the prevalence of the phages, and study correlations between STEC-specific bacteriophages and the bacterial hosts in pre-harvest produce environment. Surface water from 20 samples sites was subjected to free bacteriophage isolation using host strains of both generic E. coli and STEC (O157, six non-O157 and one O179 strains) cocktails, and isolation of O157 and non-O157 STEC strains by use of culture methods combined with PCR-based confirmation. The weather data were obtained from weather station website. Free O145- and O179-specific bacteriophages were the two most frequently isolated bacteriophages among all (O45, O145, O157 and O179) in this study. The results showed June and July had relatively high prevalence of overall STEC-specific bacteriophages with minimum isolation of STEC strains. In addition, the bacteriophages were likely isolated in the area-around or within city-with predominant human impact, whereas the STEC bacterial isolates were commonly found in agriculture impact environment. Furthermore, there was a trend that the sample sites with positive of free STEC bacteriophage did not have the specific STEC bacterial hosts. The findings of the study enable us to understand the ecology

  10. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches.

    PubMed

    Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V

    2018-04-01

    Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Urea Amendment Decreases Microbial Diversity and Selects for Specific Nitrifying Strains in Eight Contrasting Agricultural Soils

    PubMed Central

    Staley, Christopher; Breuillin-Sessoms, Florence; Wang, Ping; Kaiser, Thomas; Venterea, Rodney T.; Sadowsky, Michael J.

    2018-01-01

    Application of nitrogen (N) fertilizers, predominantly as urea, is a major source of reactive N in the environment, with wide ranging effects including increased greenhouse gas accumulation in the atmosphere and aquatic eutrophication. The soil microbial community is the principal driver of soil N cycling; thus, improved understanding of microbial community responses to urea addition has widespread implications. We used next-generation amplicon sequencing of the 16S rRNA gene to characterize bacterial and archaeal communities in eight contrasting agricultural soil types amended with 0, 100, or 500 μg N g-1 of urea and incubated for 21 days. We hypothesized that urea amendment would have common, direct effects on the abundance and diversity of members of the microbial community associated with nitrification, across all soils, and would further affect the broader heterotrophic community resulting in decreased diversity and variation in abundances of specific taxa. Significant (P < 0.001) differences in bacterial community diversity and composition were observed by site, but amendment with only the greatest urea concentration significantly decreased Shannon indices. Expansion in the abundances of members of the families Microbacteriaceae, Chitinophagaceae, Comamonadaceae, Xanthomonadaceae, and Nitrosomonadaceae were also consistently observed among all soils (linear discriminant analysis score ≥ 3.0). Analysis of nitrifier genera revealed diverse, soil-specific distributions of oligotypes (strains), but few were correlated with nitrification gene abundances that were reported in a previous study. Our results suggest that the majority of the bacterial and archaeal community are likely unassociated with N cycling, but are significantly negatively impacted by urea application. Furthermore, these results reveal that amendment with high concentrations of urea may reduce nitrifier diversity, favoring specific strains, specifically those within the nitrifying genera

  12. Specific identification of Bacillus anthracis strains

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Thaiya; Deshpande, Samir; Hewel, Johannes; Liu, Hongbin; Wick, Charles H.; Yates, John R., III

    2007-01-01

    Accurate identification of human pathogens is the initial vital step in treating the civilian terrorism victims and military personnel afflicted in biological threat situations. We have applied a powerful multi-dimensional protein identification technology (MudPIT) along with newly generated software termed Profiler to identify the sequences of specific proteins observed for few strains of Bacillus anthracis, a human pathogen. Software termed Profiler was created to initially screen the MudPIT data of B. anthracis strains and establish the observed proteins specific for its strains. A database was also generated using Profiler containing marker proteins of B. anthracis and its strains, which in turn could be used for detecting the organism and its corresponding strains in samples. Analysis of the unknowns by our methodology, combining MudPIT and Profiler, led to the accurate identification of the anthracis strains present in samples. Thus, a new approach for the identification of B. anthracis strains in unknown samples, based on the molecular mass and sequences of marker proteins, has been ascertained.

  13. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains.

    PubMed

    Sharp, Jonathan O; Wood, Thomas K; Alvarez-Cohen, Lisa

    2005-03-05

    The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure. 2005 Wiley Periodicals, Inc.

  14. Evaluation of indigenous bacterial strains for biocontrol of the frogeye leaf spot of soya bean caused by Cercospora sojina.

    PubMed

    Simonetti, E; Carmona, M A; Scandiani, M M; García, A F; Luque, A G; Correa, O S; Balestrasse, K B

    2012-08-01

    Assessment of biological control of Cercospora sojina, causal agent of frogeye leaf spot (FLS) of soya bean, using three indigenous bacterial strains, BNM297 (Pseudomonas fluorescens), BNM340 and BNM122 (Bacillus amyloliquefaciens). From cultures of each bacterial strain, cell suspensions and cell-free supernatants were obtained and assayed to determine their antifungal activity against C. sojina. Both mycelial growth and spore germination in vitro were more strongly inhibited by bacterial cell suspensions than by cell-free supernatants. The Bacillus strains BNM122 and BNM340 inhibited the fungal growth to a similar degree (I ≈ 52-53%), while cells from P. fluorescens BNM297 caused a lesser reduction (I ≈ 32-34%) in the fungus colony diameter. The foliar application of the two Bacillus strains on soya bean seedlings, under greenhouse conditions, significantly reduced the disease severity with respect to control soya bean seedlings and those sprayed with BNM297. This last bacterial strain was not effective in controlling FLS in vivo. Our data demonstrate that the application of antagonistic bacteria may be a promising and environmentally friendly alternative to control the FLS of soya bean.   To our knowledge, this is the first report of biological control of C. sojina by using native Bacillus strains. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  15. Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth.

    PubMed

    Jeong, Hyung Uk; Mun, Hye Yeon; Oh, Hyung Keun; Kim, Seung Bum; Yang, Kwang Yeol; Kim, Iksoo; Lee, Hyang Burm

    2010-08-01

    To identify novel bioinsecticidal agents, a bacterial strain, Serratia sp. EML-SE1, was isolated from a dead larva of the lepidopteran diamondback moth (Plutella xylostella) collected from a cabbage field in Korea. In this study, the insecticidal activity of liquid cultures in Luria-Bertani broth (LBB) and nutrient broth (NB) of a bacterial strain, Serratia sp. EML-SE1 against thirty 3rd and 4th instar larvae of the diamondback moth was investigated on a Chinese cabbage leaf housed in a round plastic cage (Ø 10 x 6 cm). 72 h after spraying the cabbage leaf with LBB and NB cultures containing the bacterial strain, the mortalities of the larvae were determined to be 91.7% and 88.3%, respectively. In addition, the insecticidal activity on potted cabbage containing 14 leaves in a growth cage (165 x 83 x 124 cm) was found to be similar to that of the plastic cage experiment. The results of this study provided valuable information on the insecticidal activity of the liquid culture of a Serratia species against the diamondback moth.

  16. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction

    PubMed Central

    Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E.; Zhao, Tingchang; Huang, Qi

    2015-01-01

    Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains. PMID:26061051

  17. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction.

    PubMed

    Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2015-01-01

    Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains.

  18. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    PubMed

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-02-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.

  19. Beneficial role of hydrophytes in removing Cr(VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium.

    PubMed

    Faisal, Muhammad; Hasnain, Shahida

    2005-01-01

    This study deals with the use of three chromium-resistant bacterial strains (Ochrobactrum intermedium CrT-1, Brevibacterium CrT-13, and CrM-1) in conjunction with Eichornia crassipes for the removal of toxic chromium from wastewater. Bacterial strains resulted in reduced uptake of chromate into inoculated plants as compared to noninoculated control plants. In the presence of different heavy metals, chromium uptake into the plants was 28.7 and 7.15% less at an initial K2CrO4 concentration of 100 and 500 microg ml(-1) in comparison to a metal free chromium solution. K2CrO4 uptake into the plant occurred at different pHs tested, but maximum uptake was observed at pH 5. Nevertheless, the bacterial strains caused some decrease in chromate uptake into the plants, but the combined effect of plants and bacterial strains conduce more removal of Cr(VI) from the solution.

  20. Selection of peptidoglycan-specific aptamers for bacterial cells identification.

    PubMed

    Ferreira, Iêda Mendes; de Souza Lacerda, Camila Maria; de Faria, Lígia Santana; Corrêa, Cristiane Rodrigues; de Andrade, Antero Silva Ribeiro

    2014-12-01

    Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.

  1. Bioremediation of PCB-contaminated shallow river sediments: The efficacy of biodegradation using individual bacterial strains and their consortia.

    PubMed

    Horváthová, Hana; Lászlová, Katarína; Dercová, Katarína

    2018-02-01

    Elimination of dangerous toxic and hydrophobic chlorinated aromatic compounds, mainly PCBs from the environment, is one of the most important aims of the environmental biotechnologies. In this work, biodegradation of an industrial mixture of PCBs (Delor 103, equivalent to Aroclor 1242) was performed using bacterial consortia composed of four bacterial strains isolated from the historically PCB-contaminated sediments and characterized as Achromobacter xylosoxidans, Stenotrophomonas maltophilia, Ochrobactrum anthropi and Rhodococcus ruber. The objective of this research was to determine the biodegradation ability of the individual strains and artificially prepared consortia composed of two or three bacterial strains mentioned above. Based on the growth parameters, six consortia were constructed and inoculated into the historically contaminated sediment samples collected in the efflux canal of Chemko Strážske plant - the former producer of the industrial mixtures of PCBs. The efficacy of the biotreatment, namely bioaugmentation, was evaluated by determination of ecotoxicity of treated and non-treated sediments. The most effective consortia were those containing the strain R. ruber. In the combination with A. xylosoxidans, the biodegradation of the sum of the indicator congeners was 85% and in the combination with S. maltophilia nearly 80%, with inocula applied in the ratio 1:1 in both cases. Consortium containing the strain R. ruber and S. maltophilia showed pronounced degradation of the highly chlorinated PCB congeners. Among the consortia composed of three bacterial strains, only that consisting of O. anthropi, R. ruber and A. xylosoxidans showed higher biodegradation (73%). All created consortia significally reduced the toxicity of the contaminated sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  3. Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays.

    PubMed

    Johansson, Anna H; Bejai, Sarosh; Niazi, Adnan; Manzoor, Shahid; Bongcam-Rudloff, Erik; Meijer, Johan

    2014-12-01

    Certain strains of Bacillus amyloliquefaciens can colonize plants and improve growth and stress management. In order to study these effects, bacterial growth dynamics on plants and in the rhizosphere are of interest calling for specific analytical tools. For that purpose, quantitative real-time PCR (qPCR) assays were developed in order to differentiate among three closely related B. amyloliquefaciens subsp. plantarum strains (UCMB5033, UCMB5036, UCMB5113) and to determine their levels with high accuracy. Oligonucleotide primers were designed for strain unique gene sequences and used for SYBR green based qPCR analysis. Standard curves covered a wide linear range (10(6)) of DNA amounts with the lowest detection level at 50 fg. Post-reaction melting curve analysis showed only a single product. Accurate threshold cycles were obtained, even in the presence of high excess of related Bacillus strains and total bacterial DNA from soil. Analysis of Bacillus colonisation after seed treatment of two oilseed rape cultivars (Oase and Ritz) grown on agar support showed a time dependent effect but that the bacteria mostly were found on root tissues and little on green tissues. The colonisation on plants grown in soil varied among the Bacillus strains where Oase seemed to house more bacteria than Ritz. Applied as a mixture, all three Bacillus strains co-existed on the roots of plants grown in soil. The qPCR assay in combination with other techniques will be a powerful tool to study plant interactions of these B. amyloliquefaciens biocontrol agents to further understand the requirements for successful interactions and improvement of plant properties.

  4. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.).

    PubMed

    Costerousse, Benjamin; Schönholzer-Mauclaire, Laurie; Frossard, Emmanuel; Thonar, Cécile

    2018-01-01

    Soil and plant inoculation with heterotrophic zinc-solubilizing bacteria (ZSB) is considered a promising approach for increasing zinc (Zn) phytoavailability and enhancing crop growth and nutritional quality. Nevertheless, it is necessary to understand the underlying bacterial solubilization processes to predict their repeatability in inoculation strategies. Acidification via gluconic acid production remains the most reported process. In this study, wheat rhizosphere soil serial dilutions were plated on several solid microbiological media supplemented with scarcely soluble Zn oxide (ZnO), and 115 putative Zn-solubilizing isolates were directly detected based on the formation of solubilization halos around the colonies. Eight strains were selected based on their Zn solubilization efficiency and siderophore production capacity. These included one strain of Curtobacterium , two of Plantibacter , three strains of Pseudomonas , one of Stenotrophomonas , and one strain of Streptomyces In ZnO liquid solubilization assays, the presence of glucose clearly stimulated organic acid production, leading to medium acidification and ZnO solubilization. While solubilization by Streptomyces and Curtobacterium was attributed to the accumulated production of six and seven different organic acids, respectively, the other strains solubilized Zn via gluconic, malonic, and oxalic acids exclusively. In contrast, in the absence of glucose, ZnO dissolution resulted from proton extrusion (e.g., via ammonia consumption by Plantibacter strains) and complexation processes (i.e., complexation with glutamic acid in cultures of Curtobacterium ). Therefore, while gluconic acid production was described as a major Zn solubilization mechanism in the literature, this study goes beyond and shows that solubilization mechanisms vary among ZSB and are strongly affected by growth conditions. IMPORTANCE Barriers toward a better understanding of the mechanisms underlying zinc (Zn) solubilization by bacteria

  5. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  6. Production and Reutilization of Fluorescent Dissolved Organic Matter by a Marine Bacterial Strain, Alteromonas macleodii

    PubMed Central

    Goto, Shuji; Tada, Yuya; Suzuki, Koji; Yamashita, Youhei

    2017-01-01

    The recalcitrant fraction of marine dissolved organic matter (DOM) plays an important role in carbon storage on the earth’s surface. Bacterial production of recalcitrant DOM (RDOM) has been proposed as a carbon sequestration process. It is still unclear whether bacterial physiology can affect RDOM production. In this study, we conducted a batch culture using the marine bacterial isolate Alteromonas macleodii, a ubiquitous gammaproteobacterium, to evaluate the linkage between bacterial growth and DOM production. Glucose (1 mmol C L-1) was used as the sole carbon source, and the bacterial number, the DOM concentration in terms of carbon, and the excitation–emission matrices (EEMs) of DOM were monitored during the 168-h incubation. The incubation period was partitioned into the exponential growth (0–24 h) and stationary phases (24–168 h) based on the growth curve. Although the DOM concentration decreased during the exponential growth phase due to glucose consumption, it remained stable during the stationary phase, corresponding to approximately 4% of the initial glucose in terms of carbon. Distinct fluorophores were not evident in the EEMs at the beginning of the incubation, but DOM produced by the strain exhibited five fluorescent peaks during exponential growth. Two fluorescent peaks were similar to protein-like fluorophores, while the others could be categorized as humic-like fluorophores. All fluorophores increased during the exponential growth phase. The tryptophan-like fluorophore decreased during the stationary phase, suggesting that the strain reused the large exopolymer. The tyrosine-like fluorophore seemed to be stable during the stationary phase, implying that the production of tyrosine-containing small peptides through the degradation of exopolymers was correlated with the reutilization of the tyrosine-like fluorophore. Two humic-like fluorophores that showed emission maxima at the longer wavelength (525 nm) increased during the stationary phase

  7. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    PubMed Central

    Mishra, Susmita

    2010-01-01

    Background: Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI) compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter). Materials and Methods: Our investigation involved microbial remediation of Cr(VI) without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI) were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30°C. At about 50 mg/L initial Cr(VI) concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI). PMID:20976016

  8. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    PubMed

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  9. A TaqMan-based real time PCR assay for specific detection and quantification of Xylella fastidiosa strains causing bacterial leaf scorch in oleander.

    PubMed

    Guan, Wei; Shao, Jonathan; Singh, Raghuwinder; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2013-02-15

    A TaqMan-based real-time PCR assay was developed for specific detection of strains of X. fastidiosa causing oleander leaf scorch. The assay uses primers WG-OLS-F1 and WG-OLS-R1 and the fluorescent probe WG-OLS-P1, designed based on unique sequences found only in the genome of oleander strain Ann1. The assay is specific, allowing detection of only oleander-infecting strains, not other strains of X. fastidiosa nor other plant-associated bacteria tested. The assay is also sensitive, with a detection limit of 10.4fg DNA of X. fastidiosa per reaction in vitro and in planta. The assay can also be applied to detect low numbers of X. fastidiosa in insect samples, or further developed into a multiplex real-time PCR assay to simultaneously detect and distinguish diverse strains of X. fastidiosa that may occupy the same hosts or insect vectors. Specific and sensitive detection and quantification of oleander strains of X. fastidiosa should be useful for disease diagnosis, epidemiological studies, management of oleander leaf scorch disease, and resistance screening for oleander shrubs. Published by Elsevier B.V.

  10. Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus

    PubMed Central

    Goerke, Christiane; Köller, Johanna; Wolz, Christiane

    2006-01-01

    In Staphylococcus aureus strains of human origin, phages which integrate into the chromosomal gene coding for β-hemolysin (hlb) are widely distributed. Most of them encode accessory virulence determinants such as staphylokinase (sak) or enterotoxins. Here, we analyzed the effects of ciprofloxacin and trimethoprim on phage induction and expression of phage-encoded virulence factors by using isolates from patients with cystic fibrosis for which the induction of hlb-converting phages was demonstrated in vivo (C. Goerke, S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl, and C. Wolz, J. Infect. Dis. 189:724-734, 2004) as well as a φ13 lysogen of phage-cured strain 8325-4. Treatment of lysogens with subinhibitory concentrations of either antibiotic resulted in (i) delysogenization of strains resembling the isolates picked up after chronic lung infection and (ii) replication of phages in the bacterial host in a dose-dependent manner. Ciprofloxacin treatment resulted in enhanced recA transcription, indicating involvement of the SOS response in phage mobilization. Induction of φ13 was linked to elevated expression of the phage-encoded virulence gene sak, chiefly due to the activation of latent phage promoters. In summary, we could show the induction of hlb-converting phages and a subsequent virulence modulation of the host bacterium by ciprofloxacin and trimethoprim. PMID:16377683

  11. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    PubMed

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  12. Induction of specific neuron types by overexpression of single transcription factors.

    PubMed

    Teratani-Ota, Yusuke; Yamamizu, Kohei; Piao, Yulan; Sharova, Lioudmila; Amano, Misa; Yu, Hong; Schlessinger, David; Ko, Minoru S H; Sharov, Alexei A

    2016-10-01

    Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.

  13. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    PubMed

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    PubMed

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Liver Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of inter-individual variability in TCE metabolism and toxicity, especially in the liver. We tested a hypothesis that amounts of oxidative metabolites of TCE in mouse liver are associated with liver-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various liver toxicity phenotypes. In sub-acute study, inter-strain variability in TCE metabolite amounts was observed in serum and liver. No induction of Cyp2e1 protein levels in liver was detected. Serum and liver levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1, but not with degree of induction in hepatocellular proliferation. In sub-chronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Liver protein levels of Cyp2e1, Adh and Aldh2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE. PMID:25424544

  16. Mutation induction in bacteria after heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Kozubek, S.

    1994-01-01

    From a compilation of experimental data on the mutagenic effects of heavy ions in bacteria, main conclusions have been drawn as follows: (1) The mutagenic efficacy of heavy ions in bacteria depends on physical and biological variables. Physical variables are the radiation dose, energy and charge of the ion; the biological variables are the bacterial strain, the repair genotype of bacteria, and the endpoint investigated (type of mutation, induction of enzymes related to mutagenesis); (2) The responses on dose or fluence are mainly linear or linear quadratic. The quadratic component, if found for low LET radiation, is gradually reduced with increasing LET; (3) At low values of Z and LET the cross section of mutation induction sigma m (as well as SOS response, sigma sos. and lambda phage induction, sigma lambda versus LET curves can be quite consistently described by a common function which increases up to approximately 100 keV/mu m. For higher LET values, the sigma(m) versus LET curves show the so-called 'hooks' observed also for other endpoints; (4) For light ions (Z is less than or equal to 4), the cross sections mostly decrease with increasing ion energy, which is probably related to the decrease of the specific energy departed by the ion inside the sensitive volume (cell). For ions in the range of Z = 10, sigma(m) is nearly independent on the ion energy. For heavier ions (Z is greater than or equal to 16), sigma(m) increases with the energy up to a maximum or saturation around 10 MeV/u. The increment becomes steeper with increasing atomic number of the ion. It correlates with the increasing track radius of the heavy ion; (5) The mutagenic efficiency per lethal event changes slightly with ion energy, if Z is small indicating a rough correlation between cellular lethality and mutation induction, only. For ions of higher Z this relation increases with energy, indicating a change in the 'mode' of radiation action from 'killing-prone' to 'mutation-prone'; and (6

  17. Xenorhabdus bovienii Strain Diversity Impacts Coevolution and Symbiotic Maintenance with Steinernema spp. Nematode Hosts

    PubMed Central

    Murfin, Kristen E.; Lee, Ming-Min; McDonald, Bradon R.; Larget, Bret; Forst, Steven; Stock, S. Patricia; Currie, Cameron R.

    2015-01-01

    ABSTRACT Microbial symbionts provide benefits that contribute to the ecology and fitness of host plants and animals. Therefore, the evolutionary success of plants and animals fundamentally depends on long-term maintenance of beneficial associations. Most work investigating coevolution and symbiotic maintenance has focused on species-level associations, and studies are lacking that assess the impact of bacterial strain diversity on symbiotic associations within a coevolutionary framework. Here, we demonstrate that fitness in mutualism varies depending on bacterial strain identity, and this is consistent with variation shaping phylogenetic patterns and maintenance through fitness benefits. Through genome sequencing of nine bacterial symbiont strains and cophylogenetic analysis, we demonstrate diversity among Xenorhabdus bovienii bacteria. Further, we identified cocladogenesis between Steinernema feltiae nematode hosts and their corresponding X. bovienii symbiont strains, indicating potential specificity within the association. To test the specificity, we performed laboratory crosses of nematode hosts with native and nonnative symbiont strains, which revealed that combinations with the native bacterial symbiont and closely related strains performed significantly better than those with more divergent symbionts. Through genomic analyses we also defined potential factors contributing to specificity between nematode hosts and bacterial symbionts. These results suggest that strain-level diversity (e.g., subspecies-level differences) in microbial symbionts can drive variation in the success of host-microbe associations, and this suggests that these differences in symbiotic success could contribute to maintenance of the symbiosis over an evolutionary time scale. PMID:26045536

  18. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains

    PubMed Central

    1980-01-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction. PMID:6249881

  19. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains.

    PubMed

    Kozak, C A; Rowe, W P

    1980-07-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction.

  20. Functional Characterization of Probiotic Potential of Novel Pigmented Bacterial Strains for Aquaculture Applications.

    PubMed

    Jinendiran, Sekar; Boopathi, Seenivasan; Sivakumar, Natesan; Selvakumar, Gopal

    2017-11-27

    The bioprospecting proficient of novel pigmented probiotic strains with respect to aquaculture industry was unexplored hitherto. In this study, we investigated the probiotic potential of novel pigmented bacterial strains isolated from the indigenous soil sediments in their vicinal habitats, which were screened for their antimicrobial activity against aquatic pathogens using agar well diffusion assay. The strains namely Exiguobacterium acetylicum (S01), Aeromonas veronii (V03), and Chryseobacterium joostei (V04) were phenotypically identified and confirmed by 16S rRNA gene sequence analysis. Further characterization revealed that strains S01 and V03 survive relatively in lower pH and higher bile salt concentrations and possess good adherence ability and broad-spectrum antibiotic susceptibility. The isolate S01 exhibited the higher adhesion ability to hydrocarbons (82%) and mannose-specific adhesion (msa) gene expression. Additionally, the probiotic effects were evaluated in Artemia nauplii fed with algae supplemented with S01, V03, and V04 strains (2.7 × 10 7  cfu/mL) for 3 days under axenic environment. We observed a significant increase (p < 0.05) in the survival rate of Artemia nauplii treated with S01 (83 ± 5%) and V03 (55 ± 5%), whereas the survival rate was only 30 ± 0% in the untreated group. Moreover, the individual length (IL) was increased in treated group S01 (156.7 ± 2.2 μm), V03 (146.1 ± 3.4 μm), and V04 (134.4 ± 2.5 μm) compared with untreated group (116.0 ± 4.8 μm). Our results revealed that E. acetylicum S01 exhibits desirable functional probiotic attributes compared to A. veronii and C. joostei and it would be a promising probiotic strain, which can be efficiently used in the aquaculture applications.

  1. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds. PMID:27609931

  2. Strain/species identification in metagenomes using genome-specific markers

    PubMed Central

    Tu, Qichao; He, Zhili; Zhou, Jizhong

    2014-01-01

    Shotgun metagenome sequencing has become a fast, cheap and high-throughput technology for characterizing microbial communities in complex environments and human body sites. However, accurate identification of microorganisms at the strain/species level remains extremely challenging. We present a novel k-mer-based approach, termed GSMer, that identifies genome-specific markers (GSMs) from currently sequenced microbial genomes, which were then used for strain/species-level identification in metagenomes. Using 5390 sequenced microbial genomes, 8 770 321 50-mer strain-specific and 11 736 360 species-specific GSMs were identified for 4088 strains and 2005 species (4933 strains), respectively. The GSMs were first evaluated against mock community metagenomes, recently sequenced genomes and real metagenomes from different body sites, suggesting that the identified GSMs were specific to their targeting genomes. Sensitivity evaluation against synthetic metagenomes with different coverage suggested that 50 GSMs per strain were sufficient to identify most microbial strains with ≥0.25× coverage, and 10% of selected GSMs in a database should be detected for confident positive callings. Application of GSMs identified 45 and 74 microbial strains/species significantly associated with type 2 diabetes patients and obese/lean individuals from corresponding gastrointestinal tract metagenomes, respectively. Our result agreed with previous studies but provided strain-level information. The approach can be directly applied to identify microbial strains/species from raw metagenomes, without the effort of complex data pre-processing. PMID:24523352

  3. Strain-specific resistance to Potato virus Y (PVY) in potato and its effect on the relative abundance of PVY strains in commercial potato fields

    USDA-ARS?s Scientific Manuscript database

    Potato virus Y (PVY) is a serious threat to potato production due to negative effects on tuber yield and quality, and in particular, due to induction of potato tuber necrotic ringspot disease (PTNRD). PTNRD is typically associated with recombinant strains of PVY. These recombinant strains have been ...

  4. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains: Bee Venom an Effective Potential for Bacteria.

    PubMed

    Zolfagharian, Hossein; Mohajeri, Mohammad; Babaie, Mahdi

    2016-09-01

    Mellitine, a major component of bee venom (BV, Apis mellifera ), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus ( S. aureus ), Salmonella typhimurium , Escherichia coli ( E. coli ) O157:H7, Pseudomonas aeruginosa , Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. BV was found to have a significant antibacterial effect against E. coli , S. aureus , and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.

  5. Inflammasome and Fas-Mediated IL-1β Contributes to Th17/Th1 Cell Induction in Pathogenic Bacterial Infection In Vivo.

    PubMed

    Uchiyama, Ryosuke; Yonehara, Shin; Taniguchi, Shun'ichiro; Ishido, Satoshi; Ishii, Ken J; Tsutsui, Hiroko

    2017-08-01

    CD4 + Th cells play crucial roles in orchestrating immune responses against pathogenic microbes, after differentiating into effector subsets. Recent research has revealed the importance of IFN-γ and IL-17 double-producing CD4 + Th cells, termed Th17/Th1 cells, in the induction of autoimmune and inflammatory diseases. In addition, Th17/Th1 cells are involved in the regulation of infection caused by the intracellular bacterium Mycobacterium tuberculosis in humans. However, the precise mechanism of Th17/Th1 induction during pathogen infection is unclear. In this study, we showed that the inflammasome and Fas-dependent IL-1β induces Th17/Th1 cells in mice, in response to infection with the pathogenic intracellular bacterium Listeria monocytogenes In the spleens of infected wild-type mice, Th17/Th1 cells were induced, and expressed T-bet and Rorγt. In Pycard -/- mice, which lack the adaptor molecule of the inflammasome (apoptosis-associated speck-like protein containing a caspase recruitment domain), Th17/Th1 induction was abolished. In addition, the Fas-mediated IL-1β production was required for Th17/Th1 induction during bacterial infection: Th17/Th1 induction was abolished in Fas -/- mice, whereas supplementation with recombinant IL-1β restored Th17/Th1 induction via IL-1 receptor 1 (IL-1R1), and rescued the mortality of Fas -/- mice infected with Listeria IL-1R1, but not apoptosis-associated speck-like protein containing a caspase recruitment domain or Fas on T cells, was required for Th17/Th1 induction, indicating that IL-1β stimulates IL-1R1 on T cells for Th17/Th1 induction. These results indicate that IL-1β, produced by the inflammasome and Fas-dependent mechanisms, contributes cooperatively to the Th17/Th1 induction during bacterial infection. This study provides a deeper understanding of the molecular mechanisms underlying Th17/Th1 induction during pathogenic microbial infections in vivo. Copyright © 2017 by The American Association of Immunologists

  6. Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community.

    PubMed

    Al-Dhabaan, Fahad Abdullah M; Bakhali, Ali Hassan

    2017-05-01

    Routine manufacture, detonation and disposal of explosives in land and groundwater have resulted in complete pollution. Explosives are xenobiotic compounds, being toxic to biological systems, and their recalcitrance leads to persistence in the environment. The methods currently used for the remediation of explosive contaminated sites are expensive and can result in the formation of toxic products. The present study aimed to investigate the bacterial strains using the Biolog plates in the soil from the Riyadh community. The microbial strains were isolated using the spread plate technique and were identified using the Biolog method. In this study we have analyzed from bacterial families of soil samples, obtained from the different sites in 5 regions at Explosive Institute. Our results conclude that Biolog MicroPlates were developed for the rapid identification of bacterial isolates by sole-carbon source utilization and can be used for the identification of bacteria. Out of five communities, only four families of bacteria indicate that the microbial community lacks significant diversity in region one from the Riyadh community in Saudi Arabia. More studies are needed to be carried out in different regions to validate our results.

  7. Strain-dependent induction of epithelial cell oncosis by Campylobacter jejuni is correlated with invasion ability and is independent of cytolethal distending toxin.

    PubMed

    Kalischuk, Lisa D; Inglis, G Douglas; Buret, Andre G

    2007-09-01

    Induction of host cell death is thought to play an important role in bacterial pathogenesis. Campylobacter jejuni is a prevalent cause of bacterial enteritis; however, its effects on enterocytes remain unclear. The present study indicates for the first time that C. jejuni induces oncotic, rather than apoptotic death of T84 enterocytes. C. jejuni-treated enterocytes exhibited extensive cytoplasmic vacuolation, rapid (3-6 h) loss of plasma membrane integrity ('cytotoxicity'), loss of mitochondrial transmembrane potential, and ATP depletion. Enterocytes also exhibited increased oligonucleosomal DNA fragmentation, a feature characteristic of apoptosis. However, consistent with a non-apoptotic process, DNA fragmentation and cytotoxicity were not caspase dependent. During apoptosis, caspases mediate cleavage of poly(ADP-ribose) polymerase; however, cleavage was not observed in C. jejuni-treated monolayers. Cytotoxicity, ATP depletion and DNA fragmentation were not prevented by the deletion of the cytolethal distending toxin (CDT) gene, indicating that C. jejuni causes enterocyte oncosis via a mechanism that is CDT independent. The ability to cause oncosis was significantly decreased in a FlaAFlaB mutant (CDT(+)) that was defective in the ability to adhere and invade enterocytes. Analysis of clinical isolates revealed that oncosis was strain dependent and correlated with increased invasive ability. These observations offer new insights into the pathogenesis of C. jejuni infection.

  8. Comparisons of Internal Behavior after Exposure to Flavobacterium psychrophilum between Two Ayu (Plecoglossus altivelis altivelis) Strains Showing Different Cumulative Mortality to Bacterial Cold Water Disease

    PubMed Central

    KAGEYAMA, Tetsushi; KUWADA, Tomonori; OHARA, Kenichi; NOUNO, Aya; UMINO, Tetsuya; FURUSAWA, Shuichi

    2013-01-01

    ABSTRACT Bacterial cold water disease (BCWD) in ayu (Plecoglossus altivelis altivelis) has a serious impact on aquaculture and fisheries. There is known to be a significant difference among ayu strains with regard to mortality caused by BCWD. In this study, the immune response of different ayu strains against Flavobacterium psychrophilum infection was observed. One strain was resistant to infection by F. psychrophilum, and the other was susceptible to infection by the same bacteria. The number of bacteria in the body was observed in each ayu strain, and the change in bacterial counts was similar. However, there was a significant difference in bacterial count in the spleen between the two strains on days 6, 9, 12 and 15 after exposure. To observe the immune response against F. psychrophilum, agglutination assay using serum was performed. An agglutination reaction in the resistant ayu strain was observed in 4 out of 6 ayu on day 6 after exposure, while no reactions in the susceptible ayu strain were observed in any sampled fish until day 12. However, some reactions in the susceptible ayu strain were observed in surviving ayu. These results indicate that there is a correlation between the presence of bacterial multiplication and agglutination reaction against F. psychrophilum. PMID:23902927

  9. Legionella pneumophila pangenome reveals strain-specific virulence factors.

    PubMed

    D'Auria, Giuseppe; Jiménez-Hernández, Nuria; Peris-Bondia, Francesc; Moya, Andrés; Latorre, Amparo

    2010-03-17

    Legionella pneumophila subsp. pneumophila is a gram-negative gamma-Proteobacterium and the causative agent of Legionnaires' disease, a form of epidemic pneumonia. It has a water-related life cycle. In industrialized cities L. pneumophila is commonly encountered in refrigeration towers and water pipes. Infection is always via infected aerosols to humans. Although many efforts have been made to eradicate Legionella from buildings, it still contaminates the water systems. The town of Alcoy (Valencian Region, Spain) has had recurrent outbreaks since 1999. The strain "Alcoy 2300/99" is a particularly persistent and recurrent strain that was isolated during one of the most significant outbreaks between the years 1999-2000. We have sequenced the genome of the particularly persistent L. pneumophila strain Alcoy 2300/99 and have compared it with four previously sequenced strains known as Philadelphia (USA), Lens (France), Paris (France) and Corby (England).Pangenome analysis facilitated the identification of strain-specific features, as well as some that are shared by two or more strains. We identified: (1) three islands related to anti-drug resistance systems; (2) a system for transport and secretion of heavy metals; (3) three systems related to DNA transfer; (4) two CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) systems, known to provide resistance against phage infections, one similar in the Lens and Alcoy strains, and another specific to the Paris strain; and (5) seven islands of phage-related proteins, five of which seem to be strain-specific and two shared. The dispensable genome disclosed by the pangenomic analysis seems to be a reservoir of new traits that have mainly been acquired by horizontal gene transfer and could confer evolutionary advantages over strains lacking them.

  10. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells.

    PubMed

    Mvubu, Nontobeko E; Pillay, Balakrishna; McKinnon, Lyle R; Pillay, Manormoney

    2018-04-01

    M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Identification by Subtractive Hybridization of a Novel Insertion Sequence Specific for Virulent Strains of Porphyromonas gingivalis

    PubMed Central

    Sawada, Koichi; Kokeguchi, Susumu; Hongyo, Hiroshi; Sawada, Satoko; Miyamoto, Manabu; Maeda, Hiroshi; Nishimura, Fusanori; Takashiba, Shogo; Murayama, Yoji

    1999-01-01

    Subtractive hybridization was employed to isolate specific genes from virulent Porphyromonas gingivalis strains that are possibly related to abscess formation. The genomic DNA from the virulent strain P. gingivalis W83 was subtracted with DNA from the avirulent strain ATCC 33277. Three clones unique to strain W83 were isolated and sequenced. The cloned DNA fragments were 885, 369, and 132 bp and had slight homology with only Bacillus stearothermophilus IS5377, which is a putative transposase. The regions flanking the cloned DNA fragments were isolated and sequenced, and the gene structure around the clones was revealed. These three clones were located side-by-side in a gene reported as an outer membrane protein. The three clones interrupt the open reading frame of the outer membrane protein gene. This inserted DNA, consisting of three isolated clones, was designated IS1598, which was 1,396 bp (i.e., a 1,158-bp open reading frame) in length and was flanked by 16-bp terminal inverted repeats and a 9-bp duplicated target sequence. IS1598 was detected in P. gingivalis W83, W50, and FDC 381 by Southern hybridization. All three P. gingivalis strains have been shown to possess abscess-forming ability in animal models. However, IS1598 was not detected in avirulent strains of P. gingivalis, including ATCC 33277. The IS1598 may interrupt the synthesis of the outer membrane protein, resulting in changes in the structure of the bacterial outer membrane. The IS1598 isolated in this study is a novel insertion element which might be a specific marker for virulent P. gingivalis strains. PMID:10531208

  12. A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp

    PubMed Central

    Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

    2012-01-01

    Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by “white tail” and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of “white tail” but of non-bacterial origin, the present disease was named as “bacterial white tail disease (BWTD)”. Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

  13. Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX

    PubMed Central

    Mulder, Joyce; Wels, Michiel; Kuipers, Oscar P.; Bron, Peter A.

    2017-01-01

    ABSTRACT In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies. IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially

  14. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  15. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes.

    PubMed

    LaRocca, Timothy J; Stivison, Elizabeth A; Hod, Eldad A; Spitalnik, Steven L; Cowan, Peter J; Randis, Tara M; Ratner, Adam J

    2014-08-26

    A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. In this work, we provide the first description of a new form of programmed cell death in erythrocytes (RBCs) that occurs as a consequence of cellular attack by human-specific bacterial toxins. By defining a new RBC

  16. Antiangiogenic activity of the lipophilic antimicrobial peptides from an endophytic bacterial strain isolated from red pepper leaf.

    PubMed

    Jung, Hye Jin; Kim, Yonghyo; Lee, Hyang Burm; Kwon, Ho Jeong

    2015-03-01

    The induction of angiogenesis is a crucial step in tumor progression, and therefore, efficient inhibition of angiogenesis is considered a powerful strategy for the treatment of cancer. In the present study, we report that the lipophilic antimicrobial peptides from EML-CAP3, a new endophytic bacterial strain isolated from red pepper leaf (Capsicum annuum L.), exhibit potent antiangiogenic activity both in vitro and in vivo. The newly obtained antimicrobial peptides effectively inhibited the proliferation of human umbilical vein endothelial cells at subtoxic doses. Furthermore, the peptides suppressed the in vitro characteristics of angiogenesis such as endothelial cell invasion and tube formation stimulated by vascular endothelial growth factor, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo without showing cytotoxicity. Notably, the angiostatic peptides blocked tumor cell-induced angiogenesis by suppressing the expression levels of hypoxia-inducible factor-1α and its target gene, vascular endothelial growth factor (VEGF). To our knowledge, our findings demonstrate for the first time that the antimicrobial peptides from EML-CAP3 possess antiangiogenic potential and may thus be used for the treatment of hypervascularized tumors.

  17. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  18. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    PubMed

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Induction of Strain-Transcending Immunity against Plasmodium chabaudi adami Malaria with a Multiepitope DNA Vaccine

    PubMed Central

    Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.

    2005-01-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504

  20. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn)

    PubMed Central

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3′H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat. PMID:27014239

  1. Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry.

    PubMed

    Angelakis, Emmanouil; Million, Matthieu; Henry, Mireille; Raoult, Didier

    2011-10-01

    Probiotic food is manufactured by adding probiotic strains simultaneously with starter cultures in fermentation tanks. Here, we investigate the accuracy and feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for bacterial identification at the species level in probiotic food and yoghurts. Probiotic food and yoghurts were cultured in Columbia and Lactobacillus specific agar and tested by quantitative real-time PCR (qPCR) for the detection and quantification of Lactobacillus sp. Bacterial identification was performed by MALDI-TOF analysis and by amplification and sequencing of tuf and 16S rDNA genes. We tested 13 probiotic food and yoghurts and we identified by qPCR that they presented 10(6) to 10(7) copies of Lactobacillus spp. DNA/g. All products contained very large numbers of living bacteria varying from 10(6) to 10(9) colony forming units/g. These bacteria were identified as Lactobacillus casei, Lactococcus lactis, Bifidobacterium animalis, Lactobacillus delbrueckii, and Streptococcus thermophilus. MALDI-TOF MS presented 92% specificity compared to the molecular assays. In one product we found L. lactis, instead of Bifidus spp. which was mentioned on the label and for another L. delbrueckii and S. thermophilus instead of Bifidus spp. MALDI-TOF MS allows a rapid and accurate bacterial identification at the species level in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. Practical Application:  MALDI-TOF MS is rapid and specific for the identification of bacteria in probiotic food and yoghurts. Although the safety and functionality of probiotics are species and strain dependent, we found a discrepancy between the bacterial strain announced on the label and the strain identified. © 2011 Institute of Food Technologists®

  2. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, M; Frey-Klett, P; Boutin, M; Guillerm-Erckelboudt, A-Y; Martin, F; Guillot, L; Sarniguet, A

    2009-01-01

    In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact.

  3. Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction.

    PubMed

    Madore, Kevin P; Jing, Helen G; Schacter, Daniel L

    2016-08-01

    Recent research has suggested that an episodic specificity induction-brief training in recollecting the details of a past experience-enhances divergent creative thinking on the alternate uses task (AUT) in young adults, without affecting performance on tasks thought to involve little divergent thinking; however, the generalizability of these results to other populations and tasks is unknown. In the present experiments, we examined whether the effects of an episodic specificity induction would extend to older adults and a different index of divergent thinking, the consequences task. In Experiment 1, the specificity induction significantly enhanced divergent thinking on the AUT in both young and older adults, as compared with a control induction not requiring specific episodic retrieval; performance on a task involving little divergent thinking (generating associates for common objects) did not vary as a function of induction. No overall age-related differences were observed on either task. In Experiment 2, the specificity induction significantly enhanced divergent thinking (in terms of generating consequences of novel scenarios) in young adults, relative to another control induction not requiring episodic retrieval. To examine the types of creative ideas affected by the induction, the participants in both experiments also labeled each of their divergent-thinking responses as an "old idea" from memory or a "new idea" from imagination. New, and to some extent old, ideas were significantly boosted following the specificity induction relative to the control. These experiments provide novel evidence that an episodic specificity induction can boost divergent thinking in young and older adults, and indicate that episodic memory is involved in multiple divergent-thinking tasks.

  4. Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction

    PubMed Central

    Madore, Kevin P.; Jing, Helen G.; Schacter, Daniel L.

    2016-01-01

    Recent research has suggested that an episodic specificity induction- brief training in recollecting the details of a past experience- enhances divergent creative thinking on the Alternate Uses Task (AUT) in young adults without affecting performance on tasks thought to involve little divergent thinking, but the generalizability of these results to other populations and tasks is unknown. The present experiments examined whether effects of an episodic specificity induction extend to older adults and a different index of divergent thinking, the Consequences Task. In Experiment 1, the specificity induction significantly enhanced divergent thinking on the AUT in both young and older adults compared with a control induction not requiring specific episodic retrieval; performance on a task involving little divergent thinking did not vary as a function of induction (generating associates for common objects). No overall age-related differences were observed on either task. In Experiment 2, the specificity induction significantly enhanced divergent thinking (generating consequences of novel scenarios) in young adults compared with another control induction not requiring episodic retrieval. To examine the types of creative ideas affected by the induction, participants in both experiments also labeled each of their divergent thinking responses as an old idea from memory or new idea from imagination. New and to some extent old ideas were significantly boosted following the specificity induction compared with the control. These experiments provide novel evidence that an episodic specificity induction can boost divergent thinking in young and older adults, and indicate that episodic memory is involved in multiple divergent thinking tasks. PMID:27001170

  5. An episodic specificity induction enhances means-end problem solving in young and older adults.

    PubMed

    Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction-brief training in recollecting details of past experiences-enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem-solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem-solving task, as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the 3 tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the 3 tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem-solving performance of older adults can benefit from a specificity induction as much as that of young adults. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  6. An episodic specificity induction enhances means-end problem solving in young and older adults

    PubMed Central

    Madore, Kevin P.; Schacter, Daniel L.

    2014-01-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction- brief training in recollecting details of past experiences- enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem solving task as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the three tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the three tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem solving performance of older adults can benefit from a specificity induction as much as that of young adults. PMID:25365688

  7. Development of strain-specific PCR primers for quantitative detection of Bacillus mesentericus strain TO-A in human feces.

    PubMed

    Sato, Naoki; Seo, Genichiro; Benno, Yoshimi

    2014-01-01

    Strain-specific polymerase chain reaction (PCR) primers for detection of Bacillus mesentericus strain TO-A (BM TO-A) were developed. The randomly amplified polymorphic DNA (RAPD) technique was used to produce potential strain-specific markers. A 991-bp RAPD marker found to be strain-specific was sequenced, and two primer pairs specific to BM TO-A were constructed based on this sequence. In addition, we explored a more specific DNA region using inverse PCR, and designed a strain-specific primer set for use in real-time quantitative PCR (qPCR). These primer pairs were tested against 25 Bacillus subtilis strains and were found to be strain-specific. After examination of the detection limit and linearity of detection of BM TO-A in feces, the qPCR method and strain-specific primers were used to quantify BM TO-A in the feces of healthy volunteers who had ingested 3×10(8) colony forming unit (CFU) of BM TO-A per day in tablets. During the administration period, BM TO-A was detected in the feces of all 24 subjects, and the average number of BM TO-A detected using the culture method and qPCR was about 10(4.8) and 10(5.8) cells per gram of feces, respectively. Using the qPCR method, BM TO-A was detected in the feces of half of the subjects 3 d after withdrawal, and was detected in the feces of only one subject 1 week after withdrawal. These results suggest that the qPCR method using BM TO-A strain-specific primers is useful for the quantitative detection of this strain in feces.

  8. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    PubMed

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  9. Coho salmon Oncorhynchus kisutch strain differences in disease resistance and non-specific immunity, following immersion challenges with Vibrio anguillarum

    USGS Publications Warehouse

    Balfry, Shannon K.; Maule, Alec G.; Iwama, George K.

    2001-01-01

    Two strains of freshwater-reared coho salmon Oncorhynchus kisutch were compared for differences in the activity of selected non-specific immune factors before and after lethal and non-lethal immersion challenges with the marine bacterial pathogen Vibrio anguillarum (Vang). Two disease challenge experiments were performed. The first experimental challenge resulted in no mortality; however, significant strain and challenge treatment effects were detected at Day 16 post-challenge. Strain differences in plasma lysozyme activity were found in pre-challenge samples. The second challenge experiment compared the same strains of coho salmon following immersion challenges in different doses of Vang. The fish were sampled at Days 0, 2, 7, and 18 post-challenge and mortality, plasma lysozyme, and anterior kidney phagocyte respiratory burst activity were compared. There were significant strain differences in mortality in the high dose group. The more disease-resistant strain was found to have higher levels of plasma lysozyme and anterior kidney phagocyte respiratory burst activity. These strain differences were detected at various times in the lethal (high dose) and non-lethal challenge groups. There was a clear relationship between the enhanced survival of the more disease-resistant strain and a more sustained, elevated non-specific immune response following the experimental disease challenges. The results of this study suggest that the basis for strain differences in innate disease resistance is related to the ability of the fish to respond quickly to the initial infection and to maintain the response until the infection is quelled.

  10. A rapid NMR-based method for discrimination of strain-specific cell wall teichoic acid structures reveals a third backbone type in Lactobacillus plantarum.

    PubMed

    Tomita, Satoru; Tanaka, Naoto; Okada, Sanae

    2017-03-01

    The lactic acid bacterium Lactobacillus plantarum is capable of producing strain-specific structures of cell wall teichoic acid (WTA), an anionic polysaccharide found in the Gram-positive bacterial cell wall. In this study, we established a rapid, NMR-based procedure to discriminate WTA structures in this species, and applied it to 94 strains of L. plantarum. Six previously reported glycerol- and ribitol-containing WTA subtypes were successfully identified from 78 strains, suggesting that these were the dominant structures. However, the level of structural variety differed markedly among bacterial sources, possibly reflecting differences in strain-level microbial diversity. WTAs from eight strains were not identified based on NMR spectra and were classified into three groups. Structural analysis of a partial degradation product of an unidentified WTA produced by strain TUA 1496L revealed that the WTA was 1-O-β-d-glucosylglycerol. Two-dimensional NMR analysis of the polymer structure showed phosphodiester bonds between C-3 and C-6 of the glycerol and glucose residues, suggesting a polymer structure of 3,6΄-linked poly(1-O-β-d-glucosyl-sn-glycerol phosphate). This is the third WTA backbone structure in L. plantarum, following 3,6΄-linked poly(1-O-α-d-glucosyl-sn-glycerol phosphate) and 1,5-linked poly(ribitol phosphate). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle.

    PubMed

    Bragina, Anastasia; Berg, Christian; Cardinale, Massimiliano; Shcherbakov, Andrey; Chebotar, Vladimir; Berg, Gabriele

    2012-04-01

    Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle.

  12. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle

    PubMed Central

    Bragina, Anastasia; Berg, Christian; Cardinale, Massimiliano; Shcherbakov, Andrey; Chebotar, Vladimir; Berg, Gabriele

    2012-01-01

    Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle. PMID:22094342

  13. Strain-specific reverse transcriptase PCR assay: means to distinguish candidate vaccine from wild-type strains of respiratory syncytial virus.

    PubMed Central

    Zheng, H; Peret, T C; Randolph, V B; Crowley, J C; Anderson, L J

    1996-01-01

    Candidate live-virus vaccines for respiratory syncytial virus are being developed and are beginning to be evaluated in clinical trials. To distinguish candidate vaccine strains from wild-type strains isolated during these trials, we developed PCR assays specific to two sets of candidate vaccine strains. The two sets were a group A strain (3A), its three attenuated, temperature-sensitive variant strains, a group B strain (2B), and its four attenuated, temperature-sensitive variant strains. The PCR assays were evaluated by testing 18 group A wild-type strains, the 3A strains, 9 group B wild-type strains, and the 2B strains. PCR specific to group A wild-type strains amplified only group A wild-type strains, and 3A-specific PCR amplified only 3A strains. PCR specific to group B wild-type strains amplified all group A and group B strains but gave a 688-bp product for group B wild-type strains, a 279-bp product for 2B strains, a 547-bp product for all group A strains, and an additional 688-bp product for some group A strains, including 3A strains. These types of PCR assays can, in conjunction with other methods, be used to efficiently distinguish candidate vaccine strains from other respiratory syncytial virus strains. PMID:8789010

  14. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    PubMed

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.

  15. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    PubMed Central

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-01-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  16. Induction of apoptosis in MCF-7 cells by the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus Malaysian strain AF2240

    PubMed Central

    GHRICI, MOHAMED; EL ZOWALATY, MOHAMED; OMAR, ABDUL RAHMAN; IDERIS, AINI

    2013-01-01

    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications. PMID:23807159

  17. Induction of apoptosis in MCF-7 cells by the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus Malaysian strain AF2240.

    PubMed

    Ghrici, Mohamed; El Zowalaty, Mohamed; Omar, Abdul Rahman; Ideris, Aini

    2013-09-01

    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.

  18. VARIATION AND TYPE SPECIFICITY IN THE BACTERIAL SPECIES HEMOPHILUS INFLUENZAE

    PubMed Central

    Pittman, Margaret

    1931-01-01

    revealed the same specific type relationships among the organisms as did the precipitin tests. The R strains on the other hand, exhibit no similar type agglutinations. If the agglutination tests are made at a higher temperature, 47°C., the S strains also fail to show the specific type reactions which occur at 37°C. Certain differences between other biochemical reactions exhibited by the two types of strains have been noted, but it is not believed that they are sufficiently constant to be of great significance. When S strains are grown on artificial media outside the animal body, they tend to be converted into the R form. The rapidity and the readiness with which this conversion occurs depend on certain conditions, such as the kind of media employed, the temperature at which the cultures are kept, and the atmospheric conditions under which they are cultivated. The rate of conversion is increased when the S strains are grown in media containing anti-S immune serum of the homologous type. On the other hand, conversion of R strains into the S form occurs with much less readiness, and then only if very particular conditions are present. On one occasion conversion occurred when an R strain was grown in a medium containing anti-R immune serum. On two other occasions this same strain changed from the R to the S form during passage through animals. With other R strains it has so far been impossible to bring about this transformation. These studies indicate that the bacteria belonging in the group Hemophilus influenzae exhibit changes in pathogenicity and immunological specificity, which are analogous to those shown by the bacteria of the pneumococcus group. It is important to continue this study, with the technique which has been developed, to include a much larger number of strains. On account of the readiness with which the S strains of influenza bacilli lose their type specificity when grown on artificial culture media, it is important that the organisms be studied as soon as

  19. Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences

    PubMed Central

    Madore, Kevin P.; Szpunar, Karl K.; Addis, Donna Rose; Schacter, Daniel L.

    2016-01-01

    Recent behavioral work suggests that an episodic specificity induction—brief training in recollecting the details of a past experience—enhances performance on subsequent tasks that rely on episodic retrieval, including imagining future experiences, solving open-ended problems, and thinking creatively. Despite these far-reaching behavioral effects, nothing is known about the neural processes impacted by an episodic specificity induction. Related neuroimaging work has linked episodic retrieval with a core network of brain regions that supports imagining future experiences. We tested the hypothesis that key structures in this network are influenced by the specificity induction. Participants received the specificity induction or one of two control inductions and then generated future events and semantic object comparisons during fMRI scanning. After receiving the specificity induction compared with the control, participants exhibited significantly more activity in several core network regions during the construction of imagined events over object comparisons, including the left anterior hippocampus, right inferior parietal lobule, right posterior cingulate cortex, and right ventral precuneus. Induction-related differences in the episodic detail of imagined events significantly modulated induction-related differences in the construction of imagined events in the left anterior hippocampus and right inferior parietal lobule. Resting-state functional connectivity analyses with hippocampal and inferior parietal lobule seed regions and the rest of the brain also revealed significantly stronger core network coupling following the specificity induction compared with the control. These findings provide evidence that an episodic specificity induction selectively targets episodic processes that are commonly linked to key core network regions, including the hippocampus. PMID:27601666

  20. A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to "petite" induction.

    PubMed

    Moustacchi, E; Perlman, P S; Mahler, H R

    1976-11-17

    , more sensitive to lethal damage induced by ultraviolet light (rad) than their parent wild type (RAD), also exhibit a concomitant modification in sensitivity to both nuclear and cytoplasmic genetic damage (Moustacchi, 1971). However, another class of rad mutants respond to the induction of the cytoplasmic "petite" also designated as rho- (or rho-) mutation by UV in a manner indistinguishable from that of the RAD strain. One possible interpretation of this last observation is that some of the steps in the expression of the UV damage on mitochondrial (mt)DNA may be governed by other nuclear and cytoplasmic genetic determinants, the products of which may then act specifically on mitochondrial lesions. If this assumption is correct, it should be possible to find mutants with a normal response to nuclear damage but specifically UV-sensitive towards induction of (rho-)...

  1. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    ILG1. CONCLUSIONS: In the course of our studies using cDNA RDA, we have isolated and identified ILG1, a likely active site-specific recombinase and new member of the bacteriophage P4 family of integrases. This family of integrases is implicated in the horizontal DNA transfer of pathogenic genes between bacterial species, such as those found in pathogenic strains of E. coli, Shigella, Yersinia, and Vibrio cholera. Using ILG1 as a marker of our laboratory E. coli strain TOP10F', our evidence suggests that contaminating bacterial DNA in our subtraction experiment is due to this laboratory bacterial strain, which colonized exposed surfaces of the laboratory worker. Thus, identification of differentially expressed genes between normal and diseased states could be dramatically improved by using extra precaution to prevent bacterial contamination of samples. PMID:12393938

  2. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean.

    PubMed

    Whalen, M C; Innes, R W; Bent, A F; Staskawicz, B J

    1991-01-01

    To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.

  3. [Algicidal activity against red-tide algaes by marine bacterial strain N3 isolated from a HABs area, southern China].

    PubMed

    Shi, Rong-jun; Huang, Hong-hui; Qi, Zhan-hui; Hu, Wei-an; Tian, Zi-yang; Dai, Ming

    2013-05-01

    A marine algicidal bacterium N3 was isolated from a HABs area in Mirs Bay, a subtropical bay, in southern China. Algicidal activity and algicidal mode against Phaeodactylum tricornutum, Scrippsiella trochoidea, Prorocentrum micans and Skeletonema costatum were observed by the liquid infection method. The results showed that there were no algicidal activities against P. tricornutum and S. costatum. However, when the bacterial volume fractions were 2% and 10% , S. trochoidea and P. micans could be killed, respectively. S. trochoidea cells which were exposed to strain N3 became irregular in shape and the cellular components lost their integrity and were decomposed. While, the P. micans cells became inflated and the cellular components aggregated, followed by cell lysis. Strain N3 killed S. trochoidea and P. micans directly, and the algicidal activities of the bacterial strain N3 was concentration-dependent. To S. trochoidea, 2% (V/V) of bacteria in algae showed the strongest algicidal activity, all of the S. trochoidea cells were killed within 120 h. But the growth rates of cells, in the 1% and 0. 1% treatment groups, were only slightly lower than that in the control group. In all treatment groups, the densities of strain N3 were in declining trends. While, to P. micans, 10% and 5% of bacteria in algae showed strong algicidal activities, 78% and 70% of the S. trochoidea were killed within 120 h, respectively. However, the number of S. trochoidea after exposure to 1% of bacterial cultures still increased up to 5 incubation days. And in the three treatment groups, the densities of strain N3 experienced a decrease process. The isolated strain N3 was identified as Bacillus sp. by morphological observation, physiological and biochemical characterization, and homology comparisons based on 16S rRNA sequences.

  4. A repetitive mutation and selection system for bacterial evolution to increase the specific affinity to pancreatic cancer cells.

    PubMed

    Osawa, Masaki

    2018-01-01

    It is difficult to target and kill cancer cells. One possible approach is to mutate bacteria to enhance their binding to cancer cells. In the present study, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis were randomly mutated, and then were positively and negatively selected for binding cancer vs normal cells. With repetitive mutation and selection both bacteria successfully evolved to increase affinity to the pancreatic cancer cell line (Mia PaCa-2) but not normal cells (HPDE: immortalized human pancreatic ductal epithelial cells). The mutant E. coli and B. subtilis strains bound to Mia PaCa-2 cells about 10 and 25 times more than to HPDE cells. The selected E. coli strain had mutations in biofilm-related genes and the regulatory region for a type I pilus gene. Consistent with type I pili involvement, mannose could inhibit the binding to cells. The results suggest that weak but specific binding is involved in the initial step of adhesion. To test their ability to kill Mia PaCa-2 cells, hemolysin was expressed in the mutant strain. The hemolysin released from the mutant strain was active and could kill Mia PaCa-2 cells. In the case of B. subtilis, the initial binding to the cells was a weak interaction of the leading pole of the motile bacteria. The frequency of this interaction to Mia PaCa-2 cells dramatically increased in the evolved mutant strain. This mutant strain could also specifically invade beneath Mia PaCa-2 cells and settle there. This type of mutation/selection strategy may be applicable to other combinations of cancer cells and bacterial species.

  5. Squalene-containing licensed adjuvants enhance strain-specific antibody responses against the influenza hemagglutinin and induce subtype-specific antibodies against the neuraminidase.

    PubMed

    Schmidt, Rebecca; Holznagel, Edgar; Neumann, Britta; Alex, Nina; Sawatsky, Bevan; Enkirch, Theresa; Pfeffermann, Kristin; Kruip, Carina; von Messling, Veronika; Wagner, Ralf

    2016-10-17

    While seasonal influenza vaccines are usually non-adjuvanted, H1N1pdm09 vaccines were formulated with different squalene-containing adjuvants, to enable the reduction of antigen content thus increasing the number of doses available. To comparatively assess the effects of these adjuvants on antibody responses against matched and mismatched strains, and to correlate antibody levels with protection from disease, ferrets were immunized with 2μg of commercial H1N1pdm09 vaccine antigen alone or formulated with different licensed adjuvants. The use of squalene-containing adjuvants increased neutralizing antibody responses around 100-fold, and resulted in a significantly reduced viral load after challenge with a matched strain. While all animals mounted strong total antibody responses against the homologous H1N1 hemagglutinin (HA) protein, which correlated with the respective neutralizing antibody titers, no reactivity with the divergent H3, H5, H7, and H9 proteins were detected. Only the adjuvanted vaccines also induced antibodies against the neuraminidase (NA) protein, which were able to also recognize NA proteins from other N1 carrying strains. These findings not only support the use of squalene-containing adjuvants in dose-sparing strategies but also support speculations that the induction of NA-specific responses associated with the use of these adjuvants may confer partial protection to heterologous strains carrying the same NA subtype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bacterial CS2 Hydrolases from Acidithiobacillus thiooxidans Strains Are Homologous to the Archaeal Catenane CS2 Hydrolase

    PubMed Central

    Smeulders, Marjan J.; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R. M.; Hermans, John; Jetten, Mike S. M.

    2013-01-01

    Carbon disulfide (CS2) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS2 is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO2) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS2-polluted airstreams. We report on the mechanism of bacterial CS2 conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS2 hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS2 hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS2 hydrolases within the β-CA family. Unlike CAs, the CS2 hydrolases did not hydrate CO2 but converted CS2 and COS with H2O to H2S and CO2. The CS2 hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS2 hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS2 hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS2 hydrolases based on the structure of Acidianus strain A1-3 CS2 hydrolase suggest that the A. thiooxidans strain G8 CS2 hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation. PMID:23836868

  7. Carbohydrate-binding specificities of potential probiotic Lactobacillus strains in porcine jejunal (IPEC-J2) cells and porcine mucin.

    PubMed

    Valeriano, Valerie Diane; Bagon, Bernadette B; Balolong, Marilen P; Kang, Dae-Kyung

    2016-07-01

    Bacterial lectins are carbohydrate-binding adhesins that recognize glycoreceptors in the gut mucus and epithelium of hosts. In this study, the contribution of lectin-like activities to adhesion of Lactobacillus mucosae LM1 and Lactobacillus johnsonii PF01, which were isolated from swine intestine, were compared to those of the commercial probiotic Lactobacillus rhamnosus GG. Both LM1 and PF01 strains have been reported to have good adhesion ability to crude intestinal mucus of pigs. To confirm this, we quantified their adhesion to porcine gastric mucin and intestinal porcine enterocytes isolated from the jejunum of piglets (IPEC-J2). In addition, we examined their carbohydrate-binding specificities by suspending bacterial cells in carbohydrate solutions prior to adhesion assays. We found that the selected carbohydrates affected the adherences of LM1 to IPEC-J2 cells and of LGG to mucin. In addition, compared to adhesion to IPEC-J2 cells, adhesion to mucin by both LM1 and LGG was characterized by enhanced specific recognition of glycoreceptor components such as galactose, mannose, and N-acetylglucosamine. Hydrophobic interactions might make a greater contribution to adhesion of PF01. A similar adhesin profile between a probiotic and a pathogen, suggest a correlation between shared pathogen-probiotic glycoreceptor recognition and the ability to exclude enteropathogens such as Escherichia coli K88 and Salmonella Typhimurium KCCM 40253. These findings extend our understanding of the mechanisms of the intestinal adhesion and pathogen-inhibition abilities of probiotic Lactobacillus strains.

  8. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. Survivial Strategies in Bacterial Range Expansions

    NASA Astrophysics Data System (ADS)

    Frey, Erwin

    2014-03-01

    Bacterial communities represent complex and dynamic ecological systems. Different environmental conditions as well as bacterial interactions determine the establishment and sustainability of bacterial diversity. In this talk we discuss the competition of three Escherichia coli strains during range expansions on agar plates. In this bacterial model system, a colicin E2 producing strain C competes with a colicin resistant strain R and with a colicin sensitive strain S for new territory. Genetic engineering allows us to tune the growth rates of the strains and to study distinct ecological scenarios. These scenarios may lead to either single-strain dominance, pairwise coexistence, or to the coexistence of all three strains. In order to elucidate the survival mechanisms of the individual strains, we also developed a stochastic agent-based model to capture the ecological scenarios in silico. In a combined theoretical and experimental approach we are able to show that the level of biodiversity depends crucially on the composition of the inoculum, on the relative growth rates of the three strains, and on the effective reach of colicin toxicity.

  10. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice.

    PubMed

    Savignac, H M; Kiely, B; Dinan, T G; Cryan, J F

    2014-11-01

    Accumulating evidence suggests that commensal bacteria consumption has the potential to have a positive impact on stress-related psychiatric disorders. However, the specific bacteria influencing behaviors related to anxiety and depression remain unclear. To this end, we compared the effects of two different Bifidobacteria on anxiety and depression-like behavior; an antidepressant was also used as a comparator. Innately anxious BALB/c mice received daily Bifidobacterium longum (B.) 1714, B. breve 1205, the antidepressant escitalopram or vehicle treatment for 6 weeks. Behavior was assessed in stress-induced hyperthermia test, marble burying, elevated plus maze, open field, tail suspension test, and forced swim test. Physiological responses to acute stress were also assessed. Both Bifidobacteria and escitalopram reduced anxiety in the marble burying test; however, only B. longum 1714 decreased stress-induced hyperthermia. B. breve 1205 induced lower anxiety in the elevated plus maze whereas B. longum 1714 induced antidepressant-like behavior in the tail suspension test. However, there was no difference in corticosterone levels between groups. These data show that these two Bifidobacteria strains reduced anxiety in an anxious mouse strain. These results also suggest that each bacterial strain has intrinsic effects and may be beneficially specific for a given disorder. These findings strengthen the role of gut microbiota supplementation as psychobiotic-based strategies for stress-related brain-gut axis disorders, opening new avenues in the field of neurogastroenterology. © 2014 John Wiley & Sons Ltd.

  11. Differences in genetic background influence the induction of innate and acquired immune responses in chickens depending on the virulence of the infecting infectious bursal disease virus (IBDV) strain.

    PubMed

    Aricibasi, Merve; Jung, Arne; Heller, E Dan; Rautenschlein, Silke

    2010-05-15

    Previous studies and field observations have suggested that genetic background influences infectious bursal disease virus (IBDV) pathogenesis. However, the influence of the virulence of the infecting IBDV strain and the mechanisms underlying the differences in susceptibility are not known. In the present study IBDV pathogenesis was compared between specific-pathogen-free layer-type (LT) chickens, which are the most susceptible chicken for IBDV and have been used as the model for pathogenesis studies, and broiler-type (BT) chickens, which are known to be less susceptible to clinical infectious bursal disease (IBD). The innate and acquired immune responses were investigated after inoculation of an intermediate (i), virulent (v) or very virulent (vv) strain of IBDV. IBDV pathogenesis was comparable among genetic backgrounds after infection with iIBDV. After infection with vIBDV and vvIBDV, LT birds showed severe clinical disease and mortality, higher bursal lesion scores and IBDV-antigen load relative to BT birds. Circulating cytokine induction varied significantly in both timing and quantity between LT and BT birds and among virus strains (P<0.05). Evaluation of different immune cell populations by flow-cytometric analysis in the bursa of Fabricius provided circumstantial evidence of a stronger local T cell response in BT birds vs. LT birds after infection with the virulent strain. On the other hand, LT birds showed a more significant increase in circulating macrophage-derived immune mediators such as total interferon (IFN) and serum nitrite than BT birds on days 2 and 3 post-vIBDV infection (P<0.05). Stronger stimulation of innate immune reactions especially after vIBDV infection in the early phase may lead to faster and more severe lesion development accompanied by clinical disease and death in LT chickens relative to BT chickens. Interestingly, no significant differences were seen between genetic backgrounds in induction of the IBDV-specific humoral response

  12. Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2.

    PubMed

    Duan, J; Huo, X; Du, W J; Liang, J D; Wang, D Q; Yang, S C

    2016-01-01

    An anaerobic kraft lignin (KL)-degrading bacterial strain was isolated from sludge of a pulp and paper mill. It was characterized as Acetoanaerobium sp. WJDL-Y2 by 16S rRNA gene sequencing. The maximum KL degradation capability of strain Y2 was determined to be 24·9% on a COD basis under an optimal condition with temperature of 31·5°C, initial pH of 6·8 and KL to nitrogen (as NH4 Cl) ratio of 6·5 by mass. Growth kinetic studies showed that the KL tolerance of strain Y2 was relatively high (Ki  = 8120·45 mg l(-1) ). Analysing KL degradation products by GC-MS revealed the formation of low-molecular-weight aromatic compounds (LMWACs), including benzene-propanoic acid, syringic acid and ferulic acid. This indicates that strain Y2 can oxidize lignin structure's p-hydroxyphenyl (H) units, guaiacyl (G) units and syringyl (S). In addition, the inoculated sample also contained low-molecular acid compounds, such as hexanoic acid, adipic acid and 2-hydroxybutyric acid, further validating strain Y2's ability to degrade KL. Kraft lignin containing effluents discharged from pulp and paper industries causes serious environmental pollution in developing countries. Due to the immense environmental adaptability and biochemical versatility, bacterial ligninolytic potential deserve to be studied for application in effluent treatment of pulp and paper industry. In this study, an anaerobic lignin-degrading bacterium, Acetoanaerobium sp. WJDL-Y2 (accession no. KF176997),was isolated from the sludge of a pulp and paper mill. Strain Y2 can play an important role in treating pulp and paper wastewater, as well as breaking down materials for biofuel and chemical production. © 2015 The Society for Applied Microbiology.

  13. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains

    DOE PAGES

    Whitman, William B.; Woyke, Tanja; Klenk, Hans-Peter; ...

    2015-05-17

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Here in this paper, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while theymore » are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity« less

  14. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains

    PubMed Central

    2015-01-01

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Herein, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while they are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity. PMID:26203337

  15. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitman, William B.; Woyke, Tanja; Klenk, Hans-Peter

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Here in this paper, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while theymore » are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity« less

  16. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls ( n=20) and from CMA infants ( n=19) before and after treatment with EHCF with ( n=12) and without ( n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial communitymore » structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. As a result, our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.« less

  17. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    DOE PAGES

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T.; ...

    2015-09-22

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow’s milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls ( n=20) and from CMA infants ( n=19) before and after treatment with EHCF with ( n=12) and without ( n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial communitymore » structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. As a result, our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.« less

  18. Sensitivity and specificity of procalcitonin in predicting bacterial infections in patients with renal impairment.

    PubMed

    El-Sayed, Dena; Grotts, Jonathan; Golgert, William A; Sugar, Alan M

    2014-09-01

    It is unclear whether procalcitonin is an accurate predictor of bacterial infections in patients with renal impairment, although it is used as a biomarker for early diagnosis of sepsis. We determined the sensitivity, specificity, positive and negative predictive values, accuracy and best predictive value of procalcitonin for predicting bacterial infection in adult patients with severe renal impairment. Retrospective study at a single-center community teaching hospital involving 473 patients, ages 18-65, with Modification of Diet in Renal Disease eGFR ≤30 ml/min per 1.73 m(2), admitted between January 2009 and June 2012, with 660 independent hospital visits. A positive or negative culture (blood or identifiable focus of infection) was paired to the highest procalcitonin result performed 48 hours before or after collecting the culture. The sensitivity and specificity to predict bacterial infection, using a procalcitonin level threshold of 0.5 ng/mL, was 0.80 and 0.35 respectively. When isolating for presence of bacteremia, the sensitivity and specificity were 0.89 and 0.35 respectively. An equation adjusting for optimum thresholds of procalcitonin levels for predicting bacterial infection at different levels of eGFR had a sensitivity and specificity of 0.55 and 0.80 respectively. Procalcitonin is not a reliably sensitive or specific predictor of bacterial infection in patients with renal impairment when using a single threshold. Perhaps two thresholds should be employed, where below the lower threshold (i.e. 0.5 ng/mL) bacterial infection is unlikely with a sensitivity of 0.80, and above the higher threshold (i.e. 3.2 ng/mL) bacterial infection is very likely with a specificity of 0.75.

  19. Pseudomonas syringae pv. actinidiae Draft Genomes Comparison Reveal Strain-Specific Features Involved in Adaptation and Virulence to Actinidia Species

    PubMed Central

    Marcelletti, Simone; Ferrante, Patrizia; Petriccione, Milena; Firrao, Giuseppe; Scortichini, Marco

    2011-01-01

    A recent re-emerging bacterial canker disease incited by Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses to Actinidia chinensis and A. deliciosa cultivations in southern Europe, New Zealand, Chile and South Korea. Little is known about the genetic features of this pathovar. We generated genome-wide Illumina sequence data from two Psa strains causing outbreaks of bacterial canker on the A. deliciosa cv. Hayward in Japan (J-Psa, type-strain of the pathovar) and in Italy (I-Psa) in 1984 and 1992, respectively as well as from a Psa strain (I2-Psa) isolated at the beginning of the recent epidemic on A. chinensis cv. Hort16A in Italy. All strains were isolated from typical leaf spot symptoms. The phylogenetic relationships revealed that Psa is more closely related to P. s. pv. theae than to P. avellanae within genomospecies 8. Comparative genomic analyses revealed both relevant intrapathovar variations and putative pathovar-specific genomic regions in Psa. The genomic sequences of J-Psa and I-Psa were very similar. Conversely, the I2-Psa genome encodes four additional effector protein genes, lacks a 50 kb plasmid and the phaseolotoxin gene cluster, argK-tox but has acquired a 160 kb plasmid and putative prophage sequences. Several lines of evidence from the analysis of the genome sequences support the hypothesis that this strain did not evolve from the Psa population that caused the epidemics in 1984–1992 in Japan and Italy but rather is the product of a recent independent evolution of the pathovar actinidiae for infecting Actinidia spp. All Psa strains share the genetic potential for copper resistance, antibiotic detoxification, high affinity iron acquisition and detoxification of nitric oxide of plant origin. Similar to other sequenced phytopathogenic pseudomonads associated with woody plant species, the Psa strains isolated from leaves also display a set of genes involved in the catabolism of plant-derived aromatic compounds. PMID

  20. Worrying about the Future: An Episodic Specificity Induction Impacts Problem Solving, Reappraisal, and Well-Being

    PubMed Central

    Jing, Helen G.; Madore, Kevin P.; Schacter, Daniel L.

    2015-01-01

    Previous research has demonstrated that an episodic specificity induction – brief training in recollecting details of a recent experience – enhances performance on various subsequent tasks thought to draw upon episodic memory processes. Existing work has also shown that mental simulation can be beneficial for emotion regulation and coping with stressors. Here we focus on understanding how episodic detail can affect problem solving, reappraisal, and psychological well-being regarding worrisome future events. In Experiment 1, an episodic specificity induction significantly improved participants’ performance on a subsequent means-end problem solving task (i.e., more relevant steps) and an episodic reappraisal task (i.e., more episodic details) involving personally worrisome future events compared with a control induction not focused on episodic specificity. Imagining constructive behaviors with increased episodic detail via the specificity induction was also related to significantly larger decreases in anxiety, perceived likelihood of a bad outcome, and perceived difficulty to cope with a bad outcome, as well as larger increases in perceived likelihood of a good outcome and indicated use of active coping behaviors compared with the control. In Experiment 2, we extended these findings using a more stringent control induction, and found preliminary evidence that the specificity induction was related to an increase in positive affect and decrease in negative affect compared with the control. Our findings support the idea that episodic memory processes are involved in means-end problem solving and episodic reappraisal, and that increasing the episodic specificity of imagining constructive behaviors regarding worrisome events may be related to improved psychological well-being. PMID:26820166

  1. Bacterial adhesion to unworn and worn silicone hydrogel lenses.

    PubMed

    Vijay, Ajay Kumar; Zhu, Hua; Ozkan, Jerome; Wu, Duojia; Masoudi, Simin; Bandara, Rani; Borazjani, Roya N; Willcox, Mark D P

    2012-08-01

    The objective of this study was to determine the bacterial adhesion to various silicone hydrogel lens materials and to determine whether lens wear modulated adhesion. Bacterial adhesion (total and viable cells) of Staphylococcus aureus (31, 38, and ATCC 6538) and Pseudomonas aeruginosa (6294, 6206, and GSU-3) to 10 commercially available different unworn and worn silicone hydrogel lenses was measured. Results of adhesion were correlated to polymer and surface properties of contact lenses. S. aureus adhesion to unworn lenses ranged from 2.8 × 10 to 4.4 × 10 colony forming units per lens. The highest adhesion was to lotrafilcon A lenses, and the lowest adhesion was to asmofilcon A lenses. P. aeruginosa adhesion to unworn lenses ranged from 8.9 × 10 to 3.2 × 10 colony forming units per lens. The highest adhesion was to comfilcon A lenses, and the lowest adhesion was to asmofilcon A and balafilcon A lenses. Lens wear altered bacterial adhesion, but the effect was specific to lens and strain type. Adhesion of bacteria, regardless of genera/species or lens wear, was generally correlated with the hydrophobicity of the lens; the less hydrophobic the lens surface, the greater the adhesion. P. aeruginosa adhered in higher numbers to lenses in comparison with S. aureus strains, regardless of the lens type or lens wear. The effect of lens wear was specific to strain and lens. Hydrophobicity of the silicone hydrogel lens surface influenced the adhesion of bacterial cells.

  2. Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains.

    PubMed

    Hopkins, W J; Gendron-Fitzpatrick, A; Balish, E; Uehling, D T

    1998-06-01

    Recurrent urinary tract infections (UTIs) are a significant clinical problem for many women; however, host susceptibility factors have not been completely defined. The mouse model of induced UTI provides an experimental environment in which to identify specific host characteristics that are important in initial bacterial colonization of the urinary tract and in resolution of an infection. This study examined initial susceptibility, bacterial clearance, and host defense mechanisms during induction and resolution of Escherichia coli UTIs in genetically distinct strains of mice. Of the ten inbred strains tested, six (BALB/c, C3H/HeN, C57BL/6, DBA.1, DBA.2, and AKR) showed progressive resolution of bladder infections over a 14-day period. A constant, low-level bladder infection was observed in SWR and SJL mice. High bladder infection levels persisted over the 14-day study period in C3H/HeJ and C3H/OuJ mice. Kidney infection levels generally correlated with bladder infection levels, especially in C3H/HeJ and C3H/OuJ mice, the two most susceptible strains, in which infections became more severe with time after challenge. The degree of inflammation in bladder and kidneys, as well as antibody-forming cell responses, positively correlated with infection intensity in all strains except C3H/HeJ, which had minimal inflammation despite high infection levels. These results demonstrate two important aspects of host defense against UTI. First, the innate immune response to an infection in the bladder or kidneys consists primarily of local inflammation, which is followed by an adaptive response characterized in part by an antibody response to the infecting bacteria. Second, a UTI will be spontaneously resolved in most cases; however, in mice with specific genetic backgrounds, a UTI can persist for an extended length of time. The latter result strongly suggests that the presence or absence of specific host genes will determine how effectively an E. coli UTI will be resolved.

  3. Sensitivity and Specificity of Procalcitonin in Predicting Bacterial Infections in Patients With Renal Impairment

    PubMed Central

    El-sayed, Dena; Grotts, Jonathan; Golgert, William A.; Sugar, Alan M.

    2014-01-01

    Background  It is unclear whether procalcitonin is an accurate predictor of bacterial infections in patients with renal impairment, although it is used as a biomarker for early diagnosis of sepsis. We determined the sensitivity, specificity, positive and negative predictive values, accuracy and best predictive value of procalcitonin for predicting bacterial infection in adult patients with severe renal impairment. Methods  Retrospective study at a single-center community teaching hospital involving 473 patients, ages 18–65, with Modification of Diet in Renal Disease eGFR ≤30 ml/min per 1.73 m2, admitted between January 2009 and June 2012, with 660 independent hospital visits. A positive or negative culture (blood or identifiable focus of infection) was paired to the highest procalcitonin result performed 48 hours before or after collecting the culture. Results  The sensitivity and specificity to predict bacterial infection, using a procalcitonin level threshold of 0.5 ng/mL, was 0.80 and 0.35 respectively. When isolating for presence of bacteremia, the sensitivity and specificity were 0.89 and 0.35 respectively. An equation adjusting for optimum thresholds of procalcitonin levels for predicting bacterial infection at different levels of eGFR had a sensitivity and specificity of 0.55 and 0.80 respectively. Conclusions  Procalcitonin is not a reliably sensitive or specific predictor of bacterial infection in patients with renal impairment when using a single threshold. Perhaps two thresholds should be employed, where below the lower threshold (i.e. 0.5 ng/mL) bacterial infection is unlikely with a sensitivity of 0.80, and above the higher threshold (i.e. 3.2 ng/mL) bacterial infection is very likely with a specificity of 0.75. PMID:25734138

  4. Design, synthesis and biological evaluation of novel aryldiketo acids with enhanced antibacterial activity against multidrug resistant bacterial strains.

    PubMed

    Cvijetić, Ilija N; Verbić, Tatjana Ž; Ernesto de Resende, Pedro; Stapleton, Paul; Gibbons, Simon; Juranić, Ivan O; Drakulić, Branko J; Zloh, Mire

    2018-01-01

    Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway

    PubMed Central

    Reizis, Boris; Leder, Philip

    2002-01-01

    The Notch signaling pathway regulates the commitment and early development of T lymphocytes. We studied Notch-mediated induction of the pre-T cell receptor α (pTa) gene, a T-cell-specific transcriptional target of Notch. The pTa enhancer was activated by Notch signaling and contained binding sites for its nuclear effector, CSL. Mutation of the CSL-binding sites abolished enhancer induction by Notch and delayed the up-regulation of pTa transgene expression during T cell lineage commitment. These results show a direct mechanism of stage- and tissue-specific gene induction by the mammalian Notch/CSL signaling pathway. PMID:11825871

  6. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    PubMed

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  7. Population Structure of the Bacterial Pathogen Xylella fastidiosa among Street Trees in Washington D.C.

    PubMed Central

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship. PMID:25815838

  8. Anti-Pseudomonas aeruginosa IgY Antibodies Induce Specific Bacterial Aggregation and Internalization in Human Polymorphonuclear Neutrophils

    PubMed Central

    Thomsen, K.; Christophersen, L.; Bjarnsholt, T.; Jensen, P. Ø.; Moser, C.

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are essential cellular constituents in the innate host response, and their recruitment to the lungs and subsequent ubiquitous phagocytosis controls primary respiratory infection. Cystic fibrosis pulmonary disease is characterized by progressive pulmonary decline governed by a persistent, exaggerated inflammatory response dominated by PMNs. The principal contributor is chronic Pseudomonas aeruginosa biofilm infection, which attracts and activates PMNs and thereby is responsible for the continuing inflammation. Strategies to prevent initial airway colonization with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness, which enhances bacterial killing by PMN-mediated phagocytosis and thereby may facilitate a rapid bacterial clearance in airways of people with cystic fibrosis. PMID:25895968

  9. Development of Strain-Specific Primers for Identification of Bifidobacterium bifidum BGN4.

    PubMed

    Youn, So Youn; Ji, Geun Eog; Han, Yoo Ri; Park, Myeong Soo

    2017-05-28

    Bifidobacterium bifidum BGN4 (BGN4) has many proven beneficial effects, including antiallergy and anticancer properties. It has been commercialized and used in several probiotic products, and thus strain-specific identification of this strain is very valuable for further strain-dependent physiological study. For this purpose, we developed novel multiplex polymerase chain reaction (PCR) primer sets for strain-specific detection of BGN4 in commercial products and fecal samples of animal models. The primer set was tested on seven strains of B. bifidum and 75 strains of the other Bifidobacterium species. The BGN4-specific regions were derived using megaBLAST against genome sequences of various B. bifidum databases and four sets of primers were designed. As a result, only BGN4 produced four PCR products simultaneously whereas the other strains did not. The PCR detection limit using BGN4-specific primer sets was 2.8 × 10 1 CFU/ml of BGN4. Those primer sets also detected and identified BGN4 in the probiotic products containing BNG4 and fecal samples from a BGN4-fed animal model with high specificity. Our results indicate that the PCR assay from this study is an efficient tool for the simple, rapid, and reliable identification of BGN4, for which probiotic strains are known.

  10. Visualizing tributyltin (TBT) in bacterial aggregates by specific rhodamine-based fluorescent probes.

    PubMed

    Jin, Xilang; Hao, Likai; She, Mengyao; Obst, Martin; Kappler, Andreas; Yin, Bing; Liu, Ping; Li, Jianli; Wang, Lanying; Shi, Zhen

    2015-01-01

    Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Complete Genome Sequence of a Putative New Bacterial Strain, I507, Isolated from the Indian Ocean

    PubMed Central

    Wang, Shu-yan; Wei, Jia-qiang

    2018-01-01

    ABSTRACT Bacterial strain I507 was isolated from the central Indian Ocean and may be a potential novel species, according to the 16S rRNA gene sequence. Here, we present its complete genome sequence and expect that it will provide researchers with valuable information to further understand its classification and function in the future. PMID:29674539

  12. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    PubMed

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes < 0.8 nN. Steric repulsion due to surface polymers was apparently responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  13. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens

    PubMed Central

    Stork, Christoph; Kovács, Beáta; Rózsai, Barnabás; Putze, Johannes; Kiel, Matthias; Dorn, Ágnes; Kovács, Judit; Melegh, Szilvia; Leimbach, Andreas; Kovács, Tamás; Schneider, György; Kerényi, Monika; Emödy, Levente; Dobrindt, Ulrich

    2018-01-01

    Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising

  14. Loop-Mediated Isothermal Amplification of Specific Endoglucanase Gene Sequence for Detection of the Bacterial Wilt Pathogen Ralstonia solanacearum

    PubMed Central

    Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja

    2014-01-01

    The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488

  15. Strain-specific variations in cation content and transport in mouse erythrocytes

    PubMed Central

    Rivera, Alicia; Zee, Robert Y. L.; Alper, Seth L.; Peters, Luanne L.

    2013-01-01

    Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na+, K+, and Mg2+, and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains. PMID:23482811

  16. Strain-specific variations in cation content and transport in mouse erythrocytes.

    PubMed

    Rivera, Alicia; Zee, Robert Y L; Alper, Seth L; Peters, Luanne L; Brugnara, Carlo

    2013-05-01

    Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na(+), K(+), and Mg(2+), and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains.

  17. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.

    PubMed

    Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A

    2016-09-15

    specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

  18. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    PubMed

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  20. Strain diversity and host specificity in bee gut symbionts revealed by deep sampling of single copy protein-coding sequences

    PubMed Central

    Powell, J. Elijah; Ratnayeke, Nalin; Moran, Nancy A.

    2017-01-01

    High throughput rRNA amplicon surveys of bacterial communities provide a rapid snapshot of taxonomic composition. But strains with nearly identical rRNA sequences often differ in gene repertoires and metabolic capabilities. To assess strain-level variation within Snodgrassella alvi, a gut symbiont of corbiculate bees, we performed deep sequencing on amplicons of a single copy coding gene (minD) as well as the 16S rDNA V4 region. We surveyed honey bees (Apis mellifera) sampled globally and 12 bumble bee species (Bombus) sampled from two regions of the USA. The minD analyses reveal that S. alvi contains far more strain diversity than is evident from 16S rDNA analysis. Many taxa inferred on the basis of 16S rDNA are shared between A. mellifera and Bombus species, but taxa inferred on the basis of minD are never shared and often are restricted to particular Bombus species. Clustering based on minD revealed that gut communities often reflect host species and geographic location. Both minD and 16S rDNA analyses indicate that strain diversity is higher in A. mellifera than in Bombus species. The minD locus flanks a 16S gene, enabling development of strain-specific 16S fluorescent probes to illuminate the spatial relationship of strains within the bee gut. PMID:27482856

  1. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects.

    PubMed

    Bisch, Gaëlle; Pagès, Sylvie; McMullen, John G; Stock, S Patricia; Duvic, Bernard; Givaudan, Alain; Gaudriault, Sophie

    2015-01-01

    Xenorhabdus bacteria (γ-proteobacteria: Enterobacteriaceae) have dual lifestyles. They have a mutualistic relationship with Steinernema nematodes (Nematoda: Steinernematidae) and are pathogenic to a wide range of insects. Each Steinernema nematode associates with a specific Xenorhabdus species. However, a Xenorhabdus species can have multiple nematode hosts. For example, Xenorhabdus bovienii (Xb) colonizes at least nine Steinernema species from two different phylogenetic clades. The Steinernema-Xb partnership has been found in association with different insect hosts. Biological and molecular data on the Steinernema jollieti-Xb strain SS-2004 pair have recently been described. In particular, the Xb SS-2004 bacteria are virulent alone after direct injection into insect, making this strain a model for studying Xb virulence. In this study, we searched for Xb strains attenuated in virulence. For this purpose, we underwent infection assays with five Steinernema spp.-Xb pairs with two insects, Galleria mellonella (Lepidoptera: Pyralidae) and Spodoptera littoralis (Lepidoptera: Noctuidae). The S. weiseri-Xb CS03 pair showed attenuated virulence and lower fitness in S. littoralis in comparison to the other nematode-bacteria pairs. Furthermore, when injected alone into the hemolymph of G. mellonella or S. littoralis, the Xb CS03 bacterial strain was the only non-virulent strain. By comparison with the virulent Xb SS-2004 strain, Xb CS03 showed an increased sensitivity to the insect antimicrobial peptides, suggesting an attenuated response to the insect humoral immunity. To our current knowledge, Xb CS03 is the first non-virulent Xb strain identified. We propose this strain as a new model for studying the Xenorhabdus virulence. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

    PubMed

    Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M

    2009-09-18

    Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.

  3. Specific Detection of Enteroaggregative Hemorrhagic Escherichia coli O104:H4 Strains by Use of the CRISPR Locus as a Target for a Diagnostic Real-Time PCR

    PubMed Central

    Delannoy, Sabine; Beutin, Lothar; Burgos, Ylanna

    2012-01-01

    In 2011, a large outbreak of an unusual bacterial strain occurred in Europe. This strain was characterized as a hybrid of an enteroaggregative Escherichia coli (EAEC) and a Shiga toxin-producing E. coli (STEC) strain of the serotype O104:H4. Here, we present a single PCR targeting the clustered regularly interspaced short palindromic repeats locus of E. coli O104:H4 (CRISPRO104:H4) for specific detection of EAEC STEC O104:H4 strains from different geographical locations and time periods. The specificity of the CRISPRO104:H4 PCR was investigated using 1,321 E. coli strains, including reference strains for E. coli O serogroups O1 to O186 and flagellar (H) types H1 to H56. The assay was compared for specificity using PCR assays targeting different O104 antigen-encoding genes (wbwCO104, wzxO104, and wzyO104). The PCR assays reacted with all types of E. coli O104 strains (O104:H2, O104:H4, O104:H7, and O104:H21) and with E. coli O8 and O9 strains carrying the K9 capsular antigen and were therefore not specific for detection of the EAEC STEC O104:H4 type. A single PCR developed for the CRISPRO104:H4 target was sufficient for specific identification and detection of the 48 tested EAEC STEC O104:H4 strains. The 35 E. coli O104 strains expressing H types other than H4 as well as 8 E. coli strains carrying a K9 capsular antigen tested all negative for the CRISPRO104:H4 locus. Only 12 (0.94%) of the 1,273 non-O104:H4 E. coli strains (serotypes Ont:H2, O43:H2, O141:H2, and O174:H2) reacted positive in the CRISPRO104:H4 PCR (99.06% specificity). PMID:22895033

  4. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential.

    PubMed

    Dwivedi, S; Singh, B R; Al-Khedhairy, A A; Alarifi, S; Musarrat, J

    2010-07-01

    Isolation, characterization and assessment of butachlor-degrading potential of bacterial strain JS-1 in soil. Butachlor-degrading bacteria were isolated using enrichment culture technique. The morphological, biochemical and genetic characteristics based on 16S rDNA sequence homology and phylogenetic analysis confirmed the isolate as Stenotrophomonas acidaminiphila strain JS-1. The strain JS-1 exhibited substantial growth in M9 mineral salt medium supplemented with 3.2 mmol l(-1) butachlor, as a sole source of carbon and energy. The HPLC analysis revealed almost complete disappearance of butachlor within 20 days in soil at a rate constant of 0.17 day(-1) and half-life (t((1/2))) of 4.0 days, following the first-order rate kinetics. The strain JS-1 in stationary phase of culture also produced 21.0 microg ml(-1) of growth hormone indole acetic acid (IAA) in the presence of 500 microg ml(-1) of tryptophan. The IAA production was stimulated at lower concentrations of butachlor, whereas higher concentrations above 0.8 mmol l(-1) were found inhibitory. The isolate JS-1 characterized as Stenotrophomonas acidaminiphila was capable of utilizing butachlor as sole source of carbon and energy. Besides being an efficient butachlor degrader, it substantially produces IAA. The bacterial strain JS-1 has a potential for butachlor remediation with a distinctive auxiliary attribute of plant growth stimulation.

  5. MALDI-TOF-MS with PLS Modeling Enables Strain Typing of the Bacterial Plant Pathogen Xanthomonas axonopodis

    NASA Astrophysics Data System (ADS)

    Sindt, Nathan M.; Robison, Faith; Brick, Mark A.; Schwartz, Howard F.; Heuberger, Adam L.; Prenni, Jessica E.

    2018-02-01

    Matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is a fast and effective tool for microbial species identification. However, current approaches are limited to species-level identification even when genetic differences are known. Here, we present a novel workflow that applies the statistical method of partial least squares discriminant analysis (PLS-DA) to MALDI-TOF-MS protein fingerprint data of Xanthomonas axonopodis, an important bacterial plant pathogen of fruit and vegetable crops. Mass spectra of 32 X. axonopodis strains were used to create a mass spectral library and PLS-DA was employed to model the closely related strains. A robust workflow was designed to optimize the PLS-DA model by assessing the model performance over a range of signal-to-noise ratios (s/n) and mass filter (MF) thresholds. The optimized parameters were observed to be s/n = 3 and MF = 0.7. The model correctly classified 83% of spectra withheld from the model as a test set. A new decision rule was developed, termed the rolled-up Maximum Decision Rule (ruMDR), and this method improved identification rates to 92%. These results demonstrate that MALDI-TOF-MS protein fingerprints of bacterial isolates can be utilized to enable identification at the strain level. Furthermore, the open-source framework of this workflow allows for broad implementation across various instrument platforms as well as integration with alternative modeling and classification algorithms.

  6. Specific oral tolerance induction in childhood.

    PubMed

    Peters, Rachel L; Dang, Thanh D; Allen, Katrina J

    2016-12-01

    Food allergy continues to be a significant public health concern for which there are no approved treatments and management strategies primarily include allergen avoidance and pharmacological measures for accidental exposures. Food allergy is thought to result from either a failure to establish oral tolerance or the breakdown of existing oral tolerance, and therefore, experimental preventative and treatment strategies are now aimed at inducing specific oral tolerance. This may occur in infancy prior to the development of food allergy through the optimal timing of dietary exposure (primary oral tolerance induction) or as a treatment for established food allergy through oral immunotherapy (secondary oral tolerance induction). Trials examining the effectiveness of early dietary allergen exposure to prevent food allergy have yielded promising results for peanut allergy but not so for other allergens, although the results of several trials are yet to be published. Although infant feeding guidelines no longer advise to avoid allergenic foods and exposure to food allergens orally is an important step in inducing food tolerance by the immune system, evidence regarding the optimal timing, dose and form of these foods into the infant's diet is lacking. Likewise, oral immunotherapy trials appear promising for inducing desensitization; however, the long-term efficacy in achieving sustained desensitization and optimal protocols to achieve this is unknown. More research is needed in this emerging field. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. In vitro antagonistic effect of Lactobacillus on organisms associated with bacterial vaginosis.

    PubMed

    Strus, Magdalena; Malinowska, Magdalena; Heczko, Piotr B

    2002-01-01

    To assess antagonistic properties of Lactobacillus strains isolated from the vaginas of healthy women as compared to the most common bacterial agents related to vaginosis. Antagonistic activity of different Lactobacillus strains isolated from the vaginas of healthy women not treated for infections with an antibiotic for the previous three months was screened using an agar slab method. The activity was tested against test organisms associated with bacterial vaginosis and/or urinary tract infections: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Escherichia coli, Gardnerella vaginalis, Peptostreptococcus anaerobius and Prevotella bivia. Many of the 146 Lactobacillus strains tested exerted apparent antagonistic activities against gram-positive aerobic cocci and gram-negative rods, such as S aureus and E coli, and a marked number of Lactobacillus strains inhibited facultative bacteria, such as Gardnerella vaginalis and the anaerobes P anaerobius and P bivia. Only a few lactobacilli were able to inhibit growth of E faecalis and S agalactiae. Indicator bacteria growth inhibition probably relies upon several different complementary mechanisms. The specific indicator bacteria species determines which mechanism predominates. Lactobacillus strains taken from normal vaginal flora demonstrated antagonistic activity against a variety of bacteria related to vaginal and urinary tract infections. The specific occurrence rates of active Lactobacillus strains are different, and this difference is dependent on the indicator bacteria species.

  8. The Weak Shall Inherit: Bacteriocin-Mediated Interactions in Bacterial Populations

    PubMed Central

    Majeed, Hadeel; Lampert, Adam; Ghazaryan, Lusine; Gillor, Osnat

    2013-01-01

    Background Evolutionary arms race plays a major role in shaping biological diversity. In microbial systems, competition often involves chemical warfare and the production of bacteriocins, narrow-spectrum toxins aimed at killing closely related strains by forming pores in their target’s membrane or by degrading the target’s RNA or DNA. Although many empirical and theoretical studies describe competitive exclusion of bacteriocin-sensitive strains by producers of bacteriocins, the dynamics among producers are largely unknown. Methodology/Principal findings We used a reporter-gene assay to show that the bacterial response to bacteriocins’ treatment mirrors the inflicted damage Potent bacteriocins are lethal to competing strains, but at sublethal doses can serve as strong inducing agents, enhancing their antagonists’ bacteriocin production. In contrast, weaker bacteriocins are less toxic to their competitors and trigger mild bacteriocin expression. We used empirical and numerical models to explore the role of cross-induction in the arms race between bacteriocin-producing strains. We found that in well-mixed, unstructured environments where interactions are global, producers of weak bacteriocins are selectively advantageous and outcompete producers of potent bacteriocins. However, in spatially structured environments, where interactions are local, each producer occupies its own territory, and competition takes place only in “no man’s lands” between territories, resulting in much slower dynamics. Conclusion/Significance The models we present imply that producers of potent bacteriocins that trigger a strong response in neighboring bacteriocinogenic strains are doomed, while producers of weak bacteriocins that trigger a mild response in bacteriocinogenic strains flourish. This counter-intuitive outcome might explain the preponderance of weak bacteriocin producers in nature. However, the described scenario is prolonged in spatially structured environments thus

  9. [Characterization of a bacterial biocontrol strain 1404 and its efficacy in controlling postharvest citrus anthracnose].

    PubMed

    Wang, Qian; Hu, Chunjin; Ke, Fanggang; Huang, Siliang; Li, Qiqin

    2010-09-01

    Anthracnose caused by Colletotrichum gloeosporioides (Penz.) Sacc. is a main disease in citrus production. To develop an effective biocontrol measure against citrus postharvest anthracnose, we screened antagonistic microbes and obtained a bacterial strain 1404 from the rhizospheric soil of chili plants in Nanning city, Guangxi, China. The objectives of the present study were to: (1) identify and characterize the antagonistic bacterium; and (2) to evaluate the efficacy of the antagonistic strain in controlling citrus postharvest anthracnose disease. Strain 1404 was identified by comparing its 16S rDNA sequence with related bacteria from GenBank database, as well as analyzing its morphological, physiological and biochemical characters. The antagonistic stability of the strain 1404 was determined by continuously transferring it on artificial media. The effect of the strain on suppressing citrus anthracnose at postharvest stage was tested by stab inoculation method. The 16S rDNA of strain 1404 was amplified with primers PF1 (5'-AGAGTTTGATCATGGCTCAG-3') and PR1 (5'-TACGGTTACCTTGTTACGACTT-3') and its sequence submitted to GenBank (accession number: GU361113). Strain 1404 clustered with the GenBank-derived Brevibacillus brevis strains in the 16S-rDNA-sequence-based phylogenetic tree at 100% bootstrap level. The morphological traits, physiological and biochemical characters of strain 1404 agreed with that of Brevibacillus brevis. Less change in the suppressive ability of antagonist against growth of Colletotrichum gloeosporioides was observed during four continuous transfers on artificial media. The average control efficacy of the strain was 64. 9 % against the disease 20 days after the antagonist application. Strain 1404 was identified as Brevibacillus brevis based on its morphological traits, phyiological and biochemical characters as well as 16S rDNA sequence analysis. The antagonist was approved to be a promising biocontrol agent. This is the first report of

  10. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis.

    PubMed

    de Aguiar, Sílvia Cristina; Zeoula, Lucia Maria; do Prado, Odimari Pricila Pires; Arcuri, Pedro Braga; Forano, Evelyne

    2014-11-01

    Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml(-1). C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.

  11. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells.

    PubMed

    Vida, Carmen; Cazorla, Francisco M; de Vicente, Antonio

    The improvement in soil quality of avocado crops through organic amendments with composted almond shells has a positive effect on crop yield and plant health, and enhances soil suppressiveness against the phytopathogenic fungus Rosellinia necatrix. In previous studies, induced soil suppressiveness against this pathogen was related to stimulation of Gammaproteobacteria, especially some members of Pseudomonas spp. with biocontrol-related activities. In this work, we isolated bacteria from this suppressiveness-induced amended soil using a selective medium for Pseudomonas-like microorganisms. We characterized the obtained bacterial collection to aid in identification, including metabolic profiles, antagonistic responses, hybridization to biosynthetic genes of antifungal compounds, production of lytic exoenzymatic activities and plant growth-promotion-related traits, and sequenced and compared amplified 16S rDNA genes from representative bacteria. The final selection of representative strains mainly belonged to the genus Pseudomonas, but also included the genera Serratia and Stenotrophomonas. Their biocontrol-related activities were assayed using the experimental avocado model, and results showed that all selected strains protected the avocado roots against R. necatrix. This work confirmed the biocontrol activity of these Gammaproteobacteria-related members against R. necatrix following specific stimulation in a suppressiveness-induced soil after a composted almond shell application. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties.

    PubMed

    Sonnenborn, Ulrich

    2016-10-01

    Among the gram-negative microorganisms with probiotic properties, Escherichia coli strain Nissle 1917 (briefly EcN) is probably the most intensively investigated bacterial strain today. Since nearly 100 years, the EcN strain is used as the active pharmaceutical ingredient in a licensed medicinal product that is distributed in Germany and several other countries. Over the last few decades, novel probiotic activities have been detected, which taken together are specific of this versatile E. coli strain. This review gives a short overview on the discovery and history of the EcN strain. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Bacterial virulence effectors and their activities.

    PubMed

    Hann, Dagmar R; Gimenez-Ibanez, Selena; Rathjen, John P

    2010-08-01

    The major virulence strategy for plant pathogenic bacteria is deployment of effector molecules within the host cytoplasm. Each bacterial strain possesses a set of 20-30 effectors which have overlapping activities, are functionally interchangeable, and diverge in composition between strains. Effectors target host molecules to suppress immunity. Two main strategies are apparent. Effectors that target host proteins seem to attack conserved structural domains but otherwise lack specificity. On the other hand, those that influence host gene transcription directly do so with extreme specificity. In both cases, examples are known where the host has exploited effector-target affinities to establish immune recognition of effectors. The molecular activity of each effector links virulence and immune outcomes. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    PubMed

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  15. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  16. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions.

    PubMed

    Mendis, Hajeewaka C; Thomas, Varghese P; Schwientek, Patrick; Salamzade, Rauf; Chien, Jung-Ting; Waidyarathne, Pramuditha; Kloepper, Joseph; De La Fuente, Leonardo

    2018-01-01

    Bacillus amyloliquefaciens QST713 and B. firmus I-1582 are bacterial strains which are used as active ingredients of commercially-available soil application and seed treatment products Serenade® and VOTiVO®, respectively. These bacteria colonize plant roots promoting plant growth and offering protection against pathogens/pests. The objective of this study was to develop a qPCR protocol to quantitate the dynamics of root colonization by these two strains under field conditions. Primers and TaqMan® probes were designed based on genome comparisons of the two strains with publicly-available and unpublished bacterial genomes of the same species. An optimized qPCR protocol was developed to quantify bacterial colonization of corn roots after seed treatment. Treated corn seeds were planted in non-sterile soil in the greenhouse and grown for 28 days. Specific detection of bacteria was quantified weekly, and showed stable colonization between ~104-105 CFU/g during the experimental period for both bacteria, and the protocol detected as low as 103 CFU/g bacteria on roots. In a separate experiment, streptomycin-resistant QST713 and rifampicin-resistant I-1582 strains were used to compare dilution-plating on TSA with the newly developed qPCR method. Results also indicated that the presence of natural microflora and another inoculated strain does not affect root colonization of either one of these strains. The same qPCR protocol was used to quantitate root colonization by QST713 and I-1582 in two corn and two soybean varieties grown in the field. Both bacteria were quantitated up to two weeks after seeds were planted in the field and there were no significant differences in root colonization in either bacteria strain among varieties. Results presented here confirm that the developed qPCR protocol can be successfully used to understand dynamics of root colonization by these bacteria in plants growing in growth chamber, greenhouse and the field.

  17. Isolation, screening and molecular identification of novel bacterial strain removing methylene blue from water solutions

    NASA Astrophysics Data System (ADS)

    Kilany, Mona

    2017-11-01

    The potentially deleterious effects of methylene blue (MB) on human health drove the interest in its removal promptly. Bioremediation is an effective and eco friendly for removing MB. Soil bacteria were isolated and examined for their potential to remove MB. The most potent bacterial candidate was characterized and identified using 16S rRNA sequence technique. The evolutionary history of the isolate was conducted by maximum likelihood method. Some physiochemical parameters were optimized for maximum decolorization. Decolorization mechanism and microbial toxicity study of MB (100 mg/l) and by-products were investigated. Participation of heat killed bacteria in color adsorption have been investigated too. The bacterial isolate was identified as Stenotrophomonas maltophilia strain Kilany_MB 16S ribosomal RNA gene with 99% sequence similarity. The sequence was submitted to NCBI (Accession number = KU533726). Phylogeny depicted the phylogenetic relationships between 16S ribosomal RNA gene, partial sequence (1442 bp), of the isolated strain and other strains related to Stenotrophomonas maltophilia in the GenBank database. The optimal conditions were investigated to be pH 5 at 30 °C, after 24 h using 5 mg/l MB showing optimum decolorization percentage (61.3%). Microbial toxicity study demonstrated relative reduction in the toxicity of MB decolorized products on test bacteria. Mechanism of color removal was proved by both biosorption and biodegradation, where heat-killed and live cells showed 43 and 52% of decolorization, respectively, as a maximum value after 24-h incubation. It was demonstrated that the mechanism of color removal is by adsorption. Therefore, good performance of S maltophilia in MB color removal reinforces the exploitation of these bacteria in environmental clean-up and restoration of the ecosystem.

  18. Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells

    PubMed Central

    de Vos, Paul; Mujagic, Zlatan; de Haan, Bart J.; Siezen, Roland J.; Bron, Peter A.; Meijerink, Marjolein; Wells, Jerry M.; Masclee, Ad A. M.; Boekschoten, Mark V.; Faas, Marijke M.; Troost, Freddy J.

    2017-01-01

    Orally ingested bacteria interact with intestinal mucosa and may impact immunity. However, insights in mechanisms involved are limited. In this randomized placebo-controlled cross-over trial, healthy human subjects were given Lactobacillus plantarum supplementation (strain TIFN101, CIP104448, or WCFS1) or placebo for 7 days. To determine whether L. plantarum can enhance immune response, we compared the effects of three stains on systemic and gut mucosal immunity, by among others assessing memory responses against tetanus toxoid (TT)-antigen, and mucosal gene transcription, in human volunteers during induction of mild immune stressor in the intestine, by giving a commonly used enteropathic drug, indomethacin [non-steroidal anti-inflammatory drug (NSAID)]. Systemic effects of the interventions were studies in peripheral blood samples. NSAID was found to induce a reduction in serum CD4+/Foxp3 regulatory cells, which was prevented by L. plantarum TIFN101. T-cell polarization experiments showed L. plantarum TIFN101 to enhance responses against TT-antigen, which indicates stimulation of memory responses by this strain. Cell extracts of the specific L. plantarum strains provoked responses after WCFS1 and TIFN101 consumption, indicating stimulation of immune responses against the specific bacteria. Mucosal immunomodulatory effects were studied in duodenal biopsies. In small intestinal mucosa, TIFN101 upregulated genes associated with maintenance of T- and B-cell function and antigen presentation. Furthermore, L. plantarum TIFN101 and WCFS1 downregulated immunological pathways involved in antigen presentation and shared downregulation of snoRNAs, which may suggest cellular destabilization, but may also be an indicator of tissue repair. Full sequencing of the L. plantarum strains revealed possible gene clusters that might be responsible for the differential biological effects of the bacteria on host immunity. In conclusion, the impact of oral consumption L. plantarum on

  19. Induction of human antigen-specific suppressor factors in vitro.

    PubMed Central

    Kontiainen, S; Woody, J N; Rees, A; Feldmann, M

    1981-01-01

    Based on methods used for the in vitro induction of antigen-specific suppressor cells in the mouse, we have cultured Ficoll-Isopaque-separated human blood cells with high dose of antigen (100 microgram/ml) in Marbrook culture vessels for 4 days. The resulting cells, when further recultured for 24 hr with a low dose of antigen (1 microgram/ml), released into the supernatant material, termed 'suppressor factor', which inhibited, in an antigen-specific manner, the antibody response of mouse spleen cells in culture. The suppressor factor was analysed using immunoabsorbents, and was bound to and eluted from specific antigen, concanavalin A and lentil lectin, anti-human Ia antibodies, and anti-mouse suppressor factor antibodies, but was not bound to antibodies against human IgG. PMID:6169475

  20. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms.

    PubMed

    Yang, Jun; Yang, Yu; Wu, Wei-Min; Zhao, Jiao; Jiang, Lei

    2014-12-02

    Polyethylene (PE) has been considered nonbiodegradable for decades. Although the biodegradation of PE by bacterial cultures has been occasionally described, valid evidence of PE biodegradation has remained limited in the literature. We found that waxworms, or Indian mealmoths (the larvae of Plodia interpunctella), were capable of chewing and eating PE films. Two bacterial strains capable of degrading PE were isolated from this worm's gut, Enterobacter asburiae YT1 and Bacillus sp. YP1. Over a 28-day incubation period of the two strains on PE films, viable biofilms formed, and the PE films' hydrophobicity decreased. Obvious damage, including pits and cavities (0.3-0.4 μm in depth), was observed on the surfaces of the PE films using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The formation of carbonyl groups was verified using X-ray photoelectron spectroscopy (XPS) and microattenuated total reflectance/Fourier transform infrared (micro-ATR/FTIR) imaging microscope. Suspension cultures of YT1 and YP1 (10(8) cells/mL) were able to degrade approximately 6.1 ± 0.3% and 10.7 ± 0.2% of the PE films (100 mg), respectively, over a 60-day incubation period. The molecular weights of the residual PE films were lower, and the release of 12 water-soluble daughter products was also detected. The results demonstrated the presence of PE-degrading bacteria in the guts of waxworms and provided promising evidence for the biodegradation of PE in the environment.

  1. Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost.

    PubMed

    Charbonneau, David M; Meddeb-Mouelhi, Fatma; Boissinot, Maurice; Sirois, Marc; Beauregard, Marc

    2012-03-01

    Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60-65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.

  2. Taxonomic and Strain-Specific Identification of the Probiotic Strain Lactobacillus rhamnosus 35 within the Lactobacillus casei Group▿

    PubMed Central

    Coudeyras, Sophie; Marchandin, Hélène; Fajon, Céline; Forestier, Christiane

    2008-01-01

    Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35. PMID:18326671

  3. Immunological strain specificity within type 1 poliovirus*

    PubMed Central

    Gard, Sven

    1960-01-01

    The demonstration of immunological differences between poliovirus strains of any one type is a valuable procedure in epidemiological research as it may allow a virus strain to be identified as derived from or unrelated to a given possible source of infection. It is obviously of particular importance in connexion with live poliovirus vaccination campaigns. Both kinetic tests and conventional neutralization and complement-fixation techniques have been used to this end, the former involving a more complicated test procedure and the latter demanding greater nicety in the pre-standardization of reagents. The present paper reports on attempts to establish a simplified technique. Neutralization titres of sera obtained by immunization of guinea-pigs with three strains of type 1 poliovirus (including one isolated from a patient in the 1958-59 epidemic in Léopoldville described in the two preceding papers) indicated a degree of strain specificity sufficient to permit the design of a simple screening method for the purpose of a rough immunological classification. Preliminary observations on isolates from persons fed attenuated virus indicate that antigenic changes may occur in the course of multiplication of the virus in the human intestinal tract. PMID:13826481

  4. Complete Genome Sequence of Lactobacillus rhamnosus Strain BPL5 (CECT 8800), a Probiotic for Treatment of Bacterial Vaginosis.

    PubMed

    Chenoll, Empar; Codoñer, Francisco M; Martinez-Blanch, Juan F; Ramón, Daniel; Genovés, Salvador; Menabrito, Marco

    2016-04-21

    ITALIC! Lactobacillus rhamnosusBPL5 (CECT 8800), is a probiotic strain suitable for the treatment of bacterial vaginosis. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insight into its functional activity. Copyright © 2016 Chenoll et al.

  5. Environmental Factors Support the Formation of Specific Bacterial Assemblages on Microplastics

    PubMed Central

    Oberbeckmann, Sonja; Kreikemeyer, Bernd; Labrenz, Matthias

    2018-01-01

    While the global distribution of microplastics (MP) in the marine environment is currently being critically evaluated, the potential role of MP as a vector for distinct microbial assemblages or even pathogenic bacteria is hardly understood. To gain a deeper understanding, we investigated how different in situ conditions contribute to the composition and specificity of MP-associated bacterial communities in relation to communities on natural particles. Polystyrene (PS), polyethylene (PE), and wooden pellets were incubated for 2 weeks along an environmental gradient, ranging from marine (coastal Baltic Sea) to freshwater (waste water treatment plant, WWTP) conditions. The associated assemblages as well as the water communities were investigated applying high-throughput 16S rRNA gene sequencing. Our setup allowed for the first time to determine MP-dependent and -independent assemblage factors as subject to different environmental conditions in one system. Most importantly, plastic-specific assemblages were found to develop solely under certain conditions, such as lower nutrient concentration and higher salinity, while the bacterial genus Erythrobacter, known for the ability to utilize polycyclic aromatic hydrocarbons (PAH), was found specifically on MP across a broader section of the gradient. We discovered no enrichment of potential pathogens on PE or PS; however, the abundant colonization of MP in a WWTP by certain bacteria commonly associated with antibiotic resistance suggests MP as a possible hotspot for horizontal gene transfer. Taken together, our study clarifies that the surrounding environment prevailingly shapes the biofilm communities, but that MP-specific assemblage factors exist. These findings point to the ecological significance of specific MP-promoted bacterial populations in aquatic environments and particularly in plastic accumulation zones. PMID:29403454

  6. Induction of tumor necrosis factor alpha by the group- and type-specific polysaccharides from type III group B streptococci.

    PubMed Central

    Mancuso, G; Tomasello, F; von Hunolstein, C; Orefici, G; Teti, G

    1994-01-01

    Previous studies suggested that circulating tumor necrosis factor alpha (TNF-alpha) may have a pathophysiologic role in experimental neonatal sepsis induced by group B streptococci (GBS). This study was undertaken to investigate the ability of the type III and group-specific polysaccharides of GBS to induce TNF-alpha production and TNF-alpha-dependent lethality in neonatal rats. The cytokine was detected in plasma samples by the L929 cytotoxicity assay. Intracardiac injections of either polysaccharide induced dose-dependent, transient elevations in plasma TNF-alpha levels that returned to baseline values after 5 h. The group-specific antigen induced significantly higher mean peak TNF-alpha levels than the type III antigen (125 +/- 47 versus 44 +/- 15 U/ml with 70 mg/kg of body weight). Glycogen (70 mg/kg), used as a negative control, did not induce TNF-alpha. The lipopolysaccharide-neutralizing agent polymyxin B did not decrease TNF-alpha levels induced by either polysaccharide, ruling out contamination with endotoxin as a possible cause of TNF-alpha induction. Fifty percent lethal doses of the type III and group-specific antigens given as intracardiac injections were 105 and 16 mg/kg, respectively. Salmonella endotoxin, used as a positive control, had a 50% lethal dose of 0.1 mg/kg. The lethal activities of GBS polysaccharides, as well as endotoxin, were completely prevented by pretreatment of neonatal rats with the respective specific antibodies or anti-murine TNF-alpha serum. To assess the relative importance of the type-specific substance in TNF-alpha induction by whole bacteria, two unrelated GBS transposon mutants devoid of only the type-specific capsular polysaccharide (COH1-13 and COH31-15) were employed. Each of the heat-killed unencapsulated mutants was able to produce plasma TNF-alpha level elevations or TNF-alpha-dependent lethality but was significantly less efficient in these activities than the corresponding encapsulated wild-type strain. These data

  7. Induction of Mucosal Homing Virus-Specific CD8+ T Lymphocytes by Attenuated Simian Immunodeficiency Virus

    PubMed Central

    Cromwell, Mandy A.; Veazey, Ronald S.; Altman, John D.; Mansfield, Keith G.; Glickman, Rhona; Allen, Todd M.; Watkins, David I.; Lackner, Andrew A.; Johnson, R. Paul

    2000-01-01

    Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8+ lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor α4β7 and traffic to the intestinal mucosa. SIV-specific CD8+ T cells expressing α4β7 were detected in peripheral blood and intestine of macaques infected with attenuated SIV. In contrast, virus-specific T cells in blood of animals immunized cutaneously by a combined DNA-modified vaccinia virus Ankara regimen did not express α4β7. These results demonstrate the selective induction of SIV-specific CD8+ T lymphocytes expressing α4β7 by a vaccine approach that replicates in mucosal tissue and suggest that induction of virus-specific lymphocytes that are able to home to mucosal sites may be an important characteristic of a successful AIDS vaccine. PMID:10954580

  8. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil.

    PubMed

    Coppotelli, B M; Ibarrolaza, A; Del Panno, M T; Morelli, I S

    2008-02-01

    The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.

  9. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.

    PubMed

    Shi, Handuo; Colavin, Alexandre; Lee, Timothy K; Huang, Kerwyn Casey

    2017-02-01

    Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.

  10. Genomic analyses of pneumococci from children with sickle cell disease expose host-specific bacterial adaptations and deficits in current interventions

    PubMed Central

    Muller, Martha; Obert, Caroline; Burnham, Corinna; Mann, Beth; Li, Yimei; Hayden, Randall T; Pestina, Tamara; Persons, Derek; Camilli, Andrew

    2014-01-01

    Summary Sickle cell disease (SCD) patients are at high risk of contracting pneumococcal infection. To address this risk, they receive pneumococcal vaccines, and antibiotic prophylaxis and treatment. To assess the impact of SCD and these interventions on pneumococcal genetic architecture, we examined the genomes of over 300 pneumococcal isolates from SCD patients over 20 years. Modern SCD strains retained invasive capacity but shifted away from the serotypes used in vaccines. These strains had specific genetic changes related to antibiotic resistance, capsule biosynthesis, metabolism and metal transport. A murine SCD model coupled with Tn-seq mutagenesis identified 60 non-capsular pneumococcal genes under differential selective pressure in SCD, which correlated with aspects of SCD pathophysiology. Further, virulence determinants in the SCD context were distinct from the general population and protective capacity of potential antigens was lost over time in SCD. This highlights the importance of understanding bacterial pathogenesis in the context of high-risk individuals. PMID:24832453

  11. Rapid bacterial diagnostics via surface enhanced Raman microscopy.

    PubMed

    Premasiri, W R; Sauer-Budge, A F; Lee, J C; Klapperich, C M; Ziegler, L D

    2012-06-01

    There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.

  12. The trucker strain monitor: an occupation-specific questionnaire measuring psychological job strain.

    PubMed

    De Croon, E M; Blonk, R W; Van der Beek, J; Frings-Dresen, M H

    2001-08-01

    To develop and validate a short and user-friendly questionnaire measuring psychological job strain in truck drivers. In cooperation with an occupational physician in the Dutch road transport industry we developed items on the basis of face validity and information of existing questionnaires on the subject. These items were pilot-tested, by means of interviews, in 15 truck drivers. Study I examined the factorial structure of the initial 30-item trucker strain monitor (TSM) in a sample of 153 truck drivers. Subsequently, number of items per factor was reduced on the basis of reliability analyses (Cronbach's alpha). Study II examined construct and criterion validity of the TSM in a randomly selected group of 2,000 truck drivers, of whom 1,111 participated (adjusted response = 63%). Additionally, sensitivity and specificity were assessed by examining the ability of the TSM to identify truck drivers with or without self-reported sickness absence in the past 12 months because of psychological complaints. Factor analyses of the initial 30-item TSM revealed a two-factor solution. Item reduction resulted in a six-item work-related fatigue scale and four-item sleeping problems scale with high internal consistency. Results of study II confirmed the internal consistency of the TSM scales and provided support for construct and criterion validity. The composite, work-related fatigue, and sleeping problems scale had a sensitivity of 83%, 80% and 71% respectively, in identifying truck drivers with prior sickness absence because of psychological complaints. Specificity rates were 72%, 73% and 72% respectively. Despite methodological limitations, the results suggest that the TSM is a reliable and valid indicator of psychological job strain in truck drivers. In particular, the composite and work-related fatigue scale identified drivers with prior absenteeism because of psychological complaints, quite accurately. Future longitudinal research in specific sub-groups of truck drivers

  13. Strain-Specific Protective Effect of the Immunity Induced by Live Malarial Sporozoites under Chloroquine Cover

    PubMed Central

    Wijayalath, Wathsala; Cheesman, Sandra; Tanabe, Kazuyuki; Handunnetti, Shiroma; Carter, Richard; Pathirana, Sisira

    2012-01-01

    The efficacy of a whole-sporozoite malaria vaccine would partly be determined by the strain-specificity of the protective responses against malarial sporozoites and liver-stage parasites. Evidence from previous reports were inconsistent, where some studies have shown that the protective immunity induced by irradiated or live sporozoites in rodents or humans were cross-protective and in others strain-specific. In the present work, we have studied the strain-specificity of live sporozoite-induced immunity using two genetically and immunologically different strains of Plasmodium cynomolgi, Pc746 and PcCeylon, in toque monkeys. Two groups of monkeys were immunized against live sporozoites of either the Pc746 (n = 5), or the PcCeylon (n = 4) strain, by the bites of 2–4 sporozoite-infected Anopheles tessellates mosquitoes per monkey under concurrent treatments with chloroquine and primaquine to abrogate detectable blood infections. Subsequently, a group of non-immunized monkeys (n = 4), and the two groups of immunized monkeys were challenged with a mixture of sporozoites of the two strains by the bites of 2–5 infective mosquitoes from each strain per monkey. In order to determine the strain-specificity of the protective immunity, the proportions of parasites of the two strains in the challenge infections were quantified using an allele quantification assay, Pyrosequencing™, based on a single nucleotide polymorphism (SNP) in the parasites’ circumsporozoite protein gene. The Pyrosequencing™ data showed that a significant reduction of parasites of the immunizing strain in each group of strain-specifically immunized monkeys had occurred, indicating a stronger killing effect on parasites of the immunizing strain. Thus, the protective immunity developed following a single, live sporozoite/chloroquine immunization, acted specifically against the immunizing strain and was, therefore, strain-specific. As our experiment does not allow us to determine the

  14. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1.

    PubMed

    Leng, Yifei; Bao, Jianguo; Chang, Gaofeng; Zheng, Han; Li, Xingxing; Du, Jiangkun; Snow, Daniel; Li, Xu

    2016-11-15

    Although several abiotic processes have been reported that can transform antibiotics, little is known about whether and how microbiological processes may degrade antibiotics in the environment. This work isolated one tetracycline degrading bacterial strain, Stenotrophomonas maltophilia strain DT1, and characterized the biotransformation of tetracycline by DT1 under various environmental conditions. The biotransformation rate was the highest when the initial pH was 9 and the reaction temperature was at 30°C, and can be described using the Michaelis-Menten model under different initial tetracycline concentrations. When additional substrate was present, the substrate that caused increased biomass resulted in a decreased biotransformation rate of tetracycline. According to disk diffusion tests, the biotransformation products of tetracycline had lower antibiotic potency than the parent compound. Six possible biotransformation products were identified, and a potential biotransformation pathway was proposed that included sequential removal of N-methyl, carbonyl, and amine function groups. Results from this study can lead to better estimation of the fate and transport of antibiotics in the environment and has the potential to be utilized in designing engineering processes to remove tetracycline from water and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Bacterial Transport Experiments in Fractured Crystalline Bedrock

    USGS Publications Warehouse

    Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.

    2003-01-01

    The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.

  16. The impact of strain-specific immunity on Lyme disease incidence is spatially heterogeneous.

    PubMed

    Khatchikian, Camilo E; Nadelman, Robert B; Nowakowski, John; Schwartz, Ira; Wormser, Gary P; Brisson, Dustin

    2017-12-01

    Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne infection in the US. Recent studies have demonstrated that the incidence of human Lyme disease would have been even greater were it not for the presence of strain-specific immunity, which protects previously infected patients against subsequent infections by the same B. burgdorferi strain. Here, spatial heterogeneity is incorporated into epidemiological models to accurately estimate the impact of strain-specific immunity on human Lyme disease incidence. The estimated reduction in the number of Lyme disease cases is greater in epidemiologic models that explicitly include the spatial distribution of Lyme disease cases reported at the county level than those that utilize nationwide data. strain-specific immunity has the greatest epidemiologic impact in geographic areas with the highest Lyme disease incidence due to the greater proportion of people that have been previously infected and have developed strain-specific immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Bacillus subtilis strain specificity affects performance improvement in broilers.

    PubMed

    Rhayat, L; Jacquier, V; Brinch, K S; Nielsen, P; Nelson, A; Geraert, P-A; Devillard, E

    2017-07-01

    The study reports the effects on broiler performance of a newly isolated Bacillus subtilis strain, which is phylogenetically not closely related to already well-described strains of B. subtilis. In the first experiment, birds were reared in battery cages and exposed to C. perfringens. An increase in growth performance was observed with the strain when compared to the challenged animals. Three additional growth trials were conducted to 35 d of age, in different rearing conditions (genetic breeds, corn-soybean meal-based diet with or without animal proteins, in presence or absence of phytase, on fresh or used litter) to investigate the efficacy and the specificity of this new B. subtilis strain on the improvement of BWG and FCR of broilers in comparison with a B. subtilis-based DFM already used in the field. Whatever the rearing conditions tested, the new B. subtilis strain led to an average 3.2% improvement in feed conversion ratio or bodyweight. Comparatively, the commercial Bacillus strain significantly improved broiler performance in only one trial out of 3 with an average improvement reaching 2%. All these results indicate that this new B. subtilis strain consistently improves broiler performances. © 2017 Poultry Science Association Inc.

  18. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1.

    PubMed

    Maia, Alexandra S; Tiritan, Maria Elizabeth; Castro, Paula M L

    2018-07-15

    Fluoroquinolones are a class of antibiotics widely prescribed in both human and veterinary medicine of high environmental concern and characterized as environmental micropollutants due to their ecotoxicity and persistence and antibacterial resistance potential. Ofloxacin and levofloxacin are chiral fluoroquinolones commercialized as racemate and in enantiomerically pure form, respectively. Since the pharmacological properties and toxicity of the enantiomers may be very different, understanding the stereochemistry of these compounds should be a priority in environmental monitoring. This work presents the biodegradation of racemic ofloxacin and its (S)-enantiomer levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1 at a laboratory-scale microcosm following the removal and the behavior of the enantiomers. Strain F11 could degrade both antibiotics almost completely when acetate was supplied regularly to the cultures. Enrichment of the (R)-enantiomer was observed in FP1 and F11 cultures supplied with ofloxacin. Racemization was observed in the biodegradation of the pure (S)-ofloxacin (levofloxacin) by strain F11, which was confirmed by liquid chromatography - exact mass spectrometry. Biodegradation of ofloxacin at 450 µg L -1 by both bacterial strains expressed good linear fits (R 2 > 0.98) according to the Rayleigh equation. The enantiomeric enrichment factors were comprised between - 22.5% to - 9.1%, and - 18.7% to - 9.0% in the biodegradation of ofloxacin by strains F11 and FP1, respectively, with no significant differences for the two bacteria under the same conditions. This is the first time that enantioselective biodegradation of ofloxacin and levofloxacin by single bacteria is reported. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae).

    PubMed

    Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-10-01

    Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.

  20. Activation of Multiple Antibiotic Resistance in Uropathogenic Escherichia coli Strains by Aryloxoalcanoic Acid Compounds

    PubMed Central

    Balagué, Claudia; Véscovi, Eleonora García

    2001-01-01

    Clofibric and ethacrynic acids are prototypical pharmacological agents administered in the treatment of hypertrigliceridemia and as a diuretic agent, respectively. They share with 2,4-dichlorophenoxyacetic acid (the widely used herbicide known as 2,4-D) a chlorinated phenoxy structural moiety. These aryloxoalcanoic agents (AOAs) are mainly excreted by the renal route as unaltered or conjugated active compounds. The relatedness of these agents at the structural level and their potential effect on therapeutically treated or occupationally exposed individuals who are simultaneously undergoing a bacterial urinary tract infection led us to analyze their action on uropathogenic, clinically isolated Escherichia coli strains. We found that exposure to these compounds increases the bacterial resistance to an ample variety of antibiotics in clinical isolates of both uropathogenic and nonpathogenic E. coli strains. We demonstrate that the AOAs induce an alteration of the bacterial outer membrane permeability properties by the repression of the major porin OmpF in a micF-dependent process. Furthermore, we establish that the antibiotic resistance phenotype is primarily due to the induction of the MarRAB regulatory system by the AOAs, while other regulatory pathways that also converge into micF modulation (OmpR/EnvZ, SoxRS, and Lrp) remained unaltered. The fact that AOAs give rise to uropathogenic strains with a diminished susceptibility to antimicrobials highlights the impact of frequently underestimated or ignored collateral effects of chemical agents. PMID:11353631

  1. Induction of virus-specific effector immune cell response limits virus replication and severe disease in mice infected with non-lethal West Nile virus Eg101 strain.

    PubMed

    Kumar, Mukesh; Roe, Kelsey; O'Connell, Maile; Nerurkar, Vivek R

    2015-09-22

    West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. Herein, we investigated the immunological responses induced by two phylogenetically related WNV strains of lineage 1, WNV NY99, and WNV Eg101. Eight-week-old C57BL/6J mice were inoculated with WNV NY99 or WNV Eg101 and mortality, virus burden in the periphery and brain, type 1 interferon response, WNV-specific antibodies, leukocyte infiltration, and inflammatory responses were analyzed. As expected, WNV NY99 infected mice demonstrated high morbidity and mortality, whereas no morbidity and mortality was observed in WNV Eg101 infected mice. Virus titers were comparable in the serum of both WNV NY99 and WNV Eg101 infected mice at day 3 after inoculation; however, at day 6, the virus was cleared from WNV Eg101 infected mice but the virus titer remained high in the WNV NY99 infected mice. Virus was detected in the brains of both WNV NY99 and Eg101 infected mice, albeit significantly higher in the brains of WNV NY99 infected mice. Surprisingly, levels of type 1 interferon and WNV-specific antibodies were significantly higher in the serum and brains of WNV NY99 infected mice. Similarly, protein levels of multiple cytokines and chemokines were significantly higher in the serum and brains of WNV NY99 infected mice. In contrast, we observed significantly higher numbers of innate and adaptive immune cells in the spleens and brains of WNV Eg101 infected mice. Moreover, total number and percentage of IFN-γ and TNF-α producing WNV-specific CD8(+) T cells were also significantly high in WNV Eg101 infected mice. Our data demonstrate that induction of virus-specific effector immune cell response limits virus replication and severe WNV disease in Eg101 infected mice. Our data also demonstrate an inverse correlation between leukocyte accumulation and production of pro-inflammatory mediators in WNV-infected mice. Moreover, increased production of pro

  2. Plants of the fynbos biome harbour host species-specific bacterial communities.

    PubMed

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Synergistic Degradation of Linuron by a Bacterial Consortium and Isolation of a Single Linuron-Degrading Variovorax Strain

    PubMed Central

    Dejonghe, Winnie; Berteloot, Ellen; Goris, Johan; Boon, Nico; Crul, Katrien; Maertens, Siska; Höfte, Monica; De Vos, Paul; Verstraete, Willy; Top, Eva M.

    2003-01-01

    The bacterial community composition of a linuron-degrading enrichment culture and the role of the individual strains in linuron degradation have been determined by a combination of methods, such as denaturing gradient gel electrophoresis of the total 16S rRNA gene pool, isolation and identification of strains, and biodegradation assays. Three strains, Variovorax sp. strain WDL1, Delftia acidovorans WDL34, and Pseudomonas sp. strain WDL5, were isolated directly from the linuron-degrading culture. In addition, subculture of this enrichment culture on potential intermediates in the degradation pathway of linuron (i.e., N,O-dimethylhydroxylamine and 3-chloroaniline) resulted in the isolation of, respectively, Hyphomicrobium sulfonivorans WDL6 and Comamonas testosteroni WDL7. Of these five strains, only Variovorax sp. strain WDL1 was able to use linuron as the sole source of C, N, and energy. WDL1 first converted linuron to 3,4-dichloroaniline (3,4-DCA), which transiently accumulated in the medium but was subsequently degraded. To the best of our knowledge, this is the first report of a strain that degrades linuron further than the aromatic intermediates. Interestingly, the rate of linuron degradation by strain WDL1 was lower than that for the consortium, but was clearly increased when WDL1 was coinoculated with each of the other four strains. D. acidovorans WDL34 and C. testosteroni WDL7 were found to be responsible for degradation of the intermediate 3,4-DCA, and H. sulfonivorans WDL6 was the only strain able to degrade N,O-dimethylhydroxylamine. The role of Pseudomonas sp. strain WDL5 needs to be further elucidated. The degradation of linuron can thus be performed by a single isolate, Variovorax sp. strain WDL1, but is stimulated by a synergistic interaction with the other strains isolated from the same linuron-degrading culture. PMID:12620840

  4. Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP.

    PubMed

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A; Beltrán-Hernández, Rosa I; Prieto-García, Francisco; Miranda-López, José M; Franco-Abuín, Carlos M; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-08-06

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L(-1)), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L(-1) dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L(-1) with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  5. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    PubMed

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  6. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth

    PubMed Central

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications. PMID:29117218

  7. Involvement of AmpG in mediating a dynamic relationship between serine beta-lactamase induction and biofilm-forming ability of Escherichia coli.

    PubMed

    Mallik, Dhriti; Pal, Shilpa; Ghosh, Anindya S

    2018-04-01

    AmpG permease is implicated both in beta-lactamase induction and peptidoglycan recycling in enterobacterial isolates. Here, physiological studies using molecular genetics show that deletion of AmpG permease dramatically increases beta-lactam susceptibility even in the presence of AmpC, TEM-1 and OXA beta-lactamases. Also, there is an appreciable decrease in the biofilm-forming ability of strains lacking this protein. Expression of this permease in excess probably compromises the integrity of the bacterial cells, leading to cell lysis. Based on these results, we propose that AmpG permease may be used as a potential antibiotic target and its suppression could efficiently inhibit both beta-lactamase induction and biofilm formation.

  8. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    PubMed Central

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( < 1 % 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  9. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    PubMed

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  10. Strain-specific Fibril Propagation by an Aβ Dodecamer

    NASA Astrophysics Data System (ADS)

    Dean, Dexter N.; Das, Pradipta K.; Rana, Pratip; Burg, Franklin; Levites, Yona; Morgan, Sarah E.; Ghosh, Preetam; Rangachari, Vijayaraghavan

    2017-01-01

    Low molecular weight oligomers of amyloid-β (Aβ) have emerged as the primary toxic agents in the etiology of Alzheimer disease (AD). Polymorphism observed within the aggregation end products of fibrils are known to arise due to microstructural differences among the oligomers. Diversity in aggregate morphology correlates with the differences in AD, cementing the idea that conformational strains of oligomers could be significant in phenotypic outcomes. Therefore, it is imperative to determine the ability of strains to faithfully propagate their structure. Here we report fibril propagation of an Aβ42 dodecamer called large fatty acid-derived oligomers (LFAOs). The LFAO oligomeric strain selectively induces acute cerebral amyloid angiopathy (CAA) in neonatally-injected transgenic CRND8 mice. Propagation in-vitro occurs as a three-step process involving the association of LFAO units. LFAO-seeded fibrils possess distinct morphology made of repeating LFAO units that could be regenerated upon sonication. Overall, these data bring forth an important mechanistic perspective into strain-specific propagation of oligomers that has remained elusive thus far.

  11. Bacterial migration along solid surfaces.

    PubMed Central

    Harkes, G; Dankert, J; Feijen, J

    1992-01-01

    An in vitro system was developed to study the migration of uropathogenic Escherichia coli strains. In this system an aqueous agar gel is placed against a solid surface, allowing the bacteria to migrate along the gel/solid surface interface. Bacterial strains as well as solid surfaces were characterized by means of water contact angle and zeta potential measurements. When glass was used as the solid surface, significantly different migration times for the strains investigated were observed. Relationships among the observed migration times of six strains, their contact angles, and their zeta potentials were found. Relatively hydrophobic strains exhibited migration times shorter than those of hydrophilic strains. For highly negatively charged strains shorter migration times were found than were found for less negatively charged strains. When the fastest-migrating strain with respect to glass was allowed to migrate along solid surfaces differing in hydrophobicity and charge, no differences in migration times were found. Our findings indicate that strategies to prevent catheter-associated bacteriuria should be based on inhibition of bacterial growth rather than on modifying the physicochemical character of the catheter surface. PMID:1622217

  12. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    PubMed Central

    Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2008-01-01

    Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase

  13. Kinetics of mutation induction by ultraviolet light in excision-deficient yeast.

    PubMed

    Eckardt, F; Haynes, R H

    1977-02-01

    We have measured the frequency of UV-induced reversions (locus plus suppressor) for the ochre alleles ade2-1 and lys2-1 and forward mutations (ade2 adex double auxotrophs) in an excision-deficient strain of Saccharomyces cerevisiae (rad2-20). For very low UV doses, both mutational systems exhibit linear induction kinetics. However, as the dose increases, a strikingly different response is observed: in the selective reversion system a transition to higher order induction kinetics occurs near 9 ergs/mm2 (25% survival), whereas in the nonselective forward system the mutation frequency passes through a maximum near 14 ergs/mm2 (4.4% survival) and then declines. This contrast in kinetics cannot be explained in any straightforward way by current models of induced mutagenesis, which have been developed primarily on the basis of bacterial data. The bacterial models are designed to accommodate the quadratic induction kinetics that are frequently observed in these systems. We have derived a mathematical expression for mutation frequency that enables us to fit both the forward and reversion data on the assumptions that mutagenesis is basically a "single event" Poisson process, and that mutation and killing are not necessarily independent of one another. In particular, the dose-response relations are consistent with the idea that the sensitivity of the revertants is about 25% less than that of the original cell population, whereas the sensitivity of the forward mutants is about 29% greater than the population average. We argue that this relatively small differential sensitivity of mutant and nonmutant cells is associated with events that take place during mutation expression and clonal growth.

  14. Bacterial Genome Engineering and Synthetic Biology: Combating Pathogens

    DTIC Science & Technology

    2016-11-04

    engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats ( CRISPR ), and bacterial cell-cell...Cholera# Yersinia pseudotuberculosis# Staphylococcus aureus* Phage Engineering CRISPR /Cas9 Delivery of CRISPR genes and RNA guides for sequence...bear very close sequence alignment to the harmless strains via the use of the CRISPR /Cas9 system. The CRISPR system specifically targets a DNA sequence

  15. Extracellular metabolites limit bacterial susceptibility to predation in a protist-specific manner and their regulation may be protist-induced

    USDA-ARS?s Scientific Manuscript database

    Bacteria employ various strategies to evade protozoan predation, including production and release of bioactive compounds. This capability may be instrumental in determining bacterial resistance to protozoan grazing, thereby enhancing survival of producing strains in soil environments. A limited numb...

  16. Deaths from bacterial pneumonia during 1918-19 influenza pandemic.

    PubMed

    Brundage, John F; Shanks, G Dennis

    2008-08-01

    Deaths during the 1918-19 influenza pandemic have been attributed to a hypervirulent influenza strain. Hence, preparations for the next pandemic focus almost exclusively on vaccine prevention and antiviral treatment for infections with a novel influenza strain. However, we hypothesize that infections with the pandemic strain generally caused self-limited (rarely fatal) illnesses that enabled colonizing strains of bacteria to produce highly lethal pneumonias. This sequential-infection hypothesis is consistent with characteristics of the 1918-19 pandemic, contemporaneous expert opinion, and current knowledge regarding the pathophysiologic effects of influenza viruses and their interactions with respiratory bacteria. This hypothesis suggests opportunities for prevention and treatment during the next pandemic (e.g., with bacterial vaccines and antimicrobial drugs), particularly if a pandemic strain-specific vaccine is unavailable or inaccessible to isolated, crowded, or medically underserved populations.

  17. Rapid identification of ESKAPE bacterial strains using an autonomous microfluidic device.

    PubMed

    Ho, Jack Y; Cira, Nate J; Crooks, John A; Baeza, Josue; Weibel, Douglas B

    2012-01-01

    This article describes Bacteria ID Chips ('BacChips'): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm(2). After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics.

  18. Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device

    PubMed Central

    Ho, Jack Y.; Cira, Nate J.; Crooks, John A.; Baeza, Josue; Weibel, Douglas B.

    2012-01-01

    This article describes Bacteria ID Chips (‘BacChips’): an inexpensive, portable, and autonomous microfluidic platform for identifying pathogenic strains of bacteria. BacChips consist of a set of microchambers and channels molded in the elastomeric polymer, poly(dimethylsiloxane) (PDMS). Each microchamber is preloaded with mono-, di-, or trisaccharides and dried. Pressing the layer of PDMS into contact with a glass coverslip forms the device; the footprint of the device in this article is ∼6 cm2. After assembly, BacChips are degased under large negative pressure and are stored in vacuum-sealed plastic bags. To use the device, the bag is opened, a sample containing bacteria is introduced at the inlet of the device, and the degased PDMS draws the sample into the central channel and chambers. After the liquid at the inlet is consumed, air is drawn into the BacChip via the inlet and provides a physical barrier that separates the liquid samples in adjacent microchambers. A pH indicator is admixed with the samples prior to their loading, enabling the metabolism of the dissolved saccharides in the microchambers to be visualized. Importantly, BacChips operate without external equipment or instruments. By visually detecting the growth of bacteria using ambient light after ∼4 h, we demonstrate that BacChips with ten microchambers containing different saccharides can reproducibly detect the ESKAPE panel of pathogens, including strains of: Enterococcus faecalis, Enteroccocus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterobacter cloacae. This article describes a BacChip for point-of-care detection of ESKAPE pathogens and a starting point for designing multiplexed assays that identify bacterial strains from clinical samples and simultaneously determine their susceptibility to antibiotics. PMID:22848451

  19. MemStar: a one-shot Escherichia coli-based approach for high-level bacterial membrane protein production.

    PubMed

    Lee, Chiara; Kang, Hae Joo; Hjelm, Anna; Qureshi, Abdul Aziz; Nji, Emmanuel; Choudhury, Hassanul; Beis, Konstantinos; de Gier, Jan-Willem; Drew, David

    2014-10-16

    Optimising membrane protein production yields in Escherichiacoli can be time- and resource-consuming. Here, we present a simple and effective Membrane protein Single shot amplification recipe: MemStar. This one-shot amplification recipe is based on the E. coli strain Lemo21(DE3), the PASM-5052 auto-induction medium and, contradictorily, an IPTG induction step. Using MemStar, production yields for most bacterial membrane proteins tested were improved to reach an average of 5 mg L(-1) per OD600 unit, which is significantly higher than yields obtained with other common production strategies. With MemStar, we have been able to obtain new structural information for several transporters, including the sodium/proton antiporter NapA. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. The effect of induction therapy on established CMV specific T cell immunity in living donor kidney transplantation.

    PubMed

    Stranavova, L; Hruba, P; Girmanova, E; Tycova, I; Slavcev, A; Fronek, J; Slatinska, J; Reinke, P; Volk, H-D; Viklicky, O

    2018-05-04

    Cytomegalovirus (CMV) infection influences both short and long term outcomes in immunosuppressed organ transplant recipients. The aim of this study was to evaluate the effect of different induction immunosuppression regimens on CMV specific T cell response in patients with already established CMV immunity. In 24 seropositive living donor kidney recipients, the frequency of CMV specific T cells was determined by ELISPOT (Enzyme-Linked ImmunoSpot) assay prior and 6 months after transplantation. Recipients' peripheral blood mononuclear cells were stimulated with immediate-early (IE1) and phosphoprotein 65 (pp65) CMV-derived peptide pools and the number of cells producing interferon gamma (IFN-gamma) was assessed. Patients received quadruple immunosuppression based either on depletive rabbit antithymocyte globulin (rATG) or non-depletive basiliximab induction and tacrolimus/mycophenolate mofetil/steroids. Patients with rATG induction received valgancyclovir prophylaxis. No effects of different induction agents on CMV specific T cell immunity were found at sixth month after kidney transplantation. There were no associations among dialysis vintage, pretransplant CMV specific T cell immunity, and later CMV DNAemia. Similarly, no effect of CMV prophylaxis on CMV specific T cell immunity was revealed. This study shows no effect of posttransplant immunosuppression on CMV specific T cell immunity in living donor kidney transplant recipients with CMV immunity already established, regardless of lymphocyte depletion and CMV prophylaxis.

  1. Identification and strain differentiation of Vibrio cholerae by using polyclonal antibodies against outer membrane proteins.

    PubMed

    Martínez-Govea, A; Ambrosio, J; Gutiérrez-Cogco, L; Flisser, A

    2001-07-01

    Cholera is caused only by O1 and O139 Vibrio cholerae strains. For diagnosis, 3 working days are needed for bacterial isolation from human feces and for biochemical characterization. Here we describe the purification of bacterial outer membrane proteins (OMP) from V. cholerae O1 Ogawa, O1 Inaba, and O139 strains, as well as the production of specific antisera and their use for fecal Vibrio antigen detection. Anti-OMP antisera showed very high reactivity and specificity by enzyme-linked immunosorbent assay (ELISA) and dot-ELISA. An inmunodiagnostic assay for V. cholerae detection was developed; this assay avoids preenrichment and costly equipment and can be used for epidemiological surveillance and clinical diagnosis of cases, considering that prompt and specific identification of bacteria is mandatory in cholera.

  2. Colonization of Vitis vinifera by a Green Fluorescence Protein-Labeled, gfp-Marked Strain of Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis of Grapevine

    PubMed Central

    Grall, Sophie; Manceau, Charles

    2003-01-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development. PMID:12676663

  3. Colonization of Vitis vinifera by a green fluorescence protein-labeled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine.

    PubMed

    Grall, Sophie; Manceau, Charles

    2003-04-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.

  4. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis

    PubMed Central

    Kojima, Ayuchi; Nakano, Kazuhiko; Wada, Koichiro; Takahashi, Hirokazu; Katayama, Kazufumi; Yoneda, Masato; Higurashi, Takuma; Nomura, Ryota; Hokamura, Kazuya; Muranaka, Yoshinori; Matsuhashi, Nobuyuki; Umemura, Kazuo; Kamisaki, Yoshinori; Nakajima, Atsushi; Ooshima, Takashi

    2012-01-01

    Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC. PMID:22451861

  5. Microbial specificity of metallic surfaces exposed to ambient seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, B.R.; Bard, R.F.; Tosteson, T.R.

    1984-09-01

    High-molecular-weight materials associated with the extracellular matrix and film found on titanium and aluminum surfaces after exposure to flowing coastal seawater were isolated. This material was purified by hydroxylapatite chromatography and subsequently employed to produce antibodies in the toad, Bufo marinus. The antibodies were immobilized on a solid support and employed to isolate adhesion-enhancing, high-molecular-weight materials from the laboratory culture media of bacterial strains recovered from the respective metallic surfaces during the course of their exposure to seawater. The adhesion-enhancing materials produced by the surface-associated bacterial strains were immunologically related to the extracellular biofouling matrix material found on the surfacesmore » from which these bacteria were isolated. The surface selectivity of these bacterial strains appeared to be based on the specificity of the interaction between adhesion-enhancing macromolecules produced by these bacteria and the surfaces in question. 30 references, 6 tables.« less

  6. Influence of isolated bacterial strains on the in situ biodegradation of endosulfan and the reduction of endosulfan- contaminated soil toxicity.

    PubMed

    Kong, Lingfen; Zhang, Yu; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Du, Zhongkun; Zhang, Cheng

    2018-09-30

    The recently discovered endosulfan-degrading bacterial strains Pusillimonas sp. JW2 and Bordetella petrii NS were isolated from endosulfan-polluted water and soil environments. The optimal conditions for the growth and biodegradation activity of the strains JW2 and NS were studied in detail. In addition, the ability of the strains JW2 and NS to biodegrade endosulfan in soils during in situ bioremediation experiments was investigated. At a concentration of 2 mg of endosulfan per kilogram of soil, both JW2 and NS had positive effects on the degradation of endosulfan; JW2 degraded 100% and 91.5% of α- and β-endosulfan, respectively, and NS degraded 95.1% and 90.3% of α- and β-endosulfan, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of soil samples showed the successful colonization of JW2 and NS, and the toxicity of the soil decreased, as determined by single-cell gel electrophoresis (SCGE) assays of Eiseniafetida and micronucleus (MN) assays of Viciafaba root tip cells. Furthermore, the metabolic products of the bacterially degraded endosulfan from the in situ experiments were identified as endosulfan ether and lactone. This study provided potentially foundational backgrounds information for the remediation of endosulfan-contaminated soil. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Carbon nanotubes as in vivo bacterial probes.

    PubMed

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-09-17

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F'-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  8. Carbon nanotubes as in vivo bacterial probes

    NASA Astrophysics Data System (ADS)

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-09-01

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  9. Carbon Nanotubes as in vivo Bacterial Probes

    PubMed Central

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-01-01

    With the rise in antibiotic-resistant infections, noninvasive sensing of infectious diseases is increasingly important. Optical imaging, while safer and simpler, is less developed than other modalities like radioimaging; due to low availability of target-specific molecular probes. Here, we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F’-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4× enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08×, and higher signal amplification ~1.4×, compared to conventional dyes. We show the probe offers greater ~5.7× enhancement in imaging of S. aureus infective endocarditis. These biologically-functionalized, aqueous-dispersed, actively-targeted, modularly-tunable SWNT probes offer new avenues for exploration of deeply-buried infections. PMID:25230005

  10. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    PubMed

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  11. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro

    2008-06-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.

  12. Impact of exopolysaccharide production on functional properties of some Lactobacillus salivarius strains.

    PubMed

    Mercan, Emin; İspirli, Hümeyra; Sert, Durmuş; Yılmaz, Mustafa Tahsin; Dertli, Enes

    2015-11-01

    The aim of this work was to characterize functional properties of Lactobacillus salivarius strains isolated from chicken feces. Detection of genes responsible for exopolysaccharide (EPS) production revealed that all strains harbored a dextransucrase gene, but p-gtf gene was only detected in strain E4. Analysis of EPS production levels showed significant alterations among strains tested. Biofilm formation was found to be medium composition dependant, and there was a negative correlation with biofilm formation and EPS production. Autoaggregation properties and coaggregation of L. salivarius strains with chicken pathogens were appeared to be specific at strain level. An increment in bacterial adhesion to chicken gut explants was observed in L. salivarius strains with the reduction in EPS production levels. This study showed that strain-specific properties can determine the functional properties of L. salivarius strains, and the interference of these properties might be crucial for final selection of these strains for technological purposes.

  13. Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond

    PubMed Central

    Garita-Cambronero, J.; Sena-Vélez, M.; Palacio-Bielsa, A.

    2014-01-01

    We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus. PMID:24903863

  14. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    PubMed

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  15. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    PubMed Central

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A.; Beltrán-Hernández, Rosa I.; Prieto-García, Francisco; Miranda-López, José M.; Franco-Abuín, Carlos M.; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-01-01

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments. PMID:23924881

  16. Diethylaminoethyl-cellulose-bacterial cell immunoadsorbent columns: preparation of serotype-specific globulin and immunofluorescent conjugates for Streptococcus mutans serotypes a and d.

    PubMed

    McKinney, R M; Thacker, L

    1976-04-01

    Diethylaminoethyl (DEAE)-cellulose was used as a support material for preparing bacterial cell columns. Pretreatment of the bacterial cells with formalin was essential in obtaining satisfactory adherence of the cells to DEAE-cellulose. Cross-reacting antibodies were removed from antibody preparations against strains of Streptococcus mutans serotypes a and d by adsorption on appropriate bacterial cell columns. S. mutans serotype d was further divided into two subtypes on the basis of immunofluorescent staining with conjugates of immunospecifically adsorbed immunoglobulin G. The DEAE-cellulose-bacterial cell columns were regenerated after use by desorbing the cross-reacting antibodies with low-pH buffer and were used repeatedly over and 18-month period with no detectable loss in effectiveness.

  17. Biological safety concepts of genetically modified live bacterial vaccines.

    PubMed

    Frey, Joachim

    2007-07-26

    Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment

  18. lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA.

    PubMed

    Marbach, Anja; Bettenbrock, Katja

    2012-01-01

    Most commonly used expression systems in bacteria are based on the Escherichia coli lac promoter. Furthermore, lac operon elements are used today in systems and synthetic biology. In the majority of the cases the gratuitous inducers IPTG or TMG are used. Here we report a systematic comparison of lac promoter induction by TMG and IPTG which focuses on the aspects inducer uptake, population heterogeneity and a potential influence of the transacetylase, LacA. We provide induction curves in E. coli LJ110 and in isogenic lacY and lacA mutant strains and we show that both inducers are substrates of the lactose permease at low inducer concentrations but can also enter cells independently of lactose permease if present at higher concentrations. Using a gfp reporter strain we compared TMG and IPTG induction at single cell level and showed that bimodal induction with IPTG occurred at approximately ten-fold lower concentrations than with TMG. Furthermore, we observed that lac operon induction is influenced by the transacetylase, LacA. By comparing two Plac-gfp reporter strains with and without a lacA deletion we could show that in the lacA(+) strain the fluorescence level decreased after few hours while the fluorescence further increased in the lacA(-) strain. The results indicate that through the activity of LacA the IPTG concentration can be reduced below an inducing threshold concentration-an influence that should be considered if low inducer amounts are used. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress.

    PubMed

    Vaishnav, A; Kumari, S; Jain, S; Varma, A; Choudhary, D K

    2015-08-01

    Plant root-associated rhizobacteria elicit plant immunity referred to as induced systemic tolerance (IST) against multiple abiotic stresses. Among multibacterial determinants involved in IST, the induction of IST and promotion of growth by putative bacterial volatile compounds (VOCs) is reported in the present study. To characterize plant proteins induced by putative bacterial VOCs, proteomic analysis was performed by MALDI-MS/MS after exposure of soybean seedlings to a new strain of plant growth promoting rhizobacteria (PGPR) Pseudomonas simiae strain AU. Furthermore, expression analysis by Western blotting confirmed that the vegetative storage protein (VSP), gamma-glutamyl hydrolase (GGH) and RuBisCo large chain proteins were significantly up-regulated by the exposure to AU strain and played a major role in IST. VSP has preponderant roles in N accumulation and mobilization, acid phosphatase activity and Na(+) homeostasis to sustain plant growth under stress condition. More interestingly, plant exposure to the bacterial strain significantly reduced Na(+) and enhanced K(+) and P content in root of soybean seedlings under salt stress. In addition, high accumulation of proline and chlorophyll content also provided evidence of protection against osmotic stress during the elicitation of IST by bacterial exposure. The present study reported for the first time that Ps. simiae produces a putative volatile blend that can enhance soybean seedling growth and elicit IST against 100 mmol l(-1) NaCl stress condition. The identification of such differentially expressed proteins provide new targets for future studies that will allow assessment of their physiological roles and significance in the response of glycophytes to stresses. Further work should uncover more about the chemical side of VOC compounds and a detailed study about their molecular mechanism responsible for plant growth. © 2015 The Society for Applied Microbiology.

  20. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    PubMed

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. High specificity ZnO quantum dots for diagnosis and treatment in bacterial infection

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    Early diagnosis and effective treatment of bacterial infection has become increasingly important. Herein, we developed a fluorescent nano-probe MPA@ZnO-PEP by conjugating SiO2-stabilized ZnO quantum dot (ZnO@SiO2) with bacteria-targeting peptide PEP, which was encapsulated with MPA, a near infrared (NIR) dye. The nanoprobe MPA@ZnO-PEP showed excellent fluorescence property and could specifically distinguish bacterial infection from sterile inflammation both in vitro and in vivo. The favorable biocompatability of MPA@ZnO-PEP was verified by MTT assay. This probe was further modified with antibiotic methicillin to form the theranostic nanoparticle MPA/Met@ZnO-PEP with amplified antibacterial activity. These results promised the great potential of MPA@ZnO-PEP for efficient non-invasive early diagnosis of bacterial infections and effective bacterial-targeting therapy.

  2. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds

    NASA Astrophysics Data System (ADS)

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Gruber, Hermann J.; Cui, Yidan; Traxler, Lukas; Siligan, Christine; Park, Sungsu; Hinterdorfer, Peter

    2016-09-01

    Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.

  3. Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics.

    PubMed

    Beres, Stephen B; Carroll, Ronan K; Shea, Patrick R; Sitkiewicz, Izabela; Martinez-Gutierrez, Juan Carlos; Low, Donald E; McGeer, Allison; Willey, Barbara M; Green, Karen; Tyrrell, Gregory J; Goldman, Thomas D; Feldgarden, Michael; Birren, Bruce W; Fofanov, Yuriy; Boos, John; Wheaton, William D; Honisch, Christiane; Musser, James M

    2010-03-02

    Understanding the fine-structure molecular architecture of bacterial epidemics has been a long-sought goal of infectious disease research. We used short-read-length DNA sequencing coupled with mass spectroscopy analysis of SNPs to study the molecular pathogenomics of three successive epidemics of invasive infections involving 344 serotype M3 group A Streptococcus in Ontario, Canada. Sequencing the genome of 95 strains from the three epidemics, coupled with analysis of 280 biallelic SNPs in all 344 strains, revealed an unexpectedly complex population structure composed of a dynamic mixture of distinct clonally related complexes. We discovered that each epidemic is dominated by micro- and macrobursts of multiple emergent clones, some with distinct strain genotype-patient phenotype relationships. On average, strains were differentiated from one another by only 49 SNPs and 11 insertion-deletion events (indels) in the core genome. Ten percent of SNPs are strain specific; that is, each strain has a unique genome sequence. We identified nonrandom temporal-spatial patterns of strain distribution within and between the epidemic peaks. The extensive full-genome data permitted us to identify genes with significantly increased rates of nonsynonymous (amino acid-altering) nucleotide polymorphisms, thereby providing clues about selective forces operative in the host. Comparative expression microarray analysis revealed that closely related strains differentiated by seemingly modest genetic changes can have significantly divergent transcriptomes. We conclude that enhanced understanding of bacterial epidemics requires a deep-sequencing, geographically centric, comparative pathogenomics strategy.

  4. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN

    PubMed Central

    2012-01-01

    Background Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. Results We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight) averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. Conclusions Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub-optimal conditions

  5. Carbon utilization profiles of river bacterial strains facing sole carbon sources suggest metabolic interactions.

    PubMed

    Goetghebuer, Lise; Servais, Pierre; George, Isabelle F

    2017-05-01

    Microbial communities play a key role in water self-purification. They are primary drivers of biogenic element cycles and ecosystem processes. However, these communities remain largely uncharacterized. In order to understand the diversity-heterotrophic activity relationship facing sole carbon sources, we assembled a synthetic community composed of 20 'typical' freshwater bacterial species mainly isolated from the Zenne River (Belgium). The carbon source utilization profiles of each individual strain and of the mixed community were measured in Biolog Phenotype MicroArrays PM1 and PM2A microplates that allowed testing 190 different carbon sources. Our results strongly suggest interactions occurring between our planktonic strains as our synthetic community showed metabolic properties that were not displayed by its single components. Finally, the catabolic performances of the synthetic community and a natural community from the same sampling site were compared. The synthetic community behaved like the natural one and was therefore representative of the latter in regard to carbon source consumption. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits

    PubMed Central

    Cattelan, Natalia; Jennings-Gee, Jamie; Dubey, Purnima

    2017-01-01

    ABSTRACT Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation. PMID:28893915

  7. An In Vitro Model of the Horse Gut Microbiome Enables Identification of Lactate-Utilizing Bacteria That Differentially Respond to Starch Induction

    PubMed Central

    Biddle, Amy S.; Black, Samuel J.; Blanchard, Jeffrey L.

    2013-01-01

    Laminitis is a chronic, crippling disease triggered by the sudden influx of dietary starch. Starch reaches the hindgut resulting in enrichment of lactic acid bacteria, lactate accumulation, and acidification of the gut contents. Bacterial products enter the bloodstream and precipitate systemic inflammation. Hindgut lactate levels are normally low because specific bacterial groups convert lactate to short chain fatty acids. Why this mechanism fails when lactate levels rapidly rise, and why some hindgut communities can recover is unknown. Fecal samples from three adult horses eating identical diets provided bacterial communities for this in vitro study. Triplicate microcosms of fecal slurries were enriched with lactate and/or starch. Metabolic products (short chain fatty acids, headspace gases, and hydrogen sulfide) were measured and microbial community compositions determined using Illumina 16S rRNA sequencing over 12-hour intervals. We report that patterns of change in short chain fatty acid levels and pH in our in vitro system are similar to those seen in in vivo laminitis induction models. Community differences between microcosms with disparate abilities to clear excess lactate suggest profiles conferring resistance of starch-induction conditions. Where lactate levels recover following starch induction conditions, propionate and acetate levels rise correspondingly and taxa related to Megasphaera elsdenii reach levels exceeding 70% relative abundance. In lactate and control cultures, taxa related to Veillonella montpellierensis are enriched as lactate levels fall. Understanding these community differences and factors promoting the growth of specific lactate utilizing taxa may be useful to prevent acidosis under starch-induction conditions. PMID:24098591

  8. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction.

    PubMed

    Biddle, Amy S; Black, Samuel J; Blanchard, Jeffrey L

    2013-01-01

    Laminitis is a chronic, crippling disease triggered by the sudden influx of dietary starch. Starch reaches the hindgut resulting in enrichment of lactic acid bacteria, lactate accumulation, and acidification of the gut contents. Bacterial products enter the bloodstream and precipitate systemic inflammation. Hindgut lactate levels are normally low because specific bacterial groups convert lactate to short chain fatty acids. Why this mechanism fails when lactate levels rapidly rise, and why some hindgut communities can recover is unknown. Fecal samples from three adult horses eating identical diets provided bacterial communities for this in vitro study. Triplicate microcosms of fecal slurries were enriched with lactate and/or starch. Metabolic products (short chain fatty acids, headspace gases, and hydrogen sulfide) were measured and microbial community compositions determined using Illumina 16S rRNA sequencing over 12-hour intervals. We report that patterns of change in short chain fatty acid levels and pH in our in vitro system are similar to those seen in in vivo laminitis induction models. Community differences between microcosms with disparate abilities to clear excess lactate suggest profiles conferring resistance of starch-induction conditions. Where lactate levels recover following starch induction conditions, propionate and acetate levels rise correspondingly and taxa related to Megasphaeraelsdenii reach levels exceeding 70% relative abundance. In lactate and control cultures, taxa related to Veillonellamontpellierensis are enriched as lactate levels fall. Understanding these community differences and factors promoting the growth of specific lactate utilizing taxa may be useful to prevent acidosis under starch-induction conditions.

  9. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  10. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  11. Carbapenem resistance confers to Klebsiella pneumoniae strains an enhanced ability to induce infection and cell death in epithelial tissue-specific in vitro models.

    PubMed

    Leone, Laura; Raffa, Salvatore; Martinelli, Daniela; Torrisi, Maria Rosaria; Santino, Iolanda

    2015-01-01

    Carbapenem-resistant Klebsiella pneumoniae strains (KPC-Kp) are emerging worldwide causing different nosocomial infections including those of the urinary tract, lung or skin wounds. For these strains, the antibiotic treatment is limited to only few choices including colistin, whose continuous use led to the emergence of carbapenem-resistant KPC-Kp strains resistant also to this treatment (KPC-Kp Col-R). Very little is known about the capacity of the different strains of KPC-Kp to invade the epithelial cells in vitro. To verify if the acquisition of carbapenem-resistant and the colistin-resistant phenotypes are correlated with a different ability to infect a series of epithelial cell lines of various tissutal origin and with a different capacity to induce cellular death. We used Klebsiella pneumoniae (KP), KPC-Kp and KPC-Kp Col-R strains, isolated from different patients carrying various tissue-specific infections, to infect a series of epithelial cell lines of different tissutal origin. The invasive capacity of the strains and the extent and characteristics of the cell damage and death induced by the bacteria were evaluated and compared. Our results show that both KPC-Kp and KPC-Kp Col-R display a greater ability to infect the epithelial cells, with respect to KP, and that the bacterial cell invasion results in a nonprogrammed cell death.

  12. Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α-amylase producing strain

    PubMed Central

    Fooladi, J; Sajjadian, A

    2010-01-01

    Background Screening is a routine procedure for isolation of microorganisms which are able to produce special metabolites. Purified thermostable α-amylase from bacterial sources is widely used in different industries. In this study we analyzed samples collected from three different hot springs in Iran to detect any strains capable of producing thermostable α-amylase. Materials and Methods Hot water samples from Larijan (67°C, pH 6.5), Mahallat (46°C, pH 7), and Meshkinshahr (82°C, pH 6), were cultivated in screening starch agar plates and incubated at 65°C for 24 hours. Thereafter, the plates were stained with Gram's iodine solution. Results and Discussion The bacterial colonies from the Meshkinshahr hot-spring produced the largest haloforming zone. Based on the phenotypic tests, the strain was identified as Bacillus sp. The culture condition was optimized for biosynthesis of α-amylase. The enzyme was produced at maximum level when it was incubated at 70°C in the presence of soluble starch (1%) at pH 6. The addition of calcium (10 mM) and peptone (1%) to the mineral medium, shortened the lag period and improved the growth and α-amylase synthesis. The addition of glucose (1%) to the culture greatly diminished the syntheses of α -amylase. Importantly, the enzyme extract retained 100% activity when incubated for 45 minutes at 100°C. Conclusion The Meshkinshahr hot-spring is rich in the Bacillus spp thermostable α-amylase producing strain of the thermophilic bacterial population. Iranian hot-springs like Meshkinshahr, have large microbial storages and can be used as sources of different biological products like enzymes. The enzyme which was produced with Bacillus sp. could hydrolyse polymers like starch and was used at laboratory scale successfully. PMID:22347550

  13. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats.

    PubMed

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-05-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.

  14. Suppression of bacterial infection in rice by treatment with a sulfated peptide.

    PubMed

    Wei, Tong; Chern, Mawsheng; Liu, Furong; Ronald, Pamela C

    2016-12-01

    The rice XA21 receptor kinase confers robust resistance to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). A tyrosine-sulfated peptide from Xoo, called RaxX, triggers XA21-mediated immune responses, including the production of ethylene and reactive oxygen species and the induction of defence gene expression. It has not been tested previously whether these responses confer effective resistance to Xoo. Here, we describe a newly established post-inoculation treatment assay that facilitates investigations into the effect of the sulfated RaxX peptide in planta. In this assay, rice plants were inoculated with a virulent strain of Xoo and then treated with the RaxX peptide 2 days after inoculation. We found that post-inoculation treatment of XA21 plants with the sulfated RaxX peptide suppresses the development of Xoo infection in XA21 rice plants. The treated plants display restricted lesion development and reduced bacterial growth. Our findings demonstrate that exogenous application of sulfated RaxX activates XA21-mediated immunity in planta, and provides a potential strategy for the control of bacterial disease in the field. © 2016 BSPP and John Wiley & Sons Ltd.

  15. Salt stress-induced transcription of σB- and CtsR-regulated genes in persistent and non-persistent Listeria monocytogenes strains from food processing plants.

    PubMed

    Ringus, Daina L; Ivy, Reid A; Wiedmann, Martin; Boor, Kathryn J

    2012-03-01

    Listeria monocytogenes is a foodborne pathogen that can persist in food processing environments. Six persistent and six non-persistent strains from fish processing plants and one persistent strain from a meat plant were selected to determine if expression of genes in the regulons of two stress response regulators, σ(B) and CtsR, under salt stress conditions is associated with the ability of L. monocytogenes to persist in food processing environments. Subtype data were also used to categorize the strains into genetic lineages I or II. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to measure transcript levels for two σ(B)-regulated genes, inlA and gadD3, and two CtsR-regulated genes, lmo1138 and clpB, before and after (t=10 min) salt shock (i.e., exposure of exponential phase cells to BHI+6% NaCl for 10 min at 37°C). Exposure to salt stress induced higher transcript levels relative to levels under non-stress conditions for all four stress and virulence genes across all wildtype strains tested. Analysis of variance (ANOVA) of induction data revealed that transcript levels for one gene (clpB) were induced at significantly higher levels in non-persistent strains compared to persistent strains (p=0.020; two-way ANOVA). Significantly higher transcript levels of gadD3 (p=0.024; two-way ANOVA) and clpB (p=0.053; two-way ANOVA) were observed after salt shock in lineage I strains compared to lineage II strains. No clear association between stress gene transcript levels and persistence was detected. Our data are consistent with an emerging model that proposes that establishment of L. monocytogenes persistence in a specific environment occurs as a random, stochastic event, rather than as a consequence of specific bacterial strain characteristics.

  16. [Comparison of induction L-form of Staphylococcus epidermidis, Staphylococcus haemolyticus by cefazolin].

    PubMed

    Wróblewska, Joanna; Gospodarek, Eugenia; Sekowska, Alicja; Mikołajczyk, Dorota; Janicka, Grazyna

    2008-12-01

    The L-forms of bacteria have not been studied carefully yet, because it is difficult to detect them in Gram stain reactions by light microscopy. They can be cultured on specialized hypertonic medium. We don't find any reports about intentional in vitro induction and assessment of frequency of L-forms of S. epidermidis and S. haemolyticus on the medium. to evaluate the frequency of induction of L-forms by Coagulase Negative Staphylococci. This thesis examines, if the source of isolation from clinical materials has an influence on the frequency of occurrence of cell-wall deficient bacteria. 52 strains of S. epidermidis, 52 strains of S. haemolyticus were analysed. After 13 S. epidermidis and S. haemolyticus strains were isolated from blood, urine, biomaterials, changed surface skin from patients of University Hospital in Bydgoszcz. S. epidermidis and S. haemolyticus strains were tested for induction of L-forms the methods of Owens (1988). It was observed that four (7.7%) strains of and S. haemolyticus transformed into L-forms. S. epidermidis strains isolated from blood induced L-forms (two strains), from urine and biomaterial (one strain). It was observed that strains of S. haemolyticus which have been isolated from blood and urine induced L-forms (three strains and one respectively). This study suggest that L-form induction in S. epidermidis and of S. haemolyticus strains is not correlated with sample origin from which the strains had been isolated. S. epidermidis and S. haemolyticus strains produce L-forms rarely.

  17. Allelic variation contributes to bacterial host specificity

    DOE PAGES

    Yue, Min; Han, Xiangan; Masi, Leon De; ...

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population andmore » functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.« less

  18. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    PubMed Central

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Koh, Chong-Lek; Sam, Choon-Kook; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL) and N-decanoyl-l-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07. PMID:24984061

  19. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    PubMed Central

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  20. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    PubMed

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  1. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  2. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. A Logic Programming Testbed for Inductive Thought and Specification.

    ERIC Educational Resources Information Center

    Neff, Norman D.

    This paper describes applications of logic programming technology to the teaching of the inductive method in computer science and mathematics. It discusses the nature of inductive thought and its place in those fields of inquiry, arguing that a complete logic programming system for supporting inductive inference is not only feasible but necessary.…

  4. Short-chain inulin-like fructans reduce endotoxin and bacterial translocations and attenuate development of TNBS-induced colitis in rats.

    PubMed

    Ito, Hiroyuki; Tanabe, Hiroki; Kawagishi, Hirokazu; Tadashi, Wada; Yasuhiko, Tomono; Sugiyama, Kimio; Kiriyama, Shuhachi; Morita, Tatsuya

    2009-10-01

    Anti-inflammatory effects of short-chain inulin-like fructans (SCF) on trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated in rats, focusing specifically on endotoxin and bacterial translocations. SCF with degrees of polymerization (DP) of 4 and 8 were used. Rats were fed either control diet or diets including 60 g DP4 or DP8 per kilogram for 7 days, and then received intracolonic TNBS and were fed the respective diets for a further 10 days. DP4 and DP8 significantly reduced colonic injuries as assessed by damage score, but the reduction of colonic myeloperoxidase activity was manifest solely with DP8. At 3 days after colitis induction, bacterial translocation to the mesenteric lymph node was significantly lower in the DP4 and DP8 groups, but significant reduction in the portal endotoxin concentration was achieved solely in the DP8 group. Immediately prior to colitis induction, cecal immunoglobulin A and mucin concentrations were higher in the DP4 and DP8 groups, but these changes were abolished at 10 days post colitis induction. The data suggest that SCF exert prophylactic effects against TNBS colitis, presumably as a result of inhibitory effects on endotoxin and bacterial translocations.

  5. Induction of soybean resistance to bacterial pustule disease (Xanthomonas axonopodis pv. glycines) by rhizobacteria and organic material treatment

    NASA Astrophysics Data System (ADS)

    Khaeruni, A.; Johan, E. A.; Wijayanto, T.; Taufik, M.; Syafar, A. A. R.; Kade Sutariati, G. A.

    2018-02-01

    This study aimed to evaluate the role of different formulations and types of organic matter in improving yield and resistance of soybean plants to bacterial pustule disease. The study was prepared based on a randomized block design with a factorial pattern. The first factor was the application of rhizobacterial formulation (biofresh), ie F0 = without the application of rhizobacteria, F1 = application of biofresh in solid formulation, and F2 = application of biofresh in liquid formulation. The second factor was the application of organic materials, namely B1 = compost of soybean litter + cow dung, B2 = compost of rice straw + cow dung, B3 = compost of soybean litter + rice straw + cow dung. Observation of disease severity and soybean yield was conducted on five sample plants in each treatment. The results showed that the treatment of biological agent biofresh in solid formulation combined with compos of soybean litter, was the best treatment in increasing plant resistance to bacterial pustule disease and seed weight. Plant resistance induction occurred systemically characterized by salicylic acid increase of 0.3 mg and peroxidase increase of 0.07 unit / mL in the sample plants.

  6. Strain conformation controls the specificity of cross-species prion transmission in the yeast model.

    PubMed

    Grizel, Anastasia V; Rubel, Aleksandr A; Chernoff, Yury O

    2016-07-03

    Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.

  7. Family-specific scaling laws in bacterial genomes.

    PubMed

    De Lazzari, Eleonora; Grilli, Jacopo; Maslov, Sergei; Cosentino Lagomarsino, Marco

    2017-07-27

    Among several quantitative invariants found in evolutionary genomics, one of the most striking is the scaling of the overall abundance of proteins, or protein domains, sharing a specific functional annotation across genomes of given size. The size of these functional categories change, on average, as power-laws in the total number of protein-coding genes. Here, we show that such regularities are not restricted to the overall behavior of high-level functional categories, but also exist systematically at the level of single evolutionary families of protein domains. Specifically, the number of proteins within each family follows family-specific scaling laws with genome size. Functionally similar sets of families tend to follow similar scaling laws, but this is not always the case. To understand this systematically, we provide a comprehensive classification of families based on their scaling properties. Additionally, we develop a quantitative score for the heterogeneity of the scaling of families belonging to a given category or predefined group. Under the common reasonable assumption that selection is driven solely or mainly by biological function, these findings point to fine-tuned and interdependent functional roles of specific protein domains, beyond our current functional annotations. This analysis provides a deeper view on the links between evolutionary expansion of protein families and the functional constraints shaping the gene repertoire of bacterial genomes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion

    PubMed Central

    Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich

    2004-01-01

    Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570

  9. Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope.

    PubMed

    Hasim, Sahar; Allison, David P; Mendez, Berlin; Farmer, Abigail T; Pelletier, Dale A; Retterer, Scott T; Campagna, Shawn R; Reynolds, Todd B; Doktycz, Mitchel J

    2018-01-01

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus -derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin's mode of action and a better understanding of its selectivity.

  10. Cross-reactive and strain-specific antipeptide antibodies to Pseudomonas aeruginosa PAK and PAO pili.

    PubMed Central

    Lee, K K; Paranchych, W; Hodges, R S

    1990-01-01

    Antipeptide antibodies were raised against synthetic peptides corresponding to the amino acid sequences of eight surface predicted regions of the pilin proteins from Pseudomonas aeruginosa PAK and PAO. Four of the anti-PAK peptide antisera cross-reacted with strain PAO pili, while five anti-PAO peptide antisera cross-reacted with strain PAK pili. Only one region of the two pilin proteins (region 88-97) provided strain-specific antibodies when either strain PAK or strain PAO region 88-97 peptides were used to generate antipeptide antibodies. Our results clearly showed that cross-reactive and strain-specific antibodies cannot be based solely on the degree of homology in the aligned protein sequences. The majority of synthetic peptides bound to their homologous antipilus antiserum, suggesting that linear sequences play a significant role in the immunogenic response of native pili. PMID:1974884

  11. Antibodies to a strain-specific citrullinated Epstein-Barr virus peptide diagnoses rheumatoid arthritis.

    PubMed

    Trier, Nicole Hartwig; Holm, Bettina Eide; Heiden, Julie; Slot, Ole; Locht, Henning; Lindegaard, Hanne; Svendsen, Anders; Nielsen, Christoffer Tandrup; Jacobsen, Søren; Theander, Elke; Houen, Gunnar

    2018-02-27

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Anti-citrullinated protein antibodies (ACPA) are crucial for the serological diagnosis of RA, where Epstein-Barr virus (EBV) has been suggested to be an environmental agent in triggering the onset of the disease. This study aimed to analyse antibody reactivity to citrullinated EBV nuclear antigen-2 (EBNA-2) peptides from three different EBV strains (B95-8, GD1 and AG876) using streptavidin capture enzyme-linked immunosorbent assay. One peptide, only found in a single strain (AG876), obtained a sensitivity and specificity of 77% and 95%, respectively and showed high sequence similarity to the filaggrin peptide originally used for ACPA detection. Comparison of antibody reactivity to commercial assays found that the citrullinated peptide was as effective in detecting ACPA as highly sensitive and specific commercial assays. The data presented demonstrate that the citrullinated EBNA-2 peptide indeed is recognised specifically by RA sera and that the single peptide is able to compete with assays containing multiple peptides. Furthermore, it could be hypothesized that RA may be caused by (a) specific strain(s) of EBV.

  12. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  13. Site-specific mouth rinsing can improve oral odor by altering bacterial counts. Blind crossover clinical study.

    PubMed

    Alqumber, Mohammed A; Arafa, Khaled A

    2014-11-01

    To determine whether site-specific mouth rinsing with oral disinfectants can improve oral odor beyond the traditional panoral mouth disinfection with mouth rinses by targeting specifically oral malodor implicated anaerobic bacteria. Twenty healthy fasting subjects volunteered for a blinded prospective, descriptive correlational crossover cross-section clinical trial conducted during the month of Ramadan between July and August 2013 in Albaha province in Saudi Arabia involving the application of Listerine Cool Mint mouth rinse by either the traditional panoral rinsing method, or a site-specific disinfection method targeting the subgingival and supragingival plaque and the posterior third of the tongue dorsum, while avoiding the remaining locations within the oral cavity. The viable anaerobic and aerobic bacterial counts, volatile sulfur compounds (VSCs) levels, organoleptic assessment of oral odor, and the tongue-coating index were compared at baseline, one, 5, and 9 hours after the treatment. The site-specific disinfection method reduced the VSCs and anaerobic bacterial loads while keeping the aerobic bacterial numbers higher than the traditional panoral rinsing method. Site-specific disinfection can more effectively maintain a healthy oral cavity by predominantly disinfecting the niches of anaerobic bacteria within the oral cavity.

  14. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    PubMed

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  15. Genomic Survey of Pathogenicity Determinants and VNTR Markers in the Cassava Bacterial Pathogen Xanthomonas axonopodis pv. Manihotis Strain CIO151

    PubMed Central

    Arrieta-Ortiz, Mario L.; Rodríguez-R, Luis M.; Pérez-Quintero, Álvaro L.; Poulin, Lucie; Díaz, Ana C.; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D.; Ortiz Quiñones, Juan F.; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B.; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P.; Tabima, Javier; Urrego Morales, Oscar G.; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  16. [Etiology of bacterial vaginosis (non-specific vaginitis)].

    PubMed

    Lefèvre, J C; Jean, M; Averous, S; Viraben, R; Blanc, C; Bauriaud, R; Lareng, M B

    1985-01-01

    56 women who were diagnosed bioclinically as having a bacterial vaginal infection were studied, as were 35 women as a control group. The study was a semi-quantitative analysis of the vaginal bacterial flora, both aerobic and anaerobic. It shows that Gardnerella vaginalis and anaerobic bacteria such as Peptococcus, Peptostreptococcus, Bacteroïdes, Veillonella and Mobiluncus were associated in a statistically significant way with bacterial vaginitis. On the other hand Lactobacilli were less frequently found (p less than 0.001) than in the control group of women. The way in which the microbial flora is changed has been observed during attacks of vaginitis and is discussed, as is the importance of making the diagnosis and of treating this syndrome.

  17. Comparative Proteome Analysis of Brucella melitensis Vaccine Strain Rev 1 and a Virulent Strain, 16M

    PubMed Central

    Eschenbrenner, Michel; Wagner, Mary Ann; Horn, Troy A.; Kraycer, Jo Ann; Mujer, Cesar V.; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G.

    2002-01-01

    The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1. PMID:12193611

  18. Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16M.

    PubMed

    Eschenbrenner, Michel; Wagner, Mary Ann; Horn, Troy A; Kraycer, Jo Ann; Mujer, Cesar V; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G

    2002-09-01

    The genus Brucella consists of bacterial pathogens that cause brucellosis, a major zoonotic disease characterized by undulant fever and neurological disorders in humans. Among the different Brucella species, Brucella melitensis is considered the most virulent. Despite successful use in animals, the vaccine strains remain infectious for humans. To understand the mechanism of virulence in B. melitensis, the proteome of vaccine strain Rev 1 was analyzed by two-dimensional gel electrophoresis and compared to that of virulent strain 16M. The two strains were grown under identical laboratory conditions. Computer-assisted analysis of the two B. melitensis proteomes revealed proteins expressed in either 16M or Rev 1, as well as up- or down-regulation of proteins specific for each of these strains. These proteins were identified by peptide mass fingerprinting. It was found that certain metabolic pathways may be deregulated in Rev 1. Expression of an immunogenic 31-kDa outer membrane protein, proteins utilized for iron acquisition, and those that play a role in sugar binding, lipid degradation, and amino acid binding was altered in Rev 1.

  19. Direct detection of various pathogens by loop-mediated isothermal amplification assays on bacterial culture and bacterial colony.

    PubMed

    Yan, Muxia; Li, Weidong; Zhou, Zhenwen; Peng, Hongxia; Luo, Ziyan; Xu, Ling

    2017-01-01

    In this work, loop-mediated isothermal amplification based detection assay using bacterial culture and bacterial colony for various common pathogens direct detection had been established, evaluated and further applied. A total of five species of common pathogens and nine detection targets (tlh, tdh and trh for V. Parahaemolyticus, rfbE, stx1 and stx2 for E. coli, oprI for P. aeruginosa, invA for Salmonella and hylA for L. monocytogenes) were performed on bacterial culture and bacterial colony LAMP. To evaluate and optimize this assay, a total of 116 standard strains were included. Then, for each detected targets, 20 random selected strains were applied. Results were determined through both visual observation of the changed color by naked eye and electrophoresis, which increased the accuracy of survey. The minimum adding quantity of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 45 min with 25 μl reaction volume. The detection limit of bacterial culture LAMP and PCR assay were determined to be 10 2 and 10 4 or 10 5  CFU/reaction, respectively. No false positive amplification was observed when subjecting the bacterial -LAMP assay to 116 reference strains. This was the first report of colony-LAMP and culture-LAMP assay, which had been demonstrated to be a fast, reliable, cost-effective and simple method on detection of various common pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction.

    PubMed

    Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin

    2016-10-26

    The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.

  1. Preparing for what might happen: An episodic specificity induction impacts the generation of alternative future events.

    PubMed

    Jing, Helen G; Madore, Kevin P; Schacter, Daniel L

    2017-12-01

    A critical adaptive feature of future thinking involves the ability to generate alternative versions of possible future events. However, little is known about the nature of the processes that support this ability. Here we examined whether an episodic specificity induction - brief training in recollecting details of a recent experience that selectively impacts tasks that draw on episodic retrieval - (1) boosts alternative event generation and (2) changes one's initial perceptions of negative future events. In Experiment 1, an episodic specificity induction significantly increased the number of alternative positive outcomes that participants generated to a series of standardized negative events, compared with a control induction not focused on episodic specificity. We also observed larger decreases in the perceived plausibility and negativity of the original events in the specificity condition, where participants generated more alternative outcomes, relative to the control condition. In Experiment 2, we replicated and extended these findings using a series of personalized negative events. Our findings support the idea that episodic memory processes are involved in generating alternative outcomes to anticipated future events, and that boosting the number of alternative outcomes is related to subsequent changes in the perceived plausibility and valence of the original events, which may have implications for psychological well-being. Published by Elsevier B.V.

  2. Sensitivity, specificity and predictive values of anterior chamber tap in cases of bacterial endophthalmitis.

    PubMed

    Sjoholm-Gomez de Liano, Carl; Soberon-Ventura, Vidal F; Salcedo-Villanueva, Guillermo; Santos-Palacios, Abril; Guerrero-Naranjo, Jose Luis; Fromow-Guerra, Jans; García-Aguirre, Gerardo; Morales-Canton, Virgilio; Velez-Montoya, Raul

    2017-01-01

    To assess the sensitivity, specificity, positive predictive value and negative predictive value of anterior chamber tap for the diagnosis of bacterial endophthalmitis on a population with high prevalence. Retrospective, single centre, case series study. We reviewed all medical records with clinical diagnosis of bacterial endophthalmitis in our hospital from January 1st, 2000 to December 31st 2014. From each record, we documented general demographic data, best corrected visual acuity and vitreous and aqueous tap microbiological results. All cases were further divided according to the endophthalmitis aetiology to perform individual calculations of sensitivity, specificity, positive predictive value, negative predictive value, accuracy and prevalence. We used the results of the vitreous tap as the gold standard for diagnosis of bacterial endophthalmitis. We excluded those records in which the aqueous and vitreous samples were not taken simultaneously or had an incomplete microbiological report. Significance were assessed with chi squared statistics, with an alpha value of 0.05 for statistical significance. A total of 190 cases fulfilled the inclusion/exclusion criteria. Positive culture rate from vitreous samples was 64.74%. Positive culture rate from aqueous sample was 32.11%. Bacteria isolated from aqueous samples matched those isolated from vitreous samples 78.68% of the time. The overall sensitivity was 38.21%, specificity: 75.51%, positive predictive value: 79.66%, negative predictive value: 32.74% ( p  = 0.08). Subgroup analysis showed that anterior chamber taps in cases of post-surgical endophthalmitis had a moderate to low sensitivity (37.73%), high specificity (93%) and high positive predictive value (95%) ( p  < 0.04). The sensitivity and specificity of anterior chamber tap are low and should not be used for critical therapeutic decisions in patients with suspected bacterial endophthalmitis. In cases of post-surgical endophthalmitis, the result of an

  3. Morphological characterization of several strains of the rice-pathogenic bacterium Burkholderia glumae in North Sumatra

    NASA Astrophysics Data System (ADS)

    Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.

    2018-02-01

    Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.

  4. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality.

    PubMed

    Wu, Jian; Tian, Linjie; Yu, Xiao; Pattaradilokrat, Sittiporn; Li, Jian; Wang, Mingjun; Yu, Weishi; Qi, Yanwei; Zeituni, Amir E; Nair, Sethu C; Crampton, Steve P; Orandle, Marlene S; Bolland, Silvia M; Qi, Chen-Feng; Long, Carole A; Myers, Timothy G; Coligan, John E; Wang, Rongfu; Su, Xin-zhuan

    2014-01-28

    Malaria infection triggers vigorous host immune responses; however, the parasite ligands, host receptors, and the signaling pathways responsible for these reactions remain unknown or controversial. Malaria parasites primarily reside within RBCs, thereby hiding themselves from direct contact and recognition by host immune cells. Host responses to malaria infection are very different from those elicited by bacterial and viral infections and the host receptors recognizing parasite ligands have been elusive. Here we investigated mouse genome-wide transcriptional responses to infections with two strains of Plasmodium yoelii (N67 and N67C) and discovered differences in innate response pathways corresponding to strain-specific disease phenotypes. Using in vitro RNAi-based gene knockdown and KO mice, we demonstrated that a strong type I IFN (IFN-I) response triggered by RNA polymerase III and melanoma differentiation-associated protein 5, not Toll-like receptors (TLRs), binding of parasite DNA/RNA contributed to a decline of parasitemia in N67-infected mice. We showed that conventional dendritic cells were the major sources of early IFN-I, and that surface expression of phosphatidylserine on infected RBCs might promote their phagocytic uptake, leading to the release of parasite ligands and the IFN-I response in N67 infection. In contrast, an elevated inflammatory response mediated by CD14/TLR and p38 signaling played a role in disease severity and early host death in N67C-infected mice. In addition to identifying cytosolic DNA/RNA sensors and signaling pathways previously unrecognized in malaria infection, our study demonstrates the importance of parasite genetic backgrounds in malaria pathology and provides important information for studying human malaria pathogenesis.

  5. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    PubMed Central

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  6. Strain-Specific Induction of Endometrial Periglandular Fibrosis in Mice Exposed During Adulthood to the Endocrine Disrupting Chemical Bisphenol A

    PubMed Central

    Kendziorski, Jessica A.; Belcher, Scott M.

    2015-01-01

    The aim of this study was to compare effects of bisphenol A (BPA) on collagen accumulation in uteri of two mouse strains. Adult C57Bl/6N and CD-1 mice were exposed to dietary BPA (0.004–40 mg/kg/day) or 17α-ethinyl estradiol (0.00002–0.001 mg/kg/day) as effect control. An equine endometrosis-like phenotype with increased gland nesting and periglandular collagen accumulation was characteristic of unexposed C57Bl/6N, but not CD-1, endometrium. BPA non-monotonically increased gland nest density and periglandular collagen accumulation in both strains. Increased collagen I and III expression, decreased matrix metalloproteinase 2 (MMP2) and MMP14 expression, and increased immune response were associated with the endometrosis phenotype in the C57Bl/6N strain and the 30 ppm BPA CD-1 group. The association between the pro-collagen shift in increased collagen expression and decreased MMP2 expression and activity implies that strain differences and BPA exposure salter regulation of endometrial remodeling and contributes to increased fibrosis, a component of several human uterine diseases. PMID:26307436

  7. [Features of interaction bacterial strains Micrococcus luteus LBK1 from plants varieties/hybrids cucumber and sweet pepper and with fungus Fusarium oxysporum Scelecht].

    PubMed

    Parfeniuk, A; Sterlikova, O; Beznosko, I; Krut', V

    2014-01-01

    The article presents the results of studying the impact of bacterial strain M. luteus LBK1, stimulating the growth and development of plant varieties/hybrids of cucumber and sweet pepper on the intensity of sporulation of the fungus F. oxysporum Scelecht--fusariose rot pathogen.

  8. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  9. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†

    PubMed Central

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya

    2015-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810

  10. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less

  11. Draft Genome Sequence of Lactobacillus johnsonii Strain 16, Isolated from Mice.

    PubMed

    Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Elgavish, Sharona; Kashi, Yechezkel

    2015-10-08

    Here, we report the genome sequence of Lactobacillus johnsonii, a member of the gut lactobacilli. This draft genome of L. johnsonii strain 16 isolated from C57BL/6J mice enables the identification of bacterial genes responsible for host-specific gut persistence. Copyright © 2015 Buhnik-Rosenblau et al.

  12. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice.

    PubMed

    Walitang, Denver I; Kim, Kiyoon; Madhaiyan, Munusamy; Kim, Young Kee; Kang, Yeongyeong; Sa, Tongmin

    2017-10-26

    Rice (Oryza sativa L. ssp. indica) seeds as plant microbiome present both an opportunity and a challenge to colonizing bacterial community living in close association with plants. Nevertheless, the roles and activities of bacterial endophytes remain largely unexplored and insights into plant-microbe interaction are compounded by its complexity. In this study, putative functions or physiological properties associated with bacterial endophytic nature were assessed. Also, endophytic roles in plant growth and germination that may allow them to be selectively chosen by plants were also studied. The cultivable seed endophytes were dominated by Proteobacteria particularly class Gammaproteobacteria. Highly identical type strains were isolated from the seed endosphere regardless of the rice host's physiological tolerance to salinity. Among the type strains, Flavobacterium sp., Microbacterium sp. and Xanthomonas sp. were isolated from the salt-sensitive and salt-tolerant cultivars. PCA-Biplot ordination also showed that specific type strains isolated from different rice cultivars have distinguishing similar characteristics. Flavobacterium sp. strains are phosphate solubilizers and indole-3-acetic acid producers with high tolerance to salinity and osmotic stress. Pseudomonas strains are characterized as high siderophore producers while Microbacterium sp. and Xanthomonas sp. strains have very high pectinase and cellulase activity. Among the physiological traits of the seed endophytes, bacterial pectinase and cellulase activity are positively correlated as well as salt and osmotic tolerance. Overall characterization shows that majority of the isolates could survive in 4-8% salt concentration as well as in 0.6 M and 1.2 M sucrose solution. The activities of catalase, pectinase and cellulase were also observed in almost all of the isolates indicating the importance of these characteristics for survival and colonization into the seed endosphere. Seed bacterial endophytes also

  13. Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400.

    PubMed

    Master, E R; Mohn, W W

    2001-06-01

    We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gm(r) fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30 degrees C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7 degrees C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15 degrees C was approximately five times less than the level in LB400-1 grown at 30 degrees C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.

  14. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases.

    PubMed

    Sebastián, María; Anoz-Carbonell, Ernesto; Gracia, Begoña; Cossio, Pilar; Aínsa, José Antonio; Lans, Isaías; Medina, Milagros

    2018-12-01

    The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.

  15. Genome sequence of the pink-pigmented marine bacterium Loktanella hongkongensis type strain (UST950701-009P(T)), a representative of the Roseobacter group.

    PubMed

    Lau, Stanley Ck; Riedel, Thomas; Fiebig, Anne; Han, James; Huntemann, Marcel; Petersen, Jörn; Ivanova, Natalia N; Markowitz, Victor; Woyke, Tanja; Göker, Markus; Kyrpides, Nikos C; Klenk, Hans-Peter; Qian, Pei-Yuan

    2015-01-01

    Loktanella hongkongensis UST950701-009P(T) is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492(T) together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-coding genes and 57 RNA genes. The two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.

  16. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds.

    PubMed

    Tian, J-H; Pourcher, A-M; Peu, P

    2016-07-01

    In this study, we identified five strains isolated from soil and sediments able to degrade kraft lignin, aromatic dyes and lignin derivatives. Using 16S rRNA gene sequencing, the isolates were identified as Serratia sp. JHT01, Serratia liquefacien PT01, Pseudomonas chlororaphis PT02, Stenotrophomonas maltophilia PT03 and Mesorhizobium sp. PT04. All the isolates showed significant growth on lignin with no water-extractable compounds. Synthetic aromatic dyes were used to assess the presence of oxidative enzymes. All the isolates were able to use the thiazine dye Methylene blue and the anthraquinone dye Remazol Brilliant Blue R as the sole carbon source. Guaiacol, veratryl alcohol and biphenyl were also mineralized by all the strains isolated. These results suggest they could be used for the treatment of aromatic pollutants and for the degradation of the lignocellulosic biomass. The valorization of waste lignin and lignocellulosic biomass by biocatalysis opens up new possibilities for the production of value-added substituted aromatics, biofuel and for the treatment of aromatic pollutants. Bacteria with ligninolytic potential could be a source of novel enzymes for controlled lignin depolymerization. In this work, five soil bacteria were isolated and studied. Every isolate showed significant growth on lignin and was able to degrade several lignin monomers and ligninolytic indicator dyes. They could thus be a source of novel ligninolytic enzymes as well as candidates for a bacterial consortium for the delignification of lignocellulosic biomass. © 2016 The Society for Applied Microbiology.

  17. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    PubMed

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  18. Isolation and identification of efficient Egyptian malathion-degrading bacterial isolates.

    PubMed

    Hamouda, S A; Marzouk, M A; Abbassy, M A; Abd-El-Haleem, D A; Shamseldin, Abdelaal

    2015-03-01

    Bacterial isolates degrading malathion were isolated from the soil and agricultural waste water due to their ability to grow on minimal salt media amended with malathion as a sole carbon source. Efficiencies of native Egyptian bacterial malathion-degrading isolates were investigated and the study generated nine highly effective malathion-degrading bacterial strains among 40. Strains were identified by partial sequencing of 16S rDNA analysis. Comparative analysis of 16S rDNA sequences revealed that these bacteria are similar with the genus Acinetobacter and Bacillus spp. and RFLP based PCR of 16S rDNA gave four different RFLP patterns among strains with enzyme HinfI while with enzyme HaeI they gave two RFLP profiles. The degradation rate of malathion in liquid culture was estimated using gas chromatography. Bacterial strains could degrade more than 90% of the initial malathion concentration (1000 ppm) within 4 days. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  20. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  1. Polyclonal Antisera To Distinguish Strains and Form Variants of Photorhabdus (Xenorhabdus) luminescens

    PubMed Central

    Gerritsen, L.; van der Wolf, J. M.; van Vuurde, J.; Ehlers, R.; Krasomil-Osterfel..., K. C.; Smits, P. H.

    1995-01-01

    In this study antisera against Photorhabdus luminescens strains were prepared for the first time. P. luminescens is a bacterial symbiont of entomopathogenic nematodes belonging to the genus Heterorhabditis. To characterize P. luminescens strains and form variants, we produced polyclonal antisera against P. luminescens PE (obtained from nematode strain NLH-E87.3) and against the primary and secondary forms of P. luminescens PSH (obtained from nematode strain DH-SH1). In double-diffusion tests all form variants of strain PE reacted with the antiserum against the primary form, but each variant produced a different diffusion pattern. The primary and secondary forms of strain PSH were also serologically different. Antiserum 9226 reacted with almost all P. luminescens strains tested, but it reacted differently with each strain in the double-diffusion test, showing that the strains were serologically different. The specificity of the antisera was increased by cross-absorption. After cross-absorption the antiserum against the strain PSH primary or secondary form was specific for that form and did not react with the other form. Using the cross-absorbed antisera in immunofluorescence cell-staining tests, we could distinguish primary and secondary form cells in a mixed strain PSH culture. PMID:16534911

  2. Characterization of a xylanolytic bacterial strain C10 isolated from the rumen of a red deer (Cervus elaphus) closely related of the recently described species Actinomyces succiniciruminis, A. glycerinitolerans, and A. ruminicola.

    PubMed

    Šimůnek, Jiří; Killer, Jiří; Sechovcová, Hana; Šimůnek, Jiří; Pechar, Radko; Rada, Vojtěch; Švec, Pavel; Sedláček, Ivo

    2018-05-01

    Gram-stain-positive, catalase and oxidase-negative and short rod-shaped bacterium C10 with occasional branching was isolated under strictly anaerobic conditions from the rumen fluid of a red deer (Cervus elaphus) in the course of study attempting to uncover new xylanolytic and cellulolytic rumen bacteria inhabiting the digestive tract of wild ruminants in the Czech Republic. The anaerobic M10 medium containing bovine rumen fluid and carboxymethylcellulose as a defined source of organic carbon was used in the process of bacterial isolation. The 16S rRNA gene similarity revealed recently characterized new species Actinomyces succiniciruminis Am4 T (GenBank accession number of the gene retrieved from the complete genome: LK995506) and Actinomyces glycerinitolerans G10 T (GenBank accession number from the complete genome: NZFQTT01000017) as the closest relatives (99.7 and 99.6% gene pairwise identity, respectively), followed by the Actinomyces ruminicola DSM 27982 T (97.2%, in all compared fragment of 41468 pb). Due to the taxonomic affinity of the examined strain to both species A. succiniciruminis and A. glycerinitolerans, its taxonomic status towards these species was evaluated using variable regions of rpsA (length of 519 bp) and rplB (597 bp) gene sequences amplified based on specific primers designed so as to be applicable in differentiation, classification, and phylogeny of Actinomyces species/strains. Comparative analyses using rpsA and rplB showed 98.5 and 97.9% similarities of C10 to A. succiniciruminis, respectively, and 97.5 and 97.6% similarities to A. glycerinitolerans, respectively. Thus, gene identities revealed that the evaluated isolate C10 (=DSM 100236 = LMG 28777) is a little more related to the species A. succiniciruminis isolated from the rumen of a Holstein-Friesian cow than A. glycerinitolerans. Phylogenetic analyses confirmed affinity of strain C10 to both recently characterized species. Unfortunately, they did not allow the bacterial

  3. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  4. Rapid screening of toxigenic vibrio cholerae O1 strains from south Iran by PCR-ELISA.

    PubMed

    Mousavi, Seyed Latif; Nazarian, Shahram; Amani, Jafar; Rahgerdi, Ahmad Karimi

    2008-01-01

    The ability to sensitively detect Vibrio cholera with PCR-ELISA method represents a considerable advancement over alternative more time-consuming methods for detection of this pathogen. The aim of this research is to evaluate the suitability of a PCR-enzyme-linked immunosorbent assay for sensitive and rapid detection of V. cholera O1. The 398-bp sequence of a gene that codes for the cholera toxin B subunit was amplified by PCR. The digoxigenin-labeled amplified products were coated on microplates and detected by ELISA. The PCR product was also hybridized with biotin labelled probe and detected by ELISA using streptavidin. The specificity of the PCR was determined using 10 bacterial strains and 50 samples from south Iran. The detection limit was 0.5 pg of the genomic DNA and five bacterial cells. Adaptation of PCR into PCR-ELISA assay format facilitates specific and sensitive detection and diagnosis of human cholera disease. We conclude that this PCR-ELISA is a diagnostic method that specifically detects toxin genes in V. cholera O1 strains. It is more rapid and less cumbersome than other diagnostic methods for detection of toxicity in these strains.

  5. Enhanced efficacy of an attenuated Flavobacterium psychrophilum strain cultured under iron-limited conditions

    USDA-ARS?s Scientific Manuscript database

    An attenuated strain of Flavobacterium psychrophilum (CSF259-93B.17) has shown potential as a vaccine for prevention of bacterial coldwater disease (BCWD) in rainbow trout, Oncorhynchus mykiss (Walbaum). Because BCWD outbreaks can result in high mortality in other salmonid species, specifically coho...

  6. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains

    PubMed Central

    Suárez-Esquivel, Marcela; Ruiz-Villalobos, Nazareth; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Roop II, R. Martin; Comerci, Diego J.; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Caswell, Clayton C.; Baker, Kate S.; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo; Letesson, Jean J.; De Bolle, Xavier; Guzmán-Verri, Caterina

    2016-01-01

    Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised. PMID:27746773

  8. Strains of the Group I Lineage of Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch of Cucurbitaceous Crops, are Predominant in Brazil.

    PubMed

    Silva, Gustavo M; Souza, Ricardo M; Yan, Lichun; Júnior, Rui S; Medeiros, Flavio H V; Walcott, Ron R

    2016-12-01

    Bacterial fruit blotch (BFB), caused by the seedborne bacterium Acidovorax citrulli, is an economically important threat to cucurbitaceous crops worldwide. Since the first report of BFB in Brazil in 1990, outbreaks have occurred sporadically on watermelon and, more frequently, on melon, resulting in significant yield losses. At present, the genetic diversity and the population structure of A. citrulli strains in Brazil remain unclear. A collection of 74 A. citrulli strains isolated from naturally infected tissues of different cucurbit hosts in Brazil between 2000 and 2014 and 18 A. citrulli reference strains from other countries were compared by pulsed-field gel electrophoresis (PFGE), multilocus sequence analysis (MLSA) of housekeeping and virulence-associated genes, and pathogenicity tests on seedlings of different cucurbit species. The Brazilian population comprised predominantly group I strains (98%), regardless of the year of isolation, geographical region, or host. Whole-genome restriction digestion and PFGE analysis revealed that three unique and previously unreported A. citrulli haplotypes (assigned as haplotypes B22, B23, and B24) occurred in Brazil. The greatest diversity of A. citrulli (four haplotypes) was found among strains collected from the northeastern region of Brazil, which accounts for more than 90% of the country's melon production. MLSA clearly distinguished A. citrulli strains into two well-supported clades, in agreement with observations based on PFGE analysis. Five Brazilian A. citrulli strains, representing different group I haplotypes, were moderately aggressive on watermelon seedlings compared with four group II strains that were highly aggressive. In contrast, no significant differences in BFB severity were observed between group I and II A. citrulli strains on melon and squash seedlings. Finally, we observed a differential effect of temperature on in vitro growth of representative group I and II A. citrulli haplotypes. Specifically, of

  9. Strain-Specific Changes in Locomotor Behavior in Larval Zebrafish Elicited by Cholinergic Challenge

    EPA Science Inventory

    Some studies have compared the baseline behavior of different strains of larval zebrafish (Danio rerio), but there is sparse information on strain-specific responses to chemical challenges. The following study examines both the basal activity and response to a pharmacological cha...

  10. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock.

    PubMed

    Van Amersfoort, Edwin S; Van Berkel, Theo J C; Kuiper, Johan

    2003-07-01

    Bacterial sepsis and septic shock result from the overproduction of inflammatory mediators as a consequence of the interaction of the immune system with bacteria and bacterial wall constituents in the body. Bacterial cell wall constituents such as lipopolysaccharide, peptidoglycans, and lipoteichoic acid are particularly responsible for the deleterious effects of bacteria. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Within the circulation bacterial constituents interact with proteins such as plasma lipoproteins and lipopolysaccharide binding protein. The interaction of the bacterial constituents with receptors on the surface of mononuclear cells is mainly responsible for the induction of proinflammatory mediators by the bacterial constituents. The role of individual receptors such as the toll-like receptors and CD14 in the induction of proinflammatory cytokines and adhesion molecules is discussed in detail. In addition, the roles of a number of other receptors that bind bacterial compounds such as scavenger receptors and their modulating role in inflammation are described. Finally, the therapies for the treatment of bacterial sepsis and septic shock are discussed in relation to the action of the aforementioned receptors and proteins.

  11. Evaluation of bacterial flora during the ripening of Kedong sufu, a typical Chinese traditional bacteria-fermented soybean product.

    PubMed

    Feng, Zhen; Gao, Wei; Ren, Dan; Chen, Xi; Li, Juan-juan

    2013-04-01

    Kedong sufu is a typical bacteria-fermented sufu in China. Isolation and identification of the autochthonous bacteria involved would allow the design of specific starters for this speciality. The purpose of the present study was to evaluate the bacterial flora during the ripening of Kedong sufu using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and culturing. In terms of bacterial diversity, 22 strains were isolated and identified and 27 strains were detected by DGGE. Regarding bacterial dynamics, the results of culturing and PCR-DGGE exhibited a similar trend towards dominant strains. Throughout the fermentation of sufu, Enterococcus avium, Enterococcus faecalis and Staphylococcus carnosus were the dominant microflora, while the secondary microflora comprised Leuconostoc mesenteroides, Staphylococcus saprophyticus, Streptococcus lutetiensis, Kocuria rosea, Kocuria kristinae, Bacillus pumilus, Bacillus cereus and Bacillus subtilis. This study is the first to reveal the bacterial flora during the ripening of Kedong sufu using both culture-dependent and culture-independent methods. This information will help in the design of autochthonous starter cultures for the production of Kedong sufu with desirable characteristic sensory profiles and shorter ripening times. © 2012 Society of Chemical Industry.

  12. An In vitro Model for Bacterial Growth on Human Stratum Corneum.

    PubMed

    van der Krieken, Danique A; Ederveen, Thomas H A; van Hijum, Sacha A F T; Jansen, Patrick A M; Melchers, Willem J G; Scheepers, Paul T J; Schalkwijk, Joost; Zeeuwen, Patrick L J M

    2016-11-02

    The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.

  13. The bacterial diversity associated with bacterial diseases on Mud Crab (Scylla serrata Fab.) from Pemalang Coast, Indonesia

    NASA Astrophysics Data System (ADS)

    Sarjito; Desrina; Haditomo, AHC; Budi Prayitno, S.

    2018-05-01

    Bacterial disease is a problem in mud crab culture in Pemalang, Indonesia. The purpose of this study was to find out the bacteria associated with bacterial diseases on mud crab based on the molecular approach. Exploratory methods were conducted in this reserach. Twenty two bacteria (SJP 01 – SJP 22) were isolated from carapace and gills and hepathopancreas of moribound mud crab with TCBS and TSA medium. Based on rep PCR, five isolates (SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11) were choosen for further investigation. Result from 16S rDNA sequence analysis, SJP 01, SJP 02, SJP 04, SJP 10 and SJP 11 were closely related to Exiguobacterium sp. ZJ2505 (99%), V. harveyi strain NCIMB1280 (98%), V. alginolyticus strain ATCC 17749(98%.), B. marisflavi strain TF-11 (97%) and E. aestuarii strain TF-16 (99%) respectively.

  14. Bacterially mediated mineralization of vaterite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos; Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Gonzalez-Muñoz, Maria Teresa; Rodriguez-Gallego, Manuel

    2007-03-01

    Myxococcus xanthus, a common soil bacterium, plays an active role in the formation of spheroidal vaterite. Bacterial production of CO 2 and NH 3 and the transformation of the NH 3 to NH4+ and OH -, thus increasing solution pH and carbonate alkalinity, set the physicochemical conditions (high supersaturation) leading to vaterite precipitation in the microenvironment around cells, and directly onto the surface of bacterial cells. In the latter case, fossilization of bacteria occurs. Vaterite crystals formed by aggregation of oriented nanocrystals with c-axis normal to the bacterial cell-wall, or to the core of the spherulite when bacteria were not encapsulated. While preferred orientation of vaterite c-axis appears to be determined by electrostatic affinity (ionotropic effect) between vaterite crystal (0001) planes and the negatively charged functional groups of organic molecules on the bacterium cell-wall or on extracellular polymeric substances (EPS), analysis of the changes in the culture medium chemistry as well as high resolution transmission electron microscopy (HRTEM) observations point to polymorph selection by physicochemical (kinetic) factors (high supersaturation) and stabilization by organics, both connected with bacterial activity. The latter is in agreement with inorganic precipitation of vaterite induced by NH 3 and CO 2 addition in the protein-rich sterile culture medium. Our results as well as recent studies on vaterite precipitation in the presence of different types of bacteria suggest that bacterially mediated vaterite precipitation is not strain-specific, and could be more common than previously thought.

  15. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.

    2006-10-15

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ micemore » and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16{alpha}-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females.« less

  16. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    PubMed Central

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.; Baldwin, William S.

    2007-01-01

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16α-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females. PMID:16828826

  17. The characterization of Bordetella pertussis strains isolated in the Central-Western region of Brazil suggests the selection of a specific genetic profile during 2012-2014 outbreaks.

    PubMed

    Rocha, E L; Leite, D; Camargo, C H; Martins, L M; Silva, R S N; Martins, V P; Campos, T A

    2017-05-01

    Pertussis is a worldwide acute respiratory disease caused by the bacterium Bordetella pertussis. Despite high vaccine coverage, the bacterium continues to circulate in populations and is still one of the most common vaccine-preventable diseases. In Brazil, pertussis incidence has presented a significant decrease since 1990 but since 2011 a sudden increase in incidence has been observed. Thus, the aim of this study was to perform a molecular epidemiological characterization of B. pertussis strains isolated in the Central-Western region (specifically in Distrito Federal) of Brazil from August 2012 to August 2014. During this period, 92 B. pertussis strains were isolated from the outbreaks. All strains were characterized by serotyping and XbaI pulsed-field gel electrophoresis profiles. From August to December 2012, the most prevalent serotype observed was 1,3 (13/17). During 2013 the prevalence of serotype 1,3 decreased (13/30) and from January 2014 to August 2014 the most prevalent serotype was 1,2 (33/45). Fourteen PFGE profiles were identified. Of these, BP-XbaI0039 prevalence increased from 3/17 in 2012 to 10/30 in 2013, and 35/45 in 2014. These results evidence the selection of a specific genetic profile during this period, suggesting the occurrence of a bacterial genomic profile with high circulation potential.

  18. Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases.

    PubMed

    Hutin, Mathilde; Césari, Stella; Chalvon, Véronique; Michel, Corinne; Tran, Tuan Tu; Boch, Jens; Koebnik, Ralf; Szurek, Boris; Kroj, Thomas

    2016-10-01

    Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Auto-induction for high level production of biologically active reteplase in Escherichia coli.

    PubMed

    Fathi-Roudsari, Mehrnoosh; Maghsoudi, Nader; Maghsoudi, Amirhossein; Niazi, Sepideh; Soleiman, Morvarid

    2018-06-07

    Reteplase is a third generation tissue plasminogen activator (tPA) with a modified structure and prolonged half-life in comparison to native tPA. As a non-glycosylated protein, reteplase is expressed in Escherichia coli. Due to presence of several disulfide bonds, high level production of reteplase is complicated and needs extra steps for conversion to biologically active form. Auto-induction represents a method for high-yield growth of bacterial cells and higher expression of recombinant proteins. Here we have tried to optimize the auto-induction procedure for soluble and active expression of reteplase in E. coli. Results showed that using auto-induction strategy at 37 °C, Rosetta-gami (DE3) had the highest level of active and soluble reteplase production in comparison to E. coli strains BL21 (DE3), and Shuffel T7. Temperature dominantly affected the level of active reteplase production. Decreasing the temperature to 25 and 18 °C increased the level of active reteplase by 20 and 60%, respectively. The composition of auto-induction medium also dramatically changed the active production of reteplase in cytoplasm. Using higher enriched auto-induction medium, super broth base including trace elements, significantly increased biologically active reteplase by 30%. It is demonstrated here that auto-induction is a powerful method for expression of biologically active reteplase in oxidative cytoplasm of Rosetta-gami. Optimizing expression condition by decreasing temperature and using an enriched auto-induction medium resulted in at least three times higher level of active reteplase production. Production of correctly folded and active reteplase in spite of its complex structure helps for removal of inefficient and cumbersome step of refolding. Copyright © 2018. Published by Elsevier Inc.

  20. Specific mesenchymal/epithelial induction of olfactory receptor, vomeronasal, and gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Rawson, N.E; Lischka, F. W.; Yee, K.K.; Peters, A.Z.; Tucker, E.S.; Meechan, D.W.; Zirlinger, M.; Maynard, T.M.; Burd, G.B.; Dulac, C.; Pevny, L.; LaMantia, A-S.

    2013-01-01

    We asked whether specific mesenchymal/epithelial (M/E) induction generates olfactory receptor neurons (ORNs), vomeronasal neurons (VRNs) and gonadotropin releasing hormone (GnRH) neurons—the major neuron classes associated with the olfactory epithelium (OE). To assess specificity of M/E-mediated neurogenesis, we compared the influence of frontonasal mesenchyme on frontonasal epithelium, which becomes the OE, with that of the forelimb bud. Despite differences in position, morphogenetic and cytogenic capacity, both mesenchymal tissues support neurogenesis, expression of several signaling molecules and neurogenic transcription factors in the frontonasal epithelium. Only frontonasal mesenchyme, however, supports OE-specific patterning and activity of a subset of signals and factors associated with OE differentiation. Moreover, only appropriate pairing of frontonasal epithelial and mesenchymal partners yields ORNs, VRNs, and GnRH neurons. Accordingly, the position and molecular identity of specialized frontonasal epithelia and mesenchyme early in gestation and subsequent inductive interactions, specifies the genesis and differentiation of peripheral chemosensory and neuroendocrine neurons. PMID:20503368

  1. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  2. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collectionmore » of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P{sup 32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population.« less

  3. Differential induction of pro- and anti-inflammatory cytokines in whole blood by bacteria: effects of antibiotic treatment.

    PubMed

    Frieling, J T; Mulder, J A; Hendriks, T; Curfs, J H; van der Linden, C J; Sauerwein, R W

    1997-07-01

    The in vitro production of interleukin-1beta (IL-1beta), IL-6, and the IL-1 receptor antagonist (IL-1ra) in whole blood upon stimulation with different bacterial strains was measured to study the possible relationship between disease severity and the cytokine-inducing capacities of these strains. Escherichia coli, Neisseria meningitidis, Neisseria gonorrhoeae, Bacteroides fragilis, Capnocytophaga canimorsus, Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumoniae, and Streptococcus pyogenes induced the cytokines IL-1beta, IL-6, and IL-1ra. Gram-negative bacteria induced significantly higher levels of proinflammatory cytokine production than gram-positive bacteria. These differences were less pronounced for the anti-inflammatory cytokine IL-1ra. In addition, blood was stimulated with E. coli killed by different antibiotics to study the effect of the antibiotics on the cytokine-inducing capacity of the bacterial culture. E. coli treated with cefuroxime and gentamicin induced higher levels of IL-1beta and IL-6 production but levels of IL-1ra production similar to that of heat-killed E. coli. In contrast, ciprofloxacin- and imipenem-cilastatin-mediated killing showed a decreased or similar level of induction of cytokine production as compared to that by heat-killed E. coli; polymyxin B decreased the level of production of the cytokines.

  4. Applying mixture toxicity modelling to predict bacterial bioluminescence inhibition by non-specifically acting pharmaceuticals and specifically acting antibiotics.

    PubMed

    Neale, Peta A; Leusch, Frederic D L; Escher, Beate I

    2017-04-01

    Pharmaceuticals and antibiotics co-occur in the aquatic environment but mixture studies to date have mainly focused on pharmaceuticals alone or antibiotics alone, although differences in mode of action may lead to different effects in mixtures. In this study we used the Bacterial Luminescence Toxicity Screen (BLT-Screen) after acute (0.5 h) and chronic (16 h) exposure to evaluate how non-specifically acting pharmaceuticals and specifically acting antibiotics act together in mixtures. Three models were applied to predict mixture toxicity including concentration addition, independent action and the two-step prediction (TSP) model, which groups similarly acting chemicals together using concentration addition, followed by independent action to combine the two groups. All non-antibiotic pharmaceuticals had similar EC 50 values at both 0.5 and 16 h, indicating together with a QSAR (Quantitative Structure-Activity Relationship) analysis that they act as baseline toxicants. In contrast, the antibiotics' EC 50 values decreased by up to three orders of magnitude after 16 h, which can be explained by their specific effect on bacteria. Equipotent mixtures of non-antibiotic pharmaceuticals only, antibiotics only and both non-antibiotic pharmaceuticals and antibiotics were prepared based on the single chemical results. The mixture toxicity models were all in close agreement with the experimental results, with predicted EC 50 values within a factor of two of the experimental results. This suggests that concentration addition can be applied to bacterial assays to model the mixture effects of environmental samples containing both specifically and non-specifically acting chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  6. Factors influencing bacterial adhesion to contact lenses.

    PubMed

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  7. Factors influencing bacterial adhesion to contact lenses

    PubMed Central

    Dutta, Debarun; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220

  8. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  9. Myogenic specification in somites: induction by axial structures.

    PubMed

    Buffinger, N; Stockdale, F E

    1994-06-01

    Specification of the myogenic phenotype in somites was examined in the early chick embryo using organotypic explant cultures stained with monoclonal antibodies to myosin heavy chain. It was found that myogenic specification (formation of muscle fibers in explants of somites or segmental plates cultured alone) does not occur until Hamburger and Hamilton stage 11 (12-14 somites). At this stage, only the somites in the rostral half of the embryo are myogenically specified. By Hamburger and Hamilton stage 12 (15-17 somites), the three most caudal somites were not specified to be myogenic while most or all of the more rostral somites are specified to myogenesis. Somites from older embryos (stage 13-15, 18-26 somites) showed the same pattern of myogenic specification--all but the three most caudal somites were specified. We investigated the effects of the axial structures, the notochord and neural tube, on myogenic specification. Both the notochord and neural tube were able to induce myogenesis in unspecified somites. In contrast, the neural tube, but not the notochord, was able to induce myogenesis in explants of segmental plate, a structure which is not myogenic when cultured alone. When explants of specified somites were stained with antibodies to slow or fast MyHC, it was found that myofiber diversity (fast and fast slow fibers) was established very early in development (as early as Hamburger and Hamilton stage 11). We also found fiber diversity in explants of unspecified somites (the three most caudal somites from stage 11 to 15) when they were recombined with notochord or neural tube. We conclude that myogenic specification in the embryo results in diverse fiber types and is an inductive process which is mediated by factors produced by the neural tube and notochord.

  10. Structural Basis for High Specificity of Amadori Compound and Mannopine Opine Binding in Bacterial Pathogens*

    PubMed Central

    Marty, Loïc; Vigouroux, Armelle; Aumont-Nicaise, Magali; Dessaux, Yves; Faure, Denis; Moréra, Solange

    2016-01-01

    Agrobacterium tumefaciens pathogens genetically modify their host plants to drive the synthesis of opines in plant tumors. Opines are either sugar phosphodiesters or the products of condensed amino acids with ketoacids or sugars. They are Agrobacterium nutrients and imported into the bacterial cell via periplasmic-binding proteins (PBPs) and ABC-transporters. Mannopine, an opine from the mannityl-opine family, is synthesized from an intermediate named deoxy-fructosyl-glutamine (DFG), which is also an opine and abundant Amadori compound (a name used for any derivative of aminodeoxysugars) present in decaying plant materials. The PBP MotA is responsible for mannopine import in mannopine-assimilating agrobacteria. In the nopaline-opine type agrobacteria strain, SocA protein was proposed as a putative mannopine binding PBP, and AttC protein was annotated as a mannopine binding-like PBP. Structural data on mannityl-opine-PBP complexes is currently lacking. By combining affinity data with analysis of seven x-ray structures at high resolution, we investigated the molecular basis of MotA, SocA, and AttC interactions with mannopine and its DFG precursor. Our work demonstrates that AttC is not a mannopine-binding protein and reveals a specific binding pocket for DFG in SocA with an affinity in nanomolar range. Hence, mannopine would not be imported into nopaline-type agrobacteria strains. In contrast, MotA binds both mannopine and DFG. We thus defined one mannopine and two DFG binding signatures. Unlike mannopine-PBPs, selective DFG-PBPs are present in a wide diversity of bacteria, including Actinobacteria, α-,β-, and γ-proteobacteria, revealing a common role of this Amadori compound in pathogenic, symbiotic, and opportunistic bacteria. PMID:27609514

  11. Is the Quantification of Antigen-Specific Basophil Activation a Useful Tool for Monitoring Oral Tolerance Induction in Children With Egg Allergy?

    PubMed

    Gamboa, P M; Garcia-Lirio, E; Gonzalez, C; Gonzalez, A; Martinez-Aranguren R M; Sanz María, L

    2016-01-01

    To assess modifications in baseline specific IgE- and anti-IgE- and antigen-specific-mediated basophil activation in egg-allergic children. The values were compared before and after the children completed specific oral tolerance induction (SOTI) with egg. We studied 28 egg-allergic children who completed SOTI with egg. The basophil activation test and specific IgE determinations with egg white, ovalbumin, and ovomucoid were performed in all 28 children. A decrease in antigen-specific activation with egg white, ovalbumin, and ovomucoid was observed only at the 2 lowest concentrations used (5 and 0.05 ng/mL). Baseline activation was higher in patients with multiple food allergies and in those who developed anaphylaxis during SOTI; this activation decreased in both groups after completion of SOTI. A significant decrease was also observed in specific IgE values for egg white, ovalbumin, and ovomucoid after tolerance induction. Food tolerance induction is a specific process for each food that can be mediated by immunologic changes such as a decrease in specific IgE values and in specific and spontaneous basophil activation.

  12. Activity and adaptation of nitrilotriacetate (NTA)-degrading bacteria: field and laboratory studies

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Egli, T.; Wilberg, E.; Alder, A.; Schneider, R.; Suozzi, M.; Giger, W.

    1990-01-01

    Adaptation of bacterial activity for the degradation of nitrilotriacetate (NTA) was studied using natural sediment samples and an NTA-degrading bacterium (strain ATCC 29600). Sediment samples from a river with persistent levels of NTA had much higher NTA-degradative activity than comparable samples from a less contaminated control site. When sediment from the control site was exposed to high levels of NTA a 5 day lag preceded an abrupt increase in NTA degradation while strain 29600 colonized on sand and grown in the absence of NTA became induced within eight hours. The induction of strain 29600 was compared between bacteria in suspension and cells attached to sand. The sand-associated bacteria became induced 4 to 5 h before the planktonic suspension and displayed over threefold greater specific activity. Suspensions of strain 29600 became adapted within 8 h when placed in membrane diffusion chambers that were immersed within a municipal wastewater reactor containing NTA. These findings support the concept that induction is a part of the process of bacterial adaptation to degrade NTA and sand-associated bacteria can adapt more quickly to and have a greater degradative activity for NTA than planktonic cells.

  13. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells.

    PubMed

    Kleijwegt, Fleur S; Laban, Sandra; Duinkerken, Gaby; Joosten, Antoinette M; Zaldumbide, Arnaud; Nikolic, Tatjana; Roep, Bart O

    2010-08-01

    TNF is a pleiotropic cytokine with differential effects on immune cells and diseases. Anti-TNF therapy was shown to be effective in rheumatoid arthritis but proved inefficient or even detrimental in other autoimmune diseases. We studied the role of TNF in the induction of Ag-specific regulatory T cells (Tregs) by tolerogenic vitamin D3-modulated human dendritic cells (VD3-DCs), which previously were shown to release high amounts of soluble TNF (sTNF) upon maturation with LPS. First, production of TNF by modulated VD3-DCs was analyzed upon maturation with LPS or CD40L with respect to both secreted (cleaved) TNF (sTNF) and expression of the membrane-bound (uncleaved) form of TNF (mTNF). Next, TNF antagonists were tested for their effect on induction of Ag-specific Tregs by modulated DCs and the subsequent functionality of these Tregs. VD3-DCs expressed greater amounts of mTNF than did control DCs (nontreated DCs), independent of the maturation protocol. Inhibition of TNF with anti-TNF Ab (blocking both sTNF and mTNF) during the priming of Tregs with VD3-DCs prevented generation of Tregs and their suppression of proliferation of CD4(+) T cells. In contrast, sTNF receptor II (sTNFRII), mainly blocking sTNF, did not change the suppressive capacity of Tregs. Blocking of TNFRII by anti-CD120b Ab during Treg induction similarly abrogated their subsequent suppressive function. These data point to a specific role for mTNF on VD3-DCs in the induction of Ag-specific Tregs. Interaction between mTNF and TNFRII instructs the induction of suppressive Tregs by VD3-DCs. Anti-TNF therapy may therefore act adversely in different patients or disease pathways.

  14. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    DOE PAGES

    Hasim, Sahar; Allison, David P.; Mendez, Berlin; ...

    2018-02-14

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less

  15. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasim, Sahar; Allison, David P.; Mendez, Berlin

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less

  16. Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8(T).

    PubMed

    Gentile, G; Bonsignore, M; Santisi, S; Catalfamo, M; Giuliano, L; Genovese, L; Yakimov, M M; Denaro, R; Genovese, M; Cappello, S

    2016-04-15

    The present study is focused on assessing the growth and hydrocarbon-degrading capability of the psychrophilic strain Oleispira antarctica RB-8(T). This study considered six hydrocarbon mixtures that were tested for 22days at two different cultivation temperatures (4 and 15°C). During the incubation period, six sub-aliquots of each culture at different times were processed for total bacterial abundance and GC-FID (gas chromatography-flame ionization detection) hydrocarbon analysis. Results from DNA extraction and DAPI (4',6-diamidino-2-phenylindole) staining showed a linear increase during the first 18days of the experiment in almost all the substrates used; both techniques showed a good match, but the difference in values obtained was approximately one order of magnitude. GC-FID results revealed a substantial hydrocarbon degradation rate in almost all hydrocarbon sources and in particular at 15°C rather than 4°C (for commercial oil engine, oily waste, fuel jet, and crude oil). A more efficient degradation was observed in cultures grown with diesel and bilge water at 4°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The upregulation of specific interleukin (IL) receptor antagonists and paradoxical enhancement of neuronal apoptosis due to electrode induced strain and brain micromotion.

    PubMed

    Karumbaiah, Lohitash; Norman, Sharon E; Rajan, Nithish B; Anand, Sanjay; Saxena, Tarun; Betancur, Martha; Patkar, Radhika; Bellamkonda, Ravi V

    2012-09-01

    The high mechanical mismatch between stiffness of silicon and metal microelectrodes and soft cortical tissue, induces strain at the neural interface which likely contributes to failure of the neural interface. However, little is known about the molecular outcomes of electrode induced low-magnitude strain (1-5%) on primary astrocytes, microglia and neurons. In this study we simulated brain micromotion at the electrode-brain interface by subjecting astrocytes, microglia and primary cortical neurons to low-magnitude cyclical strain using a biaxial stretch device, and investigated the molecular outcomes of induced strain in vitro. In addition, we explored the functional consequence of astrocytic and microglial strain on neural health, when they are themselves subjected to strain. Quantitative real-time PCR array (qRT-PCR Array) analysis of stretched astrocytes and microglia showed strain specific upregulation of an Interleukin receptor antagonist - IL-36Ra (previously IL-1F5), to ≈ 1018 and ≈ 236 fold respectively. Further, IL-36Ra gene expression remained unchanged in astrocytes and microglia treated with bacterial lipopolysaccharide (LPS) indicating that the observed upregulation in stretched astrocytes and microglia is potentially strain specific. Zymogram and western blot analysis revealed that mechanically strained astrocytes and microglia upregulated matrix metalloproteinases (MMPs) 2 and 9, and other markers of reactive gliosis such as glial fibrillary acidic protein (GFAP) and neurocan when compared to controls. Primary cortical neurons when stretched with and without IL-36Ra, showed a ≈ 400 fold downregulation of tumor necrosis factor receptor superfamily, member 11b (TNFRSF11b). Significant upregulation of members of the caspase cysteine proteinase family and other pro-apoptotic genes was also observed in the presence of IL-36Ra than in the absence of IL-36Ra. Adult rats when implanted with microwire electrodes showed upregulation of IL-36Ra (≈ 20

  18. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  19. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues.

    PubMed

    Peyer, Suzanne M; Pankey, M Sabrina; Oakley, Todd H; McFall-Ngai, Margaret J

    2014-02-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or 'light organ', which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ∼1/4 into embryogenesis (Naef stage 18) and the light organ ∼3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light

  20. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues

    PubMed Central

    Peyer, Suzanne M.; Pankey, M. Sabrina; Oakley, Todd H.; McFall-Ngai, Margaret J.

    2014-01-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or ‘light organ’, which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ~1/4 into embryogenesis (Naef stage 18) and the light organ ~3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light

  1. Complete Genome Sequences of Six Copper-Resistant Xanthomonas Strains Causing Bacterial Spot of Solaneous Plants, Belonging to X. gardneri, X. euvesicatoria, and X. vesicatoria, Using Long-Read Technology.

    PubMed

    Richard, Damien; Boyer, Claudine; Lefeuvre, Pierre; Canteros, Blanca I; Beni-Madhu, Shyam; Portier, Perrine; Pruvost, Olivier

    2017-02-23

    Xanthomonas vesicatoria , Xanthomonas euvesicatoria , and Xanthomonas gardneri cause bacterial spot disease. Copper has been applied since the 1920s as part of integrated management programs. The first copper-resistant strains were reported some decades later. Here, we fully sequenced six Xanthomonas strains pathogenic to tomato and/or pepper and having a copper-resistant phenotype. Copyright © 2017 Richard et al.

  2. Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat transfer fluid used in thermo-solar plants.

    PubMed

    Blanco-Moreno, Rafael; Sáez, Lara P; Luque-Almagro, Víctor M; Roldán, M Dolores; Moreno-Vivián, Conrado

    2017-03-25

    Thermo-solar plants use eutectic mixtures of diphenyl ether (DE) and biphenyl (BP) as heat transfer fluid (HTF). Potential losses of HTF may contaminate soils and bioremediation is an attractive tool for its treatment. DE- or BP-degrading bacteria are known, but up to now bacteria able to degrade HTF mixture have not been described. Here, five bacterial strains which are able to grow with HTF or its separate components DE and BP as sole carbon sources have been isolated, either from soils exposed to HTF or from rhizospheric soils of plants growing near a thermo-solar plant. The organisms were identified by 16S rRNA gene sequencing as Achromobacter piechaudii strain BioC1, Pseudomonas plecoglossicida strain 6.1, Pseudomonas aeruginosa strains HBD1 and HBD3, and Pseudomonas oleovorans strain HBD2. Activity of 2,3-dihydroxybiphenyl dioxygenase (BphC), a key enzyme of the biphenyl upper degradation pathway, was detected in all isolates. Pseudomonas strains almost completely degraded 2000ppm HTF after 5-day culture, and even tolerated and grew in the presence of 150,000ppm HTF, being suitable candidates for in situ soil bioremediation. Degradation of both components of HTF is of particular interest since in the DE-degrader Sphingomonas sp. SS3, growth on DE or benzoate was strongly inhibited by addition of BP. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Tolerance induction after specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A in children

    PubMed Central

    Rosewich, M; Schulze, J; Eickmeier, O; Telles, T; Rose, M A; Schubert, R; Zielen, S

    2010-01-01

    Specific immunotherapy (SIT) is a well-established and clinically effective treatment for allergic diseases. A pollen allergoid formulated with the T helper type 1 (Th1)-inducing adjuvant monophosphoryl lipid A (MPL) facilitates short-term SIT. Little is known about mechanisms of tolerance induction in this setting. In a prospective study, 34 patients allergic to grass pollen (25 male, nine female, median age 10·2 years) received a total of 44 SIT courses (20 in the first, 24 in the second) with MPL-adjuvanted pollen allergoids. Immunogenicity was measured by levels of specific immunoglobulin G (IgGgrass) and IgG4grass by antibody blocking properties on basophil activation, and by induction of CD4+, CD25+ and forkhead box P3 (FoxP3+) regulatory T cells (Treg). Specific IgG and IgG4 levels increased only slightly in the first year of SIT. In the second year these changes reached significance (P < 0·0001). In keeping with these findings, we were able to show an increase of Treg cells and a decreased release of leukotrienes after the second year of treatment. In the first year of treatment we found little evidence for immunological changes. A significant antibody induction was seen only after the second course of SIT. Short-course immunotherapy with pollen allergoids formulated with the Th1-inducing adjuvant MPL needs at least two courses to establish tolerance. PMID:20345983

  4. Tolerance induction after specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A in children.

    PubMed

    Rosewich, M; Schulze, J; Eickmeier, O; Telles, T; Rose, M A; Schubert, R; Zielen, S

    2010-06-01

    Specific immunotherapy (SIT) is a well-established and clinically effective treatment for allergic diseases. A pollen allergoid formulated with the T helper type 1 (Th1)-inducing adjuvant monophosphoryl lipid A (MPL) facilitates short-term SIT. Little is known about mechanisms of tolerance induction in this setting. In a prospective study, 34 patients allergic to grass pollen (25 male, nine female, median age 10.2 years) received a total of 44 SIT courses (20 in the first, 24 in the second) with MPL-adjuvanted pollen allergoids. Immunogenicity was measured by levels of specific immunoglobulin G (IgG(grass)) and IgG4(grass) by antibody blocking properties on basophil activation, and by induction of CD4(+), CD25(+) and forkhead box P3 (FoxP3(+)) regulatory T cells (T(reg)). Specific IgG and IgG4 levels increased only slightly in the first year of SIT. In the second year these changes reached significance (P < 0.0001). In keeping with these findings, we were able to show an increase of T(reg) cells and a decreased release of leukotrienes after the second year of treatment. In the first year of treatment we found little evidence for immunological changes. A significant antibody induction was seen only after the second course of SIT. Short-course immunotherapy with pollen allergoids formulated with the Th1-inducing adjuvant MPL needs at least two courses to establish tolerance.

  5. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR.

    PubMed

    Stets, Maria Isabel; Alqueres, Sylvia Maria Campbell; Souza, Emanuel Maltempi; Pedrosa, Fábio de Oliveira; Schmid, Michael; Hartmann, Anton; Cruz, Leonardo Magalhães

    2015-10-01

    Azospirillum is a rhizobacterial genus containing plant growth-promoting species associated with different crops worldwide. Azospirillum brasilense strains exhibit a growth-promoting effect by means of phytohormone production and possibly by N2 fixation. However, one of the most important factors for achieving an increase in crop yield by plant growth-promoting rhizobacteria is the survival of the inoculant in the rhizosphere, which is not always achieved. The objective of this study was to develop quantitative PCR protocols for the strain-specific quantification of A. brasilense FP2. A novel approach was applied to identify strain-specific DNA sequences based on a comparison of the genomic sequences within the same species. The draft genome sequences of A. brasilense FP2 and Sp245 were aligned, and FP2-specific regions were filtered and checked for other possible matches in public databases. Strain-specific regions were then selected to design and evaluate strain-specific primer pairs. The primer pairs AzoR2.1, AzoR2.2, AzoR5.1, AzoR5.2, and AzoR5.3 were specific for the A. brasilense FP2 strain. These primer pairs were used to monitor quantitatively the population of A. brasilense in wheat roots under sterile and nonsterile growth conditions. In addition, coinoculations with other plant growth-promoting bacteria in wheat were performed under nonsterile conditions. The results showed that A. brasilense FP2 inoculated into wheat roots is highly competitive and achieves high cell numbers (∼10(7) CFU/g [fresh weight] of root) in the rhizosphere even under nonsterile conditions and when coinoculated with other rhizobacteria, maintaining the population at rather stable levels for at least up to 13 days after inoculation. The strategy used here can be applied to other organisms whose genome sequences are available. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR

    PubMed Central

    Stets, Maria Isabel; Alqueres, Sylvia Maria Campbell; Souza, Emanuel Maltempi; Pedrosa, Fábio de Oliveira; Schmid, Michael

    2015-01-01

    Azospirillum is a rhizobacterial genus containing plant growth-promoting species associated with different crops worldwide. Azospirillum brasilense strains exhibit a growth-promoting effect by means of phytohormone production and possibly by N2 fixation. However, one of the most important factors for achieving an increase in crop yield by plant growth-promoting rhizobacteria is the survival of the inoculant in the rhizosphere, which is not always achieved. The objective of this study was to develop quantitative PCR protocols for the strain-specific quantification of A. brasilense FP2. A novel approach was applied to identify strain-specific DNA sequences based on a comparison of the genomic sequences within the same species. The draft genome sequences of A. brasilense FP2 and Sp245 were aligned, and FP2-specific regions were filtered and checked for other possible matches in public databases. Strain-specific regions were then selected to design and evaluate strain-specific primer pairs. The primer pairs AzoR2.1, AzoR2.2, AzoR5.1, AzoR5.2, and AzoR5.3 were specific for the A. brasilense FP2 strain. These primer pairs were used to monitor quantitatively the population of A. brasilense in wheat roots under sterile and nonsterile growth conditions. In addition, coinoculations with other plant growth-promoting bacteria in wheat were performed under nonsterile conditions. The results showed that A. brasilense FP2 inoculated into wheat roots is highly competitive and achieves high cell numbers (∼107 CFU/g [fresh weight] of root) in the rhizosphere even under nonsterile conditions and when coinoculated with other rhizobacteria, maintaining the population at rather stable levels for at least up to 13 days after inoculation. The strategy used here can be applied to other organisms whose genome sequences are available. PMID:26187960

  7. Genetic assessment of strain-specific sources of lake trout recruitment in the Great Lakes

    USGS Publications Warehouse

    Page, Kevin S.; Scribner, Kim T.; Bennett, Kristine R.; Garzel, Laura M.; Burnham-Curtis, Mary K.

    2003-01-01

    Populations of wild lake trout Salvelinus namaycush have been extirpated from nearly all their historical habitats across the Great Lakes. Efforts to restore self-sustaining lake trout populations in U.S. waters have emphasized the stocking of coded-wire-tagged juveniles from six hatchery strains (Seneca Lake, Lewis Lake, Green Lake, Apostle Islands, Isle Royale, and Marquette) into vacant habitats. Strain-specific stocking success has historically been based on estimates of the survival and catch rates of coded-wire-tagged adults returning to spawning sites. However, traditional marking methods and estimates of relative strain abundance provide no means of assessing strain fitness (i.e., the realized contributions to natural recruitment) except by assuming that young-of-the-year production is proportional to adult spawner abundance. We used microsatellite genetic data collected from six hatchery strains with likelihood-based individual assignment tests (IA) and mixed-stock analysis (MSA) to identify the strain composition of young of the year recruited each year. We show that strain classifications based on IA and MSA were concordant and that the accuracy of both methods varied based on strain composition. Analyses of young-of-the-year lake trout samples from Little Traverse Bay (Lake Michigan) and Six Fathom Bank (Lake Huron) revealed that strain contributions differed significantly from estimates of the strain composition of adults returning to spawning reefs. The Seneca Lake strain contributed the majority of juveniles produced on Six Fathom Bank and more young of the year than expected within Little Traverse Bay. Microsatellite markers provided a method for accurately classifying the lake trout hatchery strains used for restoration efforts in the Great Lakes and for assessment of strain-specific reproductive success.

  8. Assessment of competitiveness of rhizobia infecting Galega orientalis on the basis of plant yield, nodulation, and strain identification by antibiotic resistance and PCR.

    PubMed

    Tas, E; Leinonen, P; Saano, A; Räsänen, L A; Kaijalainen, S; Piippola, S; Hakola, S; Lindström, K

    1996-02-01

    Competition between effective and ineffective Rhizobium galegae strains nodulating Galega orientalis was examined on the basis of plant growth, nodulation, antibiotic resistance, and PCR results. In a preliminary experiment in Leonard's jars, ineffective R. galegae strains HAMBI 1207 and HAMBI 1209 competed in similar manners with the effective strain R. galegae HAMBI 1174. In a pot experiment, soil was inoculated with 0 to 10(5) HAMBI 1207 cells per g before G. orientalis was sown. Seeds of G. orientalis were surface inoculated with 2 x 10(4) and 2 x 10(5) cells of HAMBI 1174 per seed (which represent half and fivefold the commercially recommended amount of inoculant, respectively). Plant yield and nodulation by the effective strain were significantly reduced, with as few as 10(2) ineffective rhizobia per g of soil, and the inoculation response was not improved by the 10-fold greater dose of the inoculant. Bacteria occupying the nodules were identified by antibiotic resistance and PCR with primers specific for R. galegae HAMBI 1174, R. galegae, and genes coding for bacterial 16S rRNA (bacterial 16S rDNA). Sixty-two large nodules examined were occupied by the effective strain HAMBI 1174, as proven by antibiotic resistance and amplification of the strain-specific fragment. From 20 small nodules, only the species-specific fragment could be amplified, and isolated bacteria had the same antibiotic resistance and 16S PCR restriction pattern as strain HAMBI 1207. PCR with our strain-specific and species-specific primers provides a powerful tool for strain identification of R. galegae directly from nodules without genetic modification of the bacteria.

  9. Genome sequence of the pink–pigmented marine bacterium Loktanella hongkongensis type strain (UST950701–009PT), a representative of the Roseobacter group

    DOE PAGES

    Lau, Stanley CK; Riedel, Thomas; Fiebig, Anne; ...

    2015-08-11

    Loktanella hongkongensis UST950701-009PT is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492T together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-codingmore » genes and 57 RNA genes. Lastly, the two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.« less

  10. Comparative Analysis of Drosophila melanogaster Gut Microbiota with Respect to Host Strain, Sex, and Age.

    PubMed

    Han, Gangsik; Lee, Hyo Jung; Jeong, Sang Eun; Jeon, Che Ok; Hyun, Seogang

    2017-07-01

    Microbiota has a significant impact on the health of the host individual. The complexity of the interactions between mammalian hosts and their microbiota highlights the value of using Drosophila melanogaster as a model organism, because of its relatively simple microbial community and ease of physiological and genetic manipulation. However, highly variable and sometimes inconsistent results regarding the microbiota of D. melanogaster have been reported for host samples collected from different geographical locations; discrepancies that may be because of the inherent physiological conditions of the D. melanogaster host. Here, we conducted a comparative analysis of the gut microbiota of two D. melanogaster laboratory strains, w 1118 and Canton S, with respect to the sex and age of the host, by pyrosequencing of the 16S rRNA gene. In addition to the widespread and abundant commensal bacterial genera Lactobacillus and Acetobacter, we identified Enterococcus and Leuconostoc as major host-strain-specific bacterial genera. The relative proportions of these bacterial genera, and those of the species within each, were found to differ markedly with respect to strain, sex, and age of the host, even though host individuals were reared under the same nutritional conditions. By using various bioinformatic tools, we uncovered several characteristic features of microbiota corresponding to specific categories of the flies: host-sex-bias association of specific bacteria, age-dependent alteration of microbiota across host species and sex, and uniqueness of the microbiota of female w 1118 flies. Our results, thus, help to further our understanding of host-microbe interactions in the D. melanogaster model.

  11. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    PubMed

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  12. Key Role of Capsular Polysaccharide in the Induction of Systemic Infection and Abortion by Hypervirulent Campylobacter jejuni

    PubMed Central

    Sahin, Orhan; Terhorst, Samantha A.; Burrough, Eric R.; Shen, Zhangqi; Wu, Zuowei; Dai, Lei; Tang, Yizhi; Plummer, Paul J.; Ji, Ju; Yaeger, Michael J.

    2017-01-01

    ABSTRACT Campylobacter jejuni is a zoonotic pathogen, and a hypervirulent clone, named clone SA, has recently emerged as the predominant cause of ovine abortion in the United States. To induce abortion, orally ingested Campylobacter must translocate across the intestinal epithelium, spread systemically in the circulation, and reach the fetoplacental tissue. Bacterial factors involved in these steps are not well understood. C. jejuni is known to produce capsular polysaccharide (CPS), but the specific role that CPS plays in systemic infection and particularly abortion in animals remains to be determined. In this study, we evaluated the role of CPS in bacteremia using a mouse model and in abortion using a pregnant guinea pig model following oral challenge. Compared with C. jejuni NCTC 11168 and 81-176, a clone SA isolate (IA3902) resulted in significantly higher bacterial counts and a significantly longer duration of bacteremia in mice. The loss of capsule production via gene-specific mutagenesis in IA3902 led to the complete abolishment of bacteremia in mice and abortion in pregnant guinea pigs, while complementation of capsule expression almost fully restored these phenotypes. The capsule mutant strain was also impaired for survival in guinea pig sera and sheep blood. Sequence-based analyses revealed that clone SA possesses a unique CPS locus with a mosaic structure, which has been stably maintained in all clone SA isolates derived from various hosts and times. These findings establish CPS as a key virulence factor for the induction of systemic infection and abortion in pregnant animals and provide a viable candidate for the development of vaccines against hypervirulent C. jejuni. PMID:28373351

  13. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay.

    PubMed

    Pan, Xiaoping; Redding, James E; Wiley, Patricia A; Wen, Lisa; McConnell, J Scott; Zhang, Baohong

    2010-03-01

    Nanomaterials have been emerging as a new group of contaminants in the environment. We reported the use of a bacterial reverse mutation assay (Ames assay) to evaluate the mutagenicity of five metal oxide nanoparticles Al(2)O(3), Co(3)O(4), CuO, TiO(2), and ZnO in this study. Results showed the mutagenicity was negative for four nanoparticles (Al(2)O(3), Co(3)O(4), TiO(2), and ZnO) up to 1000mug/plate to all three tested strains without S9 metabolic activation. Using a preincubation procedure and high S9 (9%) activation, TiO(2) and ZnO induced marginal mutagenesis to strain Escherichia coli WP2 trp uvrA. CuO displayed low mutagenic potential to Salmonella typhimurium TA97a and TA100 at specific concentrations. However, the colony inhibition effect of CuO was predominant to the strain E. coli WP2 trp uvrA. A dose-dependent inhibition of Escherichia coli WP2 colony was found under CuO exposure at concentration range of 100-1600mug/plate. No growth inhibition of tested bacterial strains by Al(2)O(3), Co(3)O(4), and ZnO was observed at the concentrations used. Published by Elsevier Ltd.

  14. Epstein-Barr virus strains and variations: Geographic or disease-specific variants?

    PubMed

    Neves, Marco; Marinho-Dias, Joana; Ribeiro, Joana; Sousa, Hugo

    2017-03-01

    The Epstein-Barr Virus (EBV) is associated with the development of several diseases, including infectious mononucleosis (IM), Burkitt's Lymphoma (BL), Nasopharyngeal Carcinoma, and other neoplasias. The publication of EBV genome 1984 led to several studies regarding the identification of different viral strains. Currently, EBV is divided into EBV type 1 (B95-8 strain) and EBV type 2 (AG876 strain), also known as type A and type B, which have been distinguished based upon genetic differences in the Epstein-Barr nuclear antigens (EBNAs) sequence. Several other EBV strains have been described in the past 10 years considering variations on EBV genome, and many have attempted to clarify if these variations are ethnic or geographically correlated, or if they are disease related. Indeed, there is an increasing interest to describe possible specific disease associations, with emphasis on different malignancies. These studies aim to clarify if these variations are ethnic or geographically correlated, or if they are disease related, thus being important to characterize the epidemiologic genetic distribution of EBV strains on our population. Here, we review the current knowledge on the different EBV strains and variants and its association with different diseases. J. Med. Virol. 89:373-387, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Genomic and phenotypic characterization of Xanthomonas cynarae sp. nov., a new species that causes bacterial bract spot of artichoke (Cynara scolymus L.).

    PubMed

    Trébaol, G; Gardan, L; Manceau, C; Tanguy, J L; Tirilly, Y; Boury, S

    2000-07-01

    A bacterial disease of artichoke (Cynara scolymus L.) was first observed in 1954 in Brittany and the Loire Valley, France. This disease causes water-soaked spots on bracts and depreciates marketability of the harvest. Ten strains of the pathogen causing bacterial spot of artichoke, previously identified as a member of the genus Xanthomonas, were characterized and compared with type and pathotype strains of the 20 Xanthomonas species using a polyphasic study including both phenotypic and genomic methods. The ten strains presented general morphological, biochemical and physiological traits and G+C content characteristic of the genus Xanthomonas. Sequencing of the 165 rRNA gene confirmed that this bacterium belongs to the genus Xanthomonas, and more precisely to the Xanthomonas campestris core. DNA-DNA hybridization results showed that the strains that cause bacterial spot of artichoke were 92-100% related to the proposed type strain CFBP 4188T and constituted a discrete DNA homology group that was distinct from the 20 previously described Xanthomonas species. The results of numerical analysis were in accordance with DNA-DNA hybridization data. Strains causing the bacterial bract spot of artichoke exhibited consistent determinative biochemical characteristics, which distinguished them from the 20 other Xanthomonas species previously described. Furthermore, pathogenicity tests allowed specific identification of this new phytopathogenic bacterium. Thus, it is concluded that this bacterium is a new species belonging to the genus Xanthomonas, for which the name Xanthomonas cynarae is proposed. The type strain, CFBP 4188T, has been deposited in the Collection Française des Bactéries Phytopathogènes (CFBP).

  16. Dental caries induction in experimental animals by clinical strains of Streptococcus mutans isolated from Japanese children.

    PubMed

    Hamada, S; Ooshima, T; Torii, M; Imanishi, H; Masuda, N; Sobue, S; Kotani, S

    1978-01-01

    Oral implantation and the cariogenic activity of clinical strains of Streptococcus mutans which had been isolated from Japanese children and labeled with streptomycin-resistance were examined in specific pathogen-free Sprague-Dawley rats. All the seven strains tested were easily implanted and persisted during the experimental period. Extensive carious lesions were produced in rats inoculated with clinical strains of S. mutans belonging to serotypes c, d, e, and f, and maintained on caries-inducing diet no. 2000. Noninfected rats did not develop dental caries when fed diet no. 2000. Type d S. mutans preferentially induced smooth surface caries in the rats. Strains of other serotypes primarily developed caries of pit and fissure origin. Caries also developed in rats inoculated with reference S. mutans strains BHTR and FAIR (type b) that had been maintained in the laboratories for many years. However, the cariogenicity of the laboratory strains was found to have decreased markedly. All three S. sanguis strains could be implanted, but only one strain induced definite fissure caries. Two S. salivarius strains could not be implanted well in the rats and therefore they were not cariogenic. Four different species of lactobacilli also failed to induce dental caries in rats subjected to similar caries test regimen on diet no. 200. S. mutans strain MT6R (type c) also induce caries in golden hamsters and ICR mice, but of variable degrees.

  17. Comparative genome analysis of a large Dutch Legionella pneumophila strain collection identifies five markers highly correlated with clinical strains

    PubMed Central

    2010-01-01

    Background Discrimination between clinical and environmental strains within many bacterial species is currently underexplored. Genomic analyses have clearly shown the enormous variability in genome composition between different strains of a bacterial species. In this study we have used Legionella pneumophila, the causative agent of Legionnaire's disease, to search for genomic markers related to pathogenicity. During a large surveillance study in The Netherlands well-characterized patient-derived strains and environmental strains were collected. We have used a mixed-genome microarray to perform comparative-genome analysis of 257 strains from this collection. Results Microarray analysis indicated that 480 DNA markers (out of in total 3360 markers) showed clear variation in presence between individual strains and these were therefore selected for further analysis. Unsupervised statistical analysis of these markers showed the enormous genomic variation within the species but did not show any correlation with a pathogenic phenotype. We therefore used supervised statistical analysis to identify discriminating markers. Genetic programming was used both to identify predictive markers and to define their interrelationships. A model consisting of five markers was developed that together correctly predicted 100% of the clinical strains and 69% of the environmental strains. Conclusions A novel approach for identifying predictive markers enabling discrimination between clinical and environmental isolates of L. pneumophila is presented. Out of over 3000 possible markers, five were selected that together enabled correct prediction of all the clinical strains included in this study. This novel approach for identifying predictive markers can be applied to all bacterial species, allowing for better discrimination between strains well equipped to cause human disease and relatively harmless strains. PMID:20630115

  18. Characterization of a prototype strain of hepatitis E virus.

    PubMed

    Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H

    1992-01-15

    A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia.

  19. Characterizing a novel strain of Bacillus amyloliquefaciens BAC03 for potential biological control application

    USDA-ARS?s Scientific Manuscript database

    Aims: Identify and characterize a bacterial strain from suppressive soil, BAC03, evaluate its antimicrobial activity against Streptomyces scabies and other microorganisms, and characterize an antimicrobial substance produced by this strain. Methods and Results: Bacterial strain BAC03 (isolated from ...

  20. Congruent Strain Specific Intestinal Persistence of Lactobacillus plantarum in an Intestine-Mimicking In Vitro System and in Human Volunteers

    PubMed Central

    van Bokhorst-van de Veen, Hermien; van Swam, Iris; Wels, Michiel; Bron, Peter A.; Kleerebezem, Michiel

    2012-01-01

    Background An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species. However, data on the in situ persistence characteristics of individual or mixtures of strains of the same species in the gastrointestinal tract of healthy human volunteers have not been reported to date. Methodology/Principal Findings The GI-tract survival of individual L. plantarum strains was determined using an intestine mimicking model system, revealing substantial inter-strain differences. The obtained data were correlated to genomic diversity of the strains using comparative genome hybridization (CGH) datasets, but this approach failed to discover specific genetic loci that explain the observed differences between the strains. Moreover, we developed a next-generation sequencing-based method that targets a variable intergenic region, and employed this method to assess the in vivo GI-tract persistence of different L. plantarum strains when administered in mixtures to healthy human volunteers. Remarkable consistency of the strain-specific persistence curves were observed between individual volunteers, which also correlated significantly with the GI-tract survival predicted on basis of the in vitro assay. Conclusion The survival of individual L. plantarum strains in the GI-tract could not be correlated to the absence or presence of specific genes compared to the reference strain L. plantarum WCFS1. Nevertheless, in vivo persistence analysis in the human GI-tract confirmed the strain-specific persistence, which appeared to be remarkably similar in different healthy volunteers. Moreover, the relative strain-specific persistence in vivo appeared to be accurately and significantly predicted by their relative survival in the intestine-mimicking in vitro assay, supporting the

  1. Biotransformation of β‐hydroxypyruvate and glycolaldehyde to l‐erythrulose by Pichia pastoris strain GS115 overexpressing native transketolase

    PubMed Central

    Wei, Yu‐Chia; Braun‐Galleani, Stephanie; Henríquez, Maria José; Bandara, Sahan

    2017-01-01

    Transketolase is a proven biocatalytic tool for asymmetric carbon‐carbon bond formation, both as a purified enzyme and within bacterial whole‐cell biocatalysts. The performance of Pichia pastoris as a host for transketolase whole‐cell biocatalysis was investigated using a transketolase‐overexpressing strain to catalyze formation of l‐erythrulose from β‐hydroxypyruvic acid and glycolaldehyde substrates. Pichia pastoris transketolase coding sequence from the locus PAS_chr1‐4_0150 was subcloned downstream of the methanol‐inducible AOX1 promoter in a plasmid for transformation of strain GS115, generating strain TK150. Whole and disrupted TK150 cells from shake flasks achieved 62% and 65% conversion, respectively, under optimal pH and methanol induction conditions. In a 300 μL reaction, TK150 samples from a 1L fed‐batch fermentation achieved a maximum l‐erythrulose space time yield (STY) of 46.58 g L−1 h−1, specific activity of 155 U gCDW−1, product yield on substrate (Yp/s) of 0.52 mol mol−1 and product yield on catalyst (Yp/x) of 2.23g gCDW−1. We have successfully exploited the rapid growth and high biomass characteristics of Pichia pastoris in whole cell biocatalysis. At high cell density, the engineered TK150 Pichia pastoris strain tolerated high concentrations of substrate and product to achieve high STY of the chiral sugar l‐erythrulose. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:99–106, 2018 PMID:29086489

  2. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities

    PubMed Central

    Carey, Allison F.; Rock, Jeremy M.; Krieger, Inna V.; Gagneux, Sebastien; Sacchettini, James C.; Fortune, Sarah M.

    2018-01-01

    Once considered a phenotypically monomorphic bacterium, there is a growing body of work demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically relevant characteristics, including virulence and response to antibiotics. However, the genetic and molecular basis for most phenotypic differences among Mtb strains remains unknown. To investigate the basis of strain variation in Mtb, we performed genome-wide transposon mutagenesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates and the reference strain H37Rv to compare genetic requirements for in vitro growth across these strains. We developed an analytic approach to identify quantitative differences in genetic requirements between these genetically diverse strains, which vary in genomic structure and gene content. Using this methodology, we found differences between strains in their requirements for genes involved in fundamental cellular processes, including redox homeostasis and central carbon metabolism. Among the genes with differential requirements were katG, which encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in their requirement for katG and glcB predicted differences in their response to these antimicrobial agents. Importantly, these strain-specific differences in antibiotic response could not be predicted by genetic variants identified through whole genome sequencing or by gene expression analysis. Our results provide novel insight into the basis of variation among Mtb strains and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic differences among Mtb strains. PMID:29505613

  3. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees.

    PubMed

    Powell, Elijah; Ratnayeke, Nalin; Moran, Nancy A

    2016-09-01

    Host-restricted lineages of gut bacteria often include many closely related strains, but this fine-scale diversity is rarely investigated. The specialized gut symbiont Snodgrassella alvi has codiversified with honeybees (Apis mellifera) and bumblebees (Bombus) for millions of years. Snodgrassella alvi strains are nearly identical for 16S rRNA gene sequences but have distinct gene repertoires potentially affecting host biology and community interactions. We examined S. alvi strain diversity within and between hosts using deep sequencing both of a single-copy coding gene (minD) and of the V4 region of the 16S rRNA gene. We sampled workers from domestic and feral A. mellifera colonies and wild-caught Bombus representing 14 species. Conventional analyses of community profiles, based on the V4 region of the 16S rRNA gene, failed to expose most strain variation. In contrast, the minD analysis revealed extensive strain variation within and between host species and individuals. Snodgrassella alvi strain diversity is significantly higher in A. mellifera than in Bombus, supporting the hypothesis that colony founding by swarms of workers enables retention of more diversity than colony founding by a single queen. Most Bombus individuals (72%) are dominated by a single S. alvi strain, whereas most A. mellifera (86%) possess multiple strains. No S. alvi strains are shared between A. mellifera and Bombus, indicating some host specificity. Among Bombus-restricted strains, some are restricted to a single host species or subgenus, while others occur in multiple subgenera. Findings demonstrate that strains diversify both within and between host species and can be highly specific or relatively generalized in their host associations. © 2016 John Wiley & Sons Ltd.

  4. Effects of Antibiotics on Shiga Toxin 2 Production and Bacteriophage Induction by Epidemic Escherichia coli O104:H4 Strain

    PubMed Central

    Bielaszewska, Martina; Idelevich, Evgeny A.; Zhang, Wenlan; Bauwens, Andreas; Schaumburg, Frieder; Mellmann, Alexander; Peters, Georg

    2012-01-01

    The role of antibiotics in treatment of enterohemorrhagic Escherichia coli (EHEC) infections is controversial because of concerns about triggering hemolytic-uremic syndrome (HUS) by increasing Shiga toxin (Stx) production. During the recent large EHEC O104:H4 outbreak, antibiotic therapy was indicated for some patients. We tested a diverse panel of antibiotics to which the outbreak strain is susceptible to interrogate the effects of subinhibitory antibiotic concentrations on induction of stx2-harboring bacteriophages, stx2 transcription, and Stx2 production in this emerging pathogen. Ciprofloxacin significantly increased stx2-harboring phage induction and Stx2 production in outbreak isolates (P values of <0.001 to <0.05), while fosfomycin, gentamicin, and kanamycin insignificantly influenced them (P > 0.1) and chloramphenicol, meropenem, azithromycin, rifaximin, and tigecycline significantly decreased them (P ≤ 0.05). Ciprofloxacin and chloramphenicol significantly upregulated and downregulated stx2 transcription, respectively (P < 0.01); the other antibiotics had insignificant effects (P > 0.1). Meropenem, azithromycin, and rifaximin, which were used for necessary therapeutic or prophylactic interventions during the EHEC O104:H4 outbreak, as well as tigecycline, neither induced stx2-harboring phages nor increased stx2 transcription or Stx2 production in the outbreak strain. These antibiotics might represent therapeutic options for patients with EHEC O104:H4 infection if antibiotic treatment is inevitable. We await further analysis of the epidemic to determine if usage of these agents was associated with an altered risk of developing HUS. PMID:22391549

  5. Host specificity of the ruminal bacterial community in the dairy cow followng near-total exchange of ruminal contents

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to examine the stability and host specificity of a cow’s ruminal bacterial community following massive challenge with the ruminal microflora from another cow. In each of two experiments, one pair of cows was selected on the basis of differences in ruminal bacterial comm...

  6. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence.

    PubMed

    Koide, Tie; Zaini, Paulo A; Moreira, Leandro M; Vêncio, Ricardo Z N; Matsukuma, Adriana Y; Durham, Alan M; Teixeira, Diva C; El-Dorry, Hamza; Monteiro, Patrícia B; da Silva, Ana Claudia R; Verjovski-Almeida, Sergio; da Silva, Aline M; Gomes, Suely L

    2004-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.

  7. DNA Microarray-Based Genome Comparison of a Pathogenic and a Nonpathogenic Strain of Xylella fastidiosa Delineates Genes Important for Bacterial Virulence†

    PubMed Central

    Koide, Tie; Zaini, Paulo A.; Moreira, Leandro M.; Vêncio, Ricardo Z. N.; Matsukuma, Adriana Y.; Durham, Alan M.; Teixeira, Diva C.; El-Dorry, Hamza; Monteiro, Patrícia B.; da Silva, Ana Claudia R.; Verjovski-Almeida, Sergio; da Silva, Aline M.; Gomes, Suely L.

    2004-01-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease. PMID:15292146

  8. Comparative Genomics of Completely Sequenced Lactobacillus helveticus Genomes Provides Insights into Strain-Specific Genes and Resolves Metagenomics Data Down to the Strain Level.

    PubMed

    Schmid, Michael; Muri, Jonathan; Melidis, Damianos; Varadarajan, Adithi R; Somerville, Vincent; Wicki, Adrian; Moser, Aline; Bourqui, Marc; Wenzel, Claudia; Eugster-Meier, Elisabeth; Frey, Juerg E; Irmler, Stefan; Ahrens, Christian H

    2018-01-01

    Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus -to our knowledge-identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus . Notably, the functional Clusters of Orthologous Groups of proteins categories "cell wall/membrane biogenesis" and "defense mechanisms" were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences proved to be

  9. Comparative Genomics of Completely Sequenced Lactobacillus helveticus Genomes Provides Insights into Strain-Specific Genes and Resolves Metagenomics Data Down to the Strain Level

    PubMed Central

    Schmid, Michael; Muri, Jonathan; Melidis, Damianos; Varadarajan, Adithi R.; Somerville, Vincent; Wicki, Adrian; Moser, Aline; Bourqui, Marc; Wenzel, Claudia; Eugster-Meier, Elisabeth; Frey, Juerg E.; Irmler, Stefan; Ahrens, Christian H.

    2018-01-01

    Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus—to our knowledge—identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus. Notably, the functional Clusters of Orthologous Groups of proteins categories “cell wall/membrane biogenesis” and “defense mechanisms” were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences

  10. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    PubMed Central

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  11. [Biological characteristics of an enteroinvasive Escherichia coli strain with tatABC deletion].

    PubMed

    Gong, Zhaolong; Ye, Changyun; Liu, Xiaobing; Zhang, Min; Zhuo, Qin

    2013-05-04

    To study the relationship between twin-arginine translocation system (Tat) system with the biological characteristics of enteroinvasive Escherichia coli (EIEC). Through homologous recombination, we constructed EIEC's tatABC gene deletion strain and complementary strain, and explored their impact on bacterial form, substrate transport function as well as on HeLa cells and guinea pig's corneal invasion force. The tatABC gene deletion strain had apparent changes in bacterial form, loss of substrate transporter function, and significant weakened bacterial invasion force (the number of the deletion strain invading into HeLa cells was decreased significantly, and the ability of its corneal lesion capacity of the guinea pig was significantly weakened), while the complementary strain was similar to the wild strain in the above respects. EIEC's Tat protein transport system is closely related with the biological characteristics of EIEC.

  12. In vivo bacterial imaging without engineering; A novel probe-based strategy facilitated by endogenous nitroreductase enzymes.

    PubMed

    Stanton, Michael; Cronin, Michelle; Lehouritis, Panos; Tangney, Mark

    2015-01-01

    The feasibility of utilising bacteria as vectors for gene therapy is becoming increasingly recognised. This is primarily due to a number of intrinsic properties of bacteria such as their tumour targeting capabilities, their ability to carry large genetic or protein loads and the availability of well-established genetic engineering tools for a range of common lab strains. However, a number of issues relating to the use of bacteria as vectors for gene therapy need to be addressed in order for the field to progress. Amongst these is the need for the development of non-invasive detection/imaging systems for bacteria within a living host. In vivo optical imaging has advanced preclinical research greatly, and typically involves engineering of bacteria with genetic expression constructs for luminescence (e.g. the lux operon) or fluorescent proteins (GFP etc.). This requirement for genetic modification can be restrictive, where engineering is not experimentally appropriate or technologically feasible (e.g. due to lack of suitable engineering tools). We describe a novel strategy exploiting endogenous bacterial enzymatic activity to specifically activate an exogenously administered fluorescent imaging probe. The red shifted, quenched fluorophore CytoCy5S is reduced to a fluorescent form by bacterial-specific nitroreductase (NTR) enzymes. NTR enzymes are present in a wide range of bacterial genera and absent in mammalian systems, permitting highly specific detection of Gram-negative and Gram-positive bacteria in vivo. In this study, dose-responsive bacterial-specific signals were observed in vitro from all genera examined - E. coli, Salmonella, Listeria, Bifidobacterium and Clostridium difficile. Examination of an NTR-knockout strain validated the enzyme specificity of the probe. In vivo whole-body imaging permitted specific, dose-responsive monitoring of bacteria over time in various infection models, and no toxicity to bacteria or host was observed. This study demonstrates

  13. Bacterial meningitis - principles of antimicrobial treatment.

    PubMed

    Jawień, Miroslaw; Garlicki, Aleksander M

    2013-01-01

    Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.

  14. Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa.

    PubMed

    Iqbal, Aneela; Arshad, Muhammad; Hashmi, Imran; Karthikeyan, Raghupathy; Gentry, Terry J; Schwab, Arthur Paul

    2017-06-13

    The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L -1 ; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L -1 . Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L -1 . However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L -1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10 -2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10 -2  h -1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.

  15. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  16. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE PAGES

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...

    2016-11-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  17. A transcription activator-like effector induction system mediated by proteolysis

    PubMed Central

    Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.

    2016-01-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666

  18. Multiplex polymerase chain reaction assay developed to diagnose adult bacterial meningitis in Taiwan.

    PubMed

    Lee, Chi-Tsung; Hsiao, Kuang-Ming; Chen, Jin-Cherng; Su, Cheng-Chuan

    2015-11-01

    Acute bacterial meningitis causes high morbidity and mortality; the associated clinical symptoms often are insensitive or non-specific; and the pathogenic bacteria are geographically diverse. Clinical diagnosis requires a rapid and accurate methodology. This study aimed to develop a new multiplex polymerase chain reaction (mPCR) assay to detect simultaneously six major bacteria that cause adult bacterial meningitis in Taiwan: Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii. Species-specific primers for the six bacteria were developed using reference strains. The specificities of the mPCRs for these bacteria were validated, and the sensitivities were evaluated via serial dilutions. The mPCR assay specifically detected all of the six pathogens, particularly with sensitivities of 12 colony forming units (CFU)/mL, 90 CFU/mL, and 390 CFU/mL for E. coli, S. pneumoniae, and K. pneumoniae, respectively. This mPCR assay is a rapid and specific tool to detect the six major bacterial pathogens that cause acute adult meningitis in Taiwan, particularly sensitive for detecting E. coli, S. pneumoniae, and K. pneumoniae. The assay may facilitate early diagnosis and guidance for antimicrobial therapy for adult patients with this deadly disease in Taiwan. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  19. A maize resistance gene functions against bacterial streak disease in rice.

    PubMed

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  20. Phytoplankton and bacterial community structures and their interaction during red-tide phenomena

    NASA Astrophysics Data System (ADS)

    Ismail, Mona Mohamed; Ibrahim, Hassan Abd Allah

    2017-09-01

    Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes "Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae". Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.

  1. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  2. Production of bacterial cellulose from alternate feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  3. Production of Bacterial Cellulose from Alternate Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  4. Proof of Principle for a Real-Time Pathogen Isolation Media Diagnostic: The Use of Laser-Induced Breakdown Spectroscopy to Discriminate Bacterial Pathogens and Antimicrobial-Resistant Staphylococcus aureus Strains Grown on Blood Agar

    PubMed Central

    Multari, Rosalie A.; Cremers, David A.; Bostian, Melissa L.; Dupre, Joanne M.

    2013-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is a rapid, in situ, diagnostic technique in which light emissions from a laser plasma formed on the sample are used for analysis allowing automated analysis results to be available in seconds to minutes. This speed of analysis coupled with little or no sample preparation makes LIBS an attractive detection tool. In this study, it is demonstrated that LIBS can be utilized to discriminate both the bacterial species and strains of bacterial colonies grown on blood agar. A discrimination algorithm was created based on multivariate regression analysis of spectral data. The algorithm was deployed on a simulated LIBS instrument system to demonstrate discrimination capability using 6 species. Genetically altered Staphylococcus aureus strains grown on BA, including isogenic sets that differed only by the acquisition of mutations that increase fusidic acid or vancomycin resistance, were also discriminated. The algorithm successfully identified all thirteen cultures used in this study in a time period of 2 minutes. This work provides proof of principle for a LIBS instrumentation system that could be developed for the rapid discrimination of bacterial species and strains demonstrating relatively minor genomic alterations using data collected directly from pathogen isolation media. PMID:24109513

  5. Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium.

    PubMed

    Gross, Gabriele; van der Meulen, Jan; Snel, Johannes; van der Meer, Roelof; Kleerebezem, Michiel; Niewold, Theo A; Hulst, Marcel M; Smits, Mari A

    2008-11-01

    Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using an in situ pig Small Intestinal Segment Perfusion model. The effects of L. plantarum 299v wild-type strain were compared with those of two corresponding mutant strains either lacking the gene encoding for the mannose-specific adhesin (msa) or sortase (srtA; responsible for anchoring of cell surface proteins like Msa to the cell wall). A slight enrichment of the wild-type strain associated with the intestinal surface could be observed after 8 h of perfusion when a mixture of wild-type and msa-mutant strain had been applied. In contrast to the mutant strains, the L. plantarum wild-type strain tended to induce a decrease in jejunal net fluid absorption compared with control conditions. Furthermore, after 8 h of perfusion expression of the host gene encoding pancreatitis-associated protein, a protein with proposed bactericidal properties, was found to be upregulated by the wild-type strain only. These observations suggest a role of Msa in the induction of host responses in the pig intestine.

  6. Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae)

    PubMed Central

    2012-01-01

    Background Osedax worms use a proliferative root system to extract nutrients from the bones of sunken vertebrate carcasses. The roots contain bacterial endosymbionts that contribute to the nutrition of these mouthless and gutless worms. The worms acquire these essential endosymbionts locally from the environment in which their larvae settle. Here we report on the temporal dynamics of endosymbiont diversity hosted by nine Osedax species sampled during a three-year investigation of an experimental whale fall at 1820-m depth in the Monterey Bay, California. The host species were identified by their unique mitochondrial COI haplotypes. The endosymbionts were identified by ribotyping with PCR primers specifically designed to target Oceanospirillales. Results Thirty-two endosymbiont ribotypes associated with these worms clustered into two distinct bacterial ribospecies that together comprise a monophyletic group, mostly restricted to deep waters (>1000 m). Statistical analyses confirmed significant changes in the relative abundances of host species and the two dominant endosymbiont ribospecies during the three-year sampling period. Bone type (whale vs. cow) also had a significant effect on host species, but not on the two dominant symbiont ribospecies. No statistically significant association existed between the host species and endosymbiont ribospecies. Conclusions Standard PCR and direct sequencing proved to be an efficient method for ribotyping the numerically dominant endosymbiont strains infecting a large sample of host individuals; however, this method did not adequately represent the frequency of mixed infections, which appears to be the rule rather than an exception for Osedax individuals. Through cloning and the use of experimental dilution series, we determined that minority ribotypes constituting less than 30% of a mixture would not likely be detected, leading to underestimates of the frequency of multiple infections in host individuals. PMID:23006795

  7. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform

    PubMed Central

    Bumgardner, Sara A.; Zhang, Lin; LaVoy, Alora S.; Frank, Chad B.; Kajikawa, Akinobu; Klaenhammer, Todd R.

    2018-01-01

    Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform. PMID:29734365

  8. The design of strain-specific polymerase chain reactions for discrimination of the racoon rabies virus strain from indigenous rabies viruses of Ontario.

    PubMed

    Nadin-Davis, S A; Huang, W; Wandeler, A I

    1996-03-01

    Since its recognition as a discrete epizootic in Florida in the early 1950s, the raccoon strain of rabies virus (RV) has spread over almost the entire eastern seaboard of the US and now threatens to enter the southernmost regions of Canada. To characterise this RV strain in more detail, nucleotide sequencing of the N and G genes, encoding the nucleoprotein and glycoprotein, respectively, of representative isolates has been undertaken. This sequence information generated a conserved restriction map of the N gene, thereby permitting unequivocal identification of this strain by molecular techniques. Comparisons of the predicted nucleoprotein and glycoprotein products with those of other RV strains identified a number of amino acid sequence variations conserved only in the raccoon strain. This information was used to design strain-specific primers targeted to the N gene sequences encoding these residues. The incorporation of these primers into a multiplex polymerase chain reaction (PCR) protocol permitted easy and rapid discrimination between the raccoon RV strain and indigenous Ontario RVs.

  9. Effect of cultivation medium on some physicochemical parameters of outer bacterial membrane.

    PubMed

    Horská, E; Pokorný, J; Labajová, M

    1995-01-01

    The changes of surface charge and hydrophobicity of the outer bacterial membrane in relation to utilization of n-hexadecane were studied. For this spectrophotometric study adsorption of methylene blue and transport of gentian violet were used. The decrease in the negative charge of the bacterial strains Pseudomonas putida CCM 3423, P. aeruginosa, and P. fluorescens CCM 2115, depended on the type of growth medium. The decrease of surface charge was in the order: meat extract peptone broth > mineral medium with glucose > mineral medium with n-hexadecane. The highest permeability of the bacterial membrane for gentian violet was determined in the case of P. fluorescens grown in meat extract peptone broth. This effect can be explained by a greater hydrophobicity of the bacterial surface for this strain. In other strains a lower permeability was observed. P. fluorescens showed a greater adherence to hexadecane.

  10. Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper.

    PubMed

    Oh, Eom-Ji; Bae, Chungyun; Lee, Han-Beoyl; Hwang, In Sun; Lee, Hyok-In; Yea, Mi Chi; Yim, Kyu-Ock; Lee, Seungdon; Heu, Sunggi; Cha, Jae-Soon; Oh, Chang-Sik

    2016-10-01

    Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies. One of these subspecies is C. michiganensis subsp. michiganensis, which causes bacterial canker disease in tomato. Bacterial strains showing very similar canker disease symptoms to those of a strain originally classified as C. michiganensis have been isolated from pepper. In this paper, we reclassified strains isolated from pepper. On the basis of phylogenetic analysis with 16S rRNA gene sequences, the strains isolated from pepper were grouped in a separate clade from other subspecies of C. michiganensis. Biochemical, physiological and genetic characteristics of strain PF008T, which is the representative strain of the isolates from pepper, were examined in this study. Based on multi-locus sequence typing and other biochemical and physiological features including colony color, utilization of carbon sources and enzyme activities, strain PF008T was categorically differentiated from eight subspecies of C. michiganensis. Moreover, genome analysis showed that the DNA G+C content of strain PF008T is 73.2 %. These results indicate that PF008T is distinct from other known subspecies of C. michiganensis. Therefore, we propose a novel subspecies, C. michiganensis subsp. capsici, causing bacterial canker disease in pepper, with a type strain of PF008T (=KACC 18448T=LMG 29047T).

  11. Survival and interaction of Escherichia coli O104:H4 on Arabidopsis thaliana and lettuce (Lactuca sativa) in comparison to E. coli O157:H7: Influence of plant defense response and bacterial capsular polysaccharide.

    PubMed

    Jang, Hyein; Matthews, Karl R

    2018-06-01

    Shiga toxin-producing Escherichia coli (STEC) has been associated with illnesses and outbreaks linked to fresh vegetables, prompting a growing public health concern. Most studies regarding interactions of STEC on fresh produce focused on E. coli O157:H7. Limited information is available about survival or fitness of E. coli O104:H4, non-O157 pathogen that was linked to one of the largest outbreaks of hemolytic uremic syndrome in 2011. In this study, survival of E. coli O104:H4 was evaluated on Arabidopsis thaliana plant and lettuce for 5 days compared with E. coli O157:H7, and expression of pathogenesis-realted gene (PR1; induction of plant defense response) was examined by reverse transcription quantitative PCR, and potential influence of capsular polysaccharide (CPS) on the bacterial fitness on plant was investigated. Populations of E. coli O104:H4 strains (RG1, C3493, and LpfA) on Arabidopsis and lettuce were significantly (P < 0.05) greater than those of E. coli O157:H7 strains (7386 and sakai) at day 5 post-inoculation, indicating E. coli O104:H4 may have better survival ability on the plants. In addition, the E. coli O104:H4 strains produced significantly (P < 0.05) higher amounts of CPS compared with the E. coli O157:H7 strains. RG1 strain (1.5-fold) initiated significantly (P < 0.05) lower expression of PR1 gene indicating induction of plant defense response compared with E. coli O157:H7 strains 7386 (2.9-fold) and sakai (2.7-fold). Collectively, the results in this study suggests that different level of CPS production and plant defense response initiated by each STEC strain might influence the bacterial survival or persistence on plants. The present study provides better understanding of survival behavior of STEC, particularly E. coli O104:H4, using a model plant and vegetable under pre-harvest conditions with plant defense response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    PubMed

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  13. Propionic Acid Produced by Propionibacterium acnes Strains Contri-butes to Their Pathogenicity.

    PubMed

    Tax, Gábor; Urbán, Edit; Palotás, Zsuzsanna; Puskás, Róbert; Kónya, Zoltán; Bíró, Tamás; Kemény, Lajos; Szabó, Kornélia

    2016-01-01

    Propionibacterium acnes is an important member of the skin microbiome. The bacterium can initiate signalling events and changes in cellular properties in keratinocytes. The aim of this study was to analyse the effect of the bacterium on an immortalized human keratinocyte cell line. The results show that various P. acnes strains affect the cell-growth properties of these cells differentially, inducing cytotoxicity in a strain-specific and dose-dependent manner. We propose that bacterially secreted propionic acid may contribute to the cytotoxic effect. This acid has a role in maintaining skin pH and exhibits antimicrobial properties, but may also have deleterious effects when the local concentration rises due to excessive bacterial growth and metabolism. These results, together with available data from the literature, may provide insight into the dual role of P. acnes in healthy skin and during pathogenic conditions, as well as the key molecules involved in these functions.

  14. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    PubMed

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Induction of hapten-specific tolerance of human CD8+ urushiol (poison ivy)-reactive T lymphocytes.

    PubMed

    Kalish, R S; Wood, J A

    1997-03-01

    The interaction of CD28 with B7 molecules (CD80 or CD86) is an essential second signal for both the activation of CD4+ T cells through the T-cell receptor and the prevention of anergy. We studied the requirement of hapten-specific human CD8+ cells for CD28 co-stimulation in recognition of hapten, and anergy induction. Urushiol, the immunogenic hapten of poison ivy (Toxicodendron radicans), elicits a predominantly CD8+ T-cell response. Autologous PBMC were pre-incubated with urushiol prior to fixation by paraformaldehyde. Fixed antigen-presenting cells were unable to present urushiol to human CD8+ urushiol-specific T cells. Addition of anti-CD28, however, overcame this antigen-presenting defect, enabling CD8+ cells to proliferate. Fixation of antigen-presenting cells prevents upregulation of B7, and addition of anti-CD28 substitutes for this signal. Proliferation of CD8+ T cells in response to urushiol was blocked by CTLA4Ig, a recombinant fusion protein that blocks CD28/B7 interactions. Preincubation of urushiol-specific CD8+ cells with fixed PBMC + urushiol for 7 d induced anergy. Anergic CD8+ cells were viable and able to proliferate in response to IL-2, but not in response to urushiol. Induction of anergy required the presence of urushiol, and pre-incubation with irradiated PBMC + urushiol did not have this effect. It is proposed that anergy was induced by presentation of urushiol by fixed PBMC, in the absence of adequate co-stimulation signals. Induction of anergy by blocking of co-stimulation could potentially induce clinical hyposensitization to haptens.

  16. Characterization of a prototype strain of hepatitis E virus.

    PubMed Central

    Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H

    1992-01-01

    A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia. Images PMID:1731327

  17. Identification of Electrode Respiring, Hydrocarbonoclastic Bacterial Strain Stenotrophomonas maltophilia MK2 Highlights the Untapped Potential for Environmental Bioremediation

    PubMed Central

    Venkidusamy, Krishnaveni; Megharaj, Mallavarapu

    2016-01-01

    Electrode respiring bacteria (ERB) possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS) because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential toward organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8–C36) of petroleum hydrocarbons (PH) including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells (MFCs), maximum current density of 273 ± 8 mA/m2 (1000 Ω) was produced (power density 113 ± 7 mW/m2) by strain MK2 with a coulombic efficiency of 34.8%. Further, the presence of possible alkane hydroxylase genes (alkB and rubA) in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS. PMID:28018304

  18. Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H.

    PubMed

    Wang, Jinxing; Liang, Jidong; Gao, Sha

    2018-05-10

    Many bacterial strains have been demonstrated to biodegrade lignin for contaminant removal or resource regeneration. The goal of this study was to investigate the biodegradation amount and associated pathways of three lignin monomers, vanillic, p-coumaric, and syringic acid by strain Sphingobacterium sp. HY-H. Vanillic, p-coumaric, and syringic acid degradation with strain HY-H was estimated as 88.71, 76.67, and 72.78%, respectively, after 96 h. Correspondingly, the same three monomers were associated with a COD removal efficiency of 87.30, 55.17, and 67.23%, and a TOC removal efficiency of 82.14, 61.03, and 43.86%. The results of GC-MS, HPLC, FTIR, and enzyme activities show that guaiacol and o-dihydroxybenzene are key intermediate metabolites of the vanillic acid and syringic acid degradation. p-Hydroxybenzoic acid is an important intermediate metabolite for p-coumaric and syringic acid degradation. LiP and MnP play an important role in the degradation of lignin monomers and their intermediate metabolites. One possible pathway is that strain HY-H degrades lignin monomers into guaiacol (through decarboxylic and demethoxy reaction) or p-hydroxybenzoic acid (through side-chain oxidation); then guaiacol demethylates to o-dihydroxybenzene. The p-hydroxybenzoic acid and o-dihydroxybenzene are futher through ring cleavage reaction to form small molecule acids (butyric, valproic, oxalic acid, and propionic acid) and alcohols (ethanol and ethanediol), then these acids and alcohols are finally decomposed into CO 2 and H 2 O through the tricarboxylic acid cycle. If properly optimized and controlled, the strain HY-H may play a role in breaking down lignin-related compounds for biofuel and chemical production.

  19. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    PubMed

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Right ventricular free-wall longitudinal speckle tracking strain in patients with pulmonary arterial hypertension under specific treatment.

    PubMed

    Kemal, Hatice S; Kayikcioglu, Meral; Kultursay, Hakan; Vuran, Ozcan; Nalbantgil, Sanem; Mogulkoc, Nesrin; Can, Levent

    2017-04-01

    Right ventricular (RV) dysfunction is a major determinant of outcomes in patients with pulmonary arterial hypertension (PAH), although the optimal measure of RV function is poorly defined. We evaluated the utility of RV free-wall speckle tracking strain as an assessment tool for RV function in patients with PAH who are already under specific treatment compared with conventional echocardiographic parameters and investigated the relationship of RV free-wall strain with clinical hemodynamic parameters of RV performance. Right ventricular free-wall strain was evaluated in 92 patients (Group-1 and Group-4 pulmonary hypertension) who were on PAH-specific treatment for at least 3 months. Right atrial (RA) area, RV FAC, TAPSE, tricuspid S, functional class, 6-minute walking distance, and NT-proBNP were studied. The mean duration of follow-up was 222±133 days. All patients were under PAH-specific treatment, and mean RV free-wall strain was -13.16±6.3%. RV free-wall strain correlated well with functional class (r=.312, P=.01), NT-proBNP (r=.423, P=.0001), RA area (r=.427, P=.0001), FAC (r=-.637, P=.0001), TAPSE (r=-.524, P=.0001), tricuspid S (r=-.450, P=.0001), 6-minute walking distance (r=-.333, P=.002). RV free-wall strain significantly correlated with all follow-up adverse events, death, and clinical right heart failure (RHF) (P=.04, P=.03, P=.02, respectively). According to the receiver operator characteristic analysis, the cutoff value for RV free-wall strain for the development of clinical RHF was -12.5% (sensitivity: 71%, specificity: 67%) and for all cardiovascular adverse events (death included) was -12.5% (sensitivity: 54%, specificity: 64%). Assessment of RV free-wall strain is a feasible, easy-to-perform method and may be used as a predictor of RHF, clinical deterioration, and mortality in patients already under PAH-specific treatment. © 2017, Wiley Periodicals, Inc.

  1. ALA-based fluorescent diagnosis of malignant oral lesions in the presence of bacterial porphyrin formation

    NASA Astrophysics Data System (ADS)

    Schleier, P.; Berndt, A.; Zinner, K.; Zenk, W.; Dietel, W.; Pfister, W.

    2006-02-01

    The aminolevulinic acid (5-ALA) -based fluorescence diagnosis has been found to be promising for an early detection and demarcation of superficial oral squamous cell carcinomas (OSCC). This method has previously demonstrated high sensitivity, however this clinical trial showed a specificity of approximately 62 %. This specificity was mainly restricted by tumor detection in the oral cavity in the presence of bacteria. After topical ALA application in the mouth of patients with previously diagnosed OSSC, red fluorescent areas were observed which did not correlate to confirm histological findings. Swabs and plaque samples were taken from 44 patients and cultivated microbiologically. Fluorescence was investigated (OMA-system) from 32 different bacteria strains found naturally in the oral cavity. After ALA incubation, 30 of 32 strains were found to synthesize fluorescent porphyrins, mainly Protoporphyrin IX. Also multiple fluorescent spectra were obtained having peak wavelengths of 636 nm and around 618 nm - 620 nm indicating synthesis of different porphyrins, such as the lipophylic Protoporphyrin IX (PpIX) and hydrophylic porphyrins (water soluble porphyrins, wsp). Of the 32 fluorescent bacterial strains, 18 produced wsp, often in combination with PpIX, and 5 produced solely wsp. These results clarify that ALA-based fluorescence diagnosis without consideration or suppression of bacteria fluorescence may lead to false-positive findings. It is necessary to suppress bacteria fluorescence with suitable antiseptics before starting the procedure. In this study, when specific antiseptic pre-treatment was performed bacterial associated fluorescence was significantly reduced.

  2. Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides.

    PubMed

    Gharavi, E E; Chaimovich, H; Cucurull, E; Celli, C M; Tang, H; Wilson, W A; Gharavi, A E

    1999-01-01

    We previously induced pathogenic antibodies against anionic phospholipids (PL) in experimental animals by immunization with lipid-free purified human beta2glycoprotein I (beta2GPI). We hypothesized that antiphospholipid antibodies (aPL) are induced by in vivo binding of foreign beta2GPI to self-PL, thus forming an immunogenic complex against which aPL antibodies are produced. If this hypothesis is true, other PL-binding proteins that are products of ubiquitous viral/bacterial agents may also induce aPL. To test this hypothesis, groups of NIH/Swiss mice were immunized with synthetic peptides of viral and bacterial origin that share structural similarity with the putative PL-binding region of beta2GPI. Compared with the control groups, animals immunized with the peptides produced significantly higher levels of aPL and anti-beta2GPI antibodies. These findings demonstrate that some PL-binding viral and bacterial proteins function like beta2GPI in inducing aPL and anti-beta2GPI production, and are consistent with a role for such viral and bacterial proteins in inducing aPL antibody production in humans.

  3. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    PubMed

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  4. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM).

    PubMed

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop; Rosendahl, Søren; Aamand, Jens

    2013-10-01

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal-bacterial consortia are promising for successful bioremediation of pesticide contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Identification of Wolbachia Strains in Mosquito Disease Vectors

    PubMed Central

    Osei-Poku, Jewelna; Han, Calvin; Mbogo, Charles M.; Jiggins, Francis M.

    2012-01-01

    Wolbachia bacteria are common endosymbionts of insects, and some strains are known to protect their hosts against RNA viruses and other parasites. This has led to the suggestion that releasing Wolbachia-infected mosquitoes could prevent the transmission of arboviruses and other human parasites. We have identified Wolbachia in Kenyan populations of the yellow fever vector Aedes bromeliae and its relative Aedes metallicus, and in Mansonia uniformis and Mansonia africana, which are vectors of lymphatic filariasis. These Wolbachia strains cluster together on the bacterial phylogeny, and belong to bacterial clades that have recombined with other unrelated strains. These new Wolbachia strains may be affecting disease transmission rates of infected mosquito species, and could be transferred into other mosquito vectors as part of control programs. PMID:23185484

  6. Genetic diversity and dynamics of bacterial and yeast strains associated to Spanish-style green table-olive fermentations in large manufacturing companies.

    PubMed

    Lucena-Padrós, Helena; Caballero-Guerrero, Belén; Maldonado-Barragán, Antonio; Ruiz-Barba, José Luis

    2014-11-03

    We have genotyped a total of 1045 microbial isolates obtained along the fermentation time of Spanish-style green table olives from the fermentation yards (patios) of two large manufacturing companies in the Province of Sevilla, south of Spain. Genotyping was carried out using RAPD-PCR fingerprinting. In general, isolates clustered well into the relevant phylogenetic dendrograms, forming separate groups in accordance to their species adscription. We could identify which bacterial and yeast genotypes (strains) persisted throughout the fermentation at each patio. Also, which of them were more adapted to any of the three stages, i.e. initial, middle and final, described for this food fermentation. A number of genotypes were found to be shared by both patios. Fifty seven of these belonged to five different bacterial species, i.e. Lactobacillus pentosus, Lactobacillus paracollinoides/collinoides, Lactobacillus rapi, Pediococcus ethanolidurans and Staphylococcus sp., although most of them (51) belonged to L. pentosus. Four yeast genotypes were also shared, belonging to the species Candida thaimueangensis, Saccharomyces cerevisiae and Hanseniaspora sp. Two genotypes of L. pentosus were found to be grouped with those of two strains used in commercially available starter cultures, one of them bacteriocinogenic, which were used up to three years before this study in these patios, demonstrating the persistence of selected strains in this environment. Biodiversity was assessed though different indexes, including richness, diversity and dominance. A statistically significant decrease in biodiversity between the initial and final stages of the fermentation was found in both patios. However, values of biodiversity indexes in the fermenters were very similar, and no significant differences were found in the total biodiversity between both patios. This study allowed us to identify a range of well adapted strains (genotypes), especially those belonging to the lactic acid bacteria

  7. Cross-reactions in Legionella antisera with Bordetella pertussis strains.

    PubMed Central

    Benson, R F; Thacker, W L; Plikaytis, B B; Wilkinson, H W

    1987-01-01

    While preparing slide agglutination test antisera and immunofluorescence conjugates for the identification of Legionella species and serogroups, we found that several of the reagents cross-reacted with Bordetella pertussis strains. To determine the extent of this problem and to estimate the specificity of Legionella reagents, we tested slide agglutination test antisera against 22 species and 35 serogroups with 92 bacterial strains representing 19 genera. The only cross-reactions observed were with Legionella pneumophila serogroup 10, L. maceachernii, L. gormanii, and L. feeleii serogroup 1 antisera and 4 of 10 B. pertussis strains. Nineteen conjugates, previously available from the Centers for Disease Control but no longer distributed as reference reagents, were tested with the four cross-reactive B. pertussis strains. Two conjugates, L. micdadei and L. wadsworthii, stained three of the B. pertussis strains at a fluorescence intensity of greater than or equal to 3+. All cross-reactions were removed from the antisera and conjugates by absorption with the cross-reacting strain without diminishing the homologous reaction. Special emphasis should be placed on the identification and removal of cross-reactions in Legionella reagents with strains that have similar morphologic and growth characteristics. PMID:2883198

  8. Loop-mediated amplification of the Clavibacter michiganensis subsp. michiganensis micA gene is highly specific.

    PubMed

    Yasuhara-Bell, Jarred; Kubota, Ryo; Jenkins, Daniel M; Alvarez, Anne M

    2013-12-01

    Loop-mediated amplification (LAMP) was used to specifically identify Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial canker of tomato. LAMP primers were developed to detect micA, a chromosomally stable gene that encodes a type II lantibiotic, michiganin A, which inhibits growth of other C. michiganensis subspecies. In all, 409 bacterial strains (351 C. michiganensis subsp. michiganensis and 58 non-C. michiganensis subsp. michiganensis) from a worldwide collection were tested with LAMP to determine its specificity. LAMP results were compared with genetic profiles established using polymerase chain reaction (PCR) amplification of seven genes (dnaA, ppaJ, pat-1, chpC, tomA, ppaA, and ppaC). C. michiganensis subsp. michiganensis strains produced eight distinct profiles. The LAMP reaction identified all C. michiganensis subsp. michiganensis strains and discriminated them from other C. michiganensis subspecies and non-Clavibacter bacteria. LAMP has advantages over immunodiagnostic and other molecular detection methods because of its specificity and isothermal nature, which allows for easy field application. The LAMP reaction is also not affected by as many inhibitors as PCR. This diagnostic tool has potential to provide an easy, one-step test for rapid identification of C. michiganensis subsp. michiganensis.

  9. Genomic features separating ten strains of Neorhizobium galegae with different symbiotic phenotypes.

    PubMed

    Österman, Janina; Mousavi, Seyed Abdollah; Koskinen, Patrik; Paulin, Lars; Lindström, Kristina

    2015-05-02

    The symbiotic phenotype of Neorhizobium galegae, with strains specifically fixing nitrogen with either Galega orientalis or G. officinalis, has made it a target in research on determinants of host specificity in nitrogen fixation. The genomic differences between representative strains of the two symbiovars are, however, relatively small. This introduced a need for a dataset representing a larger bacterial population in order to make better conclusions on characteristics typical for a subset of the species. In this study, we produced draft genomes of eight strains of N. galegae having different symbiotic phenotypes, both with regard to host specificity and nitrogen fixation efficiency. These genomes were analysed together with the previously published complete genomes of N. galegae strains HAMBI 540T and HAMBI 1141. The results showed that the presence of an additional rpoN sigma factor gene in the symbiosis gene region is a characteristic specific to symbiovar orientalis, required for nitrogen fixation. Also the nifQ gene was shown to be crucial for functional symbiosis in both symbiovars. Genome-wide analyses identified additional genes characteristic of strains of the same symbiovar and of strains having similar plant growth promoting properties on Galega orientalis. Many of these genes are involved in transcriptional regulation or in metabolic functions. The results of this study confirm that the only symbiosis-related gene that is present in one symbiovar of N. galegae but not in the other is an rpoN gene. The specific function of this gene remains to be determined, however. New genes that were identified as specific for strains of one symbiovar may be involved in determining host specificity, while others are defined as potential determinant genes for differences in efficiency of nitrogen fixation.

  10. Species-specific identification of commercial probiotic strains.

    PubMed

    Yeung, P S M; Sanders, M E; Kitts, C L; Cano, R; Tong, P S

    2002-05-01

    Products containing probiotic bacteria are gaining popularity, increasing the importance of their accurate speciation. Unfortunately, studies have suggested that improper labeling of probiotic species is common in commercial products. Species identification of a bank of commercial probiotic strains was attempted using partial 16S rDNA sequencing, carbohydrate fermentation analysis, and cellular fatty acid methyl ester analysis. Results from partial 16S rDNA sequencing indicated discrepancies between species designations for 26 out of 58 strains tested, including two ATCC Lactobacillus strains. When considering only the commercial strains obtained directly from the manufacturers, 14 of 29 strains carried species designations different from those obtained by partial 16S rDNA sequencing. Strains from six commercial products were species not listed on the label. The discrepancies mainly occurred in Lactobacillus acidophilus and Lactobacillus casei groups. Carbohydrate fermentation analysis was not sensitive enough to identify species within the L. acidophilus group. Fatty acid methyl ester analysis was found to be variable and inaccurate and is not recommended to identify probiotic lactobacilli.

  11. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    PubMed

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors

    PubMed Central

    Janek, Daniela; Zipperer, Alexander; Kulik, Andreas; Krismer, Bernhard; Peschel, Andreas

    2016-01-01

    The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. PMID:27490492

  13. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses.

    PubMed

    King, Thea; Lucchini, Sacha; Hinton, Jay C D; Gobius, Kari

    2010-10-01

    The food-borne pathogen Escherichia coli O157:H7 is commonly exposed to organic acid in processed and preserved foods, allowing adaptation and the development of tolerance to pH levels otherwise lethal. Since little is known about the molecular basis of adaptation of E. coli to organic acids, we studied K-12 MG1655 and O157:H7 Sakai during exposure to acetic, lactic, and hydrochloric acid at pH 5.5. This is the first analysis of the pH-dependent transcriptomic response of stationary-phase E. coli. Thirty-four genes and three intergenic regions were upregulated by both strains during exposure to all acids. This universal acid response included genes involved in oxidative, envelope, and cold stress resistance and iron and manganese uptake, as well as 10 genes of unknown function. Acidulant- and strain-specific responses were also revealed. The acidulant-specific response reflects differences in the modes of microbial inactivation, even between weak organic acids. The two strains exhibited similar responses to lactic and hydrochloric acid, while the response to acetic acid was distinct. Acidulant-dependent differences between the strains involved induction of genes involved in the heat shock response, osmoregulation, inorganic ion and nucleotide transport and metabolism, translation, and energy production. E. coli O157:H7-specific acid-inducible genes were identified, suggesting that the enterohemorrhagic E. coli strain possesses additional molecular mechanisms contributing to acid resistance that are absent in K-12. While E. coli K-12 was most resistant to lactic and hydrochloric acid, O157:H7 may have a greater ability to survive in more complex acidic environments, such as those encountered in the host and during food processing.

  14. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens

    PubMed Central

    Wittebole, Xavier; De Roock, Sophie; Opal, Steven M

    2014-01-01

    The seemingly inexorable spread of antibiotic resistance genes among microbial pathogens now threatens the long-term viability of our current antimicrobial therapy to treat severe bacterial infections such as sepsis. Antibiotic resistance is reaching a crisis situation in some bacterial pathogens where few therapeutic alternatives remain and pan-resistant strains are becoming more prevalent. Non-antibiotic therapies to treat bacterial infections are now under serious consideration and one possible option is the therapeutic use of specific phage particles that target bacterial pathogens. Bacteriophage therapy has essentially been re-discovered by modern medicine after widespread use of phage therapy in the pre-antibiotic era lost favor, at least in Western countries, after the introduction of antibiotics. We review the current therapeutic rationale and clinical experience with phage therapy as a treatment for invasive bacterial infection as novel alternative to antimicrobial chemotherapy. PMID:23973944

  15. Effects of bacterial secondary symbionts on host plant use in pea aphids

    PubMed Central

    McLean, A. H. C.; van Asch, M.; Ferrari, J.; Godfray, H. C. J.

    2011-01-01

    Aphids possess several facultative bacterial symbionts that have important effects on their hosts' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species. PMID:20843842

  16. Analysis of strain-specific genes in glutamic acid-producing Corynebacterium glutamicum ssp. lactofermentum AJ 1511.

    PubMed

    Nishio, Yousuke; Koseki, Chie; Tonouchi, Naoto; Matsui, Kazuhiko; Sugimoto, Shinichi; Usuda, Yoshihiro

    2017-07-11

    Strains of the bacterium, Corynebacterium glutamicum, are widely used for the industrial production of L-glutamic acid and various other substances. C. glutamicum ssp. lactofermentum AJ 1511, formerly classified as Brevibacterium lactofermentum, and the closely related C. glutamicum ATCC 13032 have been used as industrial strains for more than 50 years. We determined the whole genome sequence of C. glutamicum AJ 1511 and performed genome-wide comparative analysis with C. glutamicum ATCC 13032 to determine strain-specific genetic differences. This analysis revealed that the genomes of the two industrial strains are highly similar despite the phenotypic differences between the two strains. Both strains harbored unique genes but gene transpositions or inversions were not observed. The largest unique region, a 220-kb AT-rich region located between 1.78 and 2.00 Mb position in C. glutamicum ATCC 13032 genome, was missing in the genome of C. glutamicum AJ 1511. The next two largest unique regions were present in C. glutamicum AJ 1511. The first region (413-484 kb position) contains several predicted transport proteins, enzymes involved in sugar metabolism, and transposases. The second region (1.47-1.50 Mb position) encodes restriction modification systems. A gene predicted to encode NADH-dependent glutamate dehydrogenase, which is involved in L-glutamate biosynthesis, is present in C. glutamicum AJ 1511. Strain-specific genes identified in this study are likely to govern phenotypes unique to each strain.

  17. Towards Spectral Library-free MALDI-TOF MS Bacterial Identification.

    PubMed

    Cheng, Ding; Qiao, Liang; Horvatovich, Péter

    2018-05-11

    Bacterial identification is of great importance in clinical diagnosis, environmental monitoring and food safety control. Among various strategies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has drawn significant interests, and has been clinically used. Nevertheless, current bioinformatics solutions use spectral libraries for the identification of bacterial strains. Spectral library generation requires acquisition of MALDI-TOF spectra from monoculture bacterial colonies, which is time-consuming and not possible for many species and strains. We propose a strategy for bacterial typing by MALDI-TOF using protein sequences from public database, i.e. UniProt. Ten genes were identified to encode proteins most often observed by MALD-TOF from bacteria through 500 times repeated a 10-fold double cross-validation procedure, using 403 MALDI-TOF spectra corresponding to 14 genera, 81 species and 403 strains, and the protein sequences of 1276 species in UniProt. The 10 genes were then used to annotate peaks on MALDI-TOF spectra of bacteria for bacterial identification. With the approach, bacteria can be identified at the genus level by searching against a database containing the protein sequences of 42 genera of bacteria from UniProt. Our approach identified 84.1% of the 403 spectra correctly at the genus level. Source code of the algorithm is available at https://github.com/dipcarbon/BacteriaMSLF.

  18. Influence of cutting strains and magnetic anisotropy of electrical steel on the air gap flux distribution of an induction motor

    NASA Astrophysics Data System (ADS)

    Hribernik, Božo

    1984-02-01

    This paper describes an iterative algorithm for the simulation of various real magnetic materials in a small induction motor and their influence on the flux distribution in the air gap. Two standard materials, fully-, and semi-processed steel strips were used. The nonlinearity of the magnetization curve, the influence of cutting strains and magnetic anisotropy are also considered. All these influences bring out the facts that the uniformly rotated and sine form exitation causes a nonuniformly rotated and deformed magnetic field in the air gap of the machine and that the magnetization current is winding place dependent.

  19. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells

    PubMed Central

    2010-01-01

    Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates. Results Adhesion of different C. diphtheriae strains to epithelial cells and invasion of these cells are not strictly coupled processes. Using ultrastructure analyses by atomic force microscopy, significant differences in macromolecular surface structures were found between the investigated C. diphtheriae strains in respect to number and length of pili. Interestingly, adhesion and pili formation are not coupled processes and also no correlation between invasion and pili formation was found. Using RNA hybridization and Western blotting experiments, strain-specific pili expression patterns were observed. None of the studied C. diphtheriae strains had a dramatic detrimental effect on host cell viability as indicated by measurements of transepithelial resistance of Detroit 562 cell monolayers and fluorescence microscopy, leading to the assumption that C. diphtheriae strains might use epithelial cells as an environmental niche supplying protection against antibodies and macrophages. Conclusions The results obtained suggest that it is necessary to investigate various isolates on a molecular level to understand and to predict the colonization process of different C. diphtheriae strains. PMID:20942914

  20. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts.

    PubMed

    Sagar, Sunil; Esau, Luke; Holtermann, Karie; Hikmawan, Tyas; Zhang, Guishan; Stingl, Ulrich; Bajic, Vladimir B; Kaur, Mandeep

    2013-12-05

    Marine microorganisms are considered to be an important source of bioactive molecules against various diseases and have great potential to increase the number of lead molecules in clinical trials. Progress in novel microbial culturing techniques as well as greater accessibility to unique oceanic habitats has placed the marine environment as a new frontier in the field of natural product drug discovery. A total of 24 microbial extracts from deep-sea brine pools in the Red Sea have been evaluated for their anticancer potential against three human cancer cell lines. Downstream analysis of these six most potent extracts was done using various biological assays, such as Caspase-3/7 activity, mitochondrial membrane potential (MMP), PARP-1 cleavage and expression of γH2Ax, Caspase-8 and -9 using western blotting. In general, most of the microbial extracts were found to be cytotoxic against one or more cancer cell lines with cell line specific activities. Out of the 13 most active microbial extracts, six extracts were able to induce significantly higher apoptosis (>70%) in cancer cells. Mechanism level studies revealed that extracts from Chromohalobacter salexigens (P3-86A and P3-86B(2)) followed the sequence of events of apoptotic pathway involving MMP disruption, caspase-3/7 activity, caspase-8 cleavage, PARP-1 cleavage and Phosphatidylserine (PS) exposure, whereas another Chromohalobacter salexigens extract (K30) induced caspase-9 mediated apoptosis. The extracts from Halomonas meridiana (P3-37B), Chromohalobacter israelensis (K18) and Idiomarina loihiensis (P3-37C) were unable to induce any change in MMP in HeLa cancer cells, and thus suggested mitochondria-independent apoptosis induction. However, further detection of a PARP-1 cleavage product, and the observed changes in caspase-8 and -9 suggested the involvement of caspase-mediated apoptotic pathways. Altogether, the study offers novel findings regarding the anticancer potential of several halophilic bacterial

  1. A bacterial Argonaute with noncanonical guide RNA specificity

    PubMed Central

    Kaya, Emine; Doxzen, Kevin W.; Knoll, Kilian R.; Wilson, Ross C.; Strutt, Steven C.; Kranzusch, Philip J.; Doudna, Jennifer A.

    2016-01-01

    Eukaryotic Argonaute proteins induce gene silencing by small RNA-guided recognition and cleavage of mRNA targets. Although structural similarities between human and prokaryotic Argonautes are consistent with shared mechanistic properties, sequence and structure-based alignments suggested that Argonautes encoded within CRISPR-cas [clustered regularly interspaced short palindromic repeats (CRISPR)-associated] bacterial immunity operons have divergent activities. We show here that the CRISPR-associated Marinitoga piezophila Argonaute (MpAgo) protein cleaves single-stranded target sequences using 5′-hydroxylated guide RNAs rather than the 5′-phosphorylated guides used by all known Argonautes. The 2.0-Å resolution crystal structure of an MpAgo–RNA complex reveals a guide strand binding site comprising residues that block 5′ phosphate interactions. Using structure-based sequence alignment, we were able to identify other putative MpAgo-like proteins, all of which are encoded within CRISPR-cas loci. Taken together, our data suggest the evolution of an Argonaute subclass with noncanonical specificity for a 5′-hydroxylated guide. PMID:27035975

  2. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    PubMed

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.

  3. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    PubMed

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  4. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    PubMed

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  5. Prion Propagation and Toxicity Occur In Vitro with Two-Phase Kinetics Specific to Strain and Neuronal Type

    PubMed Central

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A.

    2013-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrPSc) of the host-encoded prion protein (PrPC), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrPSc distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau. PMID:23255799

  6. Biosynthesis of highly porous bacterial cellulose nanofibers

    NASA Astrophysics Data System (ADS)

    Hosseini, Hadi; Kokabi, Mehrdad; Mousavi, Seyyed Mohammad

    2018-01-01

    Bacterial cellulose nanofibers (BCNFs) as a sustainable and biodegradable polymer has drawn tremendous research attention in tissue engineering, bacterial sensors and drug delivery due to its extraordinary properties such as high purity, high crystallinity, high water absorption capacity and excellent mechanical strength in the wet state. This awesome properties, is attributed to BCNFs structure, therefore its characterization is important. In this work, the bacterial strain, Gluconacetobacter xylinus (PTCC 1734, obtained from Iranian Research Organization for Science and Technology (IROST)), was used to produce BCNFs hydrogel using bacterial fermentation under static condition at 29 °C for 10 days in the incubator. Then, the biosynthesized BCNFs wet gel, were dried at ambient temperature and pressure and characterized using Brunauer-Emmett-Teller (BET) and Field emission scanning electron microscopy (FE-SEM) analysis. FESEM image displayed highly interconnected and porous structure composed of web-like continuous, nanofibers with an average diameter of 48.5±2.1 nm. BET result analysis depicted BCNFs dried at ambient conditions had IV isotherm type, according to the IUPAC classification, indicating that BCNFs dried at ambient condition is essentially mesoporous. On the other hand, BET results depicted, mesoporous structure is around 85%. In addition, Specific surface area (SBET) obtained 81.45 m2/g. These results are in accordance with the FESEM observation.

  7. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability.

    PubMed

    Yassour, Moran; Vatanen, Tommi; Siljander, Heli; Hämäläinen, Anu-Maaria; Härkönen, Taina; Ryhänen, Samppa J; Franzosa, Eric A; Vlamakis, Hera; Huttenhower, Curtis; Gevers, Dirk; Lander, Eric S; Knip, Mikael; Xavier, Ramnik J

    2016-06-15

    The gut microbial community is dynamic during the first 3 years of life, before stabilizing to an adult-like state. However, little is known about the impact of environmental factors on the developing human gut microbiome. We report a longitudinal study of the gut microbiome based on DNA sequence analysis of monthly stool samples and clinical information from 39 children, about half of whom received multiple courses of antibiotics during the first 3 years of life. Whereas the gut microbiome of most children born by vaginal delivery was dominated by Bacteroides species, the four children born by cesarean section and about 20% of vaginally born children lacked Bacteroides in the first 6 to 18 months of life. Longitudinal sampling, coupled with whole-genome shotgun sequencing, allowed detection of strain-level variation as well as the abundance of antibiotic resistance genes. The microbiota of antibiotic-treated children was less diverse in terms of both bacterial species and strains, with some species often dominated by single strains. In addition, we observed short-term composition changes between consecutive samples from children treated with antibiotics. Antibiotic resistance genes carried on microbial chromosomes showed a peak in abundance after antibiotic treatment followed by a sharp decline, whereas some genes carried on mobile elements persisted longer after antibiotic therapy ended. Our results highlight the value of high-density longitudinal sampling studies with high-resolution strain profiling for studying the establishment and response to perturbation of the infant gut microbiome. Copyright © 2016, American Association for the Advancement of Science.

  8. Substrate specificity of low-molecular mass bacterial DD-peptidases.

    PubMed

    Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F

    2011-11-22

    The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD

  9. ELMO1 Regulates Autophagy Induction and Bacterial Clearance During Enteric Infection.

    PubMed

    Sarkar, Arup; Tindle, Courtney; Pranadinata, Rama F; Reed, Sharon; Eckmann, Lars; Stappenbeck, Thaddeus S; Ernst, Peter B; Das, Soumita

    2017-12-19

    Macrophages are specialized phagocytic cells involved in clearing invading pathogens. Previously we reported that engulfment and cell motility protein 1 (ELMO1) in macrophages mediates bacterial internalization and intestinal inflammation. Here we studied the role of ELMO1 in the fate of internalized targets. ELMO1 is present in the intracellular vesicles and enhances accumulation of the protein LC3B following engulfment of Salmonella or treatment with autophagy-inducing rapamycin. The protein ATG5 and the kinase ULK1 are involved in classical autophagy, while LC3-associated phagocytosis is ULK1 independent. ATG5 but not ULK1 cooperated with ELMO1 in LC3 accumulation after infection, suggesting the ELMO1 preferentially regulated LC3-associated phagocytosis. Because LC3-associated phagocytosis delivers cargo for degradation, the contribution of ELMO1 to the lysosome degradation pathways was evaluated by studying pH and cathepsin B activity. ELMO1-depleted macrophages showed a time-dependent increase in pH and a decrease in cathepsin B activity associated with bacterial survival. Together, ELMO1 regulates LC3B accumulation and antimicrobial responses involved in the clearance of enteric pathogens. This paper investigated how innate immune pathways involving ELMO1 work in a coordinated fashion to eliminate bacterial threats. ELMO1 is present in the phagosome and enhances bacterial clearance by differential regulation of lysosomal acidification and enzymatic activity. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  10. Formation of complex bacterial colonies via self-generated vortices

    NASA Astrophysics Data System (ADS)

    Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Vicsek, Tamás

    1996-08-01

    Depending on the environmental conditions bacterial colonies growing on agar surfaces can exhibit complex colony formation and various types of collective motion. Experimental results are presented concerning the hydrodynamics (vortices, migration of bacteria in clusters) and colony formation of a morphotype of Bacillus subtilis. Some of these features are not specific to this morphotype but also have been observed in several other bacterial strains, suggesting the presence of universal effects. A simple model of self-propelled particles is proposed, which is capable of describing the hydrodynamics on the intermediate level, including the experimentally observed rotating disks of bacteria. The colony formation is captured by a complex generic model taking into account nutrient diffusion, reproduction, and sporulation of bacteria, extracellular slime deposition, chemoregulation, and inhomogeneous population. Our model also sheds light on some possible biological benefits of this ``multicellular behavior.''

  11. Induction of prophage lambda by chlorinated organics: Detection of some single-species/single-site carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMarini, D.M.; Brooks, H.G.

    1992-01-01

    Twenty-eight chlorinated organic compounds were evaluated for their ability to induce DNA damage using the Microscreen prophage-induction assay in Escherichia coli. Comparison of the performance characteristics of the prophage-induction and Salmonella assays to rodent carcinogenicity assays showed that the prophage-induction assay had a somewhat higher specificity than did the Salmonella assay (70% vs. 50%); sensitivity, concordance, and positive and negative predictivity were similar for the two microbial assays. The Microscreen prophage-induction assay failed to detect eight carcinogens, perhaps due to toxicity or other unknown factors; five of these eight carcinogens were detected by the Salmonella assay. However, the prophage-induction assaymore » did detect six carcinogens that were not detected by the Salmonella assay, and five of these were single-species, single-site carcinogens, mostly mouse liver carcinogens. Some of these carcinogens, such as the chloroethanes, produce free radicals, which may be the basis for their carcinogenicity and ability to induce prophage. The prophage-induction (or other SOS) assay may be useful in identifying some genotoxic chlorinated carcinogens that induce DNA damage that do not revert the standard Salmonella tester strains.« less

  12. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

    PubMed

    Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A

    2012-08-16

    Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. A target oriented expeditious approach towards synthesis of certain bacterial rare sugar derivatives.

    PubMed

    Chaudhury, Aritra; Ghosh, Rina

    2017-02-07

    Bacterial rare amino deoxy sugars are found in the cell surface polysaccharides of multiple pathogenic bacterial strains, but are absent in the human metabolism. This helps in the differentiation between pathogens and host cells which can be exploited for target specific drug discovery and carbohydrate based vaccine development. The principal bacterial atypical sugar derivatives include 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (AAT), 2,4-diacetamido-2,4,6-trideoxy-d-galactose (DATDG) and N-acetylfucosamine (FucNAc). Herein, a highly streamlined protocol leading to the aforesaid derivatives is presented. The highlights of the method lie in radical mediated 6-deoxygenation along with a one-pot like protection profile manipulation on suitably derivatised d-glucosamine or d-mannose motifs to obtain a vital quinovosaminoside or rhamnoside from which rare sugar derivatives were synthesized in a diversity oriented manner.

  15. A maize resistance gene functions against bacterial streak disease in rice

    PubMed Central

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease. PMID:16230639

  16. Comparative secretome analysis of four isogenic Bacillus clausii probiotic strains

    PubMed Central

    2013-01-01

    Background The spore-bearing alkaliphilic Bacillus species constitute a large, heterogeneous group of microorganisms, important for their ability to produce enzymes, antibodies and metabolites of potential medical use. Some Bacillus species are currently being used for manufacturing probiotic products consisting of bacterial spores, exhibiting specific features (colonization, immune-stimulation and antimicrobial activity) that can account for their claimed probiotic properties. In the present work a comparative proteomic study was performed aimed at characterizing the secretome of four closely related isogenic O/C, SIN, N/R and T B. clausii strains, already marketed in a pharmaceutical mixture as probiotics. Results Proteomic analyses revealed a high degree of concordance among the four secretomes, although some proteins exhibited considerable variations in their expression level in the four strains. Among these, some proteins with documented activity in the interaction with host cells were identified, such as the glycolytic enzyme enolase, with a putative plasminogen-binding activity, GroEL, a molecular chaperone shown to be able to bind to mucin, and flagellin protein, a structural flagella protein and a putative immunomodulation agent. Conclusion This study shows, for the first time, differences in the secretome of the OC, SIN, NR and T B. clausii strains. These differences indicate that specific secretome features characterize each of the four strains despite their genotypic similarity. This could confer to the B. clausii strains specific probiotic functions associated with the differentially expressed proteins and indicate that they can cooperate as probiotics as the secretome components of each strain could contribute to the overall activity of a mixed probiotic preparation. PMID:23816335

  17. Bacterial cheating limits the evolution of antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Chao, Hui Xiao; Datta, Manoshi; Yurtsev, Eugene; Gore, Jeff

    2011-03-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain--which does not contribute to breaking down the antibiotic--may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we experimentally find that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors found in nature.

  18. [Induction and regulation of cellulase expression in filamentous fungi: a review].

    PubMed

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-11-25

    Production of bioenergy and bio-based chemicals by using fermentable sugars released from low-cost renewable lignocellulosic biomass has received great attention. Efficient cellulolytic enzymes are crucial for lignocellulose bioconversion, but high cellulase production cost is limiting the bioconversion efficiency of cellulosic biomass and industrial applications of lignocellulose biorefinery. Studies on induction and regulation of cellulase in filamentous fungi will help to further develop superior fungal strains for efficient cellulase production and reduce cellulase production cost. With the advances in high-throughput sequencing and gene manipulation technology using fungal strains, an in-depth understanding of cellulase induction and regulation mechanisms of enzyme expression has been achieved. We reviewed recent progresses in the induction and regulation of cellulase expression in several model filamentous fungi, emphasizing sugar transporters, transcription factors and chromatin remodeling. Future prospects in application of artificial zinc finger proteins for cellulase induction and regulation in filamentous fungi were discussed.

  19. [Bacterial meningitis in adults in emergency and rescue services].

    PubMed

    Klein, M; Pfister, H-W

    2016-10-01

    The cardinal symptoms of bacterial meningitis are headache, fever, impaired consciousness and nuchal stiffness (meningism); however, the diagnosis of acute bacterial meningitis can only be confirmed or ruled out by investigation of cerebrospinal fluid. The recommended empirical antibiotic regimen for community-acquired acute bacterial meningitis in adults in Germany is a combination of ceftriaxone and ampicillin plus adjuvant dexamethasone. An important influenceable factor for treatment success of acute bacterial meningitis is a rapid induction of antibiotic therapy, which must be initiated directly after lumbar puncture. When this is delayed for any reason, e. g. because of the necessity of cerebral computed tomography imaging before lumbar puncture, antibiotics should be started even before acquisition of cerebrospinal fluid.

  20. Use of Restriction Fragment Length Polymorphisms to Investigate Strain Variation Within Neisseria Meningitidis.

    NASA Astrophysics Data System (ADS)

    Williams, Shelley Diane

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty -six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P ^{32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analysed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population. This analysis demonstrates the lack of structure within Neisseria meningitidis due primarily to a heterogenous population and the lack of geographic segregation. The potential utility of this technique as a

  1. Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash.

    PubMed

    Rosenkranz, Theresa; Kidd, Petra; Puschenreiter, Markus

    2018-03-01

    Waste incineration bottom ash is considered a secondary resource for valuable trace elements (TE), which is currently neglected in most European countries. Phytomining could potentially recover valuable TE from such waste materials but is still at an exploratory stage with many challenges. The use of bioaugmentation to improve plant growth and TE accumulation of metal-tolerant high biomass plants growing on waste incineration bottom ash was evaluated. Bacterial strains that were previously isolated from rhizosphere, roots and contaminated soil were selected according to their plant growth promoting characteristics and tolerance to the bottom ash substrate. Those selected bacterial strains were tested for their beneficial effects on Nicotiana tabacum and Salix smithiana with regards to phytomining. The rhizobacterial strain Rhodococcus erythropolis P30 enhanced the shoot dry weight of N. tabacum by on average 57% compared to the control plants. Several bacterial inoculants enhanced biomass production and the nutritional status of S. smithiana. Moreover, those bacterial strains previously described to enhance biomass production of N. tabacum and members of the Salicaceae on TE-contaminated soils, also enhanced biomass production of these species on bottom ash. However, bacterial inoculants could not enhance trace element accumulation in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    PubMed

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    PubMed Central

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  4. Ir gene controlled carrier effects in the induction and elicitation of hapten-specific delayed-type hypersensitivity responses.

    PubMed

    Weinberger, J Z; Benacerraf, B; Dorf, M E

    1979-11-01

    The genetic requirements of carrier recognition were examined in the priming and elicitation of hapten specific, T-cell mediated, delayed-type hypersensitivity (DTH) responses. It was shown that nitrophenyl acetyl-poly-(L-glu56-L-lys35-L-phe9) (NP-GLO) could prime for NP responses only in strains of mice which are Ir gene responders to GLO. In contrast to this requirement, NO-GLO could elicit an NP-specific response in NP-bovine gamma globulin primed mice, even in GLO nonresponder strains. Furthermore, the nonimmunogenic molecule, NP-GL, could elicit an NP-specific DTH response in animals primed with NP on an immunogenic carrier.

  5. Diversity of metabolic capacities among strains degrading polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchez, M.; Besnaienou, B.; Blanchet, D.

    1995-12-31

    Strains of Pseudomonas and Rhodococcus genera were isolated for their capacity to use, as a sole carbon and energy source, one of the following polycyclic aromatic hydrocarbons (PAHs): naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), and pyrene (PYR). The range of PAHs supporting growth of these pure strains was usually restricted, but several other hydrocarbons were used by Rhodococcus sp. All strains could grow on simple organic acids. Maximal specific growth rates ({mu}{sub max}) of all strains on their PAH growth substrates were determined by respirometry. No clear relationships between {mu}{sub max} values and the molecular weightmore » or water solubility of PAHs were apparent, but Pseudomonas sp. exhibited the highest {mu}{sub max} values. Carbon balances for PAH biodegradation were established. Differences between strains were observed, but high mineralization rates and low production of soluble metabolites were obtained for all PAHs. Bacterial biomass represented 16% to 35% of the carbon consumed. Strain diversity was also apparent in the interactions observed in the degradation of a mixture of two PAHs by individual strains, which often involved inhibition of PAH substrate degradation, with or without cometabolization of the second PAH.« less

  6. A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters.

    PubMed

    Coucheney, Françoise; Desroche, Nicolas; Bou, Magali; Tourdot-Maréchal, Raphaëlle; Dulau, Laurent; Guzzo, Jean

    2005-12-15

    The lactic acid bacterium Oenococcus oeni, mainly responsible for malolactic fermentation (MLF), is used in new winery process as starter culture for direct inoculation. The difficulty to master MLF according to the wine led us to search a new approach to select effective O. oeni strains. Biochemical and molecular tests were performed in order to characterize three strains of O. oeni selected for malolactic starter elaboration. Malolactic and ATPase activities that appeared as a great interest in MLF were measured and the expression of a small heat shock protein Lo18 was evaluated by immunoblotting and real-time PCR. These results were correlated with the performances of strains in two red wines. Physiological and molecular characteristics of the three strains showed significant differences for the global malolactic activity on intact cell at pH 3.0 and at the level of induction of the small heat shock protein Lo18. These two parameters appeared of interest to evaluate in the ability of O. oeni strains to survive into wine after direct inoculation and to perform MLF. Indeed, a tested strain that presented the highest malolactic activity on intact cells at pH 3.0 and a high level of Lo18 induction showed a high growth rate and a high specific kinetic of malate consumption. The techniques used in this work carry out more quickly and more reliable than usual for the selection of effective strains intended for direct inoculation in wines.

  7. Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    PubMed Central

    Baladi, S.; Kantengwa, S.; Donati, Y. R. A.; Polla, B. S.

    1994-01-01

    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor. PMID:18472933

  8. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium.

    PubMed

    Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F

    2017-03-01

    Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

  9. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx

    PubMed Central

    Shak, Joshua R.; Vidal, Jorge E.; Klugman, Keith P.

    2013-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. PMID:23273566

  10. Induction of pneumococcal polysaccharide-specific mucosal immune responses by oral immunization.

    PubMed

    VanCott, J L; Kobayashi, T; Yamamoto, M; Pillai, S; McGhee, J R; Kiyono, H

    1996-04-01

    Liposome and cholera toxin (CT) are considered to be effective antigen delivery vehicles and adjuvants for mucosal vaccines. The effect of these antigen delivery systems on adjuvant responses to mucosally administered pneumococcal polysaccharide (Pnup) was investigated in this study. Both mucosal (e.g. oral) and systemic (i.p.) immunization of mice with purified preparations of Pnup type 23F induced antigen-specific IgM responses in sera. Interestingly, oral immunization of as little as 10 micrograms of Pnup type 23F was sufficient to induce systemic IgM responses. Pnup-specific IgM antibodies peaked by day 7 and no booster responses were evident after a second dose on day 14. In order to examine whether IgG and IgA Pnup-specific immune responses are induced by mucosal immunization, the mucosal adjuvant CT was mixed with Pnup type 23 as an oral vaccine. Co-oral administration of CT and Pnup type 23F resulted in the induction of Pnup-specific faecal IgA antibodies. These results were confirmed by detecting antigen-specific IgA-spot-forming cells in mononuclear cell suspensions prepared from the intestine of immunized mice. These findings suggest that oral immunization with Pnup in the presence of mucosal adjuvants, such as CT, could induce Pnup-specific IgA responses whereas Pnup alone did not. In an attempt to further enhance antigen-specific antibody responses, Pnup type 23F was encapsulated in liposomes and used as mucosal vaccine. However, immunogenicity of Pnup was not improved.

  11. Characterization of the Polyurethanolytic Activity of Two Alicycliphilus sp. Strains Able To Degrade Polyurethane and N-Methylpyrrolidone▿

    PubMed Central

    Oceguera-Cervantes, Alejandro; Carrillo-García, Agustín; López, Néstor; Bolaños-Nuñez, Sandra; Cruz-Gómez, M. Javier; Wacher, Carmen; Loza-Tavera, Herminia

    2007-01-01

    Two bacterial strains (BQ1 and BQ8) were isolated from decomposed soft foam. These were selected for their capacity to grow in a minimal medium (MM) supplemented with a commercial surface-coating polyurethane (PU) (Hydroform) as the carbon source (MM-PUh). Both bacterial strains were identified as Alicycliphilus sp. by comparative 16S rRNA gene sequence analysis. Growth in MM-PUh showed hyperbolic behavior, with BQ1 producing higher maximum growth (17.8 ± 0.6 mg·ml−1) than BQ8 (14.0 ± 0.6 mg·ml−1) after 100 h of culture. Nuclear magnetic resonance, Fourier transform infrared (IR) spectroscopy, and gas chromatography-mass spectrometry analyses of Hydroform showed that it was a polyester PU type which also contained N-methylpyrrolidone (NMP) as an additive. Alicycliphilus sp. utilizes NMP during the first stage of growth and was able to use it as the sole carbon and nitrogen source, with calculated Ks values of about 8 mg·ml−1. Enzymatic activities related to PU degradation (esterase, protease, and urease activities) were tested by using differential media and activity assays in cell-free supernatants of bacterial cultures in MM-PUh. Induction of esterase activity in inoculated MM-PUh, but not that of protease or urease activities, was observed at 12 h of culture. Esterase activity reached its maximum at 18 h and was maintained at 50% of its maximal activity until the end of the analysis (120 h). The capacity of Alicycliphilus sp. to degrade PU was demonstrated by changes in the PU IR spectrum and by the numerous holes produced in solid PU observed by scanning electron microscopy after bacterial culture. Changes in the PU IR spectra indicate that an esterase activity is involved in PU degradation. PMID:17693569

  12. Structural studies of the O-specific polysaccharide(s) from the lipopolysaccharide of Azospirillum brasilense type strain Sp7.

    PubMed

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2013-10-18

    Lipopolysaccharide was obtained by phenol-water extraction from dried bacterial cells of Azospirillum brasilense type strain Sp7. Mild acid hydrolysis of the lipopolysaccharide followed by GPC on Sephadex G-50 resulted in a polysaccharide mixture, which was studied by composition and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy. The following polysaccharide structures were established, where italics indicate a non-stoichiometric (∼40%) 2-O-methylation of l-rhamnose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evaluation of Antibacterial Activity of Three Selected Fruit Juices on Clinical Endodontic Bacterial Strains

    PubMed Central

    Behera, Subasish; Khetrapal, Prashant; Punia, Sandhya Kapoor; Agrawal, Deepak; Khandelwal, Minal; Lohar, Jitendra

    2017-01-01

    Introduction: The increasing problem of antibiotic drug resistance by pathogenic microorganisms in the past few decades has recently led to the continuous exploration of natural plant products for new antibiotic agents. Many consumable food materials have good as well as their bad effects, good effect includes their antibacterial effects on different microorganisms present in the oral cavity. Recently, natural products have been evaluated as source of antimicrobial agent with efficacies against a variety of microorganisms. Methodology: The present study describes the antibacterial activity of three selected fruit juices (Apple, Pomegranate and Grape) on endodontic bacterial strains. Antimicrobial activity of fruit juices were tested by wel l diffusion assay by an inhibition zone surrounding the well. The aim of the study was to evaluate the antibacterial activity of three fruit juises on different endodontic strains. Result: Agar well diffusion method was adopted for determining antibacterial potency. Antibacterial activity present on the plates was indicated by an inhibition zone surrounding the well containing the fruit juice. The zone of inhibition was measured by measuring scale in millimeter. Comparision between antibacterial efficacy of all three fruit juices against Enterococcus feacalis and Streptococcus mutans was observed with significant value of P ≤ 0.05. Conclusion: The results obtained in this study clearly demonstrated a significant antimicrobial effect of apple fruit juice against Enterococcus fecalis and Streptococcus mutans. However, preclinical and clinical trials are needed to evaluate biocompatibility & safety before apple can conclusively be recommended in endodontic therapy, but in vitro observation of apple effectiveness appears promising. PMID:29284967

  14. Continuous monitoring of bacterial attachment

    NASA Technical Reports Server (NTRS)

    Koeing, D. W.; Mishra, S. K.; Pierson, D. L.

    1994-01-01

    A major concern with the Space Station Freedom (SSF) water supply system is the control of longterm microbial contamination and biofilm development in the water storage and distribution systems. These biofilms have the potential for harboring pathogens as well as microbial strains containing resistance factors that could negatively influence crew health. The proposed means for disinfecting the water system on SSF (iodine) may encourage the selection of resistant strains. In fact, biofilm bacteria were observed in water lines from the Space Shuttle Columbia (OV-102); therefore, an alternative remediation method is required to disinfect spacecraft water lines. A thorough understanding of colonization events and the physiological parameters that will influence bacteria adhesion is required. The limiting factor for development of this technology is the ability to continuously monitor adhesion events and the effects of biocides on sessile bacteria. Methods were developed to allow bacterial adhesion and subsequent biocidal treatment to be monitored continuously. This technique couples automated image analysis with a continuous flow of a bacterial suspension through an optical flow cell. A strain of Pseudomonas cepacia isolated from the water supply of the Space Shuttle Discovery (OV-103) during STS-39 was grown in a nitrogen-limited continuous culture. This culture was challenged continuously with iodine during growth, and the adhesion characteristics of this strain was measure with regard to flow rate. Various biocides (ozone, hypochlorite, and iodine) were added to the flow stream to evaluate how well each chemical removed the bacteria. After biocide treatment, a fresh bacterial suspension was introduced into the flow cell, and the attachment rate was evaluated on the previously treated surface. This secondary fouling was again treated with biocide to determine the efficacy of multiple batch chemical treatments in removing biofilm.

  15. IL-10 restrains IL-17 to limit lung pathology characteristics following pulmonary infection with Francisella tularensis live vaccine strain.

    PubMed

    Slight, Samantha R; Monin, Leticia; Gopal, Radha; Avery, Lyndsay; Davis, Marci; Cleveland, Hillary; Oury, Tim D; Rangel-Moreno, Javier; Khader, Shabaana A

    2013-11-01

    IL-10 production during intracellular bacterial infections is generally thought to be detrimental because of its role in suppressing protective T-helper cell 1 (Th1) responses. Francisella tularensis is a facultative intracellular bacterium that activates both Th1 and Th17 protective immune responses. Herein, we report that IL-10-deficient mice (Il10(-/-)), despite having increased Th1 and Th17 responses, exhibit increased mortality after pulmonary infection with F. tularensis live vaccine strain. We demonstrate that the increased mortality observed in Il10(-/-)-infected mice is due to exacerbated IL-17 production that causes increased neutrophil recruitment and associated lung pathology. Thus, although IL-17 is required for protective immunity against pulmonary infection with F. tularensis live vaccine strain, its production is tightly regulated by IL-10 to generate efficient induction of protective immunity without mediating pathology. These data suggest a critical role for IL-10 in maintaining the delicate balance between host immunity and pathology during pulmonary infection with F. tularensis live vaccine strain. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor.

    PubMed

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-01-01

    Duckweed (family Lemnaceae ) has recently been recognized as an ideal biomass feedstock for biofuel production due to its rapid growth and high starch content, which inspired interest in improving their productivity. Since microbes that co-exist with plants are known to have significant effects on their growth according to the previous studies for terrestrial plants, this study has attempted to understand the plant-microbial interactions of a duckweed, Lemna minor , focusing on the growth promotion/inhibition effects so as to assess the possibility of accelerated duckweed production by modifying co-existing bacterial community. Co-cultivation of aseptic L. minor and bacterial communities collected from various aquatic environments resulted in changes in duckweed growth ranging from -24 to +14% compared to aseptic control. A number of bacterial strains were isolated from both growth-promoting and growth-inhibitory communities, and examined for their co-existing effects on duckweed growth. Irrespective of the source, each strain showed promotive, inhibitory, or neutral effects when individually co-cultured with L. minor . To further analyze the interactions among these bacterial strains in a community, binary combinations of promotive and inhibitory strains were co-cultured with aseptic L. minor , resulting in that combinations of promotive-promotive or inhibitory-inhibitory strains generally showed effects similar to those of individual strains. However, combinations of promotive-inhibitory strains tended to show inhibitory effects while only Aquitalea magnusonii H3 exerted its plant growth-promoting effect in all combinations tested. Significant change in biomass production was observed when duckweed was co-cultivated with environmental bacterial communities. Promotive, neutral, and inhibitory bacteria in the community would synergistically determine the effects. The results indicate the possibility of improving duckweed biomass production via regulation of co

  17. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2

    PubMed Central

    Masum, Md. Mahidul Islam; Yang, Yingzi; Li, Bin; Olaitan, Ogunyemi Solabomi; Chen, Jie; Zhang, Yang; Fang, Yushi; Qiu, Wen; Wang, Yanli; Sun, Guochang

    2017-01-01

    The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa. PMID:28934168

  18. Enterovirus strain and type-specific differences in growth kinetics and virus-induced cell destruction in human pancreatic duct epithelial HPDE cells.

    PubMed

    Smura, Teemu; Natri, Olli; Ylipaasto, Petri; Hellman, Marika; Al-Hello, Haider; Piemonti, Lorenzo; Roivainen, Merja

    2015-12-02

    Enterovirus infections have been suspected to be involved in the development of type 1 diabetes. However, the pathogenetic mechanism of enterovirus-induced type 1 diabetes is not known. Pancreatic ductal cells are closely associated with pancreatic islets. Therefore, enterovirus infections in ductal cells may also affect beta-cells and be involved in the induction of type 1 diabetes. The aim of this study was to assess the ability of different enterovirus strains to infect, replicate and produce cytopathic effect in human pancreatic ductal cells. Furthermore, the viral factors that affect these capabilities were studied. The pancreatic ductal cells were highly susceptible to enterovirus infections. Both viral growth and cytolysis were detected for several enterovirus serotypes. However, the viral growth and capability to induce cytopathic effect (cpe) did not correlate completely. Some of the virus strains replicated in ductal cells without apparent cpe. Furthermore, there were strain-specific differences in the growth kinetics and the ability to cause cpe within some serotypes. Viral adaptation experiments were carried out to study the potential genetic determinants behind these phenotypic differences. The blind-passage of non-lytic CV-B6-Schmitt strain in HPDE-cells resulted in lytic phenotype and increased progeny production. This was associated with the substitution of a single amino acid (K257E) in the virus capsid protein VP1 and the viral ability to use decay accelerating factor (DAF) as a receptor. This study demonstrates considerable plasticity in the cell tropism, receptor usage and cytolytic properties of enteroviruses and underlines the strong effect of single or few amino acid substitutions in cell tropism and lytic capabilities of a given enterovirus. Since ductal cells are anatomically close to pancreatic islets, the capability of enteroviruses to infect and destroy pancreatic ductal cells may also implicate in respect to enterovirus induced type 1

  19. Urinary tract infections of Escherichia coli strains of chaperone-usher system.

    PubMed

    Zalewska-Piatek, Beata M

    2011-01-01

    Urinary tract infections are a very serious health and economic problem affecting millions of people each year worldwide. The most common etiologic agent of this type of bacterial infections, involving the upper and lower urinary tract, are E. coli strains representing approximately 80% of cases. Uropathogenic E. coli strains produce several urovirulence factors which can be divided into two main types, surface virulence factors and exported virulence factors. Surface-exposed structures include mainly extracellular adhesive organelles such as fimbriae/pili necessary in adhesion, invasion, biofilm formation and cytokine induction. Among the surface-exposed polymeric adhesive structures there are three most invasive groups, type 1 pili, type P pili and Dr family of adhesins which are bioassembled via the conserved, among Gram-negative bacteria, chaperone-usher secretion system. Type 1 and P-piliated E. coli cause cystitis and pyelonephritis. The Dr family of adhesins recognizing DAF receptor is responsible for cystitis, pyelonephritis (especially in pregnant women) and diarrhoea (in infants). In addition, Dr-positive E. coli strains carry the risk of recurrent urinary tract infections. Pyelonephritis in pregnant women leads to a series of complications such as bacteremia, urosepsis, acute respiratory distress syndrome and even death. In the era of increasing drug resistance of bacteria, the development of vaccines, drugs termed pilicides and inhibitors of adhesion may be a promising tool in the fight against urogenital infections.

  20. Induction of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.