Sample records for bacterial sulphate reduction

  1. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments

    USGS Publications Warehouse

    Oremland, R.S.; Marsh, L.M.; Polcin, S.

    1982-01-01

    It has been generally believed that sulphate reduction precludes methane generation during diagenesis of anoxic sediments1,2. Because most biogenic methane formed in nature is thought to derive either from acetate cleavage or by hydrogen reduction of carbon dioxide3-6, the removal of these compounds by the energetically more efficient sulphate-reducing bacteria can impose a substrate limitation on methanogenic bacteria 7-9. However, two known species of methanogens, Methanosarcina barkeri and Methanococcus mazei, can grow on and produce methane from methanol and methylated amines10-13. In addition, these compounds stimulate methane production by bacterial enrichments from the rumen11,14 and aquatic muds13,14. Methanol can enter anaerobic food webs through bacterial degradation of lignins15 or pectin16, and methylated amines can be produced either from decomposition of substances like choline, creatine and betaine13,14 or by bacterial reduction of trimethylamine oxide17, a common metabolite and excretory product of marine animals. However, the relative importance of methanol and methylated amines as precursors of methane in sediments has not been previously examined. We now report that methanol and trimethylamine are important substrates for methanogenic bacteria in salt marsh sediments and that these compounds may account for the bulk of methane produced therein. Furthermore, because these compounds do not stimulate sulphate reduction, methanogenesis and sulphate reduction can operate concurrently in sulphate-containing anoxic sediments. ?? 1982 Nature Publishing Group.

  2. Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH.

    PubMed

    Gacitúa, Manuel A; Muñoz, Enyelbert; González, Bernardo

    2018-02-01

    Microbial electrolysis batch reactor systems were studied employing different conditions, paying attention on the effect that biocathode potential has on pH and system performance, with the overall aim to distinguish sulphate reduction from H 2 evolution. Inocula from pure strains (Desulfovibrio paquesii and Desulfobacter halotolerans) were compared to a natural source conditioned inoculum. The natural inoculum possess the potential for sulphate reduction on serum bottles experiments due to the activity of mutualistic bacteria (Sedimentibacter sp. and Bacteroides sp.) that assist sulphate-reducing bacterial cells (Desulfovibrio sp.) present in the consortium. Electrochemical batch reactors were monitored at two different potentials (graphite-bar cathodes poised at -900 and -400mV versus standard hydrogen electrode) in an attempt to isolate bioelectrochemical sulphate reduction from hydrogen evolution. At -900mV all inocula were able to reduce sulphate with the consortium demonstrating superior performance (SO 4 2- consumption: 25.71gm -2 day -1 ), despite the high alkalinisation of the media. At -400mV only the pure Desulfobacter halotolerans inoculated system was able to reduce sulphate (SO 4 2- consumption: 17.47gm -2 day -1 ) and, in this potential condition, pH elevation was less for all systems, confirming direct (or at least preferential) bioelectrochemical reduction of sulphate over H 2 production. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Carbon Monoxide as an Electron Donor for the Biological Reduction of Sulphate

    PubMed Central

    Parshina, Sofiya N.; Sipma, Jan; Henstra, Anne Meint; Stams, Alfons J. M.

    2010-01-01

    Several strains of Gram-negative and Gram-positive sulphate-reducing bacteria (SRB) are able to use carbon monoxide (CO) as a carbon source and electron donor for biological sulphate reduction. These strains exhibit variable resistance to CO toxicity. The most resistant SRB can grow and use CO as an electron donor at concentrations up to 100%, whereas others are already severely inhibited at CO concentrations as low as 1-2%. Here, the utilization, inhibition characteristics, and enzymology of CO metabolism as well as the current state of genomics of CO-oxidizing SRB are reviewed. Carboxydotrophic sulphate-reducing bacteria can be applied for biological sulphate reduction with synthesis gas (a mixture of hydrogen and carbon monoxide) as an electron donor. PMID:20628586

  4. Sulphates Removal from Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Mačingová, Eva; Kotuličová, Ingrida; Rudzanová, Dominika

    2016-10-01

    Acid mine drainage (AMD) are a worldwide problem leading to ecological destruction in river basins and the contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. In order to minimize negative impacts of AMD appropriate treatment techniques has to be chosen. Treatment processes are focused on neutralizing, stabilizing and removing pollutants. From this reason efficient and environmental friendly methods are needed to be developed in order to reduce heavy metals as well as sulphates. Various methods are used for remediation of acid mine drainage, but any of them have been applied under commercial-scale conditions. Their application depends on geochemical, technical, natural, financial, and other factors. The aim of the present work was to interpret the study of biological methods for sulphates removal from AMD out-flowing from the shaft Pech of the deposit Smolmk in Slovak Republic. In the experimental works AMD were used after removal of heavy metals by precipitation and sorption using the synthetic sorbent Slovakite. The base of the studied method for the sulphates elimination was the anaerobic bacterial sulphate reduction using sulphate-reducing bacteria (SRB) genera Desulfovibrio. SRB represent a group of bacteria that uses sulphates as a terminal electron acceptor for their metabolism. These bacteria realize the conversion of sulphate to hydrogen sulphide under anaerobic conditions. For the purposes of experiments a few variants of the selective medium DSM-63 culture media were used in term of the sulphates and sodium lactate contents in the selective medium as well as sulphates in the studied AMD.

  5. Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments.

    PubMed

    Purdy, K J.; Nedwell, D B.; Embley, T M.; Takii, S

    2001-07-01

    The distribution of sulphate-reducing bacteria (SRBs) in three anaerobic sediments, one predominantly freshwater and low sulphate and two predominantly marine and high sulphate, on the River Tama, Tokyo, Japan, was investigated using 16S rRNA-targeted oligonucleotide probes. Hybridisation results and sulphate reduction measurements indicated that SRBs are a minor part of the bacterial population in the freshwater sediments. Only Desulfobulbus and Desulfobacterium were detected, representing 1.6% of the general bacterial probe signal. In contrast, the SRB community detected at the two marine-dominated sites was larger and more diverse, representing 10-11.4% of the bacterial signal and with Desulfobacter, Desulfovibrio, Desulfobulbus and Desulfobacterium detected. In contrast to previous reports our results suggest that Desulfovibrio may not always be the most abundant SRB in anaerobic sediments. Acetate-utilising Desulfobacter were the dominant SRB in the marine-dominated sediments, and Desulfobulbus and Desulfobacterium were active in low-sulphate sediments, where they may utilise electron acceptors other than sulphate.

  6. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows.

    PubMed

    Nielsen, L B; Finster, K; Welsh, D T; Donelly, A; Herbert, R A; de Wit, R; Lomstein, B A

    2001-01-01

    Sulphate reduction rates (SRR) and nitrogen fixation rates (NFR) associated with isolated roots, rhizomes and sediment from the rhizosphere of the marine macrophytes Zostera noltii and Spartina maritima, and the presence and distribution of Bacteria on the roots and rhizomes, were investigated. Between 1% and 3% of the surface area of the roots and rhizomes of both macrophytes were colonized by Bacteria. Bacteria on the surfaces of S. maritima roots and rhizomes were evenly distributed, while the distribution of Bacteria on Z. noltii roots and rhizomes was patchy. Root- and rhizome-associated SRR and NFR were always higher than rates in the bulk sediment. In particular, nitrogen fixation associated with the roots and rhizomes was 41-650-fold higher than in the bulk sediment. Despite the fact that sulphate reduction was elevated on roots and rhizomes compared with bulk sediment, the contribution of plant-associated sulphate reduction to overall sulphate reduction was small (< or =11%). In contrast, nitrogen fixation associated with the roots and rhizomes accounted for 31% and 91% of the nitrogen fixed in the rhizosphere of Z. noltii and S. maritima respectively. In addition, plant-associated nitrogen fixation could supply 37-1,613% of the nitrogen needed by the sulphate-reducing community. Sucrose stimulated nitrogen fixation and sulphate reduction significantly in the root and rhizome compartments of both macrophytes, but not in the bulk sediment.

  7. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline.

    PubMed

    Robertson, W J; Franzmann, P D; Mee, B J

    2000-02-01

    Previous studies on the geochemistry of a shallow unconfined aquifer contaminated with hydrocarbons suggested that the degradation of some hydrocarbons was linked to bacterial sulphate reduction. There was attenuation of naphthalene, 1,3,5-trimethylbenzene (TMB), toluene, p-xylene and ethylbenzene in the groundwater with concomitant loss of sulphate. Here, the recovery of eight strains of sulphate-reducing bacteria (SRB) from the contaminated site is reported. All were straight or curved rod-shaped cells which formed endospores. Amplification and sequencing of the 16S rDNA indicated that the strains were all sulphate reducers of the Gram-positive line of descent, and were most closely related to Desulfosporosinus (previously Desulfotomaculum) orientis DSM 8344 (97-98.9% sequence similarity). The strains clustered in three phylogenetic groups based on 16S rRNA sequences. Whole cell fatty acid compositions were similar to those of D. orientis DSM 8344, and were consistent with previous studies of fatty acids in soil and groundwater from the site. Microcosms containing groundwater from this aquifer indicated a role for sulphate reduction in the degradation of [ring-UL-14C]toluene, but not for the degradation of [UL-14C]benzene which could also be degraded by the microcosms. Adding one of the strains that was isolated from the groundwater (strain T2) to sulphate-enriched microcosms increased the rate of toluene degradation four- to 10-fold but had no effect on the rate of benzene degradation. The addition of molybdate, an inhibitor of sulphate reduction, to the groundwater samples decreased the rate of toluene mineralization. There was no evidence to support the mineralization of [UL-14C]benzene, [ring-UL-14C]toluene or unlabelled m-xylene, p-xylene, ethylbenzene, TMB or naphthalene by any of the strains in pure culture. Growth of all the strains was completely inhibited by 100 micromol l-1 TMB.

  8. Calcium sulphate in ammonium sulphate solution

    USGS Publications Warehouse

    Sullivan, E.C.

    1905-01-01

    Calcium sulphate, at 25?? C., is two-thirds as soluble in dilute (o.i mol per liter) and twice as soluble in concentrated (3 mois per liter) ammonium sulphate solution as in water. The specific electric conductivity of concentrated ammonium sulphate solutions is lessened by saturating with calcium sulphate. Assuming that dissociation of ammonium sulphate takes place into 2NH4?? and SO4" and of calcium sulphate into Ca and SO4" only, and that the conductivity is a measure of such dissociation, the solubility of calcium sulphate in dilute ammonium sulphate solutions is greater than required by the mass-law. The conductivity of the dilute mixtures may be accurately calculated by means of Arrhenius' principle of isohydric solutions. In the data obtained in these calculations, the concentration of non-dissociated calcium sulphate decreases with increasing ammonium sulphate. The work as a whole is additional evidence of the fact that we are not yet in possession of all the factors necessary for reconciling the mass-law to the behavior of electrolytes. The measurements above described were made in the chemical laboratory of the University of Michigan.

  9. Metabolism of dietary sulphate: absorption and excretion in humans.

    PubMed Central

    Florin, T; Neale, G; Gibson, G R; Christl, S U; Cummings, J H

    1991-01-01

    Dietary sulphate may affect colonic pathophysiology because sulphate availability determines in part the activity of sulphate reducing bacteria in the bowel. The main product of sulphate reducing bacterial oxidative metabolism, hydrogen sulphide, is potentially toxic. Although it is generally believed that the sulphate ion is poorly absorbed, there are no available data on how much sulphate reaches the colon nor on the relative contributions from diet and endogenous sources. To resolve these questions, balance studies were performed on six healthy ileostomists and three normal subjects chosen because they did not have detectable sulphate reducing bacteria in their faeces. The subjects were fed diets which varied in sulphate content from 1.6-16.6 mmol/day. Sulphate was measured in diets, faeces (ileal effluent in ileostomists), and urine by anion exchange chromatography with conductivity detection. Overall there was net absorption of dietary sulphate, with the absorptive capacity of the gastrointestinal tract plateauing at 5 mmol/day in the ileostomists and exceeding 16 mmol/day in the normal subjects. Endogenous secretion of sulphate in the upper gastrointestinal tract was from 0.96-2.6 mmol/day. The dietary contribution to the colonic sulphate pool ranged up to 9 mmol/day, there being linear identity between diet and upper gastrointestinal losses for intakes above 7 mmol/day. Faecal losses of sulphate were trivial (less than 0.5 mmol/day) in the normal subjects at all doses. It is concluded that diet and intestinal absorption are the principal factors affecting the amounts of sulphate reaching the colon. Endogenous secretion of sulphate by colonic mucosa may also be important in determining amounts of sulphate in the colon. PMID:1855683

  10. Immobilization of uranium and arsenic by injectible iron and hydrogen stimulated autotrophic sulphate reduction

    NASA Astrophysics Data System (ADS)

    Burghardt, D.; Simon, E.; Knöller, K.; Kassahun, A.

    2007-12-01

    The main object of the study was the development of a long-term efficient and inexpensive in-situ immobilization technology for uranium (U) and arsenic (As) in smaller and decentralized groundwater discharges from abandoned mining processing sites. Therefore, corrosion of grey cast iron (gcFe) and nano-scale iron particles (naFe) as well as hydrogen stimulated autotrophic sulphate reduction (aSR) were investigated. Two column experiments with sulphate reducing bacterias (SRB) (biotic gcFe , biotic naFe) and one abiotic gcFe-column experiment were performed. In the biotic naFe column, no particle translocation was observed and a temporary but intensive naFe corrosion indicated by a decrease in Eh, a pH increase and H 2 evolution. Decreasing sulphate concentrations and 34S enrichment in the column effluent indicated aSR. Fe(II) retention could be explained by siderite and consequently FeS precipitation by geochemical modeling (PhreeqC). U and As were completely immobilised within the biotic naFe column. In the biotic gcFe column, particle entrapment in open pore spaces resulted in a heterogeneous distribution of Fe-enriched zones and an increase in permeability due to preferential flow. However, Fe(II) concentrations in the effluent indicated a constant and lasting gcFe corrosion. An efficient immobilization was found for As, but not for U.

  11. [Acclimatization and characteristics of microbial community in sulphate-dependent anaerobic methane oxidation].

    PubMed

    Xi, Jing-Ru; Liu, Su-Qin; Li, Lin; Liu, Jun-Xin

    2014-12-01

    The greenhouse effect of methane is 26 times worse than that of carbon dioxide, and wastewater containing high concentrations of sulfate is harmful to water, soil and plants. Therefore, anaerobic oxidation of methane driven by sulfate is one of the effective ways for methane reduction. In this paper, with sulfate as the electron accepter, a microbial consortium capable of oxidating methane under anaerobic condition was cultured. The diversity and characteristics of bacterial and archaeal community were investigated by PCR-DGGE, and phylogenetic analysis of the dominant microorganisms was also carried out. The DGGE fingerprints showed that microbial community structure changed distinctly, and the abundance of methane-oxidizing archea and sulfate-reducing bacteria increased in the acclimatization system added sulfate. After acclimatization, the bacterial diversity increased, while archaea diversity decreased slightly. The representative bands in the DGGE profiles were excised and sequenced. Results indicated that the dominant species in the acclimatization system were Spirochaetes, Desulfuromonadales, Methanosarcinales, Methanosaeta. Methane converted into carbon dioxide while sulfate transformed into hydrogen sulfide and sulfur in the process of anaerobic methane oxidation accompanied by sulphate reduction.

  12. The sulphation of chondroitin sulphate in embryonic chicken cartilage

    PubMed Central

    Robinson, H. C.

    1969-01-01

    1. Whole tissue preparations and subcellular fractions from embryonic chicken cartilage were used to measure the rate of incorporation of inorganic sulphate into chondroitin sulphate in vitro. 2. In cartilage from 14-day-old embryos, [35S]sulphate is incorporated to an equal extent into chondroitin 4-sulphate and chondroitin 6-sulphate at a rate of 1·5nmoles of sulphate/hr./mg. dry wt. of cartilage. 3. Microsomal and soluble enzyme preparations from embryonic cartilage catalyse the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate into both chondroitin 4-sulphate and chondroitin 6-sulphate. 4. The effects of pH, ionic strength, adenosine 3′-phosphate 5′-sulphatophosphate concentration and acceptor chondroitin sulphate concentration on the soluble sulphotransferase activity were examined. These factors all influence the activity of the sulphotransferase, and pH and incubation time also influence the percentage of chondroitin 4-sulphate formed. PMID:5807213

  13. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China.

    PubMed

    Guo, Xing-Pan; Lu, Da-Pei; Niu, Zuo-Shun; Feng, Jing-Nan; Chen, Yu-Ru; Tou, Fei-Yun; Liu, Min; Yang, Yi

    2018-01-01

    This study was designed to investigate the characteristics of bacterial communities in intertidal sediments along the Yangtze Estuary and their responses to environmental factors. The results showed that bacterial abundance was significantly correlated with salinity, SO 4 2- and total organic carbon, while bacterial diversity was significantly correlated with SO 4 2- and total nitrogen. At different taxonomic levels, both the dominant taxa and their abundances varied among the eight samples, with Proteobacteria being the most dominant phylum in general. Cluster analysis revealed that the bacterial community structure was influenced by river runoff and sewerage discharge. Moreover, SO 4 2- , salinity and total phosphorus were the vital environmental factors that influenced the bacterial community structure. Quantitative PCR and sequencing of sulphate-reducing bacteria indicated that the sulphate reduction process occurs frequently in intertidal sediments. These findings are important to understand the microbial ecology and biogeochemical cycles in estuarine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anticoagulant, antiherpetic and antibacterial activities of sulphated polysaccharide from Indian medicinal plant Tridax procumbens L. (Asteraceae).

    PubMed

    Naqash, Shabeena Yousuf; Nazeer, R A

    2011-10-01

    The sulphated polysaccharide from the widespread Tridax procumbens plant was studied for the anticoagulant, antiherpetic and antibacterial activity. The anticoagulant activity was determined by the activated partial thromboplastin time assay. The sulphated polysaccharide from T. procumbens represented potent anticoagulant reaching the efficacy to heparin and chondroitin sulphate. Moreover, the sulphated polysaccharide extracted from T. procumbens was found non-toxic on Vero cell lines up to the concentration of 200 μg/ml. Sulphated polysaccharide exhibited detectable antiviral effect towards HSV-1 with IC(50) value 100-150 μg/ml. Furthermore, sulphated polysaccharide from T. procumbens was highly inhibitory against the bacterial strains Vibrio alginolyticus and Vibrio harveyi isolated from oil sardine.

  15. The binding of sodium dodecyl sulphate to various proteins

    PubMed Central

    Pitt-Rivers, Rosalind; Impiombato, F. S. Ambesi

    1968-01-01

    1. The binding of sodium dodecyl sulphate to proteins by equilibrium dialysis was investigated. 2. Most of the proteins studied bound 90–100% of their weight of sodium dodecyl sulphate. 3. The glycoproteins studied bound 70–100% of their weight of sodium dodecyl sulphate, calculated in terms of the polypeptide moiety of the molecule. 4. Proteins not containing S·S groups bound about 140% of their weight of sodium dodecyl sulphate. 5. Reduction of four proteins containing S·S groups caused a rise in sodium dodecyl sulphate binding to 140% of the weight of protein. 6. The apparent micellar molecular weights of the protein–sodium dodecyl sulphate complexes were measured by the dye-solubilization method; they were all found to have approximately the same micellar molecular weight (34000–41000) irrespective of the molecular weight of the protein to which they were attached. PMID:4177067

  16. Spatial distributions of sulphur species and sulphate-reducing bacteria provide insights into sulphur redox cycling and biodegradation hot-spots in a hydrocarbon-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Pilloni, Giovanni; Ruth-Anneser, Bettina; Lueders, Tillman; Griebler, Christian

    2015-05-01

    Dissimilatory sulphate reduction (DSR) has been proven to be one of the most relevant redox reactions in the biodegradation of contaminants in groundwater. However, the possible role of sulphur species of intermediate oxidation state, as well as the role of potential re-oxidative sulphur cycling in biodegradation particularly at the groundwater table are still poorly understood. Here we used a combination of stable isotope measurements of SO42-, H2S, and S0 as well as geochemical profiling of sulphur intermediates with special emphasis on SO32-, S2O32-, and S0 to unravel possible sulphur cycling in the biodegradation of aromatics in a hydrocarbon-contaminated porous aquifer. By linking these results to the quantification of total bacterial rRNA genes and respiratory genes of sulphate reducers, as well as pyrotag sequencing of bacterial communities over depth, light is shed on possible key-organisms involved. Our results substantiate the role of DSR in biodegradation of hydrocarbons (mainly toluene) in the highly active plume fringes above and beneath the plume core. In both zones the concentration of sulphur intermediates (S0, SO32- and S2O32-) was almost twice that of other sampling-depths, indicating intense sulphur redox cycling. The dual isotopic fingerprint of oxygen and sulphur in dissolved sulphate suggested a re-oxidation of reduced sulphur compounds to sulphate especially at the upper fringe zone. An isotopic shift in δ34S of S0 of nearly +4‰ compared to the δ34S values of H2S from the same depth linked to a high abundance (∼10%) of sequence reads related to Sulphuricurvum spp. (Epsilonproteobacteria) in the same depth were indicative of intensive oxidation of S0 to sulphate in this zone. At the lower plume fringe S0 constituted the main inorganic sulphur species, possibly formed by abiotic re-oxidation of H2S with Fe(III)oxides subsequent to sulphate reduction. These results provide first insights into intense sulphur redox cycling in a hydrocarbon

  17. Sulphate in Pregnancy

    PubMed Central

    Dawson, Paul A.; Elliott, Aoife; Bowling, Francis G.

    2015-01-01

    Sulphate is an obligate nutrient for healthy growth and development. Sulphate conjugation (sulphonation) of proteoglycans maintains the structure and function of tissues. Sulphonation also regulates the bioactivity of steroids, thyroid hormone, bile acids, catecholamines and cholecystokinin, and detoxifies certain xenobiotics and pharmacological drugs. In adults and children, sulphate is obtained from the diet and from the intracellular metabolism of sulphur-containing amino acids. Dietary sulphate intake can vary greatly and is dependent on the type of food consumed and source of drinking water. Once ingested, sulphate is absorbed into circulation where its level is maintained at approximately 300 μmol/L, making sulphate the fourth most abundant anion in plasma. In pregnant women, circulating sulphate concentrations increase by twofold with levels peaking in late gestation. This increased sulphataemia, which is mediated by up-regulation of sulphate reabsorption in the maternal kidneys, provides a reservoir of sulphate to meet the gestational needs of the developing foetus. The foetus has negligible capacity to generate sulphate and thereby, is completely reliant on sulphate supply from the maternal circulation. Maternal hyposulphataemia leads to foetal sulphate deficiency and late gestational foetal death in mice. In humans, reduced sulphonation capacity has been linked to skeletal dysplasias, ranging from the mildest form, multiple epiphyseal dysplasia, to achondrogenesis Type IB, which results in severe skeletal underdevelopment and death in utero or shortly after birth. Despite being essential for numerous cellular and metabolic functions, the nutrient sulphate is largely unappreciated in clinical settings. This article will review the physiological roles and regulation of sulphate during pregnancy, with a particular focus on animal models of disturbed sulphate homeostasis and links to human pathophysiology. PMID:25746011

  18. Identification and characterization of a bacterial hydrosulphide ion channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czyzewski, Bryan K.; Wang, Da-Neng

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a keymore » intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.« less

  19. Quantitative studies of sulphate conjugation by isolated rat liver cells using [35S]sulphate.

    PubMed

    Dawson, J; Knowles, R G; Pogson, C I

    1991-06-21

    We have developed a simple, rapid and sensitive method for the study of sulphate conjugation in isolated liver cells based on the incorporation of 35S from [35S]sulphate. Excess [35S]sulphate is removed by a barium precipitation procedure, leaving [35S]sulphate conjugates in solution. We have used this method to examine the kinetics of sulphation of N-acetyl-p-aminophenol (acetaminophen), 4-nitrophenol and 1-naphthol in isolated rat liver cells. The efficiency of recovery of the sulphate conjugates was greater than 86%. The method is applicable to the quantitative study of sulphate conjugation of any substrate which forms a sulphate conjugate that is soluble in the presence of barium, without the need for standards or radiolabelled sulphate acceptors.

  20. The extraction of plasma 3-hydroxy-17-oxo steroid sulphates and the measurement of the constituent dehydroepiandrosterone sulphate and androsterone sulphate

    PubMed Central

    McKenna, Jean; Rippon, A. E.

    1965-01-01

    1. A simple method for the extraction of 17-oxo steroid sulphates of plasma is described; glucosiduronates and orthophosphates are extracted, but to a smaller extent. 2. Four methods of analyses of the extracts are given and are relatively simple. Three of these are specific for steroid sulphates and two measure the sulphate conjugates directly. 3. Values for dehydroepiandrosterone sulphate and androsterone sulphate concentrations of normal and pathological plasmas are given. PMID:14333546

  1. Microbial minimalism: genome reduction in bacterial pathogens.

    PubMed

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  2. Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization

    PubMed Central

    2010-01-01

    Background Sulphur is an essential macronutrient needed for the synthesis of many cellular components. Sulphur containing amino acids and stress response-related compounds, such as glutathione, are derived from reduction of root-absorbed sulphate. Sulphate distribution in cell compartments necessitates specific transport systems. The low-affinity sulphate transporters SULTR4;1 and SULTR4;2 have been localized to the vacuolar membrane, where they may facilitate sulphate efflux from the vacuole. Results In the present study, we demonstrated that the Sultr4;1 gene is expressed in developing Arabidopsis seeds to a level over 10-fold higher than the Sultr4;2 gene. A characterization of dry mature seeds from a Sultr4;1 T-DNA mutant revealed a higher sulphate content, implying a function for this transporter in developing seeds. A fine dissection of the Sultr4;1 seed proteome identified 29 spots whose abundance varied compared to wild-type. Specific metabolic features characteristic of an adaptive response were revealed, such as an up-accumulation of various proteins involved in sugar metabolism and in detoxification processes. Conclusions This study revealed a role for SULTR4;1 in determining sulphate content of mature Arabidopsis seeds. Moreover, the adaptive response of sultr4;1 mutant seeds as revealed by proteomics suggests a function of SULTR4;1 in redox homeostasis, a mechanism that has to be tightly controlled during development of orthodox seeds. PMID:20426829

  3. Correlation between genome reduction and bacterial growth.

    PubMed

    Kurokawa, Masaomi; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen

    2016-12-01

    Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics

    NASA Astrophysics Data System (ADS)

    Roden, Eric E.

    2004-08-01

    Data from studies of dissimilatory bacterial (10 8 cells mL -1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L -1) were analyzed in relation to a generalized rate law for mineral dissolution (J t/m 0 = k'(m/m 0) γ, where J t is the rate of dissolution and/or reduction at time t, m 0 is the initial mass of oxide, and m/m 0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to

  5. Role of dietary sulphate in the regulation of methanogenesis in the human large intestine.

    PubMed Central

    Christl, S U; Gibson, G R; Cummings, J H

    1992-01-01

    Hydrogen produced during colonic fermentation may be excreted, or removed by H2 consuming bacteria such as methanogenic and sulphate reducing bacteria. In vitro, sulphate reducing bacteria compete with methanogenic bacteria for hydrogen when sulphate is present. In this study the hypothesis that sulphate in the diet could alter CH4 production in vivo has been tested. Six methane excreting volunteers were fed a low sulphate diet (1.6 mmol/d) for 34 days with the addition of 15 mmol sodium sulphate from days 11-20. Breath methane was measured and viable counts and metabolic activities of methanogenic bacteria and sulphate reducing bacteria determined in faeces. Whole gut transit time and daily stool weight were also measured. When sulphate was added to the diet, breath methane excretion decreased in three of the subjects while faecal sulphate reduction rates rose from 7.5 (0.5) to 20.3 (4.3) nmol SO4 reduced/h/g faeces. Sulphate reducing bacteria, which were not detected during the control diet, were found and viable counts of methanogenic bacteria fell from 10(7)-10(9)/g faeces to 10(6)/g. Methanogenic counts and breath CH4 recovered after sulphate addition was stopped. No change was found in the other three subjects. Faecal weights and transit times were not different between study periods. It is concluded that methanogenesis is regulated by dietary sulphate if sulphate reducing bacteria are present. Dietary sulphate may allow growth of sulphate reducing bacteria which inhibit the growth of methanogenic bacteria. This may explain the absence of CH4 in the breath of many people in western populations. PMID:1427377

  6. Binding of endostatin to endothelial heparan sulphate shows a differential requirement for specific sulphates.

    PubMed

    Blackhall, Fiona H; Merry, Catherine L R; Lyon, Malcolm; Jayson, Gordon C; Folkman, Judah; Javaherian, Kashi; Gallagher, John T

    2003-10-01

    Endostatin is a naturally occurring proteolytic fragment of the C-terminal domain of collagen XVIII. It inhibits angiogenesis by a mechanism that appears to involve binding to HS (heparan sulphate). We have examined the molecular interaction between endostatin and HS from micro- and macrovessel endothelial cells. Two discrete panels of oligosaccharides were prepared from metabolically radiolabelled HS, using digestion with either heparinase I or III, and then examined for their endostatin affinity using a sensitive filter-binding assay. Two types of endostatin-binding regions were identified: one comprising sulphated domains of five or more disaccharides in length, enriched in 6-O-sulphate groups, and the other contained long heparinase I-resistant fragments. In the latter case, evidence from the present study suggests that the binding region encompasses a sulphated domain fragment and a transition zone of intermediate sulphation. The contribution to binding of specific O-sulphate groups was determined using selectively desulphated HS species, namely HS from Hs2st-/- mutant cells, and by comparing the compositions of endostatin-binding and non-binding oligosaccharides. The results indicate that 6-O-sulphates play a dominant role in site selectivity and 2-O-sulphates are not strictly essential.

  7. Binding of endostatin to endothelial heparan sulphate shows a differential requirement for specific sulphates.

    PubMed Central

    Blackhall, Fiona H; Merry, Catherine L R; Lyon, Malcolm; Jayson, Gordon C; Folkman, Judah; Javaherian, Kashi; Gallagher, John T

    2003-01-01

    Endostatin is a naturally occurring proteolytic fragment of the C-terminal domain of collagen XVIII. It inhibits angiogenesis by a mechanism that appears to involve binding to HS (heparan sulphate). We have examined the molecular interaction between endostatin and HS from micro- and macrovessel endothelial cells. Two discrete panels of oligosaccharides were prepared from metabolically radiolabelled HS, using digestion with either heparinase I or III, and then examined for their endostatin affinity using a sensitive filter-binding assay. Two types of endostatin-binding regions were identified: one comprising sulphated domains of five or more disaccharides in length, enriched in 6-O-sulphate groups, and the other contained long heparinase I-resistant fragments. In the latter case, evidence from the present study suggests that the binding region encompasses a sulphated domain fragment and a transition zone of intermediate sulphation. The contribution to binding of specific O-sulphate groups was determined using selectively desulphated HS species, namely HS from Hs2st-/- mutant cells, and by comparing the compositions of endostatin-binding and non-binding oligosaccharides. The results indicate that 6-O-sulphates play a dominant role in site selectivity and 2-O-sulphates are not strictly essential. PMID:12812520

  8. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Worden, Richard H.; Yang, Changbing

    2018-02-01

    Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.

  9. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion.

    PubMed

    Siles, J A; Brekelmans, J; Martín, M A; Chica, A F; Martín, A

    2010-12-01

    The effect of increasing concentrations of ammonia and sulphate on thermophilic anaerobic digestion (52 degrees C) was studied at laboratory-scale. The substrate consisted of a synthetic solution supplemented with ammonia and sodium sulphate. In terms of biogas production, the results showed that the C/N and C/SO(4)(2-) thresholds were 4.40 and 1.60, respectively, corresponding to 620 mg FA (free ammonia)/L and 1400 mg SO(4)(2-)/L. No reduction in biogas production was observed until reaching the above concentration of sulphate in the sulphate toxicity test. However, when the concentration of ammonia was increased to 620 mg FA/L in the ammonia toxicity test, a gradual decrease of 21% was observed for the biogas. In order to characterise each set of experiments kinetically, a biogas production first-order kinetic model was used to fit the experimental data. The proposed model accurately predicted the behaviour of the microorganisms affecting the thermophilic anaerobic digestion, allowing its evolution to be predicted. 2010 Elsevier Ltd. All rights reserved.

  10. Sulphates for skin preservation--a novel approach to reduce tannery effluent salinity hazards.

    PubMed

    Vankar, Padma S; Dwivedi, Ashish Kr

    2009-04-15

    In tanneries microorganisms are able to find environment suitable for their growth. Raw hide of buffalo and other animals like goat that are economically important, are an ideal source of nutrients for bacterial and fungal growth. In the past, preservatives like sodium chloride provided effective protection to fresh hides however the ill effect of their excessive use was not evaluated. But recently concern over potential ecological hazards has become more deliberate and sodium chloride features lot of disadvantages in agriculture as most of the tannery effluent is flown in agricultural fields in India. After rigorous laboratory experimentation on moisture content, SEM of hide, pure sodium sulphate as well as sodium sulphate in addition with sodium chloride (i.e. 10% w/w and 20% w/w) proved as most preferable option for curing of buffalo hide which gives effective preservation. Pollution load studies put forward sodium sulphate as an effective curing agent for buffalo hide to apply at industrial scale also.

  11. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  12. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  13. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  14. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  15. 7 CFR 160.10 - Sulphate wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Sulphate wood turpentine. 160.10 Section 160.10... STANDARDS FOR NAVAL STORES General § 160.10 Sulphate wood turpentine. The designation “sulphate wood... in the sulphate process of cooking wood pulp, and commonly known as sulphate turpentine or sulphate...

  16. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    PubMed Central

    Bomberg, Malin; Nyyssönen, Mari; Pitkänen, Petteri; Lehtinen, Anne; Itävaara, Merja

    2015-01-01

    Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems. PMID:26425566

  17. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity.

    PubMed

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2014-03-01

    Sulphur is an essential macroelement that plays important roles in living organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu-Cys, glutathione and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of inorganic sulphate. The aim of this study was to investigate, using a bifactorial experimental design, the effect of different sulphate concentrations in the nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular concentrations of low-molecular mass thiol compounds were determined. A mathematical model to describe the growth of this microalga based on the effects of sulphate and cadmium was obtained. An ANOVA revealed an interaction between them, 16% of the effect sizes was explained by this interaction. A higher amount of sulphate in the culture medium allowed a higher cadmium tolerance due to an increase in the thiol compound biosynthesis. The amount of low-molecular mass thiol compounds, mainly phytochelatins, synthesized by this microalga was significantly dependent on the sulphate and cadmium concentrations; the higher phytochelatin content was obtained in cultures with 4 mg Cd/L and 1mM sulphate. The maximum EC50 value (based on nominal cadmium concentration) reached for this microalga was 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was also 1mM. An increase in the sulphate concentration, in deficient environments, could alleviate the toxic effect of this metal; however, a relative excess is also negative. The results obtained showed a substrate inhibition for this nutrient. An uncompetitive model for sulphate was chosen to establish the mathematical model that links both factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation.

    PubMed

    Singhal, Naresh; Islam, Jahangir

    2008-02-19

    This paper uses the findings from a column study to develop a reactive model for exploring the interactions occurring in leachate-contaminated soils. The changes occurring in the concentrations of acetic acid, sulphate, suspended and attached biomass, Fe(II), Mn(II), calcium, carbonate ions, and pH in the column are assessed. The mathematical model considers geochemical equilibrium, kinetic biodegradation, precipitation-dissolution reactions, bacterial and substrate transport, and permeability reduction arising from bacterial growth and gas production. A two-step sequential operator splitting method is used to solve the coupled transport and biogeochemical reaction equations. The model gives satisfactory fits to experimental data and the simulations show that the transport of metals in soil is controlled by multiple competing biotic and abiotic reactions. These findings suggest that bioaccumulation and gas formation, compared to chemical precipitation, have a larger influence on hydraulic conductivity reduction.

  19. Sulphate absorption across biological membranes.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2016-01-01

    1. Sulphonation is unusual amongst the common Phase II (condensation; synthetic) reactions experienced by xenobiotics, in that the availability of the conjugating agent, sulphate, may become a rate-limiting factor. This sulphate is derived within the body via the oxygenation of sulphur moieties liberated from numerous ingested compounds including the sulphur-containing amino acids. Preformed inorganic sulphate also makes a considerable contribution to this pool. 2. There has been a divergence of opinion as to whether or not inorganic sulphate may be readily absorbed from the gastrointestinal tract and this controversy still continues in some quarters. Even more so, is the vexing question of potential absorption of inorganic sulphate via the lungs and through the skin. 3. This review examines the relevant diverse literature and concludes that sulphate ions may move across biological membranes by means of specific transporters and, although the gastrointestinal tract is by far the major portal of entry, some absorption across the lungs and the skin may take place under appropriate circumstances.

  20. Sulphation of proteochondroitin and 4-methylumbelliferyl beta-D-xyloside-chondroitin formed by mouse mastocytoma cells cultured in sulphate-deficient medium.

    PubMed Central

    Silbert, J E; Sugumaran, G; Cogburn, J N

    1993-01-01

    Mouse mastocytoma cells were cultured in medium containing [3H]GlcN and concentrations of [35S]sulphate varying from 0.01 to 0.5 mM. Intracellular [35S]sulphate incorporation increased severalfold from the lowest concentrations, reaching a maximum at 0.1-0.2 mM, whereas incorporation of [3H]hexosamine remained constant at all sulphate concentrations. Proteo[3H]-chondroitin [35S]sulphate was isolated and incubated with chondroitin ABC lyase, yielding 35S-labelled and/or 3H-labelled delta Di-0S and delta Di-4S disaccharide products. The increasing percentage of delta Di-4S was consistent with the increasing sulphate incorporation at each higher [35S]sulphate concentration. Examination of proteochondroitin [35S]sulphate size by Sepharose CL-6B chromatography indicated a range consistent with various numbers of glycosaminoglycan chains on the protease-resistant serglycin core protein. Alkali-cleaved chondroitin [35S]sulphate products indicated similar size distributions at all sulphate concentrations with no indication of preferential sulphation being related to smaller or larger size. DEAE-cellulose chromatography of [3H]chondroitin [35S]sulphate glycosaminoglycans indicated a random undersulphation as [35S]sulphate concentration was lowered. Addition of 4-methylumbelliferyl beta-D-xyloside to the cultures resulted in a 2-2.5-fold stimulation of [3H]chondroitin [35S]sulphate synthesis with formation of beta-xyloside-[3H]chondroitin [35S]sulphate which was much smaller, as estimated by Sepharose CL-6B chromatography, than the decreased amount of [3H]chondroitin [35S]sulphate derived from proteo[3H]chondroitin [35S]sulphate. Much higher concentrations of sulphate were necessary to produce sulphation of the beta-xyloside-[3H]chondroitin comparable with that of proteo[3H]-chondroitin, as indicated by chondroitin ABC lyase products and DEAE-cellulose chromatography. The specific radioactivities of the [3H]GalN in the proteo[3H]chondroitin [35S]sulphate and beta-xyloside-[3

  1. Open system sulphate reduction in a diagenetic environment - Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada

    NASA Astrophysics Data System (ADS)

    Magnall, J. M.; Gleeson, S. A.; Stern, R. A.; Newton, R. J.; Poulton, S. W.; Paradis, S.

    2016-05-01

    Highly positive δ34S values in sulphide minerals are a common feature of shale hosted massive sulphide deposits (SHMS). Often this is attributed to near quantitative consumption of seawater sulphate, and for Paleozoic strata of the Selwyn Basin (Canada), this is thought to occur during bacterial sulphate reduction (BSR) in a restricted, euxinic water column. In this study, we focus on drill-core samples of sulphide and barite mineralisation from two Late Devonian SHMS deposits (Tom and Jason, Macmillan Pass, Selwyn Basin), to evaluate this euxinic basin model. The paragenetic relationship between barite, pyrite and hydrothermal base metal sulphides has been determined using transmitted and reflected light microscopy, and backscatter electron imaging. This petrographic framework provides the context for in-situ isotopic microanalysis (secondary ion mass spectrometry; SIMS) of barite and pyrite. These data are supplemented by analyses of δ34S values for bulk rock pyrite (n = 37) from drill-core samples of un-mineralised (barren), siliceous mudstone, to provide a means by which to evaluate the mass balance of sulphur in the host rock. Three generations of barite have been identified, all of which pre-date hydrothermal input. Isotopically, the three generations of barite have overlapping distributions of δ34S and δ18O values (+22.5‰ to +33.0‰ and +16.4‰ to +18.3‰, respectively) and are consistent with an origin from modified Late Devonian seawater. Radiolarian tests, enriched in barium, are abundant within the siliceous mudstones, providing evidence that primary barium enrichment was associated with biologic activity. We therefore propose that barite formed following remobilisation of productivity-derived barium within the sediment, and precipitated within diagenetic pore fluids close to the sediment water interface. Two generations of pyrite are texturally associated with barite: framboidal pyrite (py-I), which has negative δ34S values (-23‰ to -28

  2. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    PubMed

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  3. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    PubMed

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  4. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin

    PubMed Central

    Stroman, David W; Mintun, Keri; Epstein, Arthur B; Brimer, Crystal M; Patel, Chirag R; Branch, James D; Najafi-Tagol, Kathryn

    2017-01-01

    Purpose To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl). Methods Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics. Results Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics. Conclusion The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid. PMID:28458509

  5. Vibrational spectroscopic characterization of the sulphate-halide mineral sulphohalite - implications for evaporites.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Theiss, Frederick L

    2014-12-10

    The mineral sulphohalite - Na6(SO4)2FCl is a rare sodium halogen sulphate and occurs associated with evaporitic deposits. Sulphohalite formation is important in saline evaporites and in pipe scales. Sulphohalite is an anhydrous sulphate-halide with an apparent variable anion ratio of formula Na6(SO4)2FCl. Such a formula with oxyanions lends itself to vibrational spectroscopy. The Raman band at 1003cm(-1) is assigned to the (SO4)(2-) ν1 symmetric stretching mode. Shoulders to this band are found at 997 and 1010cm(-1). The low intensity Raman bands at 1128, 1120 and even 1132cm(-1) are attributed to the (SO4)(2-) ν3 antisymmetric stretching vibrations. Two symmetric sulphate stretching modes are observed indicating at least at the molecular level the non-equivalence of the sulphate ions in the sulphohalite structure. The Raman bands at 635 and 624cm(-1) are assigned to the ν4 SO4(2-) bending modes. The ν2 (SO4)(2-) bending modes are observed at 460 and 494cm(-1). The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from Td to C3v or even C2v. No evidence of bands attributable to the halide ions was found. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.

    PubMed

    Einsiedl, Florian

    2009-01-01

    The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water

  7. Effect of sulfidogenic and methanogenic inhibitors on reductive dehalogenation of 2-chlorophenol.

    PubMed

    Basu, S K; Oleszkiewicz, J A; Sparling, R

    2005-12-01

    The potential for reductive dehalogenation of 2-CP in anaerobic batch cultures of fresh-water digested sludge under sulfidogenic and methanogenic conditions was investigated in the presence or absence of respective inhibitors: molybdate and BESA at various concentrations (0 to 10 mM). Triplicate cultures (50% vol/vol) were set-up under an atmosphere of 20% CO2 and 80% N2 in 160 ml serum bottles using anaerobic digester sludge and a mineral medium containing 0.1% yeast extract. The dehalogenation of 2-CP, as well as methanogenesis, occurred at the same rate in the presence or absence of sulphate. Sulphate reduction did not inhibit 2-CP degrading populations. The presence of BESA--a known inhibitor of methane producers partially inhibited methanogenesis and slowed 2-CP dehalogenation at even 1 mM concentration with phenol and acetate accumulation in the cultures. The accumulation was proportional to the increase in concentration of BESA in the system. Molybdate on the other hand completely inhibited both sulphate reduction and 2-CP dehalogenation at a concentration of 10 mM. The dehalogenation of 2-CP continued in the presence of 1 mM molybdate even after the cessation of sulphate reduction indicating that sulphate-reducing bacteria were not directly involved in the dehalogenation of 2-CP in this study. Inhibition of 2-CP dehalogenation and sulphate reduction along with accumulation of propionate at 10 mM molybdate in the cultures strongly suggests that the dehalogenation of 2-CP was more directly linked to syntrophic activity of the mixed culture compared to sulphate reduction.

  8. Phenolic sodium sulphates of Frankenia laevis L.

    PubMed

    Hussein, S A M

    2004-04-01

    Four new phenolic anionic conjugates have been isolated from the whole plant aqueous alcohol extract of Frankenia laevis L. Their structures were established, mainly on the basis of ESI-MS, 1D and 2D NMR spectroscopic evidence, as gallic acid-3-methyl ether-5-sodium sulphate, acetophenone-4-methyl ether-2-sodium sulphate, ellagic acid-3,3'-dimethyl ether-4,4'-di-sodium sulphate and ellagic acid-3-methyl ether-4-sodium sulphate.

  9. Performance of sulphate- and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials.

    PubMed

    Mirjafari, Parissa; Baldwin, Susan A

    2015-01-01

    Successful operation of sulphate-reducing bioreactors using complex organic materials depends on providing a balance between more easily degrading material that achieves reasonable kinetics and low hydraulic retention times, and more slowly decomposing material that sustains performance in the long term. In this study, two organic mixtures containing the same ingredients typical of bioreactors used at mine sites (woodchips, hay and cow manure) but with different ratios of wood (recalcitrant) to hay (labile) were tested in six continuous flow bioreactors treating synthetic mine-affected water containing 600 mg/L of sulphate and 15 μg/L of selenium. The reactors were operated for short (5-6 months) and long (435-450 days) periods of time at the same hydraulic retention time of 15 days. There were no differences in the performance of the bioreactors in terms of sulphate-reduction over the short term, but the wood-rich bioreactors experienced variable and sometimes unreliable sulphate-reduction over the long term. Presence of more hay in the organic mixture was able to better sustain reliable performance. Production of dissolved organic compounds due to biodegradation within the bioreactors was detected for the first 175-230 days, after which their depletion coincided with a crash phase observed in the wood-rich bioreactors only.

  10. Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community.

    PubMed

    Martins, Mónica; Taborda, Rita; Silva, Gonçalo; Assunção, Ana; Matos, António Pedro; Costa, Maria Clara

    2012-09-01

    A highly Al-resistant dissimilatory sulphate-reducing bacteria community was isolated from sludge of the wetland of Urgeiriça mine (community W). This community showed excellent sulphate removal at the presence of Al³⁺. After 27 days of incubation, 73, 86 and 81% of sulphate was removed in the presence of 0.48, 0.90 and 1.30 mM of Al³⁺, respectively. Moreover, Al³⁺ was simultaneously removed: 55, 85 and 78% of metal was removed in the presence of 0.48, 0.90 and 1.30 mM of Al³⁺, respectively. The dissociation of aluminium-lactate soluble complexes due to lactate consumption by dissimilatory sulphate-reducing bacteria can be responsible for aluminum removal, which probably precipitates as insoluble aluminium hydroxide. Phylogenetic analysis of 16S rRNA gene showed that this community was mainly composed by bacteria closely related to Desulfovibrio desulfuricans. However, bacteria affiliated to Proteus and Ralstonia were also present in the community.

  11. Bioavailability of pollutants in bacterial communities of Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil

    PubMed Central

    da Fonseca, E.M.; Neto, J.A. Baptista; McAlister, J.J.; Smith, B.J.; Crapez, M.A.C.

    2014-01-01

    Processes involving heavy metals and other contaminants continue to present unsolved environmental questions. To advance the understanding of geochemical processes that involve the bioavailability of contaminants, cores where collected in the Rodrigo de Freitas lagoon, and analyzed for bacterial activity and metal concentrations. Results would suggest an extremely reducing environment where organic substances seem to be the predominant agents responsible for this geochemical process. Analytical data showed sulphate reduction to be the main agent driving this process, since this kind of bacteria was found to be active in all of the samples analyzed. Esterase enzyme production did not signal the influence of heavy metals and hydrocarbon concentrations and heavy metals were found to be unavailable for biota. However, correlation between results for bacterial biomass and the potentially mobile percentage of the total Ni concentrations would suggest a negative impact. PMID:25477931

  12. Magnesium sulphate and other anticonvulsants for women with pre-eclampsia.

    PubMed

    Duley, Lelia; Gülmezoglu, A Metin; Henderson-Smart, David J; Chou, Doris

    2010-11-10

    Eclampsia, the occurrence of a seizure (fit) in association with pre-eclampsia, is rare but potentially life-threatening. Magnesium sulphate is the drug of choice for treating eclampsia. This review assesses its use for preventing eclampsia. To assess the effects of magnesium sulphate, and other anticonvulsants, for prevention of eclampsia. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (4 June 2010), and the Cochrane Central Register of Controlled Trials Register (The Cochrane Library 2010, Issue 3). Randomised trials comparing anticonvulsants with placebo or no anticonvulsant, or comparisons of different drugs, for pre-eclampsia. Two authors assessed trial quality and extracted data independently. We included 15 trials. Six (11,444 women) compared magnesium sulphate with placebo or no anticonvulsant: magnesium sulphate more than a halved the risk of eclampsia (risk ratio (RR) 0.41, 95% confidence interval (CI) 0.29 to 0.58; number needed to treat for an additional beneficial outcome (NNTB) 100, 95% CI 50 to 100), with a non-significant reduction in maternal death (RR 0.54, 95% CI 0.26 to 1.10) but no clear difference in serious maternal morbidity (RR 1.08, 95% CI 0.89 to 1.32). It reduced the risk of placental abruption (RR 0.64, 95% CI 0.50 to 0.83; NNTB 100, 95% CI 50 to 1000), and increased caesarean section (RR 1.05, 95% CI 1.01 to 1.10). There was no clear difference in stillbirth or neonatal death (RR 1.04, 95% CI 0.93 to 1.15). Side effects, primarily flushing, were more common with magnesium sulphate (24% versus 5%; RR 5.26, 95% CI 4.59 to 6.03; number need to treat for an additional harmful outcome (NNTH) 6, 95% CI 5 to 6).Follow-up was reported by one trial comparing magnesium sulphate with placebo: for 3375 women there was no clear difference in death (RR 1.79, 95% CI 0.71 to 4.53) or morbidity potentially related to pre-eclampsia (RR 0.84, 95% CI 0.55 to 1.26) (median follow-up 26 months); for 3283 children exposed in utero

  13. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system.

    PubMed

    Prasad, D; Henry, J G

    2009-02-01

    The focus of this study was to develop a simple biochemical system to treat acid mine drainage for its safe disposal. Recovery and reuse of the metals removed were not considered. A three-step process for the treatment of acid mine drainage (AMD), proposed earlier, separates sulphate reducing activity from metal precipitation units and from a pH control system. Following our earlier work on the first step (biological reactor), this paper examines the second step (i.e. chemical reactor). The objectives of this study were: (1) to determine the increase in pH and the reduction of iron in the chemical reactor for different proportions of simulated AMD, and (2) to assess the capability of the chemical reactor. A series of experiments was conducted to study the effects of addition of alkaline sulphidogenic liquor (ASL) derived from a batch sulphidogenic biological reactor (operating with activated sludge and a COD/SO4 ratio of 1.6) on the simulated AMD characteristics. At 60-minute contact time, addition of 30% ASL (pH of 7.60-7.76) to the chemical reactor with 70% AMD (pH of 1.65-2.02), increased the pH of the AMD to 6.57 and alkalinity from 0 to 485 mg l(-1) as CaCO3, respectively and precipitated about 97% of the iron present in the simulated AMD. Others have demonstrated that metals in mine drainage can be precipitated by bacterial sulphate reduction. In this study, iron, a common and major component of mine drainage was used as a surrogate for metals in general. The results indicate the feasibility of treating AMD by an engineered sulphidogenic anaerobic reactor followed by a chemical reactor and that our three-step biochemical process has important advantages over other conventional AMD treatment systems.

  14. [Heparan sulphates, amyloidosis and neurodegeneration].

    PubMed

    Vera, C; Alvarez-Orozco, J A; Maiza, A; Chantepie, S; Chehin, R N; Ouidja, M O; Papy-Garcia, D

    2017-11-16

    A number of neurodegenerative disorders have been linked directly to the accumulation of amyloid fibres. These fibres are made up of proteins or peptides with altered structures and which join together in vivo in association with heparan sulphate-type polysaccharides. To examine the most recent concepts in the biology of heparan sulphates and their role in the aggregation of the peptide Abeta, of tau protein, of alpha-synuclein and of prions. The study also seeks to analyse their implications in neurodegenerative disorders such as Alzheimer's and Parkinson's disease and prion diseases. In vitro, heparan sulphates have played an important role in the process of oligomerisation and fibrillation of amyloidogenic proteins or peptides, in the stabilisation of these bodies and their resistance to proteolysis, thereby participating in the formation of a wide range of amyloid fibres. Heparan sulphates have also been related to the internalisation of pro-amyloid fibres during the process of intercellular propagation (spreading), which is considered to be crucial in the development of proteinopathies, the best example of which is Alzheimer's disease. This study suggests that the fine structures of heparan sulphates, their localisation in cells and tissues, together with their local concentration, may regulate the amyloidosis processes. The advances made in the understanding of this area of glyconeurobiology will make it possible to improve the understanding of the cell and molecular mechanisms underlying the neurodegenerative process.

  15. Vibrational spectroscopic study of sulphated silk proteins

    NASA Astrophysics Data System (ADS)

    Monti, P.; Freddi, G.; Arosio, C.; Tsukada, M.; Arai, T.; Taddei, P.

    2007-05-01

    Degummed Bombyx mori ( B. m.) silk fibroin fabric and mutant naked pupa cocoons (Nd-s) consisting of almost pure silk sericin were treated with chlorosulphonic acid in pyridine and investigated by FT-IR and FT-Raman spectroscopies. Untreated silk fibroin and sericin displayed typical spectral features due to characteristic amino acid composition and molecular conformation (prevailing β-sheet with a less ordered structure in sericin). Upon sulphation, the degree of molecular disorder increased in both proteins and new bands appeared. The IR bands at 1049 and 1014 cm -1 were attributed to vibrations of sulphate salts and that at 1385 cm -1 to the νasSO 2 mode of organic covalent sulphates. In the 1300-1180 cm -1 range various contributions of alkyl and aryl sulphate salts, sulphonamides, sulphoamines and organic covalent sulphates, fell. Fibroin covalently bound sulphate groups through the hydroxyl groups of tyrosine and serine, while sericin through the hydroxyl groups of serine, since the δOH vibrations at 1399 cm -1 in IR and at 1408 cm -1 in Raman disappeared almost completely. Finally, the increase of the I850/ I830 intensity ratio of Raman tyrosine doublet in fibroin suggested a change towards a more exposed state of tyrosine residues, in good agreement with the more disordered conformation taken upon sulphation.

  16. Investigating a Sulphate-Nitrate Chemical Indirect Effect over Europe from 1980-2010

    NASA Astrophysics Data System (ADS)

    Pearce, H.; Mann, G. W.; Arnold, S.; O'Connor, F.; Conibear, L.; Turnock, S.; Rumbold, S.; Benduhn, F.

    2017-12-01

    Sulphur dioxide emission reductions have been successful in reducing surface sulphate concentrations over Europe between 1980 and 2010, with positive implications for air quality and human health. However the response of nitrate aerosol concentrations to declining NOx emissions has been non-linear. Previous studies have indicated that decreasing ammonium sulphate formation, as a result of SO2 emission reduction, may be partly responsible for this non-linearity by increasing the availability of ammonia and, hence, indirectly increasing ammonium nitrate aerosol formation. We use the UM-UKCA composition-climate model, including the GLOMAP interactive aerosol microphysics module and a recently developed `hybrid' dissolution solver (HyDis), to investigate the size-resolved partitioning of ammonia and nitric acid to the particle phase over Europe in the period 1980 to 2010. Anthropogenic emissions of SO2, NOx and NH3 are included from the MACCity inventory and change by approximately -79%, -33% and +30% respectively over Europe in this time. We evaluate the UM-UKCA simulated 1980-2010 variability in nitrate, ammonium and sulphate aerosol mass concentrations and aerosol pH, with comparison to EMEP observations, and isolate the indirect influence of reduced SO2 emissions on nitrate formation. Preliminary sensitivity tests indicate that simulated nitrate aerosol concentrations over Europe were 8% higher in 2009 than they would have been if SO2 emissions had not been reduced. The implications of this change for air quality, aerosol acidity and regional climate will be presented.

  17. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  18. Bacterial reduction of Cr(VI) at technical scale--the Malaysian experience.

    PubMed

    Zakaria, Zainul Akmar; Ahmad, Wan Azlina; Zakaria, Zainoha; Razali, Firdausi; Karim, Norsuhada Abdul; Sum, Mohamad Md; Sidek, Mohd Saufi Mohd

    2012-07-01

    The bacterial reduction of Cr(VI) from industrial wastewater was evaluated using a 2.0-m(3) bioreactor. Liquid pineapple waste was used as a nutrient for the biofilm community formed inside the bioreactor. The use of rubber wood sawdust as packing material was able to immobilize more than 10(6) CFU mL(-1) of Acinetobacter haemolyticus cells after 3 days of contact time. Complete reduction of 15-240 mg L(-1) of Cr(VI) was achieved even after 3 months of bioreactor operation. Cr(VI) was not detected in the final effluent fraction indicating complete removal of Cr from solution from the flocculation/coagulation step and the unlikely re-oxidation of Cr(III) into Cr(VI). Impatiens balsamina L. and Gomphrena globosa L. showed better growth in the presence of soil-sludge mixture compared to Coleus scutellarioides (L.) Benth. Significant amounts of Cr accumulated at different sections of the plants indicate its potential application in Cr phytoremediation effort. The bacterial-based system was also determined not to be detrimental to human health based on the low levels of Cr detected in the hair and nail samples of the plant operators. Thus, it can be said that bacterial-based Cr(VI) treatment system is a feasible alternative to the conventional system especially for lower Cr(VI) concentrations, where sludge generated can be used as growth supplement for ornamental plant as well as not detrimental to the health of the workers.

  19. Monitoring structural transformation of hydroxy-sulphate green rust in the presence of sulphate reducing bacteria

    NASA Astrophysics Data System (ADS)

    Abdelmoula, M.; Zegeye, A.; Jorand, F.; Carteret, C.

    2006-01-01

    The activities of bacterial consortia enable organisms to maximize their metabolic capabilities. This article assesses the synergetic relationship between iron reducing bacteria (IRB), Shewanella putrefaciens and sulphate reducing bacteria (SRB) Desulfovibrio alaskensis. Thus, the aim of this study was first to form a biogenic hydroxy-sulpahte green rust GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) through the bioreduction of lepidocrocite by S. putrefaciens and secondly to investigate if sulfate anions intercalated in the biogenic GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) could serve as final electron acceptor for a sulfate reducing bacterium, D. alaskensis. The results indicate that the IRB lead to the formation of GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) and this mineral serve as an electron acceptor for SRB. GR2( {text{SO}}_{{text{4}}} ^{{2 - }} ) precipitation and its transformation was demonstrated by using X-ray diffraction (DRX), Mössbauer spectroscopy (TMS) and transmission electron spectroscopy (TEM). These observations point out the possible acceleration of steel corrosion in marine environment in presence of IRB/SRB consortia.

  20. Biochemical properties of a keratan sulphate/chondroitin sulphate proteoglycan expressed in primate pluripotent stem cells*

    PubMed Central

    Cooper, Susan; Bennett, William; Andrade, Jessica; Reubinoff, Benjamin E; Thomson, James; Pera, Martin F

    2002-01-01

    We previously identified a pericellular matrix keratan sulphate/chondroitin sulphate proteoglycan present on the surface of human embryonal carcinoma stem cells, cells whose differentiation mimics early development. Antibodies reactive with various epitopes on this molecule define a cluster of differentiation markers for primate pluripotent stem cells. We describe the purification of a form of this molecule which is secreted or shed into the culture medium. Biochemical analysis of the secreted form of this molecule shows that the monomeric form, whilst containing keratan sulphate, resembles mucins in its structure and its modification with O-linked carbohydrate. Immunofluorescence and immunoblotting data show that monkey and human pluripotent stem cells react with antibodies directed against epitopes on either carbohydrate side chains or the protein core of the molecule. PMID:12033730

  1. Quantification of 19-nortestosterone sulphate and boldenone sulphate in urine from male horses using liquid chromatography/tandem mass spectrometry.

    PubMed

    Grace, Philip B; Drake, Erica C; Teale, Philip; Houghton, Edward

    2008-10-01

    Following administration of the anabolic steroid 19-nortestosterone or its esters to the horse, a major urinary metabolite is 19-nortestosterone-17beta-sulphate. The detection of 19-nortestosterone in urine from untreated animals has led to it being considered a naturally occurring steroid in the male horse. Recently, we have demonstrated that the majority of the 19-nortestosterone found in extracts of 'normal' urine from male horses arises as an artefact through decarboxylation of the 19-carboxylic acid of testosterone. The aim of this investigation was to establish if direct analysis of 19-nortestosterone-17beta-sulphate by liquid chromatography/tandem mass spectrometry (LC/MS/MS) had potential for the detection of 19-nortestosterone misuse in the male horse. The high concentrations of sulphate conjugates of the female sex hormones naturally present in male equine urine were overcome by selective hydrolysis of the aryl sulphates using glucuronidase from Helix pomatia; this was shown to have little or no activity for alkyl sulphates such as 19-nortestosterone-17beta-sulphate. The 'free' phenolic steroids were removed by solid-phase extraction (SPE) prior to LC/MS/MS analysis. The method also allowed for the quantification of the sulphate conjugate of boldenone, a further anabolic steroid endogenous in the male equine with potential for abuse in sports. The method was applied to the quantification of these analytes in a population of samples. This paper reports the results of that study along with the development and validation of the LC/MS/MS method. The results indicate that while 19-nortestosterone-17beta-sulphate is present at low levels as an endogenous substance in urine from 'normal' male horses, its use as an effective threshold substance may be viable.

  2. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.

    PubMed

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2006-09-28

    The physicochemical and aerodynamic properties of spray dried powders of the drug/drug mixture salbutamol sulphate/ipratropium bromide were investigated. The in vitro deposition properties of spray dried salbutamol sulphate and the spray dried drug/excipient mixtures salbutamol sulphate/lactose and salbutamol sulphate/PEG were also determined. Spray drying ipratropium bromide monohydrate resulted in a crystalline material from both aqueous and ethanolic solution. The product spray dried from aqueous solution consisted mainly of ipratropium bromide anhydrous. There was evidence of the presence of another polymorphic form of ipratropium bromide. When spray dried from ethanolic solution the physicochemical characterisation suggested the presence of an ipratropium bromide solvate with some anhydrous ipratropium bromide. Co-spray drying salbutamol sulphate with ipratropium bromide resulted in amorphous composites, regardless of solvent used. Particles were spherical and of a size suitable for inhalation. Twin impinger studies showed an increase in the fine particle fraction (FPF) of spray dried salbutamol sulphate compared to micronised salbutamol sulphate. Co-spray dried salbutamol sulphate:ipratropium bromide 10:1 and 5:1 systems also showed an increase in FPF compared to micronised salbutamol sulphate. Most co-spray dried salbutamol sulphate/excipient systems investigated demonstrated FPFs greater than that of micronised drug alone. The exceptions to this were systems containing PEG 4000 20% or PEG 20,000 40% both of which had FPFs not significantly different from micronised salbutamol sulphate. These two systems were crystalline unlike most of the other spray dried composites examined which were amorphous in nature.

  3. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat.

    PubMed

    Qaiser, M Zeeshan; Dolman, Diana E M; Begley, David J; Abbott, N Joan; Cazacu-Davidescu, Mihaela; Corol, Delia I; Fry, Jonathan P

    2017-09-01

    Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found 3 H-PregS to enter more rapidly than 3 H-DHEAS and both to undergo extensive (> 50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood-brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of 3 H-DHEAS and 3 H-PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the 3 H-steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17-hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood-brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory. © 2017 International Society for Neurochemistry.

  4. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea

    PubMed Central

    Ho, Leona T.Y.; Harris, Anthony M.; Tanioka, Hidetoshi; Yagi, Naoto; Kinoshita, Shigeru; Caterson, Bruce; Quantock, Andrew J.; Young, Robert D.; Meek, Keith M.

    2014-01-01

    This study investigated changes in collagen fibril architecture and the sulphation status of keratan sulphate (KS) glycosaminoglycan (GAG) epitopes from central to peripheral corneal regions. Freshly excised adult bovine corneal tissue was examined as a function of radial position from the centre of the cornea outwards. Corneal thickness, tissue hydration, hydroxyproline content, and the total amount of sulphated GAG were all measured. High and low-sulphated epitopes of keratan sulphate were studied by immunohistochemistry and quantified by ELISA. Chondroitin sulphate (CS) and dermatan sulphate (DS) distributions were observed by immunohistochemistry following specific enzyme digestions. Electron microscopy and X-ray fibre diffraction were used to ascertain collagen fibril architecture. The bovine cornea was 1021 ± 5.42 μm thick at its outer periphery, defined as 9–12 mm from the corneal centre, compared to 844 ± 8.10 μm at the centre. The outer periphery of the cornea was marginally, but not significantly, more hydrated than the centre (H = 4.3 vs. H = 3.7), and was more abundant in hydroxyproline (0.12 vs. 0.06 mg/mg dry weight of cornea). DMMB assays indicated no change in the total amount of sulphated GAG across the cornea. Immunohistochemistry revealed the presence of both high- and low-sulphated epitopes of KS, as well as DS, throughout the cornea, and CS only in the peripheral cornea before the limbus. Quantification by ELISA, disclosed that although both high- and low-sulphated KS remained constant throughout stromal depth at different radial positions, high-sulphated epitopes remained constant from the corneal centre to outer-periphery, whereas low-sulphated epitopes increased significantly. Both small angle X-ray diffraction and TEM analysis revealed that collagen fibril diameter remained relatively constant until the outer periphery was reached, after which fibrils became more widely spaced (from small angle x-ray diffraction analysis

  5. Magnesium sulphate attenuates arterial pressure increase during laparoscopic cholecystectomy.

    PubMed

    Jee, D; Lee, D; Yun, S; Lee, C

    2009-10-01

    Magnesium is well known to inhibit catecholamine release and attenuate vasopressin-stimulated vasoconstriction. We investigated whether i.v. magnesium sulphate attenuates the haemodynamic stress responses to pneumoperitoneum by changing neurohumoral responses during laparoscopic cholecystectomy. Thirty-two patients undergoing laparoscopic cholecystectomy were randomly assigned to two groups; a control group was given saline, and a magnesium group received magnesium sulphate 50 mg kg(-1) immediately before pneumoperitoneum. Arterial pressure, heart rate, serum magnesium, plasma renin activity (PRA), and catecholamine, cortisol, and vasopressin levels were measured. Systolic and diastolic arterial pressures were greater in the control group (P<0.05) than in the magnesium group at 10, 20, and 30 min post-pneumoperitoneum. Norepinephrine or epinephrine levels [pg ml(-1), mean (SD)] were higher in the control group than in the magnesium group at 5 [211 (37) vs 138 (18)] or 10 min [59 (19) vs 39 (9)] post-pneumoperitoneum, respectively (P<0.05). In the control group, vasopressin levels [pg ml(-1), mean (SD)] were higher compared with the magnesium group at 5 [64 (18) vs 35 (9), P<0.01] and 10 min [65 (18) vs 47 (11), P<0.05] post-pneumoperitoneum. There were no significant differences between the groups in PRA and cortisol levels. I.V. magnesium sulphate before pneumoperitoneum attenuates arterial pressure increases during laparoscopic cholecystectomy. This attenuation is apparently related to reductions in the release of catecholamine, vasopressin, or both.

  6. Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21.

    PubMed

    Guimarães, Damaris; Leão, Versiane A

    2014-09-15

    This paper investigated sulphate removal from aqueous solutions by Amberlyst A21, a polystyrene weak base ion exchange resin. Both the pH and initial sulphate concentration were observed to strongly affect sorption yields, which were largest in acidic environments. Working under optimum operational conditions, sulphate sorption by Amberlyst A21 was relatively fast and reached equilibrium after 45 min of contact between the solid and liquid phases. Sorption kinetics could be described by either the pseudo-first order (k1=3.05 × 10(-5)s(-1)) or pseudo-second order model (k2=1.67 × 10(-4)s(-1)), and both the Freundlich and Langmuir models successfully fitted the equilibrium data. Sulphate uptake by Amberlyst A21 was a physisorption process (ΔH=-25.06 kJ mol(-1)) that occurred with entropy reduction (ΔS=-0.042 kJ mol(-1)K(-1)). Elution experiments showed that sulphate is easily desorbed (∼ 100%) from the resin by sodium hydroxide solutions at pH 10 or pH 12. Fixed-bed experiments assessed the effects of the initial sulphate concentration, bed height and flow rate on the breakthrough curves and the efficiency of the Amberlyst A21 in the treatment of a real effluent. In all studied conditions, the maximum sulphate loading resin varied between 8 and 40 mg(SO4(2-))mL(resin)(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Sulphate release from construction and demolition material in soils

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Wessolek, Gerd

    2013-04-01

    In Berlin and many other cities soils are heavily influenced by anthropogenic activities and deposited substrates. A widespread technical substrate in technosols is construction and demolition material from residential and industrial buildings. Existing rubble landfills without sealing facilities pose threats to ground water quality. In the central city of Berlin rising sulphate concentrations of groundwaters (up to 1200 mg/L) are measured since more than two decades. Previous studies point out that the high sulphate concentrations are mainly attributed to World War II rubble. The major part of debris was deposited in form of landfills and contains approximately 0.3 wt% gypsum. The scope of our research is to determine mechanisms of sulphate release from debris material, interactions between sulphate release, soil hydraulic properties and potential sinks of sulphur. To estimate equilibrium concentration and kinetics of sulphate release of various debris components batch and column experiments are conducted. The same method is applied to determine potential adsorptive character of common debris components. To analyse the impacts of soil hydraulic properties on sulphate leaching we carry out soil column experiments with defined upper and lower boundary conditions, varying water flow velocity and induced preferential flow. Simultaneously we monitor sulphate concentration of soil leachate in a 2 m³ lysimeter. First results of the batch experiments show that gypsum from broken stucco is the main source of sulphate in the observed technosols. Other components as mortar and slag show a quite low sulphate release. Similar results are found within the column experiments. For brigs medium and strongly time dependent sulphate release is determined. Concentrations up to 1500 mg/L are measured in the soil leachate from the lysimeter.

  8. Centrifuge separation effect on bacterial indicator reduction in dairy manure.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy

    2017-04-15

    Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log 10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Immunosuppressant dose reduction and long-term rejection risk in renal transplant recipients with severe bacterial pneumonia.

    PubMed

    Shih, Chia-Jen; Tarng, Der-Cherng; Yang, Wu-Chang; Yang, Chih-Yu

    2014-07-01

    Due to lifelong immunosuppression, renal transplant recipients (RTRs) are at risk of infectious complications such as pneumonia. Severe pneumonia results in respiratory failure and is life‑threatening. We aimed to examine the influence of immunosuppressant dose reduction on RTRs with bacterial pneumonia and respiratory failure. From January 2001 to January 2011, 33 of 1,146 RTRs at a single centre developed bacterial pneumonia with respiratory failure. All patients were treated using mechanical ventilation and aggressive therapies in the intensive care unit. Average time from kidney transplantation to pneumonia with respiratory failure was 6.8 years. In-hospital mortality rate was 45.5% despite intensive care and aggressive therapies. Logistic regression analysis indicated that a high serum creatinine level at the time of admission to the intensive care unit (odds ratio 1.77 per mg/dL, 95% confidence interval 1.01-3.09; p = 0.045) was a mortality determinant. Out of the 33 patients, immunosuppressive agents were reduced in 17 (51.5%). We found that although immunosuppressant dose reduction tended to improve in-hospital mortality, this was not statistically significant. Nevertheless, during a mean follow-up period of two years, none of the survivors (n = 18) developed acute rejection or allograft necrosis. In RTRs with bacterial pneumonia and respiratory failure, higher serum creatinine levels were a mortality determinant. Although temporary immunosuppressant dose reduction might not reduce mortality, it was associated with a minimal risk of acute rejection during the two-year follow-up. Our results suggest that early immunosuppressant reduction in RTRs with severe pneumonia of indeterminate microbiology may be safe even when pathogens are bacterial in nature.

  10. Efficacy of sodium dodecyl sulphate and natural extracts against E. coli biofilm.

    PubMed

    Fink, Rok; Kulaš, Stefan; Oder, Martina

    2018-05-02

    The aim of this study was to determine and compare the efficacy of a standard cleaning agent, sodium dodecyl sulphate, and natural extracts from pomegranate peel grape skin and bay laurel leaf against E. coli biofilm. The biofilm was exposed for 10 minutes to three different concentrations of each tested compound. The results show that bay laurel leaf extract is the most efficient with 43% biofilm biomass reduction, followed by pomegranate peel extract (35%); sodium dodecyl sulphate and grape skin extract each have 30% efficacy. Our study demonstrated that natural extracts from selected plants have the same or even better efficacy against E. coli biofilm removal from surfaces than the tested classical cleaning agent do. All this indicates that natural plant extracts, which are acceptable from the health and environment points of view, can be potential substitutes for classical cleaning agents.

  11. Photodynamic therapy on bacterial reduction in dental caries: in vivo study

    NASA Astrophysics Data System (ADS)

    Baptista, Alessandra; Araujo Prates, Renato; Kato, Ilka Tiemy; Amaral, Marcello Magri; Zanardi de Freitas, Anderson; Simões Ribeiro, Martha

    2010-04-01

    The reduction of pathogenic microorganisms in supragingival plaque is one of the principal factors in caries prevention and control. A large number of microorganisms have been reported to be inactivated in vitro by photodynamic therapy (PDT). The purpose of this study was to develop a rat model to investigate the effects of PDT on bacterial reduction in induced dental caries. Twenty four rats were orally inoculated with Streptococcus mutans cells (ATCC 25175) for three consecutive days. The animals were fed with a cariogenic diet and water with 10% of sucrose ad libitum, during all experimental period. Caries lesion formation was confirmed by Optical Coherence Tomography (OCT) 5 days after the beginning of the experiment. Then, the animals were randomly divided into two groups: Control Group: twelve animals were untreated by either light or photosensitizer; and PDT Group: twelve animals were treated with 100μM of methylene blue for 5min and irradiated by a Light Emitting Diode (LED) at λ = 640+/-30nm, fluence of 172J/cm2, output power of 240mW, and exposure time of 3min. Microbiological samples were collected before, immediately after, 3, 7 and 10 days after treatment and the number of total microaerophiles was counted. OCT images showed areas of enamel demineralization on rat molars. Microbiological analysis showed a significant bacterial reduction after PDT. Furthermore, the number of total microaerophiles in PDT group remained lower than control group until 10 days posttreatment. These findings suggest that PDT could be an alternative approach to reduce bacteria in dental caries.

  12. Formation of Green Rust and Immobilization of Nickel in Response to Bacterial Reduction of Hydrous Ferric Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmar, N.; Gorby, Yuri A.; Beveridge, Terrance J.

    This investigation documents the formation of Green Rust (GR) and immobilization of Ni2+ in response to bacterial reduction of hydrous ferric oxide (HFO) reduction experiments provided evidence that the solid-phase partitioning of Ni2+ in GR extended from equilibrium solid-solution behavior.

  13. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons.

    PubMed

    Donnelly, A P; Herbert, R A

    1998-12-01

    Rooted phanerogam communities in the shallow intertidal and subtidal coastal zone represent productive and healthy ecosystems. Inorganic nutrients are assimilated into seagrass biomass. Much of the organic matter resulting from moribund seagrass is rapidly mineralized, principally by bacteria. The microbial community of the rhizosphere is also highly active due to the supply of organic matter released during photosynthesis. This active sediment community plays an important role through carbon, nitrogen and phosphorous cycling in maintaining the stability and productivity of seagrass meadows. Over the last two decades, however, seagrass meadows in European coastal areas have declined due to increasing pollution. As eutrophication advances a trasition occurs from rooted phanerogram dominated communities to planktonic algal blooms and/or cyanobacterial blooms. Such changes represent the decline of a stable, high biodiversity habitat to an unstable one dominated by a few species. These changes of community structure can occur rapidly once the internal nutrient and organic matter control cycles are exceeded. A field investigation was undertaken to establish the spatial distribution of bacterial populations of Zostera noltii colonized and uncolonized sediment in the Bassin d'Arcachon, France. Bacteria were enumerated using both plate count and MPN techniques for different functional groups as well as determining the total bacterial populations present. Nitrogen fixation, ammonification, sulphate reduction rates, as well as alkaline phosphatase activity were also determined. Colonization of the Z. noltii roots and rhizomes was studied by light and scanning electron microscopy. Results confirmed that higher bacterial populations were present in the rhizosphere of Z. noltii compared to uncolonized sediments. Furthermore, electron microscopy identified the rhizome as the main site of colonization for a diverse range of morphological groups of bacteria. Sulphate reducing

  14. Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany

    PubMed Central

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835

  15. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany.

    PubMed

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.

  16. Anthropogenic influence on the distribution of tropospheric sulphate aerosol

    NASA Astrophysics Data System (ADS)

    Langner, J.; Rodhe, H.; Crutzen, P. J.; Zimmermann, P.

    1992-10-01

    HUMAN activities have increased global emissions of sulphur gases by about a factor of three during the past century, leading to increased sulphate aerosol concentrations, mainly in the Northern Hemisphere. Sulphate aerosols can affect the climate directly, by increasing the backscattering of solar radiation in cloud-free air, and indirectly, by providing additional cloud condensation nuclei1-4. Here we use a global transport-chemistry model to estimate the changes in the distribution of tropospheric sulphate aerosol and deposition of non-seasalt sulphur that have occurred since pre-industrial times. The increase in sulphate aerosol concentration is small over the Southern Hemisphere oceans, but reaches a factor of 100 over northern Europe in winter. Our calculations indicate, however, that at most 6% of the anthropogenic sulphur emissions is available for the formation of new aerosol particles. This is because about one-half of the sulphur dioxide is deposited on the Earth's surface, and most of the remainder is oxidized in cloud droplets so that the sulphate becomes associated with pre-existing particles. Even so, the rate of formation of new sulphate particles may have doubled since pre-industrial times.

  17. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils.

    PubMed

    Watanabe, Toshihiro; Jansen, Steven; Osaki, Mitsuru

    2006-12-01

    Plants growing in acid sulphate soils are subject to high levels of Al availability, which may have effects on the growth and distribution of these species. Although Fe availability is also high in acid sulphate soils, little is known about the effect of Fe on the growth of native plants in these soils. Two species dominating this soil type in Asia, viz. Melastoma malabathricum and Miscanthus sinensis were grown hydroponically in a nutrient solution with different concentrations of Al and Fe. Melastoma malabathricum is found to be sensitive to Fe (40 and 100 microm). Application of 500 microm Al, however, completely ameliorates Fe toxicity and is associated with a decrease of Fe concentration in shoots and roots. The primary reason for the Al-induced growth enhancement of M. malabathricum is considered to be the Al-induced reduction of toxic Fe accumulation in roots and shoots. Therefore, Al is nearly essential for M. malabathricum when growing in acid sulphate soils. In contrast, application of both Fe and Al does not reduce the growth of M. sinensis, and Al application does not result in lower shoot concentrations of Fe, suggesting that this grass species has developed different mechanisms for adaptation to acid sulphate soils.

  18. Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions.

    PubMed

    Kumar, Smita; Asif, Mehar Hasan; Chakrabarty, Debasis; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar

    2011-06-01

    Sulphur, an essential nutrient required for plant growth and development, is mainly taken up by the plants as inorganic sulphate from the soil and assimilated into the sulphur reductive pathway. The uptake and transport of sulphate in plants is carried out by transporters encoded by the sulphate transporter gene family. Plant sulphate transporters have been classified with respect to their protein sequences, kinetic properties and tissue-specific localization in Arabidopsis. Though sulphate transporter genes from few other plants have also been characterized, no detailed study with respect to the structure and expression of this family from rice has been carried out. Here, we present genome-wide identification, structural and expression analyses of the rice sulphate transporter gene family. Our analysis using microarray data and MPSS database suggests that 14 rice sulphate transporters are differentially expressed during growth and development in various tissues and during biotic and abiotic stresses. Our analysis also suggests differential accumulation of splice variants of OsSultr1;1 and OsSultr4;1 transcripts during these processes. Apart from known spliced variants, we report an unusual alternative splicing of OsSultr1;1 transcript related to sulphur supply in growth medium and during stress response. Taken together, our study suggests that differential expression and alternative splicing of members of the sulphate transporter family plays an important role in regulating cellular sulphur status required for growth and development and during stress conditions. These findings significantly advance our understanding of the posttranscriptional regulatory mechanisms operating to regulate sulphur demand by the plant.

  19. Reinvestigation of growth of 'L-valine zinc sulphate' crystal.

    PubMed

    Srinivasan, Bikshandarkoil R; Jyai, Rita N

    2014-01-01

    A reinvestigation of the growth of l-valine zinc sulphate crystal is reported. The slow evaporation of an aqueous solution containing l-valine and zinc sulphate heptahydrate results in the fractional crystallization of l-valine and not the organic inorganic hybrid nonlinear optical l-valine zinc sulphate crystal, as reported by Puhal Raj and Ramachandra Raja (2012). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Magnesium sulphate for preventing preterm birth in threatened preterm labour.

    PubMed

    Crowther, Caroline A; Brown, Julie; McKinlay, Christopher J D; Middleton, Philippa

    2014-08-15

    Magnesium sulphate has been used in some settings as a tocolytic agent to inhibit uterine activity in women in preterm labour with the aim of preventing preterm birth. To assess the effects of magnesium sulphate therapy given to women in threatened preterm labour with the aim of preventing preterm birth and its sequelae. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (last searched 31 January 2014). Randomised controlled trials of magnesium sulphate as the only tocolytic, administered by any route, compared with either placebo, no treatment or alternative tocolytic therapy (not magnesium sulphate) to women considered to be in preterm labour. At least two review authors assessed trial eligibility and risk of bias and undertook data extraction independently. The 37 included trials (total of 3571 women and over 3600 babies) were generally of moderate to high risk of bias. Antenatal magnesium sulphate was compared with either placebo, no treatment, or a range of alternative tocolytic agents.For the primary outcome of giving birth within 48 hours after trial entry, no significant differences were seen between women who received magnesium sulphate and women who did not (whether placebo/no alternative tocolytic drug, betamimetics, calcium channel blockers, cox inhibitors, prostaglandin inhibitors, or human chorionic gonadotropin) (19 trials, 1913 women). Similarly for the primary outcome of serious infant outcome, there were no significant differences between the infants exposed to magnesium sulphate and those not (whether placebo/no alternative tocolytic drug, betamimetics, calcium channel blockers, cox inhibitors, prostaglandin inhibitors, human chorionic gonadotropin or various tocolytic drugs) (18 trials; 2187 babies). No trials reported the outcome of extremely preterm birth. In the seven trials that reported serious maternal outcomes, no events were recorded.In the group treated with magnesium sulphate compared with women receiving

  1. Placental sulphate transport: a review of functional and molecular studies.

    PubMed

    Shennan, D B

    2012-08-01

    Sulphate is required by the feto-placental unit for a number of important conjugation and biosynthetic pathways. Functional studies performed several decades ago established that sulphate transport in human placental microvillus and basal membrane vesicles was mainly via a DIDS-sensitive anion-exchange mechanism. In contrast, no evidence was found for Na⁺-dependent transport. Studies performed using isolated human placental tissue confirmed anion-exchange as the main mechanism. More recently, molecular studies have established the presence of anion-exchange proteins which could play a role in transplacental sulphate movement. However, the presence of transcripts for NaS2 has been reported and has prompted the suggestion that Na⁺-sulphate cotransport may play an important role in maternal-fetal sulphate transport. This article reviews our present knowledge of placental sulphate transport, both functional and molecular, and attempts to form a model based on the available evidence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effects of agmatine sulphate on facial nerve injuries.

    PubMed

    Surmelioglu, O; Sencar, L; Ozdemir, S; Tarkan, O; Dagkiran, M; Surmelioglu, N; Tuncer, U; Polat, S

    2017-03-01

    To evaluate the effect of agmatine sulphate on facial nerve regeneration after facial nerve injury using electron and light microscopy. The study was performed on 30 male Wistar albino rats split into: a control group, a sham-treated group, a study control group, an anastomosis group, and an anastomosis plus agmatine sulphate treatment group. The mandibular branch of the facial nerve was dissected, and a piece was removed for histological and electron microscopic examination. Regeneration was better in the anastomosis group than in the study control group. However, the best regeneration findings were seen in the agmatine sulphate treatment group. There was a significant difference between the agmatine group and the others in terms of median axon numbers (p < 0.004) and diameters (p < 0.004). Agmatine sulphate treatment with anastomosis in traumatic facial paralysis may enhance nerve regeneration.

  3. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis

    PubMed Central

    Yamamoto, Akihiro; Liu, Ming-Yih; Kurogi, Katsuhisa; Sakakibara, Yoichi; Saeki, Yuichi; Suiko, Masahito; Liu, Ming-Cheh

    2015-01-01

    Sulphation is known to be critically involved in the metabolism of acetaminophen in vivo. This study aimed to systematically identify the major human cytosolic sulfotransferase (SULT) enzyme(s) responsible for the sulphation of acetaminophen. A systematic analysis showed that three of the twelve human SULTs, SULT1A1, SULT1A3 and SULT1C4, displayed the strongest sulphating activity towards acetaminophen. The pH dependence of the sulphation of acetaminophen by each of these three SULTs was examined. Kinetic parameters of these three SULTs in catalysing acetaminophen sulphation were determined. Moreover, sulphation of acetaminophen was shown to occur in HepG2 human hepatoma cells and Caco-2 human intestinal epithelial cells under the metabolic setting. Of the four human organ samples tested, liver and intestine cytosols displayed considerably higher acetaminophen-sulphating activity than those of lung and kidney. Collectively, these results provided useful information concerning the biochemical basis underlying the metabolism of acetaminophen in vivo previously reported. PMID:26067475

  4. Use of hydraulic binders for reducing sulphate leaching: application to gypsiferous soil sampled in Ile-de-France region (France).

    PubMed

    Trincal, Vincent; Thiéry, Vincent; Mamindy-Pajany, Yannick; Hillier, Stephen

    2018-06-01

    Polluted soils are a serious environmental risk worldwide and consist of millions of tons of mineral waste to be treated. In order to ensure their sustainable management, various remediation options must be considered. Hydraulic binder treatment is one option that may allow a stabilisation of pollution and thus offer a valorisation as secondary raw materials rather than considering them as waste. In this study, we focused on sulphate-polluted soil and tested the effectiveness of several experimental hydraulic binders. The aim was to transform gypsum into ettringite, a much less soluble sulphate, and therefore to restrict the potential for sulphate pollutant release. The environmental assessment of five formulations using hydraulic binders was compared to the gypsiferous soil before treatment (contaminated in sulphate). The approach was to combine leaching tests with mineralogical quantifications using among others thermogravimetric and XRD methods. In the original soil and in the five formulations, leaching tests indicate sulphate release above environmental standards. However, hydraulic binders promote ettringite formation, as well as a gypsum content reduction as observed by SEM. The stabilisation of sulphates is, however, insufficient, probably as a result of the very high content of gypsum in the unusual soil used. The mineralogical reactions highlighted during the hydration of hydraulic binders are promising; they could pave the way for the development of new industrial mixtures that would have a positive environmental impact by allowing reuse of soils that would otherwise be classified as waste.

  5. Enhancement of indirect sulphation of limestone by steam addition.

    PubMed

    Stewart, Michael C; Manovic, Vasilije; Anthony, Edward J; Macchi, Arturo

    2010-11-15

    The effect of water (H₂O(g)) on in situ SO₂ capture using limestone injection under (FBC) conditions was studied using a thermobalance and tube furnace. The indirect sulphation reaction was found to be greatly enhanced in the presence of H₂O(g). Stoichiometric conversion of samples occurred when sulphated with a synthetic flue gas containing 15% H₂O(g) in under 10 h, which is equivalent to a 45% increase in conversion as compared to sulphation without H₂O(g). Using gas pycnometry and nitrogen adsorption methods, it was shown that limestone samples sulphated in the presence of H₂O(g) undergo increased particle densification without any significant changes to pore area or volume. The microstructural changes and observed increase in conversion were attributed to enhanced solid-state diffusion in CaO/CaSO₄ in the presence of H₂O(g). Given steam has been shown to have such a strong influence on sulphation, whereas it had been previously regarded as inert, may prompt a revisiting of the classically accepted sulphation models and phenomena. These findings also suggest that steam injection may be used to enhance sulfur capture performance in fluidized beds firing low-moisture fuels such as petroleum coke.

  6. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    NASA Astrophysics Data System (ADS)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  7. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    PubMed Central

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-01-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated. PMID:27941918

  8. R software package based statistical optimization of process components to simultaneously enhance the bacterial growth, laccase production and textile dye decolorization with cytotoxicity study

    PubMed Central

    Dudhagara, Pravin; Tank, Shantilal

    2018-01-01

    The thermophilic bacterium, Bacillus licheniformis U1 is used for the optimization of bacterial growth (R1), laccase production (R2) and synthetic disperse blue DBR textile dye decolorization (R3) in the present study. Preliminary optimization has been performed by one variable at time (OVAT) approach using four media components viz., dye concentration, copper sulphate concentration, pH, and inoculum size. Based on OVAT result further statistical optimization of R1, R2 and R3 performed by Box–Behnken design (BBD) using response surface methodology (RSM) in R software with R Commander package. The total 29 experimental runs conducted in the experimental design study towards the construction of a quadratic model. The model indicated that dye concentration 110 ppm, copper sulphate 0.2 mM, pH 7.5 and inoculum size 6% v/v were found to be optimum to maximize the laccase production and bacterial growth. Whereas, maximum dye decolorization achieved in media containing dye concentration 110 ppm, copper sulphate 0.6 mM, pH 6 and inoculum size 6% v/v. R package predicted R2 of R1, R2 and R3 were 0.9917, 0.9831 and 0.9703 respectively; likened to Design-Expert (Stat-Ease) (DOE) predicted R2 of R1, R2, and R3 were 0.9893, 0.9822 and 0.8442 respectively. The values obtained by R software were more precise, reliable and reproducible, compared to the DOE model. The laccase production was 1.80 fold increased, and 2.24 fold enhancement in dye decolorization was achieved using optimized medium than initial experiments. Moreover, the laccase-treated sample demonstrated the less cytotoxic effect on L132 and MCF-7 cell lines compared to untreated sample using MTT assay. Higher cell viability and lower cytotoxicity observed in a laccase-treated sample suggest the impending application of bacterial laccase in the reduction of toxicity of dye to design rapid biodegradation process. PMID:29718934

  9. Sulphate transport by H+ symport and by the dicarboxylate carrier in mitochondria.

    PubMed Central

    Saris, N E

    1980-01-01

    1. Swelling of mitochondria was induced in non-respiring mitochondria by 30 mM or more Na2SO4 or by respiration in the presence of K2SO4. Respiration-drive swelling resulted in loss of respiratory control. Sulphate, when present at 10 mM concentration, promoted the release of accumulated Ca2+. 2. Swelling was prevented by N-ethylmaleimide and formaldehyde, known inhibitors of the phosphate carrier. Sulphate-induced swelling was more sensitive to the inhibitors than was phosphate-induced swelling. At lower concentration of sulphate, 5 mM, an alkalinisation of the medium was observed in addition of sulphate, indicating H+-sulphate symport. There was competition between sulphate and phosphate for transport by this mechanism. It is suggested that sulphate may be transported, though at a comparatively slow rate, by the phosphate carrier. 3. Uptake of sulphate was stimulated when preceded by energy-dependent accumulation of Ba2+, especially when acetate was also present, indicating precipitation of BaSO4 in the matrix. Using this system the influx of sulphate was studied at lower concentrations, 10 mM or less. the contributions of the H+ symporter (sensitive to N-ethylmaleimide) and the dicarboxylate carrier (sensitive to butylmalonate) could then be studied. The dicarboxylate carrier had a lower Km and was mainly responsible for sulphate transport at lower concentration range. At 10 mM-sulphate the transport rates by the two systems appeared to be similar; at still higher concentrations the H+ symporter may become more important. PMID:7236245

  10. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Marcos Y.; Holler, Thomas; Goldhammer, Tobias; Wegener, Gunter; Pohlman, John W.; Brunner, Benjamin; Kuypers, Marcel M. M.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2014-03-01

    Collectively, marine sediments comprise the largest reservoir of methane on Earth. The flux of methane from the sea bed to the overlying water column is mitigated by the sulphate-dependent anaerobic oxidation of methane by marine microbes within a discrete sedimentary horizon termed the sulphate-methane transition zone. According to conventional isotope systematics, the biological consumption of methane leaves a residue of methane enriched in 13C (refs , , ). However, in many instances the methane within sulphate-methane transition zones is depleted in 13C, consistent with the production of methane, and interpreted as evidence for the intertwined anaerobic oxidation and production of methane. Here, we report results from experiments in which we incubated cultures of microbial methane consumers with methane and low levels of sulphate, and monitored the stable isotope composition of the methane and dissolved inorganic carbon pools over time. Residual methane became progressively enriched in 13C at sulphate concentrations above 0.5 mM, and progressively depleted in 13C below this threshold. We attribute the shift to 13C depletion during the anaerobic oxidation of methane at low sulphate concentrations to the microbially mediated carbon isotope equilibration between methane and carbon dioxide. We suggest that this isotopic effect could help to explain the 13C-depletion of methane in subseafloor sulphate-methane transition zones.

  11. Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments

    USGS Publications Warehouse

    Dowdle, P.R.; Laverman, A.M.; Oremland, R.S.

    1996-01-01

    Incubation of anoxic salt marsh sediment slurries with 10 mM As(V) resulted in the disappearance over time of the As(V) in conjunction with its recovery as As(III). No As(V) reduction to As(III) occurred in heat- sterilized or formalin-killed controls or in live sediments incubated in air. The rate of As(V) reduction in slurries was enhanced by addition of the electron donor lactate, H2, or glucose, whereas the respiratory inhibitor/uncoupler dinitrophenol, rotenone, or 2-heptyl-4-hydroxyquinoline N-oxide blocked As(V) reduction. As(V) reduction was also inhibited by tungstate but not by molybdate, sulfate, or phosphate. Nitrate inhibited As(V) reduction by its action as a preferred respiratory electron acceptor rather than as a structural analog of As(V). Nitrate-respiring sediments could reduce As(V) to As(III) once all the nitrate was removed. Chloramphenicol blocked the reduction of As(V) to As(III) in nitrate- respiring sediments, suggesting that nitrate and arsenate were reduced by separate enzyme systems. Oxidation of [2-14C]acetate to 14CO2 by salt marsh and freshwater sediments was coupled to As(V). Collectively, these results show that reduction of As(V) in sediments proceeds by a dissimilatory process. Bacterial sulfate reduction was completely inhibited by As(V) as well as by As(III).

  12. Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters.

    PubMed

    Colleran, E; Pender, S

    2002-01-01

    The effect of sulphate at an influent chemical oxygen demand (COD):sulphate ratio of 4 on the operational performance of anaerobic hybrid reactors treating molasses wastewater was investigated under mesophilic and thermophilic conditions in a long-term laboratory-scale study over a 1,081 day period. The presence of sulphate reduced the COD removal efficiency under both mesophilic and thermophilic conditions. At 55 degrees C, effluent acetate levels were consistently greater than 4000 mg l(-1) indicating that thermophilic acetate-utilising methane-producing bacteria (MPB) or sulphate-reducing bacteria (SRB) had not developed in the reactor under the conditions applied. At 37 degrees C, acetate was exclusively utilised by acetoclastic methanogens, whereas H2-utilising SRB predominated over H2-utilising MPB in the competition for hydrogen. By contrast, hydrogenotrophic MPB were shown to outcompete H2-utilising SRB during long-term thermophilic operation. 16SrDNA analysis of the seed sludge and reactor biomass on conclusion of the 37 degrees C and 55 degrees C trials illustrated that the dominant methanogen present on conclusion of the thermophilic trial in the absence of influent sulphate was related to Methanocorpusculum parvuum, and was capable of growth on both acetate and hydrogen. By contrast, an organism closely related to Methanobacterium thermoautotrophicum was the dominant methanogen present in the sulphate-fed reactor on completion of the thermophilic trial.

  13. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.

    PubMed

    Pujol-Vila, F; Vigués, N; Guerrero-Navarro, A; Jiménez, S; Gómez, D; Fernández, M; Bori, J; Vallès, B; Riva, M C; Muñoz-Berbel, X; Mas, J

    2016-03-03

    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox(®), rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation

  14. A novel three-stage bioreactor for the effective detoxification of sodium dodecyl sulphate from wastewater.

    PubMed

    Ambily, P S; Rebello, Sharrel; Jayachandran, K; Jisha, M S

    2017-10-01

    Anionic surfactants like sodium dodecyl sulphate (SDS), due to its extensive disposal to water bodies cause detrimental effects to the ecosystem. Among the various attempts to reduce the after effects of these toxicants, microbial induced bioremediation serves as a promising strategy. The current study aimed to develop a three stage bioreactor to remediate anionic surfactants in wastewater using effective bacterial isolates. Screening of effective SDS biodegraders led to isolation of Pseudomonas aeruginosa (MTCC 10311). Treatment of synthetic effluent with an immobilized packed bed reactor at a flow rate of 5 mL h -1 resulted in 81 ± 2% SDS eliminations and 70 ± 1% reduction in chemical oxygen demand (COD) in five cycles (6 h per cycle). The hydraulic retention time of the reactor was found to be 6 h. Combinatorial usage of a three stage bioreactor, involving aeration, adsorption with low cost scrap rubber granules and treatment with immobilized Pseudomonas aeruginosa, successfully reduced SDS concentrations and COD of wastewater to 99.8 ± 0.1% and 99 ± 1%, respectively, in 18 h by continuous treatment. Half-life of the three stage bioreactor was 72 h. In addition to reducing the surfactant concentrations, this novel bioreactor could resolve the surfactant associated foaming problems in treatment plants, which make it more unique.

  15. Natural and induced reduction of hexavalent chromium in soil

    NASA Astrophysics Data System (ADS)

    Leita, Liviana; Margon, Alja; Sinicco, Tania; Mondini, Claudio; Valentini, Massimiliano; Cantone, Pierpaolo

    2013-04-01

    Even though naturally elevated levels of chromium can be found naturally in some soils, distressing amounts of the hexavalent form (CrVI) are largely restricted to sites contaminated by anthropogenic activities. In fact, the widespread use of chromium in various industries and the frequently associated inadequate disposal of its by-products and wastes have created serious environmental pollution problems in many parts of the world. CrVI is toxic to plants, animals and humans and exhibits also mutagenic effects. However, being a strong oxidant, CrVI can be readily reduced to the much less harmful trivalent form (CrIII) when suitable electron donors are present in the environment. CrIII is relatively insoluble, less available for biological uptake, and thus definitely less toxic for web-biota. Various electron donors in soil can be involved in CrVI reduction in soil. The efficiency of CrVI reducing abiotic agents such as ferrous iron and sulphur compounds is well documented. Furthermore, CrVI reduction is also known to be significantly enhanced by a wide variety of cell-produced monosaccharides, including glucose. In this study we evaluated the dynamics of hexavalent chromium (CrVI) reduction in contaminated soil amended or not with iron sulphate or/and glucose and assessed the effects of CrVI on native or glucose-induced soil microbial biomass size and activity. CrVI negatively affected both soil microbial activity and the size of the microbial biomass. During the incubation period, the concentration of CrVI in soil decreased over time whether iron sulphate or/and glucose was added or not, but with different reduction rates. Soil therefore displayed a natural attenuation capacity towards chromate reduction. Addition of iron sulphate or/and glucose, however, increased the reduction rate by both abiotic and biotic mechanisms. Our data suggest that glucose is likely to have exerted an indirect role in the increased rate of CrVI reduction by promoting growth of

  16. Molecular and phenetic characterization of the bacterial assemblage of Hot Lake, WA, an environment with high concentrations of magnesium sulphate, and its relevance to Mars

    NASA Astrophysics Data System (ADS)

    Kilmer, Brian R.; Eberl, Timothy C.; Cunderla, Brent; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2014-01-01

    Hot Lake (Oroville, WA) is an athalassohaline epsomite lake that can have precipitating concentrations of MgSO4 salts, mainly epsomite. Little biotic study has been done on epsomite lakes and it was unclear whether microbes isolated from epsomite lakes and their margins would fall within recognized halotolerant genera, common soil genera or novel phyla. Our initial study cultivated and characterized epsotolerant bacteria from the lake and its margins. Approximately 100 aerobic heterotrophic microbial isolates were obtained by repetitive streak-plating in high-salt media including either 10% NaCl or 2 M MgSO4. The collected isolates were all bacteria, nearly evenly divided between Gram-positive and Gram-negative clades, the most abundant genera being Halomonas, Idiomarina, Marinobacter, Marinococcus, Nesterenkonia, Nocardiopsis and Planococcus. Bacillus, Corynebacterium, Exiguobacterium, Kocuria and Staphylococcus also were cultured. This initial study included culture-independent community analysis of direct DNA extracts of lake margin soil using PCR-based clone libraries and 16S rRNA gene phylogeny. Clones assigned to Gram-positive bacterial clades (70% of total clones) were dominated by sequences related to uncultured actinobacteria. There were abundant Deltaproteobacteria clones related to bacterial sulphur metabolisms and clones of Legionella and Coxiella. These epsomite lake microbial communities seem to be divided between bacteria primarily associated with hyperhaline environments rich in NaCl and salinotolerant relatives of common soil organisms. Archaea appear to be in low abundance and none were isolated, despite near-saturated salinities. Growth of microbes at very high concentrations of magnesium and other sulphates has relevance to planetary protection and life-detection missions to Mars, where scant liquid water may form as deliquescent brines and appear as eutectic liquids.

  17. Unintended consequences of atmospheric injection of sulphate aerosols.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and formore » that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to

  18. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.

    PubMed

    Matias, Pedro M; Pereira, Inês A C; Soares, Cláudio M; Carrondo, Maria Arménia

    2005-11-01

    Sulphate-reducing organisms are widespread in anaerobic enviroments, including the gastrointestinal tract of man and other animals. The study of these bacteria has attracted much attention over the years, due also to the fact that they can have important implications in industry (in biocorrosion and souring of oil and gas deposits), health (in inflamatory bowel diseases) and the environment (bioremediation). The characterization of the various components of the electron transport chain associated with the hydrogen metabolism in Desulfovibrio has generated a large and comprehensive list of studies. This review summarizes the more relevant aspects of the current information available on the structural data of various molecules associated with hydrogen metabolism, namely hydrogenases and cytochromes. The transmembrane redox complexes known to date are also described and discussed. Redox-Bohr and cooperativity effects, observed in a few cytochromes, and believed to be important for their functional role, are discussed. Kinetic studies performed with these redox proteins, showing clues to their functional inter-relationship, are also addressed. These provide the groundwork for the application of a variety of molecular modelling approaches to understanding electron transfer and protein interactions among redox partners, leading to the characterization of several transient periplasmic complexes. In contrast to the detailed understanding of the periplasmic hydrogen oxidation process, very little is known about the cytoplasmic side of the respiratory electron transfer chain, in terms of molecular components (with exception of the terminal reductases), their structure and the protein-protein interactions involved in sulphate reduction. Therefore, a thorough understanding of the sulphate respiratory chain in Desulfovibrio remains a challenging task.

  19. Bacterial and Fungal Counts of Dried and Semi-Dried Foods Collected from Dhaka, Bangladesh, and Their Reduction Methods.

    PubMed

    Feroz, Farahnaaz; Shimizu, Hiromi; Nishioka, Terumi; Mori, Miho; Sakagami, Yoshikazu

    2016-01-01

     Food is a basic necessity for human survival, but it is still the vehicle for the transmission of food borne disease. Various studies have examined the roles of spices, herbs, nuts, and semi-dried fruits, making the need for safe and convenient methods of decontamination a necessity. The current study determined the bacterial and fungal loads of 26 spices and herbs, 5 nuts, 10 semi-dried fruits and 5 other foods. Spices, herbs and semi-dried foods demonstrated the highest bacterial and fungal loads with the majority showing over 10 4 CFU/mL. Nuts and other foods showed growths ranging from 10 2 to 10 6 CFU/mL. The current study also attempted to determine the effects of heat and plasma treatment. The log reduction of bacterial growth after heat treatment (maximum: 120 min for 60℃) was between 0.08 to 4.47, and the log reduction after plasma treatment (maximum: 40 min) ranged from 2.37 to 5.75. Spices showed the lowest rates of reduction, whereas the semi-dried and other foods showed moderate to high levels of decrease after heat treatment. The log reduction of fungal growth after heat treatment ranged from 0.27 to 4.40, and log reduction after plasma treatment ranged from 2.15 to 5.91.Furthermore, we validated the sterilization effect of plasma treatment against Bacillus spp. and Staphylococcus spp. by using scanning electron microscopy. Both treatment methods could prove to be advantageous in the agriculture related fields, enhancing the quality of the foods.

  20. New tools for carbohydrate sulphation analysis: Heparan Sulphate 2- O -sulphotransferase (HS2ST) is a target for small molecule protein kinase inhibitors.

    PubMed

    Byrne, Dominic P; Li, Yong; Ramakrishnan, Krithika; Barsukov, Igor L; Yates, Edwin A; Eyers, Claire E; Papy-Garcia, Dulcé; Chantepie, Sandrine; Pagadala, Vijayakanth; Lu, Jian; Wells, Carrow; Drewry, David H; Zuercher, William J; Berry, Neil G; Fernig, David G; Eyers, Patrick A

    2018-06-22

    Sulphation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulphate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulphotransferases, including heparan sulphate 2- O -sulphotransferase (HS2ST), which transfers sulphate from the co-factor PAPS (3'-phosphoadenosine 5'-phosphosulphate) to the 2- O  position of a-L-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulphation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors.  In this paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalyzed oligosaccharide sulphation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set (PKIS), to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell permeable compounds in vitro , including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with this article, we demonstrate that Tyrosyl Protein Sulpho Tranferases (TPSTs) are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulphation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST. ©2018 The Author(s).

  1. The degradation of intravenously injected chondroitin 4-sulphate in the rat

    PubMed Central

    Wood, Keith M.; Wusteman, Frederick S.; Curtis, C. Gerald

    1973-01-01

    The degradation of chondroitin 4-[35S]sulphate isolated from chick-embryo cartilage was studied in the rat by experiments on free-range animals, on wholly anaesthetized animals with ureter cannulae, by perfusion of isolated liver, by whole-body radioautography and by isolation of liver lysosomes. After injection into rats 68% of the radioactivity was recovered in the urine after 24h, approximately one-half of this being in the form of low-molecular-weight material, chiefly inorganic sulphate. Cannulation experiments demonstrated that the proportion of low-molecular-weight components excreted in the urine increased with time until, after 12h, virtually all was inorganic sulphate. Whole-body radioautography identified the liver as the major site of radioisotope accumulation after injection of labelled polysaccharide. Perfusion through isolated liver indicated that this organ has the ability to metabolize the polymer with the release of low-molecular-weight products, principally inorganic sulphate. Incubation of a lysosomal fraction prepared from rat liver after injection of chondroitin 4-[35S]sulphate gave rise to degradation products of low molecular weight, and experiments in vitro with rat liver lysosomes confirmed that these organelles are capable of the entire degradative process from chondroitin sulphate to free inorganic sulphate. ImagesPLATE 1 PMID:4762749

  2. Deep aquifer as driver for mineral authigenesis in Gulf of Alaska sediments (IODP Expedition 341, Site U1417)

    NASA Astrophysics Data System (ADS)

    Zindorf, Mark; März, Christian; Wagner, Thomas; Strauss, Harald; Gulick, Sean P. S.; Jaeger, John M.; LeVay, Leah J.

    2016-04-01

    Bacterial sulphate reduction plays a key role in authigenic mineral formation in marine sediments. Usually, decomposition of organic matter follows a sequence of microbial metabolic pathways, where microbial sulphate reduction leads to sulphate depletion deeper in the sediment. When sulphate is consumed completely from the pore waters, methanogenesis commences. The contact of sulphate- and methane-containing pore waters is a well-defined biogeochemical boundary (the sulphate-methane transition zone, SMTZ). Here authigenic pyrite, barite and carbonates form. Pyrite formation is directly driven by bacterial sulphate reduction since pyrite precipitates from produced hydrogen sulphide. Barite and carbonate formation are secondary effects resulting from changes of the chemical milieu due to microbial activity. However, this mineral authigenesis is ultimately linked to abiotic processes that determine the living conditions for microorganisms. At IODP Site U1417 in the Gulf of Alaska, a remarkable diagenetic pattern has been observed: Between sulphate depletion and methane enrichment, a ~250 m wide gap exists. Consequently, no SMTZ can be found under present conditions, but enrichments of pyrite indicate that such zones have existed in the past. Solid layers consisting of authigenic carbonate-cemented sand were partly recovered right above the methane production zone, likely preventing continued upward methane diffusion. At the bottom of the sediment succession, the lower boundary of the methanogenic zone is constrained by sulphate-rich pore waters that appear to originate from a deeper source. Here, a well-established SMTZ exists, but in reversed order (sulphate diffusing up, methane diffusing down). Sulphur isotopes of pyrite reveal that sulphate reduction here does not occur under closed system conditions. This indicates that a deep aquifer is actively recharging the deep sulphate pool. Similar deep SMTZs have been found at other sites, yet mostly in geologically

  3. Stable isotopic evidence for anaerobic maintained sulphate discharge in a polythermal glacier

    NASA Astrophysics Data System (ADS)

    Ansari, A. H.

    2016-03-01

    To understand the sources and sinks of sulphate and associated biogeochemical processes in a High Arctic environment, late winter snowpacks, the summer melt-waters and rock samples were collected and analysed for major ions and stable isotope tracers (δ18O, δ34S). The SO42bar/Clbar ratio reveal that more than 87% of sulphate (frequently > 95%) of total sulphate carried by the subglacial runoff and proglacial streams was derived from non-snowpack sources. The proximity of non-snowpack sulphate δ34S (∼8-19‰) to the δ34S of the major rocks in the vicinity (∼-6 to +18‰) suggest that the non-snowpack sulphate was principally derived from rock weathering. Furthermore, Ca2++Mg2+/SO42ˉ molar shows that sulphate acquisition in the meltwaters was controlled by two major processes: 1) coupled-sulphide carbonate weathering (molar ratio ∼ 2) and, 2) re-dissolution of secondary salts (molar ratio ∼ 1). The δ34S-SO4 = +19.4‰ > δ34S-S of rock, accompanied by increased sulphate concentration also indicates an input from re-dissolution of secondary salts. Overall, δ18O composition of these non-snowpack sulphate (-11.9 to -2.2‰) mostly stayed below the threshold δ18O value (-6.7 to -3.3‰) for minimum O2 condition, suggesting that certain proportion of sulphate was regularly supplied from anaerobic sulphide oxidation.

  4. Magnesium sulphate for treatment of tetanus in adults.

    PubMed

    Mathew, P J; Samra, T; Wig, J

    2010-01-01

    There are reports that suggest that magnesium sulphate alone may control muscle spasms thereby avoiding sedation and mechanical ventilation in tetanus, but this has not been confirmed. We examined the efficacy and safety of intravenous magnesium sulphate for control of rigidity and spasms in adults with tetanus. A prospective clinical study of intravenous magnesium sulphate was carried out over a period of two years in a tertiary care teaching hospital. In addition to human tetanus immunoglobulin and parenteral antibiotics, patients with tetanus received magnesium sulphate 70 mg/kg intravenously followed by infusion. The infusion was increased by 0.5 g/hour every six hours until cessation of spasms or abolishment of patellar tendon jerk. The primary outcome measure was efficacy determined by control of spasms. Secondary outcomes included frequency of autonomic instability, duration of ventilatory support, hospital stay and mortality. Thirty-three patients were enrolled. At presentation, the incidence of severity of tetanus was as follows: Grade I: 5 (15%), Grade II: 13 (39%), Grade III: 14 (42%) and Grade IV: 1 (3%). Rigidity and mild spasms were controlled with magnesium therapy alone in six patients; all were Grades I or II. Additional sedatives were required in severe forms of tetanus. The average duration of ventilatory support was 18.3 +/- 16.0 days and the overall mortality was 22.9%. Asymptomatic hypocalcaemia was a universal finding. Magnesium sulphate therapy alone may not be efficacious for the treatment of severe tetanus.

  5. Thermometric titration of sulphate.

    PubMed

    Williams, M B; Janata, J

    1970-06-01

    Direct thermometric titration of sulphate with a solution of barium perchlorate is proposed. The stoichiometry of the titration is shown to be critically dependent on the concentration of ethanol in the titration medium. The titration is rapid and suffers from only a few interferences.

  6. The ecology and biotechnology of sulphate-reducing bacteria.

    PubMed

    Muyzer, Gerard; Stams, Alfons J M

    2008-06-01

    Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.

  7. Intravesical Glycosaminoglycan Replacement with Chondroitin Sulphate (Gepan(®) instill) in Patients with Chronic Radiotherapy- or Chemotherapy-Associated Cystitis.

    PubMed

    Schwalenberg, Thilo; Berger, Frank Peter; Horn, Lars Christian; Thi, Phuc Ho; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2015-08-01

    Intravesical instillation of glycosaminoglycans is a promising option for the treatment of chronic cystitis, as it supports the regeneration of the damaged urothelial layer. We investigated the efficacy of short-term intravesical chondroitin sulphate treatment (six courses of instillation) in patients with chronic radiotherapy- or chemotherapy-associated cystitis. This prospective, observational study included patients with chronic radiotherapy- or chemotherapy-associated cystitis, who received six once-weekly intravesical instillations of 0.2% chondroitin sulphate 40 mL. Every week, patients recorded their symptoms and their benefits and tolerance of treatment, using a self-completed questionnaire. The study included 16 patients (mean age 68.5 years; 50% male). During the study, a reduction in all evaluated parameters was observed. After one dose of chondroitin sulphate, symptom improvement was observed in 38% of patients, and after the second dose, an additional 31% of patients showed improvement. At week 6, 80% of patients had either improved or were symptom free, and significant improvements in urinary urgency (p = 0.0082), pollakisuria (p = 0.0022), urge frequency (p = 0.0033) and lower abdominal pain (p = 0.0449) were observed. Haematuria, present in 9 of the 16 patients at baseline, was completely resolved in all cases after 6 weeks. The majority of patients (93%) evaluated the tolerance of chondroitin sulphate as 'good' or 'very good'. No treatment-related adverse events were reported. Intravesical administration of chondroitin sulphate was effective for the treatment of radiotherapy- or chemotherapy-associated cystitis. Even short-term treatment appears to be effective in reducing symptoms and improving the quality of life of patients.

  8. Prevention of thaumasite formation in concrete exposed to sulphate attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellmann, F.; Stark, J.

    2007-08-15

    Thermodynamic calculations were performed to investigate at which sulphate ion concentration hardened concrete can be damaged by the formation of thaumasite. It is indicated that thaumasite can be formed from C-S-H phases and portlandite at very low sulphate concentrations in an aggressive solution. Higher sulphate ion concentrations are required in the absence of portlandite. Still higher sulphate ion concentrations are needed if C-S-H phases with a low calcium/silicon ratio are consumed. Therefore, it is suggested that the formation of thaumasite at low and moderate sulphate concentrations in the attacking solution can be avoided by lowering the calcium/silicon ratio in themore » C-S-H phases. This can be achieved by the addition of pozzolanic and latently hydraulic admixtures. During the reaction of these materials, portlandite is consumed and the calcium/silicon ratio of the C-S-H phases is lowered. The aforementioned concept was confirmed by studies published in the literature and also by experimental investigations reported in this paper.« less

  9. Detecting sulphate aerosol geoengineering with different methods

    DOE PAGES

    Lo, Y. T. Eunice; Charlton-Perez, Andrew J.; Lott, Fraser C.; ...

    2016-12-15

    Sulphate aerosol injection has been widely discussed as a possible way to engineer future climate. Monitoring it would require detecting its effects amidst internal variability and in the presence of other external forcings. Here, we investigate how the use of different detection methods and filtering techniques affects the detectability of sulphate aerosol geoengineering in annual-mean global-mean near-surface air temperature. This is done by assuming a future scenario that injects 5 Tg yr -1 of sulphur dioxide into the stratosphere and cross-comparing simulations from 5 climate models. 64% of the studied comparisons would require 25 years or more for detection whenmore » no filter and the multi-variate method that has been extensively used for attributing climate change are used, while 66% of the same comparisons would require fewer than 10 years for detection using a trend-based filter. This then highlights the high sensitivity of sulphate aerosol geoengineering detectability to the choice of filter. With the same trend-based filter but a non-stationary method, 80% of the comparisons would require fewer than 10 years for detection. This does not imply sulphate aerosol geoengineering should be deployed, but suggests that both detection methods could be used for monitoring geoengineering in global, annual mean temperature should it be needed.« less

  10. Folic acid improve developmental toxicity induced by aluminum sulphates.

    PubMed

    Yassa, Heba A; George, Safaa M; Mohamed, Heba K

    2017-03-01

    Aluminum sulphate has a significant toxic effects for humans. Aluminum is one of the most abundant metal on the Earth crust. The purpose of this study is to evaluate the effects of short term exposure to aluminum sulphate on the bone development of the fetuses in rats, and if folic acid has a protective role upon that effects or not. Forty female rats were used, ten per group, GI served as negative control (receive nothing except normal feeding and water), GII served as positive control (receive water by gastric gavage), GIII treated with aluminum sulphate orally by gastric gavage and GIV treated with aluminum sulphate with folic acid. Mating occurred and known by presence of vaginal plug in the female rats. Rats were killed on day 18 of gestation. The female rats weight were significantly reduced in the treated group if compared with the control group (p>0.001), all parameters of the fetuses, fetal weight, malformation and the crown rump length reduced significantly p value were <0.000, <0.001, and <0.000 respectively. In histopathological results the aluminum treated group showed severe limited area of preossfication in fetuses vertebrae. Folic acid gave a protective role for all the hazardous effects of aluminum sulphate and prove the diameters measured and also the histopathological effects. Aluminum sulphate can produce hazardous effects on bone of the fetuses, which may affect the life style of these fetuses later on. Folic acid might give a protective role and so should be given to females who tried to conceive. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bacterial reduction and dentin microhardness after treatment by a pulsed fiber optic delivered Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Goodis, Harold E.; White, Joel M.; Marshall, Sally J.; Marshall, Grayson W.

    1994-09-01

    The purpose of this study was to determine the microhardness and extent of bacterial reduction of contaminated dentin following pulsed fiber optic delivered Nd:YAG laser exposure. Knoop hardness was determined before and after laser exposures from 0.3 to 3.0 W and repetition rates of 10 to 30 Hz. Half the sections were covered with an organic black pigment before laser exposure to evaluate the use of the pigment as an initiator to increase laser absorbance on the surface. Repeated measures design was employed to determine the microhardness of cut and polished dentin sections. Additional dentin sections were sterilized by gamma irradiation and then inoculated with B. subtilis, E. coli or B. stearothermophilus. The contaminated sections were exposed to contact delivered Nd:YAG laser. Cultures were obtained from the dentin surfaces and the colony forming units counted. Increased microhardness was found for all laser treatments above the physical modification. Bacterial reduction was obtained but complete sterilization was not.

  12. Intralesional bleomycin and sodium tetradecyl sulphate for haemangiomas and lymphangiomas.

    PubMed

    Harjai, Man Mohan; Jha, Manvendu

    2012-01-01

    To compare the efficacy of intralesional bleomycin and sodium tetradecyl sulphate in treatment of haemangiomas and lymphangiomas. Between July 2007 and May 2009, 120 patients, sixty each of peripheral haemangiomas and lymphangiomas, were administered intralesional injection of bleomycin in a dose of 0.5-1 U/kg in children less than one year of age and 1 to 15 units in children more than one year of age and 1 to 3 ml of 2% sodium tetradecyl sulphate, depending on the size of the lesion at intervals of 14 days. Patients more than 20 years of age and those with diffuse or visceral lesions were excluded from the study. Complete resolution occurred in 16 patients (53%) of haemangiomas and 14 patients (47%) of lymphangiomas treated with bleomycin, while the results were 12 patients (40%) and 10 patients (33%), respectively, in sodium tetradecyl sulphate group. The satisfactory resolution (resolution more than 50%) occurred in eight patients (27%) of haemangiomas and lymphangiomas groups treated with bleomycin, while the results were six patients (20%) and eight patients (27%), respectively, in sodium tetradecyl sulphate group. Poor response rate was observed in six patients (20%) of haemangiomas and eight patients (27%) of lymphangiomas of bleomycin group and 12 patients (40%) of haemangiomas and lymphangiomas in sodium tetradecyl sulphate group. No pulmonary fibrosis or other serious side effects were found. Intralesional bleomycin and sodium tetradecyl sulphate are effective sclerosants in peripheral haemangiomas and lymphangiomas, but bleomycin was found to be more efficacious.

  13. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    PubMed

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Combined strong anion-exchange HPLC and PAGE approach for the purification of heparan sulphate oligosaccharides.

    PubMed

    Vivès, R R; Goodger, S; Pye, D A

    2001-02-15

    Heparan sulphates are highly sulphated linear polysaccharides involved in many cellular functions. Their biological properties stem from their ability to interact with a wide range of proteins. An increasing number of studies, using heparan sulphate-derived oligosaccharides, suggest that specific structural features within the polysaccharide are responsible for ligand recognition and regulation. In the present study, we show that strong anion-exchange HPLC alone, a commonly used technique for purification of heparan sulphate-derived oligosaccharides, may not permit the isolation of highly pure heparan sulphate oligosaccharide species. This was determined by PAGE analysis of hexa-, octa- and decasaccharide samples deemed to be pure by strong anion-exchange HPLC. In addition, subtle differences in the positioning of sulphate groups within heparan sulphate hexasaccharides were impossible to detect by strong anion-exchange HPLC. PAGE analysis on the other hand afforded excellent resolution of these structural isomers. The precise positioning of specific sulphate groups has been implicated in determining the specificity of heparan sulphate interactions and biological activities; hence, the purification of oligosaccharide species that differ in this way becomes an important issue. In this study, we have used strong anion-exchange HPLC and PAGE techniques to allow production of the homogeneous heparan sulphate oligosaccharide species that will be required for the detailed study of structure/activity relationships.

  15. Abnormal Excretion of Corticosteroid Sulphates in Patients with Breast Cancer

    PubMed Central

    Ghosh, P. C.; Lockwood, E.; Pennington, G. W.

    1973-01-01

    In a preliminary study, the 24-hour urinary excretion of corticosteroid sulphates and free cortisol have been measured in a group of patients with breast cancer and compared with the excretion of the same compounds in a group of normal women of similar age. Excretion of corticosteroid sulphates in the breast cancer group was found to be markedly raised. In a small number of patients with localized cancer of sites other than the breast the level of corticosteroid sulphate was not raised. If proved metastases were present a noticeable rise was observed. Imagesp330-a PMID:4685623

  16. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  17. Effect of DSS on Bacterial Growth in Gastrointestinal Tract.

    PubMed

    Hlinková, J; Svobodová, H; Brachtlová, T; Gardlík, R

    2016-01-01

    Inflammatory bowel disease is an idiopathic autoimmune disorder that is mainly divided into ulcerative colitis and Crohn's disease. Probiotics are known for their beneficial effect and used as a treatment option in different gastrointestinal problems. The aim of our study was to find suitable bacterial vectors for gene therapy of inflammatory bowel disease. Salmonella enterica serovar Typhimurium SL7207 and Escherichia coli Nissle 1917 were investigated as potential vectors. Our results show that the growth of Escherichia coli Nissle 1917 was inhibited in the majority of samples collected from dextran sodium sulphate-treated animals compared with control growth in phosphate-buffered saline. The growth of Salmonella enterica serovar Typhimurium SL7207 in all investigated samples was enhanced or unaffected in comparison with phosphate-buffered saline; however, it did not reach the growth rates of Escherichia coli Nissle 1917. Dextran sodium sulphate treatment had a stimulating effect on the growth of both strains in homogenates of distant small intestine and proximal colon samples. The gastrointestinal tract contents and tissue homogenates did not inhibit growth of Salmonella enterica serovar Typhimurium SL7207 in comparison with the negative control, and provided more suitable environment for growth compared to Escherichia coli Nissle 1917. We therefore conclude that Salmonella enterica serovar Typhimurium SL7207 is a more suitable candidate for a potential bacterial vector, even though it has no known probiotic properties.

  18. Corrosion Performance of Inconel 625 in High Sulphate Content

    NASA Astrophysics Data System (ADS)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  19. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  20. The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim.

    PubMed Central

    Newgreen, D. T.; Bray, K. M.; McHarg, A. D.; Weston, A. H.; Duty, S.; Brown, B. S.; Kay, P. B.; Edwards, G.; Longmore, J.; Southerton, J. S.

    1990-01-01

    1. The actions of diazoxide and minoxidil sulphate have been compared with those of cromakalim in rat aorta and portal vein. 2. Diazoxide and minoxidil sulphate hyperpolarized the rat portal vein in a similar manner to cromakalim. 3. Cromakalim, diazoxide and minoxidil sulphate increased 42K and 86Rb efflux from rat portal vein, although minoxidil sulphate had only a small effect on 86Rb efflux. 4. Cromakalim, diazoxide and minoxidil sulphate increased 42K efflux from rat aorta but only cromakalim and diazoxide increased 86Rb efflux from this tissue. 5. Glibenclamide inhibited the relaxant actions of cromakalim, diazoxide and minoxidil sulphate on rat aorta and the increase in 42K efflux produced by these agents in this tissue. 6. Diazoxide relaxed an 80 mM KCl-induced contraction of rat aorta, whilst cromakalim and minoxidil sulphate were without effect. 7. Cromakalim, diazoxide and minoxidil sulphate had no effect on cyclic AMP or cyclic GMP concentrations in rat aorta. 8. It is concluded that diazoxide and minoxidil sulphate like cromakalim exhibit K+ channel opening properties in vascular smooth muscle. Diazoxide exerts an additional inhibitory action not related to the production of cyclic AMP or cyclic GMP. The action of minoxidil sulphate may be primarily located at a K+ channel which is relatively impermeable to 86Rb. PMID:2167738

  1. Synthesis and characterization of oxyanion (phosphate, sulphate) doped Ba{sub 2}Sc{sub 2-y}Ga{sub y}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.D.; Shin, J.F.; Slater, P.R., E-mail: p.r.slater@bham.ac.uk

    2013-02-15

    In this paper we examine the effect of partial substitution of Ga for Sc in the oxyanion (phosphate, sulphate) containing perovskites, Ba{sub 2}Sc{sub 2-x}P{sub x}O{sub 5+x} and Ba{sub 2}Sc{sub 2-x}S{sub x}O{sub 5+3x/2} with the samples analysed through a combination of X-ray diffraction, TGA, Raman spectroscopy and conductivity measurements. The results demonstrate that in both cases, Ga can be incorporated in place of Sc up to 40%. In order to accommodate the increasing Ga content, a reduction in the oxyanion content is required. Thus for the highest Ga content sample achieved, only 10% oxyanion incorporation was achieved giving endmember compositions ofmore » Ba{sub 2}ScGa{sub 0.8}P{sub 0.2}O{sub 5.2} and Ba{sub 2}ScGa{sub 0.8}S{sub 0.2}O{sub 5.3} for phosphate and sulphate doping respectively. While the Ga doping was shown to significantly improve the stability of the systems towards CO{sub 2} containing atmospheres, conductivity measurements showed a reduction in the conductivity with increasing Ga content. - Graphical abstract: Phosphate and sulphate doped Ba{sub 2}Sc{sub 2-x}Ga{sub x}O{sub 5} perovskites have been successfully prepared, with the highest conductivities observed for samples with the lowest Ga content. Highlights: Black-Right-Pointing-Pointer The successful synthesis of phosphate and sulphate doped Ba{sub 2}Sc{sub 2-x}Ga{sub x}O{sub 5} perovskites. Black-Right-Pointing-Pointer The demonstration of significant oxide ion and proton conduction in these perovskites. Black-Right-Pointing-Pointer The demonstration of improved CO{sub 2} stability with increasing Ga content.« less

  2. Selection of Clostridium spp. in biological sand filters neutralizing synthetic acid mine drainage.

    PubMed

    Ramond, Jean-Baptiste; Welz, Pamela J; Le Roes-Hill, Marilize; Tuffin, Marla I; Burton, Stephanie G; Cowan, Don A

    2014-03-01

    In this study, three biological sand filter (BSF) were contaminated with a synthetic iron- [1500 mg L⁻¹ Fe(II), 500 mg L⁻¹ Fe(III)] and sulphate-rich (6000 mg L⁻¹ SO₄²⁻) acid mine drainage (AMD) (pH = 2), for 24 days, to assess the remediation capacity and the evolution of autochthonous bacterial communities (monitored by T-RFLP and 16S rRNA gene clone libraries). To stimulate BSF bioremediation involving sulphate-reducing bacteria, a readily degradable carbon source (glucose, 8000 mg L⁻¹) was incorporated into the influent AMD. Complete neutralization and average removal efficiencies of 81.5 (±5.6)%, 95.8 (±1.2)% and 32.8 (±14.0)% for Fe(II), Fe(III) and sulphate were observed, respectively. Our results suggest that microbial iron reduction and sulphate reduction associated with iron precipitation were the main processes contributing to AMD neutralization. The effect of AMD on BSF sediment bacterial communities was highly reproducible. There was a decrease in diversity, and notably a single dominant operational taxonomic unit (OTU), closely related to Clostridium beijerinckii, which represented up to 65% of the total community at the end of the study period. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Neisseria meningitidis Opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells.

    PubMed

    Sa E Cunha, Claudia; Griffiths, Natalie J; Virji, Mumtaz

    2010-05-20

    The host vasculature is believed to constitute the principal route of dissemination of Neisseria meningitidis (Nm) throughout the body, resulting in septicaemia and meningitis in susceptible humans. In vitro, the Nm outer membrane protein Opc can enhance cellular entry and exit, utilising serum factors to anchor to endothelial integrins; but the mechanisms of binding to serum factors are poorly characterised. This study demonstrates that Nm Opc expressed in acapsulate as well as capsulate bacteria can increase human brain endothelial cell line (HBMEC) adhesion and entry by first binding to serum vitronectin and, to a lesser extent, fibronectin. This study also demonstrates that Opc binds preferentially to the activated form of human vitronectin, but not to native vitronectin unless the latter is treated to relax its closed conformation. The direct binding of vitronectin occurs at its Connecting Region (CR) requiring sulphated tyrosines Y(56) and Y(59). Accordingly, Opc/vitronectin interaction could be inhibited with a conformation-dependent monoclonal antibody 8E6 that targets the sulphotyrosines, and with synthetic sulphated (but not phosphorylated or unmodified) peptides spanning the vitronectin residues 43-68. Most importantly, the 26-mer sulphated peptide bearing the cell-binding domain (45)RGD(47) was sufficient for efficient meningococcal invasion of HBMECs. To our knowledge, this is the first study describing the binding of a bacterial adhesin to sulphated tyrosines of the host receptor. Our data also show that a single region of Opc is likely to interact with the sulphated regions of both vitronectin and of heparin. As such, in the absence of heparin, Opc-expressing Nm interact directly at the CR but when precoated with heparin, they bind via heparin to the heparin-binding domain of the activated vitronectin, although with a lower affinity than at the CR. Such redundancy suggests the importance of Opc/vitronectin interaction in meningococcal pathogenesis

  4. Preparation and Physiological activities of sulphated derivative extracted from corn bran

    NASA Astrophysics Data System (ADS)

    Mo, Qing; Dai, Linghao; Ma, Jianjun; Zhao, Xiaojing; Zhu, Linghui

    2017-05-01

    In the present study, the sulphated derivative (S-CBP) with the degree of substitution (0.46) was successfully prepared from the polysaccharide extracted from corn bran. Compared with native polysaccharide, the structures of the sulphated derivative were confirmed by FT-IR and SEC-LLS and the molecular weight were changed by chemical modification. Sulfation enhanced the antioxidant activities in a dose-dependent way, which seemed to be dependent on the character of the substituted group. The results suggest that the sulphated derivative, extracted from corn bran, are potential natural antioxidant and blood fat reduce agent.

  5. Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer

    PubMed Central

    2010-01-01

    Background Bacteria possess a reservoir of metabolic functionalities ready to be exploited for multiple purposes. The use of microorganisms to clean up xenobiotics from polluted ecosystems (e.g. soil and water) represents an eco-sustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring and identification of bacteria and catabolic genes involved in the degradation of xenobiotics, key processes to follow up the activities in situ. Results We report the characterization of the response of an enriched bacterial community of a 1,2-dichloroethane (1,2-DCA) contaminated aquifer to the spiking with 5 mM lactate as electron donor in microcosm studies. After 15 days of incubation, the microbial community structure was analyzed. The bacterial 16S rRNA gene clone library showed that the most represented phylogenetic group within the consortium was affiliated with the phylum Firmicutes. Among them, known degraders of chlorinated compounds were identified. A reductive dehalogenase genes clone library showed that the community held four phylogenetically-distinct catalytic enzymes, all conserving signature residues previously shown to be linked to 1,2-DCA dehalogenation. Conclusions The overall data indicate that the enriched bacterial consortium shares the metabolic functionality between different members of the microbial community and is characterized by a high functional redundancy. These are fundamental features for the maintenance of the community's functionality, especially under stress conditions and suggest the feasibility of a bioremediation treatment with a potential prompt dehalogenation and a process stability over time. PMID:20170484

  6. Isobolographic analysis of the interaction between cadmium (II) and sodium sulphate: toxicological consequences.

    PubMed

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2016-02-01

    Sulphate is an essential nutrient for autotrophic organisms and has been shown to have important implications in certain processes of tolerance to cadmium toxicity. Sodium sulphate is the main salt of sulphate in the natural environments. The concentration of this salt is increasing in the aquatic environments due to environmental pollution. The aim of this study was to investigate, using an analysis of isobolograms, the type and the degree of the interaction between Cd(II) and sodium sulphate in the freshwater microalga Chlamydomonas moewusii. Two blocks of experiments were performed, one at sub-optimal sodium sulphate concentrations (<14.2 mg/L) and the other at supra-optimal concentrations (>14.2 mg/L). Three fixed ratios (2:1, 1:1, and 1:2) of the individual EC50 for cadmium and sodium sulphate were used within each block. The isobolographic analysis of interaction at sub-optimal concentrations showed a stronger antagonistic effect with values of interaction index (γ) between 1.46 and 3.4. However, the isobologram with sodium sulphate at supra-optimal concentrations revealed a slight but significant synergistic effect between both chemicals with an interaction index between 0.54 and 0.64. This synergic effect resulted in the potentiation of the toxic effects of cadmium, synergy that was related to the increase of the ionic strength and of two species of cadmium, CdSO4 (aq), and Cd(SO4)2(2-) , in the medium. Results of the current study suggest that sodium sulphate is able to perform a dual antagonist/synergist effect on cadmium toxicity. This role was concentration dependent.

  7. Antimicrobial activity of flavanoid sulphates and other fractions of Argyreia speciosa (Burm.f) Boj.

    PubMed

    Habbu, P V; Mahadevan, K M; Shastry, R A; Manjunatha, H

    2009-02-01

    Antimicrobial activity of flavanoid sulphates and different fractions of A. speciosa root was studied against bacteria, fungi and Mycobacterium tuberculosis H37 Rv sensitive strain by in vitro and in vivo assays. Flavanoid sulphates such as quercetin 3'7 di-O methyl 3- sulphate and kaempferol 7-O methyl 3-sulphate were isolated from the n-butanol fraction of 80% methanolic extract of the plant. The structures of the isolated flavanoids were confirmed by spectral studies. Ethyl acetate (EAAS) fraction and flavanoid sulphates inhibited the growth of M. tuberculosis Rv sensitive strain at MIC values 50 and 25 microg/ml, respectively. Ethanolic fraction (EtAS) showed significant inhibition of gram positive organism with a MIC of 31.25 microg/ml. More inhibition was observed with a less MIC (2 microg/ml) for flavanoid sulphates against Klebsiella pneumoniae, a gram negative organism and it is almost comparable with the standards. Interestingly, chloroform fraction alone exhibited significant antifungal activity with a MIC of 100 microg/ml. A synergistic effect between flavanoids sulphates and commercially available antitubercular drugs was observed with FIC index of 0.443 +/- 0.245, 0.487 +/- 0.247 for isoniazid and 0.468 +/- 0.333, 0.417 +/- 0.345 for rifampicin, whereas EAAS fraction showed partial synergistic effect. A synergistic effect was observed for EAAS fraction and flavanoids sulphates with FIC index < 0.5 with antibiotics. Hemolysis assay on RBCs suggested that EAAS and flavanoids sulphates exhibited least cellular toxicity to erythrocytes as compared to chloramphenicol. In vivo studies in mice infected with K. pneumoniae demonstrated that on day 10 post treatment of different fractions and isolated compounds of A. speciosa, about 60% of the animals treated with EAAS, 70% of animals treated with flavanoids sulphates and 40% of animals treated with EtAS were survived.

  8. The Effect of Sulphate Anions on the Ultrafine Titania Nucleation

    NASA Astrophysics Data System (ADS)

    Kotsyubynsky, Volodymyr O.; Myronyuk, Ivan F.; Chelyadyn, Volodymyr L.; Hrubiak, Andriy B.; Moklyak, Volodymyr V.; Fedorchenko, Sofia V.

    2017-05-01

    The phenomenological model of sulphate anions effect on the nanodispersed titania synthesis during hydrolysis of titanium tetrachloride was studied. It was proposed that both chelating and bridging bidentate complexes formation between sulphate anions and octahedrally coordinated [Ti(OH)h(OH2)6-h](4-h)+ mononers is the determinative factor for anatase phase nucleation.

  9. Microbial evolution of sulphate reduction when lateral gene transfer is geographically restricted.

    PubMed

    Chi Fru, E

    2011-07-01

    Lateral gene transfer (LGT) is an important mechanism by which micro-organisms acquire new functions. This process has been suggested to be central to prokaryotic evolution in various environments. However, the influence of geographical constraints on the evolution of laterally acquired genes in microbial metabolic evolution is not yet well understood. In this study, the influence of geographical isolation on the evolution of laterally acquired dissimilatory sulphite reductase (dsr) gene sequences in the sulphate-reducing micro-organisms (SRM) was investigated. Sequences on four continental blocks related to SRM known to have received dsr by LGT were analysed using standard phylogenetic and multidimensional statistical methods. Sequences related to lineages with large genetic diversity correlated positively with habitat divergence. Those affiliated to Thermodesulfobacterium indicated strong biogeographical delineation; hydrothermal-vent sequences clustered independently from hot-spring sequences. Some of the hydrothermal-vent and hot-spring sequences suggested to have been acquired from a common ancestral source may have diverged upon isolation within distinct habitats. In contrast, analysis of some Desulfotomaculum sequences indicated they could have been transferred from different ancestral sources but converged upon isolation within the same niche. These results hint that, after lateral acquisition of dsr genes, barriers to gene flow probably play a strong role in their subsequent evolution.

  10. Carbonate replacement of lacustrine gypsum deposits in two Neogene continental basins, eastern Spain

    NASA Astrophysics Data System (ADS)

    Anadón, P.; Rosell, L.; Talbot, M. R.

    1992-07-01

    Bedded nonmarine gypsum deposits in the Miocene Teruel and Cabriel basins, eastern Spain, are partly replaced by carbonate. The Libros gypsum (Teruel Graben) is associated with fossiliferous carbonate wackestones and finely laminated, organic matter-rich mudstones which accumulated under anoxic conditions in a meromictic, permanent lake. The gypsum is locally pseudomorphed by aragonite or, less commonly, replaced by calcite. Low δ 13C values indicate that sulphate replacement resulted from bacterial sulphate reduction processes that were favoured by anacrobic conditions and abundant labile organic matter in the sediments. Petrographic evidence and oxygen isotopic composition suggest that gypsum replacement by aragonite occurred soon after deposition. A subsequent return to oxidising conditions caused some aragonite to be replaced by diagenetic gypsum. Native sulphur is associated with some of these secondary gypsum occurrences. The Los Ruices sulphate deposits (Cabriel Basin) contain beds of clastic and selenitic gypsum which are associated with limestones and red beds indicating accumulation in a shallow lake. Calcite is the principal replacement mineral. Bacterial sulphate reduction was insignificant in this basin because of a scarcity of organic matter. Stable isotope composition of diagenetic carbonate indicates that gypsum replacement occurred at shallow burial depths due to contact with dilute groundwaters of meteoric origin. Depositional environment evidently has a major influence upon the diagenetic history of primary sulphate deposits. The quantity of preserved organic matter degradable by sulphate-reducing bacteria is of particular importance and, along with groundwater composition, is the main factor controlling the mechanism of gypsum replacement by carbonate.

  11. Stability of ceftiofur sodium and cefquinome sulphate in intravenous solutions.

    PubMed

    Dołhań, Agnieszka; Jelińska, Anna; Bębenek, Marcelina

    2014-01-01

    Stability of ceftiofur sodium and cefquinome sulphate in intravenous solutions was studied. Chromatographic separation and quantitative determination were performed by using a high-performance liquid chromatography with UV-DAD detection. During the stability study, poly(vinylchloride) minibags were filled with a solution containing 5 mg of ceftiofur sodium or cefquinome sulphate and diluted to 0.2 mg/mL with suitable intravenous solution depending on the test conditions. The solutions for the study were protected from light and stored at room temperature (22°C), refrigerated (6°C), frozen (-20°C) for 30 days, and then thawed at room temperature. A comparison of results obtained at 22°C and 6°C for the same intravenous solutions showed that temperature as well as components of solutions and their concentration had an influence on the stability of ceftiofur sodium and cefquinome sulphate. It was found that ceftiofur sodium and cefquinome sulphate dissolved in intravenous solutions used in this study may be stored at room temperature and at 6°C for up to 48 h.

  12. Impact of tropospheric sulphate aerosols on the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Eliseev, Alexey V.

    2015-01-01

    Tropospheric sulphate aerosols (TSAs) may oxidise the photosynthesising tissues if they are taken up by plants. A parameterisation of this impact of tropospheric sulphate aerosols (TSAs) on the terrestrial gross primary production is suggested. This parameterisation is implemented into the global Earth system model developed at the A.M. Obukhov Institute of the Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM). With this coupled model, the simulations are performed which are forced by common anthropogenic and natural climate forcings based on historical reconstructions followed by the RCP 8.5 scenario. The model response to sulphate aerosol loading is subdivided into the climatic (related to the influence of TSA on the radiative transport in the atmosphere) and ecological (related to the toxic influence of sulphate aerosol on terrestrial plants) impacts. We found that the former basically dominates over the latter on a global scale and modifies the responses of the global vegetation and soil carbon stocks to external forcings by 10%. At a regional scale, however, ecological impact may be as much important as the climatic one.

  13. Simultaneous removal of ammonium-nitrogen and sulphate from wastewaters with an anaerobic attached-growth bioreactor.

    PubMed

    Zhao, Q I; Li, W; You, S J

    2006-01-01

    Some industrial wastewaters may contain ammonium-nitrogen and/or sulphate, which need to be removed before their discharge into natural water bodies to eliminate their severe pollution. In this paper, simultaneous removal of ammonium-nitrogen and sulphate with an anaerobic attached-growth bioreactor of 3.8 L incubated with sulphate reducing bacteria (SRB) was investigated. Artificial wastewater containing sodium sulphate as electron acceptor, ammonium chlorine as electron donor and glucose as carbon source for bacteria growth was used as the feed for the bioreactor. The loading rates of ammonium-nitrogen, sulphate and COD were 2.08 gN/m3 x d, 2.38 gS/m3 x d, 104.17 gCOD/m3 x d, respectively, with a N/S ratio of 1:1.14. The results demonstrated that removal rates of ammonium-nitrogen, sulphate and COD could reach 43.35%, 58.74% and 91.34%, respectively. Meanwhile, sulphur production was observed in effluent as well as molecular nitrogen in biogas, whose amounts increased with time substantially, suggesting the occurrence of simultaneous removal of ammonium-nitrogen and sulphate. This novel reaction provided the possibility to eliminate ammonium-nitrogen and sulphate simultaneously with accomplishment of COD removal from wastewater, making wastewater treatment more economical and sustainable.

  14. An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community.

    PubMed

    Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis

    2017-10-01

    Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.

  15. Local and systemic tolerability of magnesium sulphate for tocolysis.

    PubMed

    Zygmunt, M; Heilmann, L; Berg, C; Wallwiener, D; Grischke, E; Münstedt, K; Spindler, A; Lang, U

    2003-04-25

    An open-label, randomised, parallel-group, study was conducted in three study centres in women with premature labor and indication for a single agent intravenous tocolysis therapy with magnesium sulphate. The aim of this study was to examine the local and general tolerability and side-effects of magnesium sulphate for tocolysis. Furthermore, we tested the tolerability of a ready-for-use magnesium solution. No measurements of efficacy were performed during this study. Initially, patients received a loading dose of 4.0 g magnesium sulphate administered over 30 min. Thereafter, a continuous intravenous infusion of 1-2 g magnesium sulphate per hour up to 21 days was given. Venous score (Maddox), vital signs, adverse events as well as general tolerability (assessed by investigator and patients) and blood parameters were assessed. We showed good local and systemic tolerability of high dose magnesium sulphate for tocolysis. Only seven patients (15%) were withdrawn from the study prematurely due to minor adverse events. Potential serious complications of MgSO(4) such as respiratory arrest or clinically relevant respiratory depression were not observed. The most frequently reported local adverse events were injection site pain, itching, erythema, swelling, induration and palpable venous cord. The most common systemic adverse events considered to be possibly related to the study drugs involved the nervous system (dizziness) followed by the digestive system (nausea, constipation). Systolic and diastolic blood pressure changed only slightly during the treatment. Respiratory rate and body temperature remained stable also. Toxic magnesium levels (>2.5 mmol/l) were not observed. The assessment of the clinical investigators with regard to tolerability was very good or good in 72.5% of the patients. The introduction of the ready-to-use solution has the advantage of eliminating the need to mix the solution prior to administration. This means a lower risk of overdose and

  16. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.

    PubMed

    Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J

    2015-05-15

    Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress.

    PubMed

    Casieri, Leonardo; Gallardo, Karine; Wipf, Daniel

    2012-06-01

    Sulphur is an essential macronutrient for plant growth, development and response to various abiotic and biotic stresses due to its key role in the biosynthesis of many S-containing compounds. Sulphate represents a very small portion of soil S pull and it is the only form that plant roots can uptake and mobilize through H(+)-dependent co-transport processes implying sulphate transporters. Unlike the other organically bound forms of S, sulphate is normally leached from soils due to its solubility in water, thus reducing its availability to plants. Although our knowledge of plant sulphate transporters has been growing significantly in the past decades, little is still known about the effect of the arbuscular mycorrhiza interaction on sulphur uptake. Carbon, nitrogen and sulphur measurements in plant parts and expression analysis of genes encoding putative Medicago sulphate transporters (MtSULTRs) were performed to better understand the beneficial effects of mycorrhizal interaction on Medicago truncatula plants colonized by Glomus intraradices at different sulphate concentrations. Mycorrhization significantly promoted plant growth and sulphur content, suggesting increased sulphate absorption. In silico analyses allowed identifying eight putative MtSULTRs phylogenetically distributed over the four sulphate transporter groups. Some putative MtSULTRs were transcribed differentially in roots and leaves and affected by sulphate concentration, while others were more constitutively transcribed. Mycorrhizal-inducible and -repressed MtSULTRs transcripts were identified allowing to shed light on the role of mycorrhizal interaction in sulphate uptake.

  18. Anaerobic treatment of landfill leachate by sulfate reduction.

    PubMed

    Henry, J G; Prasad, D

    2000-01-01

    The present study was conducted to investigate the effectiveness of the sulphate-reduction pathway in the anaerobic treatment of landfill leachate. The effects of several COD/SO4 ratios (keeping COD constant) and loadings on anaerobic filter performance were studied and compared with the results from anaerobic filters which followed the methanogenic pathway. Results indicated that the treatability of leachate by sulphate reducing bacteria (SRB) was dependent upon the leachate strength. With high strength leachate (COD = 15,000 mg/L) from the Keele Valley Landfill, it was found that at lower COD/SO4 ratios (< or = 1.6) toxic conditions developed in the system that were more inhibitory to the SRB than to the methane producing bacteria (MPB). As the COD/SO4 ratio increased, methanogenesis predominated. No predominance of SRB occurred at any COD/SO4 ratio with high strength leachate. The highest COD removal achieved was about 70% of which 20% was accomplished by the SRB at a COD/SO4 ratio of 1.6 and an organic loading rate (OLR) of 4 kg COD/m3.d. With low strength leachate (COD = 1500-3300 mg/L) from the Brock West Landfill, and a COD/SO4 ratio < or = 1, SRB became predominant. In these anaerobic filters in which SRB were predominant, the SRB reduced the COD as well as the MPB could. Sulphide inhibition did not take place at any loading in units treating low strength leachate. Consequently, both SRB and MPB should function at COD/SO4 ratios between 1 and 3. About 60% COD removal was achieved at a loading of 2.8 kg COD/m3.d and a COD/SO4 ratio of 1.0. However at a loading of 6 kg COD/m3.d only 27% COD removal was achieved, all of it through the sulphate-reduction pathway. These OLR values are comparable to those applied in systems where methanogenesis was dominant. It was also observed that once the methanogens were established in the units, it was not possible to displace them completely. However, where methanogenesis had not been previously established, it was found

  19. Bacterial reduction by cell salvage washing and leukocyte depletion filtration.

    PubMed

    Waters, Jonathan H; Tuohy, Marion J; Hobson, Donna F; Procop, Gary

    2003-09-01

    Blood conservation techniques are being increasingly used because of the increased cost and lack of availability of allogeneic blood. Cell salvage offers great blood savings opportunities but is thought to be contraindicated in a number of areas (e.g., blood contaminated with bacteria). Several outcome studies have suggested the safety of this technique in trauma and colorectal surgery, but many practitioners are still hesitant to apply cell salvage in the face of frank bacterial contamination. This study was undertaken to assess the efficacy of bacterial removal when cell salvage was combined with leukocyte depletion filtration. Expired packed erythrocytes were obtained and inoculated with a fixed amount of a stock bacteria (Escherichia coli American Type Culture Collections [ATCC] 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, or Bacteroides fragilis ATCC 25285) in amounts ranging from 2,000 to 4,000 colony forming units/ml. The blood was processed via a cell salvage machine. The washed blood was then filtered using a leukocyte reduction filter. The results for blood taken during each step of processing were compared using a repeated-measures design. Fifteen units of blood were contaminated with each of the stock bacteria. From the prewash sample to the postfiltration sample, 99.0%, 99.6%, 100%, and 97.6% of E. coli, S. aureus, P. aeruginosa, and B. fragilis were removed, respectively. Significant but not complete removal of contaminating bacteria was seen. An increased level of patient safety may be added to cell salvage by including a leukocyte depletion filter when salvaging blood that might be grossly contaminated with bacteria.

  20. Particulate sulphate and ozone in rural air: Preliminary results from three sites in central England

    NASA Astrophysics Data System (ADS)

    Martin, A.; Barber, F. R.

    Daily particulate sulphate concentrations in air have been measured at a 'background' rural site and at two other sites near rural power stations. The samples were collected by drawing air through filter papers and were analysed by X-ray fluorescence. At the background site the concentration of particulate sulphates was strongly dependent on the O 3 and total S in air. Above a certain 'critical' level of daily O 3, 28% of the daily S in air was particulate on average, but the amounts were not related to the actual O 3 levels. At lower O 3 levels, there appeared to be a constant background of about 2 μg of particulate sulphate per cubic meter of air, together with about 5% of the total S in air as particulate. When black smoke in air was low, the particulate sulphate was also low, despite the O 3 levels. Near the power stations, there was no significantly different rate of production or loss of particulate sulphate. On average, at all three sites over the year, about 12% of the daily total S was particulate, probably corresponding to an average conversion rate of SO 2 of less than 1% per hour. Estimates of hourly particulate sulphates are available from previous measurements at the background site, using a different analysis technique. Particulate sulphate was not found every hour, but typically during 20 h a day in early summer and 8 h a day in early winter. An influence of humidity as well as O 3 was apparent in the peak hourly particulate sulphate values, which reached 60% of the total S. No correlation could be found of particulate sulphate with solar radiation, wind direction, concentrations of oxides of nitrogen in air or ammonium or sulphate in rainwater, but further measurements are planned.

  1. Evaluation of the Efficacy of Disinfectant Footmats for the Reduction of Bacterial Contamination on Footwear in a Large Animal Veterinary Hospital.

    PubMed

    Hornig, K J; Burgess, B A; Saklou, N T; Johnson, V; Malmlov, A; Van Metre, D C; Morley, P S; Byers, S R

    2016-11-01

    Infection control is critical to providing high-quality patient care. Many veterinary teaching hospitals (VTHs) utilize footbaths or footmats at entrances and key control points throughout the facility to decrease trafficking of pathogenic microorganism on contaminated footwear. To compare efficacy of 4 disinfectants used in footmats for decreasing bacterial contamination of footwear in a large animal hospital. A single adult dairy cow was housed in a stall for 4 days to facilitate stall contamination with fecal material. Overboots were experimentally contaminated with organic material in a standardized manner. Each boot was randomly assigned to 1 of 5 treatments (no treatment, or exposure to 1 of 4 disinfectants: an accelerated peroxygen [AHP], a peroxygen [VIRKON], a quaternary ammonium [QUAT], and a phenolic disinfectant [PHENOLIC]) by stepping on a soaked footmat and collecting samples from boot soles. Generalized linear modeling was used to analyze differences in bacterial counts. Reductions in colony-forming units (CFUs) on treated boots ranged from no detectable reduction to 0.45 log 10 and varied by disinfectant. Percentage reductions in total bacterial counts generally were larger (albeit still modest) for AHP and QUAT disinfectants (range 37-45%) and smallest for the PHENOLIC (no detectable reduction). In general, use of disinfectant footmats was associated with significant reductions in viable bacteria on overboots-albeit with variable efficacy. Footmats may be useful adjuncts to cleaning and disinfection programs for decreasing trafficking of microorganisms throughout VTHs but should not be considered as a sole prevention method. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Oxygen Reduction Reaction Affected by Sulfate-Reducing Bacteria: Different Roles of Bacterial Cells and Metabolites.

    PubMed

    Wu, Jiajia; Liu, Huaiqun; Wang, Peng; Zhang, Dun; Sun, Yan; Li, Ee

    2017-09-01

    Sulfate-reducing bacteria (SRB) were found to be capable of tolerating a certain amount of oxygen (O 2 ), but how they affect oxygen reduction reaction (ORR) has not been clear. The present work investigated the impact of SRB on ORR in 3.5 wt% sodium chloride solution with the cyclic voltammetry method. The addition of SRB culture solution hampered both the reduction of O 2 to superoxide (O 2 ·- ) and hydrogen peroxide (H 2 O 2 ) to water (H 2 O), and the influence of SRB metabolites was much larger than that of bacterial cells. Sulfide and extracellular polymeric substances (EPS), typical inorganic and organic metabolic products, had great impact on ORR. Sulfide played an important role in the decrease of cathodic current for H 2 O 2 reduction due to its hydrolysis and chemical reaction activity with H 2 O 2 . EPS were sticky, easy to adsorb on the electrode surface and abundant in functional groups, which hindered the transformation of O 2 into O 2 ·- and favored the reduction of H 2 O 2 to H 2 O.

  3. Kinetic studies of the murine foetal thymus using vincristine sulphate.

    PubMed

    Riches, A C; Carr, H M; McQueen, L; Thomas, D B

    1981-01-01

    The turnover time of the foetal thymus has been evaluated in CD1 mice using the metaphase arrest drug vincristine sulphate and also by direct cell counting and found to be 18 h (range 12--26) and 11.9 h (range 10.9--13.1) respectively. Vincristine sulphate can be used for cell kinetic studies on foetal thymus provided an appropriate dose (5 mgm per kgm body weight given intravenously) and time scale (less than 1 hour after injection) are used for these measurements. These conditions are different from those used for adult tissues. Using 125I-iododeoxyuridine uptake measurements, it was found that vincristine sulphate suppressed DNA synthesis in the foetal thymus but not in the maternal thymus at this dose. Only the G2 cohort of cells in the thymus entered mitosis.

  4. Bacterial Reduction after Gutta-Percha Removal with Single vs. Multiple Instrument Systems.

    PubMed

    Xavier, Felipe; Nevares, Giselle; Gominho, Luciana; Rodrigues, Renata; Cassimiro, Marcely; Romeiro, Kaline; Albuquerque, Diana

    2018-01-01

    The aim of this study was to evaluate the effectiveness of a reciprocating single-instrument system (Reciproc-REC) compared with combined continuously rotating multiple-instrument systems [D-Race (DR) and BioRace (BR)] in reducing Enterococcus faecalis (E.f.) after gutta-percha removal. Forty-six extracted human maxillary incisors were prepared and contaminated with E.f. strain (ATCC 29212) for 30 days. The samples were obturated and randomly divided into two experimental groups for gutta-percha removal ( n =23): a REC group (R50) and a DR/BR group (DR1, DR2 and BR6). A standardized irrigation with 0.9% saline solution was performed. Root canal samples were taken with paper points before (S1) and after (S2) the removal of gutta-percha to establish bacterial quantification by culture. The time required for gutta-percha removal was also recorded. Positive and negative control groups ( n =6) were used to test bacterial viability and control asepsis, respectively. Data were analysed using t -Student and one-way ANOVA tests (5% margin of error). The mean percentage of bacterial reduction was significantly higher in DR/BR group (84.2%) than in REC group (72.3%) ( P <0.05). The mean time for obturation removal was 74.00 sec in REC group and 107.53 sec in DR/BR group ( P <0.05). The combined continuously rotating multiple-instrument system was more effective in reducing bacteria after the removal of gutta-percha than the single-instrument system. None of the tested systems was able to completely eliminate root canal infection after gutta-percha removal. Thus, additional techniques should be considered.

  5. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.

    PubMed

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., Fe(II) release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Determination of chondroitin-6-sulphate by a competitive enzyme immunoassay using a biotinylated antigen.

    PubMed

    Kähnert, H; Brinkmann, T; Gässler, N; Kleesiek, K

    1994-04-01

    A competitive enzyme immunoassay was developed to determine chondroitin-6-sulphate in body fluids and cell cultures. The assay uses a monoclonal anti-chondroitin-6-sulphate antibody, immobilised to microtitre plates, and it involves a competitive binding reaction between chondroitin-6-sulphate in the samples and the biotinylated antigen. This assay enables the quantification of chondroitin-6-sulphate in the low concentration range of 16-120 micrograms/l. The intra-assay and inter-assay coefficients of variation are below 6.5% and 9.0%, respectively. More than 90% of chondroitin-6-sulphate was recovered when added to 0.1 mol/l phosphate-buffered saline, an albumin solution (40 g/l in phosphate-buffered saline) and cell culture medium (containing 100 ml/l foetal calf serum). Chondroitin-6-sulphate was also determined in sera of healthy male (n = 90) and female (n = 90) blood donors. The normal range was 55-169 micrograms/l. In men the mean value was estimated at 102.2 +/- 37.1 micrograms/l and in women at 98.7 +/- 26.4 micrograms/l. No age or sex dependence was observed. The urine excretion of chondroitin-6-sulphate in men (n = 16) was 44.5 +/- 21.1 mg/kg creatinine (mean +/- standard deviation) and in females (n = 10) 53.5 +/- 21.3 mg/kg creatinine. The clearance rate in men was 0.41 +/- 0.22 ml x min-1 and in women 0.38 +/- 0.15 ml x min-1. No sex dependence was found. Furthermore, the enzyme immunoassay was modified to measure the specific incorporation of a radioactively labelled precursor ([14C]galactosamine) into chondroitin-6-sulphate.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Regional and temporal variability of the isotope composition (O, S) of atmospheric sulphate in the region of Freiberg, Germany, and consequences for dissolved sulphate in groundwater and river water.

    PubMed

    Tichomirowa, Marion; Heidel, Claudia

    2012-01-01

    The isotope composition of dissolved sulphate and strontium in atmospheric deposition, groundwater, mine water and river water in the region of Freiberg was investigated to better understand the fate of these components in the regional and global water cycle. Most of the isotope variations of dissolved sulphates in atmospheric deposition from three locations sampled bi- or tri-monthly can be explained by fractionation processes leading to lower [Formula: see text] (of about 2-3‰) and higher [Formula: see text] (of about 8-10‰) values in summer compared with the winter period. These samples showed a negative correlation between [Formula: see text] and [Formula: see text] values and a weak positive correlation between [Formula: see text] and [Formula: see text] values. They reflect the sulphate formed by aqueous oxidation from long-range transport in clouds. However, these isotope variations were superimposed by changes of the dominating atmospheric sulphate source. At two of the sampling points, large variations of mean annual [Formula: see text] values from atmospheric bulk deposition were recorded. From 2008 to 2009, the mean annual [Formula: see text] value increased by about 5‰; and decreased by about 4‰ from 2009 to 2010. A change in the dominating sulphate source or oxidation pathways of SO(2) in the atmosphere is proposed to cause these shifts. No changes were found in corresponding [Formula: see text] values. Groundwater, river water and some mine waters (where groundwater was the dominating sulphate source) also showed temporal shifts in their [Formula: see text] values corresponding to those of bulk atmospheric deposition, albeit to a lower degree. The mean transit time of atmospheric sulphur through the soil into the groundwater and river water was less than a year and therefore much shorter than previously suggested. Mining activities of about 800 years in the Freiberg region may have led to large subsurface areas with an enhanced groundwater

  8. Reduction of Airborne Bacterial Burden in the OR by Installation of Unidirectional Displacement Airflow (UDF) Systems.

    PubMed

    Fischer, Sebastian; Thieves, Martin; Hirsch, Tobias; Fischer, Klaus-Dieter; Hubert, Helmine; Beppler, Steffen; Seipp, Hans-Martin

    2015-08-13

    Intraoperative bacterial contamination is a major risk factor for postoperative wound infections. This study investigated the influence of type of ventilation system on intraoperative airborne bacterial burden before and after installation of unidirectional displacement air flow systems. We microbiologically monitored 1286 surgeries performed by a single surgical team that moved from operating rooms (ORs) equipped with turbulent mixing ventilation (TMV, according to standard DIN-1946-4 [1999], ORs 1, 2, and 3) to ORs with unidirectional displacement airflow (UDF, according to standard DIN-1946-4, annex D [2008], ORs 7 and 8). The airborne bacteria were collected intraoperatively with sedimentation plates. After incubation for 48 h, we analyzed the average number of bacteria per h, peak values, and correlation to surgery duration. In addition, we compared the last 138 surgeries in ORs 1-3 with the first 138 surgeries in ORs 7 and 8. Intraoperative airborne bacterial burden was 5.4 CFU/h, 5.5 CFU/h, and 6.1 CFU/h in ORs 1, 2, and 3, respectively. Peak values of burden were 10.7 CFU/h, 11.1 CFU/h, and 11.0 CFU/h in ORs 1, 2, and 3, respectively). With the UDF system, the intraoperative airborne bacterial burden was reduced to 0.21 CFU/h (OR 7) and 0.35 CFU/h (OR 8) on average (p<0.01). Accordingly, peak values decreased to 0.9 CFU/h and 1.0 CFU/h in ORs 7 and 8, respectively (p<0.01). Airborne bacterial burden increased linearly with surgery duration in ORs 1-3, but the UDF system in ORs 7 and 8 kept bacterial levels constantly low (<3 CFU/h). A comparison of the last 138 surgeries before with the first 138 surgeries after changing ORs revealed a 94% reduction in average airborne bacterial burden (5 CFU/h vs. 0.29 CFU/h, p<0.01). The unidirectional displacement airflow, which fulfills the requirements of standard DIN-1946-4 annex D of 2008, is an effective ventilation system that reduces airborne bacterial burden under real clinical conditions by more than 90

  9. Early oxygenation of the terrestrial environment during the Mesoproterozoic.

    PubMed

    Parnell, John; Boyce, Adrian J; Mark, Darren; Bowden, Stephen; Spinks, Sam

    2010-11-11

    Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (∼2.3 billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8 Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S < 25‰ before 1 Gyr to ≥50‰ after 0.64 Gyr. This change in Δ(34)S has been interpreted to represent the evolution from single-step bacterial sulphate reduction to a combination of bacterial sulphate reduction and sulphide oxidation, largely bacterially mediated. This evolution is seen as marking the rise in atmospheric oxygen concentrations and the evolution of non-photosynthetic sulphide-oxidizing bacteria. Here we report Δ(34)S values exceeding 50‰ from a terrestrial Mesoproterozoic (1.18 Gyr old) succession in Scotland, a time period that is at present poorly characterized. This level of fractionation implies disproportionation in the sulphur cycle, probably involving sulphide-oxidizing bacteria, that is not evident from Δ(34)S data in the marine record. Disproportionation in both red beds and lacustrine black shales at our study site suggests that the Mesoproterozoic terrestrial environment was sufficiently oxygenated to support a biota that was adapted to an oxygen-rich atmosphere, but had also penetrated into subsurface sediment.

  10. Detection of Sulphate-Reducing Bacteria and Others Cultivable Facultative Bacteria in Dental Tissues

    PubMed Central

    Gonçalves, Lúcio de Souza; Dias, Eliane Pedra; Heggendorn, Christiane; Lutterbach, Márcia T. S.

    2014-01-01

    Aim To detect for the presence of sulphate-reducing bacteria (SRB) and evaluate the possible association between SRB and cultivable facultative bacterial of oral sites with different periodontal conditions. Methods The study was carried out on 9 samples from different oral sites in 8 patients (two samples were collected from the same patient). Material was collected using modified Postgate E culture medium, indicated for the growth and isolation of SRB. In addition, a reducing solution for anaerobic bacteria was used as a transport solution for facultative bacteria and identified by polymerase chain reaction amplification (PCR) and sequencing of the 16S rRNA gene. Results SRB was found in 3 patient samples: the first in a root fragment, the second in a root fragment and a healthy tooth with vertical bone loss and a mobility degree of 3; and the third in a healthy tooth extracted for orthodontic treatment. In the final patient, the cultivable facultative species Lactobacillus casei was identified. Other facultative bacterial species were identified in patient 5 (Kurthia Gibsonii) and patient 7 (Pseudomonas aeruginosa). Conclusions The detection of SRB in different dental tissues with distinct periodontal features demonstrated that new studies need to be developed in order to determine the true role of SRB in the oral microbiota. In addition, it was possible to verify the presence of Lactobacillus casei together with SRB in one sample. PMID:27688355

  11. Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles.

    PubMed

    Ortega Álvarez, José Marcos; Esteban Pérez, María Dolores; Rodríguez Escribano, Raúl Rubén; Pastor Navarro, José Luís; Sánchez Martín, Isidro

    2016-11-08

    Nowadays, the use of micropiles has undergone a great development. In general, they are made with cement grout, reinforced with steel tubing. In Spain, these grouts are prepared using OPC, although the standards do not forbid the use of other cements, like sustainable ones. Micropiles are in contact with soils and groundwater, in which the presence of sulphates is common. Their deleterious effects firstly affect to the microstructure. Then, the aim of this research is to study the effects of sulphate attack in the microstructure of micropiles grouts, prepared with OPC, fly ash and slag commercial cements, compared to their behaviour when they are exposed to an optimum hardening condition. The microstructure evolution has been studied with the non-destructive impedance spectroscopy technique, which has never been used for detecting the effects of sulphate attack when slag and fly ash cements are used. Its results have been contrasted with mercury intrusion porosimetry and "Wenner" resistivity ones. The 28-day compressive strength of grouts has been also determined. The results of microstructure characterization techniques are in agreement, although impedance spectroscopy is the most sensitive for following the changes in the porous network of grouts. The results showed that micropiles made using fly ash and slag cements could have a good performance in contact with aggressive sodium sulphate media, even better than OPC ones.

  12. Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles

    PubMed Central

    Ortega Álvarez, José Marcos; Esteban Pérez, María Dolores; Rodríguez Escribano, Raúl Rubén; Pastor Navarro, José Luís; Sánchez Martín, Isidro

    2016-01-01

    Nowadays, the use of micropiles has undergone a great development. In general, they are made with cement grout, reinforced with steel tubing. In Spain, these grouts are prepared using OPC, although the standards do not forbid the use of other cements, like sustainable ones. Micropiles are in contact with soils and groundwater, in which the presence of sulphates is common. Their deleterious effects firstly affect to the microstructure. Then, the aim of this research is to study the effects of sulphate attack in the microstructure of micropiles grouts, prepared with OPC, fly ash and slag commercial cements, compared to their behaviour when they are exposed to an optimum hardening condition. The microstructure evolution has been studied with the non-destructive impedance spectroscopy technique, which has never been used for detecting the effects of sulphate attack when slag and fly ash cements are used. Its results have been contrasted with mercury intrusion porosimetry and “Wenner” resistivity ones. The 28-day compressive strength of grouts has been also determined. The results of microstructure characterization techniques are in agreement, although impedance spectroscopy is the most sensitive for following the changes in the porous network of grouts. The results showed that micropiles made using fly ash and slag cements could have a good performance in contact with aggressive sodium sulphate media, even better than OPC ones. PMID:28774026

  13. Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions.

    PubMed

    Webster, Gordon; Sass, Henrik; Cragg, Barry A; Gorra, Roberta; Knab, Nina J; Green, Christopher J; Mathes, Falko; Fry, John C; Weightman, Andrew J; Parkes, R John

    2011-08-01

    The prokaryotic activity, diversity and culturability of diffusion-controlled Aarhus Bay sediments, including the sulphate-methane transition zone (SMTZ), were determined using a combination of geochemical, molecular (16S rRNA and mcrA genes) and cultivation techniques. The SMTZ had elevated sulphate reduction and anaerobic oxidation of methane, and enhanced cell numbers, but no active methanogenesis. The prokaryotic population was similar to that in other SMTZs, with Deltaproteobacteria, Gammaproteobacteria, JS1, Planctomycetes, Chloroflexi, ANME-1, MBG-D and MCG. Many of these groups were maintained in a heterotrophic (10 mM glucose, acetate), sediment slurry with periodic low sulphate and acetate additions (~2 mM). Other prokaryotes were also enriched including methanogens, Firmicutes, Bacteroidetes, Synergistetes and TM6. This slurry was then inoculated into a matrix of substrate and sulphate concentrations for further selective enrichment. The results demonstrated that important SMTZ bacteria can be maintained in a long-term, anaerobic culture under specific conditions. For example, JS1 grew in a mixed culture with acetate or acetate/glucose plus sulphate. Chloroflexi occurred in a mixed culture, including in the presence of acetate, which had previously not been shown to be a Chloroflexi subphylum I substrate, and was more dominant in a medium with seawater salt concentrations. In contrast, archaeal diversity was reduced and limited to the orders Methanosarcinales and Methanomicrobiales. These results provide information about the physiology of a range of SMTZ prokaryotes and shows that many can be maintained and enriched under heterotrophic conditions, including those with few or no cultivated representatives. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus Annuus L.) growth.

    PubMed

    Faisal, Muhammad; Hasnain, Shahida

    2005-07-01

    Four Cr(VI)-reducing bacterial strains (Ochrobactrum intermedium, CrT-2, CrT-3 and CrT-4) previously isolated from chromium-contaminated sites were inoculated on to seeds of sunflower (Helianthus annuus var SF-187), which were germinated and grown along with non-inoculated controls with chromate salts (300 microg CrCl3 or K2CrO4 ml(-1)). Severe reduction (20%) in seed germination was observed in Cr(VI) stress. Plant height decreased (36%) with Cr(VI) when compared with chromium-free control, while O. intermedium inoculation resulted a 20% increment in this parameter as compared to non-inoculated chromium-free control. CrT-3 inoculation resulted a 69% increment in auxin content as compared to non-inoculated control. O. intermedium caused 30% decrease in chromium uptake in sunflower plant roots under Cr(VI) stress as compared to chromium-free control plants.

  15. Reduction in bacterial ooze formation on immature fruitlets after preventive treatments of Fosethyl-Al against fire blight Erwinia amylovora.

    PubMed

    Deckers, T; Schoofs, H; Verjans, W; De Maeyer, L

    2010-01-01

    Fire blight, caused by the bacterium Erwinia amylovora (Burill Winslow et al.), is a very important bacterial disease on apple and pear orchards with devastating effects in some production area and in some years. Fire blight control consists in a whole strategy of measures that should start with control measures in and around the fruit tree nurseries. Only the use of Vacciplant (Laminarin), an inducer of the self-defence mechanism, is registered in Belgium since 2009. In other European countries Fosethyl-Al has been registered for fire blight control. Recently, research trials have been done at Pcfruit research station for several years on the activity of ALiette (fosethyl-Al) against fire blight. Fosethyl-Al, also a plant defence enhancing molecule, applied preventively 3 times at a dose of 3.75 kg/ha standard orchard (3 x 3000 g a.i./ha standard orchard), showed a reduction in the host susceptibility and decreased the disease development on artificial inoculated flower clusters and shoots. Also a clear reduction in the ooze droplet formation on artificially inoculated immature fruitlets has been observed with this molecule. This reduction in the bacterial ooze formation is considered as a very important factor in the spread of the disease in the orchard.

  16. The mode of action of 4-methylumbelliferyl β-d-xyloside on the synthesis of chondroitin sulphate in embryonic-chicken sternum

    PubMed Central

    Gibson, Kenneth D.; Segen, Barbara J.

    1977-01-01

    1. Embryonic-chicken sterna, incubated in medium containing 0.1mm-4-methylumbelliferyl β-d-xyloside (4-methylcoumarin 7-β-d-xyloside), synthesize proteochondroitin sulphate that is significantly undersulphated and shorter than usual [Gibson, Segen & Audhya (1977) Biochem. J. 162, 217–233]. 2. Neither the β-d-galactoside nor the β-d-glucuronide of 4-methylumbelliferone, nor 4-methylumbelliferone itself, produced the effects. The only metabolites of 4-methylumbelliferone that were detected in cartilages exposed to 4-methylumbelliferyl β-d-xyloside were unchanged xyloside and chondroitin sulphate covalently attached to 4-methylumbelliferone. 3. Gel filtration of salt extracts of sterna incubated in medium containing the xyloside showed that there were two pools of chondroitin sulphate in the tissue. One pool was identified, on the basis of its elution pattern and the linear kinetics of incorporation of sulphate into it, as proteochondroitin sulphate. Incorporation into the other pool, whose properties suggested that it was methylumbelliferyl-chondroitin sulphate, indicated that it underwent partial turnover. The molecular weight of this chondroitin sulphate was about 19000, and it appeared to be about 70% sulphated. 4. When sterna were incubated in medium containing the xyloside, there was a very large incorporation of sulphate and glucose into glycosaminoglycans that were released into the incubation medium. This contrasts with incubations of sterna in the absence of the xyloside, in which less than 5% of the sulphate incorporated could be recovered from the medium. The glycosaminoglycan released into the medium was 4-methylumbelliferyl-chondroitin sulphate, whose average molecular weight was 7000–8000 and degree of sulphation more than 95%. 5. Incorporation of sulphate into proteochondroitin sulphate was stimulated more than 3-fold by addition of 20% (v/v) human serum and 10nm-l-3,3′,5-tri-iodothyronine. Incorporation into methylumbelliferyl

  17. Comparison of the effects of the K(+)-channel openers cromakalim and minoxidil sulphate on vascular smooth muscle.

    PubMed Central

    Wickenden, A. D.; Grimwood, S.; Grant, T. L.; Todd, M. H.

    1991-01-01

    1 The actions of the potassium channel openers, cromakalim and minoxidil sulphate, were compared in a range of isolated blood vessel preparations. 2 Cromakalim and minoxidil sulphate inhibited spontaneous mechanical activity of the guinea-pig portal vein and relaxed the noradrenaline precontracted rat aorta with similar potency. In contrast, minoxidil sulphate was less potent than cromakalim in inhibiting spontaneous activity in the rat portal vein and was essentially inactive in the noradrenaline precontracted rat mesenteric artery and rabbit aorta. 3 Minoxidil sulphate did not antagonize the effects of cromakalim in the rabbit aorta indicating it was not acting as a partial 'agonist'. 4 Charybdotoxin, noxiustoxin and rubidium failed to discriminate between cromakalim and minoxidil sulphate indicating that the apparently selective effects of minoxidil sulphate were not mediated by either Ca(2+)-activated potassium channels, delayed rectifiers or rubidium impermeable potassium channels. 5 Glibenclamide antagonized the effects of cromakalim in an apparently competitive manner whereas the effects of minoxidil sulphate were antagonized in a non-competitive manner. The involvement of subtypes of ATP-sensitive potassium channels is discussed. PMID:1878752

  18. Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles

    PubMed Central

    Mftah, Ae; Alhassan, Fatah H; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed Ezzat; Webster, Thomas J; Sh-eldin, Mohammed; Rasedee, Abdullah; Taufiq-Yap, Yun Hin; Rashid, Shah Samiur

    2015-01-01

    Nanoparticle sulphated zirconia with Brønsted acidic sites were prepared here by an impregnation reaction followed by calcination at 600°C for 3 hours. The characterization was completed using X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Brunner-Emmett-Teller surface area measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Moreover, the anticancer and antimicrobial effects were investigated for the first time. This study showed for the first time that the exposure of cancer cells to sulphated zirconia nanoparticles (3.9–1,000 μg/mL for 24 hours) resulted in a dose-dependent inhibition of cell growth, as determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Similar promising results were observed for reducing bacteria functions. In this manner, this study demonstrated that sulphated zirconia nanoparticles with Brønsted acidic sites should be further studied for a wide range of anticancer and antibacterial applications. PMID:25632233

  19. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems.

    PubMed

    Saalfield, Samantha L; Bostick, Benjamin C

    2009-12-01

    Biologically mediated redox processes have been shown to affect the mobility of iron oxide-bound arsenic in reducing aquifers. This work investigates how dissimilatory sulfate reduction and secondary iron reduction affect sulfur, iron, and arsenic speciation. Incubation experiments were conducted with As(III/V)-bearing ferrihydrite in carbonate-buffered artificial groundwater enriched with lactate (10 mM) and sulfate (0.08-10 mM) and inoculated with Desulfovibrio vulgaris (ATCC 7757, formerly D. desulfuricans), which reduces sulfate but not iron or arsenic. Sulfidization of ferrihydrite led to formation of magnetite, elemental sulfur, and trace iron sulfides. Observed reaction rates imply that the majority of sulfide is recycled to sulfate, promoting microbial sulfate reduction in low-sulfate systems. Despite dramatic changes in Fe and S speciation, and minimal formation of Fe or As sulfides, most As remained in the solid phase. Arsenic was not solubilized in As(V)-loaded incubations, which experienced slow As reduction by sulfide, whereas As(III)-loaded incubations showed limited and transient As release associated with iron remineralization. This suggests that As(III) production is critical to As release under reducing conditions, with sulfate reduction alone unlikely to release As. These data also suggest that bacterial reduction of As(V) is necessary for As sequestration in sulfides, even where sulfate reduction is active.

  20. A New Proof of Concept in Bacterial Reduction: Antimicrobial Action of Violet-Blue Light (405 nm) in Ex Vivo Stored Plasma

    PubMed Central

    Maclean, Michelle; Anderson, John G.; MacGregor, Scott J.; White, Tracy

    2016-01-01

    Bacterial contamination of injectable stored biological fluids such as blood plasma and platelet concentrates preserved in plasma at room temperature is a major health risk. Current pathogen reduction technologies (PRT) rely on the use of chemicals and/or ultraviolet light, which affects product quality and can be associated with adverse events in recipients. 405 nm violet-blue light is antibacterial without the use of photosensitizers and can be applied at levels safe for human exposure, making it of potential interest for decontamination of biological fluids such as plasma. As a pilot study to test whether 405 nm light is capable of inactivating bacteria in biological fluids, rabbit plasma and human plasma were seeded with bacteria and treated with a 405 nm light emitting diode (LED) exposure system (patent pending). Inactivation was achieved in all tested samples, ranging from low volumes to prebagged plasma. 99.9% reduction of low density bacterial populations (≤103 CFU mL−1), selected to represent typical “natural” contamination levels, was achieved using doses of 144 Jcm−2. The penetrability of 405 nm light, permitting decontamination of prebagged plasma, and the nonrequirement for photosensitizing agents provide a new proof of concept in bacterial reduction in biological fluids, especially injectable fluids relevant to transfusion medicine. PMID:27774337

  1. Administration of magnesium sulphate before rocuronium: effects on speed of onset and duration of neuromuscular block.

    PubMed

    Kussman, B; Shorten, G; Uppington, J; Comunale, M E

    1997-07-01

    The speeds of onset of pancuronium, atracurium and vecuronium are increased by prior administration of magnesium sulphate. A prospective, randomized, double-blind, controlled, clinical study was performed to examine the effects of prior i.v. administration of magnesium sulphate 60 mg kg-1 on the neuromuscular blocking effects of rocuronium 0.6 mg kg-1 during isoflurane anaesthesia. Neuromuscular function was measured electromyographically (Relaxograph) in 30 patients who received either magnesium sulphate 60 mg kg-1 or normal saline, 1-min before rocuronium 0.6 mg kg-1. Mean onset times were similar in the two groups (magnesium sulphate 71 (SD 20) s; normal saline 75 (23) s), but times to initial, 10% and 25% recovery from neuromuscular block were significantly longer in the magnesium sulphate group (42.1 (16.3), 49.0 (12.4) and 56.5 (13.2) min, respectively) than in the saline group (25.1 (9.1), 33.0 (11.1) and 35.6 (13.2) min, respectively) (P < 0.05 in all three cases). Administration of magnesium sulphate was not associated with adverse haemodynamic effects. Prior administration of magnesium sulphate, under the study conditions described, prolonged rocuronium-induced neuromuscular block but did not increase speed of onset.

  2. Massive Volcanic SO2 Oxidation and Sulphate Aerosol Deposition in Cenozoic North America

    EPA Science Inventory

    Volcanic eruptions release a large amount of sulphur dioxide (SO2) into the atmosphere. SO2 is oxidized to sulphate and can subsequently form sulphate aerosol, which can affect the Earth's radiation balance, biologic productivity and high-altitude ozone co...

  3. Solubility of glucose isomerase in ammonium sulphate solutions

    NASA Astrophysics Data System (ADS)

    Chayen, N.; Akins, J.; Campbell-Smith, S.; Blow, D. M.

    1988-07-01

    In order to quantify protein crystallization techniques, a method for measuring protein solubility in high salt concentration has been developed. It is based on a sensitive protein concentration assay, using binding to Coomassie blue dye. The protein concentration in a supernatant from which glucose isomerase is crystallising has been studied as a function of time. Equilibrium is established in 3-5 weeks, and the protein concentration remaining in solution is defined as the solubility of the protein. The solubility of glucose isomerase has been determined as a function of ammonium sulphate concentration; its variation with pH in 1.50M ammonium sulphate has also been studied. A remarkable dependence on pH over the range of 5.5 to 6.5 has been observed.

  4. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.

    PubMed

    Scheerer, Ursula; Haensch, Robert; Mendel, Ralf R; Kopriva, Stanislav; Rennenberg, Heinz; Herschbach, Cornelia

    2010-01-01

    Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment

  5. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    PubMed Central

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  6. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    NASA Astrophysics Data System (ADS)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-12-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats.

  7. Molecular structure of dextran sulphate sodium in aqueous environment

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Every, Hayley A.; Jiskoot, Wim; Witkamp, Geert-Jan; Buijs, Wim

    2018-03-01

    Here we propose a 3D-molecular structural model for dextran sulphate sodium (DSS) in a neutral aqueous environment based on the results of a molecular modelling study. The DSS structure is dominated by the stereochemistry of the 1,6-linked α-glucose units and the presence of two sulphate groups on each α-glucose unit. The structure of DSS can be best described as a helix with various patterns of di-sulphate substitution on the glucose rings. The presence of a side chain does not alter the 3D-structure of the linear main chain much, but affects the overall spatial dimension of the polymer. The simulated polymers have a diameter similar to or in some cases even larger than model α-hemolysin nano-pores for macromolecule transport in many biological processes, indicating a size-limited translocation through such pores. All results of the molecular modelling study are in line with previously reported experimental data. This study establishes the three-dimensional structure of DSS and summarizes the spatial dimension of the polymer, serving as the basis for a better understanding on the molecular level of DSS-involved electrostatic interaction processes with biological components like proteins and cell pores.

  8. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes.

    PubMed

    Barbudo, Auxi; Galvín, Adela P; Agrela, Francisco; Ayuso, Jesús; Jiménez, Jose Ramón

    2012-06-01

    In some recycled aggregates applications, such as component of new concrete or roads, the total content of soluble sulphates should be measured and controlled. Restrictions are usually motivated by the resistance or stability of the new structure, and in most cases, structural concerns can be remedied by the use of techniques such as sulphur-resistant cements. However, environmental risk assessment from recycling and reuse construction products is often forgotten. The purpose of this study is to analyse the content of soluble sulphate on eleven recycled aggregates and six samples prepared in laboratory by the addition of different gypsum percentages. As points of reference, two natural aggregates were tested. An analysis of the content of the leachable amount of heavy metals regulated by European regulation was included. As a result, the correlation between solubility and leachability data allow suggest a limiting gypsum amount of 4.4% on recycled aggregates. This limit satisfies EU Landfill Directive criteria, which is currently used as reference by public Spanish Government for recycled aggregates in construction works. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar).

    PubMed

    Hannesson, Kirsten O; Ytteborg, Elisabeth; Takle, Harald; Enersen, Grethe; Bæverfjord, Grete; Pedersen, Mona E

    2015-08-01

    In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.

  10. The effect of magnesium sulphate infusion on the incidence and severity of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia.

    PubMed

    Abdulatif, M; Ahmed, A; Mukhtar, A; Badawy, S

    2013-10-01

    This randomised, controlled, double-blind study investigated the effects of intra-operative magnesium sulphate administration on the incidence of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia. Seventy children were randomly allocated to receive a 30 mg.kg(-1) bolus of intravenous magnesium sulphate after induction of anaesthesia followed by a continuous infusion of 10 mg.kg(-1).h(-1) or an equal volume of saline 0.9%. All children received titrated sevoflurane anaesthesia adjusted to maintain haemodynamic stability. The Pediatric Anesthesia Emergence Delirium scale and the Children's Hospital of Eastern Ontario Score were used for the assessment of postoperative emergence agitation and pain, respectively. Emergence agitation was more common in the control group than in the magnesium group (23 (72%) and 12 (36%), respectively (p = 0.004)), with a relative risk of 0.51 (95% CI 0.31-0.84), an absolute risk reduction of 0.35 (95% CI 0.10-0.54), and number needed to treat of 3 (95% CI 2-9). Postoperative pain scores were comparable in the two groups. Magnesium sulphate reduces the incidence and severity of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia and is not associated with increased postoperative side-effects or delayed recovery. © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  11. Early-diagenetic processes in marine mangrove sediments from Guadeloupe, French West Indies

    NASA Astrophysics Data System (ADS)

    Crémière, Antoine; Sebilo, Mathieu; Strauss, Harald; Gros, Olivier; Laverman, Anniet M.

    2014-05-01

    Sediment and pore-water geochemistry were investigated in two short sediment cores from the Manche-à-eau lagoon (Guadeloupe, French Caribbean island) surrounded by mangroves trees. These sediments present high total organic carbon content, ranging between 10 to 18 % wt, mainly originating from mangrove litter fall. Oxygen is depleted in the first few millimetres of the sediment indicating active organic carbon degradation. Seawater sulphate is entirely consumed within the first 20 cm of the sediments and total organic carbon content decreases with depth pointing out that early-diagenetic degradation of organic matter occurs with sulphate reduction. Sulphide produced as the results of sulphate reduction partly reacts with detrital iron-bearing minerals and precipitates as pyrite which is consistent with high amounts of sulphur in the sediments (4-5 % wt). The sulphur isotopic composition (δ34S) of both dissolved sulphate and sulphide in pore-water increases with depth displaying a large apparent isotopic fractionation (Δ34S) between both species of 65-80o as a result of bacterial sulphate reduction. Scanning electron microscopy investigation reveals that a part of the carbonate alkalinity produced either by organic matter oxidation or anaerobic methane oxidation leads to authigenic carbonates precipitation. These results provide straightforward evidence that carbon and sulphur biogeochemical cycles are intimately governed by sedimentary microbial activity.

  12. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.

    PubMed

    Pop Ristova, Petra; Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100-1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time on

  13. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls

    PubMed Central

    Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E.; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time

  14. Determination of Oversulphated Chondroitin Sulphate and Dermatan Sulphate in unfractionated heparin by (1)H-NMR - Collaborative study for quantification and analytical determination of LoD.

    PubMed

    McEwen, I; Mulloy, B; Hellwig, E; Kozerski, L; Beyer, T; Holzgrabe, U; Wanko, R; Spieser, J-M; Rodomonte, A

    2008-12-01

    Oversulphated Chondroitin Sulphate (OSCS) and Dermatan Sulphate (DS) in unfractionated heparins can be identified by nuclear magnetic resonance spectrometry (NMR). The limit of detection (LoD) of OSCS is 0.1% relative to the heparin content. This LoD is obtained at a signal-to-noise ratio (S/N) of 2000:1 of the heparin methyl signal. Quantification is best obtained by comparing peak heights of the OSCS and heparin methyl signals. Reproducibility of less than 10% relative standard deviation (RSD) has been obtained. The accuracy of quantification was good.

  15. Timescales for migration of atmospherically derived sulphate through an alpine/subalpine watershed, Loch Vale Colorado

    USGS Publications Warehouse

    Michel, Robert L.; Campbell, Donald H.; Clow, David W.; Turk, John T.

    2000-01-01

    Sulphur 35, a cosmogenically produced radioisotope with a short half‐life (87 days), was measured in snowpack during 1993–1997 and at four locations within the Loch Vale watershed during 1995–1997. The four sites include the two main drainages in the watershed, Andrews Creek and Icy Brook, a small south facing catchment flowing into Andrews Creek (Andrews Spring 1), and a similar north facing catchment flowing out of a scree field into Icy Brook (Spring 19). Concentrations ranged from a high of almost 50 mBq/L for a sample from Spring 19 in June 1996 to a concentration near the detection limit for a sample from Andrews Creek in April 1997. Sulphur 35 concentrations were normalized to sulphate (as mBq/mg SO4−2) and were decay‐corrected to a Julian day of 90 (April 1) for each year. Snowpack had the highest 35S concentration with an average concentration of 53 mBq/mg SO4−2. Concentrations in the streams were much lower, even when corrected for decay relative to JD 90. The large 35S concentrations found in Spring 19 were the result of increases in concentration due to sublimation and/or evapotranspiration and were lower than snowpack when normalized to sulphate. Using 35S concentrations found in snowpack as of JD 90 as a beginning concentration, the fraction of sulphate in streamflow that was derived from atmospheric deposition within the prior water year was estimated. For Icy Brook and Andrews Creek the fraction of the sulphate in streamflow derived from that year's snowpack and precipitation was low prior to the beginning of the main spring melt, reached a maximum during the period of maximum flow, and decreased as the summer progressed. A calculation of the seasonal flux indicated that about 40% of the sulphate that flowed out of the watershed was derived from atmospheric sulphate deposited during the previous year. This suggests that more than half of the sulphate deposited in the watershed by atmospheric processes during the previous year was

  16. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.

    PubMed

    Meyer, Daniel Derrossi; Andrino, Felipe Gabriel; Possedente de Lira, Simone; Fornaro, Adalgiza; Corção, Gertrudes; Brandelli, Adriano

    2016-01-01

    One of the problems in waste water treatment plants (WWTPs) is the increase in emissions of hydrogen sulphide (H2S), which can cause damage to the health of human populations and ecosystems. To control emissions of this gas, sulphur-oxidizing bacteria can be used to convert H2S to sulphate. In this work, sulphate detection was performed by spectrophotometry, ion chromatography and atomic absorption spectrometry, using Paracoccus pantotrophus ATCC 35512 as a reference strain growing in an inorganic broth supplemented with sodium thiosulphate (Na2S2O3·5H2O), sodium sulphide (Na2S) or sodium sulphite (Na2SO3), separately. The strain was metabolically competent in sulphate production. However, it was only possible to observe significant differences in sulphate production compared to abiotic control when the inorganic medium was supplemented with sodium thiosulphate. The three methods for sulphate detection showed similar patterns, although the chromatographic method was the most sensitive for this study. This strain can be used as a reference for sulphate production in studies with sulphur-oxidizing bacteria originating from environmental samples of WWTPs.

  17. Analytical applications of condensed phosphoric acid-IV Iodometric determination of sulphur in sulphate and sulphide ores and minerals and other compounds after reduction with sodium hypophosphite and tin metal in condensed phosphoric acid.

    PubMed

    Mizoguchi, T; Ishii, H

    1980-06-01

    Sulphate in sulphate ores, e.g., alunite, anglesite, barytes, chalcanthite, gypsum, manganese sulphate ore, is reduced to hydrogen sulphide by the hypophosphite-tin metal-CPA method, if a slight modification is made. Sulphide ores, e.g., galena, sphalerite, are quantitatively decomposed with CPA alone to give hydrogen sulphide. Suitable reducing agents must be used for the quantitative recovery of hydrogen sulphide from pyrite, nickel sulphide, cobalt sulphide and cadmium sulphide, or elemental sulphur is liberated. Iodide must be used in the decomposition of chalcopyrite; the copper sulphide is too stable to be decomposed by CPA alone. Molybdenite is not decomposed in CPA even if reducing agents are added. The pretreatment methods for the determination of sulphur in sulphur oxyacids and elemental sulphur have also been investigated.

  18. Magnesium sulphate at 30 to 34 weeks' gestational age: neuroprotection trial (MAGENTA)--study protocol.

    PubMed

    Crowther, Caroline A; Middleton, Philippa F; Wilkinson, Dominic; Ashwood, Pat; Haslam, Ross

    2013-04-09

    Magnesium sulphate is currently recommended for neuroprotection of preterm infants for women at risk of preterm birth at less than 30 weeks' gestation, based on high quality evidence of benefit. However there remains uncertainty as to whether these benefits apply at higher gestational ages.The aim of this randomised controlled trial is to assess whether giving magnesium sulphate compared with placebo to women immediately prior to preterm birth between 30 and 34 weeks' gestation reduces the risk of death or cerebral palsy in their children at two years' corrected age. Randomised, multicentre, placebo controlled trial. Women, giving informed consent, at risk of preterm birth between 30 to 34 weeks' gestation, where birth is planned or definitely expected within 24 hours, with a singleton or twin pregnancy and no contraindications to the use of magnesium sulphate.Trial entry & randomisation: Eligible women will be randomly allocated to receive either magnesium sulphate or placebo.Treatment groups: Women in the magnesium sulphate group will be administered 50 ml of a 100 ml infusion bag containing 8 g magnesium sulphate heptahydrate [16 mmol magnesium ions]. Women in the placebo group will be administered 50 ml of a 100 ml infusion bag containing isotonic sodium chloride solution (0.9%). Both treatments will be administered through a dedicated IV infusion line over 30 minutes.Primary study outcome: Death or cerebral palsy measured in children at two years' corrected age. 1676 children are required to detect a decrease in the combined outcome of death or cerebral palsy, from 9.6% with placebo to 5.4% with magnesium sulphate (two-sided alpha 0.05, 80% power, 5% loss to follow up, design effect 1.2). Given the magnitude of the protective effect in the systematic review, the ongoing uncertainty about benefits at later gestational ages, the serious health and cost consequences of cerebral palsy for the child, family and society, a trial of magnesium sulphate for women at

  19. Climatic and ecological impacts of tropospheric sulphate aerosols on the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Eliseev, Alexey V.

    2015-04-01

    Tropospheric sulphate aerosols (TSA) may oxidise the photosynthesising tissues if they are taken up by plants. A parametrisation of this impact of tropospheric sulphate aerosols (TSA) on the terrestrial gross primary production is suggested. This parametrisation is implemented into the global Earth system model developed at the A.M. Obukhov Institute of the Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM). With this coupled model, the simulations are performed which are forced by common anthropogenic and natural climate forcings based on historical reconstructions followed by the RCP 8.5 scenario. The model response to sulphate aerosol loading is subdivided into the climatic (related to the influence of TSA on the radiative transport in the atmosphere) and ecological (related to the toxic influence of sulphate aerosol on terrestrial plants) impacts. We found that the former basically dominates over the latter on the global scale and modifies the responses of the global vegetation and soil carbon stocks to external forcings by 10%. At regional scale, however, ecological impact may be as much important as the climatic one.

  20. Response of pore water Al, Fe and S concentrations to waterlogging in a boreal acid sulphate soil.

    PubMed

    Virtanen, Seija; Simojoki, Asko; Hartikainen, Helinä; Yli-Halla, Markku

    2014-07-01

    Environmental hazards caused by acid sulphate (AS) soils are of worldwide concern. Among various mitigation measures, waterlogging has mainly been studied in subtropical and tropical conditions. To assess the environmental relevance of waterlogging as a mitigation option in boreal AS soils, we arranged a 2.5-year experiment with monolithic lysimeters to monitor changes in the soil redox potential, pH and the concentrations of aluminium (Al), iron (Fe) and sulphur (S) in pore water in response to low and high groundwater levels in four AS soil horizons. The monoliths consisted of acidic oxidized B horizons and a reduced C horizon containing sulphidic material. Eight lysimeters were cropped (reed canary grass, Phalaris arundinacea) and two were bare without a crop. Waterlogging was conducive to reduction reactions causing a slight rise in pH, a substantial increase in Fe (Fepw) and a decrease in Al (Alpw) in the pore water. The increase in Fepw was decisively higher in the cropped waterlogged lysimeters than in the bare ones, which was attributable to the microbiologically catalysed reductive dissolution of poorly ordered iron oxides and secondary minerals. In contrast to warmer climates, Fepw concentrations remained high throughout the experiment, indicating that the reduction was poised in the iron range, while sulphate was not reduced to sulphide. Therefore, the precipitation of iron sulphide was negligible in the environment with a low pH and abundant with poorly ordered Fe oxides. Increased Fe in pore water counteracts the positive effects of waterlogging, when water is flushed from fields to watercourses, where re-oxidation of Fe causes acidity and oxygen depletion. However, waterlogging prevented further oxidation of sulphidic materials and decreased Alpw to one-tenth of the initial concentrations, and even to one-hundredth of the levels in the low water table lysimeters. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.

    PubMed

    Suarez-Zuluaga, Diego A; Weijma, Jan; Timmers, Peer H A; Buisman, Cees J N

    2015-03-01

    Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.

  2. Biotechnological engineering of heparin/heparan sulphate: a novel area of multi-target drug discovery.

    PubMed

    Rusnati, Marco; Oreste, Pasqua; Zoppetti, Giorgio; Presta, Marco

    2005-01-01

    Heparin is a sulphated glycosaminoglycan currently used as an anticoagulant and antithrombotic drug. It consists largely of 2-O-sulphated IdoA not l&r arrow N, 6-O-disulphated GlcN disaccharide units. Other disaccharides containing unsulphated IdoA or GlcA and N-sulphated or N-acetylated GlcN are also present as minor components. This heterogeneity is more pronounced in heparan sulphate (HS), where the low-sulphated disaccharides are the most abundant. Heparin/HS bind to a variety of biologically active polypeptides, including enzymes, growth factors and cytokines, and viral proteins. This capacity can be exploited to design multi-target heparin/HS-derived drugs for pharmacological interventions in a variety of pathologic conditions besides coagulation and thrombosis, including neoplasia and viral infection. The capsular K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor N-acetyl heparosan. The possibility of producing K5 polysaccharide derivatives by chemical and enzymatic modifications, thus generating heparin/HS-like compounds, has been demonstrated. These K5 polysaccharide derivatives are endowed with different biological properties, including anticoagulant/antithrombotic, antineoplastic, and anti-AIDS activities. Here, the literature data are discussed and the possible therapeutic implications for this novel class of multi-target "biotechnological heparin/HS" molecules are outlined.

  3. Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors.

    PubMed

    Cheng, Zheng-Xiang; Lan, Dan-Mei; Wu, Pei-Ying; Zhu, Yan-Hua; Dong, Yi; Ma, Lan; Zheng, Ping

    2008-03-01

    Dehydroepiandrosterone sulphate is one of the most important neurosteroids. In the present paper, we studied the effect of dehydroepiandrosterone sulphate on persistent sodium currents and its mechanism and functional consequence with whole-cell patch clamp recording method combined with a pharmacological approach in the rat medial prefrontal cortex slices. The results showed that dehydroepiandrosterone sulphate inhibited the amplitude of persistent sodium currents and the inhibitory effect was significant at 0.1 microM, reached maximum at 1 microM and decreased with the increase in the concentrations of above 1 microM. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was canceled by the Gi protein inhibitor and the protein kinase C inhibitor, but not by the protein kinase A inhibitor. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was also canceled by the sigma-1 receptor blockers and the sigma-1 receptor agonist could mimic the effect of dehydroepiandrosterone sulphate. Dehydroepiandrosterone sulphate had no significant influence on neuronal excitability but could significantly inhibit chemical inhibition of mitochondria-evoked increase in persistent sodium currents. These results suggest that dehydroepiandrosterone sulphate inhibits persistent sodium currents via the activation of sigma-1 receptors-Gi protein-protein kinase C-coupled signaling pathway, and the main functional consequence of this effect of DHEAS is presumably to protect neurons under ischemia.

  4. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum.

    PubMed

    Raposo, Maria Filomena de Jesus; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2014-04-17

    The influence of two culture media and three different concentrations of sulphate in the medium on the growth of two strains of Porphyridium cruentum and on the production, composition and viscoelastic characteristics, and antimicrobial properties of the sulphated exopolysaccharide (EPS) were studied. A Bohlin C50 rheometer was used to evaluate the viscosity and elasticity of the EPS solutions. HSV virus, types 1 and 2, Vaccinia virus and Vesicular stomatitis virus were used along with two Gram-negative (Escherichia coli and Salmonella enteritidis) and one Gram-positive (Staphylococcus aureus) bacteria, for testing the antimicrobial activity of EPS. The growth of microalgae was higher in NTIP medium and the production of EPS was enhanced by sulphate 21mM. The protein content of the EPS was enhanced by the addition of sulphate 52mM and 104mM; this concentration also induced an increase in sulphate content of the EPS. However, neither the contents of EPS in carbohydrates and uronic acids were affected by the culture medium supplementation in sulphate. In general, the EPS from the Spanish strain presented a higher antiviral activity than the EPS from the Israeli strain. All EPS extracts revealed a strong activity against V. stomatitis virus, higher than the activity of all chemical compounds tested. The EPS from the Israeli strain also presented antibacterial activity against S. enteritidis. Enrichment of the culture medium with sulphate improved protein and sulphate content of EPS. EPS extracts presented a relevant activity against V. stomatitis virus and S. enteritidis bacterium. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Toxicology studies of primycin-sulphate using a three-dimensional (3D) in vitro human liver aggregate model.

    PubMed

    Pénzes, Ágota; Mahmud Abdelwahab, Elhusseiny Mohamed; Rapp, Judit; Péteri, Zsanett A; Bovári-Biri, Judit; Fekete, Csaba; Miskei, György; Kvell, Krisztián; Pongrácz, Judit E

    2017-11-05

    Primycin-sulphate is a highly effective compound against Gram (G) positive bacteria. It has a potentially synergistic effect with vancomycin and statins which makes primycin-sulphate a potentially very effective preparation. Primycin-sulphate is currently used exclusively in topical preparations. In vitro animal hepatocyte and neuromuscular junction studies (in mice, rats, snakes, frogs) as well as in in vitro human red blood cell experiments were used to test toxicity. During these studies, the use of primycin-sulphate resulted in reduced cellular membrane integrity and modified ion channel activity. Additionally, parenteral administration of primycin-sulphate to mice, dogs, cats, rabbits and guinea pigs indicated high level of acute toxicity. The objective of this study was to reveal the cytotoxic and gene expression modifying effects of primycin-sulphate in a human system using an in vitro, three dimensional (3D) human hepatic model system. Within the 3D model, primycin-sulphate presented no acute cytotoxicity at concentrations 1μg/ml and below. However, even at low concentrations, primycin-sulphate affected gene expressions by up-regulating inflammatory cytokines (e.g., IL6), chemokines (e.g., CXCL5) and by down-regulating molecules of the lipid metabolism (e.g., peroxisome proliferator receptor (PPAR) alpha, gamma, etc). Down-regulation of PPAR alpha cannot just disrupt lipid production but can also affect cytochrome P450 metabolic enzyme (CYP) 3A4 expression, highlighting the need for extensive drug-drug interaction (DDI) studies before human oral or parenteral preparations can be developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  7. Hexagonal ZnO porous plates prepared from microwave synthesized layered zinc hydroxide sulphate via thermal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machovsky, Michal, E-mail: machovsky@ft.utb.cz; Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin; Kuritka, Ivo, E-mail: ivo@kuritka.net

    2013-10-15

    Graphical abstract: - Highlights: • Zinc hydroxy sulphate was synthesized in 3 min via microwave hydrothermal route. • Zinc hydroxy sulphate was converted into mesh like porous ZnO by calcining at 900°. • The process of transformation is topotactic. - Abstract: Layered zinc hydroxide sulphate (ZHS) was prepared by microwave-assisted hydrothermal precipitation of zinc sulphate monohydrate with hexamethylenetetramine. Under ambient conditions, the structure of ZHS determined by X-ray diffraction (XRD) was found to be a mixture of zinc hydroxide sulphate pentahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·5H{sub 2}O and tetrahydrate Zn{sub 4}SO{sub 4}(OH){sub 6}·4H{sub 2}O. Fourier transform infrared (FTIR) spectroscopy was usedmore » for characterization of the prepared materials. Based on the interpretation of ZHS's thermal decomposition profile obtained by thermogravimetric analysis, ZnO of high purity was prepared by calcination at 900 °C for 2 h. The structure of the resulting ZnO was confirmed by the XRD. The morphology examination by scanning electron microscopy revealed a porous mesh-like ZnO structure developed from the ZHS precursor at the expense of mass removal due to the release of water and sulphate during the calcination.« less

  8. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    NASA Astrophysics Data System (ADS)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  9. Tracing nitrates and sulphates in river basins using isotope techniques.

    PubMed

    Rock, L; Mayer, B

    2006-01-01

    The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing delta(34)S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.

  10. Sulphate partitioning into calcite: Experimental verification of pH control and application to seasonality in speleothems

    NASA Astrophysics Data System (ADS)

    Wynn, Peter M.; Fairchild, Ian J.; Borsato, Andrea; Spötl, Christoph; Hartland, Adam; Baker, Andy; Frisia, Silvia; Baldini, James U. L.

    2018-04-01

    Carbonate-associated sulphate (CAS) is a useful carrier of palaeoenvironmental information throughout the geologic record, particularly through its stable isotope composition. However, a paucity of experimental data restricts quantitative understanding of sulphate incorporation into carbonates, and consequently CAS concentrations and their diagenetic modifications are rarely interpreted. However, in the case of calcite speleothems, the remarkably high-resolution CAS records which are obtainable via modern microanalytical techniques represent a potentially invaluable source of palaeoenvironmental information. Here, we describe the results of controlled experiments of sulphate co-precipitation with calcite in freshwater solutions where pH, saturation state, and sulphate concentration were varied independently of each other. Solution pH is confirmed as the principal control on sulphate incorporation into calcite. The relative efficiency of incorporation was calculated as a partition coefficient DSO4 = (mSO4/mCO3)solid/(mSO4/mCO3)solution. High crystal growth rates (driven by either pH or saturation state) encouraged higher values of DSO4 because of an increasing concentration of defect sites on crystal surfaces. At low growth rates, DSO4 was reduced due to an inferred competition between sulphate and bicarbonate at the calcite surface. These experimental results are applied to understand the incorporation of sulphate into speleothem calcite. The experimentally determined pH-dependence suggests that strong seasonal variations in cave air PCO2 could account for annual cycles in sulphate concentration observed in stalagmites. Our new experimentally determined values of DSO4 were compared with DSO4 values calculated from speleothem-drip water monitoring from two caves within the Austrian and Italian Alps. At Obir cave, Austria, DSO4 (×105) varies between 11.1 (winter) and 9.0 (summer) and the corresponding figures for Ernesto cave, Italy, are 15.4 (winter) and 14

  11. The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert, Namibia

    NASA Astrophysics Data System (ADS)

    Eckardt, F. D.; Spiro, B.

    1999-02-01

    This study investigates the sulphur source of gypsum sulphate and dissolved groundwater sulphate in the Central Namib Desert, home to one of Africa's most extensive gypsum (CaSO 4·2H 2O) accumulations. It investigates previously suggested sulphate precursors such as bedrock sulphides and decompositional marine biogenic H 2S and studies the importance of other potential sources in order to determine the origin of gypsum and dissolved sulphate in the region. An attempt has been made to sample all possible sulphur sources, pathways and types of gypsum accumulations in the Central Namib Desert. We have subjected those samples to sulphur isotopic analyses and have compiled existing results. In addition, ionic ratios of Cl/SO 4 are used to determine the presence of non-sea-salt (NSS) sulphur in groundwater and to investigate processes affecting groundwater sulphate. In contrast to previous work, this study proposes that the sulphur cycle, and the formation of gypsum, in the Namib Desert appears to be dominated by the deposition of atmospheric sulphates of phytoplanktonic origin, part of the primary marine production of the Benguela upwelling cells. The aerosol sulphates are subjected to terrestrial storage within the gypsum deposits on the hyper-arid gravel plain and are traceable in groundwater including coastal sabkhas. The hypothesis of decompositional marine biogenic H 2S or bedrock sulphide sources, as considered previously for the Namib Desert, cannot account for the widespread accumulation of gypsum in the region. The study area in the Central Namib Desert, between the Kuiseb and Omaruru rivers, features extensive gypsum accumulations in a ca. 50-70 km wide band, parallel to the shore. They consist of surficial or shallow pedogenic gypsum crusts in the desert pavement, hydromorphic playa or sabkha gypsum, as thin isolated pockets on bedrock ridges and as discrete masses of gypsum selenite along some faults. The sulphur isotopic values (δ 34S ‰CDT) of these

  12. The soil sulphate effect and maize plant (Zea mays L.) growth of sulphate reducing bacteria (SRB) inoculation in acid sulfate soils with the different soil water condition

    NASA Astrophysics Data System (ADS)

    Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.

    2018-02-01

    The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).

  13. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-01-30

    The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined.

  14. Controlled hypotension for middle ear surgery: a comparison between remifentanil and magnesium sulphate.

    PubMed

    Ryu, J-H; Sohn, I-S; Do, S-H

    2009-10-01

    This prospective, randomized study was designed to compare remifentanil and magnesium sulphate during middle ear surgery in terms of postoperative pain and other complications. Eighty patients undergoing middle ear surgery were enrolled in the study. Patients were randomized into two groups of 40 to receive remifentanil (Group R) or magnesium sulphate (Group M) infusion. Propofol 2 mg kg(-1) was administered to induce anaesthesia, which was maintained using sevoflurane. Group R received a continuous infusion of remifentanil titrated between 3 and 4 ng ml(-1) using target-controlled infusion, whereas Group M received an i.v. magnesium sulphate bolus of 50 mg kg(-1) followed by a 15 mg kg(-1) h(-1) continuous infusion to maintain a mean arterial pressure (MAP) between 60 and 70 mm Hg. Haemodynamic variables, surgical conditions, postoperative pain, and adverse effects, such as postoperative nausea and vomiting (PONV) and shivering, were recorded. Controlled hypotension was well maintained in both groups. MAP and heart rate were higher in Group R than in Group M after operation. Surgical conditions were not different between the two groups. Postoperative pain scores were significantly lower in Group M than in Group R (P<0.05). Seventeen patients in Group R (43%) and seven patients in Group M (18%) developed PONV (P=0.01). Both magnesium sulphate and remifentanil when combined with sevoflurane provided adequate controlled hypotension and proper surgical conditions for middle ear surgery. However, patients administered magnesium sulphate had a more favourable postoperative course with better analgesia and less shivering and PONV.

  15. Sulphation of CaO-Based Sorbent Modified in CO2 Looping Cycles

    NASA Astrophysics Data System (ADS)

    Manovic, Vasilije; Anthony, Edward J.; Loncarevic, Davor

    CaO-based looping cycles for CO2 capture at high temperatures are based on cyclical carbonation of CaO and regeneration of CaCO3. The main limitation of natural sorbents is the loss of carrying capacity with increasing numbers of reaction cycles, resulting in spent sorbent ballast. Use of spent sorbent from CO2 looping cycles for SO2 capture is a possible solution investigated in this study. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain) and Katowice (Poland). Carbonation/calcination cycles were performed in a tube furnace with original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulphated in a thermogravimetric analyzer. Changes in the resulting pore structure were then investigated using mercury porosimetry. Final conversions of both spent and pretreated sorbents after longer sulphation times were comparable or higher than those observed for the original sorbents. Maximum sulphation levels strongly depend on sorbent porosity and pore surface area. The shrinkage of sorbent particles during calcination/cycling resulted in a loss of sorbent porosity (≤48%), which corresponds to maximum sulphation levels ˜55% for spent Kelly Rock and Katowice. However, this is ˜10% higher than for the original samples. By contrast, La Blanca limestone had more pronounced particle shrinkage during pretreatment and cycling, leading to lower porosity, <35%, resulting in sulphation conversion of spent samples <30%, significantly lower than for the original sample (45%). These results showed that spent sorbent samples from CO2 looping cycles can be used as sorbents for SO2 retention if significant porosity loss does not occur during CO2 reaction cycles. For spent Kelly Rock and Katowice samples final conversions are determined by the total pore volume available for the bulky CaSO4 product.

  16. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria.

    PubMed

    Balamurugan, P; Joshi, M Hiren; Rao, T S

    2011-10-01

    Culture and molecular-based techniques were used to characterize bacterial diversity in the cooling water system of a fast breeder test reactor (FBTR). Techniques were selected for special emphasis on sulphate-reducing bacteria (SRB). Water samples from different locations of the FBTR cooling water system, in addition to biofilm scrapings from carbon steel coupons and a control SRB sample were characterized. Whole genome extraction of the water samples and SRB diversity by group specific primers were analysed using nested PCR and denaturing gradient gel electrophoresis (DGGE). The results of the bacterial assay in the cooling water showed that the total culturable bacteria (TCB) ranged from 10(3) to 10(5) cfu ml(-1); iron-reducing bacteria, 10(3) to 10(5) cfu ml(-1); iron oxidizing bacteria, 10(2) to 10(3) cfu ml(-1) and SRB, 2-29 cfu ml(-1). However, the counts of the various bacterial types in the biofilm sample were 2-3 orders of magnitude higher. SRB diversity by the nested PCR-DGGE approach showed the presence of groups 1, 5 and 6 in the FBTR cooling water system; however, groups 2, 3 and 4 were not detected. The study demonstrated that the PCR protocol influenced the results of the diversity analysis. The paper further discusses the microbiota of the cooling water system and its relevance in biofouling.

  17. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures.

    PubMed

    Cai, Wei; Li, Yi; Niu, Lihua; Zhang, Wenlong; Wang, Chao; Wang, Peifang; Meng, Fangang

    2017-10-15

    The composition and distribution characteristics of bacterial communities in biofilms attached to hydraulic concrete structure (HCS) surfaces were investigated for the first time in four reservoirs in the middle and lower reaches of the Yangtze River Basin using 16S rRNA Miseq sequencing. High microbial diversity was found in HCS biofilms, and notable differences were observed in different types of HCS. Proteobacteria, Cyanobacteria and Chloroflexi were the predominant phyla, with respective relative abundances of 35.3%, 25.4% and 13.0%. The three most abundant genera were Leptolyngbya, Anaerolineaceae and Polynucleobacter. The phyla Beta-proteobacteria and Firmicutes and genus Lyngbya were predominant in CGP, whereas the phyla Cyanobacteria and Chloroflexi and genera Leptolyngbya, Anaerolinea and Polynucleobacter survived better in land walls and bank slopes. Dissolved oxygen, ammonia nitrogen and temperature were characterized as the main factors driving the bacterial community composition. The most abundant groups of metabolic functions were also identified as ammonia oxidizers, sulphate reducers, and dehalogenators. Additionally, functional groups related to biocorrosion were found to account for the largest proportion (14.0% of total sequences) in gate piers, followed by those in land walls (11.5%) and bank slopes (10.2%). Concrete gate piers were at the greatest risk of biocorrosion with the most abundant negative bacterial groups, especially for sulphate reducers. Thus, it should be paid high attention to the biocorrosion prevention of concrete gate piers. Overall, this study contributed to the optimization of microbial control and the improvement of the safety management for water conservation structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene.

    PubMed

    Hanin, M; Jabbouri, S; Quesada-Vincens, D; Freiberg, C; Perret, X; Promé, J C; Broughton, W J; Fellay, R

    1997-06-01

    Rhizobia secrete specific lipo-chitooligosaccharide signals (LCOs) called Nod factors that are required for infection and nodulation of legumes. In Rhizobium sp. NGR234, the reducing N-acetyl-D-glucosamine of LCOs is substituted at C6 with 2-O-methyl-L-fucose which can be acetylated or sulphated. We identified a flavonoid-inducible locus on the symbiotic plasmid pNGR234a that contains a new nodulation gene, noeE, which is required for the sulphation of NGR234 Nod factors (NodNGR). noeE was identified by conjugation into the closely related Rhizobium fredii strain USDA257, which produces fucosylated but non-sulphated Nod factors (NodUSDA). R. fredii transconjugants producing sulphated LCOs acquire the capacity to nodulate Calopogonium caeruleum. Furthermore, mutation of noeE (NGRdelta noeE) abolishes the production of sulphated LCOs and prevents nodulation of Pachyrhizus tuberosus. The sulphotransferase activity linked to NoeE is specific for fucose. In contrast, the sulphotransferase NodH of Rhizobium meliloti seems to be less specific than NoeE, because its introduction into NGRdelta noeE leads to the production of a mixture of LCOs that are sulphated on C6 of the reducing terminus and sulphated on the 2-O-methylfucose residue. Together, these findings show that noeE is a host-specificity gene which probably encodes a fucose-specific sulphotransferase.

  19. Aerobic sulfate reduction in microbial mats

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1991-01-01

    Measurements of bacterial sulfate reduction and dissolved oxygen (O2) in hypersaline bacterial mats from Baja California, Mexico, revealed that sulfate reduction occurred consistently within the well-oxygenated photosynthetic zone of the mats. This evidence that dissimilatory sulfate reduction can occur in the presence of O2 challenges the conventional view that sulfate reduction is a strictly anaerobic process. At constant temperature, the rates of sulfate reduction in oxygenated mats during daytime were similar to rates in anoxic mats at night: thus, during a 24-hour cycle, variations in light and O2 have little effect on rates of sulfate reduction in these mats.

  20. Conductance and bulk vertical detachment energy of hydrated sulphate and oxalate dianions: a theoretical study

    NASA Astrophysics Data System (ADS)

    Pathak, Arup Kumar

    2014-06-01

    Analytical expressions have been derived for the vertical detachment energy (VDE) for hydrated sulphate (SO2 -4) and oxalate (C2O2 -4) dianions that can be used to calculate the same over a wide range of cluster sizes including the bulk from the knowledge of VDE for a finite number of stable clusters. The calculated bulk detachment energies are found to be very good in agreement (within 5%) with the available experimental results for both the systems. It is observed that two or more water molecules will be essential for the stability of sulphate and oxalate dianions against spontaneous electron loss and this is consistent with the experiment. We have, for the first time, provided a scheme to calculate the radius of the solvent berg for sulphate and oxalate dianions. The calculated conductivity values for the sulphate and oxalate dianions using Stokes-Einstein relation and the radius of solvent berg are found to be very good in agreement (within 4%) with the available experimental results.

  1. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall

    NASA Astrophysics Data System (ADS)

    van Breemen, N.; Burrough, P. A.; Velthorst, E. J.; van Dobben, H. F.; de Wit, Toke; Ridder, T. B.; Reijnders, H. F. R.

    1982-10-01

    Acid rain commonly has high concentrations of dissolved SO2-4, NH+4 and NO-3. Sulphuric and nitric acids are usually considered to be the acidic components, whereas ammonium has a tendency to increase the pH of rainwater1. Ammonium can be transformed to nitric acid in soil but this source of acidity is generally less important than wet and dry deposition of free acids2,3. Here we describe the occurrence of high concentrations of ammonium in canopy throughfall (rainwater falling through the tree canopy) and stemflow in woodland areas in the Netherlands, resulting in acid inputs to soils two to five times higher than those previously described for acid atmospheric deposition2-5. The ammonium is present as ammonium sulphate, which probably forms by interaction of ammonia (volatilized from manure) with sulphur dioxide (from fossil fuels), on the surfaces of vegetation. After leaching by rainwater the ammonium sulphate reaching the soil oxidizes rapidly to nitric and sulphuric acid, producing extremely low pH values (2.8-3.5) and high concentrations of dissolved aluminium in the non-calcareous soils studied. Deposition of ammonium sulphate on the surfaces of vegetation and its environmental consequences are probably most important in areas with intensive animal husbandry.

  2. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J

    2010-01-01

    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less

  3. Optimisation of the zinc sulphate turbidity test for the determination of immune status.

    PubMed

    Hogan, I; Doherty, M; Fagan, J; Kennedy, E; Conneely, M; Crowe, B; Lorenz, I

    2016-02-13

    Failure of passive transfer of maternal immunity occurs in calves that fail to absorb sufficient immunoglobulins from ingested colostrum. The zinc sulphate turbidity test has been developed to test bovine neonates for this failure. The specificity of this test has been shown to be less than ideal. The objective was to examine how parameters of the zinc sulphate turbidity test may be manipulated in order to improve its diagnostic accuracy. One hundred and five blood samples were taken from calves of dairy cows receiving various rates of colostrum feeding. The zinc sulphate turbidity test was carried out multiple times on each sample, varying the solution strength, time of reaction and wavelength of light used and the results compared with those of a radial immunodiffusion test, which is the reference method for measuring immunoglobulin concentration in serum. Reducing the time over which the reaction occurs, or increasing the wavelength of light used to read the turbidity, resulted in decreased specificity without improving sensitivity. Increasing the concentration of the zinc sulphate solution used in the test was shown to improve the specificity without decreasing sensitivity. Examination of the cut-off points suggested that a lower cut-off point would improve the performance. British Veterinary Association.

  4. Stable Isotope Composition of Dissolved Sulphate and Carbonate in Selected Natural Systems.

    NASA Astrophysics Data System (ADS)

    Staniaszek, Piotr

    In this thesis, isotope and concentration data are used to discuss the origin of sulphate in different systems; lakes and groundwaters in the Crowsnest Pass and Kikomun Creek Park, hot and cold springs in the Rocky Mountains, and vegetation under the influence of anthropogenic SO _2 and/or biogenic H_2 S emissions. Since sulphur cycling is intertwined with carbon cycling, carbon isotope data were also obtained for dissolved carbonate in some systems. It was concluded that very little of the oxygen in sulphate in lakes and hot springs of western Canada was derived from the associated water. In lakes and groundwater in the Crowsnest Pass, two major sources of sulphur were identified: sulphate from evaporites (delta^{34} S = +26perthous, delta^{18}O positive) on the northern side of the pass, and sulphur from oxidation of sulphides on the southern side (delta ^{34}S and delta ^{18}O both negative). Although hundreds of kilometers apart, some springs were found to have isotopically similar SO_4 ^{2-}. This suggests a common source, e.g. anhydrite associated with Mississippian limestones and cherts. However, data for chemical parameters indicate that such a source is not homogeneous or other sources are involved for some ions. Each spring possesses individual composition traits. The delta^{13} C value of total dissolved carbon at spring orifices was found to vary linearly with temperature according to the relationship: delta^{13} C = 0.11 times t - 9.67perthous (r = 0.948). It is difficult to attribute such a relationship to biogenic processes which are expected to yield more variable delta^{13}C values. From a number of possible mechanisms, it would seem that a physical property such as the temperature dependent of CO _2 solubility might be the underlying cause. Sulphate in plant tissues is derived from the soil, atmospheric gaseous compounds, and perhaps mechanically trapped aerosols. Data for delta^ {18}O values of sulphate in plants have not been reported previously

  5. Ultrafine nano-network structured bacterial cellulose as reductant and bridging ligands to fabricate ultrathin K-birnessite type MnO2 nanosheets for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojuan; He, Mingqian; He, Ping; Li, Caixia; Liu, Huanhuan; Zhang, Xingquan; Ma, Yongjun

    2018-03-01

    In this work, nanostructured ultrathin K-birnessite type MnO2 nanosheets are successfully prepared by a rapid and environmently friendly hydrothermal method, which involves only a facile redox reaction between KMnO4 and nano-network structured bacterial cellulose with abundant hydroxyl groups. The results show that the unique three-dimensional interwoven structured bacterial cellulose acts as not only reductant but also bridging ligands for assembling nanoscaled building units to control the desired morphology of prepared MnO2. Furthermore, electrochemical performances of prepared MnO2 are investigated as electrode materials for supercapacitors by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M Na2SO4 electrolyte. The resulting ultrathin K-birnessite type MnO2 nanosheets based electrode exhibits higher capacitance (328.2 F g-1 at 0.2 A g-1), excellent rate capability (328.2 F g-1 and 200.4 F g-1 at 0.2 A g-1 and 2.0 A g-1, respectively) and satisfactory cyclic stability (91.6% of initial capacitance even after 2000 cycles at 3.0 A g-1). This work suggests that bacterial cellulose as reductant is a promising candidate in the development of nanostructures of metal oxides.

  6. Post-translational processing of progastrin: inhibition of cleavage, phosphorylation and sulphation by brefeldin A.

    PubMed Central

    Varro, A; Dockray, G J

    1993-01-01

    The precursor for the acid-stimulating hormone gastrin provides a useful model for studies of post-translational processing because defined sites of cleavage, amidation, sulphation and phosphorylation occur within a dodecapeptide sequence. The factors determining these post-translational processing events are still poorly understood. We have used brefeldin A, which disrupts transport from rough endoplasmic reticulum to the Golgi complex, to examine the mechanisms of cleavage, phosphorylation and sulphation of rat progastrin-derived peptides. Biosynthetic products were detected after immunoprecipitation using antibodies specific for the extreme C-terminus of progastrin, followed by reversed-phase and ion-exchange h.p.l.c. Gastrin cells incorporated [3H]tyrosine, [32P]phosphate and [35S]sulphate into both progastrin and its extreme C-terminal tryptic (nona-) peptide. Ion-exchange chromatography resolved four forms of the C-terminal tryptic fragment of progastrin which differed in whether they were phosphorylated at Ser96, sulphated at Tyr103, both or neither. The specific activity of [3H]tyrosine in the peak that was both phosphorylated and sulphated was higher than in the others. Brefeldin A inhibited the appearance of [3H]tyrosine-labelled C-terminal tryptic fragment but there was an accumulation of labelled progastrin and a peptide corresponding to the C-terminal 46 residues of progastrin. Brefeldin A also inhibited incorporation of 32P and 35S into both progastrin and its C-terminal fragment. Thus phosphorylation of Ser96, sulphation of Tyr103 and cleavage at Arg94-Arg95 depend on passage of newly synthesized progastrin along the secretory pathway; as brefeldin A is thought to act proximal to the trans-Golgi, these processing steps would appear to occur distal to this point. The data also indicate that the stores of unphosphorylated C-terminal tryptic fragment are not available for phosphorylation, implying that this modification occurs proximal to the secretory

  7. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  8. Assessment of Barium Sulphate Formation and Inhibition at Surfaces with Synchrotron X-ray Diffraction (SXRD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Mavredaki; A Neville; K Sorbie

    2011-12-31

    The precipitation of barium sulphate from aqueous supersaturated solutions is a well-known problem in the oil industry often referred to as 'scaling'. The formation and growth of barite on surfaces during the oil extraction process can result in malfunctions within the oil facilities and serious damage to the equipment. The formation of barium sulphate at surfaces remains an important topic of research with the focus being on understanding the mechanisms of formation and means of control. In situ synchrotron X-ray diffraction (SXRD) was used to investigate the formation of barium sulphate on a stainless steel surface. The effect of Poly-phosphinocarboxylicmore » acid (PPCA) and Diethylenetriamine-penta-methylenephosphonic acid (DETPMP) which are two commercial inhibitors for barium sulphate was examined. The in situ SXRD measurements allowed the identification of the crystal faces of the deposited barite in the absence and presence of the two inhibitors. The preferential effect of the inhibitors on some crystal planes is reported and the practical significance discussed.« less

  9. Sulphation of secreted phosphoprotein I (SPPI, osteopontin) is associated with mineralized tissue formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, T.; Todescan, R.; Goldberg, H.A.

    Secreted phosphoprotein I (SPPI) is a prominent structural protein in mineralized connective tissues. Rat bone cells in culture produce several forms of SPPI that differ in post-translational modifications such as phosphorylation and sulphation. To determine the significance of protein sulphation in bone formation, the synthesis of SPPI was studied in vitro using rat bone marrow cells (RBMC) which form bone-like tissue when grown in the presence of dexamethasone (Dex) and beta-glycerophosphate (beta-GP). In the presence of 10(-7) M Dex SPPI expression was stimulated 4-5-fold. Radiolabelling multilayered RBMCs for 48 h with (35S)-methionine, Na2(35SO4), or Na3(32PO4) revealed that two major phosphorylatedmore » forms of SPPI were secreted into the culture medium: a highly phosphorylated form migrating at 44 kDa on 15% SDS-PAGE and a less phosphorylated 55 kDa form. In the mineralized tissue formed in the presence of Dex and beta-GP, both forms of SPPI, in addition to proteoglycans and a 67 kDa protein, incorporated significant amounts of (35SO4). Sulphation of SPPI was not observed in the absence of mineral formation, indicating that the sulphation of SPPI is closely associated with mineralization and that it can be used as a sensitive and specific marker for the osteoblastic phenotype.« less

  10. Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production

    PubMed Central

    Okeke, Chiamaka A.; Ezekiel, Chibundu N.; Nwangburuka, Cyril C.; Sulyok, Michael; Ezeamagu, Cajethan O.; Adeleke, Rasheed A.; Dike, Stanley K.; Krska, Rudolf

    2015-01-01

    Bacterial diversity and community structure of two maize varieties (white and yellow) during fermentation/steeping for ogi production, and the influence of spontaneous fermentation on mycotoxin reduction in the gruel were studied. A total of 142 bacterial isolates obtained at 24–96 h intervals were preliminarily identified by conventional microbiological methods while 60 selected isolates were clustered into 39 OTUs consisting of 15 species, 10 genera, and 3 phyla by 16S rRNA sequence analysis. Lactic acid bacteria constituted about 63% of all isolated bacteria and the genus Pediococcus dominated (white maize = 84.8%; yellow maize = 74.4%). Pediococcus acidilactici and Lactobacillus paraplantarum were found at all steeping intervals of white and yellow maize, respectively, while P. claussenii was present only at the climax stage of steeping white maize. In both maize varieties, P. pentosaceus was found at 24–72 h. Mycotoxin concentrations (μg/kg) in the unsteeped grains were: white maize (aflatoxin B1 = 0.60; citrinin = 85.8; cyclopiazonic acid = 23.5; fumonisins (B1/B2/B3) = 68.4–483; zearalenone = 3.3) and yellow maize (aflatoxins (B1/B2/M1) = 22.7–513; citrinin = 16,800; cyclopiazonic acid = 247; fumonisins (B1/B2/B3) = 252–1,586; zearalenone = 205). Mycotoxins in both maize varieties were significantly (p < 0.05) reduced across steeping periods. This study reports for the first time: (a) the association of L. paraplantarum, P. acidilactici, and P. claussenii with ogi production from maize, (b) citrinin occurrence in Nigerian maize and ogi, and (c) aflatoxin M1, citrinin and cyclopiazonic acid degradation/loss due to fermentation in traditional cereal-based fermented food. PMID:26697001

  11. Spectrophotometric determination of sulphate in automotive fuel ethanol by sequential injection analysis using dimethylsulphonazo(III) reaction.

    PubMed

    de Oliveira, Fabio Santos; Korn, Mauro

    2006-01-15

    A sensitive SIA method was developed for sulphate determination in automotive fuel ethanol. This method was based on the reaction of sulphate with barium-dimethylsulphonazo(III) leading to a decrease on the magnitude of analytical signal monitored at 665 nm. Alcohol fuel samples were previously burned up to avoid matrix effects for sulphate determinations. Binary sampling and stop-flow strategies were used to increase the sensitivity of the method. The optimization of analytical parameter was performed by response surface method using Box-Behnker and central composite designs. The proposed sequential flow procedure permits to determine up to 10.0mg SO(4)(2-)l(-1) with R.S.D. <2.5% and limit of detection of 0.27 mg l(-1). The method has been successfully applied for sulphate determination in automotive fuel alcohol and the results agreed with the reference volumetric method. In the optimized condition the SIA system carried out 27 samples per hour.

  12. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors

    PubMed Central

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P. J.; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the

  13. Nature of the interaction of chondroitin 4-sulphate and chondroitin sulphate–proteoglycan with collagen

    PubMed Central

    Öbrink, Björn; Wasteson, Åke

    1971-01-01

    The electrostatic interaction of chondroitin sulphate and the chondroitin sulphate–proteoglycan with collagen was studied by chromatography of the glycosaminoglycan and the proteoglycan on a collagen gel. The observed binding between the macromolecules increased with decreasing pH and ionic strength, and was significant under physiological conditions. A study of the interaction between chondroitin sulphate and a preparation of soluble collagen, with a partition-equilibrium technique, afforded similar results. PMID:4256063

  14. Antifungal Long-Chain Alkenyl Sulphates Isolated from Culture Broths of the Fungus Chaetopsina sp.

    PubMed

    Crespo, Gloria; González-Menéndez, Víctor; de la Cruz, Mercedes; Martín, Jesús; Cautain, Bastien; Sánchez, Pilar; Pérez-Victoria, Ignacio; Vicente, Francisca; Genilloud, Olga; Reyes, Fernando

    2017-04-01

    During a high-throughput screening program focused on the discovery and characterization of new antifungal compounds, a total of 8320 extracts from Fundacion MEDINA's collection were screened against a panel of 6 fungal parasitic strains, namely Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis, Candida albicans , and Aspergillus fumigatus . A total of 127 extracts displayed antifungal properties and, after LC/MS dereplication, 10 were selected for further fractionation. Bioassay-guided fractionation from a 1-L fermentation of one of these extracts, belonging to the fungus Chaetopsina sp., led to the isolation of linoleyl sulphate ( 1 ), linolenyl sulphate ( 2 ), and oleyl sulphate ( 3 ) as the compounds responsible for the antifungal activity. These molecules were previously described as synthetic products with the ability to produce the allosteric inhibition of soybean lipoxygenase and human lipoxygenase. Georg Thieme Verlag KG Stuttgart · New York.

  15. [Concordance between the zinc sulphate flotation and centrifugal sedimentation methods for the diagnosis of intestinal parasites].

    PubMed

    Inês, Elizabete De Jesus; Pacheco, Flavia Thamiris Figueiredo; Pinto, Milena Carneiro; Mendes, Patrícia Silva de Almeida; Da Costa-Ribeiro, Hugo; Soares, Neci Matos; Teixeira, Márcia Cristina Aquino

    2016-12-01

    The diagnosis of intestinal parasitic infections depends on the parasite load, the specific gravity density of the parasite eggs, oocysts or cysts, and the density and viscosity of flotation or sedimentation medium where faeces are processed. To evaluate the concordance between zinc sulphate flotation and centrifugal sedimentation in the recovery of parasites in faecal samples of children. Faecal samples of 330 children from day care centers were evaluated by zinc sulphate flotation and centrifugal sedimentation techniques. The frequencies of detection of parasites by each method were determined and the agreement between the diagnostic techniques was evaluated using the kappa index, with 95% confidence intervals. The faecal flotation in zinc sulphate diagnosed significantly more cases of Trichuris trichiura infection when compared to centrifugal sedimentation (39/330; 11.8% vs. 13/330; 3.9%, p<0.001), with low diagnostic concordance between methods (kappa=0.264; 95% CI: 0.102-0.427). Moreover, all positive samples for Enterobius vermicularis eggs (n=5) and Strongyloides stercoralis larvae (n=3) were diagnosed only by zinc sulphate. No statistical differences were observed between methods for protozoa identification. The results showed that centrifugal flotation in zinc sulphate solution was significantly more likely to detect light helminths eggs such as those of T. trichiura and E. vermicularis in faeces than the centrifugal sedimentation process.

  16. A single exposure of sediment sulphate-reducing bacteria to oxytetracycline concentrations relevant to aquaculture enduringly disturbed their activity, abundance and community structure.

    PubMed

    Fernández, M L; Granados-Chinchilla, F; Rodríguez, C

    2015-08-01

    Although feed medicated with antibiotics is widely used in animal production to prevent and treat bacterial infections, the effect of these drugs on nontarget anaerobic bacteria is unknown. We aimed to clarify whether a single exposure of sulphate-reducing bacteria (SRB) from a tilapia pond to oxytetracycline (OTC) concentrations relevant to aquaculture impacts their function, abundance and community structure. To demonstrate changes in SO4(2-) content, SRB abundance, dsrB copy number and SRB diversity, sediment mesocosms were spiked with 5, 25, 50 and 75 mg OTC kg(-1) and examined for 30 days by means of ion chromatography, qPCR, cultivation and fluorescent in situ hybridization (FISH). On day 3, we measured higher SO4(2-) concentrations (ca. two-fold) and a reduction in dsrB copy numbers of approximately 50% in the treatments compared to the controls. After 30 days, a subtle yet measurable enrichment of bacteria from the order Desulfovibrionales occurred in mesocosms receiving ≥ 50 mg OTC kg(-1), notwithstanding that SRB counts decreased two orders of magnitude. OTC was dynamically and reversibly converted into 4-epioxytetracycline and other related compounds in a dose-dependent manner during the experiment. A single exposure to rather high OTC concentrations triggered functional and structural changes in a SRB community that manifested quickly and persisted for a month. This study improves our limited knowledge on the ecotoxicology of antibiotics in anaerobic environments. © 2015 The Society for Applied Microbiology.

  17. Thalassiolin D: a new flavone O-glucoside Sulphate from the seagrass Thalassia hemprichii.

    PubMed

    Hawas, Usama W; Abou El-Kassem, Lamia T

    2017-10-01

    Thalassiolin D, a new flavone O-glucoside sulphate along with three flavonoids, two steroids, p-hydroxybenzoic acid, 4,4'-dihydroxybenzophenone and nitrogen compound, octopamine were isolated from the seagrass Thalassia hemprichii, collected from the Saudi Red Sea coast. By extensive spectroscopic analysis including 1D and 2D NMR and MS data, the structure of the new compound was elucidated as diosmetin 7-O-β-glucosyl-2″-sulphate. The new compound displayed moderately in vitro antiviral HCV protease activity with IC 50 value 16 μM.

  18. New tools for evaluating protein tyrosine sulphation: Tyrosyl Protein Sulphotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors.

    PubMed

    Byrne, Dominic P; Li, Yong; Ngamlert, Pawin; Ramakrishnan, Krithika; Eyers, Claire E; Wells, Carrow; Drewry, David H; Zuercher, William J; Berry, Neil G; Fernig, David G; Eyers, Patrick A

    2018-06-22

    Protein tyrosine sulphation is a post-translational modification best known for regulating extracellular protein-protein interactions. Tyrosine sulphation is catalysed by two Golgi-resident enzymes termed Tyrosyl Protein Sulpho Transferases (TPSTs) 1 and 2, which transfer sulphate from the co-factor PAPS (3'-phosphoadenosine 5'-phosphosulphate) to a context-dependent tyrosine in a protein substrate. A lack of quantitative tyrosine sulphation assays has hampered the development of chemical biology approaches for the identification of small molecule inhibitors of tyrosine sulphation. In this paper, we describe the development of a non-radioactive mobility-based enzymatic assay for TPST1 and TPST2, through which the tyrosine sulphation of synthetic fluorescent peptides can be rapidly quantified. We exploit ligand binding and inhibitor screens to uncover a susceptibility of TPST1 and TPST2 to different classes of small molecules, including the anti-angiogenic compound suramin and the kinase inhibitor rottlerin. By screening the Published Kinase Inhibitor Set (PKIS), we identified oxindole-based inhibitors of the Ser/Thr kinase RAF as low micromolar inhibitors of TPST1 and TPST2.  Interestingly, unrelated RAF inhibitors, exemplified by the dual BRAF/VEGFR2 inhibitor RAF265, were also TPST inhibitors in vitro We propose that target-validated protein kinase inhibitors could be repurposed, or redesigned, as more-specific TPST inhibitors to help evaluate the sulphotyrosyl proteome. Finally, we speculate that mechanistic inhibition of cellular tyrosine sulphation might be relevant to some of the phenotypes observed in cells exposed to anionic TPST ligands and RAF protein kinase inhibitors. ©2018 The Author(s).

  19. Sulphur isotope fractionation during the reduction of elemental sulphur and thiosulphate by Dethiosulfovibrio spp.

    PubMed

    Surkov, Alexander V; Böttcher, Michael E; Kuever, Jan

    2012-01-01

    Stable sulphur isotope fractionation was investigated during reduction of thiosulphate and elemental sulphur at 28°C by growing batch cultures of the sulphur- and thiosulphate-reducing bacteria Dethiosulfovibrio marinus (type strain DSM 12537) and Dethiosulfovibrio russensis (type strain DSM 12538), using citrate as carbon and energy source. The cell-specific thiosulphate reduction rate in the growth phase was 7.4±3.9 fmol cell(-1) d(-1). The hydrogen sulphide produced was enriched in (32)S by 10.3±1 ‰ compared with total thiosulphate sulphur, close to previous experimental results observed for other sulphate- and non-sulphate-reducing bacteria. Elemental sulphur reduction yields sulphur isotope enrichment factors between-1.3 and-5.2 ‰ for D. russensis and-1.7 and-5.1 ‰ for D. marinus. The smaller fractionation effects are observed in the exponential growth phase (cellular rates between 5 and 70 fmol S° cell(-1) d(-1)) and enhanced discrimination under conditions of citrate depletion and cell lysis (cellular rates between 0.3 and 3 fmol S° cell(-1) d(-1)).

  20. Formulation procedure and spectral data for a coatings system optimally employing the high intrinsic reflectance of barium sulphate

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.; Stromberg, E.; Shai, C. M.; Arens, J. F.

    1972-01-01

    The use of polyvinyl alcohol as a binder for barium sulphate does not allow the intrinsically high reflectance of this material in the near vacuum ultraviolet to be optimally employed. In an effort to better utilize this property, completely inorganic coatings systems are described, where from the intrinsically high reflectance of barium sulphate in this spectral region can be gotten. Potassium sulphate turns out to be the preferred binder. Compositions, formulating procedures, and application techniques are included. For completeness, absolute and relative reflectance data are included for intra- and intersystem comparisons.

  1. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no; SINTEF Building and Infrastructure, Trondheim; Orsáková, D.

    2014-11-15

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding formore » NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.« less

  2. Effects of magnesium sulphate on postoperative coagulation, measured by rotational thromboelastometry (ROTEM(®)).

    PubMed

    Na, H S; Chung, Y H; Hwang, J W; Do, S H

    2012-08-01

    We investigated the effects of magnesium sulphate on blood coagulation profiles using rotational thromboelastometry in gynaecological patients undergoing pelviscopic surgery. Patients were randomly allocated to the magnesium group (n = 20) or control group (n = 20). The magnesium group received magnesium sulphate (50 mg.kg(-1) followed by continuous infusion of 15 mg.kg(-1).h(-1)), whereas the control group received the same volume of isotonic saline according to the same methods. Mean (SD) postoperative serum magnesium levels were 1.58 (0.17) mmol.l(-1) in the magnesium group compared with 0.98 (0.06) mmol.l(-1) in the control group (p < 0.001). Postoperative clotting time, clot formation time, α-angle and maximum clot firmness of INTEM, and clot formation time, α-angle, and maximum clot firmness of EXTEM were significantly different between the two groups (p < 0.05). Intra-operative infusion of magnesium sulphate seems to attenuate postoperative hypercoagulability by maintaining magnesium levels at the upper limit of the normal range. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  3. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.

    PubMed

    Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A

    2009-01-01

    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.

  4. Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.; Banks, C.J.

    2007-07-01

    The research looks at the feasibility of treating an alkaline sulphate-rich leachate arising from the co-disposal of municipal solid waste with cement kiln dust by means of an anaerobic filter (AF). This type of leachate with a high sulphate concentration is commonly prohibited for discharge to sewer and requires an on-site treatment solution. The AF used had a working volume of 4 l and contained reticulated polyurethane foam as the biomass support material. The filters were operated over a 152 day experimental period during which the COD loading onto the filter was increased from 0.76 to 7.63 kg COD m{supmore » -3} d{sup -1}. In the early stages of operation at low loading, soluble sulphides accumulated that inhibited methanogenic activity. This was restored by dosing FeCl{sub 3} to the reactor. The continued dosing allowed efficient COD removal of between 75% and 90% until the nominal retention time in the reactor was 3 days, at which point reactor performance declined significantly. The main mechanism for COD removal was by sulphate-reducing bacteria, which also resulted in up to 88% sulphate removal from the leachate. The average methane generation rate was 0.10 l g{sup -1} COD removed. The results indicate the potential for using this approach as a pre-treatment that could significantly reduce the COD load to a second stage treatment process, but problems associated with the implementation of the technology at a larger scale have been identified.« less

  5. Lowering Low-Density Lipoprotein Particles in Plasma Using Dextran Sulphate Co-Precipitates Procoagulant Extracellular Vesicles.

    PubMed

    Wang, Jiong-Wei; Zhang, Ya-Nan; Sze, Siu Kwan; van de Weg, Sander M; Vernooij, Flora; Schoneveld, Arjan H; Tan, Sock-Hwee; Versteeg, Henri H; Timmers, Leo; Lam, Carolyn S P; de Kleijn, Dominique P V

    2017-12-29

    Plasma extracellular vesicles (EVs) are lipid membrane vesicles involved in several biological processes including coagulation. Both coagulation and lipid metabolism are strongly associated with cardiovascular events. Lowering very-low- and low-density lipoprotein ((V)LDL) particles via dextran sulphate LDL apheresis also removes coagulation proteins. It remains unknown, however, how coagulation proteins are removed in apheresis. We hypothesize that plasma EVs that contain high levels of coagulation proteins are concomitantly removed with (V)LDL particles by dextran sulphate apheresis. For this, we precipitated (V)LDL particles from human plasma with dextran sulphate and analyzed the abundance of coagulation proteins and EVs in the precipitate. Coagulation pathway proteins, as demonstrated by proteomics and a bead-based immunoassay, were over-represented in the (V)LDL precipitate. In this precipitate, both bilayer EVs and monolayer (V)LDL particles were observed by electron microscopy. Separation of EVs from (V)LDL particles using density gradient centrifugation revealed that almost all coagulation proteins were present in the EVs and not in the (V)LDL particles. These EVs also showed a strong procoagulant activity. Our study suggests that dextran sulphate used in LDL apheresis may remove procoagulant EVs concomitantly with (V)LDL particles, leading to a loss of coagulation proteins from the blood.

  6. Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage.

    PubMed

    Shen, Peng; Zhang, Zecai; He, Yue; Gu, Cong; Zhu, Kunpeng; Li, Shan; Li, Yanxin; Lu, Xiaojie; Liu, Jiuxi; Zhang, Naisheng; Cao, Yongguo

    2018-03-01

    Magnolol, the main and active ingredient of the Magnolia officinalis, has been widely used in traditional prescription to the human disorders. Magnolol has been proved to have several pharmacological properties including anti-bacterial, anti-oxidant and anti-inflammatory activities. However, the effects of magnolol on ulcerative colitis (UC) have not been reported. The aim of this study was to investigate the protective effects and mechanisms of magnolol on dextran sulphate sodium (DSS)-induced colitis in mice. The results showed that magnolol significantly alleviated DSS-induced body weight loss, disease activities index (DAI), colon length shortening and colonic pathological damage. In addition, magnolol restrained the expression of TNF-α, IL-1β and IL-12 via the regulation of nuclear factor-κB (NF-κB) and Peroxisome proliferator-activated receptor-γ (PPAR-γ) pathways. Magnolol also enhanced the expression of ZO-1 and occludin in DSS-induced mice colonic tissues. These results showed that magnolol played protective effects on DSS-induced colitis and may be an alternative therapeutic reagent for colitis treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst.

    PubMed

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli; Kumar, Senthil

    2017-05-01

    Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m 2 , at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m 3  day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.

  8. Laboratory Study of Methane Flux from Acid Sulphate Soil in South Kalimantan

    NASA Astrophysics Data System (ADS)

    Annisa, W.; Cahyana, D.; Syahbuddin, H.; Rachman, A.

    2017-06-01

    Addition of organic matter in waterlogged conditions will enhance methanogenesis process that produces greenhouse gases. Fresh organic material is considered reactive because it contains carbons that is subject to decompose, therefore, when it exposed to acid sulphate soil, both in natural condition (aeration required) and intensive (aeration not required) will lower the value of redox potential. This experiment aimed to determine the flux of methane (CH4) from various locally available organic materials applied to acid sulphate soil. The experiment was arranged in factorial design with two factors. The first factor was the source of organic matter, i.e. fresh rice straw, fresh purun, fresh cattle manure, composted rice straw, composted purun and composted cattle manure, and control. The second factor was the management of organic matter i.e. placed on the soil surface with no tillage and mixed with soil during tillage. The results showed that application of fresh organic matter into inundated acid sulphate soil increased CH4 fluxes up to 23.78 µg CH4 g1 d1 which was higher than from composted organic matter (4.327 µg CH4.g1.d1). Methane flux due to organic matter management was significantly negatively (p=0.001) correlated with soil redox potential (Eh) with R2 of - 0.76. Organic matter placed on the soil surface with no tillage produced methane flux ranged from 0.33 to 20.78 g CH4 g1 d1, which was lower than methane flux produced from organic matter mixed with soil during tillage (0.38 to 27.27 g CH4 g1 d1). Composting organic matter before application and mixing them with the soil through tillage are highly recommended to reduce greenhouse gas emissions from cultivated acid sulphate soils.

  9. Extraction of nickel from Ramu laterite by sulphation roasting-water leaching

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Du, Shangchao; Liu, Guo; Tang, Jianwen; Lu, Yeda; Lv, Dong

    2017-08-01

    Recovery of nickel from a PNG nickel laterite with high content of iron by a sulphation roasting-water leaching has been studied. The influences of sulfuric acid/ore ratio, temperature of roasting and water on recovery efficiency were investigated. The effective separation of nickel over the co-existed elements including iron was achieved by the process with mixing, curing, roasting and leaching stages. Near 100% of nickel was leached from the roasted laterite by water at 80°C in an atmospheric air, while co-leaching of about 2% of iron, under the optimal pre-treatment conditions with the ratio of acid: ore around 0.45:1 and the roasting temperature about 650°C. The advantages and disadvantages of sulphation atmospheric leaching are compared with pressure acid leaching with engineering consideration.

  10. Drowning-out crystallisation of sodium sulphate using aqueous two-phase systems.

    PubMed

    Taboada, M E; Graber, T A; Asenjo, J A; Andrews, B A

    2000-06-23

    A novel method to obtain crystals of pure, anhydrous salt, using aqueous two-phase systems was studied. A concentrated salt solution is mixed with polyethylene glycol (PEG), upon which three phases are formed: salt crystals, a PEG-rich liquid and a salt-rich liquid. After removal of the solid salt, a two-phase system is obtained. Both liquid phases are recycled, allowing the design of a continuous process, which could be exploited industrially. The phase diagram of the system water-Na2SO4-PEG 3350 at 28 degrees C was used. Several process alternatives are proposed and their economic potential is discussed. The process steps needed to produce sodium sulphate crystals include mixing, crystallisation, settling and, optionally, evaporation of water. The yield of sodium sulphate increases dramatically if an evaporation step is used.

  11. Pilot study to evaluate 3 hygiene protocols on the reduction of bacterial load on the hands of veterinary staff performing routine equine physical examinations.

    PubMed

    Traub-Dargatz, Josie L; Weese, J Scott; Rousseau, Joyce D; Dunowska, Magdalena; Morley, Paul S; Dargatz, David A

    2006-07-01

    Reduction factors (RFs) for bacterial counts on examiners' hands were compared when performing a standardized equine physical examination, followed by the use of one of 3 hand-hygiene protocols (washing with soap, ethanol gel application, and chlorohexidine-ethanol application). The mean RFs were 1.29 log10 and 1.44 log10 at 2 study sites for the alcohol-gel (62% ethyl alcohol active ingredient) protocols and 1.47 log10 and 1.94 log10 at 2 study sites for the chlorhexidine-alcohol (61% ethyl alcohol plus 1% chlorhexidine active ingredients) protocols, respectively. The RFs were significantly different (P < 0.0001) between the hand-washing group and the other 2 treatment groups (the alcohol-gel and the chlorhexidine-alcohol lotion). The use of alcohol-based gels or chlorhexidine-alcohol hand hygiene protocols must still be proven effective in equine practice settings, but in this study, these protocols were equivalent or superior to hand washing for reduction in bacterial load on the hands of people after they perform routine physical examinations.

  12. Pilot study to evaluate 3 hygiene protocols on the reduction of bacterial load on the hands of veterinary staff performing routine equine physical examinations

    PubMed Central

    Traub-Dargatz, Josie L.; Weese, J. Scott; Rousseau, Joyce D.; Dunowska, Magdalena; Morley, Paul S.; Dargatz, David A.

    2006-01-01

    Abstract Reduction factors (RFs) for bacterial counts on examiners’ hands were compared when performing a standardized equine physical examination, followed by the use of one of 3 hand-hygiene protocols (washing with soap, ethanol gel application, and chlorohexidine-ethanol application). The mean RFs were 1.29 log10 and 1.44 log10 at 2 study sites for the alcohol-gel (62% ethyl alcohol active ingredient) protocols and 1.47 log10 and 1.94 log10 at 2 study sites for the chlorhexidine-alcohol (61% ethyl alcohol plus 1% chlorhexidine active ingredients) protocols, respectively. The RFs were significantly different (P < 0.0001) between the hand-washing group and the other 2 treatment groups (the alcohol-gel and the chlorhexidine-alcohol lotion). The use of alcohol-based gels or chlorhexidine-alcohol hand hygiene protocols must still be proven effective in equine practice settings, but in this study, these protocols were equivalent or superior to hand washing for reduction in bacterial load on the hands of people after they perform routine physical examinations. PMID:16898109

  13. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.

    PubMed

    Pender, Seán; Toomey, Margaret; Carton, Micheál; Eardly, Dónal; Patching, John W; Colleran, Emer; O'Flaherty, Vincent

    2004-02-01

    The diversity, population dynamics, and activity profiles of methanogens in anaerobic granular sludges from two anaerobic hybrid reactors treating a molasses wastewater both mesophilically (37 degrees C) and thermophilically (55 degrees C) during a 1081 day trial were determined. The influent to one of the reactors was supplemented with sulphate, after an acclimation period of 112 days, to determine the effect of competition with sulphate-reducing bacteria on the methanogenic community structure. Sludge samples were removed from the reactors at intervals throughout the operational period and examined by amplified ribosomal DNA (rDNA) restriction analysis (ARDRA) and partial sequencing of 16S rRNA genes. In total, 18 operational taxonomic units (OTUs) were identified, 12 of which were sequenced. The methanogenic communities in both reactors changed during the operational period. The seed sludge and the reactor biomass sampled during mesophilic operation, both in the presence and absence of sulphate, was characterised by a predominance of Methanosaeta spp. Following temperature elevation, the dominant methanogenic sequences detected in the non-sulphate supplemented reactor were closely related to Methanocorpusculum parvum. By contrast, the dominant OTUs detected in the sulphate-supplemented reactor upon temperature increase were related to the hydrogen-utilising methanogen, Methanobacterium thermoautotrophicum. The observed methanogenic community structure in the reactors correlated with the operational performance of the reactors during the trial and with physiological measurements of the reactor biomass. Both reactors achieved chemical oxygen demand (COD) removal efficiencies of over 90% during mesophilic operation, with or without sulphate supplementation. During thermophilic operation, the presence of sulphate resulted in decreased reactor performance (effluent acetate concentrations of >3000 mg/l and biogas methane content of <25%). It was demonstrated that

  14. Synthesis and conformational studies of carrabiose and its 4'-sulphate and 2,4'-disulphate.

    PubMed

    Parra, E; Caro, H N; Jiménez-Barbero, J; Martín-Lomas, M; Bernabé, M

    1990-12-15

    Methyl alpha-carrabioside (13), and its 4-sulphate (19) and 2,4-disulphate (20) have been synthesised via glycosylation of methyl 3,6-anhydro-2-O-benzyl-alpha-D-galactopyranoside with 2,3,6-tri-O-acetyl-4-O-benzyl-beta-D-galactopyranosyl bromide and subsequent partial or complete debenzylation, sulphation, and deprotection of the resulting disaccharide derivatives. Conformational studies have been carried out on 13, 19, and 20 on the basis of 1D and 2D 1H-n.m.r. spectroscopy and molecular mechanics calculations.

  15. Characterisation of chlorophyll a solubilised in sodium lauryl sulphate micelles

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Sapre, A. V.; Mittal, Jai P.

    1980-01-01

    Poisson statistics has been applied to the problem of solubilisation of chlorophyll a in sodium lauryl sulphate micelles. Dilution experiments have been carried out to support the finding that each unit of chlorophyll a contributing to the 740 nm band contains just one chlorophyll a molecule.

  16. Influence of the Apical Preparation Size and the Irrigant Type on Bacterial Reduction in Root Canal-treated Teeth with Apical Periodontitis.

    PubMed

    Rodrigues, Renata Costa Val; Zandi, Homan; Kristoffersen, Anne Karin; Enersen, Morten; Mdala, Ibrahimu; Ørstavik, Dag; Rôças, Isabela N; Siqueira, José F

    2017-07-01

    This clinical study evaluated the influence of the apical preparation size using nickel-titanium rotary instrumentation and the effect of a disinfectant on bacterial reduction in root canal-treated teeth with apical periodontitis. Forty-three teeth with posttreatment apical periodontitis were selected for retreatment. Teeth were randomly divided into 2 groups according to the irrigant used (2.5% sodium hypochlorite [NaOCl], n = 22; saline, n = 21). Canals were prepared with the Twisted File Adaptive (TFA) system (SybronEndo, Orange, CA). Bacteriological samples were taken before preparation (S1), after using the first instrument (S2), and then after the third instrument of the TFA system (S3). In the saline group, an additional sample was taken after final irrigation with 1% NaOCl (S4). DNA was extracted from the clinical samples and subjected to quantitative real-time polymerase chain reaction to evaluate the levels of total bacteria and streptococci. S1 from all teeth were positive for bacteria. Preparation to the first and third instruments from the TFA system showed a highly significant intracanal bacterial reduction regardless of the irrigant (P < .01). Apical enlargement to the third instrument caused a significantly higher decrease in bacterial counts than the first instrument (P < .01). Intergroup comparison revealed no significant difference between NaOCl and saline after the first instrument (P > .05). NaOCl was significantly better than saline after using the largest instrument in the series (P < .01). Irrespective of the type of irrigant, an increase in the apical preparation size significantly enhanced root canal disinfection. The disinfecting benefit of NaOCl over saline was significant at large apical preparation sizes. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Production of peptone from boso fish (Oxyeleotris marmorata) for bacterial growth medium

    NASA Astrophysics Data System (ADS)

    Priatni, S.; Kosasih, W.; Budiwati, T. A.; Ratnaningrum, D.

    2017-03-01

    Underutilized Oxyeleotris marmorata fish is abundant and widespread in Indonesia. The study aimed to use O. marmorata fish for peptone production using papain from dried latex of papaya fruit. The peptone was applied as nitrogen sources for bacterial growth. The resulted peptone was optimized at 50-65°C for 5-8 hr, using 0.1% of papain at pH 6.0. Characterization of peptone was based on the soluble protein content, N-amino content, % degree hydrolysis (DH), SDS PAGE profile and growth of bacteria Escherichia coli and Staphylococcus aureus. The results indicated that the optimum condition for hydrolysis was at 50°C for 7 hr (p < 0.05). Fish peptone soluble protein content was of 8.6 mg/mL, α-amino was 0.59%, and AN/TN 5.47%. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS PAGE) profile of peptone showed a major band with molecular weight between 17-28 kDa. Fish peptone effectiveness for E. coli and S. aureus growth was similar with commercial bacterial peptone.

  18. Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages.

    PubMed

    Amini, Shahrouz; Masic, Admir; Bertinetti, Luca; Teguh, Jefri Sanusi; Herrin, Jason S; Zhu, Xi; Su, Haibin; Miserez, Ali

    2014-01-01

    Stomatopods are shallow-water crustaceans that employ powerful dactyl appendages to hunt their prey. Deployed at high velocities, these hammer-like clubs or spear-like devices are able to inflict substantial impact forces. Here we demonstrate that dactyl impact surfaces consist of a finely-tuned mineral gradient, with fluorapatite substituting amorphous apatite towards the outer surface. Raman spectroscopy measurements show that calcium sulphate, previously not reported in mechanically active biotools, is co-localized with fluorapatite. Ab initio computations suggest that fluorapatite/calcium sulphate interfaces provide binding stability and promote the disordered-to-ordered transition of fluorapatite. Nanomechanical measurements show that fluorapatite crystalline orientation correlates with an anisotropic stiffness response and indicate significant differences in the fracture tolerance between the two types of appendages. Our findings shed new light on the crystallochemical and microstructural strategies allowing these intriguing biotools to optimize impact forces, providing physicochemical information that could be translated towards the synthesis of impact-resistant functional materials and coatings.

  19. Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages

    NASA Astrophysics Data System (ADS)

    Amini, Shahrouz; Masic, Admir; Bertinetti, Luca; Teguh, Jefri Sanusi; Herrin, Jason S.; Zhu, Xi; Su, Haibin; Miserez, Ali

    2014-01-01

    Stomatopods are shallow-water crustaceans that employ powerful dactyl appendages to hunt their prey. Deployed at high velocities, these hammer-like clubs or spear-like devices are able to inflict substantial impact forces. Here we demonstrate that dactyl impact surfaces consist of a finely-tuned mineral gradient, with fluorapatite substituting amorphous apatite towards the outer surface. Raman spectroscopy measurements show that calcium sulphate, previously not reported in mechanically active biotools, is co-localized with fluorapatite. Ab initio computations suggest that fluorapatite/calcium sulphate interfaces provide binding stability and promote the disordered-to-ordered transition of fluorapatite. Nanomechanical measurements show that fluorapatite crystalline orientation correlates with an anisotropic stiffness response and indicate significant differences in the fracture tolerance between the two types of appendages. Our findings shed new light on the crystallochemical and microstructural strategies allowing these intriguing biotools to optimize impact forces, providing physicochemical information that could be translated towards the synthesis of impact-resistant functional materials and coatings.

  20. Bacterial reduction of selenium in coal mine tailings pond sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddique, T.; Arocena, J.M.; Thring, R.W.

    2007-05-15

    Sediment from a storage facility for coal tailings solids was assessed for its capacity to reduce selenium (Se) by native bacterial community. One Se{sup 6+}-reducing bacterium Enterobacter hormaechei (Tar11) and four Se{sup 4+}-reducing bacteria, Klebsiella pneumoniae (Tar1), Pseudomonasfluorescens (Tar3), Stenotrophomonas maltophilia (Tar6), and Enterobacter amnigenus (Tar8) were isolated from the sediment. Enterobacter horinaechei removed 96% of the added Se{sup 6+} (0.92 mg L{sup -1} from the effluents when Se6+ was determined after 5 d of incubation. Analysis of the red precipitates showed that Se{sup 6+} reduction resulted in the formation of spherical particles ({lt}1.0 {mu} m) of Se 0 asmore » observed under scanning electron microscope (SEM) and confirmed by EDAX. Selenium speciation was performed to examine the fate of the added Se{sup 6+} in the sediment with or without addition of Enterobacter hormaechei cells. More than 99% of the added Se{sup 6+} (about 2.5 mg L{sup -1}) was transformed in the nonsterilized sediment (without Enterobacter hormaechei cells) as well as in the sterilized (heat-killed) sediment (with Enterobacter hormaechei cells). The results of this study suggest that the lagoon sediments at the mine site harbor Se{sup 6+}- and Se{sup 4+} -reducing bacteria and may be important sinks for soluble Se (Se{sup 6+} and Se{sup 4+}). Enterobacter hormaechei isolated from metal-contaminated sediment may have potential application in removing Se from industrial effluents.« less

  1. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    PubMed

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  2. Sulphur and oxygen isotopic characters of dissolved sulphate in groundwater from the Pleistocene aquifer in the southern Jordan Valley (Jericho area, Palestine).

    PubMed

    Khayat, Saed; Hötzl, Heinz; Geyer, Stefan; Ali, Wasim; Knöller, Kay; Strauch, Gerhard

    2006-09-01

    Sulphate and chloride concentrations in the shallow Pleistocene aquifer systems in the lower Jordan valley area indicate a general trend of increasing salinity eastward and southward. This study was conducted in one of the important sub-basins feeding the Pleo-Pleistocene aquifer in the Jericho area in the southern part of the valley using S and O isotopes of dissolved sulphate. The results show that sulphate has mainly two contributions to the groundwater. One is the surface seepage, which is present as a salty leachate form with the positive delta34Ssulphate values of primary gypsum in Lisan and Samara formations, and the second is the upwelling saline water which was in contact with a deep secondary gypsum, aragonites and salty rocks and rose up under heavy abstraction with depleted 34S in sulphate and relatively high sulphate and chloride content. The latest was clearly shown in the Arab Project wells to the east that is undergoing a continuous heavy abstraction. The isotopic signatures of S and O in these wells to the east show that this depleted 34S and highly concentrated sulphate might also indicate a dissolved sulphate originating from pyrite oxidation that results from the interaction with a pyrite-rich aquifer, which can well up with salty water under heavy abstraction and is oxidised in the upper aerobic shallow aquifer.

  3. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  4. Chondroitin sulphates A, B and C, collagen types I-IV and fibronectin in venous sinus of the red pulp in human spleen.

    PubMed

    Rovenská, E; Michalka, P; Papincák, J; Durdík, S; Jakubovský, J

    2005-01-01

    The morphological relationship of chondroitin sulphates A, B, and C, collagen types I-IV and fibronectin in the wall of venous sinuses of the red pulp in human spleen has not been a focus of interest among morphologists. Regarding the hypothesis that the structure of the spleen lends it the function of a blood filter the substances described in our study might play a significant role in the functional morphology. Of 146 human spleen surgical specimens, groups of 12 specimens each were examined under a light microscope using the method of antibodies against fibronectin, against collagen types I-IV and against chondroitin sulphates A, B, and C. The sections of the red pulp of human spleen stained with hematoxylin and eosin provided limited information about the wall of the sinuses. Chondroitin sulphates A and B were observed on the surface of sinus-lining cells (SLC), and fibronectin was detected on the surface of the annular fibers. Collagen type 11 was observed almost in the same places as chondroitin sulphates A and B. Collagen type IV was present in annular fibers of the wall of the sinus and in the basement membrane, like fibronectin. Chondroitin sulphate was not present in the walls of sinuses. Binding of antibodies against chondroitin sulphate A and against chondroitin sulphate B indicates the presence of chondroitin sulfates on the surface of SLC, where they probably play a role in helping the human organism to recognize alien and self substances. The presence of chondroitin,sulphates A and B probably affects inhibition of binding of cells with collagen type I, but not with fibronectin.

  5. Highly selective and sensitive simple sensor based on electrochemically treated nano polypyrrole-sodium dodecyl sulphate film for the detection of para-nitrophenol.

    PubMed

    Arulraj, Abraham Daniel; Vijayan, Muthunanthevar; Vasantha, Vairathevar Sivasamy

    2015-10-29

    An ultrasensitive and highly selective electrochemical sensor for the determination of p-nitrophenol (p-NP) was developed based on electrochemically treated nano polypyrrole/sodium dodecyl sulphate film (ENPPy/SDS film) modified glassy carbon electrode. The nano polypyrrole/sodium dodecyl sulphate film (NPPy/SDS film) was prepared and treated electrochemically in phosphate buffer solution. The surface morphology and elemental analysis of treated and untreated NPPy/SDS film were characterized by FESEM and EDX analysis, respectively. Wettability of polymer films were analysed by contact angle test. The hydrophilic nature of the polymer film decreased after electrochemical treatment. Effect of the pH of electrolyte and thickness of the ENPPy/SDS film on determination of p-NP was optimised by cyclic voltammetry. Under the optimised conditions, the p-NP was determined from the oxidation peak of p-hydroxyaminophenol which was formed from the reduction of p-NP in the reduction segment of cyclic voltammetry. A very good linear detection range (from 0.1 nM to 100 μM) and the best LOD (0.1 nM) were obtained for p-NP with very good selectivity. This detection limit is below to the allowed limit in drinking water, 0.43 μM, proposed by the U.S. Environmental Protection Agency (EPA) and earlier reports. Moreover, ENPPy/SDS film based sensor exhibits high sensitivity (4.4546 μA μM(-1)) to p-NP. Experimental results show that it is a fast and simple sensor for p-NP. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in the Florida Everglades?

    USGS Publications Warehouse

    Li, S.; Mendelssohn, I.A.; Hao, Chen; Orem, W.H.

    2009-01-01

    1. The expansion of Typha domingensis into areas once dominated by Cladium jamaicense in the Florida Everglades has been attributed to altered hydrology and phosphorus enrichment, although increased concentrations of sulphate and phosphorus often coincide. The potential importance of hydrogen sulphide produced from sulphate in the expansion of Typha has received little attention. The present study aimed to quantify the comparative growth and photosynthetic responses of Cladium and Typha to sulphate/sulphide. 2. Laboratory experiments showed that Cladium is less tolerant of sulphide than Typha. Cladium was adversely affected at sulphide concentrations of approximately 0.22 mm, while Typha continued to grow well and appeared healthy up to 0.69 mm sulphide. 3. Experiments in field mesocosms provided strong support for species-specific differences in physiology and growth. Regardless of interstitial sulphide concentrations attained, Typha grew faster and had a higher photosynthetic capacity than Cladium. However, sulphide concentrations in the mesocosms reached only 0.18 mm which, based on the hydroponic study, was insufficient to affect the growth or photosynthetic responses of either species. Nevertheless, the upper range of sulphide (0.25-0.375 mm) in Everglades' soil is high enough, based on our results, to impact Cladium but not Typha. 4. This research supports the hypothesis that sulphide accumulation could affect plant species differentially and modify species composition. Consequently, the role of sulphate loading should be considered, in conjunction with hydroperiod, phosphorus availability and disturbances, in developing future management plans for the Everglades. ?? 2009 Blackwell Publishing Ltd.

  7. Is white clover able to switch to atmospheric sulphur sources when sulphate availability decreases?

    PubMed

    Varin, Sébastien; Lemauviel-Lavenant, Servane; Cliquet, Jean-Bernard

    2013-05-01

    Sulphur (S) is one of the very few nutrients that plants can absorb either through roots as sulphate or via leaves in a gas form such as SO2 or H2S. This study was realized in a non-S-enriched atmosphere and its purpose was to test whether clover plants can increase their ability to use atmospheric S when sulphate availability decreases. A novel methodology measuring the dilution of (34)S provided from a nutrient solution by atmospheric (32)S was developed to measure S acquisition by Trifolium repens L. Clones of white clover were grown for 140 d in a hydroponic system with three levels of sulphate concentrations. S concentration in plants decreased with S deficiency and plant age. In the experimental conditions used here, S derived from atmospheric deposition (Sdad) constituted from 36% to 100% of the total S. The allocation of S coming from atmospheric and pedospheric sources depends on organs and compounds. Nodules appeared as major sinks for sulphate. A greater proportion of atmospheric S was observed in buffer-soluble proteins than in the insoluble S fraction. Decreasing the S concentration in the nutrient solution resulted in an increase in the Sdad:leaf area ratio and in an increase in the leaf:stolon and root:shoot mass ratios, suggesting that a plasticity in the partitioning of resources to organs may allow a higher gain of S by both roots and leaves. This study shows that clover can increase its ability to use atmospheric S even at low concentration when pedospheric S availability decreases.

  8. [The effect of cytostatic therapy with vincristin sulphate on disaccarchidases of rat intestinal mucosa (author's transl)].

    PubMed

    Hartwich, G; Leicher, H; Müller, H; Domschke, W; Matzkies, F

    1976-01-01

    This report shows that appropriate doses of vincristin sulphate may decrease disaccharidase activities of intestinal mucosa. With the higher doses of the cytostatic drug, the drastic drop of enzyme activities is associated with morphological alterations of the mucosa; disacchardiase activities remain depressed at least for a couple of days even after full morphological restoration of the mucosa. Studies in man should reveal whether similar intestinal lesions occur due to therapeutic doses of vincristin sulphate.

  9. Magnesium sulphate: an adjuvant to tracheal intubation without muscle relaxation--a randomised study.

    PubMed

    Aissaoui, Younes; Qamous, Youssef; Serghini, Issam; Zoubir, Mohammed; Salim, Jaafar Lalaoui; Boughalem, Mohammed

    2012-08-01

    Tracheal intubation without administration of a neuromuscular blocking drug is used frequently in anaesthesia. Several techniques and adjuvants have been tried to improve intubating conditions. Magnesium sulphate is an agent with analgesic, anaesthetic and muscle relaxant effects. To assess the effect of magnesium sulphate on intubating conditions after induction of anaesthesia without a neuromuscular blocking drug. Double-blinded randomised study. Sixty patients with American Society of Anesthesiologists physical status 1/2 scheduled for elective surgery under general anaesthesia were included. Avicenna Military Hospital between June 2010 and March 2011. Before induction of general anaesthesia, patients were assigned to receive either a 10-min infusion of magnesium sulphate 45 mg kg(-1) in 100 ml of isotonic saline (magnesium group, n = 30) or the same volume of saline (control group, n = 30). Anaesthesia was induced with fentanyl 3 μg kg(-1) followed 3 min later by propofol 2.5 mg kg(-1). Intubating conditions were evaluated by a blinded anaesthesiologist using the criteria of the Copenhagen consensus conference: ease of laryngoscopy, vocal cord position and/or movement and response to intubation or cuff inflation (cough or diaphragmatic movement). Intubating conditions were considered as acceptable (excellent or good) or unacceptable (poor). Mean arterial pressure and heart rate were also recorded during the study period. The two groups were comparable in their demographic profiles. Clinically acceptable intubating conditions were observed more frequently in the magnesium group than in the control group: 25 (83%) vs. 18 patients (60%) (P = 0.042). There was no failed intubation. There were no differences between the groups with regard to haemodynamic variables. Addition of magnesium sulphate to propofol and fentanyl at induction of anaesthesia significantly improved intubating conditions without administration of a neuromuscular blocking drug.

  10. Oilfield scales: controls on precipitation and crystal morphology of barite (barium sulphate)

    NASA Astrophysics Data System (ADS)

    Stark, A. I. R.; Wogelius, R. A.; Vaughan, D. J.

    2003-04-01

    The precipitation and subsequent build up of barite (barium sulphate) inside extraction tubing presents a costly problem for off shore oil wells which use seawater to mobilize oil during hydrocarbon recovery. Mixing of reservoir formation water containing Ba2+ ions and seawater containing SO_42- ions results in barite precipitation within the reservoir well-bore region and piping. Great effort has been expended in designing strategies to minimize scale formation but details of the reaction mechanism and sensitivity to thermodynamic variables are poorly constrained. Furthermore, few detailed studies have been carried out under simulated field conditions. Hence an experimental programme was designed to study barite formation under environmentally relevant conditions with control of several system variables during the precipitation reaction. Synthetic sea-water and formation-water brines containing sodium sulphate and barium chloride, respectively, were mixed to induce BaSO_4 precipitation. Experiments were carried out at high temperature (100^oC) and high pressure (500 bars) in double rocking autoclave bombs. Barite formation as a function of the addition of calcium, magnesium, and a generic phosphonate based scale inhibitor was investigated whilst maintaining constant pH, temperature and ionic strength (0.5159). Additional experiments were performed at ambient conditions for comparison. Data concerning nucleation, growth rates, and crystal morphology were obtained. ICP-AES data from the supernatant product solutions showed considerable variation in quantity of barium sulphate precipitated as a function of the listed experimental variables. For example, ESEM analysis of barium sulphate crystals showed a dramatic shift in crystal habit from the typical tabular habit produced in control experiments; experiments performed in the presence of foreign cations produced more equant crystals, while those experiments completed in the presence of the phosphonate scale inhibitor

  11. Identification of the sulphate ion as one of the key components of yeast spoilage of a sports drink through genome-wide expression analysis.

    PubMed

    Jayakody, Lahiru N; Tsuge, Keisuke; Suzuki, Akihiro; Shimoi, Hitoshi; Kitagaki, Hiroshi

    2013-01-01

    Because of the growing market for sports drinks, prevention of yeast contamination of these beverages is of significant concern. This research was performed to achieve insight into the physiology of yeast growing in sports drinks through a genome-wide approach to prevent microbial spoilage of sports drinks. The genome-wide gene expression profile of Saccharomyces cerevisiae growing in the representative sports drink was investigated. Genes that were relevant to sulphate ion starvation response were upregulated in the yeast cells growing in the drink. These results suggest that yeast cells are suffering from deficiency of extracellular sulphate ions during growth in the sports drink. Indeed, the concentration of sulphate ions was far lower in the sports drink than in a medium that allows the optimal growth of yeast. To prove the starvation of sulphate ions of yeast, several ions were added to the beverage and its effects were investigated. The addition of sulphate ions, but not chloride ions or sodium ions, to the beverage stimulated yeast growth in the beverage in a dose-dependent manner. Moreover, the addition of sulphate ions to the sports drink increased the biosynthesis of sulphur-containing amino acids in yeast cells and hydrogen sulphide in the beverage. These results indicate that sulphate ion concentration should be regulated to prevent microbial spoilage of sports drinks.

  12. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases.

    PubMed

    Ulčnik, A; Kralj Cigić, I; Pohleven, F

    2013-12-01

    The ability of two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and one brown-rot fungus (Gloeophyllum trabeum) to degrade two organochlorine insecticides, lindane and endosulfan, in liquid cultures was studied and dead fungal biomass was examined for adsorption of both insecticides from liquid medium. Lindane and endosulfan were also treated with fungal laccase and bacterial protein CotA, which has laccase activities. The amount of degraded lindane and endosulfan increased with their exposure period in the liquid cultures of both examined white-rot fungi. Endosulfan was transformed to endosulfan sulphate by T. versicolor and P. ostreatus. A small amount of endosulfan ether was also detected and its origin was examined. Degradation of lindane and endosulfan by a brown rot G. trabeum did not occur. Mycelial biomasses of all examined fungi have been found to adsorb lindane and endosulfan and adsorption onto fungal biomass should therefore be considered as a possible mechanism of pollutant removal when fungal degradation potentials are studied. Bacterial protein CotA performed more efficient degradation of lindane and endosulfan than fungal laccase and has shown potential for bioremediation of organic pollutants.

  13. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings - Old and New Insights

    NASA Astrophysics Data System (ADS)

    Machel, H.

    2006-12-01

    The association of dissolved sulfate and hydrocarbons is thermodynamically unstable in virtually all diagenetic environments. Hence, redox-reactions occur, whereby sulfate is reduced by hydrocarbons either bacterially (bacterial sulfate reduction = BSR) or inorganically (thermochemical sulfate reduction = TSR). Based on empirical evidence, BSR and TSR occur in two mutually exclusive thermal regimes, i.e., low-T and high-T diagenetic environments, respectively. BSR is common in diagenetic settings at T = 0 - 80 ° C. Above this T range, almost all sulfate reducers cease to metabolize. Those few types of hyperthermophiles that can form H2S at higher T appear to be very rare and do not normally occur and/or metabolize in geologic settings that are otherwise conducive to BSR. TSR appears to be common in geologic settings at T = 100 - 140 ° C, but in some settings T up to 180 ° C appears to be necessary. TSR does not have a sharply defined, generally valid minimum T because the onset and rate of TSR are governed by several factors that vary from place to place, i.e., the composition of the available organic reactants, kinetic inhibitors and/or catalysts, anhydrite dissolution rates, wettability, as well as migration and diffusion rates of the major reactants. A well- defined, specific minimum T for TSR can be expected only where the reservoir conditions are fairly homogeneous on the scale of a field or a play. BSR is geologically instantaneous in most geologic settings. Rates of TSR are much lower, but still geologically significant. TSR may form sour gas reservoirs and/or MVT deposits in several tens of thousands to a few million years at T = 100 - 140 ° C. BSR and TSR may be exothermic or endothermic, depending mainly on the presence or absence of specific organic reactants. The main organic reactants for BSR are organic acids and other products of aerobic or fermentative biodegradation, and those for TSR are branched and n-alkanes, followed by cyclic and mono

  14. Impact of sulphate geoengineering on rice yield in China

    NASA Astrophysics Data System (ADS)

    Zhan, Pei; Zhu, Wenquan; Zheng, Zhoutao; Zhang, Donghai; Li, Nan

    2017-04-01

    Sulphate geoengineering is one of the mostly discussed mitigation methods against global warming for its feasibility and inexpensiveness. With SO2 consistently injected into the stratosphere to balance the radiative force caused by anthropogenic emission, sulphate engineering will significantly influence the climate over the planet and moreover, affect agriculture productivity. In our study, BNU-ESM model was used to simulate the impact of sulphate engineering on climate and ORYZA(v3) model was used to simulate the impact of climate change on rice yield/production in China. Firstly, the ORYZA(v3) model was evaluated and calibrated using daily climate data, management data and county-level yield record during 1981-2010 in 19 provinces in China. Then climate anomalies of sulphate geoengineering simulated by BNU-ESM model was used to perturb the observed climate data over 318 stations evenly distribute in China during 1981-2010. In our study, a 30-year climate record of anomalies were extracted from BNU-ESM model to match the observed climate data, which consisted of a 15-year geoengineering record and a 15-year post-geoengineering record. Lastly, the perturbed climate data was used in calibrated-ORYZA(v3) model to simulate the rice yield over the 318 stations, which were later averaged into corresponding provincial yield. The results showed that (1) geoengineering would balance solar radiation for approximate 140 W ṡ m-2 per year (about 0.9 K per year in temperature), which would meet the pre-concerted goal of geoengineering but it would take only about 3 years for temperature to recover after the termination of geoengineering. In spite of this, there would be a declining of vapour pressure for about 0.12 KPa per year during geoengineering period, and it would take about 15 years to recover during post-geoengineering period. The simulation showed that geoengineering would have a little declining impact on average precipitation and would not have much impact on wind

  15. Magnesium sulphate has beneficial effects as an adjuvant during general anaesthesia for Caesarean section.

    PubMed

    Lee, D H; Kwon, I C

    2009-12-01

    The use of low concentrations of volatile anaesthetics with avoidance of opioids may induce intraoperative awareness and adverse haemodynamic responses during Caesarean section. Magnesium is well known to reduce anaesthetic requirements and to block noxious stimuli. We investigated whether i.v. magnesium sulphate modulates anaesthetic depth and analgesic efficacy during Caesarean section. Seventy-two patients undergoing Caesarean section were randomly assigned to receive i.v. saline (control group) or magnesium sulphate 30 mg kg(-1) bolus+10 mg kg(-1) h(-1) continuous infusion (Mg 30 group) or 45 mg kg(-1) bolus+15 mg kg(-1) h(-1) continuous infusion (Mg 45 group) after induction. Bispectral index (BIS) value, mean arterial pressure (MAP), and midazolam, fentanyl, and atracurium consumptions were recorded. BIS values [mean (sd)] at 7.5 and 10 min after surgery and before delivery in the control [64 (9), 66 (8), 67 (8), P<0.001] and the Mg 30 groups [62 (8), P<0.01; 64 (7), 63 (9), P<0.001] were higher than in the Mg 45 group [56 (8), 55 (8), 55 (7)]. MAP was greater in the control group (P<0.05) than in the Mg 30 and Mg 45 groups during the pre-delivery period. The magnesium groups required less midazolam (P<0.05), fentanyl (Mg 30, P<0.05; Mg 45, P<0.01), and atracurium (P<0.001) vs the control group. Preoperative i.v. magnesium sulphate attenuated BIS and arterial pressure increases during the pre-delivery period. Magnesium sulphate can be recommended as an adjuvant during general anaesthesia for Caesarean section to avoid perioperative awareness and pressor response resulting from inadequate anaesthesia, analgesia, or both.

  16. β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity

    PubMed Central

    Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodríguez-Rojas, A.; Blázquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I.

    2013-01-01

    Regardless of their targets and modes of action, subinhibitory concentrations of antibiotics can have an impact on cell physiology and trigger a large variety of cellular responses in different bacterial species. Subinhibitory concentrations of β-lactam antibiotics cause reactive oxygen species production and induce PolIV-dependent mutagenesis in Escherichia coli. Here we show that subinhibitory concentrations of β-lactam antibiotics induce the RpoS regulon. RpoS-regulon induction is required for PolIV-dependent mutagenesis because it diminishes the control of DNA-replication fidelity by depleting MutS in E. coli, Vibrio cholerae and Pseudomonas aeruginosa. We also show that in E. coli, the reduction in mismatch-repair activity is mediated by SdsR, the RpoS-controlled small RNA. In summary, we show that mutagenesis induced by subinhibitory concentrations of antibiotics is a genetically controlled process. Because this mutagenesis can generate mutations conferring antibiotic resistance, it should be taken into consideration for the development of more efficient antimicrobial therapeutic strategies. PMID:23511474

  17. Bacterial contamination of platelet components not detected by BacT/ALERT®.

    PubMed

    Abela, M A; Fenning, S; Maguire, K A; Morris, K G

    2018-02-01

    To investigate the possible causes for false negative results in BacT/ALERT ® 3D Signature System despite bacterial contamination of platelet units. The Northern Ireland Blood Transfusion Service (NIBTS) routinely extends platelet component shelf life to 7 days. Components are sampled and screened for bacterial contamination using an automated microbial detection system, the BacT/ALERT ® 3D Signature System. We report on three platelet components with confirmed bacterial contamination, which represent false negative BacT/ALERT ® results and near-miss serious adverse events. NIBTS protocols for risk reduction of bacterial contamination of platelet components are described. The methodology for bacterial detection using BacT/ALERT ® is outlined. Laboratory tests, relevant patient details and relevant follow-up information are analysed. In all three cases, Staphylococcus aureus was isolated from the platelet residue and confirmed on terminal sub-culture using BacT/ALERT ® . In two cases, S. aureus with similar genetic makeup was isolated from the donors. Risk reduction measures for bacterial contamination of platelet components are not always effective. Automated bacterial culture detection does not eliminate the risk of bacterial contamination. Visual inspection of platelet components prior to release, issue and administration remains an important last line of defence. © 2017 British Blood Transfusion Society.

  18. Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation.

    PubMed

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2008-05-01

    The decolorization and reduction of COD of dyeing wastewater from a cotton textile mill was conducted using catalytic thermal treatment (thermolysis) accompanied with/without coagulation. Thermolysis in presence of a homogeneous copper sulphate catalyst was found to be the most effective in comparison to other catalysts (FeCl(3), FeSO(4), CuO, ZnO and PAC) used. A maximum reduction of chemical oxygen demand (COD) and color of dyeing wastewater of 66.85% and 71.4%, respectively, was observed with a catalyst concentration of 5 kg/m(3) at pH 8. Commercial alum was found most effective coagulant among various coagulants (aluminum potassium sulphate, PAC, FeCl(3) and FeSO(4)) tested during coagulation operations, resulting in 58.57% COD and 74% color reduction at pH 4 and coagulant dose of 5 kg/m(3). Coagulation of the clear fluid (supernatant) obtained after treatment by thermolysis at the conditions previously used resulted in an overall reduction of 89.91% COD and 94.4% color at pH 4 and a coagulant dose of 2 kg/m(3). The application of thermolysis followed by coagulation, thus, is the most effective treatment method in removing nearly 90% COD and 95% color at a lower dose of coagulant (2 kg/m(3)). The sludge thus produced would contain lower inorganic mass coagulant and, therefore, less amount of inorganic sludge.

  19. Effect of fly ash content towards Sulphate resistance of oil palm shell lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Fadzil, M. Y.; Nazrin Akmal, A. Z. Muhammad; Ahmad, S. Wan; Nur Azzimah, Z.; Hanafi, H. Mohd; Mohamad Hafizuddin, R.

    2018-04-01

    Both oil palm shell (OPS) and fly ash are by-product generated from the industries. Disposal of these by-product as wastes cause negative impact to the environment. The use of both oil palm shell and fly ash in concrete is seen as an economical solution for making green and denser concrete. The primary aim of this research is to determine the effects of FA utilization as sand replacement in oil palm shell lightweight aggregate concrete (OPS LWAC) towards sulphate resistance. Five concrete mixes containing fly ash as sand replacement namely 0%, 10%, 20%, 30% and 40% were prepared in these experimental work. All mixes were cast in form of cubes before subjected to sulphate solution for the period of 5 months. It was found that addition of 10% fly ash as sand replacement content resulted in better sulphate resistance of OPS LWAC. The occurrence of pozzolanic reaction due to the presence of FA in concrete has consumed the vulnerable Calcium hydroxide to be secondary C-S-H gel making the concrete denser and more durable.

  20. Bowel preparation for colonoscopy with magnesium sulphate and low-volume polyethylene glycol.

    PubMed

    Tepeš, Bojan; Mlakar, Dominika N; Metličar, Tanja

    2014-06-01

    Patient compliance with bowel cleansing procedures represents one of the most objectionable aspects of colonoscopy. Adverse reactions to the purgative may result in failure to complete the preparation, inadequate visualization of the colon, polyp and even carcinoma miss rate and unwillingness to attend a follow-up colonoscopy. The primary objective of the study was to evaluate the effectiveness of bowel cleansing with magnesium sulphate and low-volume polyethylene glycol (PEG) with electrolytes. The second objective was to evaluate whether bowel cleansing was better in participants scheduled for morning colonoscopies or afternoon colonoscopies. Magnesium sulphate mineral water (2 l) and 2 l of low-volume PEG and electrolytes solution were used as our bowel cleansing protocol. A total of 13 914 participants, who participated in the Slovenian colorectal cancer screening programme in the period between 2009 and 2011, were included. Excellent bowel preparation was achieved in 11 484 (82.61%) participants; 1894 (13.62%) participants had good bowel preparation, 439 (3.16%) participants had fair bowel preparation and 85 (0.61%) participants had poor bowel preparation. Better results were achieved in the afternoon colonoscopies and in younger participant groups (P<0.001). No serious side effects of bowel cleansing were reported. This is the first study to use magnesium sulphate mineral water and PEG plus electrolytes for bowel cleansing. We found excellent bowel cleansing in 82.61% participants and in more participants if colonoscopy was performed in the afternoon.

  1. Effects of magnesium sulphate on coagulation after laparoscopic colorectal cancer surgery, measured by rotational thromboelastometry (ROTEM® ).

    PubMed

    Na, H S; Shin, H J; Kang, S B; Hwang, J W; Do, S H

    2014-12-01

    We investigated the effects of magnesium sulphate on blood coagulation profiles using rotational thromboelastometry in patients undergoing laparoscopic colorectal cancer surgery. Patients were randomly allocated to the magnesium group (n = 22) or control group (n = 22). The magnesium group received intravenous magnesium sulphate (50 mg.kg(-1) followed by a continuous infusion of 15 mg.kg(-1) .h(-1) ), whereas the control group received the same volume of isotonic saline. Mean (SD) postoperative serum magnesium levels were 1.60 (0.13) mmol.l(-1) in the magnesium group compared with 0.98 (0.06) mmol.l(-1) in the control group (p < 0.001). All maximum clot firmness values of ROTEM analysis were significantly lower on the third postoperative day in the magnesium group compared with the control group (p < 0.05). We conclude that ROTEM analysis demonstrated that intra-operative administration of intravenous magnesium sulphate reduces blood hypercoagulability in patients undergoing laparoscopic colorectal cancer surgery. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  2. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    PubMed Central

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  3. Effect of copper sulphate treatment on natural phytoplanktonic communities.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Deluchat, Véronique; Briand, Jean-François; Lenain, Jean-François; Baudu, Michel; Amblard, Christian

    2006-12-01

    Copper sulphate treatment is widely used as a global and empirical method to remove or control phytoplankton blooms without precise description of the impact on phytoplanktonic populations. The effects of two copper sulphate treatments on natural phytoplanktonic communities sampled in the spring and summer seasons, were assessed by indoor mesocosm experiments. The initial copper-complexing capacity of each water sample was evaluated before each treatment. The copper concentrations applied were 80 microg l(-1) and 160 microg l(-1) of copper, below and above the water complexation capacity, respectively. The phytoplanktonic biomass recovered within a few days after treatment. The highest copper concentration, which generated a highly toxic environment, caused a global decrease in phytoplankton diversity, and led to the development and dominance of nanophytoplanktonic Chlorophyceae. In mesocosms treated with 80 microg l(-1) of copper, the effect on phytoplanktonic community size-class structure and composition was dependent on seasonal variation. This could be related to differences in community composition, and thus to species sensitivity to copper and to differences in copper bioavailability between spring and summer. Both treatments significantly affected cyanobacterial biomass and caused changes in the size-class structure and composition of phytoplanktonic communities which may imply modifications of the ecosystem structure and function.

  4. Polyferric sulphate: preparation, characterisation and application in coagulation experiments.

    PubMed

    Zouboulis, A I; Moussas, P A; Vasilakou, F

    2008-07-15

    The process of coagulation is a core environmental protection technology, which is mainly used in the water or wastewater treatment facilities. Research is now focused on the development of inorganic pre-polymerised coagulants. A characteristic example is PFS (polyferric sulphate), a relatively new pre-polymerised inorganic coagulant with high cationic charge. In this paper, the role of major parameters, including temperature, types of chemical reagents, ratio r=[OH]/[Fe], rate of base addition in the preparation stages of PFS were investigated. Furthermore, the prepared PFS was characterised based on typical properties, such as the percentage of the polymerised iron present in the compound, z-potential, pH, etc. Moreover, dynamics of coagulation process were examined by means of the Photometric Dispersion Analyzer (PDA). Finally, the coagulation efficiency of PFS in treating kaolin suspension and biologically pre-treated wastewater was evaluated in comparison with the respective conventional coagulant agent. The results indicate that certain parameters, such as the r value, the rate of base addition and the duration and temperature of the polymerisation stage, significantly affected the properties of the PFS. Additionally, the prepared PFS polymerised coagulants exhibit a significantly better coagulation performance than the respective non-polymerised one, i.e. ferric sulphate.

  5. Maternal adverse effects of different antenatal magnesium sulphate regimens for improving maternal and infant outcomes: a systematic review

    PubMed Central

    2013-01-01

    Background Antenatal magnesium sulphate, widely used in obstetrics to improve maternal and infant outcomes, may be associated with adverse effects for the mother sufficient for treatment cessation. This systematic review aimed to quantify maternal adverse effects attributed to treatment, assess how adverse effects vary according to different regimens, and explore women’s experiences with this treatment. Methods Bibliographic databases were searched from their inceptions to July 2012 for studies of any design that reported on maternal adverse effects associated with antenatal magnesium sulphate given to improve maternal or infant outcomes. Primary outcomes were life-threatening adverse effects of treatment (death, cardiac arrest, respiratory arrest). For randomised controlled trials, data were meta-analysed, and risk ratios (RR) pooled using fixed-effects or random-effects models. For non-randomised studies, data were tabulated by design, and presented as RR, odds ratios or percentages, and summarised narratively. Results A total of 143 publications were included (21 randomised trials, 15 non-randomised comparative studies, 32 case series and 75 reports of individual cases), of mixed methodological quality. Compared with placebo or no treatment, magnesium sulphate was not associated with an increased risk of maternal death, cardiac arrest or respiratory arrest. Magnesium sulphate significantly increased the risk of 'any adverse effects’ overall (RR 4.62, 95% CI 2.42-8.83; 4 trials, 13,322 women), and treatment cessation due to adverse effects (RR 2.77; 95% CI 2.32-3.30; 5 trials, 13,666 women). Few subgroup differences were observed (between indications for use and treatment regimens). In one trial, a lower dose regimen (2 g/3 hours) compared with a higher dose regimen (5 g/4 hours) significantly reduced treatment cessation (RR 0.05; 95% CI 0.01-0.39, 126 women). Adverse effect estimates from studies of other designs largely supported data from randomised

  6. Biosedimentary and geochemical constraints on the precipitation of mineral crusts in shallow sulphate lakes

    NASA Astrophysics Data System (ADS)

    Cabestrero, Óscar; del Buey, Pablo; Sanz-Montero, M. Esther

    2018-04-01

    Seasonal desiccation of Mg2+-(Na+)-(Ca2+)-SO42--(Cl-) saline lakes in La Mancha (Central Spain) that host microbial mats led to the precipitation of hydrated Na-Mg sulphates and gypsum. Sulphates precipitated in the submerged conditions form extensive biolaminites, whilst in marginal areas they produce thin crusts. Sedimentological, mineralogical, petrographic and high resolution textural studies reveal that the crusts were formed within the benthic microbial mats that thrive at salinities ranging from 160 to 340 g·L-1. The minerals of the crusts are primary bloedite (Na2Mg(SO4)2·4H2O), epsomite (MgSO4·7H2O), gypsum (CaSO4·2H2O) and mirabilite (Na2SO4·10H2O), as well as secondary hexahydrite (MgSO4·6H2O) and thenardite (Na2SO4). Primary bloedite crystals, which form the framework of surficial and submerged crusts are seen to nucleate subaqueously and grow incorporatively within the matgrounds. Displacive and incorporative epsomite grows on previous bloedite crystals and also on the ground. Mirabilite is precipitated rapidly at the brine-air interface over bloedite and epsomite. Hexahydrite and thenardite are formed due to dehydration of epsomite and mirabilite, respectively. Hydrochemical modeling with PHREEQC indicated that evaporitic biolaminites are forming from brines undersaturated with respect to bloedite, epsomite and mirabilite, which suggests that the microorganisms contribute to the heterogeneous nucleation of the sulphates in the microbial mats. Unlike carbonates, the influence of microbes on the growth and morphology of complicated double salts such as bloedite has not been documented previously and provides a new perspective on the formation of hydrated sulphate minerals that are common on Earth as well as other planets.

  7. Exacerbation of alopecia areata: A possible complication of sodium tetradecyl sulphate foam sclerotherapy treatment for varicose veins.

    PubMed

    Whiteley, Mark S; Smith, Victoria C

    2017-01-01

    A 40-year-old woman with a history of alopecia areata related to stress or hormonal changes was treated for bilateral primary symptomatic varicose veins (CEAP clinical score C2S) of pelvic origin, using a staged procedure. Her first procedure entailed pelvic vein embolisation of three pelvic veins using 14 coils and including foam sclerotherapy of the tributaries, using 3% sodium tetradecyl sulphate. Following this procedure, she had an exacerbation of alopecia areata with some moderate shedding of hair. Subsequently, she underwent endovenous laser ablation under local anaesthetic without incident. Seven months after the pelvic vein embolisation, she underwent foam sclerotherapy of leg and labial varicose veins using sodium tetradecyl sulphate. Two days following this procedure, she had a severe exacerbation of alopecia areata with gross shedding of hair. These two episodes of exacerbation of alopecia areata appear to be associated with sodium tetradecyl sulphate foam sclerotherapy of veins.

  8. Blueberry husks, rye bran and multi-strain probiotics affect the severity of colitis induced by dextran sulphate sodium.

    PubMed

    Håkansson, Asa; Bränning, Camilla; Adawi, Diya; Molin, Göran; Nyman, Margareta; Jeppsson, Bengt; Ahrné, Siv

    2009-01-01

    The enteric microbiota is a pivotal factor in the development of intestinal inflammation in humans but probiotics, dietary fibres and phytochemicals can have anti-inflammatory effects. The aim of this study was to evaluate the therapeutic effect of multi-strain probiotics and two conceivable prebiotics in an experimental colitis model. Sprague-Dawley rats were fed a fibre-free diet alone or in combination with Lactobacillus crispatus DSM 16743, L. gasseri DSM 16737 and Bifidobacterium infantis DSM 15158 and/or rye bran and blueberry husks. Colitis was induced by 5% dextran sulphate sodium (DSS) given by oro-gastric tube. Colitis severity, inflammatory markers, gut-load of lactobacilli and Enterobacteriaceae, bacterial translocation and formation of carboxylic acids (CAs) were analysed. The disease activity index (DAI) was lower in all treatment groups. Viable counts of Enterobacteriaceae were reduced and correlated positively with colitis severity, while DAI was negatively correlated with several CAs, e.g. butyric acid. The addition of probiotics to blueberry husks lowered the level of caecal acetic acid and increased that of propionic acid, while rye bran in combination with probiotics increased caecal CA levels and decreased distal colonic levels. Blueberry husks with probiotics reduced the incidence of bacterial translocation to the liver, colonic levels of myeloperoxidase, malondialdehyde and serum interleukin-12. Acetic and butyric acids in colonic content correlated negatively to malondialdehyde. A combination of probiotics and blueberry husks or rye bran enhanced the anti-inflammatory effects compared with probiotics or dietary fibres alone. These combinations can be used as a preventive or therapeutic approach to dietary amelioration of intestinal inflammation.

  9. Intravenous magnesium sulphate infusion in the management of very severe tetanus in a child: a descriptive case report.

    PubMed

    Puliyel, Mammen M; Pillai, Rajappan; Korula, Sophy

    2009-02-01

    We report a 7-year-old boy with very severe tetanus treated with continuous infusion of magnesium sulphate for the control of spasms and severe autonomic dysfunction which was refractory to deep sedation and mechanical ventilation. The infusion was not associated with any adverse effects and he made an uneventful recovery. We recommend the use of intravenous magnesium sulphate infusion as an inexpensive and highly effective modality in severe tetanus.

  10. Greener iodination of arenes using sulphated ceria-zirconia catalysts in polyethylene glycol

    EPA Science Inventory

    An environmentally benign method for the selective monoiodination of diverse aromatic compounds has been developed using reusable sulphated ceria-zirconia under mild conditions. The protocol provides moderate to good yields of aryl iodides in PEG-200 as a greener solvent. The cat...

  11. Bacterial population dynamics during uranium reduction andre-oxidation: Application of a novel high density oligonucleotidemicroarray approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, Eoin L.; DeSantis, Todd Z.; Joyner, Dominique C.

    2006-01-30

    Reduction of soluble uranium U(VI) to less-soluble uraniumU(IV) is a promising approach to minimize migration from contaminatedaquifers. It is generally assumed that, under constant reducingconditions, U(IV) is stable and immobile; however, in a previous study,we documented reoxidation of U(IV) under continuous reducing conditions(Wan et al., Environ. Sci. Technol. 2005, 39:6162 6169). To determine ifchanges in microbial community composition were a factor in U(IV)reoxidation, we employed a high-density phylogenetic DNA microarray (16Smicroarray) containing 500,000 probes to monitor changes in bacterialpopulations during this remediation process. Comparison of the 16Smicroarray with clone libraries demonstrated successful detection andclassification of most clone groups. Analysis ofmore » the most dynamic groupsof 16S rRNA gene amplicons detected by the 16S microarray identified fiveclusters of bacterial subfamilies responding in a similar manner. Thisapproach demonstrated that amplicons of known metal-reducing bacteriasuch as Geothrix fermentans (confirmed by quantitative PCR) and thosewithin the Geobacteraceae were abundant during U(VI) reduction and didnot decline during the U(IV) reoxidation phase. Significantly, it appearsthat the observed reoxidation of uranium under reducing conditionsoccurred despite elevated microbial activity and the consistent presenceof metal-reducing bacteria. High-density phylogenetic microarraysconstitute a powerful tool, enabling the detection and monitoring of asubstantial portion of the microbial population in a routine, accurate,and reproducible manner.« less

  12. Investigation of the effects of intravenous magnesium sulphate on cardiac rhythm in acute myocardial infarction.

    PubMed Central

    Roffe, C.; Fletcher, S.; Woods, K. L.

    1994-01-01

    OBJECTIVE--To examine the effect of doubling serum magnesium concentration on the incidence of arrhythmias in patients with suspected acute myocardial infarction. DESIGN--Randomised double blind clinical trial. SETTING--Coronary care unit of a teaching hospital. PATIENTS--Clinical data were collected on 2316 randomised patients with suspected acute myocardial infarction. Holter monitoring was performed in a subgroup of 70 patients and analysed in 48 patients in whom acute myocardial infarction was confirmed. INTERVENTIONS--By random allocation, patients received either an intravenous loading dose of 8 mmol magnesium sulphate over five minutes plus 65 mmol over the next 24 hours, or equal volumes of saline. MAIN OUTCOME MEASURES--(a) Clinically documented arrhythmias; (b) use of antiarrhythmic treatments, cardioversion, and insertion of a pacemaker; (c) incidence of all abnormal rhythms during Holter monitoring. RESULTS--In the main trial the incidence of rhythm disturbance while in the coronary care unit (expressed as the odds ratio (OR) for magnesium: placebo and its 95% confidence interval) was not significantly different between treatment groups for ventricular fibrillation (OR 0.74; 0.46 to 1.20), ventricular tachycardia (OR 0.87; 0.63 to 1.20), supraventricular tachycardia (OR 0.69; 0.38 to 1.26), atrial fibrillation (OR 0.92; 0.69 to 1.23), or heart block of any degree (OR 1.17; 0.83 to 1.65). Sinus bradycardia was significantly more common in the magnesium group (OR 1.38; 1.03 to 1.85; p = 0.02). These findings were corroborated by the use of treatments for rhythm disturbance and the data from Holter monitoring. CONCLUSION--The regimen of intravenous magnesium sulphate used here had no significant effect on arrhythmia in acute myocardial infarction. The reduction in mortality that has been shown with this form of treatment is not attributable to suppression of life threatening rhythm disturbances. PMID:8130021

  13. Formulation Development and Evaluation of Fast Disintegrating Tablets of Salbutamol Sulphate for Respiratory Disorders

    PubMed Central

    Sharma, Deepak

    2013-01-01

    Recent developments in fast disintegrating tablets have brought convenience in dosing to pediatric and elderly patients who have trouble in swallowing tablets. The objective of the present study was to prepare the fast disintegrating tablet of salbutamol sulphate for respiratory disorders for pediatrics. As precision of dosing and patient's compliance become important prerequisites for a long-term treatment, there is a need to develop a formulation for this drug which overcomes problems such as difficulty in swallowing, inconvenience in administration while travelling, and patient's acceptability. Hence, the present investigation were undertaken with a view to develop a fast disintegrating tablet of salbutamol sulphate which offers a new range of products having desired characteristics and intended benefits. Superdisintegrants such as sodium starch glycolate was optimized. Different binders were optimized along with optimized superdisintegrant concentration. The tablets were prepared by direct compression technique. The tablets were evaluated for hardness, friability, weight variation, wetting time, disintegration time, and uniformity of content. Optimized formulation was evaluated by in vitro dissolution test, drug-excipient compatibility, and accelerated stability study. It was concluded that fast disintegrating tablets of salbutamol sulphate were formulated successfully with desired characteristics which disintegrated rapidly; provided rapid onset of action; and enhanced the patient convenience and compliance. PMID:23956881

  14. Two ultrastructurally distinct tubulin paracrystals induced in sea-urchin eggs by vinblastine sulphate.

    PubMed

    Starling, D

    1976-01-01

    Two types of ultrastructurally distinct tubulin paracrystals have been induced in sea-urchin eggs with vinblastine sulphate (VLB) under different sets of conditions. One type of paracrystal appears to consist of hexagonally-close packed microtubules and closely resembles paracrystals present in mammalian cells treated with vinblastine or vincristine sulphate, but not previously reported in sea-urchin eggs. The other type is also made up of tubulin subunits, but these do not seem to have polymerized into microtubules. Both types of paracrystal are induced in sea-urchin eggs in the presence of VLB at a time when tubulin subunits would not normally polymerize. Possible mechanisms for tubulin activation and the induction of paracrystal formation are discussed in respect to the available information on the binding sites of the tubulin subunits.

  15. Tetanus toxoid purification: chromatographic procedures as an alternative to ammonium-sulphate precipitation.

    PubMed

    Stojićević, Ivana; Dimitrijević, Ljiljana; Dovezenski, Nebojša; Živković, Irena; Petrušić, Vladimir; Marinković, Emilija; Inić-Kanada, Aleksandra; Stojanović, Marijana

    2011-08-01

    Given an existing demand to establish a process of tetanus vaccine production in a way that allows its complete validation and standardization, this paper focuses on tetanus toxoid purification step. More precisely, we were looking at a possibility to replace the widely used ammonium-sulphate precipitation by a chromatographic method. Based on the tetanus toxin's biochemical characteristics, we have decided to examine the possibility of tetanus toxoid purification by hydrophobic chromatography, and by chromatographic techniques based on interaction with immobilized metal ions, i.e. chelating chromatography and immobilized metal affinity chromatography. We used samples obtained from differently fragmented crude tetanus toxins by formaldehyde treatment (assigned as TTd-A and TTd-B) as starting material for tetanus toxoid purification. Obtained results imply that purification of tetanus toxoid by hydrophobic chromatography represents a good alternative to ammonium-sulphate precipitation. Tetanus toxoid preparations obtained by hydrophobic chromatography were similar to those obtained by ammonium-sulphate precipitation in respect to yield, purity and immunogenicity. In addition, their immunogenicity was similar to standard tetanus toxoid preparation (NIBSC, Potters Bar, UK). Furthermore, the characteristics of crude tetanus toxin preparations had the lowest impact on the final purification product when hydrophobic chromatography was the applied method of tetanus toxoid purification. On the other hand, purifications of tetanus toxoid by chelating chromatography or immobilized metal affinity chromatography generally resulted in a very low yield due to not satisfactory tetanus toxoid binding to the column, and immunogenicity of the obtained tetanus toxoid-containing preparations was poor. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. I.V. infusion of magnesium sulphate during spinal anaesthesia improves postoperative analgesia.

    PubMed

    Hwang, J-Y; Na, H-S; Jeon, Y-T; Ro, Y-J; Kim, C-S; Do, S-H

    2010-01-01

    In a randomized, double-blind, prospective study, we have evaluated the effect of i.v. infusion of magnesium sulphate during spinal anaesthesia on postoperative analgesia and postoperative analgesic requirements. Forty patients undergoing total hip replacement arthroplasty under spinal anaesthesia were included. After the induction of spinal anaesthesia, the magnesium group (Group M) received magnesium sulphate 50 mg kg(-1) for 15 min and then 15 mg kg(-1) h(-1) by continuous i.v. infusion until the end of surgery. The saline group (Group S) received the same volume of isotonic saline over the same period. After surgery, a patient-controlled analgesia (PCA) device containing morphine and ketorolac was provided for the patients. Postoperative pain scores, PCA consumption, and the incidences of shivering, postoperative nausea, and vomiting were evaluated immediately after surgery, and at 30 min, 4, 24, and 48 h after surgery. Serum magnesium concentrations were checked before the induction of anaesthesia, immediately after surgery, and at 1 and 24 h after surgery. Postoperative pain scores were significantly lower in Group M at 4, 24, and 48 h after surgery (P<0.05). Cumulative postoperative PCA consumptions were also significantly lower in Group M at 4, 24, and 48 h after surgery (P<0.05). Postoperative magnesium concentrations were higher in Group M (P<0.05 at 4, 24, and 48 h after surgery), but no side-effects associated with hypermagnesemia were observed. Haemodynamic variables and the incidences of shivering, nausea, and vomiting were similar in the two groups. I.V. magnesium sulphate administration during spinal anaesthesia improves postoperative analgesia.

  17. Determination of Gentamicin Sulphate Composition and Related Substances in Pharmaceutical Preparations by LC with Charged Aerosol Detection

    PubMed Central

    Stypulkowska, Karolina; Fijalek, Zbigniew; Sarna, Katarzyna

    2010-01-01

    A new, simple and repeatable liquid chromatography method with charged aerosol detection (LC-CAD) for the determination of gentamicin sulphate composition and related substances has been developed. Gentamicin lacks of chromophores, therefore its determination is quite problematic. Using a universal CAD enables to achieve good separation without sample derivatization. Mass spectrometry was employed to confirm the LC-CAD peak profile. The proposed method was validated and applied for the determination of gentamicin sulphate composition and related substances in pharmaceutical preparations. PMID:21212825

  18. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-05-30

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the "Wenner" resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC.

  19. Long-Term Behaviour of Fly Ash and Slag Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    PubMed Central

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-01-01

    Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958

  20. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    PubMed Central

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  1. Arsenic uptake in bacterial calcite

    NASA Astrophysics Data System (ADS)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  2. Reductive dissolution of As(V)-Fe oxyhydroxides: an experimental insight at biogeochemical interfaces in soil

    NASA Astrophysics Data System (ADS)

    Dia, A.; Davranche, M.; Fakih, M.; Nowack, B.; Morin, G.; Gruau, G.

    2009-04-01

    Iron (III) oxides are ubiquitous components of soils, sediments, aquifers and geological materials. Trace metals associate with Fe (III) oxides as adsorbed or co-precipitated species and, consequently the biogeochemical cycles of Fe and trace metals are closely linked. Using a new monitoring tool recently developed, this study was dedicated to understand how do interplay biological and mineralogical (crystallographic and specific surface area) controls in the Fe oxyhydroxide reductive dissolution within soils and which can be the consequences on associated trace metal release. For this purpose, polymer slides covered by synthetic As-spiked ferrihydrite (As-Fh) or As-spiked lepidocrocite (As-Lp) were inserted into an organic-rich wetland soil in non conventional columns system under anaerobic conditions. This technique was developed to allow the insertion of slides into a structured soil without significant disturbance and to avoid the mechanical abrasion of oxides from slides that would occur in an equilibrium batch system under stirring. Slides were recovered after different periods of time to evaluate (i) the impact of (bio)reduction on both Fe-oxide dissolution and secondary mineral precipitation and, (ii) the subsequent effects on As mobility. XRF analyses of the slides were conducted before and after contact with the soil to determine the amount of Fe and associated As remaining on the slides. Fe(II), acetate, nitrate, sulphate and total metals of the soil solution was followed through time by ion chromatography and ICP-MS measurements. The important bacterial colonization and occurrence of biofilm evidenced by SEM analyses of the slides suggested the presence of biologically mediated processes. As previously shown elsewhere the kinetics of the suspected occurring bacterial reduction differ significantly from abiotic reduction data from literature. The important point is that conversely to what has been observed in published experimental data, the dissolution

  3. Preventing cerebral palsy in preterm labour: a multiorganisational quality improvement approach to the adoption and spread of magnesium sulphate for neuroprotection

    PubMed Central

    Burhouse, Anna; Lea, Charlotte; Ray, Stephen; Bailey, Hannah; Davies, Ruth; Harding, Hannah; Howard, Rachel; Jordan, Sharon; Menzies, Noshin; White, Sarah; Phillips, Kathryn; Luyt, Karent

    2017-01-01

    Magnesium sulphate has been demonstrated to be an effective neuroprotectant for babies delivered prematurely (under 37 weeks’ gestational age). Antenatal administration reduces infant mortality and cerebral palsy (CP); however, uptake in the UK has been significantly lower than other countries. A quality improvement (QI) project (PReventing Cerebral palsy in Pre Term labour (PReCePT)) was carried out in the West of England, UK, to raise awareness of evidence and to improve the uptake of magnesium sulphate as neuroprotectant in preterm deliveries. Five National Health Service (NHS) Trusts and the West of England Academic Health Science Network participated in the QI project. The project was underpinned by a multifaceted QI approach that included: patient and clinical coproduction of resources; recruitment of clinical champions to support the local microsystems and create a stimulating/supporting environment for change; Plan, Do, Study, Act cycles; training for over 600 NHS staff and awareness raising and strategic influencing of key leaders. A baseline audit and regular measurement of the number of eligible women receiving magnesium sulphate was undertaken at each hospital site, and the overall programme was evaluated using data from an international benchmarking organisation for neonatal care outcomes—the Vermont Oxford Network. During the project 664 staff received magnesium sulphate training. The use of magnesium sulphate increased across the West of England from an average baseline of 21% over the 2 years preceding the project to 88% by the conclusion of the project. The project was also able to influence the development of a national data collection process for benchmarking the use of magnesium sulphate for neuroprotection in preterm deliveries in the U.K. PReCePT appears to have had a favourable effect on the uptake of magnesium sulphate across the West of England. The project has also provided learning about how to stimulate adoption and spread of

  4. Structural, thermal and optical properties of a semiorganic nonlinear optical single crystal: glycine zinc sulphate.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2007-10-01

    Glycine zinc sulphate salt was synthesized and the solubility and metastable zonewidth were estimated from the aqueous solution. Single crystals of glycine zinc sulphate were grown by solvent evaporation method from aqueous solution. Grown crystals were characterized by X-ray diffraction and FT-IR spectral analyses. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties of the crystal were investigated by thermogravimetric analysis. Microhardness study was carried out on (01-1) face of the grown crystal. Its powder second harmonic generation efficiency was measured using Nd:YAG laser and the value was observed to be 0.7 times that of potassium dihydrogen orthophosphate.

  5. Application of 57Fe-enriched synthetic ferrihydrite to speciate the product of bacterial reduction

    NASA Astrophysics Data System (ADS)

    Larsen, Ole; Bender Koch, Chr.

    2000-07-01

    We have sampled a clay lens with evidence of sulfide reduction from a texturally stratified sandy aquifer at Rømø, Denmark. A minor amount of synthetic, pure 57Fe ferrihydrite was added to this sample and allowed to react for up to three months. The initial sample, the 57Fe ferrihydrite, and samples taken from the reaction mixture were investigated by Mössbauer spectroscopy at temperatures between 15 and 298 K as sampled and following exposure to oxygen. The initial sample only contained Fe(II) (33% of the iron) and Fe(III) in silicates. The Fe(III) in the ferrihydrite is reduced to Fe(II) as evidenced by an increase of this component by bacterial activity. The Fe(II) component remains paramagnetic at temperatures down to 15 K. Similarly to naturally reduced sediments the new-formed Fe(II) is extremely reactive towards molecular oxygen. Following oxidation the reformed Fe(III) is found as ferrihydrite. The bonding of the Fe(II) is by electrostatical bonding (adsorbed) to the layer silicates as evidenced by a temperature scanning of the sample between 80 and 270 K.

  6. Isotopic composition of sulphates from meteoric precipitation as an indicator of pollutant origin in Wrocław (SW Poland).

    PubMed

    Gorka, Maciej; Jedrysek, Mariusz-Orion; Strapoc, Dariusz

    2008-06-01

    This paper describes the results of isotopic analyses of (i) hydrogen and oxygen in water (delta DH2O and delta18OH2O ) and (ii) sulphur and oxygen in sulphates (delta34Ssulphate and delta18Osulphate) from atmospheric precipitation collected within a one-year period between 25 May 2004 and 25 May 2005 in Wrocław (SW Poland). The resulting equation of Local Meteoric Water Line for Wrocław is delta D=6.373xdelta18O-0.047, (r2=0.97, n=32). The delta34Ssulphate varies from 1.1 to 4.2 per thousand (with an average of 2.5 per thousand), delta18Osulphate varies from 9.0 to 16.7 per thousand (with an average of 13.8 per thousand) and delta18OH2O varies from-0.8 to-16.3 per thousand (with an average of-8.2 per thousand). The above results indicate two main sources of sulphates in Wrocław precipitation: (i) low-temperature secondary sulphates forming in situ in Wrocław from the atmospheric SO2 as well as precipitation water (heterogeneous and homogeneous pathways oxidation) and (ii) high-temperature primary sulphates forming in rapid high-temperature hydratation of SO3- in an immediate proximity of industrial chimneys. We hypothesise that the secondary low-temperature type of sulphates is probably formed from the local sulphur and oxygen reservoirs, whereas the primary high-temperature type is allochthonous and it is probably transported from industrial areas located outside of Wrocław.

  7. Effects of sulphate addition and sulphide inhibition on microbial fuel cells.

    PubMed

    Ieropoulos, I; Gálvez, A; Greenman, J

    2013-01-10

    The effects of adding sulphate in: (i) standard activated sludge microbial fuel cells (MFCs) and (ii) larger-scale leachate-treating columns - both as individual units and as a system connected in cascade - are reported. S-replete power output was ∼2-fold higher than that of the S-deplete MFC. Furthermore, the effects of evolved sulphide (S(2-)) inhibition were investigated. The overall decrease in power output from the sulphide inhibitor (Na(2)MoO(4)) additions was 83% for the S-replete and 90% for the S-deplete. The second phase with the leachate treating units shows an improvement of 32-86% (depended on leachate strength) in current output as a result of adding sulphate. When leachate column MFCs were connected fluidically in series, the amount of Na(2)SO(4) made available downstream was decreasing (increase in power was 99%, 40% and 12% for columns in cascade). Results demonstrated the beneficial effects of added sulphur sources to both activated sludge and leachate-treating MFCs. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    NASA Astrophysics Data System (ADS)

    Richardson, C. Doc; Hinman, Nancy W.; Scott, Jill R.

    2013-10-01

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compounds associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.

  9. Multiple Pathways to Bacterial Load Reduction by Stormwater Best Management Practices: Trade-Offs in Performance, Volume, and Treated Area.

    PubMed

    Wolfand, Jordyn M; Bell, Colin D; Boehm, Alexandria B; Hogue, Terri S; Luthy, Richard G

    2018-06-05

    Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log 10 to above 3-log 10 ; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log 10 , while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log 10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log 10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.

  10. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination.

    PubMed

    Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm

    2009-05-08

    The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p < 0.001) increase in microbial counts post hydrodebridement. Levels ranging from 950 colony forming units per meter cubed (CFUs/m3) to 16780 CFUs/m3 were observed with active sampling of the air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p < 0.05). Microbial load of the air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.

  11. [Profile of sulphated glycosaminoglycans content in the murine uterus during the different phases of the estrous cycle].

    PubMed

    Gomes, Regina Célia Teixeira; Simões, Ricardo Santos; Soares, José Maria; Nader, Helena Bonciani; Simões, Manuel de Jesus; Baracat, Edmund C

    2007-01-01

    Identification and quantitation of sulphated glycosaminoglycans (GAGs) in the uterus of female mice during the estrous cycle. Four groups (n = 10 each) of virgin, 100-day old female mice were assembled according to the estrous cycle phase: proestrus, estrus, metaestrus and diestrus. Samples of the median portion of uterine horns were processed for light microscopy examination (H/E and Alcian blue + PAS). The GAGs were extracted and characterized by agarose gel electrophoresis. Data were analyzed by the unpaired Student's t-test. At light microscopy GAGs appear in all layers of the uterus, especially in the endometrium, between collagen fibers, in the basal membrane and around fibroblasts. Biochemical analyses disclosed presence of dermatan sulphate (DS), chondroitin sulphate (CS and heparan sulphate (HS) during all estral cycle phases. There was no clear electrophoretic separation between DS and CS, thus these two GAGs were considered together (DS+CS) (proestrus = 0.854 +/- 0.192; estrus = 1.073 +/- 0.254; metaestrus = 1.003 +/- 0.255; diestrus = 0.632 +/- 0.443 microg/mg). HS was as follows: proestrus = 0.092 +/- 0.097; estrus = 0.180 +/- 0.141; metaestrus = 0.091 +/- 0.046; diestrus = 0.233 +/- 0.147 microg/mg. The uterine content of DS+CS peaked at estrus (estrogenic action) and that of HS at diestrus (progestagen action). Due to a constant turnover process, there are definite alterations in the uterine profile of GAGs content during the estrous cycle in mice, which may be modulated by female sex hormones.

  12. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium

    PubMed Central

    Esteban, María Dolores; Rodríguez, Raúl Rubén; Ibanco, Francisco José; Sánchez, Isidro

    2017-01-01

    At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement. PMID:28767078

  13. Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium.

    PubMed

    Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel

    2017-08-02

    At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement.

  14. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation.

    PubMed

    Rees, Martin D; Pattison, David I; Davies, Michael J

    2005-10-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl- to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2 approximately 3.1x10(5) and 9 M(-1) x s(-1) (at 37 degrees C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2 approximately 0.05 and 0.01 M(-1) x s(-1) (at 37 degrees C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 degrees C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 degrees C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci.

  15. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation

    PubMed Central

    Rees, Martin D.; Pattison, David I.; Davies, Michael J.

    2005-01-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and produce superoxide radicals and H2O2 via an oxidative burst. MPO uses H2O2 and Cl− to form HOCl, the physiological mixture of hypochlorous acid and its anion present at pH 7.4. As MPO binds to glycosaminoglycans, oxidation of extracellular matrix and cell surfaces by HOCl may be localized to these materials. However, the reactions of HOCl with glycosaminoglycans are poorly characterized. The GlcNAc (N-acetylglucosamine), GlcNSO3 (glucosamine-N-sulphate) and GlcNH2 [(N-unsubstituted) glucosamine] residues of heparan sulphate are potential targets for HOCl. It is shown here that HOCl reacts with each of these residues to generate N-chloro derivatives, and the absolute rate constants for these reactions have been determined. Reaction at GlcNH2 residues yields chloramines and, subsequently, dichloramines with markedly slower rates, k2∼3.1×105 and 9 M−1·s−1 (at 37 °C) respectively. Reaction at GlcNSO3 and GlcNAc residues yields N-chlorosulphonamides and chloramides with k2∼0.05 and 0.01 M−1·s−1 (at 37 °C) respectively. The corresponding monosaccharides display a similar pattern of reactivity. Decay of the polymer-derived chloramines, N-chlorosulphonamides and chloramides is slow at 37 °C and does not result in major structural changes. In contrast, dichloramine decay is rapid at 37 °C and results in fragmentation of the polymer backbone. Computational modelling of the reaction of HOCl with heparan sulphate proteoglycans (glypican-1 and perlecan) predicts that the GlcNH2 residues of heparan sulphate are major sites of attack. These results suggest that HOCl may be an important mediator of damage to glycosaminoglycans and proteoglycans at inflammatory foci. PMID:15932347

  16. Antioxidative sulphated polygalactans from marine macroalgae as angiotensin-I converting enzyme inhibitors.

    PubMed

    Makkar, Fasina; Chakraborty, Kajal

    2017-08-17

    Antioxidant and antihypertensive potential of the sulphated polygalactans isolated from the marine macroalgae Kappaphycus alvarezii and Gracilaria opuntia were assessed by utilising different in vitro systems. The galactans isolated from K. alvarezii possessed significantly greater antioxidative properties as determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH IC 90 0.97 mg/mL) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS .+ IC 90 0.72 mg/mL) scavenging activities than those isolated from G. opuntia (DPPH IC 90 1.2 mg/mL and ABTS 0.86 mg/mL). The sulphated polygalactan →4)-4-O-sulphonato-(2-O-methyl)-β-D-galactopyranosyl-(1→4)-3,6-anhydro-(2-O-methyl)-α-D-galactopyranan from K. alvarezii showed greater angiotensin-I-converting enzyme (ACE) inhibitory activity (IC 50 0.02 μg/mL) than →3)-4-O-sulphonato-(6-O-acetyl)-β-D-galactopyranosyl-(1→4)-3,6-anhydro-(2-O-sulphonato)-α-D-galactopyranosyl-(1→3)-4-O-sulphonato-(6-O-acetyl)-β-D-xylosyl-(1→3)-4-O-sulphonato-(6-O-acetyl)-β-D-galactopyranosyl-(1→4)-3,6-anhydro-(2-O-sulphonato)-α-D-galactopyranan motif extracted from G. opuntia (IC 50 0.70 μg/mL). Structure activity correlation studies displayed that the ACE inhibitory properties of titled polygalactans were directly proportional to their electronic properties and inversely with the steric and hydrophobic characteristics. Putative ACE inhibitory mechanism of action of sulphated galactans from marine macroalgae corroborated the structure bioactivity correlation analysis.

  17. (S, C, O, Sr) isotopic constraints on the diagenetic evolution of the COX clay formations at the Bure URL site, Paris Basin)

    NASA Astrophysics Data System (ADS)

    Lerouge, C.; Gaucher, E. C.; Tournassat, C.; Agrinier, P.; Widory, D.; Guerrot, C.; Buschaert, S.

    2009-04-01

    The Underground Research Laboratory of Bure, located in the Eastern part of the Paris Basin, was selected by ANDRA (French Agency for Nuclear Management) in order to study the feasibility of a nuclear waste disposal in the Callovian-Oxfordian thick clayey formation at 400 meters depth. Since 1994's, numerous investigations have been initiated to understand and predict the behaviour of the clay formation in time and in space, by constraining its stability, the chemical evolution of the porewaters, and solution transfers between the clayey formation and its adjacent limestone sequences during geological times (ANDRA, 2005). In that way, this study presents combined new mineralogical and isotopic data of the diagenetic mineral sequence to constrain the porewater chemistry of the rock at different stages of the sedimentary then burial history of the clayey formation. The petrological study of Callovian-Oxfordian claystones provided evidence of the following diagenetic mineral sequence: 1) Framboïdal pyrite ± micritic calcite in replacement of carbonate bioclasts and in bioturbations, 2) Iron-rich euhedral carbonates (ankerite, sideroplesite), Glauconite, 3) Sparry dolomite, celestite in residual porosity, 4) Chalcedony 5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ34S (-38 to +74 permil/CDT), providing evidence of bacterial sulphate reduction processes. The lowest negative values (-38 to -22 permil) indicate precipitation of pyrite in a marine environment with a permanent recharge in sulphate, whereas the higher pyrite δ34S values (-14 up to +74 permil) show that pyrite precipitated in a system that closed for sulphate. Consequently the variations of pyrite δ34S in bioturbations along the lithostratigraphic profil indicate a change of sedimentation conditions from a deep marine environment to an environment with alternative recharge of marine sulphates; that is consistent with the transgression/regression cycle observed in the middle sequence

  18. Evidence for biological activity in mineralization of secondary sulphate deposits in a basaltic environment: implications for the search for life in the Martian subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Doc Richardson; Nancy W. Hinman; Jill R. Scott

    Evidence of microbial activity associated with mineralization of secondary Na-sulphate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the Moon National Monument (COM), Idaho were examined by scanning electron microscopy, X-ray diffraction, laser desorption Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS), Fourier transform infrared spectroscopy (FTIR) and isotope ratio mass spectrometry. Peaks suggestive of bio/organic compounds were observed in the secondary Na-sulphate deposits by LD-FTICR-MS. FTIR provided additional evidence for the presence of bio/organic compounds. Sulphur fractionation was explored to assist in determining if microbes may play a role in oxidizing sulphur. The presence of bio/organic compoundsmore » associated with Na-sulphate deposits, along with the necessity of oxidizing reduced sulphur to sulphate, suggests that biological activity may be involved in the formation of these secondary minerals. The secondary Na-sulphate minerals probably form from the overlying basalt through leached sodium ions and sulphate ions produced by bio-oxidation of Fe-sulphide minerals. Since the COM basalts are one of the most comparable terrestrial analogues for their Martian counterparts, the occurrence of biological activity in the formation of sulphate minerals at COM has direct implications for the search for life on Mars. In addition, the presence of caves on Mars suggests the importance of these environments as possible locations for growth and preservation of microbial activity. Therefore, understanding the physiochemical pathways of abiotic and biotic mineralization in the COM subsurface and similar basaltic settings has direct implications for the search for extinct or extant life on Mars.« less

  19. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    NASA Astrophysics Data System (ADS)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2017-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  1. Arsenic uptake in bacterial calcite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the cmore » axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.« less

  2. The effect of copper(II), iron(II) sulphate, and vitamin C combinations on the weak antimicrobial activity of (+)-catechin against Staphylococcus aureus and other microbes.

    PubMed

    Holloway, Andrew C; Mueller-Harvey, Irene; Gould, Simon W J; Fielder, Mark D; Naughton, Declan P; Kelly, Alison F

    2012-12-01

    Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H(2)O(2)via the action of added metal(II) ions. H(2)O(2) generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin-iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.

  3. Inhibition of nitrate reduction by chromium (VI) in anaerobic soil microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kourtev, P. S.; Nakatsu, C. H.; Konopka, Allan

    2009-10-01

    Chromium (VI) is often found as a co-contaminant at sites polluted with organic compounds. We used microcosms amended with glucose or protein, nitrate and increasing concentrations of chromium to study nitrate reduction in Cr(VI) polluted soils. Organic carbon stimulated bacterial activity, but the addition of Cr(VI) caused a lag and then slower rates 5 of CO2 accumulation. Nitrate reduction only occurred after Cr(VI) had been reduced. Bacterial activity was again inhibited when Cr(VI) was added a second time; thus not all Cr-sensitive bacteria were removed in the first phase. Glucose and protein selected for relatively similar bacterial communities, as assayedmore » by PCR-DGGE of the 16S rRNA gene; this selection was modified by the addition of 10 Cr(VI). Cr-resistant bacteria isolated from microcosms were closely related to members of Bacillus, Enterococcus and Propionibacterium sp. Our results indicate that carbon utilization and nitrate reduction in these soils in the presence of Cr(VI) are contingent upon the reduction of the added heavy metal by a limited subset of the bacterial community. The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same 15 substrate. We hypothesize that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it.« less

  4. Reduction in bacterial counts in infected root canals after rotary or hand nickel-titanium instrumentation--a clinical study.

    PubMed

    Rôças, I N; Lima, K C; Siqueira, J F

    2013-07-01

    To compare the antibacterial efficacy of two instrumentation techniques, one using hand nickel-titanium (NiTi) instruments and the other using rotary NiTi instruments, in root canals of teeth with apical periodontitis. Root canals from single-rooted teeth were instrumented using either hand NiTi instruments in the alternated rotation motion technique or rotary BioRaCe instruments. The irrigant used in both groups was 2.5% NaOCl. DNA extracts from samples taken before and after instrumentation were subjected to quantitative analysis by real-time polymerase chain reaction (qPCR). Qualitative analysis was also performed using presence/absence data from culture and qPCR assays. Bacteria were detected in all S1 samples by both methods. In culture analysis, 45% and 35% of the canals were still positive for bacterial presence after hand and rotary NiTi instrumentation, respectively (P > 0.05). Rotary NiTi instrumentation resulted in significantly fewer qPCR-positive cases (60%) than hand NiTi instrumentation (95%) (P = 0.01). Intergroup comparison of quantitative data showed no significant difference between the two techniques. There was no significant difference in bacterial reduction in infected canals after instrumentation using hand or rotary NiTi instruments. In terms of incidence of positive results for bacteria, culture also showed no significant differences between the groups, but the rotary NiTi instrumentation resulted in more negative results in the more sensitive qPCR analysis. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. May We Strengthen the Human Natural Defenses with Bacterial Lysates?

    PubMed Central

    2010-01-01

    During the last twenty years bacterial lysates have gained a new interest and their use has obtained a progressively larger consensus in the medical practice. They are commonly used as immunomodulators, in order to up-regulate immune responses against infectious damages. As a matter of fact, the role of these lysate seems relevant in upper and lower respiratory tract infections prevention, frequently observed both in paediatric and elder ages, and which represent a relevant problem also in terms of socio-economical implications. The effects of bacterial lysates as immunostimulatory agents have become the central point of many studies. The aim of those in vivo and in vitro studies was to understand and evaluate the capacity of this kind of treatments to create a better answer of the immune system against microbial infections, eventually leading to a reduction in their number. All the in vivo and in vitro findings analyzed support the evidence that bacterial lysates are powerful inducers of a specific immune response against bacterial infections. Both in paediatric and adult clinical trials, a positive trend has been found in terms of overall reduction of infection rates and duration, beneficial effect on symptoms, reduction in antibiotics use and possibility to improve the patient's quality of life in several diseases. Further well-designed trials in terms of blinding and randomization procedures and including a higher number of patients, selected according to the disease and its severity, are needed. PMID:23282746

  6. An overview of geoengineering of climate using stratospheric sulphate aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasch, Philip J.; Tilmes, S.; Turco, Richard P.

    2010-01-01

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changesmore » in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of ‘acid rain’ that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct

  7. An overview of geoengineering of climate using stratospheric sulphate aerosols.

    PubMed

    Rasch, Philip J; Tilmes, Simone; Turco, Richard P; Robock, Alan; Oman, Luke; Chen, Chih-Chieh; Stenchikov, Georgiy L; Garcia, Rolando R

    2008-11-13

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of 'acid rain' that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy

  8. Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process

    NASA Astrophysics Data System (ADS)

    Enkh-Uyanga, Otgon-Uul; Munkhtsetseg, Baatar; Urangoo, Urtnasan; Tserendulam, Enkhtur; Agiimaa, Davaadorj

    2017-06-01

    In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis.

  9. A Demonstration of Bacterial Reduction of Inorganic Sulfate.

    ERIC Educational Resources Information Center

    Kinard, W. Frank

    1979-01-01

    This experiment demonstrates the reduction of inorganic sulfate to sulfide in the pore water of estuarine muds. Procedures involve the incubation of mud samples for varying amounts of time followed by gravimetric determination. (Author/SA)

  10. Impact of different tongue cleaning methods on the bacterial load of the tongue dorsum.

    PubMed

    Bordas, Alice; McNab, Rod; Staples, Angela M; Bowman, Jim; Kanapka, Joe; Bosma, Marylynn P

    2008-04-01

    To assess the extent and duration of the effect of tongue cleaning procedures on bacterial load on the dorsal surface of the tongue. 19 subjects participated in this blinded crossover study. Subjects abstained from oral hygiene, eating and drinking from 22:00 h the previous evening. Tongue samples were collected at baseline and within 15 minutes of one of three procedures: teeth brushing alone; teeth brushing plus tongue scraping; teeth brushing plus tongue cleaning using a high speed vacuum ejector and irrigation with 20 ml antibacterial mouthwash. Subjects then brushed twice daily for 3 days apart from the second group who additionally scraped their tongue twice daily. On day 4, baseline and post-treatment samples were collected as per day 1. Bacteria (total anaerobes, Gram-negative anaerobes, VSC-producing bacteria and Streptococcus saliuarius) were enumerated using appropriate selective media. The tongue dorsum was colonized by all 4 bacterial categories (log(10) 6-8 cfu/sample). For subjects who brushed their teeth only, there was a significant reduction from baseline for S. saliuarius only. In contrast, tooth brushing plus tongue scraping resulted in statistically significant reductions from baseline for all bacterial categories (range log(10) 0.11-0.40 cfu/sample). Highly statistically significant reductions (log(10) 1.11-1.96 cfu/sample) were observed for subjects who underwent thorough tongue cleaning with the saliva ejector/mouthwash. To determine longevity of treatment effects, baseline bacterial loads for days 1 and 4 were compared. Only daily tongue scraping resulted in statistical significant reduction in baseline microbial loads on day 4. While mechanical tongue cleaning with or without chemical intervention can reduce bacterial load on the tongue, this effect is transient, and regular tongue cleaning is required to provide a long lasting (overnight) reduction in bacterial numbers. Nevertheless, tongue cleaning is an oral hygiene procedure that is

  11. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    PubMed

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  12. Evans hole and non linear optical activity in Bis(melaminium) sulphate dihydrate: A vibrational spectral study.

    PubMed

    Suresh Kumar, V R; Binoy, J; Dawn Dharma Roy, S; Marchewka, M K; Jayakumar, V S

    2015-01-01

    Bis(melaminium) sulphate dihydrate (BMSD), an interesting melaminium derivative for nonlinear optical activity, has been subjected to vibrational spectral analysis using FT IR and FT Raman spectra. The analysis has been aided by the Potential Energy Distribution (PED) of vibrational spectral bands, derived using density functional theory (DFT) at B3LYP/6-31G(d) level. The geometry is found to correlate well with the XRD structure and the band profiles for certain vibrations in the finger print region have been theoretically explained using Evans hole. The detailed Natural Bond Orbital (NBO) analysis of the hydrogen bonding in BMSD has also been carried out to understand the correlation between the stabilization energy of hyperconjugation of the lone pair of donor with the σ(∗) orbital of hydrogen-acceptor bond and the strength of hydrogen bond. The theoretical calculation shows that BMSD has NLO efficiency, 2.66 times that of urea. The frontier molecular orbital analysis points to a charge transfer, which contributes to NLO activity, through N-H…O intermolecular hydrogen bonding between the melaminium ring and the sulphate. The molecular electrostatic potential (MEP) mapping has also been performed for the detailed analysis of the mutual interactions between melaminium ring and sulphate ion. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America.

    PubMed

    Hoggarth, Cameron G J; Hall, Britt D; Mitchell, Carl P J

    2015-10-01

    Using enriched stable (201)Hg injections into intact sediment cores, we provide the first reported Hg methylation potential rate constants (km) in prairie wetland ponds (0.016-0.17 d(-1)). Our km values were similar to other freshwater wetlands and did not differ in ponds categorized with high compared to low surface water concentrations of sulphate. Sites with high sulphate had higher proportions of methylmercury (MeHg) in sediment (2.9 ± 1.6% vs. 1.0 ± 0.3%) and higher surface water MeHg concentrations (1.96 ± 1.90 ng L(-1)vs. 0.56 ± 0.55 ng L(-1)). Sediment-porewater partitioning coefficients were small, and likely due to high ionic activity. Our work suggests while km measurements are useful for understanding mercury cycling processes, they are less important than surface water MeHg concentrations for assessing MeHg risks to biota. Significant differences in MeHg concentrations between sites with high and low sulphate concentrations may also inform management decisions concerning wetland remediation and creation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of water coagulation by seeds of Moringa oleifera on bacterial concentrations.

    PubMed

    Madsen, M; Schlundt, J; Omer, E F

    1987-06-01

    The effects of a Sudanese water purification method traditionally used in Sudan to treat turbid waters were studied with respect to turbidity reduction and removal of faecal indicator bacteria as well as selected enteric bacterial pathogens. Water treatment was performed at 30 degrees C with Moringa oleifera seed material as a coagulant, and the technique employed corresponded closely to that used to clarify turbid water in Sudanese villages. A turbidity reduction of 80.0-99.5% paralleled by a primary bacterial reduction of 1-4 log units (90.00-99.99%) was obtained within the first 1 to 2 h of treatment, the bacteria being concentrated in the coagulated sediment. During the 24 h observation period a secondary bacterial increase due to regrowth in the supernatant water was consistently observed for Salmonella typhimurium and Shigella sonnei, in some cases for Escherichia coli, but not for Vibrio cholerae, Streptococcus faecalis and Clostridium perfringens. The potential of the method when compared with some alternative for the improvement of rural drinking water supplies is discussed.

  15. Effects of In Vitro Zinc Sulphate Additive to The Semen Extender on Water Buffalo (Bubalusbubalis) Spermatozoa before and after Freezing

    PubMed Central

    Dorostkar, Kamran; Alavi Shoushtari, Sayed Mortaza; Khaki, Amir

    2014-01-01

    Background The objective of the study was to investigate the effects of in vitro zinc sulphate additive to semen extender on sperm parameters (progressive motility, viability, membrane integrity and DNA stability) after cryopreservation. Materials and Methods In this Prospective longitudinal laboratory study, semen samples of 5 buffalo bulls of 3-5 years old were collected at 5 different occasions from Iran, Urmia during summer and autumn 2011, 25 samples were used in each treatment. Sperm progressive motility, viability and abnormal morphology were measured before and at 0.5 (T0), 1(T1) and 2(T2) hours after diluting semen(1:10 v/v) in Tris-citric acid based extender (without egg yolk and glycerol) at 37˚C containing none (control group), 0.072, 0.144, 0.288, 0.576 and 1.152 mg/L zinc sulphate to investigate dose and time effects. Next, a Tris-citric acid-egg yolk-glycerol extender (20% egg yolk and 7% glycerol) containing the same amount of zinc sulphate was prepared, diluted semen (1:10 v/v) was cooled and kept into a refrigerated chamber (4˚C) for 4 hours to equilibrate. Sperm progressive motility, viability, abnormal morphology, membrane integrity and DNA damage were estimated.The equilibrated semen was loaded in 0.5 ml French straws and frozen in liquid nitrogen. Later, the frozen semen was thawed and the same parameters as well as total antioxidant capacity (TAC) of the frozen-thawed semen were determined. Results The results showed that zinc sulphate additive at the rate of 0.288 mg/L gave a higher protection of sperm progressive motility (53.7 ± 1.8% vs. 40.5 ± 1.7%), viability (70.8 ± 1.8% vs. 60.1 ± 1.5%), membrane integrity (67.3 ± 1.6% vs. 56.6 ± 1.7%), DNA stability (10.1 ± 0.47% vs. 11.8 ± 0.33% damaged DNA) through the process of dilution, equilibration and freeze-thawing and caused a higher TAC level (81 ± 3.3% vs. 63 ± 3.2 µmol/L) after freez-thawing compared to the control group. Adding 0.576 and 1.152 mg/L zinc sulphate, however

  16. Hydrogeochemical signatures of catchment evolution - the role of calcium and sulphate release in the constructed Hühnerwasser ("Chicken Creek") catchment

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Hu, Yuzhu; Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph

    2016-04-01

    The constructed Hühnerwasser ("Chicken Creek") catchment is an ecohydrological system in an initial state of development. The catchment with an area of 6 ha was built up from quaternary sediments in the post-mining landscape of Lusatia in Eastern Germany and serves as a critical zone observatory for detecting ecosystem transition. The soil substrate is characterized as sands to loamy sands with low carbonate contents but significant amounts of gypsum in the sediments of the catchment. The catchment undergoes a strong transition from an abiotic system in the initial years to a system with growing influence of biota. Concerning the hydrology, a regime shift from surface runoff to groundwater flow dominated processes is significant. It is of interest, whether the catchment transition is also reflected by hydrogeochemical indicators. We assume gypsum dissolution as dominant process at the catchment scale. In order to investigate the hydrogeochemical evolution of the catchment we analysed electric conductivity, calcium and sulphate concentrations and pH-values of biweekly composite samples from 2007-2013 of the atmospheric deposition, of runoff and soil water. The two observation points in the flowing water represent surface runoff and groundwater discharge respectively. Soil water has been analysed at four soil pits in three depths. The monitoring data were provided by the Research Platform Chicken Creek (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). From the macroscopic data analysis we found an exponential decay of the electric conductivity, calcium and sulphate concentrations in the flowing waters and some of the soil pits. In the flowing water, the decrease slope of the electric conductivity and the calcium and sulphate concentrations is almost identical. The calcium / sulphate molar ratio as an indicator of gypsum dissolution is almost equal to one up to 2010, afterwards more calcium than sulphate is released. The pH-values in the flowing

  17. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes

    PubMed Central

    Roussel, Erwan G.; Cragg, Barry A.; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S.; Gorra, Roberta; Weightman, Andrew J.; Parkes, R. John

    2015-01-01

    The impact of temperature (0–80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple ‘windows’ within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, ‘Bathyarchaeota’) changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry. PMID:26207045

  18. Sulphated Electric Arc Furnace Slag Asfenton-Like Catalyst for Degradation of Reactive Black 5

    NASA Astrophysics Data System (ADS)

    Zubir, N. A.; Nasuha, N.; Alrozi, R.

    2018-06-01

    Sulphated electric arc furnace slag (S-EAFS) was obtained through a facile chemical and thermal treatment method. The S-EAFS was evaluated as a Fenton-like catalyst for the oxidative degradation of reactive black 5 (RB5). The S-EAFS was characterized by XRD, SEM-EDX and nitrogen adsorption analysis. The highest RB5 degradation efficiency obtained in this study was above 90% which was maintained across seven successive cycles with minimum iron leaching. This was achieved at a RB5 concentration of 0.15 gL-1 (50 ppm) with 8 mM of H2O2 and a pH of 4.5. Characterization revealed that the presence of sulphated groups (SO4 2-) within the EAFS improved the surface acidity of the material and corresponded to an increase in the catalytic activity for the degradation of RB5 at mild pH.

  19. A new inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA).

    PubMed

    Moussas, P A; Zouboulis, A I

    2009-08-01

    Currently, research is focused on the synthesis of new composite coagulants, which are constituted of both inorganic and organic materials. In this paper, the development of relevant reagents was investigated, by combining the inorganic pre-polymerised iron-based coagulant Polyferric Sulphate (PFS) with an organic, non-ionic polymer (Polyacrylamide, PAA) under different PAA/Fe (mg/l) and OH/Fe molar ratios. Moreover, the new reagents were characterised in terms of typical properties, stability and morphological analysis (XRD, FTIR, SEM). Their coagulation performance, when treating low or high turbid kaolin-humic acid suspensions, was also investigated, whereas the applied coagulation mechanisms were discussed by using the Photometric Dispersion Analysis (PDA) analysis. The results show that the new coagulation reagents present improved properties, including increased effective polymer species concentration, and they exhibit very good stability. The respective tests using PDA confirmed that the predominant coagulation mechanism of PFS-PAA is the bridge formation mechanism. Coagulation experiments in low or high turbid kaolin-humic acid suspensions reveal that the novel composite reagent PFS-PAA exhibits better coagulation performance, when compared with simple PFS, in terms of zeta-potential reduction, turbidity and organic matter removal and residual iron concentration.

  20. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin T.; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie; Datas, Lucien

    2016-11-01

    Microgeochemical data and transmission electron microscope (TEM) imaging of S-rich monazite crystals demonstrate that S has been incorporated in the lattice of monazite as a clino-anhydrite component via the following exchange Ca2+ + S6+ = REE3+ + P5+, and that it is now partly exsolved in nanoclusters (5-10 nm) of CaSO4. The sample, an osumilite-bearing ultra-high-temperature granulite from Rogaland, Norway, is characterized by complexly patchy zoned monazite crystals. Three chemical domains are distinguished as (1) a sulphate-rich core (0.45-0.72 wt% SO2, Th incorporated as cheralite component), (2) secondary sulphate-bearing domains (SO2 >0.05 wt%, partly clouded with solid inclusions), and (3) late S-free, Y-rich domains (0.8-2.5 wt% Y2O3, Th accommodated as the huttonite component). These three domains yield distinct isotopic U-Pb ages of 1034 ± 6, 1005 ± 7, and 935 ± 7 Ma, respectively. Uranium-Th-Pb EPMA dating independently confirms these ages. This study illustrates that it is possible to discriminate different generations of monazite based on their S contents. From the petrological context, we propose that sulphate-rich monazite reflects high-temperature Fe-sulphide breakdown under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore reveal the presence of S in anatectic melts from high-grade terrains at a specific point in time and date S mobilization from a reduced to an oxidized state. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  1. Fractionation of selenium isotopes during bacterial respiratory reduction of selenium oxyanions

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Oremland, R.S.; Bullen, T.D.

    2000-01-01

    Reduction of selenium oxyanions by microorganisms is an important process in the biogeochemical cycling of selenium. Numerous bacteria can reduce Se oxyanions, which are used as electron acceptors during the oxidation of organic matter in anoxic environments. In this study, we used a double spike (82Se and 74Se) thermal ionization mass spectrometry technique to quantify the isotopic fractionation achieved by three different species of anaerobic bacteria capable of accomplishing growth by respiratory reduction of selenate [SeO42- or Se(VI)] or selenite [SeO32- or Se(IV)] to Se(IV) or elemental selenium [Se(0)] coupled with the oxidation of lactate. Isotopic discrimination in these closed system experiments was evaluated by Rayleigh fractionation equations and numerical models. Growing cultures of Bacillus selenitireducens, a haloalkaliphile capable of growth using Se(IV) as an electron acceptor, induced a 80Se/76Se fractionation of -8.0 ?? 0.4??? (instantaneous ?? value) during reduction of Se(IV) to Se(0). With Bacillus arsenicoselenatis, a haloalkaliphile capable of growth using Se(VI) as an electron acceptor, fractionations of -5.0 ?? 0.5??? and -6.0 ?? 1.0??? were observed for reduction of Se(VI) to Se(IV) and reduction of Se(IV) to Se(0), respectively. In growing cultures of Sulfurospirillum barnesii, a freshwater species capable of growth using Se(VI), fractionation was small initially, but near the end of the log growth phase, it increased to -4.0 ?? 1.0??? and -8.4 ?? 0.4??? for reduction of Se(VI) to Se(IV) and reduction of Se(IV) to Se(O), respectively. Washed cell suspensions of S. barnesii induced fractionations of -1.1 ?? 0.4??? during Se(VI) reduction, and -9.1 ?? 0.5% for Se(IV) reduction, with some evidence for smaller values (e.g., -1.7???) in the earliest-formed Se(0) results. These results demonstrate that dissimilatory reduction of selenate or selenite induces significant isotopic fractionation, and suggest that significant Se isotope ratio

  2. The Transfiguration continental red-bed Cu-Pb-Zn-Ag deposit, Quebec Appalachians, Canada

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Beaudoin, Georges; Taylor, Bruce E.

    2009-04-01

    The Transfiguration Cu-Pb-Zn-Ag deposit, enclosed within reduced grey sandstone, is associated with continental red beds of the Lower Silurian Robitaille Formation in the Quebec Appalachians, Canada. The Robitaille Formation rests unconformably on foliated Cambro-Ordovician rocks. The unconformity is locally cut by barite veins. The basal unit of the Robitaille Formation comprises green wacke and pebble conglomerate, which locally contain calcite nodules. The latter have microstructures characteristic of alpha-type calcretes, such as “floating” fabrics, calcite-filled fractures (crystallaria) and circumgranular cracks. Massive, grey sandstone overlies the basal green wacke and pebble conglomerate unit, which is overlain, in turn, by red, fine-grained sandstone. Mineralisation occurred underneath the red sandstone unit, chiefly in the grey sandstone unit, as disseminated and veinlet sulphides. Chalcopyrite, the most abundant Cu sulphide, replaced early pyrite. Calcrete, disseminated carbonate and vein carbonate have stable isotope ratios varying from -7.5‰ to -1.1‰ δ13C and from 14.7‰ to 21.3‰ δ18O. The negative δ13C values indicate the oxidation of organic matter in a continental environment. Sulphur isotope ratios for pyrite, chalcopyrite and galena vary from -19‰ to 25‰ δ34S, as measured on mineral concentrates by a conventional SO2 technique. Laser-assisted microanalyses (by fluorination) of S isotopes in pyrite show an analogous range in δ34S values, from -21‰ to 25‰. Negative and positive δ34S values are compatible with bacterial sulphate reduction (BSR) in systems open and closed with respect to sulphate. We interpret similarly high δ34S values for sulphide concentrates (25.1‰) and for vein barite (26.2‰) to result from rapid and complete thermochemical reduction of pore-water sulphate. Two early to late diagenetic stages of mineralisation best explain the origin of the Transfiguration deposit. The first stage was characterised

  3. Bacterial endophytes enhance competition by invasive plants.

    PubMed

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  4. Influence of electron donors and copper concentration on geochemical and mineralogical processes under conditions of biological sulphate reduction

    NASA Astrophysics Data System (ADS)

    Wolicka, Dorota; Borkowski, Andrzej

    2014-03-01

    Sulphidogenous microorganism communities were isolated from soil polluted by crude oil. The study was focused on determining the influence of 1) copper (II) concentration on the activity of selected microorganism communities and 2) the applied electron donor on the course and evolution of mineral-forming processes under conditions favouring growth of sulphate-reducing bacteria (SRB). The influence of copper concentration on the activity of selected microorganism communities and the type of mineral phases formed was determined during experiments in which copper (II) chloride at concentrations of 0.1, 0.2, 0.5 and 0.7 g/L was added to SRB cultures. The experiments were performed in two variants: with ethanol (4 g/L) or lactate (4 g/L) as the sole carbon source. In order to determine the taxonomic composition of the selected microorganism communities, the 16S rRNA method was used. Results of this analysis confirmed the presence of Desulfovibrio, Desulfohalobium, Desulfotalea, Thermotoga, Solibacter, Gramella, Anaeromyxobacter and Myxococcus sp. in the stationary cultures. The post-culture sediments contained covelline (CuS) and digenite (Cu9S5 ). Based on the results, it can be stated that the type of carbon source applied during incubation plays a crucial role in determining the mineral composition of the post-culture sediments. Thus, regardless of the amount of copper ion introduced to a culture with lactate as the sole carbon source, no copper sulphide was observed in the post-culture sediments. Cultures with ethanol as the sole carbon source, on the other hand, yielded covelline or digenite in all post-culture sediments.

  5. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  6. Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method

    NASA Astrophysics Data System (ADS)

    Trybus, M.

    2018-06-01

    A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.

  7. Physiochemical properties and reproducibility of air-based sodium tetradecyl sulphate foam using the Tessari method.

    PubMed

    Watkins, Mike R; Oliver, Richard J

    2017-07-01

    Objectives The objectives were to examine the density, bubble size distribution and durability of sodium tetradecyl sulphate foam and the consistency of production of foam by a number of different operators using the Tessari method. Methods 1% and 3% sodium tetradecyl sulphate sclerosant foam was produced by an experienced operator and a group of inexperienced operators using either a 1:3 or 1:4 liquid:air ratio and the Tessari method. The foam density, bubble size distribution and foam durability were measured on freshly prepared foam from each operator. Results The foam density measurements were similar for each of the 1:3 preparations and for each of the 1:4 preparations but not affected by the sclerosant concentration. The bubble size for all preparations were very small immediately after preparation but progressively coalesced to become a micro-foam (<250 µm) after the first 30 s up until 2 min. Both the 1% and 3% solution foams developed liquid more rapidly when made in a 1:3 ratio (37 s) than in a 1:4 ratio (45 s) but all combinations took similar times to reach 0.4 ml liquid formation. For all the experiments, there was no statistical significant difference between operators. Conclusions The Tessari method of foam production for sodium tetradecyl sulphate sclerosant is consistent and reproducible even when made by inexperienced operators. The best quality foam with micro bubbles should be used within the first minute after production.

  8. Atorvastatin therapy decreases androstenedione and dehydroepiandrosterone sulphate concentrations in patients with polycystic ovary syndrome: randomized controlled study.

    PubMed

    Sathyapalan, Thozhukat; Smith, Karen A; Coady, Anne-Marie; Kilpatrick, Eric S; Atkin, Stephen L

    2012-01-01

    Hyperandrogenaemia in polycystic ovary syndrome (PCOS) represents a composite of raised serum concentrations of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and DHEA sulphate (DHEAS). In patients with PCOS, testosterone and androstenedione are primarily derived from the ovaries and DHEAS is a metabolite predominantly from the adrenals. It has been shown that atorvastatin reduces testosterone concentrations in patients with PCOS. The objective was to study the effect of atorvastatin on serum androstenedione and DHEAS concentrations in patients with PCOS. A randomized, double-blind, placebo-controlled study was performed. Forty medication-naive patients with PCOs were randomized to either atorvastatin 20mg daily or placebo for three months. Subsequently, a three-month extension study for all patients was undertaken with metformin 1500 mg daily. The main outcome measures were change in androstenedione and DHEAS concentrations. The mean (SD) baseline androstenedione (5.7 [0.8] versus 5.6 [1.3] nmol/L; P = 0.69) and DHEAS (7.1 [1.0] versus 7.2 [1.2] μmol/L; P = 0.72) concentrations were comparable between two groups. There was a significant reduction of androstenedione (5.7 [0.8] versus 4.7 [0.7] nmol/L; P = 0.03) and DHEAS (7.1 [1.0] versus 6.0 [0.9] μmol/L; P = 0.02) with three months of atorvastatin while there were no significant changes with placebo. Three months' treatment with metformin maintained the reduction of androstenedione and DHEAS concentrations with atorvastatin compared with baseline. There were no changes in either DHEAS or androstenedione concentrations in the initial placebo group after 12 weeks of metformin. Twelve weeks of atorvastatin significantly reduced both DHEAS and androstenedione contributing to the total reduction of androgen concentrations and indicating that the reduction of the hyperandrogenaemia could be partly due to the action of atorvastatin at both the ovary and the adrenal gland in PCOS.

  9. A modified technique for the preparation of SO2 from sulphates and sulphides for sulphur isotope analyses.

    PubMed

    Han, L; Tanweer, A; Szaran, J; Halas, S

    2002-09-01

    A modified technique for the conversion of sulphates and sulphides to SO2 with the mixture of V2O5-SiO2 for sulphur isotopic analyses is described. This technique is more suitable for routine analysis of large number of samples. Modification of the reaction vessel and using manifold inlet system allows to analyse up to 24 samples every day. The modified technique assures the complete yield of SO2, consistent oxygen isotope composition of the SO2 gas and reproducibility of delta34S measurements being within 0.10 per thousand. It is observed, however, oxygen in SO2 produced from sulphides differs in delta18O with respect to that produced from sulphates.

  10. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.

    PubMed

    Varon-Lopez, Maryeimy; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipolla; Durrer, Ademir; Melo, Itamar Soares; Kuramae, Eiko Eurya; Andreote, Fernando Dini

    2014-03-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Reduction of pasteurization temperature leads to lower bacterial outgrowth in pasteurized fluid milk during refrigerated storage: a case study.

    PubMed

    Martin, N H; Ranieri, M L; Wiedmann, M; Boor, K J

    2012-01-01

    Bacterial numbers over refrigerated shelf-life were enumerated in high-temperature, short-time (HTST) commercially pasteurized fluid milk for 15 mo before and 15 mo after reducing pasteurization temperature from 79.4°C (175°F) [corrected] to 76.1°C (169°F). Total bacterial counts were measured in whole fat, 2% fat, and fat-free milk products on the day of processing as well as throughout refrigerated storage (6°C) at 7, 14, and 21 d postprocessing. Mean total bacterial counts were significantly lower immediately after processing as well as at 21 d postprocessing in samples pasteurized at 76.1°C versus samples pasteurized at 79.4°C. In addition to mean total bacterial counts, changes in bacterial numbers over time (i.e., bacterial growth) were analyzed and were lower during refrigerated storage of products pasteurized at the lower temperature. Lowering the pasteurization temperature for unflavored fluid milk processed in a commercial processing facility significantly reduced bacterial growth during refrigerated storage. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Pseudoendogenous presence of β-boldenone sulphate and glucuronide in untreated young bulls from the food chain.

    PubMed

    Chiesa, Luca; Pasquale, Elisa; Panseri, Sara; Cannizzo, Francesca T; Biolatti, Bartolomeo; Pavlovic, Radmila; Arioli, Francesco

    2015-01-01

    The administration of boldenone (bold) to bovines, either for growth promotion or therapeutic purposes, has been banned in the EU since 1981. It is, however, a pseudoendogenous hormone, thus its detection in bovine urine, in the form of α-boldenone conjugates, is considered fully compliant up to 2 ng ml(-1). Greater attention has been placed on β-boldenone, the anabolic active epimer, whose conjugated form must be absent in urine. Recently, the identification of a biomarker representing unquestionable evidence of illicit treatment with bold or its precursor androstadienedione has been a major topic in the literature regarding the detection of residues in bovine urine, and β-boldenone sulphate is a candidate molecule. In this study, we used a method previously validated according to the European Commission Decision 2002/657/EC for the determination of sulphate and glucuronide conjugates of β-boldenone. We assessed the occurrence of these molecules in young bull urine, with the aim of understanding whether they could be of endogenous origin, and to check for a possible relationship with particular environmental and stress conditions. Urine samples from 56 young bulls were collected after transport stress, under non-stressful conditions and after transport and slaughter stress. Histopathological investigation of the hormone target organs, i.e. the bulbourethral and prostate glands, was also performed. The results indicate an inverse relationship between the presence and concentration of β-boldenone sulpho- and gluco-conjugates in urine, and stress conditions, expressed by the absence of detection at the slaughterhouse. No significant macroscopic and histologic lesions were detected. Our study indicates that β-boldenone sulphate could be a biomarker of treatment only at the slaughterhouse, while at the farm, in untreated animals (i.e. after a five-month period under the control of Official Veterinarians), sulphate and glucuronide metabolites were found with a

  13. Reduction of rainbow trout spleen size by splenectomy does not alter resistance against bacterial cold water disease

    USDA-ARS?s Scientific Manuscript database

    In lower vertebrates, the contribution of the spleen to anti-bacterial immunity is poorly understood. Researchers have previously reported a phenotypic and genetic correlation between resistance to Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD) and spleen so...

  14. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    PubMed

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  15. Dielectric dispersion in pure and doped lithium rubidium sulphate

    NASA Astrophysics Data System (ADS)

    Kassem, M. E.; El-Muraikhi, M.; Al-Houty, L.; Mohamed, A. A.

    The frequency (102 - 105 Hz) dependence of the dielectric properties of lithium rubidium sulphate (LRS) are reported in the vicinity of the transition temperature Tc = 477 K. The a.c. conductivity σ(ω) shows a strong temperature dependence and weak frequency response. The dielectric constant in this region shows a strong frequency dispersion. A Cole-Cole diagram was used to determine the distribution parameter and the molecular relaxation time. The effect of doping with Dy+3, Sm+3 and V+3, was also studied. It was found that doping gives rise to localized states which produce a disorder in the structure of LiRbSO4.

  16. Dependency of black-carbon-induced atmospheric warming on the concentration of sulphate and organic aerosols

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; in-Jin, C.; Ramanathan, V.; Ramana, M.

    2010-12-01

    Previous modeling studies have showed that the net radiative effect of black carbon (BC) and organic aerosols generated by fossil-fuel combustion and biomass-fuel cooking contribute to a warming by absorbing solar radiation, and the warming effect of fossil-fuel BC is larger than that of biomass-fuel cooking [Ramana et al., Nature Geoscience, 2010]. However, the extent of BC warming is regulated by the ambient concentrations of sulphate and organic carbon (OC) aerosols, which reflect the solar radiation and cool the surface, thus enhancing the net warming caused by BC and GHGs. This is because the major sources of BC also emit CO2 and other greenhouse gases (GHGs) (that warm the climate), and sulfates, nitrates, organics and other particles (that cool the climate). In this study, we present the impact of BC-to-sulphate and BC-to-OC ratios on atmospheric warming on the basis of surface-based filter and in-situ measurements at Gosan climate observatory in Jeju, South Korea and radiative transfer calculations with AERONET Cimel sun/sky radiometer and micro-pulse lidar measurements as a model input. We investigate (1) BC-to-sulphate and BC-to-OC ratios, (2) aerosol solar-absorption efficiency (i.e., co-single scattering albedo) and (3) corresponding atmospheric direct radiative forcing and heating rate of aerosol plumes from N. China (Beijing), S. China (Shanghai) and clean marine sources during ACE-Asia (April-May 2001), ABC-EAREX2005 (March-April 2005) and CAMPEX (August-September 2008), and discuss their relationships.

  17. Identifying sources and processes controlling the sulphur cycle in the Canyon Creek watershed, Alberta, Canada.

    PubMed

    Nightingale, Michael; Mayer, Bernhard

    2012-01-01

    Sources and processes affecting the sulphur cycle in the Canyon Creek watershed in Alberta (Canada) were investigated. The catchment is important for water supply and recreational activities and is also a source of oil and natural gas. Water was collected from 10 locations along an 8 km stretch of Canyon Creek including three so-called sulphur pools, followed by the chemical and isotopic analyses on water and its major dissolved species. The δ(2)H and δ(18)O values of the water plotted near the regional meteoric water line, indicating a meteoric origin of the water and no contribution from deeper formation waters. Calcium, magnesium and bicarbonate were the dominant ions in the upstream portion of the watershed, whereas sulphate was the dominant anion in the water from the three sulphur pools. The isotopic composition of sulphate (δ(34)S and δ(18)O) revealed three major sulphate sources with distinct isotopic compositions throughout the catchment: (1) a combination of sulphate from soils and sulphide oxidation in the bedrock in the upper reaches of Canyon Creek; (2) sulphide oxidation in pyrite-rich shales in the lower reaches of Canyon Creek and (3) dissolution of Devonian anhydrite constituting the major sulphate source for the three sulphur pools in the central portion of the watershed. The presence of H(2)S in the sulphur pools with δ(34)S values ∼30 ‰ lower than those of sulphate further indicated the occurrence of bacterial (dissimilatory) sulphate reduction. This case study reveals that δ(34)S values of surface water systems can vary by more than 20 ‰ over short geographic distances and that isotope analyses are an effective tool to identify sources and processes that govern the sulphur cycle in watersheds.

  18. Contribution of Progranulin to Protective Lung Immunity During Bacterial Pneumonia.

    PubMed

    Zou, Shan; Luo, Qin; Song, Zhixin; Zhang, Liping; Xia, Yun; Xu, Huajian; Xiang, Yu; Yin, Yibing; Cao, Ju

    2017-06-01

    Progranulin (PGRN) is an important immunomodulatory factor in a variety of inflammatory diseases. However, its role in pulmonary immunity against bacterial infection remains unknown. Pneumonia was induced in PGRN-deficient and normal wild-type mice using Pseudomonas aeruginosa or Staphylococcus aureus, and we assessed the effects of PGRN on survival, bacterial burden, cytokine and chemokine production, and pulmonary leukocyte recruitment after bacterial pneumonia. Patients with community-acquired pneumonia displayed elevated PGRN levels. Likewise, mice with Gram-negative and Gram-positive pneumonia had increased PGRN production in the lung and circulation. Progranulin deficiency led to increased bacterial growth and dissemination accompanied by enhanced lung injury and mortality in bacterial pneumonia, which was associated with impaired recruitment of macrophages and neutrophils in the lung. The reduced number of pulmonary macrophages and neutrophils observed in PGRN-deficient mice was related to a reduction of CCL2 and CXCL1 in the lungs after bacterial pneumonia. Importantly, therapeutic administration of PGRN improved mortality in severe bacterial pneumonia. This study supports a novel role for PGRN in pulmonary immunity and suggests that treatment with PGRN may be a viable therapy for bacterial pneumonia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Sulphur and oxygen isotopic composition of sulphates in springs feeding the Wieprz river and other springs of Lublin Upland and Roztocze.

    PubMed

    Trembaczowski, A; Swieca, A

    2002-12-01

    Springs on Roztocze and Lublin Upland have been studied. Isotopic data are compared with data of chemical analyses. The results of studies allow us to distinguish five types of groundwaters. The differentiation is based upon different lithology; opokas, gaizes, sandy-silty-clay deposits, sands with shell sandstones, marly opokas, marly limestones and 'soft limestones of chalk type. A correlation can be observed between delta34S and the concentration of Ca or Mg ions also a correlation between HCO3- ion concentration and delta18O in sulphates. Probably these correlations are the result of some simultaneous processes, which occur in groundwater. The seasonal variations of the isotopic composition and sulphate concentration were observed in four springs feeding the upper Wieprz. The variations were simultaneous and often similar in these springs. Probably, these variations are caused by the admixture of sulphates coming from shallow water layers (or leached from soil); however the variations of the groundwater level may also change chemical and isotopic composition in groundwater.

  20. Desulfomicrobium thermophilum sp. nov., a novel thermophilic sulphate-reducing bacterium isolated from a terrestrial hot spring in Colombia.

    PubMed

    Thevenieau, France; Fardeau, Marie-Laure; Ollivier, Bernard; Joulian, Catherine; Baena, Sandra

    2007-03-01

    A moderately thermophilic, sulphate-reducing bacterium, designated strain P6-2(T), was isolated from a terrestrial hot spring located at a height of 2,500 m in the Andean region, Colombia (5 degrees 43'69''N, 73 degrees 6'10''W). Cells of strain P6-2(T) were rod-shaped, stained Gram-negative and were motile by means of a single polar flagellum. The strain grew lithotrophically with H(2) as the electron donor and organotrophically on lactate, pyruvate, ethanol, malate, fumarate, n-propanol and succinate in the presence of sulphate as the terminal electron acceptor. Fumarate and pyruvate was fermented. Strain P6-2(T) grew optimally at 55 degrees C (range 37-60 degrees C), pH 6.6 (range 5.8-8.8) in the presence of 0.5% NaCl (range 0-4.5%) with lactate and sulphate and produced acetate, CO(2) and H(2)S as the major end-products. Sulphate, sulphite and thiosulphate could be used as electron acceptors but not elemental sulphur or nitrate. The G + C content of the genomic DNA was 58.7 mol%. The 16S rRNA sequence analysis indicated that strain P6-2(T) was a member of the class Deltaproteobacteria, domain Bacteria with Desulfomicrobium baculatum being the closest relative (similarity value of 94%). Phylogeny of genes encoding alpha- and beta-subunits of the dissimilatory sulphite reductase (dsrAB genes) supported its affiliation to members of the genus Desulfomicrobium. On the basis of this evidence, we propose to assign strain P6-2(T) as new species of the genus Desulfomicrobium, D. thermophilum sp. nov., with strain P6-2(T) as the type strain (= DSM 16697(T) = CCUG 49732(T)).

  1. Inactivation of Heat Adapted and Chlorine Adapted Listeria Monocytogenes ATCC 7644 on Tomatoes Using Sodium Dodecyl Sulphate, Levulinic Acid and Sodium Hypochlorite Solution.

    PubMed

    Ijabadeniyi, Oluwatosin Ademola; Mnyandu, Elizabeth

    2017-04-13

    The effectiveness of sodium dodecyl sulphate (SDS), sodium hypochlorite solution and levulinic acid in reducing the survival of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 was evaluated. The results against heat adapted L. monocytognes revealed that sodium hypochlorite solution was the least effective, achieving log reduction of 2.75, 2.94 and 3.97 log colony forming unit (CFU)/mL for 1, 3 and 5 minutes, respectively. SDS was able to achieve 8 log reduction for both heat adapted and chlorine adapted bacteria. When used against chlorine adapted L. monocytogenes sodium hypochlorite solution achieved log reduction of 2.76, 2.93 and 3.65 log CFU/mL for 1, 3 and 5 minutes, respectively. Using levulinic acid on heat adapted bacteria achieved log reduction of 3.07, 2.78 and 4.97 log CFU/mL for 1, 3, 5 minutes, respectively. On chlorine adapted bacteria levulinic acid achieved log reduction of 2.77, 3.07 and 5.21 log CFU/mL for 1, 3 and 5 minutes, respectively. Using a mixture of 0.05% SDS and 0.5% levulinic acid on heat adapted bacteria achieved log reduction of 3.13, 3.32 and 4.79 log CFU/mL for 1, 3 and 5 minutes while on chlorine adapted bacteria it achieved 3.20, 3.33 and 5.66 log CFU/mL, respectively. Increasing contact time also increased log reduction for both test pathogens. A storage period of up to 72 hours resulted in progressive log reduction for both test pathogens. Results also revealed that there was a significant difference (P≤0.05) among contact times, storage times and sanitizers. Findings from this study can be used to select suitable sanitizers and contact times for heat and chlorine adapted L. monocytogenes in the fresh produce industry.

  2. Magnesium sulphate for prevention of eclampsia: are intramuscular and intravenous regimens equivalent? A population pharmacokinetic study.

    PubMed

    Salinger, D H; Mundle, S; Regi, A; Bracken, H; Winikoff, B; Vicini, P; Easterling, T

    2013-06-01

    To compare magnesium sulphate concentrations achieved by intramuscular and intravenous regimens used for the prevention of eclampsia. Low-resource obstetric hospitals in Nagpur and Vellore, India. Pregnant women at risk for eclampsia due to hypertensive disease. A pharmacokinetic study was performed as part of a randomised trial that enrolled 300 women comparing intramuscular and intravenous maintenance regimens of magnesium dosing. Data from 258 enrolled women were analysed in the pharmacokinetic study. A single sample was drawn per woman with the expectation of using samples in a pooled data analysis. Pharmacokinetic parameters of magnesium distribution and clearance. Magnesium clearance was estimated to be 48.1 dl/hour, volume of distribution to be 156 dl and intramuscular bioavailability to be 86.2%. The intramuscular regimen produced higher initial serum concentrations, consistent with a substantially larger loading dose. At steady state, magnesium concentrations in the intramuscular and intravenous groups were comparable. With either regimen, a substantial number of women would be expected to have serum concentrations lower than those generally held to be therapeutic. Clinical implications were that a larger loading dose for the intravenous regimen should be considered; where feasible, individualised dosing of magnesium sulphate would reduce the variability in serum concentrations and might result in more women with clinically effective magnesium concentrations; and lower dose magnesium sulphate regimens should be considered with caution. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.

  3. Bacterial challenge of NISSHO ultrafilter ETF 609: results of in vitro testing.

    PubMed

    Krautzig, S; Lonnemann, G; Shaldon, S; Koch, K M

    1996-07-01

    In hemodialysis, a certain degree of bacterial contamination on the dialysate side is a regular finding. Concern has been growing that this contamination may lead to a chronic inflammatory response in the patient. Ultrafiltration of dialysate can be used to reduce bacterial content and levels of cytokine-inducing substances upstream of the patient's dialyzer. The aim of this study was to test in vitro the rejection capacity of a polysulfone hollow-fiber ultrafilter (ETF 609, NISSHO Co., Osaka, Japan) challenged with bacterial filtrates derived from Pseudomonas aeruginosa PA103. Results showed a reduction of interleukin-1 beta-inducing activity (measured on peripheral blood mononuclear cells) from 5,035 +/- 394 pg/ml prefilter to nondetectable levels postfilter and endotoxin levels (limulus amebocyte lysate assay) of 4,167 +/- 1,079 versus 12 +/- 2 pg/ml, respectively. In conclusion, ultrafiltration of dialysate with the polysulfone ultrafilter ETF 609 leads to a potent reduction of cytokine-inducing activity.

  4. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    PubMed

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

  5. [Identification of hexavalent chromium reducing bacteria Cr4-1 and optimization of its reduction conditions].

    PubMed

    Zhu, Peilei; Jiao, Shilin; Jiang, Pu; Zeng, Xin; Luo, Qifang; Wang, Lin

    2015-03-01

    To identify the hexavalent chromium reduction Cr4-1, and to study the better conditions of the bacterial growth and its Cr(VI) reduction. The physiological and biochemical methods and 16s rDNA sequencing were used for identification of bacteria Cr4-1. The influence of temperature, pH, initial Cr (VI) concentration and shaking speed on bacterial growth and Cr (VI) reduction were studied. Mass balance analysis was used to analyze the end products of the reduction reaction. A Cr(VI) reducing bacteria Cr4-1, screened from acclimated activated sludge, was identified as Bacillus cereus. The appropriate conditions of bacterial growth was 25 °C, pH 7 to 8, shaking speed 150 r/min, while the suitable conditions for Cr(VI) reduction was 35 °C, pH 8 to 9. When the initial Cr(VI) concentration increased from 20 mg/L to 60 mg/L, the reduction rate decreased gradually. Under the suitable reducing conditions, when the initial concentration of Cr (VI) was 30 mg/L, the reduction rate could up to 100% in 9 h. The end product was soluble trivalent chromium. Strain Cr4-1 had a good effect on Cr (VI) reduction and the final product was soluble trivalent chromium.

  6. Barriers and enablers to implementing antenatal magnesium sulphate for fetal neuroprotection guidelines: a study using the theoretical domains framework.

    PubMed

    Bain, Emily; Bubner, Tanya; Ashwood, Pat; Van Ryswyk, Emer; Simmonds, Lucy; Reid, Sally; Middleton, Philippa; Crowther, Caroline A

    2015-08-18

    Strong evidence supports administration of magnesium sulphate prior to birth at less than 30 weeks' gestation to prevent very preterm babies dying or developing cerebral palsy. This study was undertaken as part of The WISH (Working to Improve Survival and Health for babies born very preterm) Project, to assess health professionals' self-reported use of antenatal magnesium sulphate, and barriers and enablers to implementation of 2010 Australian and New Zealand clinical practice guidelines. Semi-structured, one-to-one interviews were conducted with obstetric and neonatal consultants and trainees, and midwives in 2011 (n = 24) and 2012-2013 (n = 21) at the Women's and Children's Hospital, South Australia. Transcribed interview data were coded using the Theoretical Domains Framework (describing 14 domains related to behaviour change) for analysis of barriers and enablers. In 2012-13, health professionals more often reported 'routinely' or 'sometimes' administering or advising their colleagues to administer magnesium sulphate for fetal neuroprotection (86% in 2012-13 vs. 46% in 2011). 'Knowledge and skills', 'memory, attention and decision processes', 'environmental context and resources', 'beliefs about consequences' and 'social influences' were key domains identified in the barrier and enabler analysis. Perceived barriers were the complex administration processes, time pressures, and the unpredictability of preterm birth. Enablers included education for staff and women at risk of very preterm birth, reminders and 'prompts', simplified processes for administration, and influential colleagues. This study has provided valuable data on barriers and enablers to implementing magnesium sulphate for fetal neuroprotection, with implications for designing and modifying future behaviour change strategies, to ensure optimal uptake of this neuroprotective therapy for very preterm infants.

  7. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese

    PubMed Central

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler; Bak, Friedhelm

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments. PMID:16348835

  8. Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Hachem, R.; Roziere, E.; Grondin, F.

    2012-10-15

    This work aims to contribute to the design of durable concrete structures exposed to external sulphate attacks (ESA). Following a preliminary study aimed at designing a representative test, the present paper suggests a study on the effect of the water-to-cement (w/c) ratio and the cement composition in order to understand the degradation mechanisms. Length and mass measurements were registered continuously, leached calcium and hydroxide ions were also quantified. In parallel, scanning electron microscopy observations as well as X-ray microtomography were realised at different times to identify the formed products and the crack morphology. Test results provide information on the basicmore » aspects of the degradation mechanism, such as the main role of leaching and diffusion in the sulphate attack process. The mortar composition with a low w/c ratio leads to a better resistance to sulphate attack because the microstructure is less permeable. Reducing the C{sub 3}A content results in a macro-cracking decrease but it does not prevent expansion, which suggests the contribution of other expansive products, such as gypsum, in damage due to ESA. The observation of the cracks network in the microstructure helps to understand the micro-mechanisms of the degradation process.« less

  9. Anticancer effects of morin-7-sulphate sodium, a flavonoid derivative, in mouse melanoma cells.

    PubMed

    Li, Hua-Wen; Zou, Tang-Bin; Jia, Qing; Xia, En-Qin; Cao, Wen-Jun; Liu, Wen; He, Tai-Ping; Wang, Qin

    2016-12-01

    Increasing evidence supports the anticancer effects of morin in vitro and in vivo. However, the role of morin-7-sulphate sodium (NaMoS), a water-soluble flavonoid derivative synthesized from morin remains unclear. The present study investigated the tumor suppression by NaMoS in mouse melanoma cells. We synthesized the flavonoid derivative morin-7-sulphate sodium according to the method described for quercetin-sulphate derivative, and further isolated, purified and identified the compound. Cell proliferation in vitro was assessed using a CCK-8 assay. The wound healing assay was performed to evaluate cell motility, and flow cytometry was used to detect cellular apoptosis. Protein levels of vimentin, matrix metalloproteinase 9 (MMP9), phosphorylation of Akt1/2/3 (p-Akt1/2/3), extracellular signal-regulated kinase 1/2 (p-ERK1/2) and Caspase3 in B16F10 cells were detected by immunohistochemistry and Western blot. The results suggest that cell proliferation was markedly decreased in NaMoS-treated groups (1, 10, 25, 50, 100, 500, 1000μM) in a dose-dependent manner compared with the Control group and the IC 50 was 221.67μM at 48h. NaMoS at 200μM concentration significantly inhibited the invasion and promoted apoptosis of B16F10 cells. Moreover, protein level of Caspase3 increased significantly in B16F10 cells treated by NaMoS. Immunohistochemistry and Western blot further confirmed that NaMoS decreased the expression of vimentin, MMP9, p-Akt1/2/3 and p-ERK1/2 in B16F10 cells. This study provides robust evidence that NaMoS, a water-soluble flavonoid, manifests anticancer properties and may act as a signal transduction inhibitor in melanoma cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature.

  11. Removal of nickel and cadmium from battery waste by a chemical method using ferric sulphate.

    PubMed

    Jadhav, Umesh U; Hocheng, Hong

    2014-01-01

    The removal of nickel (Ni) and cadmium (Cd) from spent batteries was studied by the chemical method. A novel leaching system using ferric sulphate hydrate was introduced to dissolve heavy metals in batteries. Ni-Cd batteries are classified as hazardous waste because Ni and Cd are suspected carcinogens. More efficient technologies are required to recover metals from spent batteries to minimize capital outlay, environmental impact and to respond to increased demand. The results obtained demonstrate that optimal conditions, including pH, concentration of ferric sulphate, shaking speed and temperature for the metal removal, were 2.5, 60 g/L, 150 rpm and 30 degrees C, respectively. More than 88 (+/- 0.9) and 84 (+/- 2.8)% of nickel and cadmium were recovered, respectively. These results suggest that ferric ion oxidized Ni and Cd present in battery waste. This novel process provides a possibility for recycling waste Ni-Cd batteries in a large industrial scale.

  12. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    NASA Astrophysics Data System (ADS)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  13. Impedance spectroscopy of water soluble resin modified by zirconium sulphate

    NASA Astrophysics Data System (ADS)

    Joseph, Anandraj; Joshi, Girish M.

    2018-04-01

    We successfully modified water soluble resin polyvinyl alcohol (PVA) by loading zirconium sulphate (ZrSO4). We demonstrated the measurement of electrical properties by using impedance analyser across frequency range (10 Hz-1 MHz) and the temperature range of (30°C to 150°C). The impedance spectroscopy demonstrates decrease in bulk resistance as a function of temperature loading of zirconia 2.5 wt. %. Increase in AC (10-5 S/cm and DC conductivity (10- 2 S/m) observed due to ionic contribution of zirconia. However, the electrical properties of PVA/ZrSO4 composite useful to develop battery electrolyte applications.

  14. Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian-Oxfordian clayey formation of Bure (France)

    NASA Astrophysics Data System (ADS)

    Lerouge, C.; Grangeon, S.; Gaucher, E. C.; Tournassat, C.; Agrinier, P.; Guerrot, C.; Widory, D.; Fléhoc, C.; Wille, G.; Ramboz, C.; Vinsot, A.; Buschaert, S.

    2011-05-01

    The Callovian-Oxfordian (COx) clayey unit is being studied in the Eastern part of the Paris Basin at depths between 400 and 500 m depth to assess of its suitability for nuclear waste disposal. The present study combines new mineralogical and isotopic data to describe the sedimentary history of the COx unit. Petrologic study provided evidence of the following diagenetic mineral sequence: (1) framboidal pyrite and micritic calcite, (2) iron-rich euhedral carbonates (ankerite, sideroplesite) and glauconite (3) limpid calcite and dolomite and celestite infilling residual porosity in bioclasts and cracks, (4) chalcedony, (5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ 34S (-38‰ to +34.5‰), providing evidence of bacterial sulphate reduction processes in changing sedimentation conditions. The most negative values (-38‰ to -22‰), measured in the lower part of the COx unit indicate precipitation of pyrite in a marine environment with a continuous sulphate supply. The most positive pyrite δ 34S values (-14‰ up to +34.5‰) in the upper part of the COx unit indicate pyrite precipitation in a closed system. Celestite δ 34S values reflect the last evolutionary stage of the system when bacterial activity ended; however its deposition cannot be possible without sulphate supply due to carbonate bioclast dissolution. The 87Sr/ 86Sr ratio of celestite (0.706872-0.707040) is consistent with deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic compositions of bulk calcite and dolomite are consistent with marine carbonates. Siderite, only present in the maximum clay zone, has chemical composition and δ 18O consistent with a marine environment. Its δ 13C is however lower than those of marine carbonates, suggesting a contribution of 13C-depleted carbon from degradation of organic matter. δ 18O values of diagenetic chalcedony range between +27‰ and +31‰, suggesting precipitation from marine-derived pore waters. Late calcite

  15. Is the C-terminal flanking peptide of rat cholecystokinin double sulphated?

    PubMed

    Adrian, T E; Domin, J; Bacarese-Hamilton, A J; Bloom, S R

    1986-02-03

    A specific radioimmunoassay was developed to the predicted nine amino acid C-terminal flanking peptide of cholecystokinin (peptide serine serine, PSS). In aqueous extracts of rat brain, PSS was undetectable unless the extracts were first treated with arylsulphatase, which also resulted in desulphation of cholecystokinin. The reverse-phase HPLC analysis of partially desulphated extracts showed the presence of two peaks intermediate to the naturally occurring and the completely desulphated forms. It is therefore proposed that the CCK-flanking peptide PSS has both tyrosine residues sulphated.

  16. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration

    NASA Astrophysics Data System (ADS)

    Wang, Dong-An; Varghese, Shyni; Sharma, Blanka; Strehin, Iossif; Fermanian, Sara; Gorham, Justin; Fairbrother, D. Howard; Cascio, Brett; Elisseeff, Jennifer H.

    2007-05-01

    A biologically active, high-strength tissue adhesive is needed for numerous medical applications in tissue engineering and regenerative medicine. Integration of biomaterials or implants with surrounding native tissue is crucial for both immediate functionality and long-term performance of the tissue. Here, we use the biopolymer chondroitin sulphate (CS), one of the major components of cartilage extracellular matrix, to develop a novel bioadhesive that is readily applied and acts quickly. CS was chemically functionalized with methacrylate and aldehyde groups on the polysaccharide backbone to chemically bridge biomaterials and tissue proteins via a twofold covalent link. Three-dimensional hydrogels (with and without cells) bonded to articular cartilage defects. In in vitro and in vivo functional studies this approach led to mechanical stability of the hydrogel and tissue repair in cartilage defects.

  17. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  18. Maternal plasma oestrone sulphate concentration prior to parturition in relation to birth weight of the calf in primiparous, 2-year-old, Angus heifers.

    PubMed

    Hickson, R E; Kenyon, P R; Lopez-Villalobos, N; Morris, S T

    2009-08-01

    Dystocia and assisted calving in primiparous heifers are persistent problems in beef herds, and incidence increases with increasing birth weight of calves. Plasma samples taken from 33 primiparous, 2-year-old, Angus heifers 2 days prior to parturition were analysed for oestrone sulphate concentration. Additional samples taken at 4, 6, 8 and 10 days prior to parturition were analysed for 17 of these heifers. At parturition, birth weight of the calf, post-partum live weight of the heifer, assistance at calving (n=6) and status of the calf (stillborn (n=4) vs. alive) were recorded. Maternal plasma oestrone sulphate concentration was stable from 10 to 4 days prior to parturition and increased between 4 and 2 days prior to parturition for non-assisted heifers. Maternal plasma oestrone sulphate concentration did not affect the probability of assistance at calving or stillbirth.

  19. Therapeutic effect of magnesium sulphate on carbon monoxide toxicity-mediated brain lipid peroxidation.

    PubMed

    Yavuz, Y; Mollaoglu, H; Yürümez, Y; Ucok, K; Duran, L; Tünay, K; Akgün, L

    2013-02-01

    Carbon monoxide (CO) toxicity primarily results from cellular hypoxia caused by impedance of oxygen delivery. Studies show that CO may cause brain lipid peroxidation and leukocyte-mediated inflammatory changes in the brain. The aim of this study was to investigate whether magnesium sulphate could prevent or diminish brain lipid peroxidation caused by carbon monoxide toxicity in rats. Fourty rats were divided into five groups of 8 rats each. Group l was not received any agent during the experiment. Group 2 was inhaled CO gas followed by intraperitoneally normal saline 30 minutes (min) later. Group 3 was inhaled CO gas followed by 100 mg/kg magnesium sulphate intraperitoneally 30 min later. Group 2 and Group 3 rats was undergone laparotomy and craniotomy while still under anesthesia at 6 hour, and tissue sample was obtained from the cerebrum. Group 4 was inhaled CO gas followed by intraperitoneally normal saline 30 min later. Group 5 was inhaled CO gas followed by 100 mg/kg magnesium sulphate intraperitoneally 30 min later. Group 4 and Group 5 rats was undergone laparotomy and craniotomy while still under anesthesia at 24 hour, and tissue sample was obtained from the cerebrum. Nitric oxide levels were no significantly different between all groups. Malonyldialdehyde levels increased in intoxication group (group 2) and decreased in treatment group (group 3). Activities of superoxide dismutase decreased in intoxication group (group 2) and increased in treatment group (group 3). Activities of catalase increased in intoxication group (group 2) and decreased in treatment group (group 3). Activities of glutathione peroxidase (GSH-Px) decreased in intoxication group (group 4) and increased in treatment group (group 5). CO poisoning caused significant damage, detected within the first 6 hours. Due to antioxidant enzymes, especially GSH-Px activity reaching the top level within 24th hours, significant oxidative damage was not observed. The protective effect against oxidative

  20. Reduction of Cr(VI) to Cr(III) by green rust - sulphate

    NASA Astrophysics Data System (ADS)

    Skovbjerg, L.; Stipp, S.

    2003-04-01

    Chromium is widely used in industrial processes such as leather tanning, electro-plating and as colour pigments. Unfortunately, hexavalent chromium is both toxic and very soluble so it can be a problem for groundwater resources. Given the right redox conditions, however, Cr(VI) can be reduced to trivalent chromium, which is much less soluble and is an essential trace nutrient. Fe(II), an element common in soil and sediments under anaerobic conditions, can serve as a reducing agent for Cr(VI). Green Rust (GR) is a layered Fe(II),Fe(III)-hydroxide with various anions compensating charge in the interlayers. It is very effective in reducing Cr(VI) to Cr(III). GR exists in nature and is thought to be precursor for the formation of Fe(III)-oxides and oxyhydroxides at the redox boundary. It may be that the formation of GR is a key process in the effectiveness of reactive barriers for groundwater remediation that are based on Fe(0). The purpose of this work is to investigate the mechanisms controlling Cr(VI) reduction by Green Rust, to examine the effect of Cr adsorption and incorporation on GR morphology and composition, and to define the role of parameters such as interlayer anion, initial Cr(VI) concentration and time. We are using freshly synthesised material that has not been dried to avoid structural changes that may accompany dehydration and rehydration. X-Ray Diffraction (XRD) is used to characterise mineral structural changes and Atomic Force Microscopy (AFM), to examine changes in morphology as reactions take place. By adjusting the concentration of Cr(VI), we can control the rate of surface change and we can observe the nanoscale particles directly.

  1. Rapid Identification of Bacterial Virulence Factors

    DTIC Science & Technology

    2014-04-15

    protein sorting and transport. F/’/wyi-deletion mutants had decreased invasiveness of HeLa cells when compared to their parental strain, and it has...mileux. Bacteria with intracellular life styles and have reductive genomes often have many different ABC transporters. This is certainly the case in...34 Microbiology 151:2975-2986. Newman , R.M., P. Salunkhe, A. Godzik, J.C. Reed. 2006. Identification and Characterization of a Novel Bacterial

  2. Functional Genotyping of Sulfurospirillum spp. in Mixed Cultures Allowed the Identification of a New Tetrachloroethene Reductive Dehalogenase

    PubMed Central

    Buttet, Géraldine F.; Holliger, Christof

    2013-01-01

    Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed. PMID:23995945

  3. Impact of commonly used agrochemicals on bacterial diversity in cultivated soils.

    PubMed

    Ampofo, J A; Tetteh, W; Bello, M

    2009-09-01

    The effects of three selected agrochemicals on bacterial diversity in cultivated soil have been studied. The selected agrochemicals are Cerox (an insecticide), Ceresate and Paraquat (both herbicides). The effect on bacterial population was studied by looking at the total heterotrophic bacteria presence and the effect of the agrochemicals on some selected soil microbes. The soil type used was loamy with pH of 6.0-7.0. The soil was placed in opaque pots and bambara bean (Vigna subterranean) seeds cultivated in them. The agrochemicals were applied two weeks after germination of seeds at concentrations based on manufacturer's recommendation. Plant growth was assessed by weekly measurement of plant height, foliage appearance and number of nodules formed after one month. The results indicated that the diversity index (Di) among the bacteria populations in untreated soil and that of Cerox-treated soils were high with mean diversity index above 0.95. Mean Di for Ceresate-treated soil was 0.88, and that for Paraquattreated soil was 0.85 indicating low bacterial populations in these treatment-type soils. The study also showed that application of the agrochemicals caused reduction in the number of total heterotrophic bacteria population sizes in the soil. Ceresate caused 82.50% reduction in bacteria number from a mean of 40 × 10(5) cfu g(-1) of soil sample to 70 × 10(4) cfu g(-1). Paraquat-treated soil showed 92.86% reduction, from a mean of 56 × 10(5) cfu g(-1) to 40 × 10(4) cfu g(-1). Application of Cerox to the soil did not have any remarkable reduction in bacterial population number. Total viable cell count studies using Congo red yeast-extract mannitol agar indicated reduction in the number of Rhizobium spp. after application of the agrochemicals. Mean number of Rhizobium population numbers per gram of soil was 180 × 10(4) for the untreated soil. Cerox-treated soil recorded mean number of 138 × 10(4) rhizobial cfu g(-1) of soil, a 23.33% reduction. Ceresate- and

  4. Use of natural 35S to trace sulphate cycling in small lakes, Flattops Wilderness Area, Colorado, U.S.A.

    USGS Publications Warehouse

    Michel, Robert L.; Turk, John T.; Campbell, Donald H.; Mast, M. Alisa

    2002-01-01

    Measurements of the cosmogenically-produced 35S, a radioisotope of sulphur (t1/2 = 87 days), are reported for the Ned Wilson Lake watershed in Colorado. The watershed contains two small lakes and a flowing spring presumed to be representative of local ground water. The watershed is located in the Flattops Wilderness Area and the waters in the system have low alkalinity, making them sensitive to increases in acid and sulphate deposition. Time series of 35S measurements were made during the summers of 1995 and 1996 (July–September) at all three sites. The system is dominated by melting snow and an initial concentration of 16–20 mBq L-1was estimated for snowmelt based on a series of snow samples collected in the Rocky Mountains. The two lakes had large initial 35S concentrations in July, indicating that a large fraction of the lake water and sulphate was introduced by meltwater from that year's snowpack. In 1995 and 1996, 35S concentrations decreased more rapidly than could be accounted for by decay, indicating that other processes were affecting 35S concentrations. The most likely explanation is that exchange with sediments or the biota was removing 35S from the lake and replacing it with older sulphate devoid of 35S. In September of 1995 and 1996, 35S concentrations increased, suggesting that atmospheric deposition is important in the sulphate flux of these lakes in late summer. Sulphur-35 concentrations in the spring water were highly variable but never higher than 3.6 mBq L-1 and averaged 2 mBq L-1. Using a simple mixing model, it was estimated that 75% of the spring water was derived from precipitation of previous years.

  5. [Severe toxic liver failure after acute poisoning with paracetamol, ferrous sulphate and naproxen].

    PubMed

    Adamek, Robert; Wilczek, Lech; Krupiński, Bogusław

    2004-01-01

    We present the case of 20-year-old woman intoxicated with mixed drugs, composed of paracetamol (acetaminophen), ferrous sulphate, naproxen and benzodiazepines. Acute toxic liver damage with clinical symptoms of coma resolved at the patient. Lack of the past history doesn't let to specific therapy and systemic complications. In this data we confirm, that past history, clinical symptoms and laboratory results are needed in designing a treatment strategy.

  6. Experimental study of the replacement of calcite by calcium sulphates

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, E.; Putnis, C. V.; Hövelmann, J.; Álvarez-Lloret, P.; Ibáñez-Velasco, A.; Putnis, A.

    2015-05-01

    Among the most relevant mineral replacement reactions are those involving sulphates and carbonates, which have important geological and technological implications. Here it is shown experimentally that during the interaction of calcite (CaCO3) cleavage surfaces with sulphate-bearing acidic solutions, calcite is ultimately replaced by gypsum (CaSO4 2H2O) and anhydrite (CaSO4), depending on the reaction temperature. Observations suggest that this occurs most likely via an interface-coupled dissolution-precipitation reaction, in which the substrate is replaced pseudomorphically by the product. At 120 and 200 °C gypsum and/or bassanite (CaSO4·0.5H2O) form as precursor phases for the thermodynamically stable anhydrite. Salinity promotes the formation of less hydrated precursor phases during the replacement of calcite by anhydrite. The reaction stops before equilibrium with respect to calcite is reached and during the course of the reaction most of the bulk solutions are undersaturated with respect to the precipitating phase(s). A mechanism consisting of the dissolution of small amounts of solid in a thin layer of fluid at the mineral-fluid interface and the subsequent precipitation of the product phase from this layer is in agreement with these observations. PHREEQC simulations performed in the framework of this mechanism highlight the relevance of transport and surface reaction kinetics on the volume change associated with the CaCO3-CaSO4 replacement. Under our experimental conditions, this reaction occurs with a positive volume change, which ultimately results in passivation of the unreacted substrate before calcite attains equilibrium with respect to the bulk solution.

  7. Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC) and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC), in a fluidized bed circulation column

    DOE PAGES

    Alamin, Ahmed Hassan; Kaewsichan, Lupong

    2016-06-30

    Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. Themore » data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment« less

  8. Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC) and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC), in a fluidized bed circulation column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamin, Ahmed Hassan; Kaewsichan, Lupong

    Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. Themore » data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment« less

  9. Biphasic reduction model for predicting the impacts of dye-bath constituents on the reduction of tris-azo dye Direct Green-1 by zero valent iron (Fe0).

    PubMed

    Kumar, Raja; Sinha, Alok

    2017-02-01

    Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe 0 was investigated. Organic acids improved dye reduction by augmenting Fe 0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its 'salting out' effect on the bulk solution and by Cl - anion-mediated pitting corrosion of iron surface. (NH 4 ) 2 SO 4 induced 'salting out' effect accompanied by enhanced iron corrosion by SO 4 2- anion and buffering effect of NH 4 + improved the reduction rates. However, at 2g/L (NH 4 ) 2 SO 4 concentration, complexating of SO 4 2- with iron oxides decreased Fe 0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and 'salting in' effect in solution, and due to it masking the Fe 0 surface. Decolouration obeyed biphasic reduction kinetics (R 2 >0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH2. Copyright © 2016. Published by Elsevier B.V.

  10. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice.

    PubMed

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A

    2010-05-01

    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  11. An anti-bacterial approach to nanoscale roughening of biomimetic rice-like pattern PP by thermal annealing

    NASA Astrophysics Data System (ADS)

    Jafari Nodoushan, Emad; Ebrahimi, Nadereh Golshan; Ayazi, Masoumeh

    2017-11-01

    In this paper, we introduced thermal annealing treatment as an effective way of increasing the nanoscale roughness of a semi-crystalline polymer surface. Annealing treatment applied to a biomimetic microscale pattern of rice leaf to achieve a superhydrophobic surface with a hierarchical roughness. Resulted surfaces was characterized by XRD, AFM and FE-SEM instruments and showed an increase of roughness and cristallinity within both time and temperature of treatment. These two parameters also impact on measured static contact angle up to 158°. Bacterial attachment potency has an inverse relationship with the similarity of surface pattern dimensions and bacterial size and due to that, thermal annealing could be an effective way to create anti-bacterial surface beyond its effect on water repellency. Point in case, the anti-bacterial properties of produced water-repellence surfaces of PP were measured and counted colonies of both gram-negative (E. coli) and gram-positive (S. aureus) bacteria reduced with the nature of PP and hierarchical pattern on that. Anti-bacterial characterization of the resulted surface reveals a stunning reduction in adhesion of gram-positive bacteria to the surface. S. aureus reduction rates equaled to 95% and 66% when compared to control blank plate and smooth surface of PP. Moreover, it also could affect the other type of bacteria, gram-negative (E. coli). In the latter case, adhesion reduction rates calculated 66% and 53% when against to the same controls, respectively.

  12. Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater.

    PubMed

    Soares, Olivia Salomé G P; Orfão, José J M; Gallegos-Suarez, Esteban; Castillejos, Eva; Rodríguez-Ramos, Inmaculada; Pereira, Manuel Fernando R

    2012-01-01

    The influence of the presence of inorganic and organic matter during the catalytic reduction of nitrate in a local groundwater over a Pd-Cu catalyst supported on carbon nanotubes was investigated. It was observed that the catalyst performance was affected by the groundwater composition. The nitrate conversion attained was higher in the experiment using only deionized water as solvent than in the case of simulated or real groundwater. With exception of sulphate ions, all the other solutes evaluated (chloride and phosphate ions and natural organic matter) had a negative influence on the catalytic activity and selectivity to nitrogen.

  13. Ion-Selective Deposition of Manganese Sulphate Solution from Trenggalek Manganese Ore by Active Carbon and Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Andriyah, L.; Sulistiyono, E.

    2017-02-01

    One of the step in manganese dioxide manufacturing process for battery industry is a purification process of lithium manganese sulphate solution. The elimination of impurities such as iron removal is important in hydrometallurgical processes. Therefore, this paper present the purification results of manganese sulphate solution by removing impurities using a selective deposition method, namely activated carbon adsorption and NaOH. The experimental results showed that the optimum condition of adsorption process occurs on the addition of 5 g adsorbent and the addition of 10 ml NaOH 1 N, processing time of 30 minutes and the best is the activated carbon adsorption of Japan. Because the absolute requirement of the cathode material of lithium ion manganese are free of titanium then of local wood charcoal is good enough in terms of eliminating ions Ti is equal to 70.88%.

  14. Formation and reduction of carcinogenic furan in various model systems containing food additives.

    PubMed

    Kim, Jin-Sil; Her, Jae-Young; Lee, Kwang-Geun

    2015-12-15

    The aim of this study was to analyse and reduce furan in various model systems. Furan model systems consisting of monosaccharides (0.5M glucose and ribose), amino acids (0.5M alanine and serine) and/or 1.0M ascorbic acid were heated at 121°C for 25 min. The effects of food additives (each 0.1M) such as metal ions (iron sulphate, magnesium sulphate, zinc sulphate and calcium sulphate), antioxidants (BHT and BHA), and sodium sulphite on the formation of furan were measured. The level of furan formed in the model systems was 6.8-527.3 ng/ml. The level of furan in the model systems of glucose/serine and glucose/alanine increased 7-674% when food additives were added. In contrast, the level of furan decreased by 18-51% in the Maillard reaction model systems that included ribose and alanine/serine with food additives except zinc sulphate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    PubMed

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  16. Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium.

    PubMed

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Lai, Ka Man; Wong, Jonathan W C

    2017-12-01

    Effect of single-function (oil degrading) and multi-functional bacterial consortium with zeolite as additive for post-consumption food waste (PCFW) composting was investigated through assessing the oil content reduction in a computer controlled 20-L composter. Three treatments of PCFWs combined with 10% zeolite were developed: Treatment-2 and Treatment-3 were inoculated with multi-functional (BC-1) and oil degrading bacterial consortium (BC-2), respectively, while T-1 was without bacterial inoculation and served as control. Results revealed that BC-2 inoculated treatment (T-3) was superior to control treatment and marginally better than T-2 in terms of oil degradation. The reduction of oil content was >97.8% in T-3 and 92.27% in T-2, while total organic matter degradation was marginally higher in T-2 (42.95%) than T-3 (41.67%). Other parameters of compost maturity including germination test indicated that T-2 was marginally better than T-3 and significantly enhanced the oily PCFW decomposition and shortened the composting period by 20days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Advances in Glass Formulations for Hanford High-Aluminum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-07-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or

  18. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-01-16

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or

  19. Mechanism of uranium (VI) removal by two anaerobic bacterial communities.

    PubMed

    Martins, Mónica; Faleiro, Maria Leonor; da Costa, Ana M Rosa; Chaves, Sandra; Tenreiro, Rogério; Matos, António Pedro; Costa, Maria Clara

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene.

    PubMed

    Skariyachan, Sinosh; Manjunatha, Vishal; Sultana, Subiya; Jois, Chandana; Bai, Vidya; Vasist, Kiran S

    2016-09-01

    This study aimed to formulate novel microbial consortia isolated from plastic garbage processing areas and thereby devise an eco-friendly approach for enhanced degradation of low-density polyethylene (LDPE). The LDPE degrading bacteria were screened and microbiologically characterized. The best isolates were formulated as bacterial consortia, and degradation efficiency was compared with the consortia formulated using known isolates obtained from the Microbial Culture Collection Centre (MTCC). The degradation products were analyzed by FTIR, GC-FID, tensile strength, and SEM. The bacterial consortia were characterized by 16S ribosomal DNA (rDNA) sequencing. The formulated bacterial consortia demonstrated 81 ± 4 and 38 ± 3 % of weight reduction for LDPE strips and LDPE pellets, respectively, over a period of 120 days. However, the consortia formulated by MTCC strains demonstrated 49 ± 4 and 20 ± 2 % of weight reduction for LDPE strips and pellets, respectively, for the same period. Furthermore, the three isolates in its individual application exhibited 70 ± 4, 68 ± 4, and 64 ± 4 % weight reduction for LDPE strips and 21 ± 2, 28 ± 2, 24 ± 2 % weight reduction for LDPE pellets over a period of 120 days (p < 0.05). The end product analysis showed structural changes and formation of bacterial film on degraded LDPE strips. The 16S rDNA characterization of bacterial consortia revealed that these organisms were novel strains and designated as Enterobacter sp. bengaluru-btdsce01, Enterobacter sp. bengaluru-btdsce02, and Pantoea sp. bengaluru-btdsce03. The current study thus suggests that industrial scale-up of these microbial consortia probably provides better insights for waste management of LDPE and similar types of plastic garbage.

  1. In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments

    NASA Astrophysics Data System (ADS)

    Branfireun, Brian A.; Roulet, Nigel T.; Kelly, Carol. A.; Rudd, John W. M.

    1999-09-01

    Recent studies have found that "pristine" peatlands have high peat and pore water methylmercury (MeHg) concentrations and that peatlands may act as large sources of MeHg to the downstream aquatic system, depending upon the degree of hydrologie connectivity and catchment physiography. Sulphate-reducing bacteria have been implicated as principal methylators of inorganic mercury in many environments with previous research focused primarily on mercury methylation in aquatic sediments. Experiments in a poor fen in the Experimental Lakes Area, northwestern Ontario, Canada, demonstrated that the in situ addition of sulphate to peat and peat pore water resulted in a significant increase in pore water MeHg concentrations. As peatlands cover a large area of the Northern Hemisphere, this finding has potentially far ranging implications for the global mercury cycle, particularly in areas impacted by anthropogenically derived sulphate where the methylmercury fraction of total mercury species may be much larger than in nonimpacted environments.

  2. Connexin 26 facilitates gastrointestinal bacterial infection in vitro.

    PubMed

    Simpson, Charlotte; Kelsell, David P; Marchès, Olivier

    2013-01-01

    Escherichia coli, including enteropathogenic E. coli (EPEC), represents the most common cause of diarrhoea worldwide and is therefore a serious public health burden. Treatment for gastrointestinal pathogens is hindered by the emergence of multiple antibiotic resistance, leading to the requirement for the development of new therapies. A variety of mechanisms act in combination to mediate gastrointestinal-bacterial-associated diarrhoea development. For example, EPEC infection of enterocytes induces attaching and effacing lesion formation and the disruption of tight junctions. An alternative enteric pathogen, Shigella flexneri, manipulates the expression of Connexin 26 (Cx26), a gap junction protein. S. flexneri can open Cx26 hemichannels allowing the release of ATP, whereas HeLa cells expressing mutant gap-junction-associated Cx26 are less susceptible to cellular invasion by S. flexneri than cells expressing wild-type (WT) Cx26. We have investigated further the link between Cx26 expression and gastrointestinal infection by using EPEC and S. flexneri as in vitro models of infection. In this study, a significant reduction in EPEC adherence was observed in cells expressing mutant Cx26 compared with WT Cx26. Furthermore, a significant reduction in both cellular invasion by S. flexneri and adherence by EPEC was demonstrated in human intestinal cell lines following treatment with Cx26 short interfering RNA. These in vitro results suggest that the loss of functional Cx26 expression provides improved protection against gastrointestinal bacterial pathogens. Thus, Cx26 represents a potential therapeutic target for gastrointestinal bacterial infection.

  3. A sulphated flavone glycoside from Livistona australis and its antioxidant and cytotoxic activity.

    PubMed

    Kassem, Mona E S; Shoela, Soha; Marzouk, Mona M; Sleem, Amany A

    2012-01-01

    A new flavone glycoside tricin 7-O-β-glucopyranoside-2″-sulphate sodium salt along with 14 known flavonoid compounds were isolated and identified from the aqueous methanol extract of Livistona australis leaves. Their structures were established on the basis of extensive NMR (¹H, ¹³C, HSQC and H-H COSY) and ESIMS data. Antioxidant and cytotoxicity properties of the methanol extract of the leaves as well as the new compound were investigated.

  4. Flavins secreted by bacterial cells of Shewanella catalyze cathodic oxygen reduction.

    PubMed

    Liu, Huan; Matsuda, Shoichi; Hashimoto, Kazuhito; Nakanishi, Shuji

    2012-06-01

    On Her Majesty's Secrete Service: Oxygen reduction is an important process for microbial fuel cells (MFCs) and microbiologically-influenced corrosion (MIC). We demonstrate that flavins secreted by anode-respiring Shewanella cells can catalyze cathodic oxygen reduction via adsorption on the cathode. The findings will provide new insight for developing methods to improve MFC performance and to prevent MIC. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental Monitoring of Cr(VI) Bio-reduction Using Electrochemical Geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birsen Canan; Gary R. Olhoeft; William A. Smith

    2007-09-01

    Many Department of Energy (DOE) sites are contaminated with highly carcinogenic hexavalent chromium (Cr(VI)). In this research, we explore the feasibility of applying complex resistivity to the detection and monitoring of microbially-induced reduction of hexavalent chromium (Cr(VI)) to a less toxic form (Cr(III)). We hope to measure the change in ionic concentration that occurs during this reduction reaction. This form of reduction promises to be an attractive alternative to more expensive remedial treatment methods. The specific goal of this research is to define the minimum and maximum concentration of the chemical and biological compounds in contaminated samples for which themore » Cr(VI) - Cr(III) reduction processes could be detected via complex resistivity. There are three sets of experiments, each comprised of three sample columns. The first experiment compares three concentrations of Cr(VI) at the same bacterial cell concentration. The second experiment establishes background samples with, and without, Cr(VI) and bacterial cells. The third experiment examines the influence of three different bacterial cell counts on the same concentration of Cr(VI). A polarization relaxation mechanism was observed between 10 and 50 Hz. The polarization mechanism, unfortunately, was not unique to bio-chemically active samples. Spectral analysis of complex resistivity data, however, showed that the frequency where the phase minimum occurred was not constant for bio-chemically active samples throughout the experiment. A significant shifts in phase minima occurred between 10 to 20 Hz from the initiation to completion of Cr(VI) reduction. This phenomena was quantified using the Cole-Cole model and the Marquardt-Levenberg nonlinear least square minimization method. The data suggests that the relaxation time and the time constant of this relaxation are the Cole-Cole parameters most sensitive to changes in biologically-induced reduction of Cr(VI).« less

  6. Assessment of bacterial and archaeal community structure in Swine wastewater treatment processes.

    PubMed

    Da Silva, Marcio Luis Busi; Cantão, Mauricio Egídio; Mezzari, Melissa Paola; Ma, Jie; Nossa, Carlos Wolfgang

    2015-07-01

    Microbial communities from two field-scale swine wastewater treatment plants (WWTPs) were assessed by pyrosequencing analyses of bacterial and archaeal 16S ribosomal DNA (rDNA) fragments. Effluent samples from secondary (anaerobic covered lagoons and upflow anaerobic sludge blanket [UASB]) and tertiary treatment systems (open-pond natural attenuation lagoon and air-sparged nitrification-denitrification tank followed by alkaline phosphorus precipitation process) were analyzed. A total of 56,807 and 48,859 high-quality reads were obtained from bacterial and archaeal libraries, respectively. Dominant bacterial communities were associated with the phylum Firmicutes, Bacteroidetes, Proteobacteria, or Actinobacteria. Bacteria and archaea diversity were highest in UASB effluent sample. Escherichia, Lactobacillus, Bacteroides, and/or Prevotella were used as indicators of putative pathogen reduction throughout the WWTPs. Satisfactory pathogen reduction was observed after the open-pond natural attenuation lagoon but not after the air-sparged nitrification/denitrification followed by alkaline phosphorus precipitation treatment processes. Among the archaeal communities, 80% of the reads was related to hydrogeno-trophic methanogens Methanospirillum. Enrichment of hydrogenotrophic methanogens detected in effluent samples from the anaerobic covered lagoons and UASB suggested that CO2 reduction with H2 was the dominant methanogenic pathway in these systems. Overall, the results served to improve our current understanding of major microbial communities' changes downgradient from the pen and throughout swine WWTP as a result of different treatment processes.

  7. Flagella bending affects macroscopic properties of bacterial suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potomkin, M.; Tournus, M.; Berlyand, L. V.

    To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions ofmore » bacteria with shear flow and walls or obstacles.« less

  8. Spore-forming organisms in platelet concentrates: a challenge in transfusion bacterial safety.

    PubMed

    Störmer, M; Vollmer, T; Kleesiek, K; Dreier, J

    2008-12-01

    Bacterial detection and pathogen reduction are widely used methods of minimizing the risk of transfusion-transmitted bacterial infection. But, bacterial spores are highly resistant to chemical and physical agents. In this study, we assessed the bacterial proliferation of spore-forming organisms seeded into platelet concentrates (PCs) to demonstrate that spores can enter the vegetative state in PCs during storage. In the in vitro study, PCs were inoculated with 1-10 spores mL(-1)of Bacillus cereus (n = 1), Bacillus subtilis (n = 2) and Clostridium sporogenes (n = 2). Sampling was performed during 6-day aerobic storage at 22 degrees C. The presence of bacteria was assessed by plating culture, automated culture and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Spores of the C. sporogenes do not enter the vegetative phase under PC storage conditions, whereas B. subtilis and B. cereus showed growth in the PC and could be detected using RT-PCR and automated culture. Depending on the species and inoculums, bacterial spores may enter the vegetative phase during PC storage and can be detected by bacterial detection methods.

  9. Safety and efficacy of lactoferrin versus ferrous sulphate in curing iron deficiency and iron deficiency anaemia in hereditary thrombophilia pregnant women: an interventional study.

    PubMed

    Paesano, Rosalba; Pacifici, Enrica; Benedetti, Samanta; Berlutti, Francesca; Frioni, Alessandra; Polimeni, Antonella; Valenti, Piera

    2014-10-01

    Objective Evaluate the safety and efficacy of bovine lactoferrin (bLf) versus the ferrous sulphate standard intervention in curing iron deficiency (ID) and ID anaemia (IDA) in pregnant women affected by hereditary thrombophilia (HT). Design Interventional study. Setting Secondary-level hospital for complicated pregnancies in Rome, Italy. Population 295 HT pregnant women (≥18 years) suffering from ID/IDA. Methods Women were enrolled in Arm A or B in accordance with their personal choice. In Arm A, 156 women received oral administration of 100 mg of bLf twice a day; in Arm B, 139 women received 520 mg of ferrous sulphate once a day. Therapies lasted until delivery. Main outcome measures Red blood cells, haemoglobin, total serum iron, serum ferritin (haematological parameters) were assayed before and every 30 days during therapy until delivery. Serum IL-6, key factor in inflammatory and iron homeostasis disorders, was detected at enrolment and after therapy at delivery. Possible maternal, foetal, and neonatal adverse effects were assessed. Results Haematological parameters were significantly higher in Arm A than in Arm B pregnant women (P ≤ 0.0001). Serum IL-6 significantly decreased in bLf-treated women and increased in ferrous sulphate-treated women. BLf did not exert any adverse effect. Adverse effects in 16.5 % of ferrous sulphate-treated women were recorded. Arm A women experienced no miscarriage compared to five miscarriages in Arm B women. Conclusions Differently from ferrous sulphate, bLf is safe and effective in curing ID/IDA associated with a consistent decrease of serum IL-6. The absence of miscarriage among bLf-treated women provided an unexpected benefit. ClinicalTrials.gov Identifier NCT01221844.

  10. Proximal humeral fractures: the role of calcium sulphate augmentation and extended deltoid splitting approach in internal fixation using locking plates.

    PubMed

    Somasundaram, K; Huber, C P; Babu, V; Zadeh, H

    2013-04-01

    injury. Four patients had a longer recovery period due to stiffness, associated wrist fracture and elbow dislocation. The CaSO4 bone substitute was replaced by normal appearing trabecular bone texture at an average of 6 months in all patients. In our experience, we have found the use of locking plates, calcium sulphate bone substitute and tuberosity repair with high-strength sutures to be a safe and reliable method of internal fixation for complex proximal humeral fractures and fracture-dislocations. Furthermore, we have also found the use of the extended deltoid-splitting approach to be safe and to provide excellent exposure facilitating accurate reduction for fixation of the fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Reduction effect of bacterial counts by preoperative saline lavage of the stomach in performing laparoscopic and endoscopic cooperative surgery.

    PubMed

    Mori, Hirohito; Kobara, Hideki; Tsushimi, Takaaki; Fujihara, Shintaro; Nishiyama, Noriko; Matsunaga, Tae; Ayaki, Maki; Yachida, Tatsuo; Tani, Joji; Miyoshi, Hisaaki; Morishita, Asahiro; Masaki, Tsutomu

    2014-11-14

    To investigate the effects of gastric lavage with 2000 mL of saline in laparoscopic and endoscopic cooperative surgery. Twenty two patients who were diagnosed with a gastric gastrointestinal stromal tumor were enrolled. In former term, irrigations of the stomach were conducted whenever it was necessary, not systematically (Non systemic lavage group). In latter term, the stomach was thoroughly cleaned with 2000 mL of saline using an endoscope with a water jet, and Duodenal balloon occlusion was conducted to prevent refluxed bile and pancreatic juice (Systemic lavage+balloon occlusion group). The gastric wall was sprayed with 20 mL of distilled water, and 20 mL of gastric juice was collected in a sterile tube and submitted for culture. 20 mL of ascites was also collected from the laparoscopic ports and submitted for culture. We compared WBC, CRP, BT between two groups, and verify the reduction effect of bacterial counts in Systemic lavage+balloon occlusion group. WBC count before, 1 d after, and 3 d after laparoscopic and endoscopic cooperative surgery (LECS) were 5060 (95%CI: 4250-9640), 12140 (6050-14110), and 6910 (5320-12520) in Non systemic lavage group, 4400 (3660-7620), 8910 (6480-10980), and 5950 (4840-7860) in Systemic lavage+balloon occlusion group. Significant differences between two groups at the day after LECS (P = 0.029) and the 3 d after LECS (P = 0.042). CRP levels in Non systemic lavage group and in Systemic lavage+balloon occlusion group were significantly different at the day after LECS (P = 0.005) and the 3 d after LECS (P = 0.028). BTs (°C) in Non systemic lavage group and in Systemic lavage+balloon occlusion group were also significantly different at the day after LECS (P = 0.004) and the 3 d after LECS (P = 0.006). In a logarithmic comparison, bacterial load before gastric lavage, after lavage, and ascites culture were 6.08 (95%CI: 4.04-6.97), 0.48 (0-0.85), and 0.21 (0-0.56). The bacterial counts before and after gastric lavage were

  12. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-06-15

    The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 degrees C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5M), chloride (0.5M) and sodium (1.5M) ions--catalogued like severely aggressive for the traditional Portland cement--and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 degrees C.

  13. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment.

    PubMed

    Bhardwaj, Garima; Webster, Thomas J

    2017-01-01

    The attachment and initial growth of bacteria on an implant surface dictates the progression of infection. Treatment often requires aggressive antibiotic use, which does not always work. To overcome the difficulties faced in systemic and local antibiotic delivery, scientists have forayed into using alternative techniques, which includes implant surface modifications that prevent initial bacterial adhesion, foreign body formation, and may offer a controlled inflammatory response. The current study focused on using electrophoretic deposition to treat titanium with a nanophase titanium dioxide surface texture to reduce bacterial adhesion and growth. Two distinct nanotopographies were analyzed, Ti-160, an antimicrobial surface designed to greatly reduce bacterial colonization, and Ti-120, an antimicrobial surface with a topography that upregulates osteoblast activity while reducing bacterial colonization; the number following Ti in the nomenclature represents the atomic force microscopy root-mean-square roughness value in nanometers. There was a 95.6% reduction in Staphylococcus aureus (gram-positive bacteria) for the Ti-160-treated surfaces compared to the untreated titanium alloy controls. There was a 90.2% reduction in Pseudomonas aeruginosa (gram-negative bacteria) on Ti-160-treated surfaces compared to controls. For ampicillin-resistant Escherichia coli , there was an 81.1% reduction on the Ti-160-treated surfaces compared to controls. Similarly for surfaces treated with Ti-120, there was an 86.8% reduction in S. aureus , an 82.1% reduction in P. aeruginosa , and a 48.6% reduction in ampicillin-resistant E. coli . The Ti-120 also displayed a 120.7% increase at day 3 and a 168.7% increase at day 5 of osteoblast proliferation over standard titanium alloy control surfaces. Compared to untreated surfaces, Ti-160-treated titanium surfaces demonstrated a statistically significant 1 log reduction in S. aureus and P. aeruginosa , whereas Ti-120 provided an additional

  14. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kang, Sung Kil; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Mohamed, Abdel-Aleam H.; Collins, George J.; Lee, Jae Koo

    2011-04-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H2O2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state •OH generation inside the plasma and relative •OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing •OH generation and reached a maximum 5-log10 reduction with 0.6% H2O2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H2O2 vapor to the plasma.

  15. The Use of Different Irrigation Techniques to Decrease Bacterial Loads in Healthy and Diabetic Patients with Asymptomatic Apical Periodontitis.

    PubMed

    Ghoneim, Mai; Saber, Shehab ElDin; El-Badry, Tarek; Obeid, Maram; Hassib, Nehal

    2016-12-15

    Diabetes mellitus is a multisystem disease which weakens the human's immunity. Subsequently, it worsens the sequelae of apical periodontitis by raising a fierce bacterial trait due to the impaired host response. This study aimed to estimate bacterial reduction after using different irrigation techniques in systemically healthy and diabetic patients with asymptomatic apical periodontitis. Enterococcus faecalis , Peptostreptococcus micros , and Fusobacterium necleatum bacteria were chosen, as they are the most common and prevailing strains found in periodontitis. Bacterial samples were retrieved from necrotic root canals of systemically healthy and diabetic patients, before and after endodontic cleaning and shaping by using two different irrigation techniques; the conventional one and the EndoVac system. Quantitive polymerase chain reaction (qPCR) was utilised to detect the reduction in the bacterial count. The EndoVac irrigation system was effective in reducing bacteria, especially Peptostreptococcus micros in the diabetic group when compared to conventional irrigation technique with a statistically significant difference. The EndoVac can be considered as a promising tool in combination with irrigant solution to defeat the bacterial colonies living in the root canal system. Additional studies ought to be done to improve the means of bacterial clearance mainly in immune-compromised individuals.

  16. Baby Shampoo Versus Povidone-Iodine or Isopropyl Alcohol in Reducing Eyelid Skin Bacterial Load.

    PubMed

    Garcia, Giancarlo A; Nguyen, Christine V; Yonkers, Marc A; Tao, Jeremiah P

    Baby shampoo is used as an alternative surgical skin preparation, but the evidence supporting its use is scarce with no descriptions of efficacy in the periocular region. The authors compare the efficacy of baby shampoo, povidone-iodine (PI, Betadine) and isopropyl alcohol (IA) in reducing eyelid skin bacterial load. Prospective, randomized, comparative, and interventional trial. Bacterial load on adult, human eyelid skin was quantitated before and after cleansing with 1) dilute baby shampoo, 2) 10% PI, or 3) 70% IA. Paired skin swabs were collected from a 1 cm area of the upper eyelid of subjects before and after a standardized surgical scrub technique. Samples were cultured on 5% sheep blood agar for 24 hours. The number of colony forming units (CFU) was assessed and bacterial load per square centimeter of eyelid skin was quantified. Baseline and postcleansing samples were assessed from 42 eyelids of 42 subjects (n = 14 for each of baby shampoo, PI, and IA). Before cleansing, similar amounts of bacterial flora were grown from all specimens (median log CFU/cm = 2.04 before baby shampoo, 2.01 before PI, 2.11 before IA; p > 0.05). All 3 cleansing agents significantly reduced the bacterial load (p < 0.01 for each). There was no statistically significant difference in postcleansing bacterial load between the 3 cleansing agents (median log CFU/cm = 0.48 after baby shampoo, 0.39 after PI, 0.59 after IA; p > 0.05). Change from baseline in bacterial load was statistically similar for all 3 agents (median reduction in log CFU/cm = 1.28 with baby shampoo, 1.57 with PI, 1.40 with IA; p > 0.05). These corresponded to bacterial load reductions of 96.3%, 96.6%, and 98.4% for baby shampoo, PI, and IA, respectively. Baby shampoo achieved comparable diminution in eyelid skin bacterial load to PI or IA. These data suggest baby shampoo may be an effective preoperative cleansing agent.

  17. Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Koji; Kato, Junichi; Yano, Takuo

    1993-01-05

    Kinetics of bacterial reduction of toxic hexavalent chromium (chromate: CrO[sub 4][sup [minus]2]) was investigated using batch and fed-batch cultures of Enterobacter cloacae strain HO1. In fed-batch cultures, the CrO[sub 4][sup [minus]2] feed was controlled on the basis of the rate of pH change. This control strategy has proven to be useful for avoiding toxic CrO[sub 3][sup [minus]2] overload. A simple mathematical model was developed to describe the bacterial process of CrO[sub 4][sup [minus]2] reduction. In this model, two types of bacterial cells were considered: induced, CrO[sub 4][sup [minus]2]-resistant cells and uninduced, sensitive ones. Only resistant cells were assumed to bemore » able to reduce CrO[sub 4][sup [minus]2]. These fundamental ideas were supported by the model predictions which well approximated all experimental data. In a simulation study, the model was also used to optimize fed-batch cultures, instead of lengthy and expensive laboratory experiments.« less

  18. The effect of seasonal drying on sulphate dynamics in streams across southeastern Canada and the northeastern USA

    Treesearch

    J.G. Kerr; M.C. Eimers; I.F. Creed; M.B. Adams; F. Beall; D. Burns; J.L. Campbell; S.F. Christopher; T.A. Clair; F. Courchesne; L. Duchesne; I. Fernandez; D. Houle; D.S. Jeffries; G.E. Likens; M.J. Mitchell; J. Shanley; H. Yao

    2012-01-01

    Within the southeast Canada and northeast USA region, a peak in sulphate (SO42-) concentration has been reported for some streams following periods of substantial catchment drying during the summer months (ON, Canada; VT, NH and NY, USA). However, it is currently unclear if a SO42-...

  19. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  20. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  1. Diverse Reductive Dehalogenases Are Associated with Clostridiales-Enriched Microcosms Dechlorinating 1,2-Dichloroethane

    PubMed Central

    Merlino, Giuseppe; Marzorati, Massimo; Rizzi, Aurora; Lavazza, Davide; de Ferra, Francesca; Carpani, Giovanna

    2015-01-01

    The achievement of successful biostimulation of active microbiomes for the cleanup of a polluted site is strictly dependent on the knowledge of the key microorganisms equipped with the relevant catabolic genes responsible for the degradation process. In this work, we present the characterization of the bacterial community developed in anaerobic microcosms after biostimulation with the electron donor lactate of groundwater polluted with 1,2-dichloroethane (1,2-DCA). Through a multilevel analysis, we have assessed (i) the structural analysis of the bacterial community; (ii) the identification of putative dehalorespiring bacteria; (iii) the characterization of functional genes encoding for putative 1,2-DCA reductive dehalogenases (RDs). Following the biostimulation treatment, the structure of the bacterial community underwent a notable change of the main phylotypes, with the enrichment of representatives of the order Clostridiales. Through PCR targeting conserved regions within known RD genes, four novel variants of RDs previously associated with the reductive dechlorination of 1,2-DCA were identified in the metagenome of the Clostridiales-dominated bacterial community. PMID:26273600

  2. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications.

    PubMed Central

    Fetzner, S; Lingens, F

    1994-01-01

    This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial

  3. A 4-deoxy analogue of N-acetyl-D-glucosamine inhibits heparan sulphate expression and growth factor binding in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijk, Xander M.R. van; Oosterhof, Arie; Broek, Sebastiaan A.M.W. van den

    2010-09-10

    Heparan sulphate (HS) is a long, linear polysaccharide, which has a basic backbone of -{beta}1-4GlcA-{alpha}1-4GlcNAc- units. The involvement of HS in many steps of tumourigenesis, including growth and angiogenesis, makes it an appealing target for cancer therapy. To target the biosynthesis of HS by interfering with its chain elongation, a 4-deoxy analogue of N-acetyl-D-glucosamine (4-deoxy-GlcNAc) was synthesized. Using immunocytochemistry and agarose gel electrophoresis it was shown that incubation with the 4-deoxysugar resulted in a dose dependent reduction of HS expression of MV3 melanoma cells, 1 mM resulting in an almost nullified HS expression. The parent sugar GlcNAc had no effect.more » 4-deoxysugar treated cells were viable and proliferated at the same rate as control cells. Other glycan structures appeared to be only mildly affected, as staining by various lectins was generally not or only modestly inhibited. At 1 mM of the 4-deoxysugar, the capacity of cells to bind the HS-dependent pro-angiogenic growth factors FGF-2 and VEGF was greatly compromised. Using an in vitro angiogenesis assay, 4-deoxysugar treated endothelial cells showed a sharp reduction of FGF-2-induced sprout formation. Combined, these data indicate that an inexpensive, easily synthesized, water-soluble monosaccharide analogue can interfere with HS expression and pro-angiogenic growth factor binding.« less

  4. Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass

    USGS Publications Warehouse

    Zehr, Jon P.; Harvey, Ronald W.; Oremland, Ronald S.; Cloern, James E.; George, Leah H.; Lane, Judith L.

    1987-01-01

    Bacterial activities and abundance were measured seasonally in the water column of meromictic Big Soda Lake which is divided into three chemically distinct zones: aerobic mixolimnion, anaerobic mixolimnion, and anaerobic monimolimnion. Bacterial abundance ranged between 5 and 52 x 106 cells ml−1, with highest biomass at the interfaces between these zones: 2–4 mg C liter−1 in the photosynthetic bacterial layer (oxycline) and 0.8–2.0 mg C liter−1 in the chemocline. Bacterial cell size and morphology also varied with depth: small coccoid cells were dominant in the aerobic mixolimnion, whereas the monimolimnion had a more diverse population that included cocci, rods, and large filaments. Heterotrophic activity was measured by [methyl-3H]thymidine incorporation and [14C]glutamate uptake. Highest uptake rates were at or just below the photosynthetic bacterial layer and were attributable to small (<1 µm) heterotrophs rather than the larger photosynthetic bacteria. These high rates of heterotrophic uptake were apparently linked with fermentation; rates of other mineralization processes (e.g. sulfate reduction, methanogenesis, denitrification) in the anoxic mixolimnion were insignificant. Heterotrophic activity in the highly reduced monimolimnion was generally much lower than elsewhere in the water column. Therefore, although the monimolimnion contained most of the bacterial abundance and biomass (∼60%), most of the cells there were inactive.

  5. Exogenous indirect photoinactivation of bacterial pathogens and indicators in water with natural and synthetic photosensitizers in simulated sunlight with reduced UVB.

    PubMed

    Maraccini, P A; Wenk, J; Boehm, A B

    2016-08-01

    To investigate the UVB-independent and exogenous indirect photoinactivation of eight human health-relevant bacterial species in the presence of photosensitizers. Eight bacterial species were exposed to simulated sunlight with greatly reduced UVB light intensity in the presence of three synthetic photosensitizers and two natural photosensitizers. Inactivation curves were fit with shoulder log-linear or first-order kinetic models, from which the presence of a shoulder and magnitude of inactivation rate constants were compared. Eighty-four percent reduction in the UVB light intensity roughly matched a 72-95% reduction in the overall bacterial photoinactivation rate constants in sensitizer-free water. With the UVB light mostly reduced, the exogenous indirect mechanism contribution was evident for most bacteria and photosensitizers tested, although most prominently with the Gram-positive bacteria. Results confirm the importance of UVB light in bacterial photoinactivation and, with the reduction of the UVB light intensity, that the Gram-positive bacteria are more vulnerable to the exogenous indirect mechanism than Gram-negative bacteria. UVB is the most important range of the sunlight spectrum for bacterial photoinactivation. In aquatic environments where photosensitizers are present and there is high UVB light attenuation, UVA and visible wavelengths can contribute to exogenous indirect photoinactivation. © 2016 The Society for Applied Microbiology.

  6. Hemovigilance monitoring of platelet septic reactions with effective bacterial protection systems.

    PubMed

    Benjamin, Richard J; Braschler, Thomas; Weingand, Tina; Corash, Laurence M

    2017-12-01

    Delayed, large-volume bacterial culture and amotosalen/ultraviolet-A light pathogen reduction are effective at reducing the risk of bacterial proliferation in platelet concentrates (PCs). Hemovigilance programs continue to receive reports of suspected septic transfusion reactions, most with low imputability. Here, we compile national hemovigilance data to determine the relative efficacy of these interventions. Annual reports from the United Kingdom, France, Switzerland, and Belgium were reviewed between 2005 and 2016 to assess the risk of bacterial contamination and septic reactions. Approximately 1.65 million delayed, large-volume bacterial culture-screened PCs in the United Kingdom and 2.3 million amotosalen/ultraviolet-A-treated PCs worldwide were issued with no reported septic fatalities. One definite, one possible, and 12 undetermined/indeterminate septic reactions and eight contaminated "near misses" were reported with delayed, large-volume bacterial cultures between 2011 and 2016, for a lower false-negative culture rate than that in the previous 5 years (5.4 vs. 16.3 per million: odds ratio, 3.0; 95% confidence interval, 1.4-6.5). Together, the Belgian, Swiss, and French hemovigilance programs documented zero probable or definite/certain septic reactions with 609,290 amotosalen/ultraviolet-A-treated PCs (<1.6 per million). The rates were significantly lower than those reported with concurrently transfused, nonpathogen-reduced PCs in Belgium (<4.4 vs. 35.6 per million: odds ratio, 8.1; 95% confidence interval,1.1-353.3) and with historic septic reaction rates in Switzerland (<6.0 vs. 82.9 per million: odds ratio, 13.9; 95% confidence interval, 2.1-589.2), and the rates tended to be lower than those from concurrently transfused, nonpathogen-reduced PCs in France (<4.7 vs. 19.0 per million: odds ratio, 4.1; 95% confidence interval, 0.7-164.3). Pathogen reduction and bacterial culture both reduced the incidence of septic reactions, although under-reporting and

  7. Phase states and thermomorphologic, thermotropic, and magnetomorphologic properties of lyotropic mesophases: Sodium lauryl sulphate-water-1-decanol liquid-crystalline system

    NASA Astrophysics Data System (ADS)

    Özden, Pınar; Nesrullajev, Arif; Oktik, Şener

    2010-12-01

    Phase states in sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system have been investigated for different temperature ranges. The dependence of triangle phase diagram types, phase boundaries, and sequence of lyotropic mesophases vs temperature has been found. The thermomorphologic, thermotropic, and magnetomorphologic properties of hexagonal E, lamellar D, nematic-calamitic NC , nematic-discotic ND , and biaxial nematic Nbx mesophases have been studied in detail. Dynamics of transformations of magnetically induced textures has been investigated. Peculiarities of typical and magnetically induced textures have been investigated in detail. Triangle phase diagrams of sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system for different temperatures and typical and magnetically induced textures of E, D, NC , ND , and Nbx mesophases are presented.

  8. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation.

    PubMed

    Paliwal, Rashmi; Uniyal, Shivani; Rai, J P N

    2015-05-01

    Two indigenous bacterial strains, Bacillus megaterium ETLB-1 (accession no. KC767548) and Pseudomonas plecoglossicida ETLB-3 (accession no. KC767547), isolated from soil contaminated with paper mill effluent, were co-immobilized on corncob cubes to investigate their biodegradation potential against black liquor (BL). Results exhibit conspicuous reduction in color and lignin of BL upto 913.46 Co-Pt and 531.45 mg l(-1), respectively. Reduction in chlorophenols up to 12 mg l(-1) was recorded with highest release of chloride ions, i.e., 1290 mg l(-1). Maximum enzyme activity for lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (LAC) was recorded as 5.06, 8.13, and 8.23 U ml(-1), respectively, during the treatment. Scanning electron microscopy (SEM) revealed successful immobilization of bacterial strains in porous structures of biomaterial. Gas chromatography/mass spectroscopy (GC/MS) showed formation of certain low molecular weight metabolites such as 4-hydroxy-benzoic acid, 3-hydroxy-4-methoxybenzaldehyde, ferulic acid, and t-cinnamic acid and removal of majority of the compounds (such as teratogenic phthalate derivatives) during the period of treatment. Results demonstrated that the indigenous bacterial consortium possesses excellent decolorization and lignin degradation capability which enables its commercial utilization in effluents treatment system.

  9. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    PubMed

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  10. Reduction of bacterial volatile sulfur compound production by licoricidin and licorisoflavan A from licorice.

    PubMed

    Tanabe, Shin-ichi; Desjardins, Jacynthe; Bergeron, Chantal; Gafner, Stefan; Villinski, Jacquelyn R; Grenier, Daniel

    2012-03-01

    Halitosis affects a large proportion of the population and is, in most cases, caused by the production of volatile sulfur compounds (VSCs), particularly methyl mercaptan and hydrogen sulfide, by specific bacterial species colonizing the oral cavity. In this study, a supercritical extract of Chinese licorice (Glycyrrhiza uralensis), and its major isoflavans, licoricidin and licorisoflavan A, were investigated for their effect on growth, VSC production and protease activity of Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei, which have been associated with halitosis. The effects of licorice extract, licoricidin, and licorisoflavan A on VSC production in a saliva model were also tested. We first showed that licoricidin and licorisoflavan A, and to a lesser extent the licorice extract, were effective in inhibiting the growth of all three bacterial species, with minimal inhibitory concentrations in the range of 2-80 µg ml(-1). The licorice extract and the two isolates licoricidin and licorisoflavan A, were able to dose-dependently reduce VSC production by P. gingivalis, Prev. intermedia, and S. moorei as well as by a human saliva model. Although the extract and isolates did not inhibit the proteolytic activity of bacteria, they blocked the conversion of cysteine into hydrogen sulfide by Prev. intermedia. Lastly, the deodorizing effects of the licorice extract, licoricidin, and licorisoflavan A were demonstrated, as they can neutralize P. gingivalis-derived VSCs. Licorisoflavan A (10 µg ml(-1)) was found to be the most effective by reducing VSC levels by 50%. Within the limitations of this study, it can be concluded that a licorice supercritical extract and its major isoflavans (licoricidin and licorisoflavan A) represent natural ingredients with a potential for reducing bacterial VSC production and therefore for controlling halitosis.

  11. Sodium lauryl sulphate alters the mRNA expression of lipid-metabolizing enzymes and PPAR signalling in normal human skin in vivo.

    PubMed

    Törmä, Hans; Berne, Berit

    2009-12-01

    Detergents irritate skin and affect skin barrier homeostasis. In this study, healthy skin was exposed to 1% sodium lauryl sulphate (SLS) in water for 24 h. Biopsies were taken 6 h to 8 days post exposure. Lipid patterns were stained in situ and real-time polymerase chain reaction (PCR) was used to examine mRNA expression of enzymes synthesizing barrier lipids, peroxisome proliferator-activated receptors (PPAR) and lipoxygenases. The lipid pattern was disorganized from 6 h to 3 days after SLS exposure. Concomitant changes in mRNA expression included: (i) reduction, followed by induction, of ceramide-generating beta-glucocerebrosidase, (ii) increase on day 1 of two other enzymes for ceramide biosynthesis and (iii) persistent reduction of acetyl-CoA carboxylase-B, a key enzyme in fatty acid synthesis. Surprisingly, the rate-limiting enzyme in cholesterol synthesis, HMG-CoA reductase, was unaltered. Among putative regulators of barrier lipids synthesis, PPARalpha and PPARgamma exhibited reduced mRNA expression, while PPARbeta/delta and LXRbeta were unaltered. Epidermal lipoxygenase-3, which may generate PPARalpha agonists, exhibited reduced expression. In conclusion, SLS induces reorganization of lipids in the stratum corneum, which play a role in detergents' destruction of the barrier. The changes in mRNA expression of enzymes involved in synthesizing barrier lipids are probably important for the restoration of the barrier.

  12. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  13. Nanorelief of the natural cleavage surface of triglycine sulphate crystals with substitutional and interstitial impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belugina, N. V.; Gainutdinov, R. V.; Tolstikhina, A. L., E-mail: alla@ns.crys.ras.ru

    2011-11-15

    Ferroelectric triglycine sulphate crystals (TGS) with substitutional (LADTGS+ADP, DTGS) and interstitial (Cr) impurities have been studied by atomic-force microscopy, X-ray diffraction, and X-ray fluorescence. The nanorelief parameters of the mirror cleavage TGS(010) surface have been measured with a high accuracy. A correlation between the crystal defect density in the bulk and the cleavage surface nanorelief is revealed at the submicrometer level.

  14. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.

    PubMed

    Nilsson, M; Wang, J S; Wielanek, L; Tanner, K E; Lidgren, L

    2004-01-01

    An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.

  15. Effects of magnesium sulphate on intraoperative anaesthetic requirements and postoperative analgesia in gynaecology patients receiving total intravenous anaesthesia.

    PubMed

    Ryu, J-H; Kang, M-H; Park, K-S; Do, S-H

    2008-03-01

    This randomized, double-blind, prospective study was undertaken to evaluate the effects of magnesium sulphate on anaesthetic requirements and postoperative analgesia in patients undergoing total i.v. anaesthesia (TIVA). Fifty patients who underwent gynaecological surgery were randomly divided into two groups. Before induction of anaesthesia, the magnesium group (Group M) received magnesium sulphate 50 mg kg(-1) i.v. as a bolus and then 15 mg kg(-1) h(-1) i.v. by continuous infusion. The control group (Group S) received the same amount of isotonic saline. TIVA (propofol+remifentanil) was administered under bispectral index monitoring during anaesthesia induction and maintenance. Rocuronium was administered before orotracheal intubation and during surgery when the train-of-four count was 2 or more. After operation, patient-controlled analgesia with a solution of ketorolac and morphine was used and the consumption of this solution was recorded. Pain scores at rest and upon movement were evaluated 30 min, 4, 24, and 48 h after surgery. Patients in Group M required less rocuronium than those in Group S [mean (SD) 0.44 (0.09) vs 0.35 (0.07) microg kg(-1) min(-1), P<0.05]. The total amounts of propofol and remifentanil administered were similar in the two groups. Postoperative pain scores, cumulative analgesic consumption, and shivering incidents were significantly lower in Group M (P<0.05). Mean arterial pressure just after intubation and during the immediate postoperative period was also significantly lower in Group M (P<0.05). I.v. magnesium sulphate during TIVA reduced rocuronium requirement and improved the quality of postoperative analgesia.

  16. Studies on the synthesis, spectral, optical and thermal properties of l-Valine Zinc Sulphate: an organic inorganic hybrid nonlinear optical crystal.

    PubMed

    Puhal Raj, A; Ramachandra Raja, C

    2012-11-01

    Nonlinear optical (NLO) organic inorganic hybrid l-Valine Zinc Sulphate (LVZS) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at 36°C using a constant temperature bath (CTB) with an accuracy of ±0.01°C. This crystal is reported with its characterization by single crystal and powder XRD, FTIR, UV-Vis-NIR, TG/DTA analysis and SHG test. Single crystal XRD study reveals that LVZS crystallizes in monoclinic system with the lattice constants a=9.969(3) Å, b=7.238(3) Å, c=24.334(9) Å and cell volume is 1736.00Å(3). Sharp peaks observed in powder X-ray diffraction studies confirm the high degree of crystallinity of grown crystal. The incorporation of sulphate ion with l-valine is confirmed by FTIR spectrum in LVZS crystal(.) A remarkable increase in optical transparency has been observed in LVZS when compared to l-valine and zinc sulphate heptahydrate Thermal properties of LVZS have been reported by using TG/DTA analysis. Kurtz powder second harmonic generation (SHG) test confirms NLO property of the crystal and SHG efficiency of LVZS was found to be 1.34 times more than pure l-valine. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Intradermal administration of magnesium sulphate and magnesium chloride produces hypesthesia to mechanical but hyperalgesia to heat stimuli in humans

    PubMed Central

    Ushida, Takahiro; Iwatsu, Osamu; Shimo, Kazuhiro; Tetsunaga, Tomoko; Ikeuchi, Masahiko; Ikemoto, Tatsunori; Arai, Young-Chang P; Suetomi, Katsutoshi; Nishihara, Makoto

    2009-01-01

    Background Although magnesium ions (Mg2+) are known to display many similar features to other 2+ charged cations, they seem to have quite an important and unique role in biological settings, such as NMDA blocking effect. However, the role of Mg2+ in the neural transmission system has not been studied as sufficiently as calcium ions (Ca2+). To clarify the sensory effects of Mg2+ in peripheral nervous systems, sensory changes after intradermal injection of Mg2+ were studied in humans. Methods Magnesium sulphate, magnesium chloride and saline were injected into the skin of the anterior region of forearms in healthy volunteers and injection-induced irritating pain ("irritating pain", for short), tactile sensation, tactile pressure thresholds, pinch-pain changes and intolerable heat pain thresholds of the lesion were monitored. Results Flare formation was observed immediately after magnesium sulphate or magnesium chloride injection. We found that intradermal injections of magnesium sulphate and magnesium chloride transiently caused irritating pain, hypesthesia to noxious and innocuous mechanical stimulations, whereas secondary hyperalgesia due to mechanical stimuli was not observed. In contrast to mechanical stimuli, intolerable heat pain-evoking temperature was significantly decreased at the injection site. In addition to these results, spontaneous pain was immediately attenuated by local cooling. Conclusion Membrane-stabilizing effect and peripheral NMDA-blocking effect possibly produced magnesium-induced mechanical hypesthesia, and extracellular cation-induced sensitization of TRPV1 channels was thought to be the primary mechanism of magnesium-induced heat hyperalgesia. PMID:19715604

  18. Mobile laminar air flow screen for additional operating room ventilation: reduction of intraoperative bacterial contamination during total knee arthroplasty.

    PubMed

    Sossai, D; Dagnino, G; Sanguineti, F; Franchin, F

    2011-12-01

    Surgical site infections are important complications in orthopedic surgery. A mobile laminar air flow (LAF) screen could represent a useful addition to an operating room (OR) with conventional turbulent air ventilation (12.5 air changes/h), as it could decrease the bacterial count near the operating field. The purpose of this study was to evaluate LAF efficacy at reducing bacterial contamination in the surgical area during 34 total knee arthroplasties (TKAs). The additional unit was used in 17 operations; the LAF was positioned beside the operating table between two of the surgeons, with the air flow directed towards the surgical area (wound). The whole team wore conventional OR clothing and the correct hygiene procedures and rituals were used. Bacterial air contamination (CFU/m(3)) was evaluated in the wound area in 17 operations with the LAF unit and 17 without the LAF unit. The LAF unit reduced the mean bacterial count in the wound area from 23.5 CFU/m(3) without the LAF to 3.5 CFU/m(3) with the LAF (P < 0.0001), which is below the suggested limit for an OR with ultraclean laminar ventilation. There were no significant differences in the mean bacterial count in the instrument table area: 28.6 CFU/m(3) were recorded with the LAF (N = 6) unit and 30.8 CFU/m(3) (N = 6) without the LAF unit (P = 0.631). During six operations with LAF and six without LAF, particle counts were performed and the number of 0.5 μm particles was analyzed. The particle counts decreased significantly when the LAF unit was used (P = 0.003). When a mobile LAF unit was added to the standard OR ventilation, bacterial contamination of the wound area significantly decreased to below the accepted level for an ultraclean OR, preventing SSI infections.

  19. Bacterial prostatitis.

    PubMed

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  20. Growth and characterization of pure and glycine doped cadmium thiourea sulphate (GCTS) crystals

    NASA Astrophysics Data System (ADS)

    Lawrence, M.; Thomas Joseph Prakash, J.

    2012-06-01

    The pure and glycine doped cadmium thiourea sulphate (GCTS) single crystals were grown successfully by slow evaporation method at room temperature. The concentration of dopant in the mother solution was 1 mol%. There is a change in unit cell. The Fourier transform infrared spectroscopy study confirms the incorporation of glycine into CTS crystal. The doped crystals are optically better and more transparent than the pure ones. The dopant increases the hardness value of the material. The grown crystals were also subjected to thermal and NLO studies.

  1. Bacterial Succession in the Broiler Gastrointestinal Tract

    PubMed Central

    Lawley, Blair; Tannock, Gerald; Engberg, Ricarda M.

    2016-01-01

    A feeding trial was performed with broilers receiving a diet of wheat-based feed (WBF), maize-based feed (MBF), or maize-based concentrates supplemented with 15% or 30% crimped kernel maize silage (CKMS-15 or CKMS-30, respectively). The aim of the study was to investigate the bacterial community compositions of the crop, gizzard, ileum, and cecum contents in relation to the feeding strategy and age (8, 15, 22, 25, 29, or 36 days). Among the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454 pyrosequencing of the 16S rRNA gene. Since the diets had no significant influence on bacterial diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and increased bacterial diversity were observed. Lactobacillaceae (belonging mainly to the genus Lactobacillus) represented most of the Firmicutes at all ages and in all segments of the gut except the cecum. The development of a “mature” microbiota in broilers occurred during the period from days 15 to 22. Striking increases in the relative abundances of Lactobacillus salivarius (17 to 36%) and clostridia (11 to 18%), and a concomitant decrease in the relative abundance of Lactobacillus reuteri, were found in the ileum after day 15. The concentration of deconjugated bile salts increased in association with the increased populations of L. salivarius and clostridia. Both L. salivarius and clostridia deconjugate bile acids, and increases in the abundances of these bacteria might be associated with growth reduction and gastrointestinal (GI) disorders occurring in the critical period of broiler life between days 20 and 30. PMID:26873323

  2. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  3. Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices.

    PubMed

    Khudur, Leadin Salah; Shahsavari, Esmaeil; Miranda, Ana F; Morrison, Paul D; Nugegoda, Dayanthi; Ball, Andrew S

    2015-10-01

    Diesel represents a common environmental contaminant as a result of operation, storage, and transportation accidents. The bioremediation of diesel in a contaminated soil is seen as an environmentally safe approach to treat contaminated land. The effectiveness of the remediation process is usually assessed by the degradation of the total petroleum hydrocarbon (TPH) concentration, without considering ecotoxicological effects. The aim of this study was to assess the efficacy of two bioremediation strategies in terms of reduction in TPH concentration together with ecotoxicity indices and changes in the bacterial diversity assessed using PCR-denaturing gradient gel electrophoresis (DGGE). The biostimulation strategy resulted in a 90 % reduction in the TPH concentration versus 78 % reduction from the natural attenuation strategy over 12 weeks incubation in a laboratory mesocosm-containing diesel-contaminated soil. In contrast, the reduction in the ecotoxicity resulting from the natural attenuation treatment using the Microtox and earthworm toxicity assays was more than double the reduction resulting from the biostimulation treatment (45 and 20 % reduction, respectively). The biostimulated treatment involved the addition of nitrogen and phosphorus in order to stimulate the microorganisms by creating an optimal C:N:P molar ratio. An increased concentration of ammonium and phosphate was detected in the biostimulated soil compared with the naturally attenuated samples before and after the remediation process. Furthermore, through PCR-DGGE, significant changes in the bacterial community were observed as a consequence of adding the nutrients together with the diesel (biostimulation), resulting in the formation of distinctly different bacterial communities in the soil subjected to the two strategies used in this study. These findings indicate the suitability of both bioremediation approaches in treating hydrocarbon-contaminated soil, particularly biostimulation. Although

  4. Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide.

    PubMed

    Barrera-Díaz, Carlos E; Frontana-Uribe, Bernardo A; Roa-Morales, Gabriela; Bilyeu, Bryan W

    2015-01-01

    The objective of this study was to evaluate the effect of copper electrocoagulation and hydrogen peroxide on COD, color, turbidity, and bacterial activity in a mixed industry wastewater. The integrated system of copper electrocoagulation and hydrogen peroxide is effective at reducing the organic and bacterial content of industrial wastewater. The copper electrocoagulation alone reduces COD by 56% in 30 min at pH 2.8, but the combined system reduces COD by 78%, biochemical oxygen demand (BOD5) by 81%, and color by 97% under the same conditions. Colloidal particles are flocculated effectively, as shown by the reduction of zeta potential and the 84% reduction in turbidity and 99% reduction in total solids. Additionally, the total coliforms, fecal coliforms, and bacteria are all reduced by 99%. The integrated system is effective and practical for the reduction of both organic and bacterial content in industrial wastewater.

  5. Bacterial Toxins—Staphylococcal Enterotoxin B

    PubMed Central

    FRIES, BETTINA C.; VARSHNEY, AVANISH K.

    2015-01-01

    Staphylococcal enterotoxin B is one of the most potent bacterial superantigens that exerts profound toxic effects upon the immune system, leading to stimulation of cytokine release and inflammation. It is associated with food poisoning, nonmenstrual toxic shock, atopic dermatitis, asthma, and nasal polyps in humans. Currently, there is no treatment or vaccine available. Passive immunotherapy using monoclonal antibodies made in several different species has shown significant inhibition in in vitro studies and reduction in staphylococcal enterotoxin B-induced lethal shock in in vivo studies. This should encourage future endeavors to develop these antibodies as therapeutic reagents. PMID:26184960

  6. The Use of Different Irrigation Techniques to Decrease Bacterial Loads in Healthy and Diabetic Patients with Asymptomatic Apical Periodontitis

    PubMed Central

    Ghoneim, Mai; Saber, Shehab ElDin; El-Badry, Tarek; Obeid, Maram; Hassib, Nehal

    2016-01-01

    BACKGROUND: Diabetes mellitus is a multisystem disease which weakens the human’s immunity. Subsequently, it worsens the sequelae of apical periodontitis by raising a fierce bacterial trait due to the impaired host response. AIM: This study aimed to estimate bacterial reduction after using different irrigation techniques in systemically healthy and diabetic patients with asymptomatic apical periodontitis. MATERIAL AND METHODS: Enterococcus faecalis, Peptostreptococcus micros, and Fusobacterium necleatum bacteria were chosen, as they are the most common and prevailing strains found in periodontitis. Bacterial samples were retrieved from necrotic root canals of systemically healthy and diabetic patients, before and after endodontic cleaning and shaping by using two different irrigation techniques; the conventional one and the EndoVac system. Quantitive polymerase chain reaction (qPCR) was utilised to detect the reduction in the bacterial count. RESULTS: The EndoVac irrigation system was effective in reducing bacteria, especially Peptostreptococcus micros in the diabetic group when compared to conventional irrigation technique with a statistically significant difference. CONCLUSION: The EndoVac can be considered as a promising tool in combination with irrigant solution to defeat the bacterial colonies living in the root canal system. Additional studies ought to be done to improve the means of bacterial clearance mainly in immune-compromised individuals. PMID:28028421

  7. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    PubMed Central

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  8. Thiopental and halothane dose-sparing effects of magnesium sulphate in dogs.

    PubMed

    Anagnostou, Tilemahos L; Savvas, Ioannis; Kazakos, George M; Raptopoulos, Dimitris; Ververidis, Haralabos; Roubies, Nikolaos

    2008-03-01

    To evaluate the effect of pre- and intraoperatively administered magnesium sulphate (MgSO(4)) on the induction dose of thiopental and of halothane for maintenance of anaesthesia in dogs undergoing ovariohysterectomy (OHE). Prospective, double-blind, randomized, placebo-controlled study. Forty-six healthy, ASA physical status 1 dogs, scheduled for elective OHE. The dogs were randomly assigned to receive a bolus of 50 mg kg(-1) MgSO(4) intravenously (IV), just before induction of anaesthesia, followed by a constant rate infusion (CRI) of 12 mg kg(-1) hour(-1) MgSO(4) intraoperatively (group Mg, n = 27) or a placebo bolus and CRI of 0.9% sodium chloride (NaCl) (group C, n = 19), approximately 30 minutes after premedication with acepromazine (0.05 mg kg(-1), intramuscularly, IM) and carprofen (4 mg kg(-1), subcutaneously, SC). Anaesthesia was induced with thiopental administered to effect and maintained with halothane in oxygen. End-tidal halothane (ET(hal)) was adjusted to achieve adequate depth of anaesthesia. Blood samples were obtained pre- and postoperatively for measurement of total serum magnesium concentration. The mean dose of thiopental was statistically lower (p < 0.0005) and the mean standardized ET(hal) concentration and end-tidal carbon dioxide partial pressure (Pe'CO(2)) areas under the curve were statistically smaller (p < 0.0005 and 0.014 respectively) in group Mg. Postoperatively the mean total serum magnesium concentration was statistically higher than the preoperative value (p < 0.0005) in group Mg, but not in group C. Nausea, associated with the MgSO(4) bolus injection, was observed in six dogs in group Mg, two of which vomited prior to induction of anaesthesia. Magnesium sulphate administration reduced the induction dose of thiopental and ET(hal) concentration for maintenance of anaesthesia in dogs undergoing OHE. Observed side effects were nausea and vomiting.

  9. Static antibiotic spacers augmented by calcium sulphate impregnated beads in revision TKA: Surgical technique and review of literature.

    PubMed

    Risitano, Salvatore; Sabatini, Luigi; Atzori, Francesco; Massè, Alessandro; Indelli, Pier Francesco

    2018-06-01

    Periprosthetic joint infection (PJI) is a serious complication in total knee arthroplasty (TKA) and represents one of the most common causes of revision. The challenge for surgeons treating an infected TKA is to quickly obtain an infection-free joint in order to re-implant, when possible, a new TKA. Recent literature confirms the role of local antibiotic-loaded beads as a strong bactericidal, allowing higher antibiotic elution when compared with antibiotic loaded spacers only. Unfortunately, classical Polymethylmethacrylate (PMMA) beads might allow bacteria adhesion, secondary development of antibiotic resistance and eventually surgical removal once antibiotics have eluted. This article describes a novel surgical technique using static, custom-made antibiotic loaded spacers augmented by calcium sulphate antibiotic-impregnated beads to improve the success rate of revision TKA in a setting of PJI. The use of calcium sulphate beads has several potential benefits, including a longer sustained local antibiotic release when compared with classical PMMA beads and, being resorbable, not requiring accessory surgical interventions.

  10. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    PubMed Central

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  11. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    PubMed

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Rui Manuel Santos Costa; de Morais, Alcina Maria Miranda Bernardo

    2013-01-01

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review. PMID:23344113

  13. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats.

    PubMed

    Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O

    2016-02-01

    The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.

  14. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    PubMed

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  15. Onyalai--therapeutic effects of vincristine sulphate. A prospective randomized trial.

    PubMed

    Hesseling, P B; Girdle-Brown, B; Smit, J

    1986-08-16

    Twenty out of 40 patients with onyalai admitted to Rundu State Hospital, Kavango, SWA/Namibia, were randomized to receive a vincristine sulphate bolus of 1.5 mg/m2 or an equivalent volume of normal saline intravenously on days 8 and 15 when haemorrhage or a platelet count of less than 50 X 10(9)/l persisted for more than 1 week after admission. All patients were observed in hospital for at least 21 days. Five out of 10 patients who received vincristine achieved a platelet count in excess of 100 X 10(9)/l on day 21 and only 2 out of 10 patients who received placebo achieved a similar rise in the platelet count. Two patients, neither of whom was treated with vincristine, died of cerebral haemorrhage.

  16. Effects of magnesium sulphate on intraoperative neuromuscular blocking agent requirements and postoperative analgesia in children with cerebral palsy.

    PubMed

    Na, H-S; Lee, J-H; Hwang, J-Y; Ryu, J-H; Han, S-H; Jeon, Y-T; Do, S-H

    2010-03-01

    In this double-blind, randomized, placebo-controlled study, we evaluated the effects of magnesium sulphate on neuromuscular blocking agent requirements and analgesia in children with cerebral palsy (CP). We randomly divided 61 children with CP undergoing orthopaedic surgery into two groups. The magnesium group (Group M) received magnesium sulphate 50 mg kg(-1) i.v. as a bolus and 15 mg kg(-1) h(-1) by continuous infusion during the operation. The control group (Group S) received the same amount of isotonic saline. Rocuronium was administered 0.6 mg kg(-1) before intubation and 0.1 mg kg(-1) additionally when train-of-four counts were 2 or more. I.V. fentanyl and ketorolac were used to control postoperative pain. Total infused analgesic volumes and pain scores were evaluated at postoperative 30 min, and at 6, 24, and 48 h. The rocuronium requirement of Group M was significantly less than that of Group S [0.29 (0.12) vs 0.42 (0.16) mg kg(-1) h(-1), P<0.05]. Cumulative analgesic consumption in Group M was significantly less after operation at 24 and 48 h (P<0.05), and pain scores in Group M were lower than in Group S during the entire postoperative period (P<0.05). Serum magnesium concentrations in Group M were higher until 24 h after operation (P<0.05). The incidence of postoperative nausea and vomiting and rescue drug injections was similar in the two groups. No shivering or adverse effects related to hypermagnesaemia were encountered. I.V. magnesium sulphate reduces rocuronium requirements and postoperative analgesic consumption in children with CP.

  17. An extended X-Ray absorption fine structure (exafs) study of copper (II) sulphate pentahydrate

    NASA Astrophysics Data System (ADS)

    Joyner, Richard W.

    1980-05-01

    The EXAFS spectrum of copper (II) sulphate pentahydrate has been measured using synchrotron radiation. Comparison with the results of ab initio calculation gives a mean copper-oxygen distance of 1.95 Å, in reasonable agreement with the known value of 1.97 Å. The relation between the EXAFS Debye-Waller factor and thermal parameters measured by neutron diffraction is discussed. Absence in the EXAFS spectrum of evidence for the second-nearest neighbour oxygen atoms, at Cu-O ≈ 2.4 Å, is discussed.

  18. Severe acute copper sulphate poisoning: a case report.

    PubMed

    Sinkovic, Andreja; Strdin, Alenka; Svensek, Franci

    2008-03-01

    As copper sulphate pentahydrate (CSP) is a common compound used in agriculture and industry, chronic occupational exposures to CSP are well known, but acute poisoning is rare in the Western world. This case report describes acute poisoning of a 33-year-old woman who attempted suicide by ingesting an unknown amount of CSP. On admission to the hospital, she had symptoms and signs of severe hemorrhagic gastroenteritis, dehydration, renal dysfunction and methaemoglobinaemia with normal serum copper level. Therapy included early gastric lavage, fluid replacement, vasoactive drugs, furosemide, antiemetic drugs, ranitidine, and antidotes methylene blue and 2,3-dimercaptopropane-1-sulphonate (DMPS). However, the patient developed severe intravascular haemolysis, acute severe hepatic and renal failure, as well as adrenal insufficiency. After prolonged, but successful hospital treatment, including haemodialysis and IV hydrocortisone, the patient was discharged with signs of mild renal and liver impairment. Our conclusion is that in severe cases of copper poisoning early supportive measures are essential. In addition, antidotes such as methylene blue for methaemoglobinaemia and chelating agent such as DMPS improve morbidity and survival of severely poisoned victims.

  19. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnivetskaya, Tatiana A; Brandt, Craig C; Madden, Andrew

    2010-01-01

    Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l-1 d-1 while methanol addition did so occasionally at rate 0.95 mol l-1 d-1. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples withmore » U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).« less

  20. Bacteria permeabilization and disruption caused by sludge reduction technologies evaluated by flow cytometry.

    PubMed

    Foladori, P; Tamburini, S; Bruni, L

    2010-09-01

    Technologies proposed in the last decades for the reduction of the sludge production in wastewater treatment plants and based on the mechanism of cell lysis-cryptic growth (physical, mechanical, thermal, chemical, oxidative treatments) have been widely investigated at lab-, pilot- and, in some cases, at full-scale but the effects on cellular lysis have not always been demonstrated in depth. The research presented in this paper aims to investigate how these sludge reduction technologies affect the integrity and permeabilization of bacterial cells in sludge using flow cytometry (FCM), which permits the rapid and statistically accurate quantification of intact, permeabilised or disrupted bacteria in the sludge using a double fluorescent DNA-staining instead of using conventional methods like plate counts and microscope. Physical/mechanical treatments (ultrasonication and high pressure homogenisation) caused moderate effects on cell integrity and caused significant cell disruption only at high specific energy levels. Conversely, thermal treatment caused significant damage of bacterial membranes even at moderate temperatures (45-55 °C). Ozonation significantly affected cell integrity, even at low ozone dosages, below 10 mgO(3)/gTSS, causing an increase of permeabilised and disrupted cells. At higher ozone dosages the compounds solubilised after cell lysis act as scavengers in the competition between soluble compounds and (particulate) bacterial cells. An original aspect of this paper, not yet reported in the literature, is the comparison of the effects of these sludge reduction technologies on bacterial cell integrity and permeabilization by converting pressure, temperature and ozone dosage to an equivalent value of specific energy. Among these technologies, comparison of the applied specific energy demonstrates that achieving the complete disruption of bacterial cells is not always economically advantageous because excessive energy levels may be required. Copyright

  1. Imaging, photophysical properties and DFT calculations of manganese blue (barium manganate(VI) sulphate)--a modern pigment.

    PubMed

    Accorsi, Gianluca; Verri, Giovanni; Acocella, Angela; Zerbetto, Francesco; Lerario, Giovanni; Gigli, Giuseppe; Saunders, David; Billinge, Rachel

    2014-12-18

    Manganese blue is a synthetic barium manganate(VI) sulphate compound that was produced from 1935 to the 1990s and was used both as a blue pigment in works of art and by conservators in the restoration of paintings. The photophysical properties of the compound are described as well as the setup needed to record the spatial distribution of the pigment in works of art.

  2. Use of Natural Antimicrobial Peptides and Bacterial Biopolymers for Cultured Pearl Production

    PubMed Central

    Simon-Colin, Christelle; Gueguen, Yannick; Bachere, Evelyne; Kouzayha, Achraf; Saulnier, Denis; Gayet, Nicolas; Guezennec, Jean

    2015-01-01

    Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L) with two bacterial exopolysaccharides (0.5% w/w) acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures. PMID:26110895

  3. Pharmacological activity of 6-gingerol in dextran sulphate sodium-induced ulcerative colitis in BALB/c mice.

    PubMed

    Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2015-04-01

    Gingerols are phenolic compounds in ginger (Zingiber officinale), which have been reported to exhibit antiinflammatory, antioxidant, and anticancer properties. The present study aimed at evaluating the possible pharmacologic activity of 6-gingerol in a mouse model of dextran sulphate sodium (DSS)-induced ulcerative colitis. Adult male mice were exposed to DSS in drinking water alone or co-treated with 6-gingerol orally at 50, 100, and 200 mg/kg for 7 days. Disease activity index, inflammatory mediators, oxidative stress indices, and histopathological examination of the colons were evaluated to monitor treatment-related effects of 6-gingerol in DSS-treated mice. Administration of 6-gingerol significantly reversed the DSS-mediated reduction in body weight, diarrhea, rectal bleeding, and colon shrinkage to near normal. Moreover, 6-gingerol significantly suppressed the circulating concentrations of interleukin-1β and tumor necrosis factor alpha and restored the colonic nitric oxide concentration and myeloperoxidase activity to normal in DSS-treated mice. 6-Gingerol efficiently prevented colonic oxidative damage by increasing the activities of antioxidant enzymes and glutathione content, decreasing the hydrogen peroxide and malondialdehyde levels, and ameliorated the colonic atrophy in DSS-treated mice. 6-Gingerol suppressed the induction of ulcerative colitis in mice via antioxidant and antiinflammatory activities, and may thus represent a potential anticolitis drug candidate. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer.

    PubMed

    Spence, Michael J; Bottrell, Simon H; Thornton, Steven F; Richnow, Hans H; Spence, Keith H

    2005-09-01

    Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has

  5. Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.

    PubMed

    Shepherd, J; Jones, J; Frampton, G K; Tanajewski, L; Turner, D; Price, A

    2008-06-01

    significant, but heterogeneity no longer remained significant. These two studies tended to impart a highly significant reduction in the odds of AF to whichever subgroup they were analysed in. When studies were ordered by total duration of prophylaxis, an apparent relationship between duration and odds of AF was evident, with decreasing odds of AF as duration of prophylaxis increased. This was confirmed by linear regression analysis (R2=0.743, p<0.001). When the data were grouped into three classes according to duration, a statistically significant intervention effect was only present for the longest duration (OR=0.12, 95% CI 0.06 to 0.23, p=0.00001). Statistically significant intervention effects were associated with the initiation of prophylaxis 12 hours or more before surgery (OR 0.26; 95% CI 0.16 to 0.44, test for overall effect p=0.00001, fixed-effects model) and less than 12 hours before surgery or during the surgery itself (OR=0.73, 95% CI 0.56 to 0.97, test for overall effect p = 0.03, fixed-effects model), but not when prophylaxis was initiated at the end of surgery or postsurgery (OR=0.85, 95% CI 0.59 to 1.22, p=0.37, fixed-effects model). When studies were ordered by total dose of intravenous magnesium sulphate (<25 g), the odds of AF were independent of the dose. A notable exception was that for a total dose of 9 g magnesium sulphate; here the odds of AF were significantly reduced relative to the control group, although this may be explained by the fact that these studies had excluded patients who were on antiarrhythmic drugs and so may have been at higher risk of AF. Sixty-three potentially relevant references about cost-effectiveness were identified, but no economic evaluations of intravenous magnesium alone as prophylaxis against AF following CABG, compared with sotalol as prophylaxis or no prophylaxis, were identified. Studies reporting resource use by patients with AF following CABG suggest that while AF significantly increased inpatient stays, by up to 2

  6. [Bacterial meningitis].

    PubMed

    Brouwer, M C; van de Beek, D

    2012-05-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria meningtidis group C and Streptococcus pneumoniae. Due to these vaccines, meningitis is now predominantly a disease occurring in adults, caused especially by Streptococcus pneumoniae, while it was formerly a child disease which was largely caused by Haemophilus influenzae. Bacterial meningitis is often difficult to recognize since the classical presentation with neck stiffness, reduced awareness and fever occurs in less than half of the patients. The only way to diagnose or exclude bacterial meningitis is by performing low-threshold cerebrospinal fluid examination with a suspicion of bacterial meningitis. The treatment consists of the prescription of antibiotics and dexamethasone.

  7. Efficacy and safety of a natural mineral water rich in magnesium and sulphate for bowel function: a double-blind, randomized, placebo-controlled study.

    PubMed

    Bothe, Gordana; Coh, Aljaz; Auinger, Annegret

    2017-03-01

    The present placebo-controlled, double-blind, randomized trial aimed to investigate whether a natural mineral water rich in magnesium sulphate and sodium sulphate (Donat Mg) may help to improve bowel function. A total of 106 otherwise healthy subjects with functional constipation were randomly assigned to consume 300 or 500 mL of a natural mineral water as compared to placebo water, over a course of 6 weeks. The 300-mL arms were terminated due to the results of a planned interim analysis. Subjects documented the complete spontaneous bowel movements, spontaneous and overall bowel movements/week, stool consistency, gastrointestinal symptoms and general well-being in a diary. Change in the number of complete spontaneous bowel movements was defined as the primary outcome. For the 75 subjects in the 500-mL arms, the change in the number of complete spontaneous bowel movements per week tended to be higher in the active group when compared to placebo after 6 weeks (T2 = 1.8; p value  = 0.036; one-sided). The mean number of spontaneous bowel movements significantly increased over the course of the study, with significant differences between study arms considering the whole study time (F test = 4.743; p time × group  = 0.010, 2-sided). Stool consistency of spontaneous bowel movements (p < 0.001) and the subjectively perceived symptoms concerning constipation (p = 0.005) improved significantly with the natural mineral water as compared to placebo. The daily consumption of a natural mineral water rich in magnesium sulphate and sodium sulphate improved bowel movement frequency and stool consistency in subjects with functional constipation. Moreover, the subjects' health-related quality of life improved. EudraCT No 2012-005130-11.

  8. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract

    PubMed Central

    Pasquali, Christian; Salami, Olawale; Taneja, Manisha; Gollwitzer, Eva S.; Trompette, Aurelien; Pattaroni, Céline; Yadava, Koshika; Bauer, Jacques; Marsland, Benjamin J.

    2014-01-01

    Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae. PMID:25593914

  9. Tensor sufficient dimension reduction

    PubMed Central

    Zhong, Wenxuan; Xing, Xin; Suslick, Kenneth

    2015-01-01

    Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we propose a tensor dimension reduction model, a model assuming the nonlinear dependence between a response and a projection of all the tensor predictors. The tensor dimension reduction models are estimated in a sequential iterative fashion. The proposed method is applied to a CSA data collected for 150 pathogenic bacteria coming from 10 bacterial species and 14 bacteria from one control species. Empirical performance demonstrates that our proposed method can greatly improve the sensitivity and specificity of the CSA technique. PMID:26594304

  10. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy.

    PubMed

    D'Alessandro, Walter; Bellomo, Sergio; Parello, Francesco; Bonfanti, Pietro; Brusca, Lorenzo; Longo, Manfredi; Maugeri, Roberto

    2012-05-01

    Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).

  11. Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.

    PubMed

    Laible, Philip D; Kirmaier, Christine; Udawatte, Chandani S M; Hofman, Samuel J; Holten, Dewey; Hanson, Deborah K

    2003-02-18

    Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional

  12. A sulphur deficiency-induced gene, sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status.

    PubMed

    Howarth, Jonathan R; Parmar, Saroj; Barraclough, Peter B; Hawkesford, Malcolm J

    2009-02-01

    A sulphate deficiency-induced gene, sdi1, has been identified by cDNA-amplified fragment length polymorphism (AFLP) analysis utilizing field-grown, nutrient-deficient wheat (Triticum aestivum var. Hereward). The expression of sdi1 was specifically induced in leaf and root tissues in response to sulphate deficiency, but was not induced by nitrogen, phosphorus, potassium or magnesium deficiency. Expression was also shown to increase in plant tissues as the external sulphate concentration in hydroponically grown plants was reduced from 1.0 to 0.0 mm. On this basis, sdi1 gene expression has potential as a sensitive indicator of sulphur nutritional status in wheat. Genome-walking techniques were used to clone the 2.7-kb region upstream of sdi1 from genomic DNA, revealing several cis-element motifs previously identified as being associated with sulphur responses in plants. The Arabidopsis thaliana gene most highly homologous to sdi1 is At5g48850, which was also demonstrated to be induced by sulphur deficiency, an observation confirmed by the analysis of microarray data available in the public domain. The expression of Atsdi1 was induced more rapidly than previously characterized sulphur-responsive genes in the period immediately following the transfer of plants to sulphur-deficient medium. Atsdi1 T-DNA 'knockout' mutants were shown to maintain higher tissue sulphate concentrations than wild-type plants under sulphur-limiting conditions, indicating a role in the utilization of stored sulphate under sulphur-deficient conditions. The structural features of the sdi1 gene and its application in the genetic determination of the sulphur nutritional status of wheat crops are discussed.

  13. An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates

    NASA Astrophysics Data System (ADS)

    Kenney, Janice P. L.; Song, Zhen; Bunker, Bruce A.; Fein, Jeremy B.

    2012-06-01

    In this study, we examine the initial interactions between aqueous Au(III)-hydroxide-chloride aqueous complexes and bacteria by measuring the effects of non-metabolizing cells on the speciation and distribution of Au. We conducted batch Au(III) removal experiments, measuring the kinetics and pH dependence of Au removal, and tracking valence state transformations and binding environments using XANES spectroscopy. These experiments were conducted using non-metabolizing cells of Bacillus subtilis or Pseudomonas putida suspended in a 5 ppm Au(III)-(hydroxide)-chloride starting solution of 0.1 M NaClO4 to buffer ionic strength. Both bacterial species removed greater than 85% of the Au from solution after 2 h of exposure time below approximately pH 5. Above pH 5, the extent of Au removed from solution decreased with increasing pH, with less than approximately 10% removal of Au from solution above pH 7.5. Kinetics experiments indicated that the Au removal with both bacterial species was rapid at pH 3, and slowed with increasing pH. Reversibility experiments demonstrated that (1) once the Au was removed from solution, adjusting 35 the pH alone did not remobilize the Au into solution and (2) the presence of cysteine in solution in the reversibility experiments caused Au to desorb, suggesting that the Au was not internalized within the bacterial cells. Our results suggest that Au removal occurs as a two-step pH-dependent adsorption reduction process. The speciation of the aqueous Au and the bacterial surface appears to control the rate of Au removal from solution. Under low pH conditions, the cell walls are only weakly negatively charged and aqueous Au complexes adsorb readily and rapidly. With increasing pH, the cell wall becomes more negatively charged, slowing adsorption significantly. The XANES data demonstrate that the reduction of Au(III) by bacterial exudates is slower and less extensive than the reduction observed in the bacteria-bearing systems, and we conclude that

  14. Kinetic determination of propranolol in tablets by oxidation with ceric sulphate.

    PubMed

    Sultan, S M; Altamrah, S A; Aziz Alrahman, A M; Alzamil, I Z; Karrar, M O

    1989-01-01

    A simple and accurate kinetic method for the determination of propranolol has been developed. Cerium(IV) sulphate (0.5 M) is used to oxidize propranolol in 2 M sulphuric acid at room temperature to the ketone form that absorbs light at a lambda max of 525 nm. The fixed-concentration method is used by recording the exact time, t(s), taken for the reaction to reach a fixed absorbance of 0.100. The unknown concentration, c(M), of propranolol is calculated from the equation: l/t = 0 0.000217 + 0.03 c. The method has been applied to the determination of propranolol in proprietary tablets and the results were compared with those obtained by the B.P. and other standard methods.

  15. Bacterial respiration of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  16. A randomised controlled trial of oral zinc sulphate for primary dysmenorrhoea in adolescent females.

    PubMed

    Zekavat, Omid R; Karimi, Mohammad Y; Amanat, Aida; Alipour, Farzaneh

    2015-08-01

    Primary dysmenorrhoea, the most common gynaecologic problem of adolescent females, is commonly treated with nonsteroidal anti-inflammatory drugs or oral contraceptive pills. To compare the effect of zinc sulphate with that of placebo on the control of pain severity and duration in adolescent girls with primary dysmenorrhoea. In a three-month randomised double-blind placebo-controlled clinical trial, 120 adolescent females with primary dysmenorrhoea were randomly divided into two groups of sixty: an intervention group (zinc) and a control group (placebo). Zinc was administered in the form of a capsule containing 50 mg/day zinc sulphate beginning on the first day of menses and continuing until three days prior to the end of menses. Each month, the duration and severity of primary dysmenorrhoea were determined. Severity scoring was performed by using a 0-10 scaling system. In the first month, the duration of pain was significantly lower in the zinc group compared with the placebo group (P-value = 0.044), while there was no significant difference in pain severity between the groups (P-value = 0.497). In the second and third month, pain severity and duration in the zinc group were significantly lower than the placebo group (P-value <0.001). Both pain duration and pain severity were decreased by taking oral zinc. The results of our interventional study suggests that zinc may be used to treat primary dysmenorrhoea in adolescents. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  17. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    PubMed Central

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  18. Corticosteroids for acute bacterial meningitis.

    PubMed

    Brouwer, Matthijs C; McIntyre, Peter; Prasad, Kameshwar; van de Beek, Diederik

    2013-06-04

    In experimental studies, the outcome of bacterial meningitis has been related to the severity of inflammation in the subarachnoid space. Corticosteroids reduce this inflammatory response. To examine the effect of adjuvant corticosteroid therapy versus placebo on mortality, hearing loss and neurological sequelae in people of all ages with acute bacterial meningitis. We searched CENTRAL 2012, Issue 12, MEDLINE (1966 to January week 2, 2013), EMBASE (1974 to January 2013), Web of Science (2010 to January 2013), CINAHL (2010 to January 2013) and LILACS (2010 to January 2013). Randomised controlled trials (RCTs) of corticosteroids for acute bacterial meningitis. We scored RCTs for methodological quality. We collected outcomes and adverse effects. We performed subgroup analyses for children and adults, causative organisms, low-income versus high-income countries, time of steroid administration and study quality. Twenty-five studies involving 4121 participants were included. Corticosteroids were associated with a non-significant reduction in mortality (17.8% versus 19.9%; risk ratio (RR) 0.90, 95% confidence interval (CI) 0.80 to 1.01, P = 0.07). A similar non-significant reduction in mortality was observed in adults receiving corticosteroids (RR 0.74, 95% CI 0.53 to 1.05, P = 0.09). Corticosteroids were associated with lower rates of severe hearing loss (RR 0.67, 95% CI 0.51 to 0.88), any hearing loss (RR 0.74, 95% CI 0.63 to 0.87) and neurological sequelae (RR 0.83, 95% CI 0.69 to 1.00).Subgroup analyses for causative organisms showed that corticosteroids reduced mortality in Streptococcus pneumoniae (S. pneumoniae) meningitis (RR 0.84, 95% CI 0.72 to 0.98), but not in Haemophilus influenzae (H. influenzae) orNeisseria meningitidis (N. meningitidis) meningitis. Corticosteroids reduced severe hearing loss in children with H. influenzae meningitis (RR 0.34, 95% CI 0.20 to 0.59) but not in children with meningitis due to non-Haemophilus species.In high-income countries

  19. Impact of space flight on bacterial virulence and antibiotic susceptibility

    PubMed Central

    Taylor, Peter William

    2015-01-01

    Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit. PMID:26251622

  20. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization.

    PubMed

    Tarchoune, I; Sgherri, C; Izzo, R; Lachaal, M; Ouerghi, Z; Navari-Izzo, F

    2010-09-01

    Soils and ground water in nature are dominated by chloride and sulphate salts. There have been several studies concerning NaCl salinity, however, little is known about the Na(2)SO(4) one. The effects on antioxidative activities of chloride or sodium sulphate in terms of the same Na(+) equivalents (25 mM Na(2)SO(4) and 50 mM NaCl) were studied on 30 day-old plants of Ocimum basilicum L., variety Genovese subjected to 15 and 30 days of treatment. Growth, thiobarbituric acid reactive substances (TBARS), relative ion leakage ratio (RLR), hydrogen peroxide (H(2)O(2)), ascorbate and glutathione contents as well as the activities of ascorbate peroxidase (APX, EC 1.11.1.11); glutathione reductase (GR, EC 1.6.4.2) and peroxidases (POD, EC 1.11.1.7) were determined. In leaves, growth was more depressed by 25 mM Na(2)SO(4) than 50 mM NaCl. The higher sensitivity of basil to Na(2)SO(4) was associated with an enhanced accumulation of H(2)O(2), an inhibition of APX, GR and POD activities (with the exception of POD under the 30-day-treatment) and a lower regeneration of reduced ascorbate (AsA) and reduced glutathione (GSH). However, the changes in the antioxidant metabolism were enough to limit oxidative damage, explaining the fact that RLR and TBARS levels were unchanged under both Na(2)SO(4) and NaCl treatment. Moreover, for both salts the 30-day-treatment reduced H(2)O(2) accumulation, unchanged RLR and TBARS levels, and enhanced the levels of antioxidants and antioxidative enzymes, thus achieving an adaptation mechanism against reactive oxygen species. 2010 Elsevier Masson SAS. All rights reserved.

  1. MANAGEMENT OF OSTEOARTHRITIS IN A GIANT PANDA (AILUROPODA MELANOLEUCA) WITH MULTIMODAL THERAPY INCLUDING AMANTADINE SULPHATE.

    PubMed

    Fernando, Nimal; Wu, Elke; Kou, Cissy; Martelli, Paolo; Khong, Lee Foo; Larson, Kathy

    2016-03-01

    In 2002 a 23-yr-old female giant panda (Ailuropoda melanoleuca) presented with left hind limb lameness presumably due to osteoarthritis. For the next five years, arthritic episodes were managed with the nonsteroidal anti-inflammatory drug (NSAID) carprofen at 2 mg/kg p.o. s.i.d., then reduced to 1 mg/kg p.o. s.i.d. and withdrawn. Radiographs revealed osteoarthritis in various joints and lumbar spondylosis. In 2007 glucosamine and chondroitin at 1.65 g p.o. b.i.d. and a polyunsaturated fatty acid at 1 capsule p.o. s.i.d. By 2008, arthritic episodes were becoming more difficult to successfully manage and higher doses and longer durations of treatment with carprofen were needed (2 mg/kg p.o. b.i.d.) and by August 2009 episodic treatment was no longer successful so the carprofen was continued indefinitely at 1 mg/kg p.o. s.i.d. In November 2009 carprofen was increased to 2 mg/kg p.o. b.i.d. An NMDA antagonist amantadine sulphate was trialed and after 10 days at 200 mg p.o. s.i.d. the clinical signs resolved. Since then it has been maintained on carprofen at 1 mg/kg p.o. b.i.d., amantadine sulphate 200 mg p.o. s.i.d. and the neutraceuticals as above with no further relapses of arthritic pain.

  2. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia.

    PubMed

    Sandeep, M S; Nandini, C D

    2017-08-01

    In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.

  3. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  4. Detecting the global and regional effects of sulphate aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Lo, Eunice; Charlton-Perez, Andrew; Highwood, Ellie

    2017-04-01

    Climate warming is unequivocal. In addition to carbon dioxide emission mitigation, some geoengineering ideas have been proposed to reduce future surface temperature rise. One of these proposals involves injecting sulphate aerosols into the stratosphere to increase the planet's albedo. Monitoring the effectiveness of sulphate aerosol injection (SAI) would require us to be able to distinguish and detect its cooling effect from the climate system's internal variability and other externally forced temperature changes. This research uses optimal fingerprinting techniques together with simulations from the GeoMIP data base to estimate the number of years of observations that would be needed to detect SAI's cooling signal in near-surface air temperature, should 5 Tg of sulphur dioxide be injected into the stratosphere per year on top of RCP4.5 from 2020-2070. The first part of the research compares the application of two detection methods that have different null hypotheses to SAI detection in global mean near-surface temperature. The first method assumes climate noise to be dominated by unforced climate variability and attempts to detect the SAI cooling signal and greenhouse gas driven warming signal in the "observations" simultaneously against this noise. The second method considers greenhouse gas driven warming to be a non-stationary background climate and attempts to detect the net cooling effect of SAI against this background. Results from this part of the research show that the conventional multi-variate detection method that has been extensively used to attribute climate warming to anthropogenic sources could also be applied for geoengineering detection. The second part of the research investigates detection of geoengineering effects on the regional scale. The globe is divided into various sub-continental scale regions and the cooling effect of SAI is looked for in the temperature time series in each of these regions using total least squares multi

  5. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeti, Balazs; Gregus, Zoltan

    2009-09-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished bymore » ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.« less

  6. Modeling ultrasonic compression wave absorption during the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution.

    PubMed

    Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S

    2002-11-01

    Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.

  7. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    PubMed Central

    Wright, Justin; Kirchner, Veronica; Bernard, William; Ulrich, Nikea; McLimans, Christopher; Campa, Maria F.; Hazen, Terry; Macbeth, Tamzen; Marabello, David; McDermott, Jacob; Mackelprang, Rachel; Roth, Kimberly; Lamendella, Regina

    2017-01-01

    , indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios. PMID:29213257

  8. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Justin; Kirchner, Veronica; Bernard, William

    , indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.« less

  9. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE PAGES

    Wright, Justin; Kirchner, Veronica; Bernard, William; ...

    2017-11-22

    , indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.« less

  10. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.

    PubMed

    Peternel, Spela; Komel, Radovan

    2010-09-10

    In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  11. Diversity of microbial communities correlated to physiochemical parameters in a digestion basin of a zero-discharge mariculture system.

    PubMed

    Cytryn, Eddie; Gelfand, Ilya; Barak, Yoram; van Rijn, Jaap; Minz, Dror

    2003-01-01

    Bacterial community structure and physiochemical parameters were examined in a sedimentation basin of a zero-discharge mariculture system. The system consisted of an intensively stocked fish basin from which water was recirculated through two separate treatment loops. Surface water from the basin was pumped over a trickling filter in one loop while bottom-water was recirculated through a sedimentation basin followed by a fluidized bed reactor in the other. Ammonia oxidation to nitrate in the trickling filter and organic matter digestion together with nitrate reduction in the sedimentation basin and fluidized bed reactor, allowed zero-discharge operation of the system. Relatively high concentrations of oxygen, nitrate, sulphate and organic matter detected simultaneously in the digestion basin suggested the potential for a wide range of microbially-mediated transformation processes. In this study, physiochemical parameters were correlated to bacterial diversity and distribution in horizontal and vertical profiles within this basin in an effort to obtain a basic understanding of the chemical and microbial processes in this system. Chemical activity and microbial diversity, the latter measured by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR) amplified 16S rDNA fragments, were higher in the sludge layer than in the overlying aqueous layer of the basin. Chemical parameters in sludge samples close to the basin inlet suggested enhanced microbial activity relative to other sampling areas with evidence of both nitrate and sulphate reduction. Four of the nine DGGE bands identified in this zone were affiliated with the Bacteroidetes phylum. Detected sequences closely related to sequences of organisms involved in the sulphur cycle included Desulfovibrio, Dethiosulfovibrio and apparent sulphur oxidizers from the gamma-proteobacteria. In addition, a number of sequences from the beta and alpha-proteobacteria were identified.

  12. Corrosion of cordierite ceramics by sodium sulphate at 1000 C

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Jacobson, Nathan

    1989-01-01

    The corrosion of a sintered cordierite (2MgO-2Al2O3-5SiO2) ceramic by sodium sulphate (Na2SO4) was investigated at 1000 C. Laboratory tests with thin films of Na2SO4/O2 and Na2SO4/1 percent SO2-O2 were performed. In the Na2SO4/O2 case, the cordierite reacted to form NaAlSiO4. After several hours of corrosion, the Na2SO4 appeared to induce surface cracks in the cordierite. In the Na2SO4/1 percent SO2-O2 case, other dissolution reactions occurred. The material was also tested in a burner rig with No. 2 Diesel fuel and 2 ppm sodium. The corrosion process was similar to that observed in the Na2SO4/O2 furnace tests, with more severe attack occurring.

  13. Determination of the Core of a Minimal Bacterial Gene Set†

    PubMed Central

    Gil, Rosario; Silva, Francisco J.; Peretó, Juli; Moya, Andrés

    2004-01-01

    The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed. PMID:15353568

  14. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; He, Q.; Hemme, C.L.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is importantmore » for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.« less

  15. Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate).

    PubMed

    Coelho, D F; Silveira, E; Pessoa Junior, A; Tambourgi, E B

    2013-02-01

    This paper focuses on the feasibility of unconventional aqueous two-phase systems for bromelain purification from pineapple processing waste. The main difference in comparison with conventional systems is the integration of the liquid-liquid extraction technique with fractional precipitation, which can decrease the protein content with no loss of biological activity by removing of unwanted molecules. The analysis of the results was based on the response surface methodology and revealed that the use of the desirability optimisation methodology (DOM) was necessary to achieve higher purification factor values and greater bromelain recovery. The use of DOM yielded an 11.80-fold purification factor and 66.38 % biological activity recovery using poly(ethylene glycol) (PEG) with a molar mass of 4,000, 10.86 % PEG concentration (m/m) and 36.21 % saturation of ammonium sulphate.

  16. In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application

    PubMed Central

    Kumar, P; Selvi, S Senthamil; Govindaraju, M

    2012-01-01

    Objective To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2% to CM. Conclusions To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds. PMID:23593571

  17. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant.

    PubMed

    Narciso-da-Rocha, Carlos; Rocha, Jaqueline; Vaz-Moreira, Ivone; Lira, Felipe; Tamames, Javier; Henriques, Isabel; Martinez, José Luis; Manaia, Célia M

    2018-06-05

    Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, bla CTX-M , bla OXA-A , bla TEM , bla SHV , sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control. Copyright © 2018 Elsevier Ltd. All rights

  18. Oral Bacterial Deactivation Using a Low-Temperature Atmospheric Argon Plasma Brush

    PubMed Central

    Yang, Bo; Chen, Jierong; Yu, Qingsong; Li, Hao; Lin, Mengshi; Mustapha, Azlin; Hong, Liang; Wang, Yong

    2010-01-01

    Summary Objectives To study the plasma treatment effects on deactivation effectiveness of oral bacteria. Methods A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria. Results The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 seconds for S. mutans and within 5 minutes for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280nm and 260nm, respectively. Conclusion The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention, etc. PMID:20951184

  19. Bacterial meningitis.

    PubMed

    Heckenberg, Sebastiaan G B; Brouwer, Matthijs C; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained, preceding any imaging studies. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, and an altered level of consciousness but signs may be scarce in children, in the elderly, and in meningococcal disease. Host genetic factors are major determinants of susceptibility to meningococcal and pneumococcal disease. Dexamethasone therapy has been implemented as adjunctive treatment of adults with pneumococcal meningitis. Adequate and prompt treatment of bacterial meningitis is critical to outcome. In this chapter we review the epidemiology, pathophysiology, and management of bacterial meningitis. © 2014 Elsevier B.V. All rights reserved.

  20. Determination of the molecular weight of human gamma-3 chains by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate

    PubMed Central

    Virella, G.; Parkhouse, R. M. E.

    1972-01-01

    The molecular weights (mol. wt) for heavy chains of human IgG were estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Polyclonal IgG and monoclonal IgG proteins of different subclasses were extensively reduced with 50 mM dithioerythritol, in the presence of 2 per cent sodium dodecyl sulphate, at 100°. Four control proteins of known mol. wt (cytochrome C, chymotrypsinogen A, egg albumin, and serum albumin) were used to construct a linear plot of electrophoretic mobility versus log mol. wt. From this plot, the following mol. wts were calculated: 53,650±700 for polyclonal IgG; 54,200±1065 for γ1, γ2, and γ4 chains, and 60,950±585 for γ3 chains. Those results confirm the larger size of γ3 chains reported by Saluk and Clem (1971). PMID:4346255

  1. Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs.

    PubMed

    Riding, R; Liang, L; Braga, J C

    2014-09-01

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21,000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14,000 years with largest reduction occurring 12,000-10,000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. © 2014 John Wiley & Sons Ltd.

  2. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer.

    PubMed

    Kuppardt, Anke; Kleinsteuber, Sabine; Vogt, Carsten; Lüders, Tillmann; Harms, Hauke; Chatzinotas, Antonis

    2014-08-01

    Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.

  3. An intercomparison of results from ferrous sulphate and photolytic converter techniques for measurements of NO(x) made during the NASA GTE/CITE 1 aircraft program

    NASA Technical Reports Server (NTRS)

    Ridley, B. A.; Carroll, M. A.; Torres, A. L.; Condon, E. P.; Sachse, G. W.; Hill, G. F.; Gregory, G. L.

    1988-01-01

    Two techniques designed for measurements of NO(x (NO + NO2) were intercompared during aircraft flights made in the spring of 1984 in the middle free troposphere over the eastern Pacific Ocean and southwestern U.S. One NO chemiluminescence instrument was equipped with a ferrous sulphate converter, another with a photolytic converter. The ferrous sulphate-equipped instrument was apparently much less specific for NO2. It registered levels about three times larger than the photolytic converter and gave NO2/NO ratios that were much larger than photochemical calculations would indicate as reasonable. Additionally, the results imply that active NO(x) was only 10-20 percent of the total odd nitrogen in the middle free troposphere.

  4. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent.

    PubMed

    Królasik, Joanna; Zakowska, Zofia; Krepska, Milena; Klimek, Leszek

    2010-01-01

    The natural ability of microorganisms for adhesion and biofilm formation on various surfaces is one of the factors causing the inefficiency of a disinfection agent, despite its proven activity in vitro. The aim of the study was to determine the effectiveness of disinfecting substances on bacterial biofilms formed on stainless steel surface. A universally applied disinfecting agent was used in the tests. Bacterial strains: Listeria innocua, Pseudomonas putida, Micrococcus luteus, Staphylococcus hominis strains, were isolated from food contact surfaces, after a cleaning and disinfection process. The disinfecting agent was a commercially available acid specimen based on hydrogen peroxide and peroxyacetic acid, the substance that was designed for food industry usage. Model tests were carried out on biofilm formed on stainless steel (type 304, no 4 finish). Biofilms were recorded by electron scanning microscope. The disinfecting agent in usable concentration, 0.5% and during 10 minutes was ineffective for biofilms. The reduction of cells in biofilms was only 1-2 logarithmic cycles. The use of the agent in higher concentration--1% for 30 minutes caused reduction of cell number by around 5 logarithmic cycles only in the case of one microorganism, M. luteus. For other types: L. innocua, P. putida, S. hominis, the requirements placed on disinfecting agents were not fulfilled. The results of experiments proved that bacterial biofilms are resistant to the disinfectant applied in its operational parameters. Disinfecting effectiveness was achieved after twofold increase of the agent's concentration.

  5. Modelling the growth of triglycine sulphate crystals in Spacelab 3

    NASA Technical Reports Server (NTRS)

    Yoo, Hak-Do; Wilcox, William R.; Lal, Ravindra; Trolinger, James D.

    1988-01-01

    Two triglycine sulphate crystals were grown from an aqueous solution in Spacelab 3 aboard a Space Shuttle. Using a diffusion coefficient of 0.00002 sq cm/s, a computerized simulation gave reasonable agreement between experimental and theoretical crystal sizes and interferometric lines in the solution near the growing crystal. This diffusion coefficient is larger than most measured values, possibly due to fluctuating accelerations on the order of .001 g (Earth's gravity). The average acceleration was estimated to be less than .000001 g. At this level, buoyancy driven convection is predicted to add approx. 20 percent to the steady state growth rate. Only very slight distortion of the interferometric lines was observed at the end of a 33 hr run. It is suggested that the time to reach steady state convective transport may be inversely proportional to g at low g, so that the full effect of convection was not realized in these experiments.

  6. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    PubMed

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  7. Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens

    PubMed Central

    Rezadehbashi, Maryam; Baldwin, Susan A.

    2018-01-01

    Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations. PMID:29473875

  8. Erythrocyte membrane protein analysis by sodium dodecyl sulphate-capillary gel electrophoresis in the diagnosis of hereditary spherocytosis.

    PubMed

    Debaugnies, France; Cotton, Frédéric; Boutique, Charles; Gulbis, Béatrice

    2011-03-01

    Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is currently the reference method for detecting protein deficiencies related to hereditary spherocytosis. The aim of the study was to evaluate an automated capillary gel electrophoresis system, the Experion instrument from BioRad, for its ability to separate and quantify the erythrocyte membrane proteins. The major erythrocyte membrane proteins (actin, protein 4.2, protein 4.1, band 3, ankyrin, α- and β-spectrin) were extracted and purified from membrane ghosts by centrifugation, immunoprecipitation and electroelution. Analyses were performed using SDS-PAGE and sodium dodecyl sulphate capillary gel electrophoresis (SDS-CGE) to establish a separation profile of the total ghosts. Then, the samples from patients received for investigations of erythrocyte membrane defects were analysed. Five of the seven expected erythrocyte membrane proteins were finally separated and identified. In the 20 studied cases, taking into account the screening test results and the clinical and family histories, the SDS-CGE method allowed us to achieve the same conclusion as with SDS-PAGE, except for the patient with elliptocytosis. The new SDS-CGE method presents interesting features that could make this instrument a powerful diagnostic tool for detection of erythrocyte membrane protein abnormalities, and can be proposed as an automated alternative method to the labour intensive SDS-PAGE analysis.

  9. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  10. Growth of sodium chlorate crystals in the presence of potassium sulphate

    NASA Astrophysics Data System (ADS)

    Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.

    2015-09-01

    In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.

  11. Renal excretion in channel catfish following injection of quinaldine sulphate or 3-trifluoromethyl-4-nitrophenol

    USGS Publications Warehouse

    Allen, J.L.; Hunn, J.B.

    1977-01-01

    Channel catfish, Ictalurus punctatus Rafinesque, injected intraperitoneally with 2-methyl-quinoline sulphate (QdSO4) or 3-trifluoromethyl-4-nitrophenol (TFM) eliminate most of the dose of these compounds by extra-renal routes. Patterns of renal excretion of Na+, K+, Ca2+, Mg2+, and Cl- (pEq kg-1 h-1) appeared to be associated with the 'stress' of the urine collection technique rather than with the elimination of either compound. Concentrations of Na+, K+, Ca2+, Mg2+, and Cl- (mEq/1) were determined in urine, plasma and gall bladder bile.

  12. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    PubMed

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment.

    PubMed

    Störmer, Rebecca; Wichels, Antje; Gerdts, Gunnar

    2013-12-15

    The dumping of dredged sediments represents a major stressor for coastal ecosystems. The impact on the ecosystem function is determined by its complexity not easy to assess. In the present study, we evaluated the potential of bacterial community analyses to act as ecological indicators in environmental monitoring programmes. We investigated the functional structure of bacterial communities, applying functional gene arrays (GeoChip4.2). The relationship between functional genes and environmental factors was analysed using distance-based multivariate multiple regression. Apparently, both the function and structure of the bacterial communities are impacted by dumping activities. The bacterial community at the dumping centre displayed a significant reduction of its entire functional diversity compared with that found at a reference site. DDX compounds separated bacterial communities of the dumping site from those of un-impacted sites. Thus, bacterial community analyses show great potential as ecological indicators in environmental monitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These

  15. Effects of photodynamic therapy on Gram-positive and Gram-negative bacterial biofilms by bioluminescence imaging and scanning electron microscopic analysis.

    PubMed

    Garcez, Aguinaldo S; Núñez, Silvia C; Azambuja, Nilton; Fregnani, Eduardo R; Rodriguez, Helena M H; Hamblin, Michael R; Suzuki, Hideo; Ribeiro, Martha S

    2013-11-01

    The aim of this study was to test photodynamic therapy (PDT) as an alternative approach to biofilm disruption on dental hard tissue, We evaluated the effect of methylene blue and a 660 nm diode laser on the viability and architecture of Gram-positive and Gram-negative bacterial biofilms. Ten human teeth were inoculated with bioluminescent Pseudomonas aeruginosa or Enterococcus faecalis to form 3 day biofilms in prepared root canals. Bioluminescence imaging was used to serially quantify and evaluate the bacterial viability, and scanning electron microscopic (SEM) imaging was used to assess architecture and morphology of bacterial biofilm before and after PDT employing methylene blue and 40 mW, 660 nm diode laser light delivered into the root canal via a 300 μm fiber for 240 sec, resulting in a total energy of 9.6 J. The data were statistically analyzed with analysis of variance (ANOVA) followed by Tukey test. The bacterial reduction showed a dose dependence; as the light energy increased, the bioluminescence decreased in both planktonic suspension and in biofilms. The SEM analysis showed a significant reduction of biofilm on the surface. PDT promoted disruption of the biofilm and the number of adherent bacteria was reduced. The photodynamic effect seems to disrupt the biofilm by acting both on bacterial cells and on the extracellular matrix.

  16. Sulphide-sulphate stability and melting in subducted sediment and its role in arc mantle redox and chalcophile cycling in space and time

    NASA Astrophysics Data System (ADS)

    Canil, Dante; Fellows, Steven A.

    2017-07-01

    The redox budget during subduction is tied to the evolution of oxygen and biogeochemical cycles on Earth's surface over time. The sulphide-sulphate couple in subducted crust has significant potential for redox and control on extraction of chalcophile metals from the arc mantle. We derive oxygen buffers for sulphide-sulphate stability ('SSO buffers') using mineral assemblages in subducted crust within the eclogite facies, and examine their disposition relative to the fO2 in the arc mantle along various P-T trajectories for subduction. The fO2 required for sulphide stability in subducted crust passing beneath an arc is shifted by variations in the bulk Ca/(Ca + Mg + Fe) of the subducting crust alone. Hotter slabs and more Fe-rich sediments stabilize sulphide and favour chalcophile sequestration deep into the mantle, whereas colder slabs and calcic sediment will stabilize anhydrite, in some cases at depths of melt generation in the arc mantle (<130 km). The released sulphate on melting potentially increases the fO2 of the arc mantle. We performed melting experiments on three subducted sediment compositions varying in bulk Ca/(Ca + Mg + Fe) from 0.3 to 0.6 at 2.5 GPa and 900-1100 °C to confirm how anhydrite stability can change by orders of magnitude the S, Cu, As, Zn, Mo, Pb, and Sb contents of sediment melts, and their subsequent liberation to the arc mantle. Using Cu/Sc as a proxy for the behaviour of S, the effect of variable subducted sediment composition on sulphide-sulphate stability and release of chalcophiles to the arc mantle is recognizable in volcanic suites from several subduction zones in space and time. The fO2 of the SSO buffers in subducted sediment relative to the arc mantle may have changed with time by shifts in the nature of pelagic sedimentation in the oceans over earth history. Oxidation of arc mantle and the proliferation of porphyry Cu deposits may be latter-day advents in earth history partly due to the rise of planktic calcifiers in the

  17. Effect of UV-photofunctionalization on Oral Bacterial Attachment and Biofilm Formation to Titanium Implant Material

    PubMed Central

    de Avila, Erica Dorigatti; Lima, Bruno P.; Sekiya, Takeo; Torii, Yasuyoshi; Ogawa, Takahiro; Shi, Wenyuan; Lux, Renate

    2015-01-01

    Bacterial biofilm infections remain prevalent reasons for implant failure. Dental implant placement occurs in the oral environment, which harbors a plethora of biofilm-forming bacteria. Due to its trans-mucosal placement, part of the implant structure is exposed to oral cavity and there is no effective measure to prevent bacterial attachment to implant materials. Here, we demonstrated that UV treatment of titanium immediately prior to use (photofunctionalization) affects the ability of human polymicrobial oral biofilm communities to colonize in the presence of salivary and blood components. UV-treatment of machined titanium transformed the surface from hydrophobic to superhydrophilic. UV-treated surfaces exhibited a significant reduction in bacterial attachment as well as subsequent biofilm formation compared to untreated ones, even though overall bacterial viability was not affected. The function of reducing bacterial colonization was maintained on UV-treated titanium that had been stored in a liquid environment before use. Denaturing gradient gel-electrophoresis (DGGE) and DNA sequencing analyses revealed that while bacterial community profiles appeared different between UV-treated and untreated titanium in the initial attachment phase, this difference vanished as biofilm formation progressed. Our findings confirm that UV-photofunctionalization of titanium has a strong potential to improve outcome of implant placement by creating and maintaining antimicrobial surfaces. PMID:26210175

  18. Bacterial lysate in the prevention of acute exacerbation of COPD and in respiratory recurrent infections

    PubMed Central

    Braido, F; Tarantini, F; Ghiglione, V; Melioli, G; Canonica, G W

    2007-01-01

    Respiratory tract infections (RTIs) represent a serious problem because they are one of the most common cause of human death by infection. The search for the treatment of those diseases has therefore a great importance. In this study we provide an overview of the currently available treatments for RTIs with particular attention to chronic obstructive pulmonary diseases exacerbations and recurrent respiratory infections therapy and a description of bacterial lysate action, in particular making reference to the medical literature dealing with its clinical efficacy. Those studies are based on a very large number of clinical trials aimed to evaluate the effects of this drug in maintaining the immune system in a state of alert, and in increasing the defences against microbial infections. From this analysis it comes out that bacterial lysates have a protective effect, which induce a significant reduction of the symptoms related to respiratory infections. Those results could be very interesting also from an economic point of view, because they envisage a reduction in the number of acute exacerbations and a shorter duration of hospitalization. The use of bacterial lysate could therefore represent an important means to achieve an extension of life duration in patients affected by respiratory diseases. PMID:18229572

  19. Role of lauric acid-potassium hydroxide concentration on bacterial contamination of spray washed broiler carcasses

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...

  20. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    DOE PAGES

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; ...

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative tomore » background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal succession that was consistent and repeatable