Sample records for bacterial viral fungal

  1. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  2. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.

  3. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications

    PubMed Central

    Narsing Rao, Manik Prabhu; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications. PMID:28690593

  4. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction.

    PubMed

    Leveau, Johan H J; Preston, Gail M

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.

  5. Key determinants of the fungal and bacterial microbiomes in homes.

    PubMed

    Kettleson, Eric M; Adhikari, Atin; Vesper, Stephen; Coombs, Kanistha; Indugula, Reshmi; Reponen, Tiina

    2015-04-01

    The microbiome of the home is of great interest because of its possible impact on health. Our goal was to identify some of the factors that determine the richness, evenness and diversity of the home's fungal and bacterial microbiomes. Vacuumed settled dust from homes (n=35) in Cincinnati, OH, were analyzed by pyrosequencing to determine the fungal and bacterial relative sequence occurrence. The correlation coefficients between home environmental characteristics, including age of home, Environmental Relative Moldiness Index (ERMI) values, occupant number, relative humidity and temperature, as well as pets (dog and cat) were evaluated for their influence on fungal and bacterial communities. In addition, linear discriminant analysis (LDA) was used for identifying fungal and bacterial genera and species associated with those housing determinants found to be significant. The fungal richness was found to be positively correlated with age of home (p=0.002), ERMI value (p=0.003), and relative humidity (p=0.015) in the home. However, fungal evenness and diversity were only correlated with the age of home (p=0.001). Diversity and evenness (not richness) of the bacterial microbiome in the homes were associated with dog ownership. Linear discriminant analysis showed total of 39 putative fungal genera/species with significantly higher LDA scores in high ERMI homes and 47 genera/species with significantly higher LDA scores in homes with high relative humidity. When categorized according to the age of the home, a total of 67 fungal genera/species had LDA scores above the significance threshold. Dog ownership appeared to have the most influence on the bacterial microbiome, since a total of 130 bacterial genera/species had significantly higher LDA scores in homes with dogs. Some key determinants of the fungal and bacterial microbiome appear to be excess moisture, age of the home and dog ownership. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An EPA pilot study characterizing fungal and bacterial ...

    EPA Pesticide Factsheets

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: homes with flooding events and non-flooded homes. Dust and air samples from indoors and outdoors will be collected at all homes participating in the study. The characterization of fungal and bacterial populations from the dust and air samples will be done using culture-independent molecular technologies and conventional volumetric microbiological methods. This study will attempt to address the following environmental questions: (1) how do flooding events impact the types of fungal and bacterial populations inside affected homes? (2) are there any differences in the absolute abundances of fungi and bacteria in flooded relative to non-flooded homes? and (3) if there are noticeable effects of flooding on the fungal and bacterial composition and/or abundance, can the effects of flooding be correlated with other environmental variables such as % relative humidity, air exchange rate and temperature inside the homes? The proposed study has selected the Martin Peña Channel (MPC) urban community located within the San Juan National Estuary in the northeastern region of the island as a case study to advance the research into indoor air quality improvement at MPC residences with flooding events. T

  7. Acute bacterial and viral meningitis.

    PubMed

    Bartt, Russell

    2012-12-01

    Most cases of acute meningitis are infectious and result from a potentially wide range of bacterial and viral pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Acute meningitis is infectious in most cases and caused by a potentially wide range of bacterial and viral pathogens. Shifts in the epidemiology of bacterial pathogens have been influenced by changes in vaccines and their implementation. Seasonal and environmental changes influence the likely viral and rickettsial pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Pertinent testing and treatment can vary with the clinical presentation, season, and possible exposures. This article reviews the epidemiology, clinical presentation, diagnosis, and treatment of acute meningitis.

  8. Viral-bacterial associations in acute apical abscesses.

    PubMed

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  9. Inflammatory response in mixed viral-bacterial community-acquired pneumonia.

    PubMed

    Bello, Salvador; Mincholé, Elisa; Fandos, Sergio; Lasierra, Ana B; Ruiz, María A; Simon, Ana L; Panadero, Carolina; Lapresta, Carlos; Menendez, Rosario; Torres, Antoni

    2014-07-29

    The role of mixed pneumonia (virus+bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP. We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial). Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%. Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP.

  10. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    PubMed

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  11. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  12. Bacterial-fungal interactions: ecology, mechanisms and challenges.

    PubMed

    Deveau, Aurélie; Bonito, Gregory; Uehling, Jessie; Paoletti, Mathieu; Becker, Matthias; Bindschedler, Saskia; Hacquard, Stéphane; Hervé, Vincent; Labbé, Jessy; Lastovetsky, Olga A; Mieszkin, Sophie; Millet, Larry J; Vajna, Balázs; Junier, Pilar; Bonfante, Paola; Krom, Bastiaan P; Olsson, Stefan; van Elsas, Jan Dirk; Wick, Lukas Y

    2018-05-01

    Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.

  13. Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists

    PubMed Central

    Frey-Klett, P.; Burlinson, P.; Deveau, A.; Barret, M.; Tarkka, M.; Sarniguet, A.

    2011-01-01

    Summary: Bacteria and fungi can form a range of physical associations that depend on various modes of molecular communication for their development and functioning. These bacterial-fungal interactions often result in changes to the pathogenicity or the nutritional influence of one or both partners toward plants or animals (including humans). They can also result in unique contributions to biogeochemical cycles and biotechnological processes. Thus, the interactions between bacteria and fungi are of central importance to numerous biological questions in agriculture, forestry, environmental science, food production, and medicine. Here we present a structured review of bacterial-fungal interactions, illustrated by examples sourced from many diverse scientific fields. We consider the general and specific properties of these interactions, providing a global perspective across this emerging multidisciplinary research area. We show that in many cases, parallels can be drawn between different scenarios in which bacterial-fungal interactions are important. Finally, we discuss how new avenues of investigation may enhance our ability to combat, manipulate, or exploit bacterial-fungal complexes for the economic and practical benefit of humanity as well as reshape our current understanding of bacterial and fungal ecology. PMID:22126995

  14. Conjunctival bacterial and fungal flora in clinically normal sheep.

    PubMed

    Bonelli, Francesca; Barsotti, Giovanni; Attili, Anna Rita; Mugnaini, Linda; Cuteri, Vincenzo; Preziuso, Silvia; Corazza, Michele; Preziuso, Giovanna; Sgorbini, Micaela

    2014-01-01

    The aim was to identify conjunctival bacterial and fungal flora in clinically normal sheep. Prospective study. Tuscany. 100 eyes from 50 adult Massese female sheep were examined. The sheep included in the study were considered free of anterior ophthalmic abnormalities. Bacteria were identified by morphological assessment, Gram staining, biochemical tests. Identification of filamentous fungi was achieved at the genus level, and Aspergillus species were identified based on keys provided by other authors. Yeast colonies were highlighted, but not identified. Positive cultures were obtained from 100/100 eyes for bacteria, and from 86/100 eyes for fungi. A total of 14 types of bacteria and 5 types of fungi were isolated. Yeasts were isolated from 13/100 eyes. The most frequent fungal isolates were saprophytic fungi. Conjunctival bacterial and fungal flora of clinically normal eyes were reported in sheep. The positivity obtained for conjunctival bacteria was higher compared to findings in the literature by other authors in the same species (100 per cent v 40 per cent), while our results were in line with a recent work performed on mouflons (Ovis Musimon) with a 100 per cent positivity for bacterial conjunctival fornix. In our survey, Gram-positive species were prevalent, as reported by other authors in different species. Few data are available in the literature regarding conjunctival fungal flora in healthy small ruminants. The prevalence of conjunctival fungal flora in this study was higher than findings reported in mouflons (86 per cent v 45 per cent). Differences in fungal prevalence may be due to different methods of managing herds, though further studies are required to verify this hypothesis. The similarities in bacterial and fungal isolates between sheep and mouflons suggest a genera pattern of conjunctival colonisation by bacteria and fungi.

  15. A comparison of bacterial and fungal biomass in several cultivated soils.

    PubMed

    Kaczmarek, W

    1984-01-01

    Bacterial and fungal biomass was estimated in incubated samples of three cultivated soils, the influence of glucose, ammonium nitrate and cattle slurry on its formation being studied. The microbial biomass was determined in stained microscopic preparations of soil suspension. Bacterial biomass in the control samples was from 0.17 to 0.66 mg dry wt per 1 g dry soil and independently of the applied supplements was on the average two times larger in muck soils than in sand. Fungal biomass in the control soils ranged from 0.013 to 0.161 mg dry wt per 1 g dry soil, no relationship being found between its size and the soil type. As a result, the ratio of the size of fungal to bacterial biomass was dependent on the soil type; in sand the fungal biomass corresponded to 1/3 of the bacterial biomass, and in muck soils--only to 1/7.

  16. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    USDA-ARS?s Scientific Manuscript database

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and very little is known about fungal molecular responses to bacteria, a...

  17. Diversity, specificity, co-occurrence and hub taxa of the bacterial-fungal pollen microbiome.

    PubMed

    Manirajan, Binoy Ambika; Maisinger, Corinna; Ratering, Stefan; Rusch, Volker; Schwiertz, Andreas; Cardinale, Massimiliano; Schnell, Sylvia

    2018-06-06

    Flower pollen represents a unique microbial habitat, however the factors driving microbial assemblages and microbe-microbe interactions remain largely unexplored. Here we compared the structure and diversity of the bacterial-fungal microbiome between eight different pollen species (four wind-pollinated and four insect-pollinated) from close geographical locations, using high-throughput sequencing of a 16S the rRNA gene fragment (bacteria) and the internal transcribed spacer 2 (ITS2, fungi). Proteobacteria and Ascomycota were the most abundant bacterial and fungal phyla, respectively. Pseudomonas (bacterial) and Cladosporium (fungal) were the most abundant genera. Both bacterial and fungal microbiota were significantly influenced by plant species and pollination type, but showed a core microbiome consisting of 12 bacterial and 33 fungal genera. Co-occurrence analysis highlighted significant inter- and intra-kingdom interactions, and the interaction network was shaped by four bacterial hub taxa: Methylobacterium (two OTUs), Friedmanniella and Rosenbergiella. Rosenbergiella prevailed in insect-pollinated pollen and was negatively correlated with the other hubs, indicating habitat complementarity. Inter-kingdom co-occurrence showed a predominant effect of fungal on bacterial taxa. This study enhances our basic knowledge of pollen microbiota, and poses the basis for further inter- and intra-kingdom interaction studies in the plant reproductive organs.

  18. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM).

    PubMed

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop; Rosendahl, Søren; Aamand, Jens

    2013-10-01

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal-bacterial consortia are promising for successful bioremediation of pesticide contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The Patterns and Drivers of Bacterial and Fungal β-Diversity in a Typical Dryland Ecosystem of Northwest China.

    PubMed

    Wang, Jianming; Zhang, Tianhan; Li, Liping; Li, Jingwen; Feng, Yiming; Lu, Qi

    2017-01-01

    Dryland ecosystems cover more than 30% of the terrestrial area of China, while processes that shape the biogeographic patterns of bacterial and fungal β-diversity have rarely been evaluated synchronously. To compare the biogeographic patterns and its drivers of bacterial and fungal β-diversity, we collected 62 soil samples from a typical dryland region of northwest China. We assessed bacterial and fungal communities by sequencing bacterial 16S rRNA gene and fungal ITS data. Meanwhile, the β-diversity was decomposed into two components: species replacement (species turnover) and nestedness to further explore the bacterial and fungal β-diversity patterns and its causes. The results show that both bacterial and fungal β-diversity were derived almost entirely from species turnover rather than from species nestedness. Distance-decay relationships confirmed that the geographic patterns of bacterial and fungal β-diversity were significantly different. Environmental factors had the dominant influence on both the bacterial and fungal β-diversity and species turnover, however, the role of geographic distance varied across bacterial and fungal communities. Furthermore, both bacterial and fungal nestedness did not significantly respond to the environmental and geographic distance. Our findings suggest that the different response of bacterial and fungal species turnover to dispersal limitation and other, unknown processes may result in different biogeographic patterns of bacterial and fungal β-diversity in the drylands of northwest China. Together, we highlight that the drivers of β-diversity patterns vary between bacterial and fungal communities, and microbial β-diversity are driven by multiple factors in the drylands of northwest China.

  20. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration

    PubMed Central

    Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.

    2017-01-01

    ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal

  1. Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.

    PubMed

    Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D

    2017-07-15

    Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery

  2. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism.

    PubMed

    Partida-Martinez, Laila P; Monajembashi, Shamci; Greulich, Karl-Otto; Hertweck, Christian

    2007-05-01

    Bacterial endosymbionts play essential roles for many organisms, and thus specialized mechanisms have evolved during evolution that guarantee the persistence of the symbiosis during or after host reproduction. The rice seedling blight fungus Rhizopus microsporus represents a unique example of a mutualistic life form in which a fungus harbors endobacteria (Burkholderia sp.) for the production of a phytotoxin. Here we report the unexpected observation that in the absence of endosymbionts, the host is not capable of vegetative reproduction. Formation of sporangia and spores is restored only upon reintroduction of endobacteria. To monitor this process, we succeeded in GFP labeling cultured endosymbionts. We also established a laserbeam transformation technique for the first controlled introduction of bacteria into fungi to observe their migration to the tips of the aseptate hyphae. The persistence of this fungal-bacterial mutualism through symbiont-dependent sporulation is intriguing from an evolutionary point of view and implies that the symbiont produces factors that are essential for the fungal life cycle. Reproduction of the host has become totally dependent on endofungal bacteria, which in return provide a highly potent toxin for defending the habitat and accessing nutrients from decaying plants. This scenario clearly highlights the significance for a controlled maintenance of this fungal-bacterial symbiotic relationship.

  3. A comparative study of fungal and bacterial biofiltration treating a VOC mixture.

    PubMed

    Estrada, José M; Hernández, Sergio; Muñoz, Raúl; Revah, Sergio

    2013-04-15

    Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 gCm(-3) reactor h(-1)), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈ 63% vs ≈ 43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal>hexanol>MIBK>toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Bacterial and fungal communities and contribution of physicochemical factors during cattle farm waste composting.

    PubMed

    Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang

    2017-12-01

    During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  6. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives

    PubMed Central

    Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian

    2016-01-01

    Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. PMID:26874283

  7. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives.

    PubMed

    Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian

    2016-04-01

    Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    PubMed

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  9. Fungal and bacterial growth in floor dust at elevated relative humidity levels.

    PubMed

    Dannemiller, K C; Weschler, C J; Peccia, J

    2017-03-01

    Under sustained, elevated building moisture conditions, bacterial and fungal growth occurs. The goal of this study was to characterize microbial growth in floor dust at variable equilibrium relative humidity (ERH) levels. Floor dust from one home was embedded in coupons cut from a worn medium-pile nylon carpet and incubated at 50%, 80%, 85%, 90%, 95%, and 100% ERH levels. Quantitative PCR and DNA sequencing of ribosomal DNA for bacteria and fungi were used to quantify growth and community shifts. Over a 1-wk period, fungal growth occurred above 80% ERH. Growth rates at 85% and 100% ERH were 1.1 × 10 4 and 1.5 × 10 5 spore equivalents d -1 mg dust -1 , respectively. Bacterial growth occurred only at 100% ERH after 1 wk (9.0 × 10 4 genomes d -1 mg dust -1 ). Growth resulted in significant changes in fungal (P<.00001) and bacterial community structure (P<.00001) at varying ERH levels. Comparisons between fungal taxa incubated at different ERH levels revealed more than 100 fungal and bacterial species that were attributable to elevated ERH. Resuspension modeling indicated that more than 50% of airborne microbes could originate from the resuspension of fungi grown at ERH levels of 85% and above. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  10. Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712

  11. Bacterial and fungal endophthalmitis in upper Egypt: related species and risk factors.

    PubMed

    Gharamah, A A; Moharram, A M; Ismail, M A; Al-Hussaini, A K

    2012-08-01

    To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  12. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.

    PubMed

    Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E

    2018-01-23

    Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.

  13. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    PubMed Central

    Rassner, Sara M. E.; Anesio, Alexandre M.; Girdwood, Susan E.; Hell, Katherina; Gokul, Jarishma K.; Whitworth, David E.; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  14. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin.

    PubMed

    Bettarel, Y; Amblard, C; Sime-Ngando, T; Carrias, J-F; Sargos, D; Garabétian, F; Lavandier, P

    2003-02-01

    Abundances of different compartments of the microbial loop (i.e., viruses, heterotrophic bacteria, nonpigmented nanoflagellates, and pigmented nanoflagellates), bacterial heterotrophic production (BHP), viral lysis, and potential flagellate grazing impacts on the bacterial assemblages were estimated during a short-term study (24 h) conducted in June 1998 in the epilimnion (5 m) and metalimnion (10 m) of a moderate-altitude oligomesotrophic lake (Lake Pavin, France). Viral and bacterial abundances were higher in the metalimnion than in the epilimnion, whereas pigmented and nonpigmented nanoflagellates were more numerous in the epilimnion. The control of the BHP due to viral lysis (determined by examination of viral-containing bacteria using a transmission electron microscope) was significantly higher in the meta- (range = 6.0-33.7%, mean = 15.6%) than in the epilimnion (3.5-10.3%, 6.4%). The same was for the losses of BHP from the potential predation by nanoflagellates which ranged from 0.5 to 115.4% (mean = 38.7%) in the epilimnion, and from 0.7 to 97.5% (mean = 66.7%) in the metalimnion. Finally, estimated viral mediated mortality rates from the percentage of visibly infected cells and potential nanoflagellate grazing rates based on assumed clearance rates suggest that flagellates consumed a larger proportion of bacterial production than was lost to viral lysis.

  15. Social status shapes the bacterial and fungal gut communities of the honey bee.

    PubMed

    Yun, Ji-Hyun; Jung, Mi-Ja; Kim, Pil Soo; Bae, Jin-Woo

    2018-01-31

    Despite the fungal abundance in honey and bee bread, little is known about the fungal gut community of the honey bee and its effect on host fitness. Using pyrosequencing of the 16S rRNA gene and ITS2 region amplicons, we analysed the bacterial and fungal gut communities of the honey bee as affected by the host social status. Both communities were significantly affected by the host social status. The bacterial gut community was similar to those characterised in previous studies. The fungal gut communities of most worker bees were highly dominated by Saccharomyces but foraging bees and queens were colonised by diverse fungal species and Zygosaccharomyces, respectively. The high fungal density and positive correlation between Saccharomyces species and Lactobacillus species, known yeast antagonists, were only observed in the nurse bee; this suggested that the conflict between Saccharomyces and Lactobacillus was compromised by the metabolism of the host and/or other gut microbes. PICRUSt analysis revealed significant differences in enriched gene clusters of the bacterial gut communities of the nurse and foraging bees, suggesting that different host social status might induce changes in the gut microbiota, and, that consequently, gut microbial community shifts to adapt to the gut environment.

  16. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench

    PubMed Central

    Diaz, Patricia I.; Strausbaugh, Linda D.; Dongari-Bagtzoglou, Anna

    2014-01-01

    High throughput sequencing has accelerated knowledge on the oral microbiome. While the bacterial component of oral communities has been extensively characterized, the role of the fungal microbiota in the oral cavity is largely unknown. Interactions among fungi and bacteria are likely to influence oral health as exemplified by the synergistic relationship between Candida albicans and oral streptococci. In this perspective, we discuss the current state of the field of fungal-bacterial interactions in the context of the oral cavity. We highlight the need to conduct longitudinal clinical studies to simultaneously characterize the bacterial and fungal components of the human oral microbiome in health and during disease progression. Such studies need to be coupled with investigations using disease-relevant models to mechanistically test the associations observed in humans and eventually identify fungal-bacterial interactions that could serve as preventive or therapeutic targets for oral diseases. PMID:25120959

  17. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench.

    PubMed

    Diaz, Patricia I; Strausbaugh, Linda D; Dongari-Bagtzoglou, Anna

    2014-01-01

    High throughput sequencing has accelerated knowledge on the oral microbiome. While the bacterial component of oral communities has been extensively characterized, the role of the fungal microbiota in the oral cavity is largely unknown. Interactions among fungi and bacteria are likely to influence oral health as exemplified by the synergistic relationship between Candida albicans and oral streptococci. In this perspective, we discuss the current state of the field of fungal-bacterial interactions in the context of the oral cavity. We highlight the need to conduct longitudinal clinical studies to simultaneously characterize the bacterial and fungal components of the human oral microbiome in health and during disease progression. Such studies need to be coupled with investigations using disease-relevant models to mechanistically test the associations observed in humans and eventually identify fungal-bacterial interactions that could serve as preventive or therapeutic targets for oral diseases.

  18. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases.

    PubMed

    Ulčnik, A; Kralj Cigić, I; Pohleven, F

    2013-12-01

    The ability of two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and one brown-rot fungus (Gloeophyllum trabeum) to degrade two organochlorine insecticides, lindane and endosulfan, in liquid cultures was studied and dead fungal biomass was examined for adsorption of both insecticides from liquid medium. Lindane and endosulfan were also treated with fungal laccase and bacterial protein CotA, which has laccase activities. The amount of degraded lindane and endosulfan increased with their exposure period in the liquid cultures of both examined white-rot fungi. Endosulfan was transformed to endosulfan sulphate by T. versicolor and P. ostreatus. A small amount of endosulfan ether was also detected and its origin was examined. Degradation of lindane and endosulfan by a brown rot G. trabeum did not occur. Mycelial biomasses of all examined fungi have been found to adsorb lindane and endosulfan and adsorption onto fungal biomass should therefore be considered as a possible mechanism of pollutant removal when fungal degradation potentials are studied. Bacterial protein CotA performed more efficient degradation of lindane and endosulfan than fungal laccase and has shown potential for bioremediation of organic pollutants.

  19. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia.

    PubMed

    Li, Miao; Zhu, Lifei; Liu, Boming; Du, Lina; Jia, Xiaodong; Han, Li; Jin, Yiguang

    2016-05-01

    Tea tree oil (TTO) is a natural essential oil with strong antimicrobial efficacy and little drug resistance. However, the biomedical applications of TTO are limited due to its hydrophobicity and formulation problems. Here, we prepared an inhalable TTO nanoemulsion (nanoTTO) for local therapies of bacterial and fungal pneumonia. The optimal formulation of nanoTTOs consisted of TTO/Cremophor EL/water with a mean size of 12.5nm. The nanoTTOs showed strong in vitro antimicrobial activities on Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus and Candida albicans. After inhalation to the lung, the nanoTTOs had higher anti-fungal effect than fluconazole on the fungal pneumonia rat models with reduced lung injury, highly microbial clearance, blocking of leukocyte recruitment, and decrease of pro-inflammatory mediators. In the case of rat bacterial pneumonia, the nanoTTOs showed slightly lower therapeutic efficacy than penicillin though at a much lower dose. Taken together, our results show that the inhalable nanoTTOs are promising nanomedicines for local therapies of fungal and bacterial pneumonia with no obvious adverse events. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE PAGES

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; ...

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  1. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  2. HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection.

    PubMed

    Li, Chunxiao; Wang, Yu; Li, Yan; Yu, Qing; Jin, Xi; Wang, Xiao; Jia, Anna; Hu, Ying; Han, Linian; Wang, Jian; Yang, Hui; Yan, Dapeng; Bi, Yujing; Liu, Guangwei

    2018-02-26

    Macrophages are important innate immune defense system cells in the fight against bacterial and fungal pathogenic infections. They exhibit significant plasticity, particularly with their ability to undergo functional differentiation. Additionally, HIF1α is critically involved in the functional differentiation of macrophages during inflammation. However, the role of macrophage HIF1α in protecting against different pathogenic infections remains unclear. In this study, we investigated and compared the roles of HIF1α in different macrophage functional effects of bacterial and fungal infections in vitro and in vivo. We found that bacterial and fungal infections produced similar effects on macrophage functional differentiation. HIF1α deficiency inhibited pro-inflammatory macrophage functional activities when cells were stimulated with LPS or curdlan in vitro or when mice were infected with L. monocytogenes or C. albicans in vivo, thus decreasing pro-inflammatory TNFα and IL-6 secretion associated with pathogenic microorganism survival. Alteration of glycolytic pathway activation was required for the functional differentiation of pro-inflammatory macrophages in protecting against bacterial and fungal infections. Thus, the HIF1α-dependent glycolytic pathway is essential for pro-inflammatory macrophage functional differentiation in protecting against bacterial and fungal infections.

  3. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs)

    PubMed Central

    Ipcho, Simon; Sundelin, Thomas; Erbs, Gitte; Kistler, H. Corby; Newman, Mari-Anne; Olsson, Stefan

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals. PMID:27172188

  4. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi’an, China

    PubMed Central

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-01-01

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi’an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (CODMn) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively (p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., CODMn and total nitrogen, TN). Several microbes (Legionella sp. and Streptococcus sp

  5. Water Bacterial and Fungal Community Compositions Associated with Urban Lakes, Xi'an, China.

    PubMed

    Zhang, Haihan; Wang, Yue; Chen, Shengnan; Zhao, Zhenfang; Feng, Ji; Zhang, Zhonghui; Lu, Kuanyu; Jia, Jingyu

    2018-03-07

    Urban lakes play a vital role in the sustainable development of urbanized areas. In this freshwater ecosystem, massive microbial communities can drive the recycling of nutrients and regulate the water quality. However, water bacterial and fungal communities in the urban lakes are not well understood. In the present work, scanning electron microscopy (SEM) was combined with community level physiological profiles (CLPPs) and Illumina Miseq sequence techniques to determine the diversity and composition of the water bacterial and fungal community in three urban lakes, namely Xingqing lake (LX), Geming lake (LG) and Lianhu lake (LL), located in Xi'an City (Shaanxi Province, China). The results showed that these three lakes were eutrophic water bodies. The highest total nitrogen (TN) was observed in LL, with a value of 12.1 mg/L, which is 2 times higher than that of LG. The permanganate index (COD Mn ) concentrations were 21.6 mg/L, 35.4 mg/L and 28.8 mg/L in LG, LL and LX, respectively ( p < 0.01). Based on the CLPPs test, the results demonstrated that water bacterial communities in the LL and LX urban lakes had higher carbon source utilization ability. A total of 62,742 and 55,346 high quality reads were grouped into 894 and 305 operational taxonomic units (OTUs) for bacterial and fungal communities, respectively. Water bacterial and fungal community was distributed across 14 and 6 phyla. The most common phyla were Proteobacteriaand Cyanobacteria. Cryptomycota was particularly dominant in LL, while Chytridiomycota and Entomophthormycota were the most abundant fungal phyla, accounting for 95% of the population in the LL and 56% in the LG. Heat map and redundancy analysis (RDA) highlighted the dramatic differences of water bacterial communities among three urban lakes. Meanwhile, the profiles of fungal communities were significantly correlated with the water quality parameters (e.g., COD Mn and total nitrogen, TN). Several microbes ( Legionella sp. and Streptococcus sp

  6. Cerebrospinal fluid ferritin in children with viral and bacterial meningitis.

    PubMed

    Rezaei, M; Mamishi, S; Mahmoudi, S; Pourakbari, B; Khotaei, G; Daneshjou, K; Hashemi, N

    2013-01-01

    Despite the fact that the prognosis of bacterial meningitis has been improved by the influence of antibiotics, this disease is still one of the significant causes of morbidity and mortality in children. Rapid differentiation between bacterial and aseptic meningitis, and the need for immediate antibiotic treatment in the former, is crucial in the prognosis of these patients. Ferritin is one of the most sensitive biochemical markers investigated in cerebrospinal fluid (CSF) for the early diagnosis of bacterial meningitis. The present study aims to evaluate the diagnostic capability of CSF ferritin in differentiating bacterial and viral meningitis in the paediatric setting. A cross-sectional study was carried out in the referral Children's Medical Center Hospital, Tehran, during 2008 and 2009. According to the inclusion criteria, CSF samples from 42 patients with suspected meningitis were obtained and divided into two meningitis groups, bacterial (n = 18) and viral (n = 24). Ferritin and other routine determinants (i.e., leucocytes, protein and glucose) were compared between the two groups. Ferritin concentration in the bacterial meningitis group was 106.39 +/- 86.96 ng/dL, which was considerably higher than in the viral meningitis group (10.17 +/- 14.09, P < 0.001). Mean CSF protein concentration and cell count were significantly higher in the bacterial meningitis group and showed a positive correlation with CSF ferritin. In conclusion, this study suggests that CSF ferritin concentration is an accurate test for the early differentiation of bacterial and aseptic meningitis; however, further investigation on a larger cohort of patients is required to confirm this finding.

  7. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation.

    PubMed

    Wakefield, Jennifer; Hassan, Hossam M; Jaspars, Marcel; Ebel, Rainer; Rateb, Mostafa E

    2017-01-01

    The frequent re-isolation of known compounds is one of the major challenges in drug discovery. Many biosynthetic genes are not expressed under standard culture conditions, thus limiting the chemical diversity of microbial compounds that can be obtained through fermentation. On the other hand, the competition during co-cultivation of two or more different microorganisms in most cases leads to an enhanced production of constitutively present compounds or an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain under different fermentation conditions. Herein, we report the dual induction of newly detected bacterial and fungal metabolites by the co-cultivation of the marine-derived fungal isolate Aspergillus fumigatus MR2012 and two hyper-arid desert bacterial isolates Streptomyces leeuwenhoekii strain C34 and strain C58. Co-cultivation of the fungal isolate MR2012 with the bacterial strain C34 led to the production of luteoride D, a new luteoride derivative and pseurotin G, a new pseurotin derivative in addition to the production of terezine D and 11- O -methylpseurotin A which were not traced before from this fungal strain under different fermentation conditions. In addition to the previously detected metabolites in strain C34, the lasso peptide chaxapeptin was isolated under co-culture conditions. The gene cluster for the latter compound had been identified through genome scanning, but it had never been detected before in the axenic culture of strain C34. Furthermore, when the fungus MR2012 was co-cultivated with the bacterial strain C58, the main producer of chaxapeptin, the titre of this metabolite was doubled, while additionally the bacterial metabolite pentalenic acid was detected and isolated for the first time from this strain, whereas the major fungal metabolites that were produced under axenic culture were suppressed. Finally, fermentation of the MR2012 by itself led to the isolation of the new diketopiperazine

  8. Fungal-to-bacterial dominance of soil detrital food-webs: Consequences for biogeochemistry

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2015-04-01

    Resolving fungal and bacterial groups within the microbial decomposer community is thought to capture disparate microbial life strategies, associating bacteria with an r-selected strategy for carbon (C) and nutrient use, and fungi with a K-selected strategy. Additionally, food-web models have established a widely held belief that the bacterial decomposer pathway in soil supports high turnover rates of easily available substrates, while the slower fungal pathway supports the decomposition of more complex organic material, thus characterising the biogeochemistry of the ecosystem. Three field-experiments to generate gradients of SOC-quality were assessed. (1) the Detritus Input, Removal, and Trenching - DIRT - experiment in a temperate forest in mixed hardwood stands at Harvard Forest LTER, US. There, experimentally adjusted litter input and root input had affected the SOC quality during 23 years. (2) field-application of 14-C labelled glucose to grassland soils, sampled over the course of 13 months to generate an age-gradient of SOM (1 day - 13 months). (3) The Park Grass Experiment at Rothamsted, UK, where 150-years continuous N-fertilisation (0, 50, 100, 150 kg N ha-1 y-1) has affected the quality of SOM in grassland soils. A combination of carbon stable and radio isotope studies, fungal and bacterial growth and biomass measurements, and C and N mineralisation (15N pool dilution) assays were used to investigate how SOC-quality influenced fungal and bacterial food-web pathways and the implications this had for C and nutrient turnover. There was no support that decomposer food-webs dominated by bacteria support high turnover rates of easily available substrates, while slower fungal-dominated decomposition pathways support the decomposition of more complex organic material. Rather, an association between high quality SOC and fungi emerges from the results. This suggests that we need to revise our basic understanding for soil microbial communities and the processes

  9. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    PubMed

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the

  10. The impact of bacterial and viral co‐infection in severe influenza

    PubMed Central

    Blyth, Christopher C.; Webb, Steve A. R.; Kok, Jen; Dwyer, Dominic E.; van Hal, Sebastiaan J.; Foo, Hong; Ginn, Andrew N.; Kesson, Alison M.; Seppelt, Ian; Iredell, Jonathan R.

    2013-01-01

    Please cite this paper as: Blyth et al. (2013) The impact of bacterial and viral co‐infection in severe influenza. Influenza and Other Respiratory Viruses 7(2) 168–176. Background  Many questions remain concerning the burden, risk factors and impact of bacterial and viral co‐infection in patients with pandemic influenza admitted to the intensive care unit (ICU). Objectives  To examine the burden, risk factors and impact of bacterial and viral co‐infection in Australian patients with severe influenza. Patients/Methods  A cohort study conducted in 14 ICUs was performed. Patients with proven influenza A during the 2009 influenza season were eligible for inclusion. Demographics, risk factors, clinical data, microbiological data, complications and outcomes were collected. Polymerase chain reaction for additional bacterial and viral respiratory pathogens was performed on stored respiratory samples. Results  Co‐infection was identified in 23·3–26·9% of patients with severe influenza A infection: viral co‐infection, 3·2–3·4% and bacterial co‐infection, 20·5–24·7%. Staphylococcus aureus was the most frequent bacterial co‐infection followed by Streptococcus pneumoniae and Haemophilus influenzae. Patients with co‐infection were younger [mean difference in age = 8·46 years (95% CI: 0·18–16·74 years)], less likely to have significant co‐morbidities (32·0% versus 66·2%, P = 0·004) and less frequently obese [mean difference in body mass index = 6·86 (95% CI: 1·77–11·96)] compared to those without co‐infection. Conclusions  Bacterial or viral co‐infection complicated one in four patients admitted to ICU with severe influenza A infection. Despite the co‐infected patients being younger and with fewer co‐morbidities, no significant difference in outcomes was observed. It is likely that co‐infection contributed to a need for ICU admission in those without other risk factors for severe influenza disease

  11. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection.

    PubMed

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee Jeong; Ahn, Jae Sung; Lee, Taehoon; Ahn, Jong Joon

    2017-10-01

    Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. Copyright©2017. The Korean Academy of Tuberculosis and Respiratory Diseases

  12. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

    PubMed Central

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae-Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee-Jeong; Ahn, Jae-Sung

    2017-01-01

    Background Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. PMID:28905531

  13. Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia.

    PubMed

    Voiriot, Guillaume; Visseaux, Benoit; Cohen, Johana; Nguyen, Liem Binh Luong; Neuville, Mathilde; Morbieu, Caroline; Burdet, Charles; Radjou, Aguila; Lescure, François-Xavier; Smonig, Roland; Armand-Lefèvre, Laurence; Mourvillier, Bruno; Yazdanpanah, Yazdan; Soubirou, Jean-Francois; Ruckly, Stephane; Houhou-Fidouh, Nadhira; Timsit, Jean-François

    2016-10-25

    Multiplex polymerase chain reaction (mPCR) enables recovery of viruses from airways of patients with community-acquired pneumonia (CAP), although their clinical impact remains uncertain. Among consecutive adult patients who had undergone a mPCR within 72 hours following their admission to one intensive care unit (ICU), we retrospectively included those with a final diagnosis of CAP. Four etiology groups were clustered: bacterial, viral, mixed (viral-bacterial) and no etiology. A composite criterion of complicated course (hospital death or mechanical ventilation > 7 days) was used. A subgroup analysis compared patients with bacterial and viral-bacterial CAP matched on the bacterial pathogens. Among 174 patients (132 men [76 %], age 63 [53-75] years, SAPSII 38 [27;55], median PSI score 106 [78;130]), bacterial, viral, mixed and no etiology groups gathered 46 (26 %), 53 (31 %), 45 (26 %) and 30 (17 %) patients, respectively. Virus-infected patients displayed a high creatine kinase serum level, a low platelet count, and a trend toward more frequent alveolar-interstitial infiltrates. A complicated course was more frequent in the mixed group (31/45, 69 %), as compared to bacterial (18/46, 39 %), viral (15/53, 28 %) and no etiology (12/30, 40 %) groups (p < 0.01). In multivariate analysis, the mixed (viral-bacterial) infection was independently associated with complicated course (reference: bacterial pneumonia; OR, 3.58; CI 95 %, 1.16-11; p = 0.03). The subgroup analysis of bacteria-matched patients confirmed these findings. Viral-bacterial coinfection during severe CAP in adults is associated with an impaired presentation and a complicated course.

  14. Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides.

    PubMed

    Gharavi, E E; Chaimovich, H; Cucurull, E; Celli, C M; Tang, H; Wilson, W A; Gharavi, A E

    1999-01-01

    We previously induced pathogenic antibodies against anionic phospholipids (PL) in experimental animals by immunization with lipid-free purified human beta2glycoprotein I (beta2GPI). We hypothesized that antiphospholipid antibodies (aPL) are induced by in vivo binding of foreign beta2GPI to self-PL, thus forming an immunogenic complex against which aPL antibodies are produced. If this hypothesis is true, other PL-binding proteins that are products of ubiquitous viral/bacterial agents may also induce aPL. To test this hypothesis, groups of NIH/Swiss mice were immunized with synthetic peptides of viral and bacterial origin that share structural similarity with the putative PL-binding region of beta2GPI. Compared with the control groups, animals immunized with the peptides produced significantly higher levels of aPL and anti-beta2GPI antibodies. These findings demonstrate that some PL-binding viral and bacterial proteins function like beta2GPI in inducing aPL and anti-beta2GPI production, and are consistent with a role for such viral and bacterial proteins in inducing aPL antibody production in humans.

  15. Th2 Allergic Immune Response to Inhaled Fungal Antigens is Modulated By TLR-4-Independent Bacterial Products

    PubMed Central

    Allard, Jenna B.; Rinaldi, Lisa; Wargo, Matt; Allen, Gilman; Akira, Shizuo; Uematsu, Satoshi; Poynter, Matthew E.; Hogan, Deborah A.; Rincon, Mercedes; Whittaker, Laurie A.

    2009-01-01

    SUMMARY Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well know triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4-independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the host's adaptive immune response, and potentially impact the development of allergic airway disease to environmental fungal antigens. PMID:19224641

  16. CSF lactate level: a useful diagnostic tool to differentiate acute bacterial and viral meningitis.

    PubMed

    Abro, Ali Hassan; Abdou, Ahmed Saheh; Ustadi, Abdulla M; Saleh, Ahmed Alhaj; Younis, Nadeem Javeed; Doleh, Wafa F

    2009-08-01

    To evaluate the potential role of CSF lactate level in the diagnosis of acute bacterial meningitis and in the differentiation between viral and bacterial meningitis. This was a hospital based observational study, conducted at Infectious Diseases Unit, Rashid Hospital Dubai, United Arab Emirates, from July 2004 to June 2007. The patients with clinical diagnosis of acute bacterial meningitis and who had CSF Gram stain/culture positive, CSF analysis suggestive of bacterial meningitis with negative Gram stain and culture but blood culture positive for bacteria and patients with clinical diagnosis suggestive of viral meningitis supported by CSF chemical analysis with negative Gram stain and culture as well as negative blood culture for bacteria were included in the study. CT scan brain was done for all patients before lumber puncture and CSF and blood samples were collected immediately after admission. CSF chemical analysis including lactate level was done on first spinal tap. The CSF lactate level was tested by Enzymatic Colorimetric method. A total 95 adult patients of acute meningitis (53 bacterial and 42 viral) fulfilled the inclusion criteria. Among 53 bacterial meningitis patients, Neisseria meningitides were isolated in 29 (54.7%), Strept. Pneumoniae in 18 (33.96%), Staph. Aureus in 2 (3.77%), Klebsiell Pneumoniae in 2 (3.77%), Strept. Agalactiae in 1 (1.8%) and E. Coli in 1 (1.8%). All the patients with bacterial meningitis had CSF lactate > 3.8 mmol/l except one, whereas none of the patients with viral meningitis had lactate level > 3.8 mmol/l. The mean CSF lactate level in bacterial meningitis cases amounted to 16.51 +/- 6.14 mmol/l, whereas it was significantly lower in viral group 2.36 +/- 0.6 mmol/l, p < .0001. CSF lactate level was significantly high in bacterial than viral meningitis and it can provide pertinent, rapid and reliable diagnostic information. Furthermore, CSF lactate level can also differentiate bacterial meningitis from viral one in a quick

  17. Isotopomers as a method for differentiating between bacterial and fungal production of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Sutka, R. L.; Adams, G.; Ostrom, N.; Ostrom, P.

    2007-12-01

    In order to study the importance of fungi to nitrous oxide (N2O) production in the environment it is critical to have a non-intrusive method for differentiating between fungal and bacterial N2O production. Site preference (SP), the difference in d15N between the central and outer N atoms in N2O, has been used to differentiate between bacterial nitrification and denitrification. In this study we compare the SP, d15N and d18O of N2O produced by the two best-studied fungal denitrifiers, Fusarium oxysporum and Cylindrocarpon tonkinense, to data from our previous bacterial studies. Both d18O and SP values remained fairly constant during the course of nitrite reduction which likely reflects isotopic exchange with water in the case of d18O and conservative behavior in SP that has been observed previously (Sutka et al., 2006). We observed a wide range of fractionation factors for fungal denitrification, -74.7 to -6.6 ‰, and non-linear behavior indicating that fractionation was controlled by more than one step. We interpret the small degree of fractionation as reflecting fractionation during diffusion and the more negative values as being controlled by enzymatic fractionation. Data from this and our previous study of bacterial production (Sutka et al., 2006) reveals that N2O produced via nitrification by fungi can be differentiated from N2O produced by bacterial denitrification primarily on the basis of d18O. The site preference of N2O produced by F. oxysporum and C. tonkinense was 37.1 ± 2.5 ‰ and 36.9 ± 2.8 ‰, respectively. These results indicate that isotopomers can be used as a basis for differentiating bacterial and fungal denitrification. Our work further reveals the role that fungal and bacterial nitric oxide reductases have in determining site preference during N2O production.

  18. [Effects of Phyllostachys edulis cultivation on soil bacterial and fungal community structure and diversity].

    PubMed

    Zhao, Tian Xin; Mao, Xin Wei; Cheng, Min; Chen, Jun Hui; Qin, Hua; Li, Yong Chun; Liang, Chen Fei; Xu, Qiu Fang

    2017-11-01

    This study examined how soil bacterial and fungal communities responded to the cultivation history of Moso bamboo in Anji and Changxing counties, Huzhou, Zhejiang, China. Soil samples (0-20 and 20-40 cm) were taken from bamboo plantations subjected to different cultivation histories and analyzed the community structures of soil bacterial and fungal by PCR-DGGE methods. It was found that soil bacterial and fungal communities varied greatly with the development of bamboo plantations which converted from Masson pine forest or formed via invading adjacent broadleaf shrub forest. Soil bacterial community structures exhibited a greater response to bamboo cultivation time than fungal community, but bacteria structure of surface soil displayed an ability of resiliency to disturbance and the tendency to recover to the original state. The cultivation time, sampling site and soil layer significantly affected the biodiversity of soil bacteria and fungi, especially the latter two factors. Redundancy analysis (RDA) of soil properties and bacteria or fungi communities showed that there were no accordant factors to drive the alteration of microbial structure, and the first two axes explained less than 65.0% of variance for most of the sampling sites and soil layers, indicating there existed soil parameters besides the five examined that contributed to microbial community alteration.

  19. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    PubMed Central

    Gharamah, Abdullah A; Moharram, Ahmed M; Ismail, Mady A; AL-Hussaini, Ashraf K

    2014-01-01

    Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2), sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin). Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss. PMID:24008795

  20. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection

    PubMed Central

    Madsen, Anne Mette; Alwan, Taif; Ørberg, Anders; Uhrbrand, Katrine; Jørgensen, Marie Birk

    2016-01-01

    A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the

  1. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Adina; Ringus, Daina L.; Williams, Ryan J.

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showedmore » significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. Finally, the contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.« less

  2. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    DOE PAGES

    Howe, Adina; Ringus, Daina L.; Williams, Ryan J.; ...

    2015-10-16

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showedmore » significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. Finally, the contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.« less

  3. The Role of Viral, Host, and Secondary Bacterial Factors in Influenza Pathogenesis

    PubMed Central

    Kash, John C.; Taubenberger, Jeffery K.

    2016-01-01

    Influenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death. Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation. The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors. Host factors that enhance risk of severe influenza disease include underlying comorbidities, such as cardiac and respiratory disease, immunosuppression, and pregnancy. Viral parameters enhancing disease risk include polymerase mutations associated with host switch and adaptation, viral proteins that modulate immune and antiviral responses, and virulence factors that increase disease severity, which can be especially prominent in pandemic viruses and some zoonotic influenza viruses causing human infections. Influenza viral infections result in damage to the respiratory epithelium that facilitates secondary infection with common bacterial pneumopathogens and can lead to secondary bacterial pneumonias that greatly contribute to respiratory distress, enhanced morbidity, and death. Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza. PMID:25747532

  4. Analysis of Bacterial and Fungal Nucleic Acid in Canine Sterile Granulomatous and Pyogranulomatous Dermatitis and Panniculitis.

    PubMed

    Rosa, Fabio B; Older, Caitlin E; Meason-Smith, Courtney; Suchodolski, Jan S; Lingsweiler, Sonia; Mansell, Joanne E; Hoffmann, Aline Rodrigues

    2018-01-01

    Next generation sequencing (NGS) studies are revealing a diverse microbiota on the skin of dogs. The skin microbiota of canine sterile granulomatous and pyogranulomatous dermatitis (SGPD) has yet to be investigated using NGS techniques. NGS targeting the 16S rRNA and ITS-1 region of bacterial and fungal DNA, respectively, were used to investigate if bacterial and fungal DNA were associated with skin lesions in cases of canine SGPD. The study included 20 formalin-fixed paraffin-embedded (FFPE) skin samples and 12 fresh samples from SGPD-affected dogs, and 10 FFPE and 10 fresh samples from healthy dogs. DNA was extracted from deep dermis and panniculus, and microbial DNA was amplified using primers targeting the bacterial 16S rRNA V1-V3 and fungal ITS-1 regions. The amplified DNA was utilized for NGS on an Illumina MiSeq instrument. The sequences were processed using QIIME. No differences in fungal or bacterial alpha diversity were observed between the SGPD and control samples. Beta diversity analysis demonstrated differences in the bacterial communities between SGPD and control, but not in the fungal communities. Compared to controls, the family Erysipelotrichaceae and genus Staphylococcus were significantly more abundant in the SGPD FFPE samples, and genus Corynebacterium were more abundant in fresh samples. The bacteria found to be more abundant in SGPD are common inhabitants of skin surfaces, and likely secondary contaminants in SGPD cases. This study provides additional evidence that SGPD lesions are likely sterile.

  5. Bacterial and fungal growth for monitoring the impact of wildfire combined or not with different soil stabilization treatments

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Baath, Erland; Díaz-Raviña, Montserrat

    2015-04-01

    Soil stabilization techniques are rapidly gaining acceptance as efficient tool for reducing post-fire erosion. However, despite its interest, information concerning their impact on soil biota is scarce. We examined, under field conditions, the bacterial and fungal medium-term responses in a hillslope area located in Laza (NW Spain) affected by a high severity wildfire with the following treatments established by triplicate (4 x 20 m plots): unburnt control soil, burnt control soil, burnt soil with rye seeding and burnt soil with straw mulch. The bacterial and fungal growth, as well as respiration, were measured 4 years after fire and application of treatments using leucine incorporation for bacterial growth and acetate-in-ergosterol incorporation for fungal growth. The results showed that soil respiration and fungal biomass were negatively affected by fire, in the top layer (0-5 cm), while bacterial and fungal growth was stimulated. These microbial changes induced by fire were associated with modifications in organic matter (50% reduction in C content) and soil pH (increase of 0.5-0.9 units). Thus, the results suggested that under acid environment (pH in water 3.5) post-fire conditions might have favoured both microbial groups, which is supported by the fact that estimated bacterial and fungal growth were positive and significant correlated with soil pH (range of 3.5-4.5). This contrast with the well-known reported investigations showing that bacteria rather than fungi proliferation occurred after prescribed fire or wildfire; it should be noticed, however, that soils with a higher pH than that in the present study were used. Our data also indicated that bacterial and fungal communities were not significantly affected by seeding and mulching treatments. The results highlighted the importance of pre-fire soil pH as key factor in determining the microbial response after fire. Acknowledgements. A. Barreiro is recipient of FPU grant from Spanish Ministry of Education

  6. Blue light (470 nm) effectively inhibits bacterial and fungal growth

    USDA-ARS?s Scientific Manuscript database

    The activity of blue light (470nm) alone on (1) bacterial viability, and (2) with a food grade photosensitizer on filamentous fungal viability, was studied. Suspensions of the bacteria Leuconostoc mesenteroides (LM), Bacillus atrophaeus (BA), and Pseudomonas aeruginosa (PA) were prepared and aliquo...

  7. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    PubMed

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    DOE PAGES

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; ...

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes)more » in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.« less

  9. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers.

    PubMed

    Stursová, Martina; Zifčáková, Lucia; Leigh, Mary Beth; Burgess, Robert; Baldrian, Petr

    2012-06-01

    Organic matter decomposition in the globally widespread coniferous forests has an important role in the carbon cycle, and cellulose decomposition is especially important in this respect because cellulose is the most abundant polysaccharide in plant litter. Cellulose decomposition was 10 times faster in the fungi-dominated litter of Picea abies forest than in the bacteria-dominated soil. In the soil, the added (13)C-labelled cellulose was the main source of microbial respiration and was preferentially accumulated in the fungal biomass and cellulose induced fungal proliferation. In contrast, in the litter, bacterial biomass showed higher labelling after (13)C-cellulose addition and bacterial biomass increased. While 80% of the total community was represented by 104-106 bacterial and 33-59 fungal operational taxonomic units (OTUs), 80% of the cellulolytic communities of bacteria and fungi were only composed of 8-18 highly abundant OTUs. Both the total and (13)C-labelled communities differed substantially between the litter and soil. Cellulolytic bacteria in the acidic topsoil included Betaproteobacteria, Bacteroidetes and Acidobacteria, whereas these typically found in neutral soils were absent. Most fungal cellulose decomposers belonged to Ascomycota; cellulolytic Basidiomycota were mainly represented by the yeasts Trichosporon and Cryptococcus. Several bacteria and fungi demonstrated here to derive their carbon from cellulose were previously not recognized as cellulolytic. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Emerging infectious diseases with cutaneous manifestations: Viral and bacterial infections.

    PubMed

    Nawas, Zeena Y; Tong, Yun; Kollipara, Ramya; Peranteau, Andrew J; Woc-Colburn, Laila; Yan, Albert C; Lupi, Omar; Tyring, Stephen K

    2016-07-01

    Given increased international travel, immigration, and climate change, bacterial and viral infections that were once unrecognized or uncommon are being seen more frequently in the Western Hemisphere. A delay in diagnosis and treatment of these diseases can lead to significant patient morbidity and mortality. However, the diagnosis and management of these infections is fraught with a lack of consistency because there is a dearth of dermatology literature on the cutaneous manifestations of these infections. We review the epidemiology, cutaneous manifestations, diagnosis, and management of these emerging bacterial and viral diseases. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  11. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study.

    PubMed

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-06-16

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose (e-nose) could fit this profile but has never been tested in this setting before. In a single-center registered trial (NTR 4601) patients admitted with AECOPD were tested with the Aeonose(®) electronic nose, and a diagnosis of viral or bacterial infection was obtained by bacterial culture on sputa and viral PCR on nose swabs. A neural network with leave-10%-out cross-validation was used to assess the e-nose data. Forty three patients were included. In the bacterial infection model, 22 positive cases were tested versus the negatives; and similarly 18 positive cases were tested in the viral infection model. The Aeonose was able to distinguish between COPD-subjects suffering from a viral infection and COPD patients without infection, showing an area under the curve (AUC) of 0.74. Similarly, for bacterial infections, an AUC of 0.72 was obtained. The Aeonose e-nose yields promising results in 'smelling' the presence or absence of a viral or bacterial respiratory infection during an acute exacerbation of COPD. Validation of these results using a new and large cohort is required before introduction into clinical practice.

  12. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae

    PubMed Central

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M. Q.; Bruna, Roberto E.; García-Véscovi, Eleonora

    2016-01-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. PMID:26896140

  13. Fungal corneal ulcer and bacterial orbital cellulitis occur as complications of bacterial endophthalmitis after cataract surgery in an immunocompetent patient.

    PubMed

    Kim, Eun Chul; Kim, Man Soo; Kang, Nam Yeo

    2013-03-01

    To report a case of fungal corneal ulcer and bacterial orbital cellulitis as complications of bacterial endophthalmitis following cataract surgery. A 51-year-old man underwent anterior chamber irrigation and aspiration in the left eye one day after cataract surgery because of bacterial endophthalmitis. Marked lid swelling with purulent discharge was developed after 5 days. Slit lamp examination showed generalized corneal ulcer and pus in the total anterior chamber. A computerized tomography scan showed left retrobulbar fat stranding with thickened optic disc. Streptococcus pneumonia was cultured from corneal scraping, vireous, and subconjunctival pus. The patient improved gradually with antibiotics treatments, but the corneal ulcer did not fully recover 2 months after cataract surgery. Candida albicans was detected in repetitive corneal culture. After antifungal and antibacterial therapy, the corneal epithelium had healed, but phthisis bulbi had developed. Fungal corneal ulcer and bacterial orbital cellulitis can occur as complications of endophthalmitis in an immunocompetent patient.

  14. Cerebrospinal fluid lactate: a differential biomarker for bacterial and viral meningitis in children.

    PubMed

    Nazir, Mudasir; Wani, Wasim Ahmad; Malik, Muzaffar Ahmad; Mir, Mohd Rafiq; Ashraf, Younis; Kawoosa, Khalid; Ali, Syed Wajid

    To assess the performance of cerebrospinal fluid (CSF) lactate as a biomarker to differentiate bacterial meningitis from viral meningitis in children, and to define an optimal CSF lactate concentration that can be called significant for the differentiation. Children with clinical findings compatible with meningitis were studied. CSF lactate and other conventional CSF parameters were recorded. At a cut-off value of 3mmol/L, CSF lactate had a sensitivity of 0.90, specificity of 1.0, positive predictive value of 1.0, and negative predictive value of 0.963, with an accuracy of 0.972. The positive and negative likelihood ratios were 23.6 and 0.1, respectively. When comparing between bacterial and viral meningitis, the area under the curve for CSF lactate was 0.979. The authors concluded that CSF lactate has high sensitivity and specificity in differentiating bacterial from viral meningitis. While at a cut-off value of 3mmol/L, CSF lactate has high diagnostic accuracy for bacterial meningitis, mean levels in viral meningitis remain essentially below 2mmol/L. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations

    PubMed Central

    Chopyk, Jessica; Allard, Sarah; Nasko, Daniel J.; Bui, Anthony; Mongodin, Emmanuel F.; Sapkota, Amy R.

    2018-01-01

    Agricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October–December), where decreasing temperature and nutrient levels can affect the composition of microbial communities. Ten liters of freshwater from an agricultural pond were sampled monthly, and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, and the bacterial communities were characterized using 16S rRNA gene sequencing. The remaining filtrate was chemically concentrated for viruses, DNA-extracted, and shotgun sequenced. Bacterial community profiling showed significant fluctuations over the sampling period, corresponding to changes in the condition of the pond freshwater (e.g., pH, nutrient load). In addition, there were significant differences in the alpha-diversity and core bacterial operational taxonomic units (OTUs) between water fractions filtered through different pore sizes. The viral fraction was dominated by tailed bacteriophage of the order Caudovirales, largely those of the Siphoviridae family. Moreover, while present, genes involved in virulence/antimicrobial resistance were not enriched within the viral fraction during the study period. Instead, the viral functional profile was dominated by phage associated proteins, as well as those related to nucleotide production. Overall, these data suggest that agricultural pond water harbors a diverse core of bacterial and bacteriophage species whose abundance and composition are influenced by environmental variables characteristic of pond topology and the late season. PMID:29740420

  16. Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation

    PubMed Central

    Wang, Andrew; Huen, Sarah C.; Luan, Harding H.; Yu, Shuang; Zhang, Cuiling; Gallezot, Jean-Dominique; Booth, Carmen J.; Medzhitov, Ruslan

    2017-01-01

    Summary Acute infections are associated with a set of stereotypic behavioral responses, including anorexia, lethargy, and social withdrawal. Although these so called sickness behaviors are the most common and familiar symptoms of infections, their roles in host defense are largely unknown. Here we investigated the role of anorexia in models of bacterial and viral infections. We found that anorexia was protective while nutritional supplementation was detrimental in bacterial sepsis. Furthermore, glucose was necessary and sufficient for these effects. In contrast, nutritional supplementation protected against mortality from influenza infection and viral sepsis, while blocking glucose utilization was lethal. In both bacterial and viral models, these effects were largely independent of pathogen load and magnitude of inflammation. Instead, we identify opposing metabolic requirements tied to cellular stress adaptations critical for tolerance of differential inflammatory states. PMID:27610573

  17. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children

    PubMed Central

    Dannemiller, Karen C.; Gent, Janneane F.; Leaderer, Brian P.; Peccia, Jordan

    2015-01-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structure were non-random and demonstrated species segregation (C-score, p<0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (p<0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building’s physical and occupant characteristics. PMID:25833176

  18. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters.

    PubMed

    Jung, Mi-Ja; Nam, Young-Do; Roh, Seong Woon; Bae, Jin-Woo

    2012-05-01

    Makgeolli is a traditional Korean alcoholic beverage manufactured with a natural starter, called nuruk, and grains. Nuruk is a starchy disk or tablet formed from wheat or grist containing various fungal and bacterial strains from the surrounding environment that are allowed to incorporate naturally into the starter, each of which simultaneously participates in the makgeolli fermentation process. In the current study, changes in microbial dynamics during laboratory-scale fermentation of makgeolli inoculated with six different kinds of nuruk were evaluated by barcoded pyrosequencing using fungal- and bacterial-specific primers targeting the internal transcribed spacer 2 region and hypervariable regions V1 to V3 of the 16S rRNA gene, respectively. A total of 61,571 fungal and 68,513 bacterial sequences were used for the analysis of microbial diversity in ferment samples. During fermentation, the proportion of fungal microorganisms belonging to the family Saccharomycetaceae increased significantly, and the major bacterial phylum of the samples shifted from γ-Proteobacteria to Firmicutes. The results of quantitative PCR indicated that the bacterial content in the final ferments was higher than in commercial rice beers, while total fungi appeared similar. This is the first report of a comparative analysis of bacterial and fungal dynamics in parallel during the fermentation of Korean traditional alcoholic beverage using barcoded pyrosequencing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Modeling the within-host dynamics of cholera: bacterial-viral interaction.

    PubMed

    Wang, Xueying; Wang, Jin

    2017-08-01

    Novel deterministic and stochastic models are proposed in this paper for the within-host dynamics of cholera, with a focus on the bacterial-viral interaction. The deterministic model is a system of differential equations describing the interaction among the two types of vibrios and the viruses. The stochastic model is a system of Markov jump processes that is derived based on the dynamics of the deterministic model. The multitype branching process approximation is applied to estimate the extinction probability of bacteria and viruses within a human host during the early stage of the bacterial-viral infection. Accordingly, a closed-form expression is derived for the disease extinction probability, and analytic estimates are validated with numerical simulations. The local and global dynamics of the bacterial-viral interaction are analysed using the deterministic model, and the result indicates that there is a sharp disease threshold characterized by the basic reproduction number [Formula: see text]: if [Formula: see text], vibrios ingested from the environment into human body will not cause cholera infection; if [Formula: see text], vibrios will grow with increased toxicity and persist within the host, leading to human cholera. In contrast, the stochastic model indicates, more realistically, that there is always a positive probability of disease extinction within the human host.

  20. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  1. A New Method for Qualitative Multi-scale Analysis of Bacterial Biofilms on Filamentous Fungal Colonies Using Confocal and Electron Microscopy

    DOE PAGES

    Miquel Guennoc, Cora; Rose, Christophe; Guinnet, Frédéric; ...

    2017-01-01

    Bacterial biofilms frequently form on fungal surfaces and can be involved in numerous bacterial-fungal interaction processes, such as metabolic cooperation, competition, or predation. The study of biofilms is important in many biological fields, including environmental science, food production, and medicine. However, few studies have focused on such bacterial biofilms, partially due to the difficulty of investigating them. Most of the methods for qualitative and quantitative biofilm analyses described in the literature are only suitable for biofilms forming on abiotic surfaces or on homogeneous and thin biotic surfaces, such as a monolayer of epithelial cells. While laser scanning confocal microscopy (LSCM)more » is often used to analyze in situ and in vivo biofilms, this technology becomes very challenging when applied to bacterial biofilms on fungal hyphae, due to the thickness and the three dimensions of the hyphal networks. To overcome this shortcoming, we developed a protocol combining microscopy with a method to limit the accumulation of hyphal layers in fungal colonies. Using this method, we were able to investigate the development of bacterial biofilms on fungal hyphae at multiple scales using both LSCM and scanning electron microscopy (SEM). Furthermore, this report describes the protocol, including microorganism cultures, bacterial biofilm formation conditions, biofilm staining, and LSCM and SEM visualizations.« less

  2. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae.

    PubMed

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir

    2016-05-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny

    PubMed Central

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray–Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg−1 hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities. PMID:23985744

  4. Seroprevalence of viral and bacterial diseases among the bovines in Himachal Pradesh, India

    PubMed Central

    Katoch, Shailja; Dohru, Shweta; Sharma, Mandeep; Vashist, Vikram; Chahota, Rajesh; Dhar, Prasenjit; Thakur, Aneesh; Verma, Subhash

    2017-01-01

    Aim: The study was designed to measure the seroprevalence of viral and bacterial diseases: Infectious bovine rhinotracheitis, bovine viral diarrhea, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, brucellosis, and paratuberculosis among bovine of Himachal Pradesh during the year 2013-2015. Materials and Methods: The serum samples were collected from seven districts of state, namely, Bilaspur, Kangra, Kinnaur, Lahul and Spiti, Mandi, Sirmour, and Solan. The samples were screened using indirect ELISA kits to measure the seroprevalence of viral and bacterial diseases. Results: The overall seroprevalence of infectious bovine rhinotracheitis was 24.24%, bovine viral diarrhea 1.52%, bovine leukemia 9.09%, bovine parainfluenza 57.58%, bovine respiratory syncytial disease 50%, brucellosis 19.69%, and paratuberculosis 9.09% in Himachal Pradesh. The seroprevalence of bovine rhinotracheitis, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, and paratuberculosis in the state varied significantly (p<0.01) while was insignificant for bovine viral diarrhea and brucellosis (p>0.01). Multiple seropositivity has been observed in this study. Bovine parainfluenza virus 3 was observed commonly in mixed infection with almost all viruses and bacteria under study. Conclusion: The viral and bacterial diseases are prevalent in the seven districts of Himachal Pradesh investigated in the study. Therefore, appropriate management practices and routine vaccination programs should be adopted to reduce the prevalence of these diseases. PMID:29391682

  5. Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children

    PubMed Central

    Shailes, Hannah; Eleftherohorinou, Hariklia; Hoggart, Clive J; Cebey-Lopez, Miriam; Carter, Michael J; Janes, Victoria A; Gormley, Stuart; Shimizu, Chisato; Tremoulet, Adriana H; Barendregt, Anouk M; Salas, Antonio; Kanegaye, John; Pollard, Andrew J; Faust, Saul N; Patel, Sanjay; Kuijpers, Taco; Martinon-Torres, Federico; Burns, Jane C; Coin, Lachlan JM; Levin, Michael

    2018-01-01

    Importance As clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment whilst bacterial infection is missed in others. Objective To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. Design Febrile children presenting to participating hospitals in UK, Spain, Netherlands and USA between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation into definite bacterial, definite viral infection or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n=24) inflammatory diseases (n=48), and on published gene expression datasets. Exposures A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. Main Outcomes Definite Bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group, and the indeterminate group. Results The discovery cohort of 240 children (median age 19 months, 62% males) included 52 with definite bacterial infection of whom 36 (69%) required intensive care; and 92 with definite viral infection of whom 32 (35%) required intensive care. 96 children had indeterminate infection. Bioinformatic analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was

  6. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    PubMed Central

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  7. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    PubMed

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  8. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  9. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children.

    PubMed

    Dannemiller, K C; Gent, J F; Leaderer, B P; Peccia, J

    2016-04-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non-random and demonstrated species segregation (C-score, P < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (P < 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effects of open drainage ditch design on bacterial and fungal communities of cold waterlogged paddy soils

    PubMed Central

    Qiu, Shanlian; Wang, MK; Wang, Fei; Chen, Jichen; Li, Xiaoyan; Li, Qinghua; Lin, Cheng; Lin, Xinjian

    2013-01-01

    A field experiment established in 1980 was conducted to evaluate the effects of open drainage ditch applied for water removal on bacterial and fungal communities of cold waterlogged paddy soils in 2011. In this experiment, traditional plate counting and temperature gradient gel electrophoresis were employed to characterize the abundance and diversity of soil bacterial and fungal communities. Four different distances from the open drainage ditch, 5, 15, 25 and 75 m with different degrees of drainage were designed for this study. Maximum populations of culturable aerobic bacteria and fungi were at 15-m distance while minimum populations were at 75-m distance. Significant differences (p < 0.05) in fungal populations were observed at all distances from open drainage ditch. The highest diversity of the bacterial community was found at a distance of 25 m, while that of the fungal community was observed at a distance of 5 m. Sequencing of excised TGGE bands indicated that the dominant bacteria at 75-m distance belonged to anaerobic or microaerobic bacteria. Relationships between microbial characteristics and soil physicochemical properties indicated that soil pH and available nitrogen contents were key factors controlling the abundance of culturable aerobic bacteria and fungi, while soil water capacity also affected the diversity of fungal community. These findings can provide the references for better design and advanced management of the drainage ditches in cold waterlogged paddy soils. PMID:24516468

  11. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  12. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    PubMed Central

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder (Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella, Lactarius, and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter, Granulicella, and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of

  13. How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?

    PubMed

    Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Black alder ( Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella , Lactarius , and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter , Granulicella , and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages

  14. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    PubMed

    Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.

  15. The role of respiratory viruses in the etiology of bacterial pneumonia

    PubMed Central

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-01-01

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. PMID:26884414

  16. Health Threats from Contamination of Spices Commercialized in Romania: Risks of Fungal and Bacterial Infections.

    PubMed

    Man, Adrian; Mare, Anca; Toma, Felicia; Curticăpean, Augustin; Santacroce, Luigi

    2016-01-01

    The study of fungal contamination in food and mycotoxicoses is a priority today, both internationally and nationally. The purpose of this study is to have a general view over the quality of the most common spices that are sold in Romanian markets, by assessing the degree of fungal, bacterial and mycotoxin contamination in pepper and chili powders. We tested four types of spices: white pepper, black pepper, sweet and hot chili powders from 12 different distributing companies, summing a total of 35 sample types. The fungal and bacterial load was assessed by Standard Plate Count, while the mycotoxin content by High-performance liquid chromatography. Environmental conditions (humidity, pH) and the selling price for each product were also followed. Fungi were observed in 72.7% of black pepper samples, 33.3% in white pepper, 30% in sweet chili and 25% in hot chili products. The most common isolated fungus was Aspergillus spp., while Rhizopus, Mucor, Fusarium, Penicillium, Absidia species were found, in smaller percentage. Four producers (44.4%) presented fungal contamination of over 10^3 CFU/g and two producers (22.2%) presented no fungal contamination in their products. Bacterial contamination was found in 85.7% of the tested products, consisting mostly in Bacillus spp. Aflatoxin B1 was present in all the tested products, mostly in black pepper (mean value 126.3 ng/g); Ochratoxin A was present in sweet chili (mean value 328 ng/g) and Zearalenone in hot chili (mean value 604 ng/g) and sweet chili (mean value 382 ng/g). All spices presented either fungal contamination, mycotoxin contamination, or both. The high humidity and the high pH of spices represent favorable conditions for fungal growth. The selling price was partly related to the physic-chemical conditions and microbiological quality of the spices. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Value of multiplex PCR to determine the bacterial and viral aetiology of pneumonia in school-age children.

    PubMed

    Aydemir, Yusuf; Aydemir, Özlem; Pekcan, Sevgi; Özdemir, Mehmet

    2017-02-01

    Conventional methods for the aetiological diagnosis of community-acquired pneumonia (CAP) are often insufficient owing to low sensitivity and the long wait for the results of culture and particularly serology, and it often these methods establish a diagnosis in only half of cases. To evaluate the most common bacterial and viral agents in CAP using a fast responsive PCR method and investigate the relationship between clinical/laboratory features and aetiology, thereby contributing to empirical antibiotic selection and reduction of treatment failure. In children aged 4-15 years consecutively admitted with a diagnosis of CAP, the 10 most commonly detected bacterial and 12 most commonly detected viral agents were investigated by induced sputum using bacterial culture and multiplex PCR methods. Clinical and laboratory features were compared between bacterial and viral pneumonia. In 78 patients, at least one virus was detected in 38 (48.7%) and at least one bacterium in 32 (41%). In addition, both bacteria and viruses were detected in 16 (20.5%) patients. Overall, the agent detection rate was 69.2%. The most common viruses were respiratory syncytial virus and influenza and the most frequently detected bacteria were S. pneumoniae and H. influenzae. PCR was superior to culture for bacterial isolation (41% vs 13%, respectively). Fever, wheezing and radiological features were not helpful in differentiating between bacterial and viral CAP. White blood cell count, CRP and ESR values were significantly higher in the bacterial/mixed aetiology group than in the viral aetiology group. In CAP, multiplex PCR is highly reliable, superior in detecting multiple pathogens and rapidly identifies aetiological agents. Clinical features are poor for differentiation between bacterial and viral infections. The use of PCR methods allow physicians to provide more appropriate antimicrobial therapy, resulting in a better response to treatment, and it may be possible for use as a routine service

  18. Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Pastuszka, Jozef S.; Kyaw Tha Paw, U.; Lis, Danuta O.; Wlazło, Agnieszka; Ulfig, Krzysztof

    The purpose of this study was to find the typical concentration levels of bacterial and fungal bioaerosol in healthy and moldy homes as well as in office rooms in Upper Silesia Industrial Zone. Airborne bacteria and fungi were collected using the 6-stage Andersen impactor inside and outside of buildings. It was found that the typical level of bacterial aerosol indoors is about 10 3 CFU m -3 in homes and 10 2 CFU m -3 in offices. Only Micrococcus spp was present in all homes studied, constituting 36% of the bacterial genera. The second most common was Staphylococcus epidermidis, present in 76% of homes and constituting 14% of the total. The concentration of fungal aerosol in winter ranged from 10 to 10 2 CFU m -3 in healthy homes and from 10 to 10 3 CFU m -3 in homes with mold problems. In summer these values were elevated reaching 10 3 CFU m -3 in healthy homes and 10 3-10 4 CFU m -3 in moldy buildings. In healthy homes the relative concentration of observed species, including Penicillium, ranged from 3 to about 50% while in moldy homes the highest concentration of Penicillium accounted for 90% of the total fungi. However, the differences between viable fungal species as well as concentrations observed in moldy and healthy homes seem to be too small to be a reason of significantly higher risk for allergic asthma symptoms in any group of buildings. Comparison of the respirable fraction of airborne bacteria and fungi with literature data suggests that the percentage of respirable fungi and bacteria is generally not dependent on the type of home, building material, geographical factors and particulate air pollution.

  19. Impact of eye bank lamellar tissue cutting for endothelial keratoplasty on bacterial and fungal corneoscleral donor rim cultures after corneal transplantation.

    PubMed

    Rauen, Matthew P; Goins, Kenneth M; Sutphin, John E; Kitzmann, Anna S; Schmidt, Gregory A; Wagoner, Michael D

    2012-04-01

    To determine if the lamellar cut of donor tissue for endothelial keratoplasty (EK) by an eye bank facility is associated with a change in the prevalence of positive bacterial or fungal donor rim cultures after corneal transplantation. A retrospective review was conducted of bacterial and fungal cultures of donor rims used for corneal transplantation at a tertiary eye care center from January 1, 2003, to December 31, 2008, with tissue provided by a single eye bank. The cases were divided into 2 groups. Group 1 ("no-cut") included keratoplasty procedures in which a lamellar cut was not performed. Group 2 ("precut") included EK procedures in which a 4-hour period of prewarming of tissue followed by a lamellar cut was performed in the eye bank before tissue delivery to the operating surgeon. There were 351 donor rim cultures in group 1 and 278 in group 2. Bacterial cultures were positive in 30 donor rims (8.5%) in group 1 and 13 (4.7%) in group 2 (P = 0.058). Positive bacterial cultures were not associated with any postoperative infections. Fungal cultures were positive in 8 donor rims (2.3%) in group 1 and 7 (2.5%) in group 2 (P = 1.0). Positive fungal cultures were associated with 2 cases (13.3%) of postoperative fungal infections. Corneal donor tissue can be precut for EK by trained eye bank personnel without an increased risk of bacterial or fungal contamination.

  20. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir.

    PubMed

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-02-18

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in

  1. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    PubMed Central

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-01-01

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in

  2. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection.

    PubMed

    Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E

    2017-07-01

    We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  3. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    PubMed

    Galitskaya, Polina; Biktasheva, Liliya; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  4. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing

    PubMed Central

    Galitskaya, Polina; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  5. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China.

    PubMed

    Liao, Hao; Zhang, Yuchen; Zuo, Qinyan; Du, Binbin; Chen, Wenli; Wei, Dan; Huang, Qiaoyun

    2018-04-20

    Soils, with non-uniform distribution of nutrients across different aggregate-size fractions, provide spatially heterogeneous microhabitats for microorganisms. However, very limited information is available on microbial distributions and their response to fertilizations across aggregate-size fractions in agricultural soils. Here, we examined the structures of bacterial and fungal communities across different aggregate-size fractions (2000-250 μm, 250-53 μm and <53 μm) in response to 35-years organic and/or chemical fertilization regimes in the soil of northeastern China by phospholipid fatty acid (PLFA) and high throughput sequencing (HTS) technology. Our results show that larger fractions (>53 μm), especially 250-53 μm aggregates, which contain more soil C and N, are associated with greater microbial biomass and higher fungi/bacteria ratio. We firstly reported the fungal community composition in different aggregate-size fractions by HTS technology and found more Ascomycota but less Zygomycota in larger fractions with higher C content across all fertilization regimes. Fertilization and aggregate-size fractions significantly affect the compositions of bacterial and fungal communities although their effects are different. The bacterial community is mainly driven by fertilization, especially chemical fertilizers, and is closely related to the shifts of soil P (phosphorus). The fungal community is preferentially impacted by different aggregate-size fractions and is more associated with the changes of soil C and N. The distinct responses of microbial communities suggest different mechanisms controlling the assembly of soil bacterial and fungal communities at aggregate scale. The investigations of both bacterial and fungal communities could provide a better understanding on nutrient cycling across aggregate-size fractions. Copyright © 2018. Published by Elsevier B.V.

  6. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage.

    PubMed

    Duniere, Lysiane; Xu, Shanwei; Long, Jin; Elekwachi, Chijioke; Wang, Yuxi; Turkington, Kelly; Forster, Robert; McAllister, Tim A

    2017-03-03

    Describing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively. All small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure. Next Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome.

  7. Bacterial and fungal composition profiling of microbial based cleaning products.

    PubMed

    Subasinghe, R M; Samarajeewa, A D; Meier, M; Coleman, G; Clouthier, H; Crosthwait, J; Tayabali, A F; Scroggins, R; Shwed, P S; Beaudette, L A

    2018-06-01

    Microbial based cleaning products (MBCPs) are a new generation of cleaning products that are gaining greater use in household, institutional, and industrial settings. Little is known about the exact microbial composition of these products because they are not identified in detail on product labels and formulations are often proprietary. To gain a better understanding of their microbial and fungal composition towards risk assessment, the cultivable microorganisms and rDNA was surveyed for microbial content in five different MBCPs manufactured and sold in North America. Individual bacterial and fungal colonies were identified by ribosequencing and fatty acid methyl ester (FAME) gas chromatography. Metagenomic DNA (mDNA) corresponding to each of the products was subjected to amplification and short read sequencing of seven of the variable regions of the bacterial 16S ribosomal DNA. Taken together, the cultivable microorganism and rDNA survey analyses showed that three of the products were simple mixtures of Bacillus species. The two other products featured a mixture of cultivable fungi with Bacilli, and by rDNA survey analysis, they featured greater microbial complexity. This study improves our understanding of the microbial composition of several MBCPs towards a more comprehensive risk assessment. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    PubMed Central

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative

  9. Cerebrospinal fluid monocytes in bacterial meningitis, viral meningitis, and neuroborreliosis.

    PubMed

    Martinot, M; Greigert, V; Souply, L; Rosolen, B; De Briel, D; Mohseni Zadeh, M; Kaiser, J-D

    2018-04-05

    Cerebrospinal fluid (CSF) leukocytes analysis is commonly used to diagnose meningitis and to differentiate bacterial from viral meningitis. Interpreting CSF monocytes can be difficult for physicians, especially in France where lymphocytes and monocytes results are sometimes pooled. We assessed SF monocytes in patients presenting with microbiologically confirmed meningitis (CSF leukocyte count>10/mm 3 for adults or >30/mm 3 for children<2 months), i.e. bacterial meningitis (BM), viral meningitis (VM), and neuroborreliosis (NB). Two-hundred patients (82 BM, 86 VM, and 32 NB) were included. The proportions of monocytes were higher in VM (median 8%; range 0-57%) than in BM (median 5%; range 0-60%, P=0.03) or NB (median 5%; range 0-53%, P=0.46), with a high value overlap between conditions. CSF monocytes should not be used to discriminate BM from VM and NB because of value overlaps. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. High-throughput sequencing for the detection of the bacterial and fungal diversity in Mongolian naturally fermented cow's milk in Russia.

    PubMed

    Liu, Wenjun; Zheng, Yi; Kwok, Lai-Yu; Sun, Zhihong; Zhang, Jiachao; Guo, Zhuang; Hou, Qiangchuan; Menhe, Bilige; Zhang, Heping

    2015-02-22

    Traditional fermented dairy products are major components of the typical Mongolian diet since ancient times. However, almost all the previous studies on the microbial composition of traditional Mongolian fermented dairy products analyzed food samples from the Chinese Mongolian region and Mongolia but not the Russian Mongolian region. In this study, the bacterial and fungal community diversity of nineteen naturally fermented cow's milk (NFCM) samples from local Mongolian families residing in Kalmykia and Chita of Russia was investigated with pyrosequencing. Firmicutes and Ascomycota were the predominant phyla respectively for bacteria and fungi. The abundance of the bacterial phylum Acidobacteria was considerably different between the samples from the two regions. At genus level, Lactobacillus and Pichia were the predominating bacterial and fungal genera, respectively, while six bacterial genera significantly differed between the Kalmykia (enrichment of Aeromonas, Bacillus, Clostridium, Streptococcus, Vogesella) and Chita (enrichment of Lactococcus) samples. The results of principal coordinate analysis (PCoA) based on the bacterial or fungal composition of the Kalmykia and Chita samples revealed a different microbiota structure between the samples collected in these two locations. The redundancy analysis (RDA) identified 60 bacterial and 21 fungal OTUs as the key variables responsible for such microbiota structural difference. Our results suggest that structural differences existed in the microbiota of NFCM between Kalmykia and Chita. The difference in geographic environment may be an important factor influencing the microbial diversity of NFCM made by the Mongolians in Russia.

  11. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface

    PubMed Central

    Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406

  13. Diagnostic Accuracy of FebriDx: A Rapid Test to Detect Immune Responses to Viral and Bacterial Upper Respiratory Infections.

    PubMed

    Self, Wesley H; Rosen, Jeffrey; Sharp, Stephan C; Filbin, Michael R; Hou, Peter C; Parekh, Amisha D; Kurz, Michael C; Shapiro, Nathan I

    2017-10-07

    C-reactive protein (CRP) and myxovirus resistance protein A (MxA) are associated with bacterial and viral infections, respectively. We conducted a prospective, multicenter, cross-sectional study of adults and children with febrile upper respiratory tract infections (URIs) to evaluate the diagnostic accuracy of a rapid CRP/MxA immunoassay to identify clinically significant bacterial infection with host response and acute pathogenic viral infection. The reference standard for classifying URI etiology was an algorithm that included throat bacterial culture, upper respiratory PCR for viral and atypical pathogens, procalcitonin, white blood cell count, and bandemia. The algorithm also allowed for physician override. Among 205 patients, 25 (12.2%) were classified as bacterial, 53 (25.9%) as viral, and 127 (62.0%) negative by the reference standard. For bacterial detection, agreement between FebriDx and the reference standard was 91.7%, with FebriDx having a sensitivity of 80% (95% CI: 59-93%), specificity of 93% (89-97%), positive predictive value (PPV) of 63% (45-79%), and a negative predictive value (NPV) of 97% (94-99%). For viral detection, agreement was 84%, with a sensitivity of 87% (75-95%), specificity of 83% (76-89%), PPV of 64% (63-75%), and NPV of 95% (90-98%). FebriDx may help to identify clinically significant immune responses associated with bacterial and viral URIs that are more likely to require clinical management or therapeutic intervention, and has potential to assist with antibiotic stewardship.

  14. Covariation of viral parameters with bacterial assemblage richness and diversity in the water column and sediments

    NASA Astrophysics Data System (ADS)

    Hewson, Ian; Fuhrman, Jed A.

    2007-05-01

    Viruses are hypothesized to maintain diversity in microbial assemblages by regulating the abundance of dominant competitors and thereby allowing less-dominant competitors to persist in assemblages; however, there have been few empirical data sets to support this idea. In this study, we examined the relationship between the ratio of viral abundance to bacterial abundance, viral production, and the relative richness and diversity of bacterial assemblage fingerprints, in samples taken from geographically widespread locations (North Pacific gyre, the Amazon River plume and adjacent North Atlantic gyre, Gulf of Mexico, Southern California Bight and Arafura—Coral Seas) which are oligo- to mesotrophic. Bacterial assemblage richness and diversity as measured by automated rRNA intergenic spacer (ARISA) fingerprinting were significantly and positively correlated with the ratio of virus abundance to bacteria abundance (VBR) and to the rate of virus production only in the oligotrophic North Pacific gyre. ARISA fingerprint richness/diversity were not significantly correlated to viral parameters when assessed across all samples in surface waters, suggesting there is not a singular global quantitative relationship between viral pressure and host diversity within well evolved host/virus systems in different geographic locations in plankton. In sediments off Southern California, viral parameters significantly and negatively correlated with ARISA diversity, suggesting strong viral interactions in this habitat. To examine covariation of viral parameters and the relative abundance and diversity of rarer bacterial taxa (i.e., less-dominant competitor), the richness and diversity of diazotroph communities was measured using terminal restriction fragment length polymorphism (TRFLP) of a portion ( nifH) of the nitrogenase gene. The richness and diversity of diazotrophic communities were significantly and negatively correlated with viral parameters across all locations. Since diazotrophs

  15. An EPA pilot study characterizing fungal and bacterial populations at homes after flooding events at the Martin Peña Channel community-Puerto Rico

    EPA Science Inventory

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: hom...

  16. Expansion of space station diagnostic capability to include serological identification of viral and bacterial infections

    NASA Technical Reports Server (NTRS)

    Hejtmancik, Kelly E.

    1987-01-01

    It is necessary that an adequate microbiology capability be provided as part of the Health Maintenance Facility (HMF) to support expected microbial disease events during long periods of space flight. The applications of morphological and biochemical studies to confirm the presence of certain bacterial and fungal disease agents are currently available and under consideration. This confirmation would be greatly facilitated through employment of serological methods to aid in the identification for not only bacterial and fungal agents, but viruses as well. A number of serological approached were considered, particularly the use of Enzyme Linked Immunosorbent Assays (ELISAs), which could be utilized during space flight conditions. A solid phase, membrane supported ELISA for the detection of Bordetella pertussis was developed to show a potential model system that would meet the HMF requirements and specifications for the future space station. A second model system for the detection of Legionella pneumophilia, an expected bacterial disease agent, is currently under investigation.

  17. Soil fungal and bacterial responses to conversion of open land to short-rotation woody biomass crops

    DOE PAGES

    Xue, Chao; Penton, Christopher Ryan; Zhang, Bangzhou; ...

    2016-01-06

    Short-rotation woody biomass crops (SRWCs) have been proposed as an alternative feedstock for biofuel production in the northeastern US that leads to the conversion of current open land to woody plantations, potentially altering the soil microbial community structures and hence functions. We used pyrosequencing of 16S and 28S rRNA genes in soil to assess bacterial and fungal populations when ‘marginal’ grasslands were converted into willow (Salix spp.) and hybrid poplar (Populus spp.) plantations at two sites with similar soils and climate history in northern Michigan (Escanaba; ES) and Wisconsin (Rhinelander; RH). In only three growing seasons, the conversion significantly alteredmore » both the bacterial and fungal communities, which were most influenced by site and then vegetation. The fungal community showed greater change than the bacterial community in response to land conversion at both sites with substantial enrichment of putative pathogenic, ectomycorrhizal, and endophytic fungi associated with poplar and willow. Conversely, the bacterial community structures shifted, but to a lesser degree, with the new communities dissimilar at the two sites and most correlated with soil nutrient status. The bacterial phylum Nitrospirae increased after conversion and was negatively correlated to total soil nitrogen, but positively correlated to soil nitrate, and may be responsible for nitrate accumulation and the increased N 2O emissions previously reported following conversion at these sites. It was determined that the legacy effect of a much longer grassland history and a second dry summer at the ES site may have influenced the grassland (control) microbial community to remain stable while it varied at the RH site.« less

  18. Soil fungal and bacterial responses to conversion of open land to short-rotation woody biomass crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Chao; Penton, Christopher Ryan; Zhang, Bangzhou

    Short-rotation woody biomass crops (SRWCs) have been proposed as an alternative feedstock for biofuel production in the northeastern US that leads to the conversion of current open land to woody plantations, potentially altering the soil microbial community structures and hence functions. We used pyrosequencing of 16S and 28S rRNA genes in soil to assess bacterial and fungal populations when ‘marginal’ grasslands were converted into willow (Salix spp.) and hybrid poplar (Populus spp.) plantations at two sites with similar soils and climate history in northern Michigan (Escanaba; ES) and Wisconsin (Rhinelander; RH). In only three growing seasons, the conversion significantly alteredmore » both the bacterial and fungal communities, which were most influenced by site and then vegetation. The fungal community showed greater change than the bacterial community in response to land conversion at both sites with substantial enrichment of putative pathogenic, ectomycorrhizal, and endophytic fungi associated with poplar and willow. Conversely, the bacterial community structures shifted, but to a lesser degree, with the new communities dissimilar at the two sites and most correlated with soil nutrient status. The bacterial phylum Nitrospirae increased after conversion and was negatively correlated to total soil nitrogen, but positively correlated to soil nitrate, and may be responsible for nitrate accumulation and the increased N 2O emissions previously reported following conversion at these sites. It was determined that the legacy effect of a much longer grassland history and a second dry summer at the ES site may have influenced the grassland (control) microbial community to remain stable while it varied at the RH site.« less

  19. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    PubMed Central

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study

  20. Fungal microbiota dysbiosis in IBD

    PubMed Central

    Sokol, Harry; Leducq, Valentin; Aschard, Hugues; Pham, Hang-Phuong; Jegou, Sarah; Landman, Cecilia; Cohen, David; Liguori, Giuseppina; Bourrier, Anne; Nion-Larmurier, Isabelle; Cosnes, Jacques; Seksik, Philippe; Langella, Philippe; Skurnik, David; Richard, Mathias L; Beaugerie, Laurent

    2017-01-01

    Objective The bacterial intestinal microbiota plays major roles in human physiology and IBDs. Although some data suggest a role of the fungal microbiota in IBD pathogenesis, the available data are scarce. The aim of our study was to characterise the faecal fungal microbiota in patients with IBD. Design Bacterial and fungal composition of the faecal microbiota of 235 patients with IBD and 38 healthy subjects (HS) was determined using 16S and ITS2 sequencing, respectively. The obtained sequences were analysed using the Qiime pipeline to assess composition and diversity. Bacterial and fungal taxa associated with clinical parameters were identified using multivariate association with linear models. Correlation between bacterial and fungal microbiota was investigated using Spearman's test and distance correlation. Results We observed that fungal microbiota is skewed in IBD, with an increased Basidiomycota/Ascomycota ratio, a decreased proportion of Saccharomyces cerevisiae and an increased proportion of Candida albicans compared with HS. We also identified disease-specific alterations in diversity, indicating that a Crohn's disease-specific gut environment may favour fungi at the expense of bacteria. The concomitant analysis of bacterial and fungal microbiota showed a dense and homogenous correlation network in HS but a dramatically unbalanced network in IBD, suggesting the existence of disease-specific inter-kingdom alterations. Conclusions Besides bacterial dysbiosis, our study identifies a distinct fungal microbiota dysbiosis in IBD characterised by alterations in biodiversity and composition. Moreover, we unravel here disease-specific inter-kingdom network alterations in IBD, suggesting that, beyond bacteria, fungi might also play a role in IBD pathogenesis. PMID:26843508

  1. Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea.

    PubMed

    De Tender, Caroline; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Vangeyte, Jürgen; Cattrijsse, André; Dawyndt, Peter; Ruttink, Tom

    2017-07-05

    Despite growing evidence that biofilm formation on plastic debris in the marine environment may be essential for its biodegradation, the underlying processes have yet to be fully understood. Thus, far, bacterial biofilm formation had only been studied after short-term exposure or on floating plastic, yet a prominent share of plastic litter accumulates on the seafloor. In this study, we explored the taxonomic composition of bacterial and fungal communities on polyethylene plastic sheets and dolly ropes during long-term exposure on the seafloor, both at a harbor and an offshore location in the Belgian part of the North Sea. We reconstructed the sequence of events during biofilm formation on plastic in the harbor environment and identified a core bacteriome and subsets of bacterial indicator species for early, intermediate, and late stages of biofilm formation. Additionally, by implementing ITS2 metabarcoding on plastic debris, we identified and characterized for the first time fungal genera on plastic debris. Surprisingly, none of the plastics exposed to offshore conditions displayed the typical signature of a late stage biofilm, suggesting that biofilm formation is severely hampered in the natural environment where most plastic debris accumulates.

  2. Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Folwell, Benjamin D.

    2016-01-01

    High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation. PMID:26850299

  3. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities.

    PubMed

    Adetutu, E M; Ball, A S; Osborn, A M

    2008-12-01

    To provide an independent assessment of azoxystrobin effects on nontarget soil bacteria and fungi and generate some baseline information on azoxystrobin's persistence in soil. Plate based assay showed that azoxystrobin exhibited differential toxicity upon cultured fungi at different application rates. While (14)C labelled isotopes experiments showed that less than 1% of azoxystrobin was mineralized, degradation studies revealed over 60% azoxystrobin breakdown over 21 days. PCR DGGE analysis of 16S and 18S rRNA genes from different soil microcosms showed that azoxystrobin had some effects on fungal community after 21 days (up to 84 days) of incubation in either light or dark soil microcosms. Light incubations increased fungal diversity while dark incubations reduced fungal diversity. Bacterial diversity was unaffected. Significant biotic breakdown of parent azoxystrobin occurred within 21 days even in the absence of light. Azoxystrobin under certain conditions can reduce fungal soil diversity. One of the few independent assessments of azoxystrobin (a widely used strobilurins fungicide) effects on soil fungi when used at the recommended rate. Azoxystrobin and metabolites may persist after 21 days and affect soil fungi.

  4. The role of respiratory viruses in the etiology of bacterial pneumonia: An ecological perspective.

    PubMed

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-02-15

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  5. Plant, fungal, bacterial, and nitrogen interactions in the litter layer of a native Patagonian forest.

    PubMed

    Vivanco, Lucía; Rascovan, Nicolás; Austin, Amy T

    2018-01-01

    Plant-microbial interactions in the litter layer represent one of the most relevant interactions for biogeochemical cycling as litter decomposition is a key first step in carbon and nitrogen turnover. However, our understanding of these interactions in the litter layer remains elusive. In an old-growth mixed Nothofagus forest in Patagonia, we studied the effects of single tree species identity and the mixture of three tree species on the fungal and bacterial composition in the litter layer. We also evaluated the effects of nitrogen (N) addition on these plant-microbial interactions. In addition, we compared the magnitude of stimulation of litter decomposition due to home field advantage (HFA, decomposition occurs more rapidly when litter is placed beneath the plant species from which it had been derived than beneath a different plant species) and N addition that we previously demonstrated in this same forest, and used microbial information to interpret these results. Tree species identity had a strong and significant effect on the composition of fungal communities but not on the bacterial community of the litter layer. The microbial composition of the litter layer under the tree species mixture show an averaged contribution of each single tree species. N addition did not erase the plant species footprint on the fungal community, and neither altered the bacterial community. N addition stimulated litter decomposition as much as HFA for certain tree species, but the mechanisms behind N and HFA stimulation may have differed. Our results suggest that stimulation of decomposition from N addition might have occurred due to increased microbial activity without large changes in microbial community composition, while HFA may have resulted principally from plant species' effects on the litter fungal community. Together, our results suggest that plant-microbial interactions can be an unconsidered driver of litter decomposition in temperate forests.

  6. [Effects of grape-replanting on soil bacterial and fungal populations].

    PubMed

    Li, Kun; Guo, Xiu-wu; Sun, Ying-ni; Zhang, Li-heng; Hu, Xi-xi

    2009-12-01

    Rhizosphere and non-rhizosphere soil samples were collected from the vineyards having been planted for 3 and 30 years, and PCR-DGGE technique was adopted to study the effects of grape-replanting on the population structure and diversity of soil bacteria and fungi. The bacterial and fungal diversities were higher in 30-year-planted vineyard than in 3-year-planted vineyard, and higher in rhizosphere soil than in non-rhizosphere soil. After 30 years replanting, the population structure of bacteria and fungi approached the same in rhizosphere soil and non-rhizosphere soil but differed from that in fallow soil; while in the 3-year-planted vineyard, the population structure in rhizosphere soil was different from that in non-rhizosphere soil and fallow soil. Comparing with that in 3-year-planted vineyard, the rhizosphere soil microbial population in 30-year-planted vineyard had a greater change. In bacterial population, Flavobacterium sp. (DQ339585) and Bacillus sp. (AY039821) decreased while Pedobacter sp. (AJ871084) increased; in fungal population, Omphalina farinolens (EF413029) appeared, Pestalotiopsis sp. (DQ657877, DQ657875, DQ657871), Phacidium lacerum (DQ470976), and Lecythophora decumbens (AF353597) decreased, while Pilidium acerinum voucher (AY48709) increased. Bacillus sp., Flavobacterium sp. , and Pestalotiopsis sp. had antagonism to pathogen, and their decrease reduced the resistance of grape against pathogen. The increase of Pilidium acerinum voucher might relate to the severe disease after grape-replanting.

  7. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters.

    PubMed

    Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne

    2016-04-01

    Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).

  8. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis

    PubMed Central

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-01-01

    Abstract There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children. All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and November 2013, were enrolled in this prospective cross-sectional study. Children were divided into 2 groups of bacterial and viral meningitis, based on the results of cerebrospinal fluid (CSF) culture, polymerase chain reaction, and cytochemical profile. Diagnostic values of CSF parameters (ferritin, PCT, absolute neutrophil count [ANC], white blood cell count, and lactate) and serum parameters (PCT, ferritin, CRP, and erythrocyte sedimentation rate [ESR]) were evaluated. Among 50 patients with meningitis, 12 were diagnosed with bacterial meningitis. Concentrations of all markers were significantly different between bacterial and viral meningitis, except for serum (P = .389) and CSF (P = .136) PCT. The best rates of area under the receiver operating characteristic (ROC) curve (AUC) were achieved by lactate (AUC = 0.923) and serum-CRP (AUC = 0.889). The best negative predictive values (NPV) for bacterial meningitis were attained by ANC (100%) and lactate (97.1%). The results of our study suggest that ferritin and PCT are not strong predictive biomarkers. A combination of low CSF lactate, ANC, ESR, and serum-CRP could reasonably rule out the bacterial meningitis. PMID:28858084

  9. Interleukin-7 Ameliorates Immune Dysfunction and Improves Survival in a 2-Hit Model of Fungal Sepsis

    PubMed Central

    Unsinger, Jacqueline; Burnham, Carey-Ann D.; McDonough, Jacquelyn; Morre, Michel; Prakash, Priya S.; Caldwell, Charles C.; Dunne, W. Michael; Hotchkiss, Richard S.

    2012-01-01

    Background. Secondary hospital-acquired fungal infections are common in critically-ill patients and mortality remains high despite antimicrobial therapy. Interleukin-7 (IL-7) is a potent immunotherapeutic agent that improves host immunity and has shown efficacy in bacterial and viral models of infection. This study examined the ability of IL-7, which is currently in multiple clinical trials (including hepatitis and human immunodeficiency virus), to improve survival in a clinically relevant 2-hit model of fungal sepsis. Methods. Mice underwent cecal ligation and puncture to induce peritonitis. Four days later, surviving mice had intravenous injection with Candida albicans. Following Candida infection, mice were treated with IL-7 or saline control. The effect of IL-7 on host immunity and survival was recorded. Results. IL-7 ameliorated the loss of immune effector cells and increased lymphocyte functions, including activation, proliferation, expression of adhesion molecules, and interferon-γ production. These beneficial effects of IL-7 were associated with an increase in global immunity as reflected by an enhanced delayed type hypersensitivity response and a 1.7-fold improvement in survival. Conclusions. The present findings showing that IL-7 improves survival in fungal sepsis, together with its previously reported efficacy in bacterial and viral infectious models, further supports its use as a novel immunotherapeutic in sepsis. PMID:22693226

  10. Analysis of bacterial and fungal communities in Marcha and Thiat, traditionally prepared amylolytic starters of India.

    PubMed

    Sha, Shankar Prasad; Jani, Kunal; Sharma, Avinash; Anupma, Anu; Pradhan, Pooja; Shouche, Yogesh; Tamang, Jyoti Prakash

    2017-09-08

    Marcha and thiat are traditionally prepared amylolytic starters use for production of various ethnic alcoholic beverages in Sikkim and Meghalaya states in India. In the present study we have tried to investigate the bacterial and fungal community composition of marcha and thiat by using high throughput sequencing. Characterization of bacterial community depicts phylum Proteobacteria is the most dominant in both marcha (91.4%) and thiat (53.8%), followed by Firmicutes, and Actinobacteria. Estimates of fungal community composition showed Ascomycota as the dominant phylum. Presence of Zygomycota in marcha distinguishes it from the thiat. The results of NGS analysis revealed dominance of yeasts in marcha whereas molds out numbers in case of thiat. This is the first report on microbial communities of traditionally prepared amylolytic starters of India using high throughput sequencing.

  11. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system.

    PubMed

    Douterelo, I; Fish, K E; Boxall, J B

    2018-09-15

    Understanding the temporal dynamics of multi-species biofilms in Drinking Water Distribution Systems (DWDS) is essential to ensure safe, high quality water reaches consumers after it passes through these high surface area reactors. This research studied the succession characteristics of fungal and bacterial communities under controlled environmental conditions fully representative of operational DWDS. Microbial communities were observed to increase in complexity after one month of biofilm development but they did not reach stability after three months. Changes in cell numbers were faster at the start of biofilm formation and tended to decrease over time, despite the continuing changes in bacterial community composition. Fungal diversity was markedly less than bacterial diversity and had a lag in responding to temporal dynamics. A core-mixed community of bacteria including Pseudomonas, Massillia and Sphingomonas and the fungi Acremonium and Neocosmopora were present constantly and consistently in the biofilms over time and conditions studied. Monitoring and managing biofilms and such ubiquitous core microbial communities are key control strategies to ensuring the delivery of safe drinking water via the current ageing DWDS infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres

    NASA Astrophysics Data System (ADS)

    Madureira, Joana; Paciência, Inês; Rufo, João Cavaleiro; Pereira, Cristiana; Teixeira, João Paulo; de Oliveira Fernandes, Eduardo

    2015-05-01

    Until now the influence of risk factors resulting from exposure to biological agents in indoor air has been far less studied than outdoor pollution; therefore the uncertainty of health risks, and how to effectively prevent these, remains. This study aimed (i) to quantify airborne cultivable bacterial and fungal concentrations in four different types of indoor environment as well as to identify the recovered fungi; (ii) to assess the impact of outdoor bacterial and fungal concentrations on indoor air; (iii) to investigate the influence of carbon dioxide (CO2), temperature and relative humidity on bacterial and fungal concentrations; and (iv) to estimate bacterial and fungal dose rate for children (3-5 years old and 8-10 years old) in comparison with the elderly. Air samples were collected in 68 homes, 9 child day-care centres, 20 primary schools and 22 elderly care centres, in a total of 264 rooms with a microbiological air sampler and using tryptic soy agar and malt extract agar culture media for bacteria and fungi growth, respectively. For each building, one outdoor representative location were identified and simultaneously studied. The results showed that child day-care centres were the indoor microenvironment with the highest median bacterial and fungal concentrations (3870 CFU/m3 and 415 CFU/m3, respectively), whereas the lowest median concentrations were observed in elderly care centres (222 CFU/m3 and 180 CFU/m3, respectively). Indoor bacterial concentrations were significantly higher than outdoor concentrations (p < 0.05); whereas the indoor/outdoor ratios for the obtained fungal concentrations were approximately around the unit. Indoor CO2 levels were associated with the bacterial concentration, probably due to occupancy and insufficient ventilation. Penicillium and Cladosporium were the most frequently occurring fungi. Children's had two times higher dose rate to biological pollutants when compared to adult individuals. Thus, due to children

  13. Donor-to-host transmission of bacterial and fungal infections in lung transplantation.

    PubMed

    Ruiz, I; Gavaldà, J; Monforte, V; Len, O; Román, A; Bravo, C; Ferrer, A; Tenorio, L; Román, F; Maestre, J; Molina, I; Morell, F; Pahissa, A

    2006-01-01

    The purpose of this study was to evaluate the incidence and etiology of bacterial and fungal infection or contamination in lung allograft donors and to assess donor-to-host transmission of these infections. Recipients who survived more than 24 h and their respective donors were evaluated. The overall incidence of donor infection was 52% (103 out of 197 donors). Types of donor infection included isolated contamination of preservation fluids (n = 30, 29.1%), graft colonization (n = 65, 63.1%) and bacteremia (n = 8, 7.8%). Donor-to-host transmission of bacterial or fungal infection occurred in 15 lung allograft recipients, 7.6% of lung transplants performed. Among these cases, 2 were due to donor bacteremia and 13 to colonization of the graft. Twenty-five percent of donors with bacteremia and 14.1% of colonized grafts were responsible for transmitting infection. Excluding the five cases without an effective prophylactic regimen, prophylaxis failure occurred in 11 out of 197 procedures (5.58%). Donor-to-host transmission of infection is a frequent event after lung transplantation. Fatal consequences can be avoided with an appropriate prophylactic antibiotic regimen that must be modified according to the microorganisms isolated from cultures of samples obtained from donors, grafts, preservation fluids and recipients.

  14. A multifactor analysis of fungal and bacterial community structure of the root microbiome of mature Populus deltoides trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakya, Migun; Gottel, Neil R; Castro Gonzalez, Hector F

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host- health, survival and growth. However, a robust understanding of root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watershedsmore » to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to it s associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall genotypic distances did not have a significant effect on corresponding communities that

  15. A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees

    PubMed Central

    Shakya, Migun; Gottel, Neil; Castro, Hector; Yang, Zamin K.; Gunter, Lee; Labbé, Jessy; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald; Podar, Mircea; Schadt, Christopher W.

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that

  16. Pyrosequencing-Derived Bacterial, Archaeal, and Fungal Diversity of Spacecraft Hardware Destined for Mars

    PubMed Central

    Vaishampayan, Parag; Nilsson, Henrik R.; Torok, Tamas; Venkateswaran, Kasthuri

    2012-01-01

    Spacecraft hardware and assembly cleanroom surfaces (233 m2 in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m2) than colocated spacecraft hardware (187 OTU; 162 m2). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space. PMID:22729532

  17. [EFFECTIVENESS OF FULLERENE-(TRIS-AMINOCAPRONIC ACID) HYDRATE IN THE MODEL OF EXPERIMENTAL VIRAL-BACTERIAL PNEUMONIA OF MICE].

    PubMed

    Falynskova, I N; Leonova, E I; Fedyakina, I T; Makhmudova, N R; Lepekha, L N; Mikhailova, N A; Rasnetsov, L D; Zverev, V V; Leneva, I A

    2015-01-01

    Study the effectiveness of the substance and various drug formulations of fullerene-(tris-aminocapronic acid) hydrate (FTAAH onwards) in the model of experimental viral-bacterial pneumonia of mice. BALB/c mice were infected with influenza virus A/California/04/2009 and subsequently infected with Staphylococcus aureus. The animals were treated after viral infection with the substance and various drug forms of FTAAH, as well as comparative preparations--oseltamivir and arbidol. Therapy effectiveness was evaluated by clinical indicators (survival, lifespan, animal mass decrease reduction), virological (virus titer), microbiological (density of bacteria in lungs) parameters, confirmed by pathomorphological characteristics of lungs. FTAAH therapy in injectable form was effective in the model of a combined viral-bacterial pneumonia of mice by all the studied criteria: treatment increased mice survival, reduced the decrease of their body weight, resulted in a reduction of virus titers and density of bacteria in lungs, that correlated with the data from morphological study and signs of bronchopneumonia resolution in mice. FTAAH therapy in rectal form depended on animal infection schemes, as well as preparation dose, increasing with its increase. FTAAH substance is effective in the model of experimental viral-bacterial pneumonia of mice.

  18. [Autochthonous acute viral and bacterial infections of the central nervous system (meningitis and encephalitis)].

    PubMed

    Pérez-Ruiz, Mercedes; Vicente, Diego; Navarro-Marí, José María

    2008-07-01

    Rapid diagnosis of acute viral and bacterial infections of the central nervous system (meningitis and encephalitis) is highly important for the clinical management of the patient and helps to establish early therapy that may solve life-threatening situations, to avoid unnecessary empirical treatments, to reduce hospital stay, and to facilitate appropriate interventions in the context of public health. Molecular techniques, especially real-time polymerase chain reaction, have become the fastest and most sensitive diagnostic procedures for autochthonous viral meningitis and encephalitis, and their role is becoming increasingly important for the diagnosis and control of most frequent acute bacterial meningitides. Automatic and closed systems may encourage the widespread and systematic use of molecular techniques for the diagnosis of these neurological syndromes in most laboratories.

  19. Bacterial and fungal flora of seagull droppings in Jersey

    PubMed Central

    Cragg, John; Clayton, Yvonne M.

    1971-01-01

    In Jersey 166 fresh and 122 dried seagull droppings were obtained and studied locally and in London for the presence of bacteria and fungi of potentially pathogenic nature. There were no salmonella or shigella bacteria isolated from the two groups but there was a high proportion of Candida albicans obtained from the fresh material (21·7%) and only 1·6% from the dry faeces. Cryptococcus neoformans and Histoplasma capsulatum were not found in either the dry or fresh droppings. The normal bacterial and fungal flora of the seagull was established and it is considered that the C. albicans in fresh gull droppings would not materially increase albicans infections in man. PMID:5104846

  20. Increased Systemic Cytokine/Chemokine Expression in Asthmatic and Non-asthmatic Patients with Bacterial, Viral or Mixed Lung Infection.

    PubMed

    Giuffrida, M J; Valero, N; Mosquera, J; Duran, A; Arocha, F; Chacín, B; Espina, L M; Gotera, J; Bermudez, J; Mavarez, A; Alvarez-Mon, M

    2017-04-01

    This study was aimed to determine the profiles of serum cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP-1: monocyte chemoattract protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in individuals with an asthmatic versus a non-asthmatic background with bacterial, viral or mixed acute respiratory infection. Asthmatic (n = 14) and non-asthmatic (n = 29) patients with acute viral, bacterial or mixed (bacterial and viruses) respiratory infection were studied. Patients were also analysed as individuals with pneumonia or bronchitis. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in serum was determined by ELISA. Increased cytokine/chemokine concentration in asthmatic and non-asthmatic patients was observed. However, higher concentrations of chemokines (MCP-1 and RANTES) in asthmatic patients infected by viruses, bacteria or bacteria and viruses (mixed) than in non-asthmatic patients were observed. In general, viral and mixed infections were better cytokine/chemokine inducers than bacterial infection. Cytokine/chemokine expression was similarly increased in both asthmatic and non-asthmatic patients with pneumonia or bronchitis, except that RANTES remained at normal levels in bronchitis. Circulating cytokine profiles induced by acute viral, bacterial or mixed lung infection were not related to asthmatic background, except for chemokines that were increased in asthmatic status. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  1. Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants.

    PubMed

    Weikl, Fabian; Tischer, Christina; Probst, Alexander J; Heinrich, Joachim; Markevych, Iana; Jochner, Susanne; Pritsch, Karin

    2016-01-01

    People spend most of their time inside buildings and the indoor microbiome is a major part of our everyday environment. It affects humans' wellbeing and therefore its composition is important for use in inferring human health impacts. It is still not well understood how environmental conditions affect indoor microbial communities. Existing studies have mostly focussed on the local (e.g., building units) or continental scale and rarely on the regional scale, e.g. a specific metropolitan area. Therefore, we wanted to identify key environmental determinants for the house dust microbiome from an existing collection of spatially (area of Munich, Germany) and temporally (301 days) distributed samples and to determine changes in the community as a function of time. To that end, dust samples that had been collected once from the living room floors of 286 individual households, were profiled for fungal and bacterial community variation and diversity using microbial fingerprinting techniques. The profiles were tested for their association with occupant behaviour, building characteristics, outdoor pollution, vegetation, and urbanization. Our results showed that more environmental and particularly outdoor factors (vegetation, urbanization, airborne particulate matter) affected the community composition of indoor fungi than of bacteria. The passage of time affected fungi and, surprisingly, also strongly affected bacteria. We inferred that fungal communities in indoor dust changed semi-annually, whereas bacterial communities paralleled outdoor plant phenological periods. These differences in temporal dynamics cannot be fully explained and should be further investigated in future studies on indoor microbiomes.

  2. Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants

    PubMed Central

    Weikl, Fabian; Tischer, Christina; Probst, Alexander J.; Heinrich, Joachim; Markevych, Iana; Jochner, Susanne; Pritsch, Karin

    2016-01-01

    People spend most of their time inside buildings and the indoor microbiome is a major part of our everyday environment. It affects humans’ wellbeing and therefore its composition is important for use in inferring human health impacts. It is still not well understood how environmental conditions affect indoor microbial communities. Existing studies have mostly focussed on the local (e.g., building units) or continental scale and rarely on the regional scale, e.g. a specific metropolitan area. Therefore, we wanted to identify key environmental determinants for the house dust microbiome from an existing collection of spatially (area of Munich, Germany) and temporally (301 days) distributed samples and to determine changes in the community as a function of time. To that end, dust samples that had been collected once from the living room floors of 286 individual households, were profiled for fungal and bacterial community variation and diversity using microbial fingerprinting techniques. The profiles were tested for their association with occupant behaviour, building characteristics, outdoor pollution, vegetation, and urbanization. Our results showed that more environmental and particularly outdoor factors (vegetation, urbanization, airborne particulate matter) affected the community composition of indoor fungi than of bacteria. The passage of time affected fungi and, surprisingly, also strongly affected bacteria. We inferred that fungal communities in indoor dust changed semi-annually, whereas bacterial communities paralleled outdoor plant phenological periods. These differences in temporal dynamics cannot be fully explained and should be further investigated in future studies on indoor microbiomes. PMID:27100967

  3. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments

    Treesearch

    Matthew D. Wallenstein; Steven McNulty; Ivan J. Fernandez; Johnny Boggs; William H. Schlesinger

    2006-01-01

    We examined the effects of N fertilization on forest soil fungal and bacterial biomass at three long-term experiments in New England (Harvard Forest, MA; Mt. Ascutney, VT; Bear Brook, ME). At Harvard Forest, chronic N fertilization has decreased organic soil microbial biomass C (MBC) by an average of 54% and substrate induced respiration (SIR) was decreased by an...

  4. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    NASA Astrophysics Data System (ADS)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic

  5. Bacterial and fungal community composition and functioning of two different peatlands in China

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Tian, Jianqing; Bu, Zhaojun; Chen, Huai; Zhu, Qiuan; Peng, Changhui

    2017-04-01

    Peatlands are important carbon sinks which store one third of the global soil carbon ( 550 Gt) with only 3% of the land surface. The slow rate of organic matter decomposition associated with low microbial diversity and limited functioning under cold, acidic and anoxic condition is of critical importance in controlling biogeochemical cycles in northern peatlands. To evaluate the variation in microbial community composition and functionality can advance our understanding of the underlying mechanisms of the biogeochemical processes and interactions. However, there is still a lack of information for Chinese peatlands. Here, we sampled peat profiles at three different depths (10-20, 30-40 and 60-70 cm) from two typical peatlands in China: a rich fen in Qinghai-Tibet Plateau (QTP) and a poor fen in the Changbai Mountains (CBM). We investigated the bacterial (16S rRNA) and fungal (ITS2) community composition and diversity with high-throughput sequencing and predicted the metagenome functioning with PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States). The results showed that Proteobacteria, Acidobacteria and Actinobacteria were the most abundant bacterial phyla in the upper peat layer (10-20 cm) for both sites, with increasing abundance of Chloroflexi and Bacteroidetes down to the saturated zone (60-70 cm in CMB; 30-40 and 60-70 cm in QTP). For fungi, Ascomycota, Ciliophora and Basidiomycota were the most abundant phyla in both sites, with decreasing Ciliophora abundance down to the saturated zone. The α-diversity of both bacterial and fungal showed a decreasing trend with depth in QTP, with the largest diversity occurring at the depth of 30-40 cm in CMB. Regardless of sampling sites, the bacterial communities at the depth of 60-70 cm were more similar than the other depths. The fungal community was clustered into two groups, corresponding to two sampling sites. The variation in fungal community with depth was larger in QTP than in

  6. Epidemiology and aetiology of maternal bacterial and viral infections in low- and middle-income countries

    PubMed Central

    Velu, Prasad Palani; Gravett, Courtney A.; Roberts, Tom K.; Wagner, Thor A.; Zhang, Jian Shayne F.; Rubens, Craig E.; Gravett, Michael G.; Campbell, Harry; Rudan, Igor

    2011-01-01

    Background Maternal morbidity and mortality in low- and middle-income countries has remained exceedingly high. However, information on bacterial and viral maternal infections, which are important contributors to poor pregnancy outcomes, is sparse and poorly characterised. This review aims to describe the epidemiology and aetiology of bacterial and viral maternal infections in low- and middle-income countries. Methods A systematic search of published literature was conducted and data on aetiology and epidemiology of maternal infections was extracted from relevant studies for analysis. Searches were conducted in parallel by two reviewers (using OVID) in the following databases: Medline (1950 to 2010), EMBASE (1980 to 2010) and Global Health (1973 to 2010). Results Data from 158 relevant studies was used to characterise the epidemiology of the 10 most extensively reported maternal infections with the following median prevalence rates: Treponema pallidum (2.6%), Neisseria gonorrhoeae (1.5%), Chlamydia trachomatis (5.8%), Group B Streptococcus (8.6%), bacterial vaginosis (20.9%), hepatitis B virus (4.3%), hepatitis C virus (1.4%), Cytomegalovirus (95.7% past infection), Rubella (8.9% susceptible) and Herpes simplex (20.7%). Large variations in the prevalence of these infections between countries and regions were noted. Conclusion This review confirms the suspected high prevalence of maternal bacterial and viral infections and identifies particular diseases and regions requiring urgent attention in public health policy planning, setting research priorities and donor funding towards reducing maternal morbidity and mortality in low- and middle-income countries. PMID:23198117

  7. Human Skin Fungal Diversity

    PubMed Central

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A.; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H.; Segre, Julia A.

    2013-01-01

    Traditional culture-based methods have incompletely defined the etiology of common recalcitrant human fungal skin diseases including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms, while providing a home for diverse commensal microbiota1. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders2,3,4. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also play major roles in microbial community stability, human health and disease5. Genomic methodologies to identify fungal species and communities have been limited compared with tools available for bacteria6. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes7. Here, we sequenced and analyzed fungal communities of 14 skin sites in 10 healthy adults. Eleven core body and arm sites were dominated by Malassezia fungi, with species-level classifications revealing greater topographical resolution between sites. By contrast, three foot sites, plantar heel, toenail, and toeweb, exhibited tremendous fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that skin physiologic attributes and topography differentially shape these two microbial communities. These results provide a framework for future investigation of interactions between pathogenic and commensal fungal and bacterial communities in maintaining human health and contributing to disease pathogenesis. PMID:23698366

  8. Performance of C-reactive protein and procalcitonin to distinguish viral from bacterial and malarial causes of fever in Southeast Asia.

    PubMed

    Lubell, Yoel; Blacksell, Stuart D; Dunachie, Susanna; Tanganuchitcharnchai, Ampai; Althaus, Thomas; Watthanaworawit, Wanitda; Paris, Daniel H; Mayxay, Mayfong; Peto, Thomas J; Dondorp, Arjen M; White, Nicholas J; Day, Nicholas P J; Nosten, François; Newton, Paul N; Turner, Paul

    2015-11-11

    Poor targeting of antimicrobial drugs contributes to the millions of deaths each year from malaria, pneumonia, and other tropical infectious diseases. While malaria rapid diagnostic tests have improved use of antimalarial drugs, there are no similar tests to guide the use of antibiotics in undifferentiated fevers. In this study we estimate the diagnostic accuracy of two well established biomarkers of bacterial infection, procalcitonin and C-reactive protein (CRP) in discriminating between common viral and bacterial infections in malaria endemic settings of Southeast Asia. Serum procalcitonin and CRP levels were measured in stored serum samples from febrile patients enrolled in three prospective studies conducted in Cambodia, Laos and, Thailand. Of the 1372 patients with a microbiologically confirmed diagnosis, 1105 had a single viral, bacterial or malarial infection. Procalcitonin and CRP levels were compared amongst these aetiological groups and their sensitivity and specificity in distinguishing bacterial infections and bacteraemias from viral infections were estimated using standard thresholds. Serum concentrations of both biomarkers were significantly higher in bacterial infections and malaria than in viral infections. The AUROC for CRP in discriminating between bacterial and viral infections was 0.83 (0.81-0.86) compared with 0.74 (0.71-0.77) for procalcitonin (p < 0.0001). This relative advantage was evident in all sites and when stratifying patients by age and admission status. For CRP at a threshold of 10 mg/L, the sensitivity of detecting bacterial infections was 95% with a specificity of 49%. At a threshold of 20 mg/L sensitivity was 86% with a specificity of 67%. For procalcitonin at a low threshold of 0.1 ng/mL the sensitivity was 90% with a specificity of 39%. At a higher threshold of 0.5 ng/ul sensitivity was 60% with a specificity of 76%. In samples from febrile patients with mono-infections from rural settings in Southeast Asia, CRP was a highly

  9. Evaluation of Bacterial Contamination as an Indicator of Viral Contamination in a Sedimentary Aquifer in Uruguay.

    PubMed

    Gamazo, P; Victoria, M; Schijven, J F; Alvareda, E; Tort, L F L; Ramos, J; Burutaran, L; Olivera, M; Lizasoain, A; Sapriza, G; Castells, M; Colina, R

    2018-03-21

    In Uruguay, groundwater is frequently used for agricultural activities, as well as for human consumption in urban and rural areas. As in many countries worldwide, drinking water microbiological quality is evaluated only according to bacteriological standards and virological analyses are not mentioned in the legislation. In this work, the incidence of human viral (Rotavirus A, Norovirus GII, and human Adenovirus) and bacterial (total and thermotolerant coliform and Pseudomonas aeruginosa) contamination in groundwater in the Salto district, Uruguay, as well as the possible correlation between these groups of microorganisms, was studied. From a total of 134 groundwater samples, 42 (32.1%) were positive for Rotavirus, only 1 (0.7%) for both Rotavirus and Adenovirus, and 96 (72.6%) samples were positive for bacterial indicators. Results also show that Rotavirus presence was not associated with changes in chemical composition of the aquifer water. Bacteriological indicators were not adequate to predict the presence of viruses in individual groundwater samples (well scale), but a deeper spatial-temporal analysis showed that they are promising candidates to assess the viral contamination degree at aquifer scale, since from the number of wells with bacterial contamination the number of wells with viral contamination could be estimated.

  10. Potential of small-molecule fungal metabolites in antiviral chemotherapy

    PubMed Central

    Roy, Biswajit G

    2017-01-01

    Various viral diseases, such as acquired immunodeficiency syndrome, influenza, and hepatitis, have emerged as leading causes of human death worldwide. Scientific endeavor since invention of DNA-dependent RNA polymerase of pox virus in 1967 resulted in better understanding of virus replication and development of various novel therapeutic strategies. Despite considerable advancement in every facet of drug discovery process, development of commercially viable, safe, and effective drugs for these viruses still remains a big challenge. Decades of intense research yielded a handful of natural and synthetic therapeutic options. But emergence of new viruses and drug-resistant viral strains had made new drug development process a never-ending battle. Small-molecule fungal metabolites due to their vast diversity, stereochemical complexity, and preapproved biocompatibility always remain an attractive source for new drug discovery. Though, exploration of therapeutic importance of fungal metabolites has started early with discovery of penicillin, recent prediction asserted that only a small percentage (5–10%) of fungal species have been identified and much less have been scientifically investigated. Therefore, exploration of new fungal metabolites, their bioassay, and subsequent mechanistic study bears huge importance in new drug discovery endeavors. Though no fungal metabolites so far approved for antiviral treatment, many of these exhibited high potential against various viral diseases. This review comprehensively discussed about antiviral activities of fungal metabolites of diverse origin against some important viral diseases. This also highlighted the mechanistic details of inhibition of viral replication along with structure–activity relationship of some common and important classes of fungal metabolites. PMID:28737040

  11. Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: Bacterial succession and viral abundance pattern.

    PubMed

    Guidi, Flavio; Pezzolesi, Laura; Vanucci, Silvana

    2018-02-27

    Algal-bacterial interactions play a major role in shaping diversity of algal associated bacterial communities. Temporal variation in bacterial phylogenetic composition reflects changes of these complex interactions which occur during the algal growth cycle as well as throughout the lifetime of algal blooms. Viruses are also known to cause shifts in bacterial community diversity which could affect algal bloom phases. This study investigated on changes of bacterial and viral abundances, bacterial physiological status, and on bacterial successional pattern associated with the harmful benthic dinoflagellate Ostreopsis cf. ovata in batch cultures over the algal growth cycle. Bacterial community phylogenetic structure was assessed by 16S rRNA gene ION torrent sequencing. A comparison between bacterial community retrieved in cultures and that one co-occurring in situ during the development of the O. cf. ovata bloom from where the algal strain was isolated was also reported. Bacterial community growth was characterized by a biphasic pattern with the highest contributions (~60%) of highly active bacteria found at the two bacterial exponential growth steps. An alphaproteobacterial consortium composed by the Rhodobacteraceae Dinoroseobacter (22.2%-35.4%) and Roseovarius (5.7%-18.3%), together with Oceanicaulis (14.2-40.3%), was strongly associated with O. cf. ovata over the algal growth. The Rhodobacteraceae members encompassed phylotypes with an assessed mutualistic-pathogenic bimodal behavior. Fabibacter (0.7%-25.2%), Labrenzia (5.6%-24.3%), and Dietzia (0.04%-1.7%) were relevant at the stationary phase. Overall, the successional pattern and the metabolic and functional traits of the bacterial community retrieved in culture mirror those ones underpinning O. cf. ovata bloom dynamics in field. Viral abundances increased synoptically with bacterial abundances during the first bacterial exponential growth step while being stationary during the second step. Microbial trends

  12. Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters.

    PubMed

    Johnson, Riegardt M; Ramond, Jean-Baptiste; Gunnigle, Eoin; Seely, Mary; Cowan, Don A

    2017-03-01

    The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R 2  = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R 2  ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH 4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.

  13. Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy).

    PubMed

    Siles, José A; Öhlinger, Birgit; Cajthaml, Tomas; Kistler, Erich; Margesin, Rosa

    2018-01-30

    Microbial communities in human-impacted soils of ancient settlements have been proposed to be used as ecofacts (bioindicators) of different ancient anthropogenic activities. In this study, bacterial, archaeal and fungal communities inhabiting soil of three archaic layers, excavated at the archaeological site on Monte Iato (Sicily, Italy) and believed to have been created in a chronological order in archaic times in the context of periodic cultic feasts, were investigated in terms of (i) abundance (phospholipid fatty acid (PLFA) analysis and quantitative PCR)), (ii) carbon(C)-source consumption patterns (Biolog-Ecoplates) and (iii) diversity and community composition (Illumina amplicon sequencing). PLFA analyses demonstrated the existence of living bacteria and fungi in the soil samples of all three layers. The upper layer showed increased levels of organic C, which were not concomitant with an increment in the microbial abundance. In taxonomic terms, the results indicated that bacterial, archaeal and fungal communities were highly diverse, although differences in richness or diversity among the three layers were not detected for any of the communities. However, significantly different microbial C-source utilization patterns and structures of bacterial, archaeal and fungal communities in the three layers confirmed that changing features of soil microbial communities reflect different past human activities.

  14. Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter.

    PubMed

    Lebrero, Raquel; López, Juan Carlos; Lehtinen, Iiro; Pérez, Rebeca; Quijano, Guillermo; Muñoz, Raúl

    2016-02-01

    Despite several fungal strains have been retrieved from methane-containing environments, the actual capacity and role of fungi on methane abatement is still unclear. The batch biodegradation tests here performed demonstrated the capacity of Graphium sp. to co-metabolically biodegrade methane and methanol. Moreover, the performance and microbiology of a fungal-bacterial compost biofilter treating methane at concentrations of ∼2% was evaluated at empty bed residence times of 40 and 20 min under different irrigation rates. The daily addition of 200 mL of mineral medium resulted in elimination capacities of 36.6 ± 0.7 g m(-3) h(-1) and removal efficiencies of ≈90% at the lowest residence time. The indigenous fungal community of the compost was predominant in the final microbial population and outcompeted the inoculated Graphium sp. during biofilter operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    PubMed Central

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.

    2016-01-01

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation. PMID:27313569

  16. Retrospective Analysis of Bacterial and Viral Co-Infections in Pneumocystis spp. Positive Lung Samples of Austrian Pigs with Pneumonia.

    PubMed

    Weissenbacher-Lang, Christiane; Kureljušić, Branislav; Nedorost, Nora; Matula, Bettina; Schießl, Wolfgang; Stixenberger, Daniela; Weissenböck, Herbert

    2016-01-01

    Aim of this study was the retrospective investigation of viral (porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), torque teno sus virus type 1 and 2 (TTSuV1, TTSuV2)) and bacterial (Bordetella bronchiseptica (B. b.), Mycoplasma hyopneumoniae (M. h.), and Pasteurella multocida (P. m.)) co-infections in 110 Pneumocystis spp. positive lung samples of Austrian pigs with pneumonia. Fifty-one % were positive for PCV2, 7% for PRRSV, 22% for TTSuV1, 48% for TTSuV2, 6% for B. b., 29% for M. h., and 21% for P. m. In 38.2% only viral, in 3.6% only bacterial and in 40.0% both, viral and bacterial pathogens were detected. In 29.1% of the cases a co-infection with 1 pathogen, in 28.2% with 2, in 17.3% with 3, and in 7.3% with 4 different infectious agents were observed. The exposure to Pneumocystis significantly decreased the risk of a co-infection with PRRSV in weaning piglets; all other odds ratios were not significant. Four categories of results were compared: I = P. spp. + only viral co-infectants, II = P. spp. + both viral and bacterial co-infectants, III = P. spp. + only bacterial co-infectants, and IV = P. spp. single infection. The evaluation of all samples and the age class of the weaning piglets resulted in a predomination of the categories I and II. In contrast, the suckling piglets showed more samples of category I and IV. In the group of fattening pigs, category II predominated. Suckling piglets can be infected with P. spp. early in life. With increasing age this single infections can be complicated by co-infections with other respiratory diseases.

  17. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE PAGES

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; ...

    2016-02-03

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  18. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burstein, David; Sun, Christine L.; Brown, Christopher T.

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  19. Effects of biochar amendment on bacterial and fungal diversity for co-composting of gelatin industry sludge mixed with organic fraction of municipal solid waste.

    PubMed

    Awasthi, Mukesh Kumar; Li, Jiao; Kumar, Sunil; Awasthi, Sanjeev Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhang, Zengqiang

    2017-12-01

    The aim of the study was to evaluate the bacterial and fungal diversities of 18contrastivecomposts applied with 17 different sources mad biochars applied treatments using 16S rRNA and 18S rDNA technology, while T-1 used as a control. The results showed that bacterial species of the phyla Actinobacteria, Proteobacteria and Chloroflexi, and fungi of the phylum Ascomycota and Basidiomycota were pre-dominant among the all treatments. The bacterial genus Subgroup_6_norank, Nocardioides, Pseudonocardia, Sphingomonas, Solirubrobacter and RB41_norank are first time identified in composting ecosystem. In addition, the fungal genus Ascomycota_unclassified, Aspergillus, Penicillium, Pleosporales_unclassified and Herpotrichlellacease_unclassified ubiquitous among the all compost. The Shannon and refraction-curve biodiversity indices showed a clear heterogeneity among all the treatments, which could be due to isolation of new genera in this system. Finally, the principal component analysis of the relative number of sequences also confirmed that bacterial and fungal population indiscriminate in different sources mad biochar applied treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest.

    PubMed

    Du, Can; Geng, Zengchao; Wang, Qiang; Zhang, Tongtong; He, Wenxiang; Hou, Lin; Wang, Yueling

    2017-09-01

    Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0-10, 10-20, 20-40, and 40-60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40-60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40-60 cm (62.88%). In particular, the 40-60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.

  1. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem.

    PubMed

    Veach, Allison M; Dodds, Walter K; Jumpponen, Ari

    2015-10-01

    Woody plant encroachment has become a global threat to grasslands and has caused declines in aboveground richness and changes in ecosystem function; yet we have a limited understanding on the effects of these phenomena on belowground microbial communities. We completed riparian woody plant removals at Konza Prairie Biological Station, Kansas and collected soils spanning land-water interfaces in removal and woody vegetation impacted areas. We measured stream sediments and soils for edaphic variables (C and N pools, soil water content, pH) and bacterial (16S rRNA genes) and fungal (ITS2 rRNA gene repeat) communities using Illumina MiSeq metabarcoding. Bacterial richness and diversity decreased with distance from streams. Fungal richness decreased with distance from the stream in wooded areas, but was similar across landscape position while Planctomycetes and Basidiomycota relative abundance was lower in removal areas. Cyanobacteria, Ascomycota, Chytridiomycota and Glomeromycota relative abundance was greater in removal areas. Ordination analyses indicated that bacterial community composition shifted more across land-water interfaces than fungi yet both were marginally influenced by treatment. This study highlights the impacts of woody encroachment restoration on grassland bacterial and fungal communities which likely subsequently affects belowground processes and plant health in this ecosystem. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Improvement of fungal disease identification and management: combined health systems and public health approaches.

    PubMed

    Cole, Donald C; Govender, Nelesh P; Chakrabarti, Arunaloke; Sacarlal, Jahit; Denning, David W

    2017-12-01

    More than 1·6 million people are estimated to die of fungal diseases each year, and about a billion people have cutaneous fungal infections. Fungal disease diagnosis requires a high level of clinical suspicion and specialised laboratory testing, in addition to culture, histopathology, and imaging expertise. Physicians with varied specialist training might see patients with fungal disease, yet it might remain unrecognised. Antifungal treatment is more complex than treatment for bacterial or most viral infections, and drug interactions are particularly problematic. Health systems linking diagnostic facilities with therapeutic expertise are typically fragmented, with major elements missing in thousands of secondary care and hospital settings globally. In this paper, the last in a Series of eight papers, we describe these limitations and share responses involving a combined health systems and public health framework illustrated through country examples from Mozambique, Kenya, India, and South Africa. We suggest a mainstreaming approach including greater integration of fungal diseases into existing HIV infection, tuberculosis infection, diabetes, chronic respiratory disease, and blindness health programmes; provision of enhanced laboratory capacity to detect fungal diseases with associated surveillance systems; procurement and distribution of low-cost, high-quality antifungal medicines; and concomitant integration of fungal disease into training of the health workforce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluating the Impact of DNA Extraction Method on the Representation of Human Oral Bacterial and Fungal Communities

    PubMed Central

    Biswas, Kristi; Taylor, Michael W.; Gear, Kim

    2017-01-01

    The application of high-throughput, next-generation sequencing technologies has greatly improved our understanding of the human oral microbiome. While deciphering this diverse microbial community using such approaches is more accurate than traditional culture-based methods, experimental bias introduced during critical steps such as DNA extraction may compromise the results obtained. Here, we systematically evaluate four commonly used microbial DNA extraction methods (MoBio PowerSoil® DNA Isolation Kit, QIAamp® DNA Mini Kit, Zymo Bacterial/Fungal DNA Mini PrepTM, phenol:chloroform-based DNA isolation) based on the following criteria: DNA quality and yield, and microbial community structure based on Illumina amplicon sequencing of the V3–V4 region of the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) 1 region of fungi. Our results indicate that DNA quality and yield varied significantly with DNA extraction method. Representation of bacterial genera in plaque and saliva samples did not significantly differ across DNA extraction methods and DNA extraction method showed no effect on the recovery of fungal genera from plaque. By contrast, fungal diversity from saliva was affected by DNA extraction method, suggesting that not all protocols are suitable to study the salivary mycobiome. PMID:28099455

  4. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis.

    PubMed

    Klimesova, Klara; Jiraskova Zakostelska, Zuzana; Tlaskalova-Hogenova, Helena

    2018-01-01

    Host's physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition - dysbiosis - and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.

  5. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    PubMed

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Soil bacterial and fungal community responses across a conservation reserve program chronosequence in Texas high plains region

    USDA-ARS?s Scientific Manuscript database

    We investigated changes in soil bacterial and fungal communities with increasing restoration time across a Conservation Reserve Program chronosequence (CRP) on fine sandy loam soils in the Texas high plains region. Soil samples (0-10cm) were collected in 2012 and 2014 from seven dryland croplands (0...

  7. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    PubMed

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.

  8. A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province

    PubMed Central

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  9. ESTIMATION OF THE NUMBER OF INFECTIOUS BACTERIAL OR VIRAL PARTICLES BY THE DILUTION METHOD

    PubMed Central

    Seligman, Stephen J.; Mickey, M. Ray

    1964-01-01

    Seligman, Stephen J. (University of California, Los Angeles), and M. Ray Mickey. Estimation of the number of infectious bacterial or viral particles by the dilution method. J. Bacteriol. 88:31–36. 1964.—For viral or bacterial systems in which discrete foci of infection are not obtainable, it is possible to obtain an estimate of the number of infectious particles by use of the quantal response if the assay system is such that one infectious particle can elicit the response. Unfortunately, the maximum likelihood estimate is difficult to calculate, but, by the use of a modification of Haldane's approximation, it is possible to construct a table which facilitates calculation of both the average number of infectious particles and its relative error. Additional advantages of the method are that the number of test units per dilution can be varied, the dilutions need not bear any fixed relation to each other, and the one-particle hypothesis can be readily tested. PMID:14197902

  10. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis: A cross-sectional study.

    PubMed

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-09-01

    There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children.All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and November 2013, were enrolled in this prospective cross-sectional study. Children were divided into 2 groups of bacterial and viral meningitis, based on the results of cerebrospinal fluid (CSF) culture, polymerase chain reaction, and cytochemical profile. Diagnostic values of CSF parameters (ferritin, PCT, absolute neutrophil count [ANC], white blood cell count, and lactate) and serum parameters (PCT, ferritin, CRP, and erythrocyte sedimentation rate [ESR]) were evaluated.Among 50 patients with meningitis, 12 were diagnosed with bacterial meningitis. Concentrations of all markers were significantly different between bacterial and viral meningitis, except for serum (P = .389) and CSF (P = .136) PCT. The best rates of area under the receiver operating characteristic (ROC) curve (AUC) were achieved by lactate (AUC = 0.923) and serum-CRP (AUC = 0.889). The best negative predictive values (NPV) for bacterial meningitis were attained by ANC (100%) and lactate (97.1%).The results of our study suggest that ferritin and PCT are not strong predictive biomarkers. A combination of low CSF lactate, ANC, ESR, and serum-CRP could reasonably rule out the bacterial meningitis.

  11. Clinical prediction rule for differentiating tuberculous from viral meningitis.

    PubMed

    Hristea, A; Olaru, I D; Baicus, C; Moroti, R; Arama, V; Ion, M

    2012-06-01

    The Professor Dr Matei Bals National Institute of Infectious Diseases, Bucharest, Romania. To create a prediction rule to enable clinicians to differentiate patients with tuberculous meningitis (TBM) from those with viral meningitis. We retrospectively analysed patients admitted to a tertiary care facility between 2001 and 2011 with viral meningitis and TBM. Patients were defined as having TBM according to a recently published consensus definition, and as viral meningitis if a viral aetiology was confirmed, or after ruling out bacterial, fungal and non-infectious causes of meningitis. We identified 433 patients with viral meningitis and 101 TBM patients and compared their clinical and laboratory features. Multivariable analysis showed a statistically significant association between TBM and the following variables: duration of symptoms before admission of ≥5 days, presence of neurological impairment (altered consciousness, seizures, mild focal signs, multiple cranial nerve palsies, dense hemiplegia or paraparesis), cerebrospinal fluid/blood glucose ratio < 0.5 and cerebrospinal fluid protein level > 100 mg/dl. We propose a diagnostic score based on the coefficients derived from the logistic regression model with a sensitivity and specificity for TBM of respectively 92% and 94%. Our study suggests that easily available clinical and laboratory data are very useful for differentiating TBM from other causes of meningitis.

  12. Viral infection, inflammation and schizophrenia

    PubMed Central

    Kneeland, Rachel E.; Fatemi, S. Hossein

    2012-01-01

    Schizophrenia is a severe neurodevelopmental disorder with genetic and environmental etiologies. Prenatal viral/bacterial infections and inflammation play major roles in the genesis of schizophrenia. In this review, we describe a viral model of schizophrenia tested in mice whereby the offspring of mice prenatally infected with influenza at E7, E9, E16, and E18 show significant gene, protein, and brain structural abnormalities postnatally. Similarly, we describe data on rodents exposed to bacterial infection or injected with a synthetic viral mimic (PolyI:C) also demonstrating brain structural and behavioral abnormalities. Moreover, human serologic data has been indispensible in supporting the viral theory of schizophrenia. Individuals born seropositive for bacterial and viral agents are at a significantly elevated risk of developing schizophrenia. While the specific mechanisms of prenatal viral/bacterial infections and brain disorder are unclear, recent findings suggest that the maternal inflammatory response may be associated with fetal brain injury. Preventive and therapeutic treatment options are also proposed. This review presents data related to epidemiology, human serology, and experimental animal models which support the viral model of schizophrenia. PMID:22349576

  13. Building and environmental factors that influence bacterial and fungal loading on air conditioning cooling coils.

    PubMed

    Bakker, A; Siegel, J A; Mendell, M J; Peccia, J

    2018-05-30

    We investigated bacterial and fungal concentrations on cooling coils of commercial AC units and quantified associations between microbial loads and AC unit or building operational parameters. A field campaign was conducted to sample 25 AC units in the humid, subtropical climate of Southern CT, USA and 15 AC units in the hot-summer Mediterranean climate of Sacramento, CA, USA. Median concentrations (with interquartile range) of bacteria and fungi on the cooling coils were 1.2 × 10 7 (5.1 × 10 6 -3.9 × 10 7 ) cells/m 2 and 7.6 × 10 5 (5.6 × 10 4 -4.4 × 10 6 ) spore equivalents (SE)/m 2 , respectively. Concentrations varied among units with median unit concentrations ranging three orders of magnitude for bacteria and seven orders of magnitude for fungi. Controlled comparisons and multivariable regressions indicate that dominant factors associated with AC coil loading include the nominal efficiency of upstream filters (P = .008 for bacteria and P < .001 for fungi) and coil moisture, which was reflected in fungal loading differences between top and bottom halves of the AC coils in Southern CT (P = .05) and the dew points of the two climates considered (P = .04). Environmental and building characteristics explained 42% (P < .001) of bacterial concentration variability and 66% (P < .001) of fungal concentration variability among samples. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Performance of thirteen clinical rules to distinguish bacterial and presumed viral meningitis in Vietnamese children.

    PubMed

    Huy, Nguyen Tien; Thao, Nguyen Thanh Hong; Tuan, Nguyen Anh; Khiem, Nguyen Tuan; Moore, Christopher C; Thi Ngoc Diep, Doan; Hirayama, Kenji

    2012-01-01

    Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC) using the method of DeLong and McNemar test for specificity comparison. Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85-90%. No clinical decision rules provided an acceptable specificity (>50%) with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule.

  15. Performance of Thirteen Clinical Rules to Distinguish Bacterial and Presumed Viral Meningitis in Vietnamese Children

    PubMed Central

    Huy, Nguyen Tien; Thao, Nguyen Thanh Hong; Tuan, Nguyen Anh; Khiem, Nguyen Tuan; Moore, Christopher C.; Thi Ngoc Diep, Doan; Hirayama, Kenji

    2012-01-01

    Background and Purpose Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. Methods A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC) using the method of DeLong and McNemar test for specificity comparison. Results Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85–90%. Conclusions No clinical decision rules provided an acceptable specificity (>50%) with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule. PMID:23209715

  16. Bacterial and Fungal Counts of Dried and Semi-Dried Foods Collected from Dhaka, Bangladesh, and Their Reduction Methods.

    PubMed

    Feroz, Farahnaaz; Shimizu, Hiromi; Nishioka, Terumi; Mori, Miho; Sakagami, Yoshikazu

    2016-01-01

     Food is a basic necessity for human survival, but it is still the vehicle for the transmission of food borne disease. Various studies have examined the roles of spices, herbs, nuts, and semi-dried fruits, making the need for safe and convenient methods of decontamination a necessity. The current study determined the bacterial and fungal loads of 26 spices and herbs, 5 nuts, 10 semi-dried fruits and 5 other foods. Spices, herbs and semi-dried foods demonstrated the highest bacterial and fungal loads with the majority showing over 10 4 CFU/mL. Nuts and other foods showed growths ranging from 10 2 to 10 6 CFU/mL. The current study also attempted to determine the effects of heat and plasma treatment. The log reduction of bacterial growth after heat treatment (maximum: 120 min for 60℃) was between 0.08 to 4.47, and the log reduction after plasma treatment (maximum: 40 min) ranged from 2.37 to 5.75. Spices showed the lowest rates of reduction, whereas the semi-dried and other foods showed moderate to high levels of decrease after heat treatment. The log reduction of fungal growth after heat treatment ranged from 0.27 to 4.40, and log reduction after plasma treatment ranged from 2.15 to 5.91.Furthermore, we validated the sterilization effect of plasma treatment against Bacillus spp. and Staphylococcus spp. by using scanning electron microscopy. Both treatment methods could prove to be advantageous in the agriculture related fields, enhancing the quality of the foods.

  17. Fungal-bacterial ratio as an indicator of forest soil health in single-tree selection and clearcut harvests

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study are to examine the effect of clearcut and single-selection tree harvest on soil microbial communities and to determine the value of bacterial:fungal ratio as an indicator of forest soil health. Soil samples (0 – 5 cm) were collected at the Missouri Forest Ecosystem Proje...

  18. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents.

    PubMed

    Ochoa-Hueso, Raúl; Collins, Scott L; Delgado-Baquerizo, Manuel; Hamonts, Kelly; Pockman, William T; Sinsabaugh, Robert L; Smith, Melinda D; Knapp, Alan K; Power, Sally A

    2018-03-05

    The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought-induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant-microbial interactions and a

  19. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE PAGES

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; ...

    2016-06-02

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  20. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian

    We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less

  1. Exposure to Electronic Cigarettes Impairs Pulmonary Anti-Bacterial and Anti-Viral Defenses in a Mouse Model

    PubMed Central

    Sussan, Thomas E.; Gajghate, Sachin; Thimmulappa, Rajesh K.; Ma, Jinfang; Kim, Jung-Hyun; Sudini, Kuladeep; Consolini, Nicola; Cormier, Stephania A.; Lomnicki, Slawo; Hasan, Farhana; Pekosz, Andrew; Biswal, Shyam

    2015-01-01

    Electronic cigarettes (E-cigs) have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor contains 7x1011 free radicals per puff. To determine whether E-cig exposure impacts pulmonary responses in mice, we developed an inhalation chamber for E-cig exposure. Mice that were exposed to E-cig vapor contained serum cotinine concentrations that are comparable to human E-cig users. E-cig exposure for 2 weeks produced a significant increase in oxidative stress and moderate macrophage-mediated inflammation. Since, COPD patients are susceptible to bacterial and viral infections, we tested effects of E-cigs on immune response. Mice that were exposed to E-cig vapor showed significantly impaired pulmonary bacterial clearance, compared to air-exposed mice, following an intranasal infection with Streptococcus pneumonia. This defective bacterial clearance was partially due to reduced phagocytosis by alveolar macrophages from E-cig exposed mice. In response to Influenza A virus infection, E-cig exposed mice displayed increased lung viral titers and enhanced virus-induced illness and mortality. In summary, this study reports a murine model of E-cig exposure and demonstrates that E-cig exposure elicits impaired pulmonary anti-microbial defenses. Hence, E-cig exposure as an alternative to cigarette smoking must be rigorously tested in users for their effects on immune response and susceptibility to bacterial and viral infections. PMID:25651083

  2. Trends in bacterial, mycobacterial, and fungal meningitis in England and Wales 2004-11: an observational study.

    PubMed

    Okike, Ifeanichukwu O; Ribeiro, Sonia; Ramsay, Mary E; Heath, Paul T; Sharland, Mike; Ladhani, Shamez N

    2014-04-01

    Meningitis remains one of the most feared infectious diseases worldwide, yet there are few population-based studies on the epidemiology, causes, or trends over time in meningitis, especially in industrialised countries. Our aim was to do such a study using routinely reported data available in England and Wales. In England and Wales, UK National Health Service hospitals routinely report laboratory-confirmed pathogens electronically to Public Health England. Records of all positive bacterial, mycobacterial, and fungal results from cerebrospinal fluid or from blood cultures in patients with clinical meningitis were extracted for analysis. The percentage change in annual incidence was estimated using linear regression analysis of the log of the annual incidence. During 2004-11, 7061 cases of meningitis were reported (mean annual incidence 1·62 per 100,000 people, 95% CI 1·58-1·66), including 2594 cases in children (37%). The incidence of bacterial (1·44 per 100,000 people, 1·41-1·48), fungal (0·09, 0·08-0·10), and mycobacterial (0·09, 0·08-0·09) meningitis remained stable overall and across the age groups, apart from significant year-on-year increases in children younger than 3 months (978 cases; incidence 72·2 per 100,000 people; annual increase 7·4%, 5·1-9·8; p<0·0001) driven mainly by group B streptococci (GBS), and in adults aged 65 years or older (752 cases; incidence 1·2 per 100,000 people; annual increase 3·0%, 1·4-4·8; p<0·0001) primarily because of Escherichia coli. By contrast, meningococcal meningitis rates declined steadily, but remained the most common cause of meningitis in children. Overall, five groups of bacteria accounted for 60% (3790/6286) of bacterial meningitis cases: Neisseria meningitidis (1350 cases, 22%), Streptococcus pneumoniae (1143, 18%), Staphylococcus aureus (652, 10%), GBS (326, 5%), and E coli (319, 5%). In England and Wales, laboratory-based surveillance shows a remarkably stable incidence of bacterial, fungal

  3. Bacterial Community Succession in Pine-Wood Decomposition.

    PubMed

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  4. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  5. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  6. Yeast supplementation altered the metabolic response to a combined viral-bacterial challenge in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    Two treatments were evaluated in feedlot heifers to determine the effects of feeding a yeast supplement on metabolic responses to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (325 +/- 19.2 kg) were selected and randomly assigned to one of two treatments: 1) Contr...

  7. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    USGS Publications Warehouse

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  8. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  9. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau

    PubMed Central

    Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen

    2017-01-01

    The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau. PMID:29049349

  10. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau.

    PubMed

    Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen; Zhao, Zhong

    2017-01-01

    The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau.

  11. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of

  12. Facing the challenges of multiscale modelling of bacterial and fungal pathogen–host interactions

    PubMed Central

    Schleicher, Jana; Conrad, Theresia; Gustafsson, Mika; Cedersund, Gunnar; Guthke, Reinhard

    2017-01-01

    Abstract Recent and rapidly evolving progress on high-throughput measurement techniques and computational performance has led to the emergence of new disciplines, such as systems medicine and translational systems biology. At the core of these disciplines lies the desire to produce multiscale models: mathematical models that integrate multiple scales of biological organization, ranging from molecular, cellular and tissue models to organ, whole-organism and population scale models. Using such models, hypotheses can systematically be tested. In this review, we present state-of-the-art multiscale modelling of bacterial and fungal infections, considering both the pathogen and host as well as their interaction. Multiscale modelling of the interactions of bacteria, especially Mycobacterium tuberculosis, with the human host is quite advanced. In contrast, models for fungal infections are still in their infancy, in particular regarding infections with the most important human pathogenic fungi, Candida albicans and Aspergillus fumigatus. We reflect on the current availability of computational approaches for multiscale modelling of host–pathogen interactions and point out current challenges. Finally, we provide an outlook for future requirements of multiscale modelling. PMID:26857943

  13. Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation.

    PubMed

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Jariyavidyanont, Katalee; Kaunzner, Jennifer; Juncheed, Kantida; Uengwetwanit, Tanaporn; Rudloff, Renate; Schulz, Elke; Hofrichter, Martin; Schloter, Michael; Krüger, Dirk; Buscot, François

    2015-05-01

    Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.

  14. Relative Abundance in Bacterial and Fungal Gut Microbes in Obese Children: A Case Control Study.

    PubMed

    Borgo, Francesca; Verduci, Elvira; Riva, Alessandra; Lassandro, Carlotta; Riva, Enrica; Morace, Giulia; Borghi, Elisa

    2017-02-01

    Differences in relative proportions of gut microbial communities in adults have been correlated with intestinal diseases and obesity. In this study we evaluated the gut microbiota biodiversity, both bacterial and fungal, in obese and normal-weight school-aged children. We studied 28 obese (mean age 10.03 ± 0.68) and 33 age- and sex-matched normal-weight children. BMI z-scores were calculated, and the obesity condition was defined according to the WHO criteria. Fecal samples were analyzed by 16S rRNA amplification followed by denaturing gradient gel electrophoresis (DGGE) analysis and sequencing. Real-time polymerase chain reaction (PCR) was performed to quantify the most representative microbial species and genera. DGGE profiles showed high bacterial biodiversity without significant correlations with BMI z-score groups. Compared to bacterial profiles, we observed lower richness in yeast species. Sequence of the most representative bands gave back Eubacterium rectale, Saccharomyces cerevisiae, Candida albicans, and C. glabrata as present in all samples. Debaryomyces hansenii was present only in two obese children. Obese children revealed a significantly lower abundance in Akkermansia muciniphyla, Faecalibacterium prausnitzii, Bacteroides/Prevotella group, Candida spp., and Saccharomyces spp. (P = 0.031, P = 0.044, P = 0.003, P = 0.047, and P = 0.034, respectively). Taking into account the complexity of obesity, our data suggest that differences in relative abundance of some core microbial species, preexisting or diet driven, could actively be part of its etiology. This study improved our knowledge about the fungal population in the pediatric school-age population and highlighted the need to consider the influence of cross-kingdom relationships.

  15. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE PAGES

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha –1 yr –1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. As a result, given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  16. Condensed tannins affect bacterial and fungal microbiomes and mycotoxin production during ensiling and upon aerobic exposure.

    PubMed

    Peng, Kai; Jin, Long; Niu, Yan D; Huang, Qianqian; McAllister, Tim A; Yang, Hee Eun; Denise, Hubert; Xu, Zhongjun; Acharya, Surya; Wang, Shunxi; Wang, Yuxi

    2017-12-15

    Purple prairie clover (PPC; Dalea purpurea Vent.) containing 84.5 g/kg DM of condensed tannin (CT) was ensiled without (Control) or with polyethylene glycol (PEG) for 76 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics were determined and bacterial and fungal communities were assessed using metagenomic sequencing. Addition of PEG that deactivated CT at ensiling increased ( P < 0.05∼0.001) soluble N, non-protein N, lactic acid, total volatile fatty acids, ammonia N, deoxynivalenol (DON) and ochratoxin A (OTA), but decreased ( P < 0.001) pH and water soluble carbohydrates. Concentration of DON and OTA increased ( P < 0.001) for both silages with the extent of increase being greater for Control than for PEG treated silage during aerobic exposure. The PEG treated silage exhibited higher ( P < 0.01∼0.001) copy numbers of total bacteria, Lactobacillus , yeasts and fungi than Control. Addition of PEG decreased ( P < 0.01) bacterial diversity during both ensiling and aerobic exposure, whereas it increased ( P < 0.05) fungal diversity during aerobic exposure. Addition of PEG at ensiling increased ( P < 0.05) abundances of Lactobacillus and Pediococcus , but decreased ( P < 0.01) abundances of Lactococcus and Leuconostoc Filamentous fungi were found in the microbiome at ensiling and after aerobic exposure, whereas the Bacillus were the dominate bacteria after aerobic exposure. In conclusion, CT decreased protein degradation and improved aerobic stability of silage. These desirable outcomes likely reflect the ability of PPC CT to inhibit those microorganisms involved in lowering silage quality and in the production of mycotoxins. IMPORTANCE The present study reports the effects of condensed tannins on the complex microbial communities involved in ensiling and aerobic exposure of purple prairie clover. This study documents the ability of condensed tannins to lower mycotoxin production and associated microbiome. Taxonomic bacterial

  17. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  18. Viral Infection Sensitizes Human Fetal Membranes to Bacterial Lipopolysaccharide by MERTK Inhibition and Inflammasome Activation.

    PubMed

    Cross, Sarah N; Potter, Julie A; Aldo, Paulomi; Kwon, Ja Young; Pitruzzello, Mary; Tong, Mancy; Guller, Seth; Rothlin, Carla V; Mor, Gil; Abrahams, Vikki M

    2017-10-15

    Chorioamnionitis, premature rupture of fetal membranes (FMs), and subsequent preterm birth are associated with local infection and inflammation, particularly IL-1β production. Although bacterial infections are commonly identified, other microorganisms may play a role in the pathogenesis. Because viral pandemics, such as influenza, Ebola, and Zika, are becoming more common, and pregnant women are at increased risk for associated complications, this study evaluated the impact that viral infection had on human FM innate immune responses. This study shows that a herpes viral infection of FMs sensitizes the tissue to low levels of bacterial LPS, giving rise to an exaggerated IL-1β response. Using an ex vivo human FM explant system and an in vivo mouse model of pregnancy, we report that the mechanism by which this aggravated inflammation arises is through the inhibition of the TAM receptor, MERTK, and activation of the inflammasome. The TAM receptor ligand, growth arrest specific 6, re-establishes the normal FM response to LPS by restoring and augmenting TAM receptor and ligand expression, as well as by preventing the exacerbated IL-1β processing and secretion. These findings indicate a novel mechanism by which viruses alter normal FM immune responses to bacteria, potentially giving rise to adverse pregnancy outcomes. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda?

    PubMed

    Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  20. How Does Conversion of Natural Tropical Rainforest Ecosystems Affect Soil Bacterial and Fungal Communities in the Nile River Watershed of Uganda?

    PubMed Central

    Alele, Peter O.; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H.

    2014-01-01

    Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring

  1. Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques

    PubMed Central

    Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming

    2013-01-01

    Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682

  2. Occurrence and diversity of both bacterial and fungal communities in dental unit waterlines subjected to disinfectants.

    PubMed

    Costa, Damien; Mercier, Anne; Gravouil, Kevin; Lesobre, Jérôme; Verdon, Julien; Imbert, Christine

    2016-10-01

    Chemical disinfectants are widely advocated to reduce the microbial contamination in dental unit waterlines (DUWL). However, until now their efficacy has been poorly examined after long-term application. In this study, through quantitative PCR and high-throughput sequencing, both bacterial and fungal communities were profiled from 8- to 12-year-old DUWL treated with disinfectants commonly used by European dentists. Water was collected from the tap water supplying units to the output exposure point of the turbine handpiece following a stagnation period and dental care activity. Results showed that (i) the unit itself is the principal source of microbial contamination and (ii) water stagnation, DU maintenance practices and quality of water supplying DU appeared as parameters driving the water quality. Despite disinfecting treatment combined to flushing process, the microbial contamination remained relevant in the studied output water, in association with a high bacterial and fungal diversity. The occurrence of potentially pathogenic microorganisms in these treated DUWL demonstrated a potential infectious risk for both patients and dental staff. A disinfectant shock before a prolonged stagnation period could limit the microbial proliferation inside DUWL. Necessity to proceed to regular water quality control of DUWL was highlighted. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Microbiological and pathological examination of fatal calf pneumonia cases induced by bacterial and viral respiratory pathogens.

    PubMed

    Szeredi, Levente; Jánosi, Szilárd; Pálfi, Vilmos

    2010-09-01

    The infectious origin of fatal cases of calf pneumonia was studied in 48 calves from 27 different herds on postmortem examination. Lung tissue samples were examined by pathological, histological, bacterial culture, virus isolation and immunohistochemical methods for the detection of viral and bacterial infections. Pneumonia was diagnosed in 47/48 cases and infectious agents were found in 40/47 (85%) of those cases. The presence of multiple respiratory pathogens in 23/40 (57.5%) cases indicated the complex origin of fatal calf pneumonia. The most important respiratory pathogens were Mannheimia-Pasteurella in 36/40 (90%) cases, followed by Arcanobacterium pyogenes in 16/40 (40%) cases, Mycoplasma bovis in 12/40 (30%) cases, and bovine respiratory syncytial virus in 4/40 (10%) cases. Histophilus somni was detected in 2/40 (5%) cases, while bovine herpesvirus-1, bovine viral diarrhoea virus and parainfluenza virus-3 were each found in 1/40 (2.5%) case. Mastadenovirus, bovine coronavirus, influenza A virus or Chlamydiaceae were not detected.

  4. Biocontrol of Sugarcane Smut Disease by Interference of Fungal Sexual Mating and Hyphal Growth Using a Bacterial Isolate.

    PubMed

    Liu, Shiyin; Lin, Nuoqiao; Chen, Yumei; Liang, Zhibin; Liao, Lisheng; Lv, Mingfa; Chen, Yufan; Tang, Yingxin; He, Fei; Chen, Shaohua; Zhou, Jianuan; Zhang, Lianhui

    2017-01-01

    Sugarcane smut is a fungal disease caused by Sporisorium scitamineum , which can cause severe economic losses in sugarcane industry. The infection depends on the mating of bipolar sporida to form a dikaryon and develops into hyphae to penetrate the meristematic tissue of sugarcane. In this study, we set to isolate bacterial strains capable of blocking the fungal mating and evaluate their potential in control of sugarcane smut disease. A bacterial isolate ST4 from rhizosphere displayed potent inhibitory activity against the mating of S. scitamineum bipolar sporida and was selected for further study. Phylogenetic analyses and biochemical characterization showed that the isolate was most similar to Pseudomonas guariconensis . Methanol extracts from minimum and potato dextrose agar (PDA) agar medium, on which strain ST4 has grown, showed strong inhibitory activity on the sexual mating of S. scitamineum sporida, without killing the haploid cells MAT-1 or MAT-2. Further analysis showed that only glucose, but not sucrose, maltose, and fructose, could support strain ST4 to produce antagonistic chemicals. Consistent with the above findings, greenhouse trials showed that addition of 2% glucose to the bacterial inoculum significantly increased the strain ST4 biocontrol efficiency against sugarcane smut disease by 77% than the inoculum without glucose. The results from this study depict a new strategy to screen for biocontrol agents for control and prevention of the sugarcane smut disease.

  5. Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources

    PubMed Central

    Marsh, Alan J.; O’Sullivan, Orla; Hill, Colin; Ross, R. Paul; Cotter, Paul D.

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists. PMID:23894461

  6. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.

  7. Differentiation of bacterial versus viral otitis media using a combined Raman scattering spectroscopy and low coherence interferometry probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.

    2016-02-01

    Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.

  8. Association of marine viral and bacterial communities with reference black carbon particles under experimental conditions: an analysis with scanning electron, epifluorescence and confocal laser scanning microscopy.

    PubMed

    Cattaneo, Raffaela; Rouviere, Christian; Rassoulzadegan, Fereidoun; Weinbauer, Markus G

    2010-11-01

    Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass, constitutes a significant fraction of the marine organic carbon pool. However, little is known about the possible interactions of BC and marine microorganisms. Here, we report the results of experiments using a standard reference BC material in high concentrations to investigate basic principles of the dynamics of natural bacterial and viral communities with BC particles. We assessed the attachment of viral and bacterial communities using scanning electron, epifluorescence and confocal laser scanning microscopy and shifts in bacterial community composition using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE). In 24-h time-course experiments, BC particles showed a strong potential for absorbing viruses and bacteria. Total viral abundance was reduced, whereas total bacterial abundance was stimulated in the BC treatments. Viral and bacterial abundance on BC particles increased with particle size, whereas the abundances of BC-associated viruses and bacteria per square micrometer surface area decreased significantly with BC particle size. DGGE results suggested that BC has the potential to change bacterial community structure and favour phylotypes related to Glaciecola sp. Our study indicates that BC could influence processes mediated by bacteria and viruses in marine ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    PubMed

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable

  10. Similar Processes but Different Environmental Filters for Soil Bacterial and Fungal Community Composition Turnover on a Broad Spatial Scale

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (LandesBacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  11. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    PubMed

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (LandesBacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  12. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes.

    PubMed

    Mathioni, Sandra M; Patel, Nrupali; Riddick, Bianca; Sweigard, James A; Czymmek, Kirk J; Caplan, Jeffrey L; Kunjeti, Sridhara G; Kunjeti, Saritha; Raman, Vidhyavathi; Hillman, Bradley I; Kobayashi, Donald Y; Donofrio, Nicole M

    2013-01-01

    Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.

  13. Characterization of the bacterial and fungal microbiome in indoor dust and outdoor air samples: a pilot study.

    PubMed

    Hanson, Blake; Zhou, Yanjiao; Bautista, Eddy J; Urch, Bruce; Speck, Mary; Silverman, Frances; Muilenberg, Michael; Phipatanakul, Wanda; Weinstock, George; Sodergren, Erica; Gold, Diane R; Sordillo, Joanne E

    2016-06-15

    Environmental microbes have been associated with both protective and adverse health effects in children and adults. Epidemiological studies often rely on broad biomarkers of microbial exposure (i.e. endotoxin, 1 → 3-beta-d-glucan), but fail to identify the taxonomic composition of the microbial community. Our aim was to characterize the bacterial and fungal microbiome in different types of environmental samples collected in studies of human health effects. We determined the composition of microbial communities present in home, school and outdoor air samples by amplifying and sequencing regions of rRNA genes from bacteria (16S) and fungi (18S and ITS). Samples for this pilot study included indoor settled dust (from both a Boston area birth cohort study on Home Allergens and Asthma (HAA) (n = 12) and a study of school exposures and asthma symptoms (SICAS) (n = 1)), as well as fine and coarse concentrated outdoor ambient particulate (CAP) samples (n = 9). Sequencing of amplified 16S, 18S, and ITS regions was performed on the Roche-454 Life Sciences Titanium pyrosequencing platform. Indoor dust samples were dominated by Gram-positive bacteria (Firmicutes and Actinobacteria); the most abundant bacterial genera were those related to human flora (Streptococcus, Staphylococcus, Corynebacterium and Lactobacillus). Outdoor CAPs were dominated by Gram-negative Proteobacteria from water and soil sources, in particular the genera Acidovorax, and Brevundimonas (which were present at very low levels or entirely absent in indoor dust). Phylum-level fungal distributions identified by 18S or ITS regions showed very similar findings: a predominance of Ascomycota in indoor dust and Basidiomycota in outdoor CAPs. ITS sequencing of fungal genera in indoor dust showed significant proportions of Aureobasidium and Leptosphaerulina along with some contribution from Cryptococcus, Epicoccum, Aspergillus and the human commensal Malassezia. ITS sequencing detected more than 70 fungal genera

  14. POSSIBLE ROLE OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    EPA Science Inventory

    Many fungi produce proteinaceous hemolytic agents. Like bacterial hemolysins, fungal hemolysins create pores or holes in membranes. Depending on which membranes are damaged, fungal hemolysins can produce a variety of effects. Fungal hemolysins can cause histamine release from ...

  15. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia.

    PubMed

    Berg, Johanna; Zscheppang, Katja; Fatykhova, Diana; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Eggeling, Stephan; Schimek, Maria; Gruber, Achim D; Suttorp, Norbert; Hippenstiel, Stefan; Hocke, Andreas C

    2017-07-01

    The severity and lethality of influenza A virus (IAV) infections is frequently aggravated by secondary bacterial pneumonia. However, the mechanisms in human lung tissue that provoke this increase in fatality are unknown and therapeutic immune modulatory options are lacking.We established a human lung ex vivo co-infection model to investigate innate immune related mechanisms contributing to the susceptibility of secondary pneumococcal pneumonia.We revealed that type I and III interferon (IFN) inhibits Streptococcus pneumoniae -induced interleukin (IL)-1β release. The lack of IL-1β resulted in the repression of bacterially induced granulocyte-macrophage colony-stimulating factor (GM-CSF) liberation. Specific inhibition of IFN receptor I and III-associated tyrosine kinase 2 (Tyk2) completely restored the S. pneumoniae -induced IL-1β-GM-CSF axis, leading to a reduction of bacterial growth. A preceding IAV infection of the human alveolus leads to a type I and III IFN-dependent blockade of the early cytokines IL-1β and GM-CSF, which are key for orchestrating an adequate innate immune response against bacteria. Their virally induced suppression may result in impaired bacterial clearance and alveolar repair.Pharmacological inhibition of Tyk2 might be a new treatment option to sustain beneficial endogenous GM-CSF levels in IAV-associated secondary bacterial pneumonia. Copyright ©ERS 2017.

  16. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders.

    PubMed

    Ahmad, Mark; Taylor, Charles R; Pink, David; Burton, Kerry; Eastwood, Daniel; Bending, Gary D; Bugg, Timothy D H

    2010-05-01

    Two spectrophotometric assays have been developed to monitor breakdown of the lignin component of plant lignocellulose: a continuous fluorescent assay involving fluorescently modified lignin, and a UV-vis assay involving chemically nitrated lignin. These assays have been used to analyse lignin degradation activity in bacterial and fungal lignin degraders, and to identify additional soil bacteria that show activity for lignin degradation. Two soil bacteria known to act as aromatic degraders, Pseudomonas putida and Rhodococcus sp. RHA1, consistently showed activity in these assays, and these strains were shown in a small scale experiment to breakdown lignocellulose, producing a number of monocyclic phenolic products. Using milled wood lignin prepared from wheat straw, pine, and miscanthus, some bacterial lignin degraders were found to show specificity for lignin type. These assays could be used to identify novel lignin degraders for breakdown of plant lignocellulose.

  17. Isotopologue fractionation during N(2)O production by fungal denitrification.

    PubMed

    Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H

    2008-12-01

    Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for

  18. [Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia].

    PubMed

    Lu, Yun-Yun; Luo, Rong; Fu, Zhou

    2017-09-01

    To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P<0.05). There were significant differences in the incidence rate of viral infection between different season groups (P<0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin

  19. Viral and bacterial contamination in a sedimentary aquifer in Uruguay: evaluation of coliforms as regional indicators of viral contamination.

    NASA Astrophysics Data System (ADS)

    Gamazo, Pablo; Colina, Rodney; Victoria, Matias; Alvareda, Elena; Burutatran, Luciana; Ramos, Julian; Olivera, María; Soler, Joan

    2015-04-01

    In many areas of Uruguay groundwater is the only source of water for human consumption and for industrial-agricultural economic activities. Traditionally considered as a safe source, groundwater is commonly used without any treatment. The Uruguayan law requires bacteriological (fecal) analysis for most water uses, but virological analyses are not mentioned in the legislation. In the Salto district, where groundwater is used for human consumption and for agricultural activities, bacterial contamination has been detected in several wells but no viruses analysis have been performed. The Republic University (UDELAR), with the support of the National Agency for Research and Innovation (ANII), is studying the incidence of virus and fecal bacteria in groundwater on an intensive agriculture area of the Salto district. An initial screening campaign of 44 wells was performed in which, besides total and fecal coliforms, rotavirus and adenovirus were detected. A subgroup of the screening wells (15) where selected for bimonthly sampling during a year. In accordance with literature results, single well data analysis shows that coliform and viral contamination can be considered as independent variables. However, when spatial data is integrated, coliform and viral contamination show linear correlation. In this work we present the survey results, we analyse the temporal incidence of variables like precipitation, temperature and chemical composition in well contamination and we discuss the value of coliforms as global indicator of viral contamination for the Salto aquifer.

  20. Acute metabolic responses to a combined viral-bacterial respiratory disease challenge in heifers administered transdermal flunixin meglumine

    USDA-ARS?s Scientific Manuscript database

    A trial was conducted to determine effects of altering time of transdermal flunixin meglumine (BTD; Banamine Transdermal, Merck Animal Health, Summit, NJ) administration relative to a viral-bacterial respiratory disease challenge in beef heifers. Thirty-two healthy heifers (170±21.1 kg BW) were assi...

  1. Acute immunological responses to a combined viral-bacterial respiratory disease challenge in heifers administered transdermal flunixin meglumine

    USDA-ARS?s Scientific Manuscript database

    Time of flunixin meglumine transdermal (FTD; Finadyne Transdermal, Merck Animal Health, Summit, NJ) administration relative to a viral-bacterial challenge was evaluated in beef heifers. Thirty-two beef heifers (170 ± 21.1 kg BW) were randomly assigned to one of four treatments: 1) Control (CON), rec...

  2. Inhibition of heparin precipitation, bacterial growth, and fungal growth with a combined isopropanol-ethanol locking solution for vascular access devices.

    PubMed

    Restrepo, Daniel; Laconi, Nicholas S; Alcantar, Norma A; West, Leigh A; Buttice, Audrey L; Patel, Saumil; Kayton, Mark L

    2015-03-01

    Clinical reports of ethanol-lock use for the prevention of catheter-related bloodstream infections have been marked by the occurrence of serious catheter occlusions, particularly among children with mediports. We hypothesized that precipitate forms when ethanol mixes with heparin at the concentrations relevant for vascular access devices, but that the use of a combination of two alcohols, ethanol and isopropanol, would diminish heparin-related precipitation, while retaining anti-bacterial and anti-fungal effects. Heparin (0-100units/mL) was incubated in ethanol-water solutions (30%-70% vol/vol) or in an aqueous solution containing equal parts (35% and 35% vol/vol) of isopropanol and ethanol. Precipitation at temperatures from 4 to 40°C was measured in nephelometric turbidity units using a benchtop turbidimeter. Growth of Escherichia coli, Staphylococcus aureus, and Candida albicans colonies were measured following exposure to solutions of ethanol or isopropanol-ethanol. Groupwise comparisons were performed using analysis of variance with Bonferroni-corrected, post-hoc T-testing. Seventy percent ethanol and heparin exhibit dose-dependent precipitation that is pronounced and significant at the concentrations typically used in mediports (p<0.05). Precipitate is significantly reduced by use of a combined 35% isopropanol-35% ethanol solution rather than 70% ethanol (p<0.05), while maintaining the solution's anti-bacterial and anti-fungal properties. On the other hand, although ethanol solutions under 70% form less precipitate with heparin, such concentrations are also less effective at bacterial colony inhibition than solutions of either 70% ethanol or 35% isopropanol-35% ethanol (p<0.05). A combined 35% isopropanol-35% ethanol locking solution inhibits bacterial and fungal growth similarly to 70% ethanol, but results in less precipitate than 70% ethanol when exposed to heparin. Further study of a combined isopropanol-ethanol locking solution for the prevention of

  3. Ozone killing action against bacterial and fungal species; microbiological testing of a domestic ozone generator.

    PubMed

    Dyas, A; Boughton, B J; Das, B C

    1983-10-01

    The action of ozone generated from a small domestic device was examined with a view to using it in clinical isolation units accommodating immunosuppressed patients. Over a six-hour period in an average size room the device did not generate sufficient ozone to suppress bacterial and fungal growth. A useful bactericidal action, against a variety of human pathogens was achieved with ozone concentrations between 0.3 to 0.9 ppm. Bactericidal ozone concentrations are close to the limit permitted for human exposure however and further experiments are indicated.

  4. Acute immunological responses to a combined viral-bacterial respiratory disease challenge in feedlot heifers supplemented with yeast

    USDA-ARS?s Scientific Manuscript database

    Two treatments were evaluated in commercial feedlot heifers to determine the effects of a yeast supplement on immune responses to a combined viral-bacterial respiratory challenge. Thirty-two beef heifers (325 +/- 19.2 kg BW) were selected and randomly assigned to one of two treatments, and fed for 3...

  5. Zinc source and concentration altered physiological responses of beef heifers during a combined viral-bacterial respiratory challenge

    USDA-ARS?s Scientific Manuscript database

    Three treatments were evaluated in feedlot heifers to determine the effects of zinc supplementation on the immune response to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (255+/-15 kg) were subjected to a 30d period of Zn depletion, then randomly assigned to one ...

  6. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production.

    PubMed

    De La Torre, María; Martín-Sampedro, Raquel; Fillat, Úrsula; Eugenio, María E; Blánquez, Alba; Hernández, Manuel; Arias, María E; Ibarra, David

    2017-11-01

    This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.

  7. Serum protein electrophoresis: an interesting diagnosis tool to distinguish viral from bacterial community-acquired pneumonia.

    PubMed

    Davido, B; Badr, C; Lagrange, A; Makhloufi, S; De Truchis, P; Perronne, C; Salomon, J; Dinh, A

    2016-06-01

    29-69 % of pneumonias are microbiologically documented because it can be considered as an invasive procedure with variable test sensitivity. However, it drastically impacts therapeutic strategy in particular the use of antibiotics. Serum protein electrophoresis (SPEP) is a routine and non-invasive test commonly used to identify serum protein disorders. As virus and bacteria may induce different globulins production, we hypothesize that SPEP can be used as an etiological diagnosis test. Retrospective study conducted from 1/1/13 until 5/1/15 among patient hospitalized for an acute community-acquired pneumonia based on fever, crackles and radiological abnormalities. α/β, α/γ, β/γ globulins and albumin/globulin (A/G) ratio were calculated from SPEP. Data were analyzed in 3 groups: documented viral (DVP) or bacterial pneumonia (DBP) and supposedly bacterial pneumonia (SBP). We used ANOVA statistic test with multiple comparisons using CI95 and ROC curve to compare them. 109 patients included divided into DBP (n = 16), DVP (n = 26) and SBP (n = 67). Mean age was 62 ± 18 year-old with a sex ratio M/F of 1.3. Underlying conditions (e.g. COPD, diabetes) were comparable between groups in multivariate analysis. Means of A/G ratio were 0.80 [0.76-0.84], 0.96 [0.91-1.01], 1.08 [0.99-1.16] respectively for DBP, SBP and DVP (p = 0.0002). A/G ratio cut-off value of 0.845 has a sensitivity of 87.5 % and a specificity of 73.1 %. A/G ratio seems to be an easy diagnostic tool to differentiate bacterial from viral pneumonia. A/G ratio cut-off value below 0.845 seems to be predictable of a bacterial origin and support the use of antibiotics.

  8. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  9. Effects of Soil Pre-Treatment with Basamid® Granules, Brassica juncea, Raphanus sativus, and Tagetes patula on Bacterial and Fungal Communities at Two Apple Replant Disease Sites

    PubMed Central

    Yim, Bunlong; Nitt, Heike; Wrede, Andreas; Jacquiod, Samuel; Sørensen, Søren J.; Winkelmann, Traud; Smalla, Kornelia

    2017-01-01

    Nurseries producing apple and rose rootstock plants, apple orchards as well as rose production often experience replanting problems after several cultivations at the same site when a chemical soil disinfectant is not applied. The etiology of apple and rose replanting problems is most likely caused by soil-borne pathogen complex, defined as “replant disease (RD)”. Symptoms typical of RD are reduced shoot and root growth, a smaller leaf area, a significant decrease in plant biomass, yield and fruit quality and a shorter life span. In our previous study, we showed that RD symptoms were reduced when apple rootstock M106 were grown in RD soils treated either with the soil fumigant Basamid or after biofumigation by incorporating Brassica juncea or Raphanus sativus or by growing Tagetes under field conditions compared to untreated control soil. The present study aimed at identifying potential bacterial and fungal taxa that were affected by different soil treatments and linking bacterial and fungal responders to plant performance. Miseq® Illumina® sequencing of 16S rRNA gene fragments (bacteria) and ITS regions (fungi) amplified from total community DNA extracted from soil samples taken 4 weeks after treatments were performed. Soil properties and culture history of the two RD sites greatly influenced soil microbiomes. Several bacterial genera were identified that significantly increased in treated soils such as Arthrobacter (R. sativus, both sites), Curtobacterium (Basamid, both sites), Terrimonas (Basamid and R. sativus, site A) and Ferruginibacter (B. juncea, site K and R. sativus, site A) that were also significantly and positively correlated with growth of apple M106 plants. Only few fungal genera, such as Podospora, Monographella and Mucor, were significantly promoted in soils treated with B. juncea and R. sativus (both sites). The least pronounced changes were recorded for bacterial as well as fungal communities in the RD soils planted with Tagetes. The

  10. Upscaling of fungal-bacterial interactions: from the lab to the field.

    PubMed

    de Boer, Wietse

    2017-06-01

    Fungal-bacterial interactions (FBI) are an integral component of microbial community networks in terrestrial ecosystems. During the last decade, the attention for FBI has increased tremendously. For a wide variety of FBI, information has become available on the mechanisms and functional responses. Yet, most studies have focused on pairwise interactions under controlled conditions. The question to what extent such studies are relevant to assess the importance of FBI for functioning of natural microbial communities in real ecosystems remains largely unanswered. Here, the information obtained by studying a type of FBI, namely antagonistic interactions between bacteria and plant pathogenic fungi, is discussed for different levels of community complexity. Based on this, general recommendations are given to integrate pairwise and ecosystem FBI studies. This approach could lead to the development of novel strategies to steer terrestrial ecosystem functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparison of the frequency of bacterial and viral infections among children with community-acquired pneumonia hospitalized across distinct severity categories: a prospective cross-sectional study.

    PubMed

    Nascimento-Carvalho, Amanda C; Ruuskanen, Olli; Nascimento-Carvalho, Cristiana M

    2016-07-22

    The comparison of the frequencies of bacterial and viral infections among children with community-acquired pneumonia (CAP) admitted in distinct severity categories, in an original study, is lacking in literature to-date. We aimed to achieve this goal. Children aged 2-59-months-old hospitalized with CAP were included in this prospective study in Salvador, Brazil. Clinical data and biological samples were collected to investigate 11 viruses and 8 bacteria. Severity was assessed by using the World Health Organization criteria. One hundred eighty-one patients were classified as "non-severe" (n = 53; 29.3 %), "severe" (n = 111; 61.3 %), or "very severe" (n = 17; 9.4 %) CAP. Overall, aetiology was detected among 156 (86.2 %) cases; viral (n = 84; 46.4 %), bacterial (n = 26; 14.4 %) and viral-bacterial (n = 46; 25.4 %) infections were identified. Viral infection frequency was similar in severe/very severe and non-severe cases (46.1 % vs. 47.2 %; p = 0.9). Pneumococcal infection increased across "non-severe" (13.2 %), "severe" (23.4 %), and "very severe" (35.3 %) cases (qui-squared test for trend p = 0.04). Among patients with detected aetiology, after excluding cases with co-infection, the frequency of sole bacterial infection was different (p = 0.04) among the categories; non-severe (12.5 %), severe (29.3 %) or very severe (55.6 %). Among these patients, sole bacterial infection was independently associated with severity (OR = 4.4 [95 % CI:1.1-17.6]; p = 0.04) in a model controlled for age (OR = 0.7 [95 % CI:0.5-1.1]; p = 0.1). A substantial proportion of cases in distinct severity subgroups had respiratory viral infections, which did not differ between severity categories. Bacterial infection, particularly pneumococcal infection, was more likely among severe/very severe cases.

  12. A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus

    USDA-ARS?s Scientific Manuscript database

    Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Some bacterial, fungal and plant metabolites including Amaryllidaceae alkaloids belonging to different chemical subgroups, including anthracenes, azoxymethoxytetrahydropy...

  13. Point detection of bacterial and viral pathogens using oral samples

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2008-04-01

    Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.

  14. Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR*

    PubMed Central

    Chen, Lie-zhong; Li, Yan-li; Yu, Yun-long

    2014-01-01

    Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened. PMID:24711353

  15. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2014-04-01

    Kombucha is a sweetened tea beverage that, as a consequence of fermentation, contains ethanol, carbon dioxide, a high concentration of acid (gluconic, acetic and lactic) as well as a number of other metabolites and is thought to contain a number of health-promoting components. The sucrose-tea solution is fermented by a symbiosis of bacteria and yeast embedded within a cellulosic pellicle, which forms a floating mat in the tea, and generates a new layer with each successful fermentation. The specific identity of the microbial populations present has been the focus of attention but, to date, the majority of studies have relied on culture-based analyses. To gain a more comprehensive insight into the kombucha microbiota we have carried out the first culture-independent, high-throughput sequencing analysis of the bacterial and fungal populations of 5 distinct pellicles as well as the resultant fermented kombucha at two time points. Following the analysis it was established that the major bacterial genus present was Gluconacetobacter, present at >85% in most samples, with only trace populations of Acetobacter detected (<2%). A prominent Lactobacillus population was also identified (up to 30%), with a number of sub-dominant genera, not previously associated with kombucha, also being revealed. The yeast populations were found to be dominated by Zygosaccharomyces at >95% in the fermented beverage, with a greater fungal diversity present in the cellulosic pellicle, including numerous species not identified in kombucha previously. Ultimately, this study represents the most accurate description of the microbiology of kombucha to date. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger

    PubMed Central

    Mela, Francesca; Fritsche, Kathrin; de Boer, Wietse; van Veen, Johannes A; de Graaff, Leo H; van den Berg, Marlies; Leveau, Johan H J

    2011-01-01

    Interactions between bacteria and fungi cover a wide range of incentives, mechanisms and outcomes. The genus Collimonas consists of soil bacteria that are known for their antifungal activity and ability to grow at the expense of living fungi. In non-contact confrontation assays with the fungus Aspergillus niger, Collimonas fungivorans showed accumulation of biomass concomitant with inhibition of hyphal spread. Through microarray analysis of bacterial and fungal mRNA from the confrontation arena, we gained new insights into the mechanisms underlying the fungistatic effect and mycophagous phenotype of collimonads. Collimonas responded to the fungus by activating genes for the utilization of fungal-derived compounds and for production of a putative antifungal compound. In A. niger, differentially expressed genes included those involved in lipid and cell wall metabolism and cell defense, which correlated well with the hyphal deformations that were observed microscopically. Transcriptional profiles revealed distress in both partners: downregulation of ribosomal proteins and upregulation of mobile genetic elements in the bacteria and expression of endoplasmic reticulum stress and conidia-related genes in the fungus. Both partners experienced nitrogen shortage in each other's presence. Overall, our results indicate that the Collimonas/Aspergillus interaction is a complex interplay between trophism, antibiosis and competition for nutrients. PMID:21614084

  17. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-06

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH 4 -N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO 3 -N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  18. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  19. Dietary selenium in adjuvant therapy of viral and bacterial infections.

    PubMed

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. © 2015 American Society for Nutrition.

  20. Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing

    PubMed Central

    Eichorst, Stephanie A.

    2012-01-01

    Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [13C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the 13C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or 12C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the 13C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community. PMID:22287013

  1. Pyrosequencing assessment of rhizosphere fungal communities from a soybean field.

    PubMed

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Takase, Hisabumi; Yazaki, Kazufumi

    2014-10-01

    Soil fungal communities play essential roles in soil ecosystems, affecting plant growth and health. Rhizosphere bacterial communities have been shown to undergo dynamic changes during plant growth. This study utilized 454 pyrosequencing to analyze rhizosphere fungal communities during soybean growth. Members of the Ascomycota and Basiodiomycota dominated in all soils. There were no statistically significant changes at the phylum level among growth stages or between bulk and rhizosphere soils. In contrast, the relative abundance of small numbers of operational taxonomic units, 4 during growth and 28 between bulk and rhizosphere soils, differed significantly. Clustering analysis revealed that rhizosphere fungal communities were different from bulk fungal communities during growth stages of soybeans. Taken together, these results suggest that in contrast to rhizosphere bacterial communities, most constituents of rhizosphere fungal communities remained stable during soybean growth.

  2. Characterization of the bacterial and fungal microbiome in indoor dust and outdoor air samples: a pilot study†

    PubMed Central

    Hanson, Blake; Zhou, Yanjiao; Bautista, Eddy J.; Urch, Bruce; Speck, Mary; Silverman, Frances; Muilenberg, Michael; Phipatanakul, Wanda; Weinstock, George; Sodergren, Erica; Gold, Diane R.; Sordillo, Joanne E.

    2016-01-01

    Environmental microbes have been associated with both protective and adverse health effects in children and adults. Epidemiological studies often rely on broad biomarkers of microbial exposure (i.e. endotoxin, 1→3, Beta-D glucan), but fail to identify the taxonomic composition of the microbial community. Our aim was to characterize the bacterial and fungal microbiome in different types of environmental samples collected in studies of human health effects. We determined the composition of microbial communities present in home, school and outdoor air samples by amplifying and sequencing regions of rRNA genes from bacteria (16S) and fungi (18S and ITS). Samples for this pilot study included indoor settled dust (from both a Boston area birth cohort study on Home Allergens and Asthma (HAA)(n=12) and a study of school exposures and asthma symptoms (SICAS) (n=1)), as well as fine and coarse concentrated outdoor ambient particulate (CAP) samples (n=9). Sequencing of amplified 16S, 18S, and ITS regions was performed on the Roche-454 Life Sciences Titanium pyrosequencing platform. Indoor dust samples were dominated by gram-positive bacteria (Firmicutes and Actinobacteria); the most abundant bacterial genera were those related to human flora (Streptococcus, Staphylococcus, Corynebacterium and Lactobacillus). Outdoor CAPs were dominated by gram-negative Proteobacteria from water and soil sources, in particular the genera Acidovorax, and Brevundimonas (which were present at very low levels or entirely absent in indoor dust). Phylum-level fungal distributions identified by 18S or ITS regions showed very similar findings: a predominance of Ascomycota in indoor dust and Basidiomycota in outdoor CAPs. ITS sequencing of fungal genera in indoor dust showed significant proportions of Aureobasidium and Leptosphaerulina along with some contribution from Cryptococcus, Epicoccum, Aspergillus and the human commensal Malassezia. ITS sequencing detected an additional 70 fungal genera in

  3. Audit of laboratory mycology services for the management of patients with fungal infections in the northwest of England.

    PubMed

    Hassan, I A; Critten, P; Isalska, B; Denning, D W

    2006-07-01

    Fungal infection is increasingly recognised as an important cause of morbidity and mortality, especially in immunocompromised patients. Little information exists on laboratory services available and the methods used by general microbiology laboratories to diagnose these important infections. To investigate the services microbiology laboratories in northwest England provide towards the diagnosis and management of superficial and deep fungal infections. A questionnaire was sent to laboratories to get a holistic view of the support given to clinicians looking after patients with fungal infections. The aim was not to investigate details of each laboratory's standard operating procedures. The completed questionnaires, which formed the basis of this report, were returned by all 21 laboratories which were recruited. This study was conducted between March 2004 and September 2004. Services were provided to District General Hospitals and to six tertiary centres, including eight teaching hospitals by 16 laboratories. Their bed capacity was 250-1300 beds. Total specimens (including bacterial and viral) processed annually were 42 000-500,000 whereas fungal ones were 560-5400. In most microbiology laboratories of northwest England, clinicians were aware of the potential of fungal pathogens to cause infections especially in immunocompromised patients. Additional measures such as prolonged incubation of samples were introduced to improve fungal yield from patients at high risk. It is necessary to train and educate laboratory and medical staff about the role of serology and molecular methods in diagnosis and management of patients with fungal infection.

  4. Viral repression of fungal pheromone precursor gene expression.

    PubMed

    Zhang, L; Baasiri, R A; Van Alfen, N K

    1998-02-01

    Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes, Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamed Mf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1 strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a G alpha(i) subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete.

  5. Viral Repression of Fungal Pheromone Precursor Gene Expression

    PubMed Central

    Zhang, Lei; Baasiri, Rudeina A.; Van Alfen, Neal K.

    1998-01-01

    Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes, Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamed Mf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1 strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a Gαi subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete. PMID:9447992

  6. Impact of postfire logging on soil bacterial and fungal communities and soil biogeochemistry in a mixed-conifer forest in central Oregon

    Treesearch

    Tara N. Jennings; Jane E. Smith; Kermit Cromack; Elizabeth W. Sulzman; Donaraye McKay; Bruce A. Caldwell; Sarah I. Beldin

    2012-01-01

    Postfire logging recoups the economic value of timber killed by wildfire, but whether such forest management activity supports or impedes forest recovery in stands differing in structure from historic conditions remains unclear. The aim of this study was to determine the impact of mechanical logging after wildfire on soil bacterial and fungal communities and other...

  7. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called singlemore » guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA

  8. Measurement of lipocalin-2 and syndecan-4 levels to differentiate bacterial from viral infection in children with community-acquired pneumonia.

    PubMed

    Esposito, Susanna; Bianchini, Sonia; Gambino, Monia; Madini, Barbara; Di Pietro, Giada; Umbrello, Giulia; Presicce, Maria Lory; Ruggiero, Luca; Terranova, Leonardo; Principi, Nicola

    2016-07-20

    In this study, we evaluated the lipocalin-2 (LIP2) and syndecan-4 (SYN4) levels in children who were hospitalized for radiologically confirmed CAP in order to differentiate bacterial from viral infection. The results regarding the LIP2 and SYN4 diagnostic outcomes were compared with the white blood cell (WBC) count and C reactive protein (CRP) levels. A total of 110 children <14 years old who were hospitalized for radiologically confirmed CAP were enrolled. Serum samples were obtained upon admission and on day 5 to measure the levels of LIP2, SYN4, and CRP as well as the WBC. Polymerase chain reaction of the respiratory secretions and tests on blood samples were performed to detect respiratory viruses, Streptococcus pneumoniae, and Mycoplasma pneumoniae. CAP was considered to be due to a probable bacterial infection in 74 children (67.3 %) and due to a probable viral infection in 16 children (14.5 %). Overall, 84 children (76.4 %) were diagnosed with severe CAP. The mean values of the WBC count and the LIP2 and SYN4 levels did not differ among the probable bacterial, probable viral, and undetermined cases. However, the CRP serum concentrations were significantly higher in children with probable bacterial CAP than in those with probable viral disease (32.2 ± 55.5 mg/L vs 9.4 ± 17.0 mg/L, p < 0.05). The WBC count was the best predictor of severe CAP, but the differences among the studied variables were marginal. The WBC count was significantly lower on day 5 in children with probable bacterial CAP (p < 0.01) and in those with an undetermined etiology (p < 0.01). The CRP and LIP2 levels were significantly lower 5 days after enrollment in all of the studied groups, independent of the supposed etiology of CAP (p < 0.01 for all comparisons). No statistically significant variation was observed for SYN4. Measuring the LIP2 and SYN4 levels does not appear to solve the problem of the poor reliability of routine laboratory tests in defining

  9. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollister, Emily B; Schadt, Christopher Warren; Palumbo, Anthony Vito

    In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt tomore » characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.« less

  10. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    PubMed Central

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-01-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems. PMID:28262753

  11. Bacterial, archaeal, and fungal community responses to acid mine drainage-laden pollution in a rice paddy soil ecosystem.

    PubMed

    Wang, Han; Zeng, Yufei; Guo, Chuling; Bao, Yanping; Lu, Guining; Reinfelder, John R; Dang, Zhi

    2018-03-01

    Lacking sufficient clean water, the paddy soils along the Hengshi River have suffered from long-term acid mine drainage (AMD) contamination. The impacted cropland is too heavily contaminated to grow food safely. The microbial communities inhabiting the environment play pivotal roles in the crop growth, health, and ecological services. In this study, the bacterial, archaeal, and fungal communities in the impacted paddy soil were examined using high-throughput Illumina MiSeq sequencing. The results showed that AMD irrigation considerably enriched the bacterial phylum Acidobacteria and the archaeal phylum Crenarchaeota, while the fungal community was more stable. The abundances of Acidobacteria and Crenarchaeota were significantly positively correlated with the AMD-related environmental factors of pH and heavy metals (Cu, Pb, and Zn). In the most contaminated samples, communities were dominated by the bacteria Candidatus Solibacter and Candidatus Koribacter from the Acidobacteria family. Functional gene profile analysis demonstrated that the energy metabolic processes of the microbial communities, especially C/N related pathways, have adjusted and are well-adapted to tolerating AMD contamination. The present study described the structural and functional differentiation of microbial communities in the rice paddy soil under AMD irrigation. The results are useful for the development of bioremediation strategies using native microbes in the cleanup and biorestoration of AMD-contaminated agriculture soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Yeast supplementation reduced the immune and metabolic responses to a combined viral-bacterial respiratory disease challenge in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    Two treatments were evaluated in commercial feedlot heifers to determine the effects of a yeast supplement on immune and metabolic responses to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (324 ± 19.2 kg BW) were selected and randomly assigned to one of two treat...

  13. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city

    PubMed Central

    Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi

    2017-01-01

    The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had

  14. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  15. Blue light (470 nm) effectively inhibits bacterial and fungal growth.

    PubMed

    De Lucca, A J; Carter-Wientjes, C; Williams, K A; Bhatnagar, D

    2012-12-01

    Blue light (470 nm) LED antimicrobial properties were studied alone against bacteria and with or without the food grade photosensitizer, erythrosine (ERY) against filamentous fungi. Leuconostoc mesenteroides (LM), Bacillus atrophaeus (BA) or Pseudomonas aeruginosa (PA) aliquots were exposed on nutrient agar plates to Array 1 (AR1, 0·2 mW cm(-2)) or Array 2 (AR2, 80 mW cm(-2)), which emitted impure or pure blue light (0-300 J cm(-2)), respectively. Inoculated control (room light only) plates were incubated (48 h) and colonies enumerated. The antifungal properties of blue light combined with ERY (11·4 and 22·8 μmol l(-1)) on Penicillium digitatum (PD) and Fusarium graminearum (FG) conidia were determined. Conidial controls consisted of: no light, room light-treated conidia and ERY plus room light. Light-treated (ERY + blue light) conidial samples were exposed only to AR2 (0-100 J cm(-2)), aliquots spread on potato dextrose agar plates, incubated (48 h, 30°C) and colonies counted. Blue light alone significantly reduced bacterial and FG viability. Combined with ERY, it significantly reduced PD viability. Blue light is lethal to bacteria and filamentous fungi although effectiveness is dependent on light purity, energy levels and microbial genus. Light from two arrays of different blue LEDs significantly reduced bacterial (Leuconostoc mesenteroides, Bacillus atrophaeus and Pseudomonas aeruginosa) viabilities. Significant in vitro viability loss was observed for the filamentous fungi, Penicillium digitatum and Fusarium graminearum when exposed to pure blue light only plus a photosensitizer. F. graminearum viability was significantly reduced by blue light alone. Results suggest that (i) the amount of significant loss in bacterial viability observed for blue light that is pure or with traces of other wavelengths is genus dependent and (ii) depending on fungal genera, pure blue light is fungicidal with or without a photosensitizer. © 2012 The Society for

  16. Migration of Paraburkholderia terrae BS001 Along Old Fungal Hyphae in Soil at Various pH Levels.

    PubMed

    Yang, Pu; Oliveira da Rocha Calixto, Renata; van Elsas, Jan Dirk

    2018-01-10

    The movement of bacterial cells along with fungal hyphae in soil (the mycosphere) has been reported in several previous studies. However, how local soil conditions affect bacterial migration direction in the mycosphere has not been extensively studied. Here, we investigated the influence of two soil parameters, pH and soil moisture content, on the migration, and survival, of Paraburkholderia terrae BS001 in the mycosphere of Lyophyllum sp. strain Karsten in microcosms containing a loamy sand soil. The data showed that bacterial movement along the hyphal networks took place in both the "forward" and the "backward" directions. Low soil pH strongly restricted bacterial survival, as well as dispersal in both directions, in the mycosphere. The backward movement was weakly correlated with the amount of fungal tissue formed in the old mycelial network. The initial soil moisture content, set at 12 versus 17% (corresponding to 42 and 60% of the soil water holding capacity), also significantly affected the bacterial dispersal along the fungal hyphae. Overall, the presence of fungal hyphae was found to increase the soil pH (under conditions of acidity), which possibly exerted protective effects on the bacterial cells. Finally, we provide a refined model that describes the bacterial migration patterns with fungal hyphae based on the new findings in this study.

  17. Fungal Endocarditis: Update on Diagnosis and Management.

    PubMed

    Pasha, Ahmed Khurshid; Lee, Justin Z; Low, See-Wei; Desai, Hem; Lee, Kwan S; Al Mohajer, Mayar

    2016-10-01

    Fungal endocarditis is an extremely debilitating disease associated with high morbidity and mortality. Candida spp. are the most common isolated organisms in fungal endocarditis. It is most prevalent in patients who are immunosuppressed and intravenous drug users. Most patients present with constitutional symptoms, which are indistinguishable from bacterial endocarditis, hence a high index of suspicion is required for pursuing diagnosis. Diagnosis of fungal endocarditis can be very challenging: most of the time, blood cultures are negative or take a long time to yield growth. Fungal endocarditis mandates an aggressive treatment strategy. A medical and surgical combined approach is the cornerstone of therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. 'Drugs from bugs': bacterial effector proteins as promising biological (immune-) therapeutics.

    PubMed

    Rüter, Christian; Hardwidge, Philip R

    2014-02-01

    Immune system malfunctions cause many of the most severe human diseases. The immune system has evolved primarily to control bacterial, viral, fungal, and parasitic infections. In turn, over millions of years of coevolution, microbial pathogens have evolved various mechanisms to control and modulate the host immune system for their own benefit and survival. For example, many bacterial pathogens use virulence proteins to modulate and exploit target cell mechanisms. Our understanding of these bacterial strategies opens novel possibilities to exploit 'microbial knowledge' to control excessive immune reactions. Gaining access to strategies of microbial pathogens could lead to potentially huge benefits for the therapy of inflammatory diseases. Most work on bacterial pathogen effector proteins has the long-term aim of neutralizing the infectious capabilities of the pathogen. However, attenuated pathogens and microbial products have been used for over a century with overwhelming success in the form of vaccines to induce specific immune responses that protect against the respective infectious diseases. In this review, we focus on bacterial effector and virulence proteins capable of modulating and suppressing distinct signaling pathways with potentially desirable immune-modulating effects for treating unrelated inflammatory diseases. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Circadian Clearance of a Fungal Pathogen from the Lung Is Not Based on Cell-intrinsic Macrophage Rhythms.

    PubMed

    Chen, Shan; Fuller, Kevin K; Dunlap, Jay C; Loros, Jennifer J

    2018-02-01

    Circadian rhythms govern immune cell function, giving rise to time-of-day variation in the recognition and clearance of bacterial or viral pathogens; to date, however, no such regulation of the host-fungal interaction has been described. In this report, we use murine models to explore circadian control of either fungal-macrophage interactions in vitro or pathogen clearance from the lung in vivo. First, we show that expression of the important fungal pattern recognition receptor Dectin-1 ( clec7a), from either bone marrow-derived or peritoneum-derived macrophages, is not under circadian regulation at either the level of transcript or cell surface protein expression. Consistent with this finding, the phagocytic activity of macrophages in culture against spores of the pathogen Aspergillus fumigatus also did not vary over time. To account for the multiple cell types and processes that may be coordinated in a circadian fashion in vivo, we examined the clearance of A. fumigatus from the lungs of immunocompetent mice. Interestingly, animals inoculated at night demonstrated a 2-fold enhancement in clearance compared with animals inoculated in the morning. Taken together, our data suggest that while molecular recognition of fungi by immune cells may not be circadian, other processes in vivo may still allow for time-of-day differences in fungal clearance from the lung.

  20. Nuclear factor 45 of tongue sole (Cynoglossus semilaevis): evidence for functional differentiation between two isoforms in immune defense against viral and bacterial pathogens.

    PubMed

    Chi, Heng; Hu, Yong-hua; Xiao, Zhi-zhong; Sun, Li

    2014-02-01

    Nuclear factor 45 (NF45) is known to play an important role in regulating interleukin-2 expression in mammals. The function of fish NF45 is largely unknown. In a previous study, we reported the identification of a NF45 (named CsNF45) from half smooth tongue sole (Cynoglossus semilaevis). In the present study, we identified an isoform of CsNF45 (named CsNF45i) from half smooth tongue sole and examined its biological properties in comparison with CsNF45. We found that CsNF45i is a truncated version of CsNF45 and lacks the N-terminal 38 residues of CsNF45. Genetic analysis showed that the CsNF45 gene consists of 14 exons and 13 introns, and that CsNF45 and CsNF45i are the products of alternative splicing. Constitutive expression of CsNF45 and CsNF45i occurred in multiple tissues but differed in patterns. Experimental infection with viral and bacterial pathogens upregulated the expression of both isoforms but to different degrees, with potent induction of CsNF45 being induced by bacterial pathogen, while dramatic induction of CsNF45i being induced by viral pathogen. Transient transfection analysis showed that both isoforms were localized in the nucleus and able to stimulate the activity of IL-2 promoter to comparable extents. To examine their in vivo effects, the two isoforms were overexpressed in tongue sole. Subsequent analysis showed that following viral and bacterial infection, the viral loads in CsNF45i-overexpressing fish were significantly lower than those in CsNF45-overexpressing fish, whereas the bacterial loads in CsNF45-overexpressing fish were significantly lower than those in CsNF45i-overexpressing fish. These results indicate that both CsNF45 and CsNF45i possess immunoregulatory properties, however, the two isoforms most likely participate in different aspects of host immune defense that target different pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications.

    PubMed

    da Silva, Ronivaldo Rodrigues

    2017-09-01

    Submerged and solid-state bioprocesses have been extensively explored worldwide and employed in a number of important studies dealing with microbial cultivation for the production of enzymes. The development of these production technologies has facilitated the generation of new enzyme-based products with applications in pharmaceuticals, food, bioactive peptides, and basic research studies, among others. The applicability of microorganisms in biotechnology is potentiated because of their various advantages, including large-scale production, short time of cultivation, and ease of handling. Currently, several studies are being conducted to search for new microbial peptidases with peculiar biochemical properties for industrial applications. Bioprospecting, being an important prerequisite for research and biotechnological development, is based on exploring the microbial diversity for enzyme production. Limited information is available on the production of specific proteolytic enzymes from bacterial and fungal species, especially on the subgroups threonine and glutamic peptidases, and the seventh catalytic type, nonhydrolytic asparagine peptide lyase. This gap in information motivated the present study about these unique biocatalysts. In this study, the biochemical and biotechnological aspects of the seven catalytic types of proteolytic enzymes, namely aspartyl, cysteine, serine, metallo, glutamic, and threonine peptidase, and asparagine peptide lyase, are summarized, with an emphasis on new studies, production, catalysis, and application of these enzymes.

  2. [Neuropsychiatric sequelae of viral meningitis in adults].

    PubMed

    Damsgaard, Jesper; Hjerrild, Simon; Renvillard, Signe Groth; Leutscher, Peter Derek Christian

    2011-10-10

    Viral meningitis is considered to be a benign illness with only mild symptoms. In contrast to viral encephalitis and bacterial meningitis, the prognosis is usually good. However, retrospective studies have demonstrated that patients suffering from viral meningitis may experience cognitive impairment following the acute course of infection. Larger controlled studies are needed to elucidate the potential neuropsychiatric adverse outcome of viral meningitis.

  3. Prophage-mediated defense against viral attack and viral counter-defense

    PubMed Central

    Dedrick, Rebekah M.; Jacobs-Sera, Deborah; Guerrero Bustamante, Carlos A.; Garlena, Rebecca A.; Mavrich, Travis N.; Pope, Welkin H.; Reyes, Juan C Cervantes; Russell, Daniel A.; Adair, Tamarah; Alvey, Richard; Bonilla, J. Alfred; Bricker, Jerald S.; Brown, Bryony R.; Byrnes, Deanna; Cresawn, Steven G.; Davis, William B.; Dickson, Leon A.; Edgington, Nicholas P.; Findley, Ann M.; Golebiewska, Urszula; Grose, Julianne H.; Hayes, Cory F.; Hughes, Lee E.; Hutchison, Keith W.; Isern, Sharon; Johnson, Allison A.; Kenna, Margaret A.; Klyczek, Karen K.; Mageeney, Catherine M.; Michael, Scott F.; Molloy, Sally D.; Montgomery, Matthew T.; Neitzel, James; Page, Shallee T.; Pizzorno, Marie C.; Poxleitner, Marianne K.; Rinehart, Claire A.; Robinson, Courtney J.; Rubin, Michael R.; Teyim, Joseph N.; Vazquez, Edwin; Ware, Vassie C.; Washington, Jacqueline; Hatfull, Graham F.

    2017-01-01

    Temperate phages are common and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses infecting mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity, and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages reveals at least five distinct prophage-expressed viral defense systems that interfere with infection of lytic and temperate phages that are either closely-related (homotypic defense) or unrelated (heterotypic defense). Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defense systems include a single-subunit restriction system, a heterotypic exclusion system, and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival, and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, that acts as a highly effective counter-defense system. Prophage-mediated viral defense offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defense promotes phage co-evolution. PMID:28067906

  4. Microbial Air Quality and Bacterial Surface Contamination in Ambulances During Patient Services

    PubMed Central

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-01-01

    Objectives We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. Methods We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram’s stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson’s correlation coefficient with a p-value of less than 0.050 considered significant. Results The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m3 and 522±581cfu/m3, respectively. Bacterial counts during patient services were 468±607cfu/m3 and fungal counts were 656±612cfu/m3. Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm2 and 1.3±1.1cfu/cm2, respectively (p<0.001). The predominant isolated bacteria and fungi were Staphylococcus spp. and Aspergillus spp., respectively. Additionally, there was a significantly positive correlation between bacterial (r=0.3, p<0.010) and fungal counts (r=0.2, p=0.020) in air samples and bacterial counts on medical instruments and allocated areas. Conclusions This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs

  5. Microbial air quality and bacterial surface contamination in ambulances during patient services.

    PubMed

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-03-01

    We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram's stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson's correlation coefficient with a p-value of less than 0.050 considered significant. The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m(3) and 522±581cfu/m(3), respectively. Bacterial counts during patient services were 468±607cfu/m(3) and fungal counts were 656±612cfu/m(3). Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm(2) and 1.3±1.1cfu/cm(2), respectively (p<0.001). The predominant isolated bacteria and fungi were Staphylococcus spp. and Aspergillus spp., respectively. Additionally, there was a significantly positive correlation between bacterial (r=0.3, p<0.010) and fungal counts (r=0.2, p=0.020) in air samples and bacterial counts on medical instruments and allocated areas. This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs. Additionally, bacterial and

  6. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    PubMed

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  7. A parts list for fungal cellulosomes revealed by comparative genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haitjema, Charles H.; Gilmore, Sean P.; Henske, John K.

    Cellulosomes are large, multi-protein complexes that tether plant biomass degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria where species specific dockerin domains mediate assembly of enzymes onto complementary cohesin motifs interspersed within non-catalytic protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic protein-scale pathways2,3. For decades, analogous structures have been reported in the early branching anaerobic fungi, which are known to assemble by sequence divergent non-catalytic dockerin domains (NCDD)4. However, the enzyme components, modular assembly mechanism, and functional role of fungal cellulosomesmore » remain unknown5,6. Here, we describe the comprehensive set of proteins critical to fungal cellulosome assembly, including novel, conserved scaffolding proteins unique to the Neocallimastigomycota. High quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single molecule technology to overcome their repeat-richness and extremely low GC content. Genomic analysis coupled with proteomic validation revealed an average 320 NCDD-containing proteins per fungal strain that were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across 4 genera that contain a conserved amino acid sequence repeat that binds to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. Though many catalytic domains are shared with bacteria, the biocatalytic activity of anaerobic fungi is expanded by the inclusion of GH3, GH6, and GH45 enzymes in the enzyme complexes. Collectively, these findings suggest that the fungal cellulosome is an

  8. Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland: Bacterial, fungal, and plant communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.

    Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less

  9. Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland: Bacterial, fungal, and plant communities

    DOE PAGES

    McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.; ...

    2017-03-13

    Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less

  10. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  11. Postviral Complications: Bacterial Pneumonia.

    PubMed

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  12. Infections of the head and ocular structures in the horse.

    PubMed

    Gerard, Mathew P; Wotman, Kathryn L; Komáromy, András M

    2006-08-01

    Infectious conditions of the equine head are commonly encountered in clinical practice. Pathogenic bacterial, viral, and fungal organisms may localize in the extensive nasal passages, paranasal sinuses, and guttural pouches, creating a range of clinical signs and conditions that can be severe enough to lead to unexpected fatality. Renewed interest in equine dentistry has led to a greater recognition of dental disease that is associated with infection. This article focuses on bacterial and fungal infections of the main anatomic regions of the equine head, where advances in diagnosis and management have been made or consolidated in recent years. It also addresses recent advances made in the area of infectious equine corneal disease, including bacterial, viral, and fungal etiologies. Recent developments in equine recurrent uveitis as it relates to infectious diseases and ocular manifestations of systemic disease are also discussed.

  13. Procalcitonin levels in gram-positive, gram-negative, and fungal bloodstream infections.

    PubMed

    Leli, Christian; Ferranti, Marta; Moretti, Amedeo; Al Dhahab, Zainab Salim; Cenci, Elio; Mencacci, Antonella

    2015-01-01

    Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR) 3.4-44.1) bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6-7.6) or fungal (0.5 ng/mL, IQR 0.4-1) infections (P < 0.0001). Receiver operating characteristic analysis showed an area under the curve (AUC) for PCT of 0.765 (95% CI 0.725-0.805, P < 0.0001) in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919-0.969, P < 0.0001) in discriminating Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9-48.5 versus 3.5 ng/mL, IQR 0.8-21.5; P < 0.0001). This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies.

  14. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    PubMed Central

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  15. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    PubMed Central

    Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045

  16. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    PubMed

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  17. Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens.

    PubMed

    Ardizzoni, Andrea; Neglia, Rachele G; Baschieri, Maria C; Cermelli, Claudio; Caratozzolo, Manuela; Righi, Elena; Palmieri, Beniamino; Blasi, Elisabetta

    2011-10-01

    Hyaluronic acid (HA) has several clinical applications (aesthetic surgery, dermatology, orthopaedics and ophtalmology). Following recent evidence, suggesting antimicrobial and antiviral properties for HA, we investigated its effects on 15 ATCC strains, representative of clinically relevant bacterial and fungal species. The in vitro system employed allowed to assess optical density of broth cultures as a measure of microbial load in a time-dependent manner. The results showed that different microbial species and, sometimes, different strains belonging to the same species, are differently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis displayed a HA dose-dependent growth inhibition; no HA effects were detected in E. coli ATCC 13768 and C. albicans; S. sanguinis was favoured by the highest HA dose. Therefore, the influence of HA on bacteria and fungi warrants further studies aimed at better establishing its relevance in clinical applications.

  18. Home characteristics as predictors of bacterial and fungal microbial biomarkers in house dust.

    PubMed

    Sordillo, Joanne E; Alwis, Udeni K; Hoffman, Elaine; Gold, Diane R; Milton, Donald K

    2011-02-01

    Measurement of fungal and bacterial biomarkers can be costly, but it is not clear whether home characteristics can be used as a proxy of these markers, particularly if the purpose is to differentiate specific classes of biologic exposures that have similar sources but may have different effects on allergic disease risk. We evaluated home characteristics as predictors of multiple microbial biomarkers, with a focus on common and unique determinants and with attention to the extent of their explanatory ability. In 376 Boston-area homes enrolled in a cohort study of home exposures and childhood asthma, we assessed the relationship between home characteristics gathered by questionnaire and measured gram-negative bacteria (GNB) (endotoxin and C10:0, C12:0, and C14:0 3-hydroxy fatty acids), gram-positive bacteria (GPB) (N-acetyl muramic acid), and fungal biomarkers [ergosterol and (1→6) branched, (1→3) β-D glucans] in bed and family room dust. Home characteristics related to dampness were significant predictors of all microbial exposures; water damage or visible mold/mildew in the home was associated with a 20-66% increase in GNB levels. Report of cleaning the bedroom at least once a week was associated with reduced GNB, GPB, and fungi. Presence of dogs or cats predicted increases in home bacteria or fungi. The proportion of variance in microbial biomarkers explained by home characteristics ranged from 4.2% to 19.0%. Despite their associations with multiple microbial flora, home characteristics only partially explain the variability in microbial biomarker levels and cannot substitute for specific microbial measurements in studies concerned with distinguishing effects of specific classes of microbes.

  19. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35.

    PubMed

    Moretti, Marino; Grunau, Alexander; Minerdi, Daniela; Gehrig, Peter; Roschitzki, Bernd; Eberl, Leo; Garibaldi, Angelo; Gullino, Maria Lodovica; Riedel, Kathrin

    2010-09-01

    Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil-borne plant pathogen, including non-pathogenic F. oxysporum strains. In this study, F. oxysporum wild-type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to gamma-proteobacteria, was analyzed by two complementary metaproteomic approaches (2-DE combined with MALDI-Tof/Tof MS and 1-D PAGE combined with LC-ESI-MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter-part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.

  20. With a little help from a computer: discriminating between bacterial and viral meningitis based on dominance-based rough set approach analysis

    PubMed Central

    Gowin, Ewelina; Januszkiewicz-Lewandowska, Danuta; Słowiński, Roman; Błaszczyński, Jerzy; Michalak, Michał; Wysocki, Jacek

    2017-01-01

    Abstract Differential Diagnosis of bacterial and viral meningitis remains an important clinical problem. A number of methods to assist in the diagnoses of meningitis have been developed, but none of them have been found to have high specificity with 100% sensitivity. We conducted a retrospective analysis of the medical records of 148 children hospitalized in St. Joseph Children's Hospital in Poznań. In this study, we applied for the first time the original methodology of dominance-based rough set approach (DRSA) to diagnostic patterns of meningitis data and represented them by decision rules useful in discriminating between bacterial and viral meningitis. The induction algorithm is called VC-DomLEM; it has been implemented as software package called jMAF (http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html), based on java Rough Set (jRS) library. In the studied group, there were 148 patients (78 boys and 70 girls), and the mean age was 85 months. We analyzed 14 attributes, of which only 4 were used to generate the 6 rules, with C-reactive protein (CRP) being the most valuable. Factors associated with bacterial meningitis were: CRP level ≥86 mg/L, number of leukocytes in cerebrospinal fluid (CSF) ≥4481 μL−1, symptoms duration no longer than 2 days, or age less than 1 month. Factors associated with viral meningitis were CRP level not higher than 19 mg/L, or CRP level not higher than 84 mg/L in a patient older than 11 months with no more than 1100 μL−1 leukocytes in CSF. We established the minimum set of attributes significant for classification of patients with meningitis. This is new set of rules, which, although intuitively anticipated by some clinicians, has not been formally demonstrated until now. PMID:28796045

  1. With a little help from a computer: discriminating between bacterial and viral meningitis based on dominance-based rough set approach analysis.

    PubMed

    Gowin, Ewelina; Januszkiewicz-Lewandowska, Danuta; Słowiński, Roman; Błaszczyński, Jerzy; Michalak, Michał; Wysocki, Jacek

    2017-08-01

    Differential Diagnosis of bacterial and viral meningitis remains an important clinical problem. A number of methods to assist in the diagnoses of meningitis have been developed, but none of them have been found to have high specificity with 100% sensitivity.We conducted a retrospective analysis of the medical records of 148 children hospitalized in St. Joseph Children's Hospital in Poznań. In this study, we applied for the first time the original methodology of dominance-based rough set approach (DRSA) to diagnostic patterns of meningitis data and represented them by decision rules useful in discriminating between bacterial and viral meningitis. The induction algorithm is called VC-DomLEM; it has been implemented as software package called jMAF (http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html), based on java Rough Set (jRS) library.In the studied group, there were 148 patients (78 boys and 70 girls), and the mean age was 85 months. We analyzed 14 attributes, of which only 4 were used to generate the 6 rules, with C-reactive protein (CRP) being the most valuable.Factors associated with bacterial meningitis were: CRP level ≥86 mg/L, number of leukocytes in cerebrospinal fluid (CSF) ≥4481 μL, symptoms duration no longer than 2 days, or age less than 1 month. Factors associated with viral meningitis were CRP level not higher than 19 mg/L, or CRP level not higher than 84 mg/L in a patient older than 11 months with no more than 1100 μL leukocytes in CSF.We established the minimum set of attributes significant for classification of patients with meningitis. This is new set of rules, which, although intuitively anticipated by some clinicians, has not been formally demonstrated until now.

  2. Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance

    PubMed Central

    Novak Babič, Monika; Gunde-Cimerman, Nina; Vargha, Márta; Tischner, Zsófia; Magyar, Donát; Veríssimo, Cristina; Sabino, Raquel; Viegas, Carla; Meyer, Wieland; Brandão, João

    2017-01-01

    Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.

  3. Antimicrobial activities of Streptomyces pulcher, S. canescens and S. citreofluorescens against fungal and bacterial pathogens of tomato in vitro.

    PubMed

    el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M

    1996-01-01

    Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.

  4. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

    PubMed

    Jeon, Hyunwoo; Durairaj, Pradeepraj; Lee, Dowoo; Ahsan, Md Murshidul; Yun, Hyungdon

    2016-12-28

    Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19 +FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

  5. Plant endophytes as novel sources of antimicrobials: Characterizing fungal isolates from alfalfa

    USDA-ARS?s Scientific Manuscript database

    Microbial antibiotic resistance is increasing at alarming rates, posing a critical need for new sources of antibiotics. Many forms of antibiotics currently in use were developed from bacterial and fungal species which produce antimicrobial compounds to ward off microbial competitors. Fungal species ...

  6. Bacterial, Fungal, and Actinomycete Populations in Soils Receiving Repeated Applications of 2,4-Dichlorophenoxyacetic Acid and Trifluralin 1

    PubMed Central

    Breazeale, F. W.; Camper, N. D.

    1970-01-01

    Soil samples were collected from an untreated plot and plots receiving repeated applications of 2,4-dichlorophenoxyacetic acid (2,4-D) and α,α,α-trifluoro-2, 6-dinitro-N,N-dipropyl-p-toluidine (trifluralin); they were then plated on media specific for bacteria, fungi, and actinomycetes. The actinomycete colony count in the trifluralin-treated plot was greater than the control, but the same as the control in the 2,4-D-treated plot. The bacterial count was lower in both treated plots. Fungal colonies in the trifluralin-treated plots were greater than the control, but not different from the control in the 2,4-D-treated plot. PMID:5437308

  7. Dual role of commensal bacteria in viral infections

    PubMed Central

    Wilks, Jessica; Beilinson, Helen; Golovkina, Tatyana V.

    2013-01-01

    Summary With our capabilities to culture and sequence the commensal bacteria that dwell on and within a host, we can now study the host in its entirety, as a supraorganism that must be navigated by the pathogen invader. At present, the majority of studies have focused on the interaction between the host’s microbiota and bacterial pathogens. This is not unwarranted, given that bacterial pathogens must compete with commensal organisms for the limited territory afforded by the host. However, viral pathogens also enter the host through surfaces coated with microbial life and encounter an immune system shaped by this symbiotic community. Therefore, we believe the microbiota cannot be ignored when examining the interplay between the host and viral pathogens. Here we review work that details mechanisms by which the microbiota either promotes or inhibits viral replication and virally-induced pathogenesis. The impact of the microbitota on viral infection promises to be a new and exciting avenue of investigation, which will ultimately lead to better treatments and preventions of virally-induced diseases. PMID:23947358

  8. Procalcitonin Levels in Gram-Positive, Gram-Negative, and Fungal Bloodstream Infections

    PubMed Central

    Ferranti, Marta; Moretti, Amedeo; Al Dhahab, Zainab Salim; Cenci, Elio; Mencacci, Antonella

    2015-01-01

    Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR) 3.4–44.1) bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6–7.6) or fungal (0.5 ng/mL, IQR 0.4–1) infections (P < 0.0001). Receiver operating characteristic analysis showed an area under the curve (AUC) for PCT of 0.765 (95% CI 0.725–0.805, P < 0.0001) in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919–0.969, P < 0.0001) in discriminating Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9–48.5 versus 3.5 ng/mL, IQR 0.8–21.5; P < 0.0001). This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies. PMID:25852221

  9. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew.

    PubMed

    Khalaf, Eman M; Raizada, Manish N

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens ( Rhizoctonia solani , Fusarium graminearum , Phytophthora capsici , Pythium aphanideratum ). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea , the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus . All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro , respectively. These results show that seeds of cultivated

  10. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    PubMed Central

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  11. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment.

    PubMed

    Seo, Dong Cheol; DeLaune, Ronald D

    2010-08-01

    Fungal and bacterial carbon dioxide (CO2) production/emission was determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, +100, +250 and +400 mV) covering the anaerobic range found in wetland soil and sediment. Carbon dioxide production was determined by the substrate-induced respiration (SIR) inhibition method. Cycloheximide (C15H23NO4) was used as the fungal inhibitor and streptomycin (C21H39N7O12) as the bacterial inhibitor. Under moderately reducing conditions (Eh > +250 mV), fungi contributed more than bacteria to the CO2 production. Under highly reducing conditions (Eh < or = 0 mV), bacteria contributed more than fungi to the total CO2 production. The fungi/bacteria (F/B) ratios varied between 0.71-1.16 for microbial biomass C, and 0.54-0.94 for microbial biomass N. Under moderately reducing conditions (Eh > or = +100 mV), the F/B ratios for microbial biomass C and N were higher than that for highly reducing conditions (Eh < or = 0 mV). In moderately reducing conditions (Eh > or = +100 mV), the C/N microbial biomass ratio for fungi (C/N: 13.54-14.26) was slightly higher than for bacteria (C/N: 9.61-12.07). Under highly reducing redox conditions (Eh < or = 0 mV), the C/N microbial biomass ratio for fungi (C/N: 10.79-12.41) was higher than for bacteria (C/N: 8.21-9.14). For bacteria and fungi, the C/N microbial biomass ratios under moderately reducing conditions were higher than that in highly reducing conditions. Fungal CO2 production from swamp forest could be of greater ecological significance under moderately reducing sediment conditions contributing to the greenhouse effect (GHE) and the global warming potential (GWP). However, increases in coastal submergence associated with global sea level rise and resultant decrease in sediment redox potential from increased flooding would likely shift CO2 production to bacteria rather than

  12. Review article: fungal microbiota and digestive diseases.

    PubMed

    Wang, Z K; Yang, Y S; Stefka, A T; Sun, G; Peng, L H

    2014-04-01

    The role of the fungal microbiota in digestive diseases is poorly defined, but is becoming better understood due to advances in metagenomics. To review the gastrointestinal fungal microbiota and its relationship with digestive diseases. Search of the literature using PubMed and MEDLINE databases. Subject headings including 'fungal-bacterial interactions', 'mycotoxins', 'immunity to fungi', 'fungal infection', 'fungal microbiota', 'mycobiome' and 'digestive diseases' were used. The fungal microbiota is an integral part of the gastrointestinal microecosystem with up to 10(6) microorganisms per gram of faeces. Next-generation sequencing of the fungal 18S rRNA gene has allowed better characterisation of the gastrointestinal mycobiome. Numerous interactions between fungi and bacteria and the complex immune response to gastrointestinal commensal or pathogenic fungi all impact on the pathophysiology of inflammatory bowel disease and other gastrointestinal inflammatory entities such as peptic ulcers. Mycotoxins generated as fungal metabolites contribute to disturbances of gastrointestinal barrier and immune functions and are associated with chronic intestinal inflammatory conditions as well as hepatocellular and oesophagogastric cancer. Systemic and gastrointestinal disease can also lead to secondary fungal infections. Fungal genomic databases and methodologies need to be further developed and will allow a much better understanding of the diversity and function of the mycobiome in gastrointestinal inflammation, tumourigenesis, liver cirrhosis and transplantation, and its alteration as a consequence of antibiotic therapy and chemotherapy. The fungal microbiota and its metabolites impact gastrointestinal function and contribute to the pathogenesis of digestive diseases. Further metagenomic analyses of the gastrointestinal mycobiome in health and disease is needed. © 2014 John Wiley & Sons Ltd.

  13. Integrated DNA and RNA extraction and purification on an automated microfluidic cassette from bacterial and viral pathogens causing community-acquired lower respiratory tract infections.

    PubMed

    Van Heirstraeten, Liesbet; Spang, Peter; Schwind, Carmen; Drese, Klaus S; Ritzi-Lehnert, Marion; Nieto, Benjamin; Camps, Marta; Landgraf, Bryan; Guasch, Francesc; Corbera, Antoni Homs; Samitier, Josep; Goossens, Herman; Malhotra-Kumar, Surbhi; Roeser, Tina

    2014-05-07

    In this paper, we describe the development of an automated sample preparation procedure for etiological agents of community-acquired lower respiratory tract infections (CA-LRTI). The consecutive assay steps, including sample re-suspension, pre-treatment, lysis, nucleic acid purification, and concentration, were integrated into a microfluidic lab-on-a-chip (LOC) cassette that is operated hands-free by a demonstrator setup, providing fluidic and valve actuation. The performance of the assay was evaluated on viral and Gram-positive and Gram-negative bacterial broth cultures previously sampled using a nasopharyngeal swab. Sample preparation on the microfluidic cassette resulted in higher or similar concentrations of pure bacterial DNA or viral RNA compared to manual benchtop experiments. The miniaturization and integration of the complete sample preparation procedure, to extract purified nucleic acids from real samples of CA-LRTI pathogens to, and above, lab quality and efficiency, represent important steps towards its application in a point-of-care test (POCT) for rapid diagnosis of CA-LRTI.

  14. Viral meningitis: current issues in diagnosis and treatment.

    PubMed

    McGill, Fiona; Griffiths, Michael J; Solomon, Tom

    2017-04-01

    The purpose of this review is to give an overview of viral meningitis and then focus in on some of the areas of uncertainty in diagnostics, treatment and outcome. Bacterial meningitis has been declining in incidence over recent years. Over a similar time period molecular diagnostics have increasingly been used. Because of both of these developments viral meningitis is becoming relatively more important. However, there are still many unanswered questions. Despite improvements in diagnostics many laboratories do not use molecular methods and even when they are used many cases still remain without a proven viral aetiology identified. There are also no established treatments for viral meningitis and the one potential treatment, aciclovir, which is effective in vitro for herpes simplex virus, has never been subjected to a clinical trial. Viruses are in increasingly important cause of meningitis in the era of declining bacterial disease. The exact viral aetiology varies according to age and country. Molecular diagnostics can not only improve the rate of pathogen detection but also reduce unnecessary antibiotics use and length of hospitalization. Further research is required into treatments for viral meningitis and the impact in terms of longer term sequelae.

  15. Bacterial and fungal microflora on the external genitalia of male donkeys (Equus asinus).

    PubMed

    Carleton, Carla L; Donahue, J Michael; Marteniuk, Judith V; Sells, Stephen F; Timoney, Peter J

    2015-02-01

    This study was undertaken to investigate the bacterial and fungal microflora on the external genitalia of a population of healthy male donkeys in the state of Michigan, USA. The aim was to identify and determine the frequency of occurrence of these microorganisms using seven different isolation media and standard microbiological procedures. The sites (urethral fossa [fossa glandis], dorsal diverticulum of the urethral sinus, distal urethra, and penile surface) in the distal reproductive tract were cultured and each isolated microorganism identified. Ten different genera of gram-positive bacteria, eight different genera of gram-negative bacteria, and two genera of fungi were isolated from the external genitalia of the 43 donkeys in this study. All 43 donkeys yielded gram-positive bacteria (2-8 species) from all four sites sampled. Arcanobacterium spp., Corynebacterium spp., and Bacillus spp. were the most frequently isolated gram-positive bacteria. Gram-negative bacteria were cultured from 16 (37.2%) of the 43 donkeys, with Acinetobacterlwoffii (16.3%), Oligella urethralis (11.6%), and Taylorellaasinigenitalis (9.3%), the most frequently isolated. Fungi were cultured from only 5 (11.6%) of the 43 donkeys, with Rhizopus spp. isolated from 3 (7.0%) and Cladosporium spp. from 2 (4.7%) individuals. The testes and epididymides collected from 40 donkeys at time of castration were culture negative. Few differences were found in the bacterial flora between prepubertal and mature intact and castrated donkeys. Of notable interest was the scarcity of known equine pathogens across the population tested and isolation of T. asinigenitalis from normal donkeys, especially prepubertal individuals and previously castrated males. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Procalcitonin as a Serum Biomarker for Differentiation of Bacterial Meningitis From Viral Meningitis in Children: Evidence From a Meta-Analysis.

    PubMed

    Henry, Brandon Michael; Roy, Joyeeta; Ramakrishnan, Piravin Kumar; Vikse, Jens; Tomaszewski, Krzysztof A; Walocha, Jerzy A

    2016-07-01

    Several studies have explored the use of serum procalcitonin (PCT) in differentiating between bacterial and viral etiologies in children with suspected meningitis. We pooled these studies into a meta-analysis to determine the PCT diagnostic accuracy. All major databases were searched through March 2015. No date or language restrictions were applied. Eight studies (n = 616 pediatric patients) were included. Serum PCT assay was found to be very accurate for differentiating the etiology of pediatric meningitis with pooled sensitivity and specificity of 0.96 (95% CI = 0.92-0.98) and 0.89 (95% CI = 0.86-0.92), respectively. The pooled positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and area under the curve (AUC) for PCT were 7.5 (95% CI = 5.6-10.1), 0.08(95% CI = 0.04-0.14), 142.3 (95% CI = 59.5-340.4), and 0.97 (SE = 0.01), respectively. In 6 studies, PCT was found to be superior than CRP, whose DOR was only 16.7 (95%CI = 8.8-31.7). Our meta-analysis demonstrates that serum PCT assay is a highly accurate and powerful test for rapidly differentiating between bacterial and viral meningitis in children. © The Author(s) 2015.

  17. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  18. The HEX1 Gene of Fusarium graminearum Is Required for Fungal Asexual Reproduction and Pathogenesis and for Efficient Viral RNA Accumulation of Fusarium graminearum Virus 1

    PubMed Central

    Son, Moonil; Lee, Kyung-Mi; Yu, Jisuk; Kang, Minji; Park, Jin Man; Kwon, Sun-Jung

    2013-01-01

    The accumulation of viral RNA depends on many host cellular factors. The hexagonal peroxisome (Hex1) protein is a fungal protein that is highly expressed when the DK21 strain of Fusarium graminearum virus 1 (FgV1) infects its host, and Hex1 affects the accumulation of FgV1 RNA. The Hex1 protein is the major constituent of the Woronin body (WB), which is a peroxisome-derived electron-dense core organelle that seals the septal pore in response to hyphal wounding. To clarify the role of Hex1 and the WB in the relationship between FgV1 and Fusarium graminearum, we generated targeted gene deletion and overexpression mutants. Although neither HEX1 gene deletion nor overexpression substantially affected vegetative growth, both changes reduced the production of asexual spores and reduced virulence on wheat spikelets in the absence of FgV1 infection. However, the vegetative growth of deletion and overexpression mutants was increased and decreased, respectively, upon FgV1 infection compared to that of an FgV1-infected wild-type isolate. Viral RNA accumulation was significantly decreased in deletion mutants but was significantly increased in overexpression mutants compared to the viral RNA accumulation in the virus-infected wild-type control. Overall, these data indicate that the HEX1 gene plays a direct role in the asexual reproduction and virulence of F. graminearum and facilitates viral RNA accumulation in the FgV1-infected host fungus. PMID:23864619

  19. Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study

    PubMed Central

    Lübbert, Christoph; Wendt, Karolin; Feisthammel, Jürgen; Moter, Annette; Lippmann, Norman; Busch, Thilo; Mössner, Joachim; Hoffmeister, Albrecht; Rodloff, Arne C.

    2016-01-01

    Background Plastic stents used for the treatment of biliary obstruction will become occluded over time due to microbial colonization and formation of biofilms. Treatment of stent-associated cholangitis is often not effective because of inappropriate use of antimicrobial agents or antimicrobial resistance. We aimed to assess the current bacterial and fungal etiology of stent-associated biofilms, with particular emphasis on antimicrobial resistance. Methods Patients with biliary strictures requiring endoscopic stent placement were prospectively enrolled. After the retrieval of stents, biofilms were disrupted by sonication, microorganisms were cultured, and isolates were identified by matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and/or biochemical typing. Finally, minimum inhibitory concentrations (MICs) were determined for various antimicrobial agents. Selected stents were further analyzed by fluorescence in situ hybridization (FISH). Results Among 120 patients (62.5% males, median age 64 years) with biliary strictures (35% malignant, 65% benign), 113 double pigtail polyurethane and 100 straight polyethylene stents were analyzed after a median indwelling time of 63 days (range, 1–1274 days). The stent occlusion rate was 11.5% and 13%, respectively, being associated with a significantly increased risk of cholangitis (38.5% vs. 9.1%, P<0.001). Ninety-five different bacterial and 13 fungal species were detected; polymicrobial colonization predominated (95.8% vs. 4.2%, P<0.001). Enterococci (79.3%), Enterobacteriaceae (73.7%), and Candida spp. (55.9%) were the leading pathogens. Candida species were more frequent in patients previously receiving prolonged antibiotic therapy (63% vs. 46.7%, P = 0.023). Vancomycin-resistant enterococci accounted for 13.7%, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae with co-resistance to ciprofloxacin accounted for 13.9%, and azole-resistant Candida spp. accounted for

  20. Epidemiology and Resistance Patterns of Bacterial and Fungal Colonization of Biliary Plastic Stents: A Prospective Cohort Study.

    PubMed

    Lübbert, Christoph; Wendt, Karolin; Feisthammel, Jürgen; Moter, Annette; Lippmann, Norman; Busch, Thilo; Mössner, Joachim; Hoffmeister, Albrecht; Rodloff, Arne C

    2016-01-01

    Plastic stents used for the treatment of biliary obstruction will become occluded over time due to microbial colonization and formation of biofilms. Treatment of stent-associated cholangitis is often not effective because of inappropriate use of antimicrobial agents or antimicrobial resistance. We aimed to assess the current bacterial and fungal etiology of stent-associated biofilms, with particular emphasis on antimicrobial resistance. Patients with biliary strictures requiring endoscopic stent placement were prospectively enrolled. After the retrieval of stents, biofilms were disrupted by sonication, microorganisms were cultured, and isolates were identified by matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and/or biochemical typing. Finally, minimum inhibitory concentrations (MICs) were determined for various antimicrobial agents. Selected stents were further analyzed by fluorescence in situ hybridization (FISH). Among 120 patients (62.5% males, median age 64 years) with biliary strictures (35% malignant, 65% benign), 113 double pigtail polyurethane and 100 straight polyethylene stents were analyzed after a median indwelling time of 63 days (range, 1-1274 days). The stent occlusion rate was 11.5% and 13%, respectively, being associated with a significantly increased risk of cholangitis (38.5% vs. 9.1%, P<0.001). Ninety-five different bacterial and 13 fungal species were detected; polymicrobial colonization predominated (95.8% vs. 4.2%, P<0.001). Enterococci (79.3%), Enterobacteriaceae (73.7%), and Candida spp. (55.9%) were the leading pathogens. Candida species were more frequent in patients previously receiving prolonged antibiotic therapy (63% vs. 46.7%, P = 0.023). Vancomycin-resistant enterococci accounted for 13.7%, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae with co-resistance to ciprofloxacin accounted for 13.9%, and azole-resistant Candida spp. accounted for 32.9% of the respective

  1. High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut.

    PubMed

    Heisel, Timothy; Montassier, Emmanuel; Johnson, Abigail; Al-Ghalith, Gabriel; Lin, Yi-Wei; Wei, Li-Na; Knights, Dan; Gale, Cheryl A

    2017-01-01

    Dietary fat intake and shifts in gut bacterial community composition are associated with the development of obesity. To date, characterization of microbiota in lean versus obese subjects has been dominated by studies of gut bacteria. Fungi, recently shown to affect gut inflammation, have received little study for their role in obesity. We sought to determine the effects of high-fat diet on fungal and bacterial community structures in a mouse model using the internal transcribed spacer region 2 (ITS2) of fungal ribosomal DNA (rDNA) and the 16S rRNA genes of bacteria. Mice fed a high-fat diet had significantly different abundances of 19 bacterial and 6 fungal taxa than did mice fed standard chow, with high-fat diet causing similar magnitudes of change in overall fungal and bacterial microbiome structures. We observed strong and complex diet-specific coabundance relationships between intra- and interkingdom microbial pairs and dramatic reductions in the number of coabundance correlations in mice fed a high-fat diet compared to those fed standard chow. Furthermore, predicted microbiome functional modules related to metabolism were significantly less abundant in high-fat-diet-fed than in standard-chow-fed mice. These results suggest a role for fungi and interkingdom interactions in the association between gut microbiomes and obesity. IMPORTANCE Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria

  2. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  3. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  4. A unified method to process biosolids samples for the recovery of bacterial, viral, and helminths pathogens.

    PubMed

    Alum, Absar; Rock, Channah; Abbaszadegan, Morteza

    2014-01-01

    For land application, biosolids are classified as Class A or Class B based on the levels of bacterial, viral, and helminths pathogens in residual biosolids. The current EPA methods for the detection of these groups of pathogens in biosolids include discrete steps. Therefore, a separate sample is processed independently to quantify the number of each group of the pathogens in biosolids. The aim of the study was to develop a unified method for simultaneous processing of a single biosolids sample to recover bacterial, viral, and helminths pathogens. At the first stage for developing a simultaneous method, nine eluents were compared for their efficiency to recover viruses from a 100 gm spiked biosolids sample. In the second stage, the three top performing eluents were thoroughly evaluated for the recovery of bacteria, viruses, and helminthes. For all three groups of pathogens, the glycine-based eluent provided higher recovery than the beef extract-based eluent. Additional experiments were performed to optimize performance of glycine-based eluent under various procedural factors such as, solids to eluent ratio, stir time, and centrifugation conditions. Last, the new method was directly compared with the EPA methods for the recovery of the three groups of pathogens spiked in duplicate samples of biosolids collected from different sources. For viruses, the new method yielded up to 10% higher recoveries than the EPA method. For bacteria and helminths, recoveries were 74% and 83% by the new method compared to 34% and 68% by the EPA method, respectively. The unified sample processing method significantly reduces the time required for processing biosolids samples for different groups of pathogens; it is less impacted by the intrinsic variability of samples, while providing higher yields (P = 0.05) and greater consistency than the current EPA methods.

  5. Fungal infections and treatment in cystic fibrosis.

    PubMed

    Middleton, Peter G; Chen, Sharon C-A; Meyer, Wieland

    2013-11-01

    This review summarizes some of the important recent findings concerning fungal airway infections in patients with cystic fibrosis (CF). For many years, both researchers and clinicians have focused on the problems in CF caused by chronic bacterial airway infection with organisms such as Haemophilus, Staphylococcus and Pseudomonas. However, until recently, the lack of sensitive culture techniques to isolate fungi in sputum, bronchoalveolar lavage fluid and other respiratory tract samples has limited the recognition of fungal species and their possible role in CF airway infections. Recent studies using fungal-selective culture media and molecular techniques have shown a plethora of different fungal species in the sputum expectorated from CF patients. Cross-sectional studies have shown associations between Aspergillus and Candida in the sputum and worse lung function. The presence of allergic bronchopulmonary aspergillosis is likely to be a negative prognostic factor, but whether simple fungal colonization itself indicates future problems is not clear. Current research is now examining these epidemiological associations to try to determine the clinical implications. This will help determine whether fungal colonization/infection is associated with worse outcome in CF patients. At present, there is no conclusive evidence that fungal organisms cause respiratory decline. Recent studies of antifungal therapy in CF patients have reported differing results, so further investigations in this area are needed.

  6. Procalcitonin as a potential predicting factor for prognosis in bacterial meningitis.

    PubMed

    Park, Bong Soo; Kim, Si Eun; Park, Si Hyung; Kim, Jinseung; Shin, Kyong Jin; Ha, Sam Yeol; Park, JinSe; Kim, Sung Eun; Lee, Byung In; Park, Kang Min

    2017-02-01

    We investigated the potential role of serum procalcitonin in differentiating bacterial meningitis from viral meningitis, and in predicting the prognosis in patients with bacterial meningitis. This was a retrospective study of 80 patients with bacterial meningitis (13 patients died). In addition, 58 patients with viral meningitis were included as the disease control groups for comparison. The serum procalcitonin level was measured in all patients at admission. Differences in demographic and laboratory data, including the procalcitonin level, were analyzed between the groups. We used the mortality rate during hospitalization as a marker of prognosis in patients with bacterial meningitis. Multiple logistic regression analysis showed that high serum levels of procalcitonin (>0.12ng/mL) were an independently significant variable for differentiating bacterial meningitis from viral meningitis. The risk of having bacterial meningitis with high serum levels of procalcitonin was at least 6 times higher than the risk of having viral meningitis (OR=6.76, 95% CI: 1.84-24.90, p=0.004). In addition, we found that high levels of procalcitonin (>7.26ng/mL) in the blood were an independently significant predictor for death in patients with bacterial meningitis. The risk of death in patients with bacterial meningitis with high serum levels of procalcitonin may be at least 9 times higher than those without death (OR=9.09, 95% CI: 1.74-47.12, p=0.016). We found that serum procalcitonin is a useful marker for differentiating bacterial meningitis from viral meningitis, and it is also a potential predicting factor for prognosis in patients with bacterial meningitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Isotope Effects Associated with N2O Production By Fungal and Bacterial Nitric Oxide Reductases: Implications for Tracing Microbial Production Pathways

    NASA Astrophysics Data System (ADS)

    Ostrom, N. E.; Yang, H.; Gandhi, H.; Hegg, E. L.

    2014-12-01

    Site preference (SP), the difference in δ15N between the central (α) and outer (β) N atoms in N2O, has emerged as a conservative tracer of microbial N2O production. The key advantages of SP relative to bulk isotopes are (1) that it is independent of the isotope composition of the substrates of nitrification and denitrification and (2) has not been shown to exhibit fractionation during production. In pure microbial culture distinct SP values for N2O production from bacterial denitrification, including nitrifier-denitrification (-10 to 0 ‰), relative to hydroxylamine oxidation and fungal denitrification (33-37 ‰) provide a promising basis to resolve production pathways. In this study, we determined the δ15N, δ18O, δ15Nα, and δ15Nβ of N2O generated by purified fungal (P450nor) and bacterial nitric oxide reductases. The isotope values were used to calculate SP values, enrichment factors (e), and kinetic isotope effects (KIEs). Both O and Nα displayed normal isotope effects during enzymatic NO reduction by the P450nor with e values of -25.7‰ (KIE = 1.0264) and -12.6‰ (KIE = 1.0127), respectively. However, bulk nitrogen (average δ15N of Nα and Nβ) and Nβ exhibited inverse isotope effects with e values of 14.0‰ (KIE = 0.9862) and 36.1‰ (KIE = 0.9651), respectively. The observed inverse isotope effect in δ15Nβ is consistent with reversible binding of the first NO in the P450nor reaction mechanism. Experiments with bacterial nitric oxide reductase are ongoing, however, preliminary data indicates a inverse isotope effect in the α and β positions and a normal isotope effect in δ18O. In contrast to the constant SP observed during N2O production observed in microbial cultures, the SP measured for purified P450nor was not constant, increasing from ~15‰ to ~29‰ during the course of the reaction. Our results clearly indicate that fractionation of SP during N2O production by P450nor is not zero, and that SP values higher and lower than the

  8. Fungal peritonitis in patients undergoing continuous ambulatory peritoneal dialysis in Qatar.

    PubMed

    Khan, Fahmi Yousef; Elsayed, Mohammed; Anand, Deshmukh; Abu Khattab, Mohammed; Sanjay, Doiphode

    2011-09-14

    This study was conducted at Hamad General Hospital to determine the incidence of fungal peritonitis and to describe its clinical and microbiological findings in patients undergoing continuous ambulatory peritoneal dialysis in Qatar. The medical records of these patients between 1 January 2005 and 31 December 2008 were retrospectively reviewed and the collected data were analysed. During the study period, 141 episodes of peritonitis were observed among 294 patients. In 14 of these episodes (9.9%), fungal peritonitis was reported in 14 patients with a rate of 0.05 episodes per patient year, while the bacterial peritonitis rate was 0.63 per patient year. Thirteen (93%) patients had one or more previous episodes of bacterial peritonitis that was treated with multiple broad-spectrum antibiotics, 11 (85%) had received broad-spectrum antibiotics within the preceding month, 12 (92%) within three months, and 8 (62%) within six months. Candida species were the only fungal species isolated from the dialysate with predominance of non-albicans Candida species (especially Candida parapsilosis). Therapeutic approach was immediate catheter removal, followed by systemic antifungal therapy and temporary haemodialysis. Nine patients (64.3%) were continued on haemodialysis, whereas five patients (35.7%) died. Prior antibiotic use was an important risk factor predisposing patients to the development of fungal peritonitis. Early detection of fungal peritonitis would lead to early institution of appropriate therapy and prevention of complications.

  9. Viral activity in two contrasting lake ecosystems.

    PubMed

    Bettarel, Yvan; Sime-Ngando, Télesphore; Amblard, Christian; Dolan, John

    2004-05-01

    For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium(-1), respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (M(Pavin) = 37.7%, M(Aydat) = 18.5%) was nearly always more than the production removed by viral lysis (M(Pavin) = 16.2%, M(Aydat) = 19%) or ciliate grazing (M(Pavin) = 2.7%, M(Aydat) = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.

  10. Econazole-releasing porous space maintainers for fungal periprosthetic joint infection.

    PubMed

    Tatara, Alexander M; Rozich, Allison J; Kontoyiannis, Panayiotis D; Watson, Emma; Albert, Nathaniel D; Bennett, George N; Mikos, Antonios G

    2018-05-11

    While antibiotic-eluting polymethylmethacrylate space maintainers have shown efficacy in the treatment of bacterial periprosthetic joint infection and osteomyelitis, antifungal-eluting space maintainers are associated with greater limitations for treatment of fungal musculoskeletal infections including limited elution concentration and duration. In this study, we have designed a porous econazole-eluting space maintainer capable of greater inhibition of fungal growth than traditional solid space maintainers. The eluted econazole demonstrated bioactivity in a concentration-dependent manner against the most common species responsible for fungal periprosthetic joint infection as well as staphylococci. Lastly, these porous space maintainers retain compressive mechanical properties appropriate to maintain space before definitive repair of the joint or bony defect.

  11. Lung needle biopsy

    MedlinePlus

    ... may be due to any of the following: Bacterial, viral, or fungal lung infection Cancerous cells ( lung cancer , mesothelioma) Pneumonia Risks Sometimes, a collapsed lung ( pneumothorax ) occurs after ...

  12. Alternatives to overcoming bacterial resistances: State-of-the-art.

    PubMed

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  13. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana.

    PubMed

    Narasimhan, Srinivasan; Maheshwaran, Shanmugam; Abu-Yousef, Imad A; Majdalawieh, Amin F; Rethavathi, Janarthanam; Das, Prince Edwin; Poltronieri, Palmiro

    2017-02-12

    The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.

  14. Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage

    PubMed Central

    Luque, Daniel; Gómez-Blanco, Josué; Garriga, Damiá; Brilot, Axel F.; González, José M.; Havens, Wendy M.; Carrascosa, José L.; Trus, Benes L.; Verdaguer, Nuria; Ghabrial, Said A.; Castón, José R.

    2014-01-01

    Viruses evolve so rapidly that sequence-based comparison is not suitable for detecting relatedness among distant viruses. Structure-based comparisons suggest that evolution led to a small number of viral classes or lineages that can be grouped by capsid protein (CP) folds. Here, we report that the CP structure of the fungal dsRNA Penicillium chrysogenum virus (PcV) shows the progenitor fold of the dsRNA virus lineage and suggests a relationship between lineages. Cryo-EM structure at near-atomic resolution showed that the 982-aa PcV CP is formed by a repeated α-helical core, indicative of gene duplication despite lack of sequence similarity between the two halves. Superimposition of secondary structure elements identified a single “hotspot” at which variation is introduced by insertion of peptide segments. Structural comparison of PcV and other distantly related dsRNA viruses detected preferential insertion sites at which the complexity of the conserved α-helical core, made up of ancestral structural motifs that have acted as a skeleton, might have increased, leading to evolution of the highly varied current structures. Analyses of structural motifs only apparent after systematic structural comparisons indicated that the hallmark fold preserved in the dsRNA virus lineage shares a long (spinal) α-helix tangential to the capsid surface with the head-tailed phage and herpesvirus viral lineage. PMID:24821769

  15. Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum and bacterial pathogen Pseudomonas syringae pv. maculicola.

    PubMed

    Narusaka, Mari; Narusaka, Yoshihiro

    2017-03-04

    Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators, and can be useful and effective agrochemicals against various plant diseases.

  16. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.

    PubMed

    Abdelmohsen, Usama Ramadan; Balasubramanian, Srikkanth; Oelschlaeger, Tobias A; Grkovic, Tanja; Pham, Ngoc B; Quinn, Ronald J; Hentschel, Ute

    2017-02-01

    Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies. Copyright © 2017 Elsevier Ltd

  17. The specific role of fungal community structure on soil aggregation and carbon sequestration: results from long-term field study in a paddy soil

    NASA Astrophysics Data System (ADS)

    Murugan, Rajasekaran; Kumar, Sanjay

    2015-04-01

    Soil aggregate stability is a crucial soil property that affects soil biota, biogeochemical processes and C sequestration. The relationship between soil aggregate stability and soil C cycling is well known but the influence of specific fungal community structure on this relationship is largely unknown in paddy soils. The aim of the present study was to evaluate the long-term fertilisation (mineral fertiliser-MIN; farmyard manure-FYM; groundnut oil cake-GOC) effects on soil fungal community shifts associated with soil aggregates under rice-monoculture (RRR) and rice-legume-rice (RLR) systems. Fungal and bacterial communities were characterized using phospholipid fatty acids, and glucosamine and muramic acid were used as biomarkers for fungal and bacterial residues, respectively. Microbial biomass C and N, fungal biomass and residues were significantly higher in the organic fertiliser treatments than in the MIN treatment, for all aggregate sizes under both crop rotation systems. In general, fungal/bacterial biomass ratio and fungal residue C/bacterial residue C ratio were significantly higher in macroaggregate fractions (> 2000 and 250-2000 μm) than in microaggregate fractions (53-250 and <53 μm). In both crop rotation systems, the long-term application of FYM and GOC led to increased accumulation of saprotrophic fungi (SF) in aggregate fractions > 2000 μm. In contrast, we found that arbuscular mycorrhizal fungi (AMF) was surprisingly higher in aggregate fractions > 2000 μm than in aggregate fraction 250-2000 μm under MIN treatment. The RLR system showed significantly higher AMF biomass and fungal residue C/ bacterial residue C ratio in both macroaggregate fractions compared to the RRR system. The strong relationships between SF, AMF and water stable aggregates shows the specific contribution of fungi community on soil aggregate stability. Our results highlight the fact that changes within fungal community structure play an important role in shaping the soil

  18. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs.

    PubMed

    Gorgoglione, Bartolomeo; Carpio, Yamila; Secombes, Christopher J; Taylor, Nick G H; Lugo, Juana María; Estrada, Mario Pablo

    2015-12-01

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens. Copyright © 2015

  19. Environmental survey to assess viral contamination of air and surfaces in hospital settings.

    PubMed

    Carducci, A; Verani, M; Lombardi, R; Casini, B; Privitera, G

    2011-03-01

    The presence of pathogenic viruses in healthcare settings represents a serious risk for both staff and patients. Direct viral detection in the environment poses significant technical problems and the indirect indicators currently in use suffer from serious limitations. The aim of this study was to monitor surfaces and air in hospital settings to reveal the presence of hepatitis C virus, human adenovirus, norovirus, human rotavirus and torque teno virus by nucleic acid assays, in parallel with measurements of total bacterial count and haemoglobin presence. In total, 114 surface and 62 air samples were collected. Bacterial contamination was very low (<1 cfu/cm(2)) on surfaces, whereas the 'medium' detected value in air was 282 cfu/m(3). Overall, 19 (16.7%) surface samples tested positive for viral nucleic acids: one for norovirus, one for human adenovirus and 17 (14.9%) for torque teno virus (TTV). Only this latter virus was directly detected in 10 air samples (16.1%). Haemoglobin was found on two surfaces. No relationship was found between viral, biochemical or bacterial indicators. The data obtained confirm the difficulty of assessing viral contamination using bacterial indicators. The frequent detection of TTV suggests its possible use as an indicator for general viral contamination of the environment. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Comparison of viral infection in healthcare-associated pneumonia (HCAP) and community-acquired pneumonia (CAP).

    PubMed

    Kim, Eun Sun; Park, Kyoung Un; Lee, Sang Hoon; Lee, Yeon Joo; Park, Jong Sun; Cho, Young-Jae; Yoon, Ho Il; Lee, Choon-Taek; Lee, Jae Ho

    2018-01-01

    Although viruses are known to be the second most common etiological factor in community-acquired pneumonia (CAP), the respiratory viral profile of the patients with healthcare-associated pneumonia (HCAP) has not yet been elucidated. We investigated the prevalence and the clinical impact of respiratory virus infection in adult patients with HCAP. Patients admitted with HCAP or CAP, between January and December 2016, to a tertiary referral hospital in Korea, were prospectively enrolled, and virus identification was performed using reverse-transcription polymerase chain reaction (RT-PCR). Among 452 enrolled patients (224 with HCAP, 228 with CAP), samples for respiratory viruses were collected from sputum or endotracheal aspirate in 430 (95.1%) patients and from nasopharyngeal specimens in 22 (4.9%) patients. Eighty-seven (19.2%) patients had a viral infection, and the proportion of those with viral infection was significantly lower in the HCAP than in the CAP group (13.8% vs 24.6%, p = 0.004). In both the HCAP and CAP groups, influenza A was the most common respiratory virus, followed by entero-rhinovirus. The seasonal distributions of respiratory viruses were also similar in both groups. In the HCAP group, the viral infection resulted in a similar length of hospital stay and in-hospital mortality as viral-bacterial coinfection and bacterial infection, and the CAP group showed similar results. The prevalence of viral infection in patients with HCAP was lower than that in patients with CAP, and resulted in a similar prognosis as viral-bacterial coinfection or bacterial infection.

  1. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    USDA-ARS?s Scientific Manuscript database

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  2. Analogies and differences among bacterial and viral disinfection by the photo-Fenton process at neutral pH: a mini review.

    PubMed

    Giannakis, Stefanos

    2017-12-19

    Over the last years, the photo-Fenton process has been established as an effective, green alternative to chemical disinfection of waters and wastewaters. Microorganisms' inactivation is the latest success story in the application of this process at near-neutral pH, albeit without clearly elucidated inactivation mechanisms. In this review, the main pathways of the combined photo-Fenton process against the most frequent pathogen models (Escherichia coli for bacteria and MS2 bacteriophage for viruses) are analyzed. Firstly, the action of solar light is described and the specific inactivation mechanisms in bacteria (internal photo-Fenton) and viruses (genome damage) are presented. The contribution of the external pathways due to the potential presence of organic matter in generating reactive oxygen species (ROS) and their effects on microorganism inactivation are discussed. Afterwards, the effects of the gradual addition of Fe and H 2 O 2 are assessed and the differences among bacterial and viral inactivation are highlighted. As a final step, the simultaneous addition of both reagents induces the photo-Fenton in the bulk, focusing on the differences induced by the homogeneous or heterogeneous fraction of the process and the variation among the two respective targets. This work exploits the accumulated evidence on the mechanisms of bacterial inactivation and the scarce ones towards viral targets, aiming to bridge this knowledge gap and make possible the further application of the photo-Fenton process in the field of water/wastewater treatment.

  3. Viral fitness: definitions, measurement, and current insights

    USGS Publications Warehouse

    Wargo, Andrew R.; Kurath, Gael

    2012-01-01

    Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.

  4. Neutrophil subset responses in infants with severe viral respiratory infection.

    PubMed

    Cortjens, Bart; Ingelse, Sarah A; Calis, Job C; Vlaar, Alexander P; Koenderman, Leo; Bem, Reinout A; van Woensel, Job B

    2017-03-01

    Neutrophils are the predominant inflammatory cells recruited to the respiratory tract as part of the innate immune response to viral infections. Recent reports indicate the existence of distinct functional neutrophil subsets in the circulatory compartment of adults, following severe inflammatory conditions. Here, we evaluated the occurrence of neutrophil subsets in blood and broncho-alveolar lavage fluid during severe viral respiratory infection in infants based on CD16/CD62L expression. We show that during the course of severe respiratory infection infants may develop four heterogeneous neutrophil subsets in blood (mature, immature, progenitor, and suppressive neutrophils), each with distinct activation states. However, while isolated viral respiratory infection was characterized by a relative absence of suppressive neutrophils in both blood and lungs, only patients with bacterial co-infection were shown to produce suppressive neutrophils. These data suggest the occurrence of distinct and unique neutrophil subset responses during severe viral and (secondary) bacterial respiratory infection in infants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. CSF lactate for accurate diagnosis of community-acquired bacterial meningitis.

    PubMed

    Giulieri, S; Chapuis-Taillard, C; Jaton, K; Cometta, A; Chuard, C; Hugli, O; Du Pasquier, R; Bille, J; Meylan, P; Manuel, O; Marchetti, O

    2015-10-01

    CSF lactate measurement is recommended when nosocomial meningitis is suspected, but its value in community-acquired bacterial meningitis is controversial. We evaluated the diagnostic performance of lactate and other CSF parameters in a prospective cohort of adult patients with acute meningitis. Diagnostic accuracy of lactate and other CSF parameters in patients with microbiologically documented episodes was assessed by receiver operating characteristic (ROC) curves. The cut-offs with the best diagnostic performance were determined. Forty-five of 61 patients (74%) had a documented bacterial (n = 18; S. pneumoniae, 11; N. meningitidis, 5; other, 2) or viral (n = 27 enterovirus, 21; VZV, 3; other, 3) etiology. CSF parameters were significantly different in bacterial vs. viral meningitis, respectively (p < 0.001 for all comparisons): white cell count (median 1333 vs. 143/mm(3)), proteins (median 4115 vs. 829 mg/l), CSF/blood glucose ratio (median 0.1 vs. 0.52), lactate (median 13 vs. 2.3 mmol/l). ROC curve analysis showed that CSF lactate had the highest accuracy for discriminating bacterial from viral meningitis, with a cutoff set at 3.5 mmol/l providing 100% sensitivity, specificity, PPV, NPV, and efficiency. CSF lactate had the best accuracy for discriminating bacterial from viral meningitis and should be included in the initial diagnostic workup of this condition.

  6. Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium.

    PubMed

    Simon, Anaele; Bindschedler, Saskia; Job, Daniel; Wick, Lukas Y; Filippidou, Sevasti; Kooli, Wafa M; Verrecchia, Eric P; Junier, Pilar

    2015-11-01

    Fungi and bacteria form various associations that are central to numerous environmental processes. In the so-called fungal highway, bacteria disperse along fungal mycelium. We developed a novel tool for the in situ isolation of bacteria moving along fungal hyphae as well as for the recovery of fungi potentially involved in dispersal, both of which are attracted towards a target culture medium. We present the validation and the results of the first in situ test. Couples of fungi and bacteria were isolated from soil. Amongst the enriched organisms, we identified several species of fast-growing fungi (Fusarium sp. and Chaetomium sp.), as well as various potentially associated bacterial groups, including Variovorax soli, Olivibacter soli, Acinetobacter calcoaceticus, and several species of the genera Stenotrophomonas, Achromobacter and Ochrobactrum. Migration of bacteria along fungal hyphae across a discontinuous medium was confirmed in most of the cases. Although the majority of the bacteria for which migration was confirmed were also positive for flagellar motility, not all motile bacteria dispersed using their potential fungal partner. In addition, the importance of hydrophobicity of the fungal mycelial surface was confirmed. Future applications of the columns include targeting different types of microorganisms and their interactions, either by enrichment or by state of the art molecular biological methods. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roux, Simon; Hallam, Steven J.; Woyke, Tanja

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 newmore » viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.« less

  8. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes.

    PubMed

    Roux, Simon; Hallam, Steven J; Woyke, Tanja; Sullivan, Matthew B

    2015-07-22

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus-host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7-38% of 'unknown' sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus-host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.

  9. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes

    DOE PAGES

    Roux, Simon; Hallam, Steven J.; Woyke, Tanja; ...

    2015-07-22

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 newmore » viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.« less

  10. Metals in fungal virulence

    PubMed Central

    Gerwien, Franziska; Skrahina, Volha; Kasper, Lydia; Brunke, Sascha

    2017-01-01

    Abstract Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the ‘nutritional immunity’, in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species—focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species—not the least to exploit this knowledge for new antifungal strategies. PMID:29069482

  11. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    PubMed

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enderle, Mathias; Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried; McCarthy, Andrew

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungalmore » FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.« less

  13. Lipocalin 2 in cerebrospinal fluid as a marker of acute bacterial meningitis

    PubMed Central

    2014-01-01

    Background Early differential diagnosis between acute bacterial and viral meningitis is problematic. We aimed to investigate whether the detection of lipocalin 2, a protein of the acute innate immunity response, may be used as a marker for acute bacterial meningitis. Methods Transgenic mice expressing the human transferrin were infected by intraperitoneal route and were imaged. Cerebrospinal fluid (CSF) was sampled up to 48hours post- infection to measure lipocalin 2. We also tested a collection of 90 and 44 human CSF with confirmed acute bacterial or acute viral meningitis respectively. Results Lipocalin 2 was detected after 5 h in CSF during experimental infection in mice. Lipocalin 2 levels were significantly higher (p < 0.0001) in patients with confirmed acute bacterial meningitis (mean 125 pg/mL, range 106–145 pg/mL) than in patients with acute viral meningitis (mean 2 pg/mL, range 0–6 pg/mL) with a sensitivity of 81%, a specificity of 93%, a positive predictive value of 96% and a negative predictive value of 71% in diagnosing acute bacterial meningitis. Conclusions Increased levels of lipocalin 2 in cerebrospinal fluid may discriminate between acute bacterial and viral meningitis in patients with clinical syndrome of meningitis. PMID:24885531

  14. Bioorganic Fertilizer Enhances Soil Suppressive Capacity against Bacterial Wilt of Tomato

    PubMed Central

    Liu, Shuangri; Chai, Rushan; Huang, Weiqing; Liu, Xingxing; Tang, Caixian; Zhang, Yongsong

    2015-01-01

    Tomato bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soil-borne diseases. Many strategies have been taken to improve soil suppressiveness against this destructive disease, but limited success has been achieved. In this study, a novel bioorganic fertilizer revealed a higher suppressive ability against bacterial wilt compared with several soil management methods in the field over four growing seasons from March 2011 to July 2013. The application of the bioorganic fertilizer significantly (P<0.05) reduced disease incidence of tomato and increased fruit yields in four independent trials. The association among the level of disease incidence, soil physicochemical and biological properties was investigated. The soil treated with the bioorganic fertilizer increased soil pH value, electric conductivity, organic carbon, NH4 +-N, NO3 --N and available K content, microbial activities and microbial biomass carbon content, which were positively related with soil suppressiveness. Bacterial and actinomycete populations assessed using classical plate counts were highest, whereas R. solanacearum and fungal populations were lowest in soil applied with the bioorganic fertilizer. Microbial community diversity and richness were assessed using denaturing gel gradient electrophoresis profile analysis. The soil treated with the bioorganic fertilizer exhibited higher bacterial community diversity but lower fungal community diversity. Redundancy analysis showed that bacterial community diversity and richness negatively related with bacterial wilt suppressiveness, while fungal community richness positively correlated with R. solanacearum population. We concluded that the alteration of soil physicochemical and biological properties in soil treated with the bioorganic fertilizer induced the soil suppressiveness against tomato bacterial wilt. PMID:25830639

  15. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    PubMed Central

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  16. Active invasion of bacteria into living fungal cells

    PubMed Central

    Moebius, Nadine; Üzüm, Zerrin; Dijksterhuis, Jan; Lackner, Gerald; Hertweck, Christian

    2014-01-01

    The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation. DOI: http://dx.doi.org/10.7554/eLife.03007.001 PMID:25182414

  17. Methylated glycans as conserved targets of animal and fungal innate defense

    PubMed Central

    Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S.; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M.; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus

    2014-01-01

    Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441

  18. [Research on the eventual cross-reactivity of anti-Wr(a) with various viral, bacterial and mycotic antigenes (author's transl)].

    PubMed

    Garelli, S; Valbonesi, M; Picerno, G; Vazzana, A

    1978-09-01

    Among the sera of 1011 blood donors, they have been collected 34 anti-Wr(a) antibodies. By IgG antiglobulin test, the titer was 1/8 or more in 21 sera. After absorption on viral, bacterial and mycotic antigens, the sera were still reactive with Wr(a) + red blood cells. These results show that no tested antigen is cross-reactive with Wr(a) antigen. However, the AA. suggest that the research of a widley diffused antigen, cross-reactive with Wr(a) + red blood cells, is a valuable approach to the problem of IgG anti-Wr(a) antibodies in normal, never transfused blood donors.

  19. Fungal diseases of amphibians: an overview.

    PubMed

    Paré, Jean A

    2003-05-01

    Clinicians should be familiar with the most common fungal diseases of amphibians. Because lesions in mycotic diseases are nonspecific, a diagnosis cannot be established solely on the basis of clinical presentation. Bacterial, mycobacterial, chlamydial, and parasitic infections, and toxic or environmental conditions may mimic mycotic disease to various extents. Furthermore, mycoses may be masked by overwhelming secondary bacterial infection and therefore remain undiagnosed. Skin scrapings, impression smears, biopsies, and fungal culture are all useful tools in confirming or dismissing a diagnosis of mycosis. Whenever possible, an effort should be made to forward samples and biopsies for culture to appropriate laboratories. Providing the laboratory with a tentative etiologic diagnosis may allow for specific selection of more specific agars and culture conditions and maximize the chances of recovering the fungus from lesions. Identification to species level should also be encouraged, if progress is to be made in the understanding of mycoses in amphibians. The morphology of an isolate should be consistent with the microscopic features of the fungus in histological sections of affected tissues, if it is to be firmly incriminated as the cause of disease. A complete necropsy should be conducted on animals that die or are found dead, and, ideally, isolates from confirmed cases of fungal infection should be deposited in scientific collections, so that they are available for later studies. In addendum, readers should be aware that there is recent evidence to suggest that at least some published cases of amphibian basidiobolomycosis were in fact cases of chytridiomycosis [38], and therefore the validity of basidiobolomycosis as a disease entity in amphibians may be revisited in the years to come.

  20. Cerebrospinal fluid ferritin and albumin index: potential candidates for scoring system to differentiate between bacterial and viral meningitis in children.

    PubMed

    Jebamalar, Angelin A; Prabhat; Balakrishnapillai, Agiesh K; Parmeswaran, Narayanan; Dhiman, Pooja; Rajendiran, Soundravally

    2016-07-01

    To evaluate the diagnostic role of cerebrospinal fluid (CSF) ferritin and albumin index (AI = CSF albumin/serum albumin × 1000) in differentiating acute bacterial meningitis (ABM) from acute viral meningitis (AVM) in children. The study included 42 cases each of ABM and AVM in pediatric age group. Receiver operating characteristic (ROC) analysis was carried out for CSF ferritin and AI. Binary logistic regression was also done. CSF ferritin and AI were found significantly higher in ABM compared to AVM. Model obtained using AI and CSF ferritin along with conventional criteria is better than existing models.

  1. Confirmed Transmission of Bacterial or Fungal Infection to Kidney Transplant Recipients from Donated After Cardiac Death (DCD) Donors in China: A Single-Center Analysis

    PubMed Central

    Wan, Qiquan; Liu, Huanmiao; Ye, Shaojun; Ye, Qifa

    2017-01-01

    Background We aimed to investigate blood and urine cultures of donated after cardiac death (DCD) donors and report the cases of confirmed (proven/probable) transmission of bacterial or fungal infection from donors to kidney recipients. Material/Methods Seventy-eight DCD donors between 2010 and 2016 were included. Sixty-one DCD donors underwent blood cultures and 22 episodes of bacteremias developed in 18 donors. Forty-three donors underwent urine cultures and 14 donors experienced 17 episodes of urinary infections. Results Seven of 154 (4.5%) kidney recipients developed confirmed donor-derived bacterial or fungal infections. Inappropriate use of antibiotics in donor was a risk factor for donor-derived infection (p=0.048). The use of FK506 was more frequent in recipients without donor-derived infection than those with donor-derived infection (p=0.033). Recipients with donor-derived infection were associated with higher mortality and graft loss (42.9% and 28.6%, respectively), when compared with those without donor-derived infection (4.8% each). Three kidney recipients with donor-derived infection died; one death was due to multi-organ failure caused by Candida albicans, and two were related to rupture of the renal artery; two of them did not receive appropriate antimicrobial therapy after infection. Conclusions Our kidney recipients showed high occurrence rates of donor-derived infection. Recipients with donor-derived infection were associated with higher mortality and graft loss than those without donor-derived infection. The majority of recipients with donor-derived infection who died did not receive appropriate antimicrobial therapy after infection. PMID:28771455

  2. Confirmed Transmission of Bacterial or Fungal Infection to Kidney Transplant Recipients from Donated After Cardiac Death (DCD) Donors in China: A Single-Center Analysis.

    PubMed

    Wan, Qiquan; Liu, Huanmiao; Ye, Shaojun; Ye, Qifa

    2017-08-03

    BACKGROUND We aimed to investigate blood and urine cultures of donated after cardiac death (DCD) donors and report the cases of confirmed (proven/probable) transmission of bacterial or fungal infection from donors to kidney recipients. MATERIAL AND METHODS Seventy-eight DCD donors between 2010 and 2016 were included. Sixty-one DCD donors underwent blood cultures and 22 episodes of bacteremias developed in 18 donors. Forty-three donors underwent urine cultures and 14 donors experienced 17 episodes of urinary infections. RESULTS Seven of 154 (4.5%) kidney recipients developed confirmed donor-derived bacterial or fungal infections. Inappropriate use of antibiotics in donor was a risk factor for donor-derived infection (p=0.048). The use of FK506 was more frequent in recipients without donor-derived infection than those with donor-derived infection (p=0.033). Recipients with donor-derived infection were associated with higher mortality and graft loss (42.9% and 28.6%, respectively), when compared with those without donor-derived infection (4.8% each). Three kidney recipients with donor-derived infection died; one death was due to multi-organ failure caused by Candida albicans, and two were related to rupture of the renal artery; two of them did not receive appropriate antimicrobial therapy after infection. CONCLUSIONS Our kidney recipients showed high occurrence rates of donor-derived infection. Recipients with donor-derived infection were associated with higher mortality and graft loss than those without donor-derived infection. The majority of recipients with donor-derived infection who died did not receive appropriate antimicrobial therapy after infection.

  3. Impact of fungal species cultured on outcome in horses with fungal keratitis.

    PubMed

    Sherman, Amanda B; Clode, Alison B; Gilger, Brian C

    2017-03-01

    To determine the significance of Aspergillus and Fusarium spp., as identified by culture, on clinical outcome in equine keratomycosis. Retrospective analysis of 66 horses (66 eyes) evaluated at the NCSU-VH diagnosed with keratomycosis from which Aspergillus or Fusarium spp. were cultured. Horses were classified into those who improved with medical management alone or those who required surgical intervention to improve. Horses who underwent surgery were divided into globe-sparing procedures or enucleation. Effects of bacterial co-infection, previous topical steroid or antifungal use, and time of year on fungal genus and outcome were evaluated. Aspergillus spp. was cultured from 41 eyes (63%), while 24 eyes (37%) cultured Fusarium spp. One horse cultured both species and was not included in further evaluation. From the horses that cultured Aspergillus spp., 28 eyes (68%) required surgical intervention to control the infection: 21 (75%) of these eyes maintained globe integrity, while 7 eyes (25%) were enucleated. Of those horses with Fusarium spp., 14 eyes (58%) required surgical intervention: 11 (79%) of these eyes maintained globe integrity, while 3 eyes (21%) were enucleated. Genus of fungus cultured was not significantly associated with the need for surgical intervention nor was it significantly associated with the necessity of globe-sparing surgery versus enucleation. Additionally, bacterial co-infection, previous steroidal or antifungal use, and time of year did not affect outcome or type of fungal species cultured. Equine keratomycosis from Fusarium spp. compared to keratomycosis from Aspergillus spp. is not associated with a different clinical outcome. © 2016 American College of Veterinary Ophthalmologists.

  4. New strategy for rapid diagnosis and characterization of fungal infections: the example of corneal scrapings.

    PubMed

    Goldschmidt, Pablo; Degorge, Sandrine; Che Sarria, Patricia; Benallaoua, Djida; Semoun, Oudy; Borderie, Vincent; Laroche, Laurent; Chaumeil, Christine

    2012-01-01

    The prognosis of people infected with Fungi especially immunocompromised depends on rapid and accurate diagnosis to capitalize on time administration of specific treatments. However, cultures produce false negative results and nucleic-acid amplification techniques require complex post-amplification procedures to differentiate relevant fungal types. The objective of this work was to develop a new diagnostic strategy based on real-time polymerase-chain reaction high-resolution melting analysis (PCR-HRM) that a) detects yeasts and filamentous Fungi, b) differentiates yeasts from filamentous Fungi, and c) discriminates among relevant species of yeasts. PCR-HRM detection limits and specificity were assessed with a) isolated strains; b) human blood samples experimentally infected with Fungi; c) blood experimentally infected with other infectious agents; d) corneal scrapings from patients with suspected fungal keratitis (culture positive and negative) and e) scrapings from patients with suspected bacterial, viral or Acanthamoeba infections. The DNAs were extracted and mixed with primers diluted in the MeltDoctor® HRM Master Mix in 2 tubes, the first for yeasts, containing the forward primer CandUn (5'CATGCCTGTTTGAGCGTC) and the reverse primer FungUn (5'TCCTCCGCTT ATTGATATGCT) and the second for filamentous Fungi, containing the forward primer FilamUn (5'TGCCTGTCCGAGCGTCAT) and FungUn. Molecular probes were not necessary. The yields of DNA extraction and the PCR inhibitors were systematically monitored. PCR-HRM detected 0.1 Colony Forming Units (CFU)/µl of yeasts and filamentous Fungi, differentiated filamentous Fungi from yeasts and discriminated among relevant species of yeasts. PCR-HRM performances were higher than haemoculture and sensitivity and specificity was 100% for culture positive samples, detecting and characterizing Fungi in 7 out 10 culture negative suspected fungal keratitis. PCR-HRM appears as a new, sensitive, specific and inexpensive test that detects

  5. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes

    PubMed Central

    Roux, Simon; Hallam, Steven J; Woyke, Tanja; Sullivan, Matthew B

    2015-01-01

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes. DOI: http://dx.doi.org/10.7554/eLife.08490.001 PMID:26200428

  6. Acute Viral Hepatitis in Pediatric Age Groups.

    PubMed

    Kc, Sudhamshu; Sharma, Dilip; Poudyal, Nandu; Basnet, Bhupendra Kumar

    2014-01-01

    Our clinical experience showed that there has been no decrease in pediatric cases of acute viral hepatitis in Kathmandu. The objective of the study was to analyze the etiology, clinical features, laboratory parameters, sonological findings and other to determine the probable prognostic factors of Acute Viral Hepatitis in pediatric population. Consecutive patients of suspected Acute Viral Hepatitis, below the age of 15 years, attending the liver clinic between January 2006 and December 2010 were studied. After clinical examination they were subjected to blood tests and ultrasound examination of abdomen. The patients were divided in 3 age groups; 0-5, 5-10 and 5-15 years. Clinical features, laboratory parameters, ultrasound findings were compared in three age groups. Etiology of Acute Viral Hepatitis was Hepatitis A virus 266 (85%), Hepatitis E virus in 24 (8%), Hepatitis B virus in 15 (5%). In 7(2%) patients etiology was unknown. Three patients went to acute liver failure but improved with conservative treatment. There was no statistical difference in most of the parameters studied in different age groups. Ascites was more common in 5-10 years age group. Patients with secondary bacterial infection, ultrasound evidence of prominent biliary tree and ascites were associated with increased duration of illness. Patients with history of herbal medications had prolonged cholestasis. Hepatitis A is most common cause of Acute Viral Hepatitis in pediatric population. Improper use of herbal medications, secondary bacterial infection and faulty dietary intake was associated with prolonged illness. Patients with prominent biliary radicals should be treated with antibiotics even with normal blood counts for earlier recovery.

  7. New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins

    PubMed Central

    Dias, Susana A.; Freire, João M.; Pérez-Peinado, Clara; Domingues, Marco M.; Gaspar, Diana; Vale, Nuno; Gomes, Paula; Andreu, David; Henriques, Sónia T.; Castanho, Miguel A. R. B.; Veiga, Ana S.

    2017-01-01

    The increasing prevalence of multidrug-resistant bacteria urges the development of new antibacterial agents. With a broad spectrum activity, antimicrobial peptides have been considered potential antibacterial drug leads. Using bioinformatic tools we have previously shown that viral structural proteins are a rich source for new bioactive peptide sequences, namely antimicrobial and cell-penetrating peptides. Here, we test the efficacy and mechanism of action of the most promising peptides among those previously identified against both Gram-positive and Gram-negative bacteria. Two cell-penetrating peptides, vCPP 0769 and vCPP 2319, have high antibacterial activity against Staphylococcus aureus, MRSA, Escherichia coli, and Pseudomonas aeruginosa, being thus multifunctional. The antibacterial mechanism of action of the two most active viral protein-derived peptides, vAMP 059 and vCPP 2319, was studied in detail. Both peptides act on both Gram-positive S. aureus and Gram-negative P. aeruginosa, with bacterial cell death occurring within minutes. Also, these peptides cause bacterial membrane permeabilization and damage of the bacterial envelope of P. aeruginosa cells. Overall, the results show that structural viral proteins are an abundant source for membrane-active peptides sequences with strong antibacterial properties. PMID:28522994

  8. Recurrent and Sustained Viral Infections in Primary Immunodeficiencies

    PubMed Central

    Ruffner, Melanie A.; Sullivan, Kathleen E.; Henrickson, Sarah E.

    2017-01-01

    Viral infections are commonplace and often innocuous. Nevertheless, within the population of patients with primary immunodeficiencies (PIDDs), viral infections can be the feature that drives a diagnostic evaluation or can be the most significant morbidity for the patient. This review is focused on the viral complications of PIDDs. It will focus on respiratory viruses, the most common type of viral infection in the general population. Children and adults with an increased frequency or severity of respiratory viral infections are often referred for an immunologic evaluation. The classic teaching is to investigate humoral function in people with recurrent sinopulmonary infections, but this is often interpreted to mean recurrent bacterial infections. Recurrent or very severe viral infections may also be a harbinger of a primary immunodeficiency as well. This review will also cover persistent cutaneous viral infections, systemic infections, central nervous system infections, and gastrointestinal infections. In each case, the specific viral infections may drive a diagnostic evaluation that is specific for that type of virus. This review also discusses the management of these infections, which can become problematic in patients with PIDDs. PMID:28674531

  9. Detection of herpes viruses in the cerebrospinal fluid of adults with suspected viral meningitis in Malawi.

    PubMed

    Benjamin, L A; Kelly, M; Cohen, D; Neuhann, F; Galbraith, S; Mallewa, M; Hopkins, M; Hart, I J; Guiver, M; Lalloo, D G; Heyderman, R S; Solomon, T

    2013-02-01

    We looked for herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively), varicella zoster virus (VZV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) DNA in Malawian adults with clinically suspected meningitis. We collected cerebrospinal fluid (CSF) from consecutive adults admitted with clinically suspected meningitis to Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi, for a period of 3 months. Those with proven bacterial or fungal meningitis were excluded. Real-time polymerase chain reaction (PCR) was performed on the CSF for HSV-1 and HSV-2, VZV, EBV and CMV DNA. A total of 183 patients presented with clinically suspected meningitis. Of these, 59 (32 %) had proven meningitis (bacterial, tuberculous or cryptococcal), 39 (21 %) had normal CSF and 14 (8 %) had aseptic meningitis. For the latter group, a herpes virus was detected in 9 (64 %): 7 (50 %) had EBV and 2 (14 %) had CMV, all were human immunodeficiency virus (HIV)-positive. HSV-2 and VZV were not detected. Amongst those with a normal CSF, 8 (21 %) had a detectable herpes virus, of which 7 (88 %) were HIV-positive. The spectrum of causes of herpes viral meningitis in this African population is different to that in Western industrialised settings, with EBV being frequently detected in the CSF. The significance of this needs further investigation.

  10. Bacterial Lipopolysaccharide Destabilizes Influenza Viruses.

    PubMed

    Bandoro, Christopher; Runstadler, Jonathan A

    2017-01-01

    Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host's immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long-term persistence and

  11. Bacterial Lipopolysaccharide Destabilizes Influenza Viruses

    PubMed Central

    2017-01-01

    ABSTRACT Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host’s immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long

  12. Spontaneous bacterial and fungal infections in genetically engineered mice: Is Escherichia coli an emerging pathogen in laboratory mouse?

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin

    2015-01-01

    The impact of particular microbes on genetically engineered mice depends on the genotype and the environment. Infections resulting in clinical disease have an obvious impact on animal welfare and experimentation. In this study, we investigated the bacterial and fungal aetiology of spontaneous clinical disease of infectious origin among the genetically engineered mice from our institution in relation to their genotype. A total of 63 mice belonging to 33 different mice strains, from severe immunodeficient to wild-type, were found to display infections as the primary cause leading to their euthanasia. The necropsies revealed abscesses localized subcutaneously as well as in the kidney, preputial glands, seminal vesicles, in the uterus, umbilicus or in the lung. In addition, pneumonia, endometritis and septicaemia cases were recorded. Escherichia coli was involved in 21 of 44 (47.72%) of the lesions of bacterial origin, whereas [Pasteurella] pneumotropica was isolated from 19 of 44 (43.18%) cases. The infections with the two agents mentioned above included three cases of mixed infection with both pathogens. Staphylococcus aureus was considered responsible for five of 44 (11.36%) cases whereas Enterobacter cloacae was found to cause lesions in two of 44 (4.54%) mice. Overall, 16 of the 44 (36.36%) cases of bacterial aetiology affected genetically engineered mice without any explicit immunodeficiency or wild-type strains. The remaining 19 cases of interstitial pneumonia were caused by Pneumocystis murina. In conclusion, the susceptibility of genetically modified mice to opportunistic infections has to be regarded with precaution, regardless of the type of genetic modification performed. Beside the classical opportunists, such as [Pasteurella] pneumotropica and Staphylococcus aureus, Escherichia coli should as well be closely monitored to evaluate whether it represents an emerging pathogen in the laboratory mouse.

  13. Two decades of warming increases diversity of a potentially lignolytic bacterial community

    PubMed Central

    Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  14. Bacterial Communities in Boreal Forest Mushrooms Are Shaped Both by Soil Parameters and Host Identity

    PubMed Central

    Pent, Mari; Põldmaa, Kadri; Bahram, Mohammad

    2017-01-01

    Despite recent advances in understanding the microbiome of eukaryotes, little is known about microbial communities in fungi. Here we investigate the structure of bacterial communities in mushrooms, including common edible ones, with respect to biotic and abiotic factors in the boreal forest. Using a combination of culture-based and Illumina high-throughput sequencing, we characterized the bacterial communities in fruitbodies of fungi from eight genera spanning four orders of the class Agaricomycetes (Basidiomycota). Our results revealed that soil pH followed by fungal identity are the main determinants of the structure of bacterial communities in mushrooms. While almost half of fruitbody bacteria were also detected from soil, the abundance of several bacterial taxa differed considerably between the two environments. The effect of host identity was significant at the fungal genus and order level and could to some extent be ascribed to the distinct bacterial community of the chanterelle, representing Cantharellales—the earliest diverged group of mushroom-forming basidiomycetes. These data suggest that besides the substantial contribution of soil as a major taxa source of bacterial communities in mushrooms, the structure of these communities is also affected by the identity of the host. Thus, bacteria inhabiting fungal fruitbodies may be non-randomly selected from environment based on their symbiotic functions and/or habitat requirements. PMID:28539921

  15. Influence of environmental variation on the bacterioplankton community and its loss to viral lysis in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Šulčius, Sigitas; Reunamo, Anna; Paškauskas, Ričardas; Leskinen, Piia

    2018-05-01

    Coastal lagoons are continuously exposed to strong environmental gradients that determine the distribution and trophic interactions of microbial communities. Therefore, in this study we assessed whether and how environmental changes influence the bacterial community and its vulnerability to viral infection and lysis along the major environmental gradient in the Curonian Lagoon. We found significant differences in bacterial community profiles, their richness and evenness between the riverine, freshwater southern part and the Baltic Sea water intrusion-influenced northern part of the lagoon, suggesting strong environmental control of the structure of bacterial communities. Viruses were found to be play an important role in bacterial mortality in the Curonian Lagoon, being responsible for the removal of 20-50% of the bacterial standing stock. We observed differences in virioplankton decay rates and virus burst sizes between the northern and southern parts of the lagoon. However, no relationships were found between viral activity and bacterial communities within the lagoon ecosystem. The frequency of infected cells and virus-mediated bacterial mortality (VMBM) remained constant among the sampling sites irrespective of differences in bacteria community assemblages and environmental conditions. The results indicate that factors determining changes in bacterial diversity are different from the factors limiting their vulnerability to viral infection and lysis. This study also suggests that under changing environmental conditions, virus-bacteria interactions are more stable than the interacting viral and bacterial communities themselves. These findings are important for understanding the functioning of the coastal ecosystems under the rapidly changing local (spatial and temporal) and global (e.g. eutrophication, climate change) conditions.

  16. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.

    PubMed

    Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini

    2016-10-01

    This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.

  17. Co-relation of estrous cycle phases with uterine bacterial and fungal flora in non-pregnant female laboratory rabbits

    PubMed Central

    Mogheiseh, A.; Derakhshandeh, A.; Batebi, E.; Golestani, N.; Moshiri, A.

    2017-01-01

    This study was designed to investigate the relationship between the estrous cycle phases with uterine bacterial and fungal flora in non-pregnant female rabbits. Thirty laboratory mature multiparous rabbits were used for this purpose. Samples from uterine lavage for culture of bacteria and fungi were collected at different stages of estrous cycle (based on vaginal cytology), and histopathological observations were evaluated based on the scoring system used for defining the infection of the uterus. Various types of bacteria and fungi were isolated from rabbits at all stages of estrous cycle. The widest variety of bacteria and fungi was isolated at Di-estrous stage and the lowest variety was detected at estrous stage. Klebsiella oxytoca as well as yeast have been isolated at all stages of estrous cycle. This study showed that infection with K. oxytoca and yeast had no relationship with different stages of estrous cycle but other bacteria and fungus were associated with one or more stages of the estrous cycle in rabbits. PMID:28775754

  18. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting.

    PubMed

    Xi, Beidou; He, Xiaosong; Dang, Qiuling; Yang, Tianxue; Li, Mingxiao; Wang, Xiaowei; Li, Dan; Tang, Jun

    2015-11-01

    In this study, PCR-DGGE method was applied to investigate the impact of multi-stage inoculation treatment on the community composition of bacterial and fungal during municipal solid wastes (MSW) composting process. The results showed that the high temperature period was extended by the multi-stage inoculation treatment, 1day longer than initial-stage inoculation treatment, and 5days longer than non-inoculation treatment. The temperature of the secondary fermentation increased to 51°C with multi-stage inoculation treatment. The multi-stage inoculation method improved the community diversity of bacteria and fungi that the diversity indexes reached the maximum on the 17days and 20days respectively, avoided the competition between inoculations and indigenous microbes, and enhanced the growth of dominant microorganisms. The DNA sequence indicated that various kinds of uncultured microorganisms with determined ratios were detected, which were dominant microbes during the whole fermentation process. These findings call for further researches of compost microbial cultivation technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Viral infection and antiviral therapy in the neonatal intensive care unit.

    PubMed

    Barford, Galina; Rentz, Alison C; Faix, Roger G

    2004-01-01

    Viral diseases are leading causes of mortality and morbidity among infants requiring care in the neonatal intensive care unit (NICU), with ongoing discoveries of new viral pathology likely to add to the burdens posed. Many viral diseases in NICU infants are undiagnosed or appreciated only late in the course because of subtle or asymptomatic presentation, confusion with bacterial disease, and failure to consider viral disease. We present an overview of viral disease in NICU infants, with emphasis on pharmacologic agents currently employed for prophylaxis and treatment of such diseases. Advances in molecular biology and popular demand to develop antiviral agents for viral diseases (eg, human immunodeficiency virus) offer great promise for the future.

  20. Comparison of viral infection in healthcare-associated pneumonia (HCAP) and community-acquired pneumonia (CAP)

    PubMed Central

    Park, Kyoung Un; Lee, Sang Hoon; Lee, Yeon Joo; Park, Jong Sun; Cho, Young-Jae; Yoon, Ho Il; Lee, Choon-Taek

    2018-01-01

    Background Although viruses are known to be the second most common etiological factor in community-acquired pneumonia (CAP), the respiratory viral profile of the patients with healthcare-associated pneumonia (HCAP) has not yet been elucidated. We investigated the prevalence and the clinical impact of respiratory virus infection in adult patients with HCAP. Methods Patients admitted with HCAP or CAP, between January and December 2016, to a tertiary referral hospital in Korea, were prospectively enrolled, and virus identification was performed using reverse-transcription polymerase chain reaction (RT-PCR). Results Among 452 enrolled patients (224 with HCAP, 228 with CAP), samples for respiratory viruses were collected from sputum or endotracheal aspirate in 430 (95.1%) patients and from nasopharyngeal specimens in 22 (4.9%) patients. Eighty-seven (19.2%) patients had a viral infection, and the proportion of those with viral infection was significantly lower in the HCAP than in the CAP group (13.8% vs 24.6%, p = 0.004). In both the HCAP and CAP groups, influenza A was the most common respiratory virus, followed by entero-rhinovirus. The seasonal distributions of respiratory viruses were also similar in both groups. In the HCAP group, the viral infection resulted in a similar length of hospital stay and in-hospital mortality as viral–bacterial coinfection and bacterial infection, and the CAP group showed similar results. Conclusions The prevalence of viral infection in patients with HCAP was lower than that in patients with CAP, and resulted in a similar prognosis as viral–bacterial coinfection or bacterial infection. PMID:29447204

  1. Fungal Infections of the Spine.

    PubMed

    Ganesh, Devin; Gottlieb, Jonathan; Chan, Sherilynn; Martinez, Octavio; Eismont, Frank

    2015-06-15

    Review of the literature. To retrospectively examine the frequency of published fungal infections by species and the treatment algorithms used to eradicate the disease. Fungal infections of the spine present unique challenges to the modern multispecialty treatment team. Although rare in comparison with bacterial infections, fungal infections have been increasing in incidence over the past several decades. Evidences-based practice is limited to referencing smaller case series. MEDLINE, Scopus, and EMBASE searches were carried out by one of the authors as well as by the research desk at the University of Miami/Calder Memorial Library. We included peer-reviewed articles published between 1948 and September 2010; case reports, series, and reviews were all examined and compiled into a database. A total of 130 articles, representing 157 cases, were included in the review. Aspergillus (60 cases, 38.2% of the total) and Candida species (36 cases, 22.9% of the total) were the 2 most common organisms. Surgery was associated with a greater survival rate than medical management alone in patients with Aspergillus (26.9% mortality in surgical patients; 60% in medically treated patients) and Candida (0% vs. 28.6%). Overall mortality was 19.3%. The overall recurrence rate was 7.4%. Amphotericin use was associated with a higher mortality rate than azoles. Aspergillus is the most common published pathogen in fungal infections of the spine. Recent publications depicting the use of newer antifungal medications such as azoles report higher survival rates. Surgically treated patients in combination with antifungal therapy showed highest frequencies of patient survival in Aspergillus and Candida infections. 3.

  2. Bacterial and fungal microbiota of spontaneously fermented Chinese products, Rubing milk cake and Yan-cai vegetable pickles.

    PubMed

    Liu, Xin; Kuda, Takashi; Takahashi, Hajime; Kimura, Bon

    2018-06-01

    The Rubing milk cake from Yunnan and the Yan-cai vegetable pickles from Guangdong are traditional spontaneously fermented foods in China. We evaluated the microbial properties of these products with the analysis of their bacterial and fungal microbiota using classical culture-dependent and culture-independent methods, including a 16S rDNA gene (V4) and an internal transcribed spacer (ITS) region pyrosequencing method with MiSeq system. The viable lactic acid bacteria (LAB) count was 8 and 6 log colony-forming units (CFU)/g in Rubing and Yan-cai samples, respectively. The yeast count was approximately 100-1000 times less than the LAB count in most samples, except one Yan-cai sample. In addition, the gram-negative rod count in half of the samples was similar to the LAB count. Pyrosequencing results revealed the high abundance (10%-20%) of gram-negative Pseudomonas spp. and Enterobacteriaceae in these samples. These results suggest that some of these traditional foods are undesirable as ready-to-eat (RTE) foods, even when these are typical lactic acid fermented foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combined Analyses of Bacterial, Fungal and Nematode Communities in Andosolic Agricultural Soils in Japan

    PubMed Central

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols. PMID:22223474

  4. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    PubMed

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  5. Molecular indices of viral disease development in wild migrating salmon†.

    PubMed

    Miller, Kristina M; Günther, Oliver P; Li, Shaorong; Kaukinen, Karia H; Ming, Tobi J

    2017-01-01

    Infectious diseases can impact the physiological performance of individuals, including their mobility, visual acuity, behavior and tolerance and ability to effectively respond to additional stressors. These physiological effects can influence competitiveness, social hierarchy, habitat usage, migratory behavior and risk to predation, and in some circumstances, viability of populations. While there are multiple means of detecting infectious agents (microscopy, culture, molecular assays), the detection of infectious diseases in wild populations in circumstances where mortality is not observable can be difficult. Moreover, if infection-related physiological compromise leaves individuals vulnerable to predation, it may be rare to observe wildlife in a late stage of disease. Diagnostic technologies designed to diagnose cause of death are not always sensitive enough to detect early stages of disease development in live-sampled organisms. Sensitive technologies that can differentiate agent carrier states from active disease states are required to demonstrate impacts of infectious diseases in wild populations. We present the discovery and validation of salmon host transcriptional biomarkers capable of distinguishing fish in an active viral disease state [viral disease development (VDD)] from those carrying a latent viral infection, and viral versus bacterial disease states. Biomarker discovery was conducted through meta-analysis of published and in-house microarray data, and validation performed on independent datasets including disease challenge studies and farmed salmon diagnosed with various viral, bacterial and parasitic diseases. We demonstrate that the VDD biomarker panel is predictive of disease development across RNA-viral species, salmon species and salmon tissues, and can recognize a viral disease state in wild-migrating salmon. Moreover, we show that there is considerable overlap in the biomarkers resolved in our study in salmon with those based on similar human

  6. Molecular indices of viral disease development in wild migrating salmon†

    PubMed Central

    Günther, Oliver P.; Li, Shaorong; Kaukinen, Karia H.; Ming, Tobi J.

    2017-01-01

    Abstract Infectious diseases can impact the physiological performance of individuals, including their mobility, visual acuity, behavior and tolerance and ability to effectively respond to additional stressors. These physiological effects can influence competitiveness, social hierarchy, habitat usage, migratory behavior and risk to predation, and in some circumstances, viability of populations. While there are multiple means of detecting infectious agents (microscopy, culture, molecular assays), the detection of infectious diseases in wild populations in circumstances where mortality is not observable can be difficult. Moreover, if infection-related physiological compromise leaves individuals vulnerable to predation, it may be rare to observe wildlife in a late stage of disease. Diagnostic technologies designed to diagnose cause of death are not always sensitive enough to detect early stages of disease development in live-sampled organisms. Sensitive technologies that can differentiate agent carrier states from active disease states are required to demonstrate impacts of infectious diseases in wild populations. We present the discovery and validation of salmon host transcriptional biomarkers capable of distinguishing fish in an active viral disease state [viral disease development (VDD)] from those carrying a latent viral infection, and viral versus bacterial disease states. Biomarker discovery was conducted through meta-analysis of published and in-house microarray data, and validation performed on independent datasets including disease challenge studies and farmed salmon diagnosed with various viral, bacterial and parasitic diseases. We demonstrate that the VDD biomarker panel is predictive of disease development across RNA-viral species, salmon species and salmon tissues, and can recognize a viral disease state in wild-migrating salmon. Moreover, we show that there is considerable overlap in the biomarkers resolved in our study in salmon with those based on

  7. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China

    PubMed Central

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds. PMID:26221957

  8. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China.

    PubMed

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds.

  9. Mitotic stability and nuclear inheritance of integrated viral cDNA in engineered hypovirulent strains of the chestnut blight fungus.

    PubMed Central

    Chen, B; Choi, G H; Nuss, D L

    1993-01-01

    Transmissible hypovirulence is a novel form of biological control in which virulence of a fungal pathogen is attenuated by an endogenous RNA virus. The feasibility of engineering hypovirulence was recently demonstrated by transformation of the chestnut blight fungus, Cryphonectria parasitica, with a full-length cDNA copy of a hypovirulence-associated viral RNA. Engineered hypovirulent transformants were found to contain both a chromsomally integrated cDNA copy of the viral genome and a resurrected cytoplasmically replicating double-stranded RNA form. We now report stable maintenance of integrated viral cDNA through repeated rounds of asexual sporulation and passages on host plant tissue. We also demonstrate stable nuclear inheritance of the integrated viral cDNA and resurrection of the cytoplasmic viral double-stranded RNA form in progeny resulting from the mating of an engineered hypovirulent C. parasitica strain and a vegetatively incompatible virulent strain. Mitotic stability of the viral cDNA ensures highly efficient transmission of the hypovirulence phenotype through conidia. Meiotic transmission, a mode not observed for natural hypovirulent strains, introduces virus into ascospore progeny representing a spectrum of vegetative compatibility groups, thereby circumventing barriers to anastomosis-mediated transmission imposed by the fungal vegetative incompatibility system. These transmission properties significantly enhance the potential of engineered hypovirulent C. parasitica strains as effective biocontrol agents. Images PMID:8344241

  10. Pericardial Effusion

    MedlinePlus

    ... heart was within the field of radiation Chemotherapy treatment for cancer, such as doxorubicin (Doxil) and cyclophosphamide Waste products in the blood due to kidney failure (uremia) Underactive thyroid (hypothyroidism) Viral, bacterial, fungal or parasitic infections Trauma or ...

  11. Investigating incidence of bacterial and fungal contamination in shared cosmetic kits available in the women beauty salons

    PubMed Central

    Dadashi, Leila; Dehghanzadeh, Reza

    2016-01-01

    Background: Rich texture of cosmetics can provide a suitable medium for growth of pathogenic microorganisms. In addition, skin microflora of anyone is unique which might be harmful to another person. Skin and eye pathogenicity could be communicated by sharing cosmetics in beauty saloons. The main objective of this study was to evaluate microbial contamination of in-use skin and eye cosmetics which are available as public make-up kits for women in the beauty salons. Methods: Fifty-two in-use skin and eye cosmetics were included in this cross sectional study.The specimens from all the cosmetics were collected following the owner’s informed consent, and then about 1 g of the cosmetics was added to nine ml of liquid Eugon LT100 broth medium,two for each product. Ten beauty salons randomly selected from different regions of Tabriz city between June and August 2016. Cosmetics were sampled and carried to the laboratory in sterile condition and then examined to determine bacterial and fungal species in the samples. Results: All of in-use cosmetic were contaminated with bacteria (95% CI = 93.1%-100.0%) and about 19.2% by fungus and yeast (95% CI = 10.8%-31.9%). Streptococcus spp., Pseudomonas spp., Acinetobacter, Bacillus spp., Staphylococcus spp., Escherichia coli, Salmonella, Klebsiella,Citrobacter, Rhodotorula and Candida were dominant species which were isolated from the cosmetics. Powders with 38.5% (95% CI = 17.7%-64.5%) and eyeliners with 30.0% (95%CI = 6.7%-65.2%) were the most fungal contaminated products. Conclusion: Shared cosmetics in beauty salons are almost contaminated by bacteria and fungus.Therefore, it is suggested to avoid sharing cosmetics by women and prevent use of public cosmetics in toilet saloons. PMID:27579260

  12. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  13. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonilla-Findji, Osana; Malits, Andrea; Lefèvre, Dominique; Rochelle-Newall, Emma; Lemée, Rodolphe; Weinbauer, Markus G.; Gattuso, Jean-Pierre

    2008-03-01

    To investigate the potential effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE), experiments were performed using natural microbial communities from the coastal Mediterranean Sea, from a typical high-nutrient low-chlorophyll (HNLC) region in the Southern Ocean and from a naturally iron (Fe)-fertilized algal bloom above the Kerguelen Plateau (Southern Ocean). Seawater was sequentially filtered and concentrated to produce a bacterial concentrate, a viral concentrate and a virus-free ultrafiltrate. The combination of all three fractions served as treatments with active viruses. Heating or microwaving was used to inactivate viruses for the control treatments. Despite the differences in the initial trophic state and community composition of the study sites, consistent trends were found. In the presence of active viruses, BR was stimulated (up to 113%), whereas BP and BGE were reduced (up to 51%). Our results suggest that viruses enhance the role of bacteria as oxidizers of organic matter, hence as producers of CO 2, and remineralizers of CO 2, N, P and Fe. In the context of Fe-fertilization, this has important implications for the final fate of organic carbon in marine systems.

  14. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.

    PubMed

    Lixandru, Brînduşa-Elena; Drăcea, Nicoleta Olguţa; Dragomirescu, Cristiana Cerasella; Drăgulescu, Elena Carmina; Coldea, Ileana Luminiţa; Anton, Liliana; Dobre, Elena; Rovinaru, Camelia; Codiţă, Irina

    2010-01-01

    The currative properties of aromatic and medicinal plants have been recognized since ancient times and, more recently, the antimicrobial activity of plant essential oils has been used in several applications, including food preservation. The purpose of this study was to create directly comparable, quantitative data on the antimicrobial activity of some plant essential oils prepared in the National Institute of Research-Development for Chemistry and Petrochemistry, Bucharest to be used for the further development of food packaging technology, based on their antibacterial and antifungal activity. The essential oils extracted from thyme (Thymus vulgaris L.), basil (Ocimum basilicum L.), coriander (Coriandrum sativum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), fennel (Foeniculum vulgare L.), spearmint (Mentha spicata L.) and carraway (Carum carvi L.) were investigated for their antimicrobial activity against eleven different bacterial and three fungal strains belonging to species reported to be involved in food poisoning and/or food decay: S. aureus ATCC 25923, S. aureus ATCC 6538, S. aureus ATCC 25913, E. coli ATCC 25922, E. coli ATCC 35218, Salmonella enterica serovar Enteritidis Cantacuzino Institute Culture Collection (CICC) 10878, Listeria monocytogenes ATCC 19112, Bacillus cereus CIP 5127, Bacillus cereus ATCC 11778, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, Penicillium spp. CICC 251 and two E. coli and Salmonella enterica serovar Enteritidis clinical isolates. The majority of the tested essential oils exibited considerable inhibitory capacity against all the organisms tested, as supported by growth inhibition zone diameters, MICs and MBC's. Thyme, coriander and basil oils proved the best antibacterial activity, while thyme and spearmint oils better inhibited the fungal species.

  15. A review of infectious bovine rhinotracheitis, shipping fever pneumonia and viral-bacterial synergism in respiratory disease of cattle.

    PubMed Central

    Yates, W D

    1982-01-01

    Unanswered questions on the etiology and prevention of shipping fever pneumonia have allowed this disease to remain one of the most costly to the North American cattle industry. Research in this area has indirected that while Pasteurella haemolytica and, to a lesser extent, P. multocida are involved in most cases, they seem to require additional factors to help initiate the disease process. Bovine herpes virus 1 has been shown experimentally to be one such factor. This review examines in some detail the topics of infectious bovine rhinotracheitis, shipping fever, and viral-bacterial interactions in the production of respiratory disease in various species. It deals with history, definitions, etiologies, clinical signs and lesions, and considers exposure levels, transmission and various pathogenetic mechanisms that are postulated or known to occur. PMID:6290011

  16. Information transmission in microbial and fungal communication: from classical to quantum.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2018-06-01

    Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.

  17. Veterinary Microbiology, 3rd Edition

    USDA-ARS?s Scientific Manuscript database

    Veterinary Microbiology, Third Edition is organized into four sections and begins with an updated and expanded introductory section on infectious disease pathogenesis, diagnosis and clinical management. The second section covers bacterial and fungal pathogens, and the third section describes viral d...

  18. Chapter VIII. Contributions of propagation techniques and genetic modification to breeding - genetic engineering for disease resistance

    USDA-ARS?s Scientific Manuscript database

    Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...

  19. The impact of albendazole treatment on the incidence of viral- and bacterial-induced diarrhea in school children in southern Vietnam: study protocol for a randomized controlled trial.

    PubMed

    Leung, Jacqueline M; Hong, Chau Tran Thi; Trung, Nghia Ho Dang; Thi, Hoa Nhu; Minh, Chau Nguyen Ngoc; Thi, Thuy Vu; Hong, Dinh Thanh; Man, Dinh Nguyen Huy; Knowles, Sarah C L; Wolbers, Marcel; Hoang, Nhat Le Thanh; Thwaites, Guy; Graham, Andrea L; Baker, Stephen

    2016-06-06

    Anthelmintics are one of the more commonly available classes of drugs to treat infections by parasitic helminths (especially nematodes) in the human intestinal tract. As a result of their cost-effectiveness, mass school-based deworming programs are becoming routine practice in developing countries. However, experimental and clinical evidence suggests that anthelmintic treatments may increase susceptibility to other gastrointestinal infections caused by bacteria, viruses, or protozoa. Hypothesizing that anthelmintics may increase diarrheal infections in treated children, we aim to evaluate the impact of anthelmintics on the incidence of diarrheal disease caused by viral and bacterial pathogens in school children in southern Vietnam. This is a randomized, double-blinded, placebo-controlled trial to investigate the effects of albendazole treatment versus placebo on the incidence of viral- and bacterial-induced diarrhea in 350 helminth-infected and 350 helminth-uninfected Vietnamese school children aged 6-15 years. Four hundred milligrams of albendazole, or placebo treatment will be administered once every 3 months for 12 months. At the end of 12 months, all participants will receive albendazole treatment. The primary endpoint of this study is the incidence of diarrheal disease assessed by 12 months of weekly active and passive case surveillance. Secondary endpoints include the prevalence and intensities of helminth, viral, and bacterial infections, alterations in host immunity and the gut microbiota with helminth and pathogen clearance, changes in mean z scores of body weight indices over time, and the number and severity of adverse events. In order to reduce helminth burdens, anthelmintics are being routinely administered to children in developing countries. However, the effects of anthelmintic treatment on susceptibility to other diseases, including diarrheal pathogens, remain unknown. It is important to monitor for unintended consequences of drug treatments in

  20. Spontaneous fungal peritonitis: a rare but severe complication of liver cirrhosis.

    PubMed

    Gravito-Soares, Marta; Gravito-Soares, Elisa; Lopes, Sandra; Ribeiro, Graça; Figueiredo, Pedro

    2017-09-01

    Spontaneous bacterial peritonitis is the most common infectious complication in cirrhosis. Spontaneous fungal peritonitis is rare and remains unknown. In this work, spontaneous fungal peritonitis as well as risk factors and prognosis are characterized. A retrospective case-control study of 253 consecutive admissions by peritonitis in cirrhotic patients was carried out between 2006 and 2015. Comparison of patients with spontaneous fungal peritonitis (cases) and spontaneous bacterial peritonitis with positive microbiologic ascitic fluid culture (controls) was performed. Variables such as sociodemographic and clinical features, cirrhosis etiology, liver dysfunction scores, ascitic and laboratory parameters, invasive procedures, and prognosis were evaluated. Of the 231 patients, eight (3.5%) developed spontaneous fungal peritonitis, 62.5% of cases being coinfected with bacteria. Candida spp. was isolated in 87.5% of cases, mainly Candida albicans (37.5%) and C. krusei (25.0%). Patients with spontaneous fungal peritonitis had higher ascitic fluid lactate dehydrogenase (288.4±266.6 vs. 161.0±179.5; P=0.011), blood leukocyte count (15187.5±5432.3 vs. 10969.8±6949.5; P=0.028), blood urea nitrogen (69.8±3.1 vs. 36.3±25.5; P=0.001), higher number of invasive procedures (colonoscopy: 25.0 vs. 0.8%, P=0.001; urinary catheterization: 87.5 vs. 49.6%, P=0.038; nasogastric intubation: 87.5 vs. 26.9%, P=0.001), and longer duration of hospital stay (30.0±32.9 vs. 18.9±17.0 days; P=0.031). No statistical difference was found between the two groups for Model for End-Stage Liver Disease, Model for End-Stage Liver Disease-sodium, and Child-Pugh scores. Spontaneous fungal peritonitis was associated with a worse prognosis, particularly severe sepsis/septic shock (87.5 vs. 42.8%, P=0.023), admission in the gastroenterology intensive care unit (87.5 vs. 24.4%; P=0.001), and overall (62.5 vs. 31.9%; P=0.039) or 30-day mortality (50.0 vs. 24.4%; P=0.034), with a mean diagnosis

  1. Effects of fungal species, cultivation time, growth substrate, and air exposure velocity on the fluorescence properties of airborne fungal spores.

    PubMed

    Saari, S; Mensah-Attipoe, J; Reponen, T; Veijalainen, A M; Salmela, A; Pasanen, P; Keskinen, J

    2015-12-01

    Real-time bioaerosol monitoring is possible with fluorescence based instruments. This study provides information on major factors that can affect the fluorescence properties of airborne fungal spores. Two fluorescence-based bioaerosol detectors, BioScout, and ultraviolet aerodynamic particle sizer (UVAPS), were used to study fluorescent particle fractions (FPFs) of released spores of three fungal species (Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium brevicompactum). Two culture media (agar and gypsum board), three ages of the culture (one week, one month, and four months), and three aerosolization air velocities (5, 15, and 27 m/s) were tested. The results showed that the FPF values for spores released from gypsum were typically lower than for those released from agar indicating that poor nutrient substrate produces spores with lower amounts of fluorescent compounds. The results also showed higher FPF values with lower air velocities in aerosolization. This indicates that easily released fully developed spores have more fluorescent compounds compared to forcibly extracted non-matured spores. The FPFs typically were lower with older samples. The FPF results between the two instruments were similar, except with four-month-old samples. The results can be utilized in field measurements of fungal spores to estimate actual concentrations and compare different instruments with fluorescence-based devices as well as in instrument calibration and testing in laboratory conditions. Fluorescence-based instruments are the only choice for real-time detection of fungal spores at the moment. In general, all fluorescence-based bioaerosol instruments are tested against known bacterial and fungal spores in laboratory conditions. This study showed that fungal species, growth substrate, age of culture, and air current exposure rate have an effect on detection efficiency of fungal spores in the fluorescence-based instruments. Therefore, these factors should be

  2. Broad Surveys of DNA Viral Diversity Obtained through Viral Metagenomics of Mosquitoes

    PubMed Central

    Ng, Terry Fei Fan; Willner, Dana L.; Lim, Yan Wei; Schmieder, Robert; Chau, Betty; Nilsson, Christina; Anthony, Simon; Ruan, Yijun; Rohwer, Forest; Breitbart, Mya

    2011-01-01

    Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes. PMID:21674005

  3. A comprehensive and quantitative exploration of thousands of viral genomes

    PubMed Central

    Mahmoudabadi, Gita

    2018-01-01

    The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. PMID:29624169

  4. A comprehensive and quantitative exploration of thousands of viral genomes.

    PubMed

    Mahmoudabadi, Gita; Phillips, Rob

    2018-04-19

    The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends - such as gene density, noncoding percentage, and abundances of functional gene categories - across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. © 2018, Mahmoudabadi et al.

  5. Effect of thermoneutral housing on fungal-induced respiratory allergic disease in mice

    EPA Science Inventory

    Climate change is projected to increase the number of fungal, bacterial, and pollen agents both indoors and outdoors and may become a significant health impact. Combined with the thermal stress from a rise in global temperatures, it is important to consider how respiratory allerg...

  6. Bacterial, fungal, parasitological and pathological analyses of abortions in small ruminants from 2012-2016.

    PubMed

    Schnydrig, P; Vidal, S; Brodard, I; Frey, C; Posthaus, H; Perreten, V; Rodriguez-Campos, S

    2017-12-01

    Abortion in small ruminants presents a clinical and economic problem with legal implications regarding animal health and zoonotic risk by some of the abortive pathogens. Several bacteria, fungi and parasites can cause abortion, but cost-orientated routine diagnostics only cover the most relevant epizootic agents. To cover a broad-range of common as well as underdiagnosed abortifacients, we studied 41 ovine and 36 caprine abortions by Stamp's modification of the Ziehl-Neelsen stain, culture for classical and opportunistic abortive agents, real-time PCR for C. burnetii, C. abortus, pathogenic Leptospira spp., Toxoplasma gondii and Neospora caninum. When the dam's serum was available detection of antibodies against B. melitensis, C. burnetii, C. abortus and Leptospira spp. was performed. In 37 cases sufficient placental tissue was available for pathological and histopathological examination. From the 77 cases 11 (14.3%) were positive by staining whereas real-time PCR detected C. burnetii and C. abortus in 49.3% and 32.5% of the cases. Antibodies against C. abortus and Leptospira spp. (33.3 and 26.7%) were detected. In 23.4% a bacterial culturable pathogen was isolated. Fungal abortion was confirmed in 1.3% of cases. A single abortive agent was identified in 44.2% of the cases and in 31.2% multiple possible abortifacients were present. Our study shows that the highest clarification rate can only be achieved by a combination of methods and evidences the role that multi-infections play as cause of abortion.

  7. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    PubMed Central

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  8. Community acquired respiratory virus lower respiratory tract disease in allogeneic stem cell transplantation recipient: Risk factors and mortality from pulmonary virus-bacterial mixed infections.

    PubMed

    Piñana, José Luis; Gómez, María Dolores; Pérez, Ariadna; Madrid, Silvia; Balaguer-Roselló, Aitana; Giménez, Estela; Montoro, Juan; González, Eva María; Vinuesa, Víctor; Moles, Paula; Hernández-Boluda, Juan Carlos; Salavert, Miguel; Calabuig, Marisa; Sanz, Guillermo; Solano, Carlos; Sanz, Jaime; Navarro, David

    2018-05-29

    Risk factors (RFs) and mortality data of community acquire respiratory virus (CARVs) lower respiratory tract disease (LRTD) with concurrent pulmonary co-infections in the setting of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is scarce. From January 2011 to December 2017, we retrospectively compared the outcome of allo-HSCT recipients diagnosed of CARVs LRTD mono-infection (n= 52, group 1), to those with viral, bacterial or fungal pulmonary CARVs LRTD co-infections (n=15, group 2; n= 20, group 3, and n=11, group 4, respectively), and with those having bacterial pneumonia mono-infection (n= 19, group 5). Overall survival (OS) at day 60 after BAL was significantly higher in group 1, 2 and 4 compared to group 3 (77%, 67% and 73% vs 35%, respectively, p= 0.012). Recipients of group 5 showed a trend to better OS compared to those of group 3 (62% vs 35%, p= 0.1). Multivariate analyses showed bacterial co-infection as a RF for mortality (HR 2.65, 95% C.I. 1.2-6.9, P = 0.017). We identified other 3 RFs for mortality: lymphocyte count < 0.5 × 109/L (HR 2.6, 95% 1.1-6.2, P= 0.026), the occurrence of and CMV DNAemia requiring anti-viral therapy (CMV-DNAemia-RAT) at the time of BAL (HR 2.32, 95% C.I. 1.1-4.9, P = 0.03) and the need of oxygen support (HR 8.3, 95% C.I. 2.9-35.3, P = 0.004). CARV LRTD co-infections are frequent and may have a negative effect in the outcome, in particular in the context of bacterial co-infections. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Integrated disease management strategies in sugarcane cultivation

    USDA-ARS?s Scientific Manuscript database

    Sugarcane diseases cause severe losses to sugar production around the world. More than 100 bacterial, fungal, phytoplasma and viral diseases are present in sugarcane growing areas worldwide. Some diseases are present in most sugarcane growing regions while others are confined to specific countries. ...

  10. First step in the differential diagnosis of folliculitis: cytology.

    PubMed

    Durdu, Murat; Ilkit, Macit

    2013-02-01

    Folliculitis is a superficial inflammation of the hair follicles, and can be observed in individuals of any age or race. The incidence of folliculitis is unknown because most patients only consult a doctor in cases of increasing lesions. There are various infectious and non-infectious causes of folliculitis, and the most common causative agent is Staphylococcus aureus. In addition, several Gram-negative bacterial, fungal, parasitic, and viral pathogens can cause follicular papules and pustules. In routine practice, however, these lesions are usually thought to be bacterial. Therefore, topical and/or systemic antibacterial treatment is recommended, but this involves the risk of being misused for months or even years. Cytology, a simple, rapid, inexpensive, and repeatable diagnostic method, can reveal various bacterial, fungal, viral, and parasitic pathogens. This review discusses the use of clinical sampling and staining of cytologic samples for the differential diagnosis of folliculitis, cytologic findings, and the frequency with which dermatologists use cytology to diagnose folliculitis, particularly in the age of molecular biology and more expensive, sophisticated investigations.

  11. Association between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and radiologically confirmed pneumonia in Vietnamese children.

    PubMed

    Vu, Huong Thi Thu; Yoshida, Lay Myint; Suzuki, Motoi; Nguyen, Hien Anh Thi; Nguyen, Cat Dinh Lien; Nguyen, Ai Thi Thuy; Oishi, Kengo; Yamamoto, Takeshi; Watanabe, Kiwao; Vu, Thiem Dinh

    2011-01-01

    The interplay between nasopharyngeal bacterial carriage, viral coinfection, and lower respiratory tract infections (LRTIs) is poorly understood. We explored this association in Vietnamese children aged less than 5 years. A hospital-based case-control study of pediatric LRTIs was conducted in Nha Trang, Vietnam. A total of 550 hospitalized children (274 radiologically confirmed pneumonia [RCP] and 276 other LRTIs) were enrolled and 350 healthy controls were randomly selected from the community. Polymerase chain reaction-based methods were used to measure bacterial loads of Streptococcus pneumoniae (SP), Haemophilus influenzae, and Moraxella catarrhalis and to detect 13 respiratory viruses and bacterial serotypes in nasopharyngeal samples of study participants. The median nasopharyngeal bacterial load of SP was substantially higher in children with RCP compared with healthy controls or children with other LRTIs (P < 0.001). SP load was 15-fold higher in pneumonia children with viral coinfection compared with those children without viral coinfection (1.4 x 10⁷/mL vs. 9.1 x 10⁵/mL; P 0.0001). SP load was over 200-fold higher in serotypeable SP compared with nontypeable SP (2.5 x 10⁶/mL vs. 1 x 10⁴/mL; P < 0.0001). These associations were independent of potential confounders in multiple regression models. No clear association was found between nasopharyngeal load of Haemophilus influenzae or Moraxella catarrhalis and viral coinfection in either RCP or other LRTIs groups. An increased load of SP in the nasopharynx was associated with RCP, viral coinfection, and presence of pneumococcal capsule.

  12. Chemoprofile and functional diversity of fungal and bacterial endophytes and role of ecofactors - A review.

    PubMed

    Shah, Aiyatullah; Hassan, Qazi Parvaiz; Mushtaq, Saleem; Shah, Aabid Manzoor; Hussain, Aehtesham

    2017-10-01

    Endophytes represent a hidden world within plants. Almost all plants that are studied harbor one or more endophytes, which help their host to survive against pathogens and changing adverse environmental conditions. Fungal and bacterial endophytes with distinct ecological niches show important biological activities and ecological functions. Their unique physiological and biochemical characteristics lead to the production of niche specific secondary metabolites that may have pharmacological potential. Identification of specific secondary metabolites in adverse environment can also help us in understanding mechanisms of host tolerance against stress condition such as biological invasions, salt, drought, temperature. These metabolites include micro as well as macromolecules, which they produce through least studied yet surprising mechanisms like xenohormesis, toxin-antitoxin system, quorum sensing. Therefore, future studies should focus on unfolding all the underlying molecular mechanisms as well as the impact of physical and biochemical environment of a specific host over endophytic function and metabolite elicitation. Need of the hour is to reshape the focus of research over endophytes and scientifically drive their ecological role toward prospective pharmacological as well as eco-friendly biological applications. This may help to manage these endophytes especially from untapped ecoregions as a useful undying biological tool to meet the present challenges as well as lay a strong and logical basis for any impending challenges. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-09-01

    Host-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Our focal host species (Eleutherodactylus coqui) is a direct-developing frog that has suffered declines at some populations in the last 20 years, while others have not experienced any changes. We quantified skin bacterial alpha- and beta-diversity at four sampling time points, a period encompassing two seasons and ample variation in natural infections and environmental conditions. Despite the different patterns of infection across populations, we detected an overall increase in bacterial diversity through time, characterized by the replacement of bacterial operational taxonomic units (OTUs). Increased frog body temperatures possibly allowed the colonization of bacteria as well as the recruitment of a subset of indicator OTUs, which could have promoted the observed changes in diversity patterns. Our results suggest that natural environmental fluctuations might be involved in creating opportunities for bacterial replacement, potentially attenuating pathogen transmission and thus contributing to host persistence in E. coqui populations. © 2017 John Wiley & Sons Ltd.

  14. [Combination therapy of chronic bacterial prostatitis].

    PubMed

    Khryanin, A A; Reshetnikov, O V

    2016-08-01

    The article discusses the possible etiological factors in the development of chronic bacterial prostatitis. The authors presented a comparative long-term analysis of morbidity from non-viral sexually transmitted infections (STIs) in Russia. Against the background of general decline in STIs incidence, a significant percentage of them is made up by urogenital trichomoniasis. The findings substantiated the advantages of combination therapy (ornidazole and ofloxacin) for bacterial urinary tract infections.

  15. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

    PubMed Central

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

  16. Viral meningitis: which patients can be discharged from the emergency department?

    PubMed

    Mohseni, Michael M; Wilde, James A

    2012-12-01

    Even in an era when cases of viral meningitis outnumber bacterial meningitis by at least 25:1, most patients with clinical meningitis are hospitalized. We describe the clinical characteristics of an unusual outbreak of viral meningitis that featured markedly elevated cerebrospinal fluid white blood cell counts (CSF WBC). A validated prediction model for viral meningitis was applied to determine which hospital admissions could have been avoided. Data were collected retrospectively from patients presenting to our tertiary care center. Charts were reviewed in patients with CSF pleocytosis (CSF WBC > 7 cells/mm(3)) and a clinical diagnosis of meningitis between March 1, 2003 and July 1, 2003. Cases were identified through hospital infection control and by surveying all CSF specimens submitted to the microbiology laboratory during the outbreak. There were 78 cases of viral meningitis and 1 case of bacterial meningitis identified. Fifty-eight percent of the viral meningitis cases were confirmed by culture or polymerase chain reaction to be due to Enterovirus. Mean CSF WBC count was 571 cells/mm(3), including 20 patients with a CSF WBC count > 750 cells/mm(3) (25%) and 11 patients with values > 1000 cells/mm(3) (14%). Sixty-four of 78 patients (82%) were hospitalized. Rates of headache, photophobia, nuchal rigidity, vomiting, and administration of intravenous fluids in the Emergency Department were no different between admitted and discharged patients. Only 26/78 (33%) patients with viral meningitis would have been admitted if the prediction model had been used. Although not all cases of viral meningitis are necessarily suitable for outpatient management, use of a prediction model for viral meningitis may have helped decrease hospitalization by nearly 60%, even though this outbreak was characterized by unusually high levels of CSF pleocytosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Plant pest detection using an artificial nose system: A review

    USDA-ARS?s Scientific Manuscript database

    This paper reviews artificial intelligent noses (or electronic noses) as a fast and noninvasive approach for the diagnosis of insects and diseases that attack vegetables and fruit trees. The particular focus is on bacterial, fungal, and viral infections, and insect damage. Volatile organic compounds...

  18. The Effects of Simulated Weightlessness on Susceptibility to Viral and Bacterial Infections Using a Murine Model

    NASA Technical Reports Server (NTRS)

    Gould, C. L.

    1985-01-01

    Certain immunological responses may be compromised as a result of changes in environmental conditions, such as the physiological adaptation to and from the weightlessness which occurs during space flight and recovery. A murine antiorthostatic model was developed to simulate weightlessness. Using this model, the proposed study will determine if differences in susceptibility to viral and bacterial infections exist among mice suspended in an antiorthostatic orientation to simulate weightlessness, mice suspended in an orthostatic orientation to provide a stressful situation without the condition of weightlessness simulation, and non-suspended control mice. Inbred mouse strains which are resistant to the diabetogenic effects of the D variant of encephalomyocarditis virus (EMC-D) and the lethal effects of Salmonella typhimurium will be evaluated. Glucose tolerance tests will be performed on all EMC-D-infected and non-infected control groups. The incidence of EMC-D-induced diabetes and the percentage survival of S. typhimurium-infected animals will be determined in each group. An additional study will determine the effects of simulated weightlessness on murine responses to exogenous interferon.

  19. Review of Non-Bacterial Infections in Respiratory Medicine: Viral Pneumonia.

    PubMed

    Galván, José María; Rajas, Olga; Aspa, Javier

    2015-11-01

    Although bacteria are the main pathogens involved in community-acquired pneumonia, a significant number of community-acquired pneumonia are caused by viruses, either directly or as part of a co-infection. The clinical picture of these different pneumonias can be very similar, but viral infection is more common in the pediatric and geriatric populations, leukocytes are not generally elevated, fever is variable, and upper respiratory tract symptoms often occur; procalcitonin levels are not generally affected. For years, the diagnosis of viral pneumonia was based on cell culture and antigen detection, but since the introduction of polymerase chain reaction techniques in the clinical setting, identification of these pathogens has increased and new microorganisms such as human bocavirus have been discovered. In general, influenza virus type A and syncytial respiratory virus are still the main pathogens involved in this entity. However, in recent years, outbreaks of deadly coronavirus and zoonotic influenza virus have demonstrated the need for constant alert in the face of new emerging pathogens. Neuraminidase inhibitors for viral pneumonia have been shown to reduce transmission in cases of exposure and to improve the clinical progress of patients in intensive care; their use in common infections is not recommended. Ribavirin has been used in children with syncytial respiratory virus, and in immunosuppressed subjects. Apart from these drugs, no antiviral has been shown to be effective. Prevention with anti-influenza virus vaccination and with monoclonal antibodies, in the case of syncytial respiratory virus, may reduce the incidence of pneumonia. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  20. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response

    PubMed Central

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most

  1. The fungal colonisation of rock-art caves: experimental evidence.

    PubMed

    Jurado, Valme; Fernandez-Cortes, Angel; Cuezva, Soledad; Laiz, Leonila; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2009-09-01

    The conservation of rock-art paintings in European caves is a matter of increasing interest. This derives from the bacterial colonisation of Altamira Cave, Spain and the recent fungal outbreak of Lascaux Cave, France-both included in the UNESCO World Heritage List. Here, we show direct evidence of a fungal colonisation of rock tablets in a testing system exposed in Altamira Cave. After 2 months, the tablets, previously sterilised, were heavily colonised by fungi and bacteria. Most fungi isolated were labelled as entomopathogens, while the bacteria were those regularly identified in the cave. Rock colonisation was probably promoted by the dissolved organic carbon supplied with the dripping and condensation waters and favoured by the displacement of aerosols towards the interior of the cave, which contributed to the dissemination of microorganisms. The role of arthropods in the dispersal of spores may also help in understanding fungal colonisation. This study evidences the fragility of rock-art caves and demonstrates that microorganisms can easily colonise bare rocks and materials introduced into the cavity.

  2. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case–control study protocol

    PubMed Central

    Bhuiyan, Mejbah Uddin; Snelling, Thomas L; West, Rachel; Lang, Jurissa; Rahman, Tasmina; Borland, Meredith L; Thornton, Ruth; Kirkham, Lea-Ann; Sikazwe, Chisha; Martin, Andrew C; Richmond, Peter C; Smith, David W; Jaffe, Adam; Blyth, Christopher C

    2018-01-01

    Introduction Pneumonia is the leading cause of childhood morbidity and mortality globally. Introduction of the conjugate Haemophilus influenzae B and multivalent pneumococcal vaccines in developed countries including Australia has significantly reduced the overall burden of bacterial pneumonia. With the availability of molecular diagnostics, viruses are frequently detected in children with pneumonia either as primary pathogens or predispose to secondary bacterial infection. Many respiratory pathogens that are known to cause pneumonia are also identified in asymptomatic children, so the true contribution of these pathogens to childhood community-acquired pneumonia (CAP) remains unclear. Since the introduction of pneumococcal vaccines, very few comprehensive studies from developed countries have attempted to determine the bacterial and viral aetiology of pneumonia. We aim to determine the contribution of bacteria and viruses to childhood CAP to inform further development of effective diagnosis, treatment and preventive strategies. Methods and analysis We are conducting a prospective case–control study (PneumoWA) where cases are children with radiologically confirmed pneumonia admitted to Princess Margaret Hospital for Children (PMH) and controls are healthy children identified from PMH outpatient clinics and from local community immunisation clinics. The case–control ratio is 1:1 with 250 children to be recruited in each arm. Nasopharyngeal swabs are collected from both cases and controls to detect the presence of viruses and bacteria by PCR; pathogen load will be assessed by quantitative PCR. The prevalence of pathogens detected in cases and controls will be compared, the OR of detection and population attributable fraction to CAP for each pathogen will be determined; relationships between pathogen load and disease status and severity will be explored. Ethics and dissemination This study has been approved by the human research ethics committees of PMH, Perth

  3. Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients.

    PubMed

    Hong, Gina; Miller, Heather B; Allgood, Sarah; Lee, Richard; Lechtzin, Noah; Zhang, Sean X

    2017-04-01

    The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus , Scedosporium , and Trichosporon species and Exophiala dermatitidis , in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P < 0.001), in SDA (at 30°C, 64.7%; P = 0.005), and in BHI agar (63.0%; P = 0.001). The prevalences of Aspergillus and Scedosporium species were 40.8% and 5.2%, respectively, which are greater than the nationally reported prevalence numbers of 20.4% and 1.9%. Selective fungal culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions. Copyright © 2017 American Society for Microbiology.

  4. Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients

    PubMed Central

    Hong, Gina; Miller, Heather B.; Allgood, Sarah; Lee, Richard; Lechtzin, Noah

    2017-01-01

    ABSTRACT The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus, Scedosporium, and Trichosporon species and Exophiala dermatitidis, in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P < 0.001), in SDA (at 30°C, 64.7%; P = 0.005), and in BHI agar (63.0%; P = 0.001). The prevalences of Aspergillus and Scedosporium species were 40.8% and 5.2%, respectively, which are greater than the nationally reported prevalence numbers of 20.4% and 1.9%. Selective fungal culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions. PMID:28100601

  5. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    PubMed

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  6. Fungal Peritonitis Due to Fusarium solani Species Complex Sequential Isolates Identified with DNA Sequencing in a Kidney Transplant Recipient in Brazil.

    PubMed

    da Silva-Rocha, Walicyranison Plinio; Zuza-Alves, Diana Luzia; Melo, Analy Salles de Azevedo; Chaves, Guilherme Maranhão

    2015-12-01

    Fungal peritonitis is a rare serious complication most commonly observed in immunocompromised patients under peritoneal dialysis. Nevertheless, this clinical condition is more difficult to treat than bacterial peritonitis. Bacterial peritonitis followed by the use of antibiotics is the main risk factor for developing fungal peritonitis. Candida spp. are more frequently isolated, and the isolation of filamentous fungi is only occasional. Here we describe a case of Fusarium solani species complex peritonitis associated with bacterial peritonitis in a female kidney transplant recipient with previous history of nephrotic syndrome. The patient has had Enterobacter sp. endocarditis and was hypertensive and diabetic. Two sequential isolates of F. solani were recovered from cultures and identified with different molecular techniques. She was successfully treated with 50 mg daily amphotericin B for 4 weeks.

  7. Molecular approaches to detecting and discriminating among prions, a class of pathogenic molecules(Abstract)

    USDA-ARS?s Scientific Manuscript database

    Prions (PrPSc)are the pathogens that cause a set of fatal neurological diseases that include scrapie and chronic wasting disease (CWD). They are composed solely of protein and unlike viral, bacterial, or fungal pathogens, the information necessary to convert the normal cellular prion protein (PrPC) ...

  8. Overview of fish immune system and infectious diseases

    USDA-ARS?s Scientific Manuscript database

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  9. Household sanitation is associated with lower risk of bacterial and protozoal enteric infections, but not viral infections and diarrhoea, in a cohort study in a low-income urban neighbourhood in Vellore, India.

    PubMed

    Berendes, David; Leon, Juan; Kirby, Amy; Clennon, Julie; Raj, Suraja; Yakubu, Habib; Robb, Katharine; Kartikeyan, Arun; Hemavathy, Priya; Gunasekaran, Annai; Roy, Sheela; Ghale, Ben Chirag; Kumar, J Senthil; Mohan, Venkata Raghava; Kang, Gagandeep; Moe, Christine

    2017-09-01

    This study examined associations between household sanitation and enteric infection - including diarrhoeal-specific outcomes - in children 0-2 years of age in a low-income, dense urban neighbourhood. As part of the MAL-ED study, 230 children in a low-income, urban, Indian neighbourhood provided stool specimens at 14-17 scheduled time points and during diarrhoeal episodes in the first 2 years of life that were analysed for bacterial, parasitic (protozoa and helminths) and viral pathogens. From interviews with caregivers in 100 households, the relationship between the presence (and discharge) of household sanitation facilities and any, pathogen-specific, and diarrhoea-specific enteric infection was tested through mixed-effects Poisson regression models. Few study households (33%) reported having toilets, most of which (82%) discharged into open drains. Controlling for season and household socio-economic status, the presence of a household toilet was associated with lower risks of enteric infection (RR: 0.91, 95% CI: 0.79-1.06), bacterial infection (RR: 0.87, 95% CI: 0.75-1.02) and protozoal infection (RR: 0.64, 95% CI: 0.39-1.04), although not statistically significant, but had no association with diarrhoea (RR: 1.00, 95% CI: 0.68-1.45) or viral infections (RR: 1.12, 95% CI: 0.79-1.60). Models also suggested that the relationship between household toilets discharging to drains and enteric infection risk may vary by season. The presence of a household toilet was associated with lower risk of bacterial and protozoal enteric infections, but not diarrhoea or viral infections, suggesting the health effects of sanitation may be more accurately estimated using outcome measures that account for aetiologic agents. © 2017 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  10. Bacterial fermentation platform for producing artificial aromatic amines

    PubMed Central

    Masuo, Shunsuke; Zhou, Shengmin; Kaneko, Tatsuo; Takaya, Naoki

    2016-01-01

    Aromatic amines containing an aminobenzene or an aniline moiety comprise versatile natural and artificial compounds including bioactive molecules and resources for advanced materials. However, a bio-production platform has not been implemented. Here we constructed a bacterial platform for para-substituted aminobenzene relatives of aromatic amines via enzymes in an alternate shikimate pathway predicted in a Pseudomonad bacterium. Optimization of the metabolic pathway in Escherichia coli cells converted biomass glucose to 4-aminophenylalanine with high efficiency (4.4 g L−1 in fed-batch cultivation). We designed and produced artificial pathways that mimicked the fungal Ehrlich pathway in E. coli and converted 4-aminophenylalanine into 4-aminophenylethanol and 4-aminophenylacetate at 90% molar yields. Combining these conversion systems or fungal phenylalanine decarboxylases, the 4-aminophenylalanine-producing platform fermented glucose to 4-aminophenylethanol, 4-aminophenylacetate, and 4-phenylethylamine. This original bacterial platform for producing artificial aromatic amines highlights their potential as heteroatoms containing bio-based materials that can replace those derived from petroleum. PMID:27167511

  11. [Investigation of bacterial and viral etiology in community acquired central nervous system infections with molecular methods].

    PubMed

    Kahraman, Hasip; Tünger, Alper; Şenol, Şebnem; Gazi, Hörü; Avcı, Meltem; Örmen, Bahar; Türker, Nesrin; Atalay, Sabri; Köse, Şükran; Ulusoy, Sercan; Işıkgöz Taşbakan, Meltem; Sipahi, Oğuz Reşat; Yamazhan, Tansu; Gülay, Zeynep; Alp Çavuş, Sema; Pullukçu, Hüsnü

    2017-07-01

    In this multicenter prospective cohort study, it was aimed to evaluate the bacterial and viral etiology in community-acquired central nervous system infections by standart bacteriological culture and multiplex polymerase chain reaction (PCR) methods. Patients hospitalized with central nervous system infections between April 2012 and February 2014 were enrolled in the study. Demographic and clinical information of the patients were collected prospectively. Cerebrospinal fluid (CSF) samples of the patients were examined by standart bacteriological culture methods, bacterial multiplex PCR (Seeplex meningitis-B ACE Detection (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Listeria monocytogenes, Group B streptococci) and viral multiplex PCR (Seeplex meningitis-V1 ACE Detection kits herpes simplex virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein Barr virus (EBV) and human herpes virus 6 (HHV6)) (Seeplex meningitis-V2 ACE Detection kit (enteroviruses)). Patients were classified as purulent meningitis, aseptic meningitis and encephalitis according to their clinical, CSF (leukocyte level, predominant cell type, protein and glucose (blood/CSF) levels) and cranial imaging results. Patients who were infected with a pathogen other than the detection of the kit or diagnosed as chronic meningitis and other diseases during the follow up, were excluded from the study. A total of 79 patients (28 female, 51 male, aged 42.1 ± 18.5) fulfilled the study inclusion criteria. A total of 46 patients were classified in purulent meningitis group whereas 33 were in aseptic meningitis/encephalitis group. Pathogens were detected by multiplex PCR in 41 patients. CSF cultures were positive in 10 (21.7%) patients (nine S.pneumoniae, one H.influenzae) and PCR were positive for 27 (58.6%) patients in purulent meningitis group. In this group one type of bacteria were detected in 18 patients (14 S.pneumoniae, two N

  12. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.

    PubMed

    Denman, Stuart E; McSweeney, Christopher S

    2006-12-01

    Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population.

  13. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria. PMID:14602643

  14. Bacterial pneumonia as an influenza complication.

    PubMed

    Martin-Loeches, Ignacio; van Someren Gréve, Frank; Schultz, Marcus J

    2017-04-01

    The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.

  15. Arbuscular Mycorrhizal Fungal Hyphae Alter Soil Bacterial Community and Enhance Polychlorinated Biphenyls Dissipation

    PubMed Central

    Qin, Hua; Brookes, Philip C.; Xu, Jianming

    2016-01-01

    We investigated the role of arbuscular mycorrhizal fungal (AMF) hyphae in alternation of soil microbial community and Aroclor 1242 dissipation. A two-compartment rhizobox system with double nylon meshes in the central was employed to exclude the influence of Cucurbita pepo L. root exudates on hyphal compartment soil. To assess the quantitative effect of AMF hyphae on soil microbial community, we separated the hyphal compartment soil into four horizontal layers from the central mesh to outer wall (e.g., L1–L4). Soil total PCBs dissipation rates ranged from 35.67% of L4 layer to 57.39% of L1 layer in AMF inoculated treatment, which were significant higher than the 17.31% of the control (P < 0.05). The dissipation rates of tri-, tetrachlorinated biphenyls as well as the total PCBs were significantly correlated with soil hyphal length (P < 0.01). Real-time quantitative PCR results indicated that the Rhodococcus-like bphC gene was 2–3 orders of magnitude more than that of Pseudomonas-like bphC gene, and was found responded positively to AMF. Phylogenetic analyses of the 16S rDNA sequenced by the Illumina Miseq sequencing platform indicated that AMF hyphae altered bacterial community compositions. The phylum Betaproteobacteria and Actinobacteria were dominated in the soil, while Burkholderiales and Actinomycetales were dominated at the order level. Taxa from the Comamonadaceae responded positively to AMF and trichlorinated biphenyl dissipation, while taxa from the Oxalobacteraceae and Streptomycetaceae responded negatively to AMF and PCB congener dissipation. Our results suggested that the AMF hyphal exudates as well as the hyphae per se did have quantitative effects on shaping soil microbial community, and could modify the PCBs dissipation processes consequently. PMID:27379068

  16. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex.

    PubMed

    Grissett, G P; White, B J; Larson, R L

    2015-01-01

    Bovine respiratory disease (BRD) is an economically important disease of cattle and continues to be an intensely studied topic. However, literature summarizing the time between pathogen exposure and clinical signs, shedding, and seroconversion is minimal. A structured literature review of the published literature was performed to determine cattle responses (time from pathogen exposure to clinical signs, shedding, and seroconversion) in challenge models using common BRD viral and bacterial pathogens. After review a descriptive analysis of published studies using common BRD pathogen challenge studies was performed. Inclusion criteria were single pathogen challenge studies with no treatment or vaccination evaluating outcomes of interest: clinical signs, shedding, and seroconversion. Pathogens of interest included: bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), parainfluenza-3 virus, bovine respiratory syncytial virus, Mannheimia haemolytica, Mycoplasma bovis, Pastuerella multocida, and Histophilus somni. Thirty-five studies and 64 trials were included for analysis. The median days to the resolution of clinical signs after BVDV challenge was 15 and shedding was not detected on day 12 postchallenge. Resolution of BHV-1 shedding resolved on day 12 and clinical signs on day 12 postchallenge. Bovine respiratory syncytial virus ceased shedding on day 9 and median time to resolution of clinical signs was on day 12 postchallenge. M. haemolytica resolved clinical signs 8 days postchallenge. This literature review and descriptive analysis can serve as a resource to assist in designing challenge model studies and potentially aid in estimation of duration of clinical disease and shedding after natural pathogen exposure. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  17. Using Standardized Interpretation of Chest Radiographs to Identify Adults with Bacterial Pneumonia--Guatemala, 2007-2012.

    PubMed

    Wortham, Jonathan M; Gray, Jennifer; Verani, Jennifer; Contreras, Carmen Lucia; Bernart, Chris; Moscoso, Fabiola; Moir, Juan Carlos; Reyes Marroquin, Emma Lissette; Castellan, Rigoberto; Arvelo, Wences; Lindblade, Kim; McCracken, John P

    2015-01-01

    Bacterial pneumonia is a leading cause of illness and death worldwide, but quantifying its burden is difficult due to insensitive diagnostics. Although World Health Organization (WHO) protocol standardizes pediatric chest radiograph (CXR) interpretation for epidemiologic studies of bacterial pneumonia, its validity in adults is unknown. Patients (age ≥ 15 years) admitted with respiratory infections to two Guatemalan hospitals between November 2007 and March 2012 had urine and nasopharyngeal/oropharyngeal (NP/OP) swabs collected; blood cultures and CXR were also performed at physician clinical discretion. 'Any bacterial infection' was defined as a positive urine pneumococcal antigen test, isolation of a bacterial pneumonia pathogen from blood culture, or detection of an atypical bacterial pathogen by polymerase chain reaction (PCR) of nasopharyngeal/oropharyngeal (NP/OP) specimens. 'Viral infection' was defined as detection of viral pathogens by PCR of NP/OP specimens. CXRs were interpreted according to the WHO protocol as having 'endpoint consolidation', 'other infiltrate', or 'normal' findings. We examined associations between bacterial and viral infections and endpoint consolidation. Urine antigen and/or blood culture results were available for 721 patients with CXR interpretations; of these, 385 (53%) had endpoint consolidation and 253 (35%) had other infiltrate. Any bacterial infection was detected in 119 (17%) patients, including 106 (89%) pneumococcal infections. Any bacterial infection (Diagnostic Odds Ratio [DOR] = 2.9; 95% confidence Interval (CI): 1.3-7.9) and pneumococcal infection (DOR = 3.4; 95% CI: 1.5-10.0) were associated with 'endpoint consolidation', but not 'other infiltrate' (DOR = 1.7; 95% CI: 0.7-4.9, and 1.7; 95% CI: 0.7-4.9 respectively). Viral infection was not significantly associated with 'endpoint consolidation', 'other infiltrate,' or 'normal' findings. 'Endpoint consolidation' was associated with 'any bacterial infection

  18. Detecting and discriminating among pathogenic protein conformers(prions), using mass spectrometry-based and antibody-based approaches(Abstract)

    USDA-ARS?s Scientific Manuscript database

    A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...

  19. Focus issue articles on emerging and re-emerging plant diseases

    USDA-ARS?s Scientific Manuscript database

    This review sums up the key findings of seventeen articles on emerging and re-emerging plant diseases that are designated for the July focus issue in Phytopathology. The emerging and re-emerging diseases discussed include those caused by three viral, six fungal, five oomycete, and four bacterial pa...

  20. Contagious Diseases in Competitive Sport: What Are the Risks?

    ERIC Educational Resources Information Center

    Dorman, John M.

    2000-01-01

    Discusses fungal, bacterial, and viral infections that may strike athletes during competition, highlighting possible risks of hepatitis, herpes, and HIV. Athletes generally are more at risk off the playing field than while competing. Requiring immunizations against measles and hepatitis B prior to college admission would eliminate two diseases.…

  1. PCR/LDR/universal array platforms for the diagnosis of infectious disease.

    PubMed

    Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M; Barany, Francis

    2010-01-01

    Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections.

  2. PCR/LDR/Universal Array Platforms for the Diagnosis of Infectious Disease

    PubMed Central

    Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M.; Barany, Francis

    2015-01-01

    Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections. PMID:20217576

  3. Fungal Periprosthetic Joint Infection in Total Knee Arthroplasty: A Systematic Review

    PubMed Central

    Jakobs, Oliver; Schoof, Benjamin; Klatte, Till Orla; Schmidl, Stefan; Fensky, Florian; Guenther, Daniel; Frommelt, Lars; Gehrke, Thorsten; Gebauer, Matthias

    2015-01-01

    Fungal periprosthetic joint infection (PJI) is a rare but devastating complication following total knee arthroplasty (TKA). A standardized procedure regarding an accurate treatment of this serious complication of knee arthroplasty is lacking. In this systematic review, we collected data from 36 studies with a total of 45 reported cases of a TKA complicated by a fungal PJI. Subsequently, an analysis focusing on diagnostic, medicaments and surgical procedures in the pre-, intra- and postoperative period was performed. Candida spp. accounts for about 80% (36 out of 45 cases) of fungal PJIs and is therefore the most frequently reported pathogen. A systemic antifungal therapy was administered in all but one patient whereas a local antifungal therapy, e.g. the use of an impregnated spacer, is of inferior relevance. Resection arthroplasty with delayed re-implantation (two-stage revision) was the surgical treatment of choice. However, in 50% of all reported cases the surgical therapy was heterogeneous. The outcome under a combined therapy was moderate with recurrent fungal PJI in 11 patients and subsequent bacterial PJI as a main complication in 5 patients. In summary, this systematic review integrates data from up to date 45 reported cases of a fungal PJI of a TKA. On the basis of the current literature strategies for the treatment of this devastating complication after TKA are discussed. PMID:25874061

  4. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants.

    PubMed

    Hong, Jeum Kyu; Kim, Hyeon Ji; Jung, Heesoo; Yang, Hye Ji; Kim, Do Hoon; Sung, Chang Hyun; Park, Chang-Jin; Chang, Seog Won

    2016-10-01

    Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea , respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (10 6 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea . The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea . Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

  5. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants

    PubMed Central

    Hong, Jeum Kyu; Kim, Hyeon Ji; Jung, Heesoo; Yang, Hye Ji; Kim, Do Hoon; Sung, Chang Hyun; Park, Chang-Jin; Chang, Seog Won

    2016-01-01

    Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (106 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea. The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould. PMID:27721697

  6. Growth of chitinolytic dune soil beta-subclass Proteobacteria in response to invading fungal hyphae.

    PubMed

    De Boer, W; Klein Gunnewiek, P J; Kowalchuk, G A; Van Veen, J A

    2001-08-01

    It has frequently been reported that chitinolytic soil bacteria, in particular biocontrol strains, can lyse living fungal hyphae, thereby releasing potential growth substrate. However, the conditions used in such assays (high bacterial density, rich media, fragmented hyphae) make it difficult to determine whether mycolytic activity is actually of importance for the growth and survival of chitinolytic bacteria in soils. An unidentified group of beta-subclass Proteobacteria (CbetaPs) was most dominant among the culturable nonfilamentous chitinolytic bacteria isolated from Dutch sand dune soils. Here we demonstrate that the CbetaPs grew at the expense of extending fungal mycelium of three dune soil fungi (Chaetomium globosum, Fusarium culmorum, and Mucor hiemalis) under nutrient-limiting, soil-like conditions. Aggregates of CbetaPs were also often found attached to fungal hyphae. The growth of a control group of dominant nonchitinolytic dune soil bacteria (beta- and gamma-subclass Proteobacteria) was not stimulated in the mycelial zone, indicating that growth-supporting materials were not independently released in appreciable amounts by the extending hyphae. Therefore, mycolytic activities of CbetaPs have apparently been involved in allowing them to grow after exposure to living hyphae. The chitinase inhibitor allosamidin did not, in the case of Mucor, or only partially, in the cases of Chaetomium and Fusarium, repress mycolytic growth of the CbetaPs, indicating that chitinase activity alone could not explain the extent of bacterial proliferation. Chitinolytic Stenotrophomonas-like and Cytophaga-like bacteria, isolated from the same dune soils, were only slightly stimulated by exposure to fungal hyphae.

  7. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.

    PubMed

    Simone-Finstrom, Michael; Aronstein, Kate; Goblirsch, Michael; Rinkevich, Frank; de Guzman, Lilia

    2018-03-01

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity

  8. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants

    PubMed Central

    Holman, Devin B.; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W.

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers’ grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  9. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    PubMed

    Holman, Devin B; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  10. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study.

    PubMed

    Cuquemelle, E; Soulis, F; Villers, D; Roche-Campo, F; Ara Somohano, C; Fartoukh, M; Kouatchet, A; Mourvillier, B; Dellamonica, J; Picard, W; Schmidt, M; Boulain, T; Brun-Buisson, C

    2011-05-01

    To determine whether procalcitonin (PCT) levels could help discriminate isolated viral from mixed (bacterial and viral) pneumonia in patients admitted to the intensive care unit (ICU) during the A/H1N1v2009 influenza pandemic. A retrospective observational study was performed in 23 French ICUs during the 2009 H1N1 pandemic. Levels of PCT at admission were compared between patients with confirmed influenzae A pneumonia associated or not associated with a bacterial co-infection. Of 103 patients with confirmed A/H1N1 infection and not having received prior antibiotics, 48 (46.6%; 95% CI 37-56%) had a documented bacterial co-infection, mostly caused by Streptococcus pneumoniae (54%) or Staphylococcus aureus (31%). Fifty-two patients had PCT measured on admission, including 19 (37%) having bacterial co-infection. Median (range 25-75%) values of PCT were significantly higher in patients with bacterial co-infection: 29.5 (3.9-45.3) versus 0.5 (0.12-2) μg/l (P < 0.01). For a cut-off of 0.8 μg/l or more, the sensitivity and specificity of PCT for distinguishing isolated viral from mixed pneumonia were 91 and 68%, respectively. Alveolar condensation combined with a PCT level of 0.8 μg/l or more was strongly associated with bacterial co-infection (OR 12.9, 95% CI 3.2-51.5; P < 0.001). PCT may help discriminate viral from mixed pneumonia during the influenza season. Levels of PCT less than 0.8 μg/l combined with clinical judgment suggest that bacterial infection is unlikely.

  11. Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation.

    PubMed

    Broecker, Felix; Klumpp, Jochen; Schuppler, Markus; Russo, Giancarlo; Biedermann, Luc; Hombach, Michael; Rogler, Gerhard; Moelling, Karin

    2016-01-01

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infections (RCDIs). However, long-term effects on the patients' gut microbiota and the role of viruses remain to be elucidated. Here, we characterized bacterial and viral microbiota in the feces of a cured RCDI patient at various time points until 4.5 yr post-FMT compared with the stool donor. Feces were subjected to DNA sequencing to characterize bacteria and double-stranded DNA (dsDNA) viruses including phages. The patient's microbial communities varied over time and showed little overall similarity to the donor until 7 mo post-FMT, indicating ongoing gut microbiota adaption in this time period. After 4.5 yr, the patient's bacteria attained donor-like compositions at phylum, class, and order levels with similar bacterial diversity. Differences in the bacterial communities between donor and patient after 4.5 yr were seen at lower taxonomic levels. C. difficile remained undetectable throughout the entire timespan. This demonstrated sustainable donor feces engraftment and verified long-term therapeutic success of FMT on the molecular level. Full engraftment apparently required longer than previously acknowledged, suggesting the implementation of year-long patient follow-up periods into clinical practice. The identified dsDNA viruses were mainly Caudovirales phages. Unexpectedly, sequences related to giant algae-infecting Chlorella viruses were also detected. Our findings indicate that intestinal viruses may be implicated in the establishment of gut microbiota. Therefore, virome analyses should be included in gut microbiota studies to determine the roles of phages and other viruses-such as Chlorella viruses-in human health and disease, particularly during RCDI.

  12. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome.

    PubMed

    De Santi, Concetta; Willassen, Nils Peder; Williamson, Adele

    2016-01-01

    The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.

  13. Fungal and bacterial community succession differs for three wood types during decay in a forest soil.

    PubMed

    Prewitt, Lynn; Kang, Youngmin; Kakumanu, Madhavi L; Williams, Mark

    2014-08-01

    Wood decomposition by soil microorganisms is vital to carbon and nutrient cycles of forested ecosystems. Different wood types decompose at different rates; however, it is not known if there are differences in microbial community succession associated with the decay of different wood types. In this study, the microbial community associated with the decay of pine (decay-susceptible wood), western red cedar (decay resistant) and ACQ-treated pine (Ammoniacal Copper Quaternary, preservative-treated pine for decay resistance) in forest soil was characterized using DNA sequencing, phospholipid fatty acid (PLFA) analysis, and microbial activity over a 26-month period. Bray-Curtis ordination using an internal transcribed spacer (ITS) sequence and PLFA data indicated that fungal communities changed during succession and that wood type altered the pattern of succession. Nondecay fungi decreased over the 26 months of succession; however, by 18 months of decay, there was a major shift in the fungal communities. By this time, Trametes elegans dominated cedar and Phlebia radiata dominated pine and ACQ-treated pine. The description of PLFA associated with ACQ-treated pine resembled cedar more than pine; however, both PLFA and ITS descriptions indicated that fungal communities associated with ACQ-treated pine were less dynamic, perhaps a result of the inhibition by the ACQ preservative, compared with pine and cedar. Overall, fungal community composition and succession were associated with wood type. Further research into the differences in community composition will help to discern their functional importance to wood decay.

  14. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China

    NASA Astrophysics Data System (ADS)

    Li, Yanpeng; Fu, Honglei; Wang, Wei; Liu, Jun; Meng, Qinglong; Wang, Wenke

    2015-12-01

    In recent years, haze pollution has become one of the most critical environmental issues in Xi'an, China, with particular matter (PM) being one of the top pollutants. As an important fraction of PM, bioaerosols may have adverse effects on air quality and human health. In this study, to better understand the characteristics of such biological aerosols, airborne microbial samples were collected by using an Andersen six-stage sampler in Xi'an from October 8th to 22nd, 2014. The concentration, size distribution and genera of airborne viable bacteria and fungi were comparably investigated during the haze days and non-haze days. Correlations of bioaerosol levels with meteorological parameters and PM concentrations were also examined. The results showed that the daily average concentrations of airborne viable bacteria and fungi during the haze days, 1102.4-1736.5 and 1466.2-1703.9 CFU/m3, respectively, were not only much higher than those during the non-haze days, but also exceeded the recommended permissible limit values. Comparing to size distributions during the non-haze days, slightly different patterns for bacterial aerosols and similar single-peak distribution pattern for fungal aerosols were observed during the haze days. Moreover, more allergic and infectious genera (e.g. Neisseria, Aspergillus, and Paecilomyces) in bioaerosols were identified during the haze days than during non-haze days. The present results reveal that bioaerosols may have more significant effects on public health and urban air quality during the haze days than during non-haze days.

  15. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    PubMed

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  16. Relationships between Fungal Biomass and Nitrous Oxide Emission in Upland Rice Soils under No Tillage and Cover Cropping Systems.

    PubMed

    Zhaorigetu; Komatsuzaki, Masakazu; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    The relationships between soil microbial properties and nitrous oxide emission were examined in upland soil under different tillage systems [no tillage (NT), rotary and plow tillage] and cover crop systems (fallow, cereal rye, and hairy vetch) in 2004 and 2005. Microbiological analyses included the determination of soil ergosterol as an indicator of fungal biomass, bacterial plate counting, and MPN estimations of ammonia oxidizers and denitrifiers. The combined practice of NT with rye-cover crop treatment increased fungal biomass but not bacterial populations in 0-10 cm deep soils. Such increase in fungal biomass was not found in 10-20 cm and 20-30 cm deep cover-cropped NT soil. The combined practice of NT with rye-cover cropping resulted in higher in situ N(2)O emission rates compared with rotary- and plow-till treatments. N(2)O flux was positively correlated with soil ergosterol content but not with denitrifier MPN and other soil chemical properties. These results suggested a significant contribution of fungi to N(2)O emission in cover-cropped NT soils.

  17. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.

    PubMed

    Medema, Marnix H; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    2011-07-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org.

  18. Fungal-Induced Deterioration of Mural Paintings: In Situ and Mock-Model Microscopy Analyses.

    PubMed

    Unković, Nikola; Grbić, Milica Ljaljević; Stupar, Miloš; Savković, Željko; Jelikić, Aleksa; Stanojević, Dragan; Vukojević, Jelena

    2016-04-01

    Fungal deterioration of frescoes was studied in situ on a selected Serbian church, and on a laboratory model, utilizing standard and newly implemented microscopy techniques. Scanning electron microscopy (SEM) with energy-dispersive X-ray confirmed the limestone components of the plaster. Pigments used were identified as carbon black, green earth, iron oxide, ocher, and an ocher/cinnabar mixture. In situ microscopy, applied via a portable microscope ShuttlePix P-400R, proved very useful for detection of invisible micro-impairments and hidden, symptomless, microbial growth. SEM and optical microscopy established that observed deterioration symptoms, predominantly discoloration and pulverization of painted layers, were due to bacterial filaments and fungal hyphal penetration, and formation of a wide range of fungal structures (i.e., melanized hyphae, chlamydospores, microcolonial clusters, Cladosporium-like conidia, and Chaetomium perithecia and ascospores). The all year-round monitoring of spontaneous and induced fungal colonization of a "mock painting" in controlled laboratory conditions confirmed the decisive role of humidity level (70.18±6.91% RH) in efficient colonization of painted surfaces, as well as demonstrated increased bioreceptivity of painted surfaces to fungal colonization when plant-based adhesives (ilinocopie, murdent), compared with organic adhesives of animal origin (bone glue, egg white), are used for pigment sizing.

  19. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    PubMed

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  20. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis.

    PubMed

    Haruta, Shin; Ueno, Shintaro; Egawa, Isao; Hashiguchi, Kazunori; Fujii, Akira; Nagano, Masanobu; Ishii, Masaharu; Igarashi, Yasuo

    2006-05-25

    Denaturing gradient gel electrophoresis (DGGE) based on small subunit rRNA gene was applied to a traditional rice vinegar fermentation process in which the conversion of rice starch into acetic acid proceeded in a pot. The fungal DGGE profile indicated that the transition from Aspergillus oryzae to Saccharomyces sp. took place at the initial stage at which alcohol production was observed. The early stage was characterized by the coexistence of Saccharomyces sp. and lactic acid bacteria. Almost all of the bacterial DGGE bands related to lactic acid bacteria were replaced by bands derived from Lactobacillus acetotolerance and Acetobacter pasteurianus at the stage at which acetic acid started to accumulate. The microbial succession, tested in three different pots, was found to be essentially identical. Among the bacteria isolated at the early stage, some species differed from those detected by DGGE. This is the first report to reveal the microbial community succession that occurs during a unique vinegar fermentation process, as determined by a culture-independent method.

  1. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass

    PubMed Central

    Minty, Jeremy J.; Singer, Marc E.; Scholz, Scott A.; Bae, Chang-Hoon; Ahn, Jung-Ho; Foster, Clifton E.; Liao, James C.; Lin, Xiaoxia Nina

    2013-01-01

    Synergistic microbial communities are ubiquitous in nature and exhibit appealing features, such as sophisticated metabolic capabilities and robustness. This has inspired fast-growing interest in engineering synthetic microbial consortia for biotechnology development. However, there are relatively few reports of their use in real-world applications, and achieving population stability and regulation has proven to be challenging. In this work, we bridge ecology theory with engineering principles to develop robust synthetic fungal-bacterial consortia for efficient biosynthesis of valuable products from lignocellulosic feedstocks. The required biological functions are divided between two specialists: the fungus Trichoderma reesei, which secretes cellulase enzymes to hydrolyze lignocellulosic biomass into soluble saccharides, and the bacterium Escherichia coli, which metabolizes soluble saccharides into desired products. We developed and experimentally validated a comprehensive mathematical model for T. reesei/E. coli consortia, providing insights on key determinants of the system’s performance. To illustrate the bioprocessing potential of this consortium, we demonstrate direct conversion of microcrystalline cellulose and pretreated corn stover to isobutanol. Without costly nutrient supplementation, we achieved titers up to 1.88 g/L and yields up to 62% of theoretical maximum. In addition, we show that cooperator–cheater dynamics within T. reesei/E. coli consortia lead to stable population equilibria and provide a mechanism for tuning composition. Although we offer isobutanol production as a proof-of-concept application, our modular system could be readily adapted for production of many other valuable biochemicals. PMID:23959872

  2. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass.

    PubMed

    Minty, Jeremy J; Singer, Marc E; Scholz, Scott A; Bae, Chang-Hoon; Ahn, Jung-Ho; Foster, Clifton E; Liao, James C; Lin, Xiaoxia Nina

    2013-09-03

    Synergistic microbial communities are ubiquitous in nature and exhibit appealing features, such as sophisticated metabolic capabilities and robustness. This has inspired fast-growing interest in engineering synthetic microbial consortia for biotechnology development. However, there are relatively few reports of their use in real-world applications, and achieving population stability and regulation has proven to be challenging. In this work, we bridge ecology theory with engineering principles to develop robust synthetic fungal-bacterial consortia for efficient biosynthesis of valuable products from lignocellulosic feedstocks. The required biological functions are divided between two specialists: the fungus Trichoderma reesei, which secretes cellulase enzymes to hydrolyze lignocellulosic biomass into soluble saccharides, and the bacterium Escherichia coli, which metabolizes soluble saccharides into desired products. We developed and experimentally validated a comprehensive mathematical model for T. reesei/E. coli consortia, providing insights on key determinants of the system's performance. To illustrate the bioprocessing potential of this consortium, we demonstrate direct conversion of microcrystalline cellulose and pretreated corn stover to isobutanol. Without costly nutrient supplementation, we achieved titers up to 1.88 g/L and yields up to 62% of theoretical maximum. In addition, we show that cooperator-cheater dynamics within T. reesei/E. coli consortia lead to stable population equilibria and provide a mechanism for tuning composition. Although we offer isobutanol production as a proof-of-concept application, our modular system could be readily adapted for production of many other valuable biochemicals.

  3. Exploring the Microbiome of Callinectes sapidus (Maryland Blue Crab)

    PubMed Central

    Reed, Elizabeth; Ottesen, Andrea

    2018-01-01

    ABSTRACT The Maryland blue crab (Callinectes sapidus) is a treasured food, especially in areas surrounding the Chesapeake Bay. It has huge economic impact on commerce, and thus, understanding the bacterial, fungal, and viral constituents of its microbiome provides valuable information to safely manage aquaculture, handling, and cooking of this valuable commodity. PMID:29853506

  4. Linking internal and external bacterial community control gives mechanistic framework for pelagic virus-to-bacteria ratios.

    PubMed

    Våge, Selina; Pree, Bernadette; Thingstad, T Frede

    2016-11-01

    For more than 25 years, virus-to-bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co-evolutionary host-virus interactions, with a previously published "minimum" model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism-level properties such as cost of resistance. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Linking internal and external bacterial community control gives mechanistic framework for pelagic virus‐to‐bacteria ratios

    PubMed Central

    Pree, Bernadette; Thingstad, T. Frede

    2016-01-01

    Summary For more than 25 years, virus‐to‐bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co‐evolutionary host‐virus interactions, with a previously published “minimum” model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism‐level properties such as cost of resistance. PMID:27231817

  6. Serum soluble ST2 as diagnostic marker of systemic inflammatory reactive syndrome of bacterial etiology in children.

    PubMed

    Calò Carducci, Francesca Ippolita; Aufiero, Lelia Rotondi; Folgori, Laura; Vittucci, Anna Chiara; Amodio, Donato; De Luca, Maia; Li Pira, Giuseppina; Bergamini, Alberto; Pontrelli, Giuseppe; Finocchi, Andrea; D'Argenio, Patrizia

    2014-02-01

    Accurate and timely diagnosis of community-acquired bacterial versus viral infections in children with systemic inflammatory response syndrome (SIRS) remains challenging both for clinician and laboratory. In the quest of new biochemical markers to distinguish bacterial from viral infection, we have explored the possible role of the soluble secreted form of ST2 (sST2). This explorative prospective cohort study included children with SIRS who were suspected of having community-acquired infections. Plasma samples for sST2 measurement were obtained from 64 hospitalized children, 41 of whom had SIRS of bacterial etiology and 23 SIRS of viral etiology, and from 20 healthy, age- and sex-matched control children. sST2 measurement was carried out by enzyme-linked immunosorbent assay in parallel with standard measurements of procalcitonin (PCT) and C reactive protein (CRP). Our findings demonstrate that children with SIRS associated with bacterial infection present significantly increased levels of sST2, when compared with patients with SIRS of viral etiology and healthy children. More important, receiver operating characteristic curve analysis indicated that sST2 has a significant diagnostic performance with respect to early identification of SIRS of bacterial etiology, which was similar to that of PCT and greater than that of CRP. Finally, the combination of sST2 plus PCT and/or CRP, and PCT plus CRP increased their sensitivity and negative predictive value compared with sST2, PCT and CRP alone. In conclusion, sST2 level may prove useful in predicting bacterial etiology in children with SIRS.

  7. Universal fungal vaccines

    PubMed Central

    Hamad, Mawieh

    2012-01-01

    The complex nature of fungal pathogens, the intricate host-pathogen relationship and the health status of subjects in need of antifungal vaccination continue to hamper efforts to develop fungal vaccines for clinical use. That said, the rise of the universal vaccine concept is hoped to revive fungal vaccine research by expanding the pool of vaccine candidates worthy of clinical evaluation. It can do so through antigenic commonality-based screening for vaccine candidates from a wide range of pathogens and by reassessing the sizable collection of already available experimental and approved vaccines. Development of experimental vaccines protective against multiple fungal pathogens is evidence of the utility of this concept in fungal vaccine research. However, universal fungal vaccines are not without difficulties; for instance, development of vaccines with differential effectiveness is an issue that should be addressed. Additionally, rationalizing the development of universal fungal vaccines on health or economic basis could be contentious. Herein, universal fungal vaccines are discussed in terms of their potential usefulness and possible drawbacks. PMID:22922769

  8. Detergent-compatible bacterial amylases.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  9. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  10. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes.

    PubMed

    Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin

    2011-01-01

    The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.

  11. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysismore » of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.« less

  12. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsley, Mark T

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysismore » of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, an d analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: (1) to assess the potential terrorist threat to U.S. agricultural crops, (2) to determine whether suitable assays exist to monitor that threat, and (3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.« less

  13. Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas

    PubMed Central

    Ballhausen, Max-Bernhard; Vandamme, Peter; de Boer, Wietse

    2016-01-01

    The genus Collimonas consists of facultative, fungus-feeding (mycophagous) bacteria. To date, 3 species (C. fungivorans, C. pratensis and C. arenae) have been described and over 100 strains have been isolated from different habitats. Functional traits of Collimonas bacteria that are potentially involved in interactions with soil fungi mostly negatively (fungal inhibition e.g.), but also positively (mineral weathering e.g.), affect fungal fitness. We hypothesized that variation in such traits between Collimonas strains leads to different mycophagous bacterial feeding patterns. We investigated a) whether phylogenetically closely related Collimonas strains possess similar traits, b) how far phylogenetic resolution influences the detection of phylogenetic signal (possession of similar traits by related strains) and c) if there is a pattern of co-occurrence among the studied traits. We measured genetically encoded (nifH genes, antifungal collimomycin gene cluster e.g.) as well as phenotypically expressed traits (chitinase- and siderophore production, fungal inhibition and others) and related those to a high-resolution phylogeny (MLSA), constructed by sequencing the housekeeping genes gyrB and rpoB and concatenating those with partial 16S rDNA sequences. Additionally, high-resolution and 16S rDNA derived phylogenies were compared. We show that MLSA is superior to 16SrDNA phylogeny when analyzing trait distribution and relating it to phylogeny at fine taxonomic resolution (a single bacterial genus). We observe that several traits involved in the interaction of collimonads and their host fungus (fungal inhibition e.g.) carry phylogenetic signal. Furthermore, we compare Collimonas trait possession with sister genera like Herbaspirillum and Janthinobacterium. PMID:27309848

  14. The correlation of the lifestyle and medical conditions with the vaginal infections and production of 2-phenylethanol.

    PubMed

    Findri-Guštek, Stefica; Petek, Maja Jelena; Sarajlija, Hrvoje; Mršić, Gordan; Džepina, Ana Mlinarić; Oreščanin, Višnja

    2012-09-01

    The objective of this study was determination of causative factors of the genital infections and their correlation with various predictor variables. Secondary objectives included: (1) determination of the presence and the type of low molecular weight metabolites in the samples of vaginal secretion formed in vivo, (2) determination of the concentration of 2-phenylethanol formed in vitro for each Candida species, (3) determination of the relationship between fungal/bacterial/viral infections with the metabolites formed in vivo using multivariate analysis. One hundred and ninety-seven women in the age range from 18 to 65 years were included in the study. After the completion of questionnaire, all the patients were subjected to Pap test, cervical swabs for the presence of aerobic bacteria, yeasts, Ureaplasma urealyticum, Chlamydia trachomatis, Mycoplasma, and hrHPV DNA. The presence and the concentration of low-molecular weight metabolites in vitro and in vivo were determined by gas chromatography-mass spectrometry (GC-MS) method. Multivariate analysis methods were used for statistical evaluation. The most important risk factors of fungal/bacterial/viral infections were determined. The presence of 2-phenylethanol in vivo was confirmed in 14 of 74 tested samples and connected with the Candida species. The presence of symptoms, hrHPV DNA and Ureaplasma urealyticum are the predictor variables with the highest influence on the formation of the metabolite in vivo. The results in vitro confirmed that various Candida species produced 2-phenylethanol with the concentrations ranging from 0.6 to 4.64 μg/mL. The medical exposure to irradiation, marital status, and number of partners as well as stress factors (miscarriages, chronic, viral, or tumor illnesses) had the highest influence on the development of the bacterial/fungal/viral infections. The formation of 2-phenylethanol, both in vivo and in vitro, was confirmed and connected with Candida species. Besides, according to

  15. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS.

    PubMed

    Abdallah, Mohamed F; Girgin, Gözde; Baydar, Terken; Krska, Rudolf; Sulyok, Michael

    2017-10-01

    The present study aimed to investigate the occurrence of multiple toxic fungal and bacterial metabolites in 156 animal feed (n = 77) and maize (n = 79) samples collected from three regions in Upper Egypt. The target analytes were quantified using the 'dilute and shoot' approach, followed by a liquid chromatography tandem mass spectrometry analysis. In total, 115 fungal and bacterial metabolites were detected in both matrices, including the regulated mycotoxins in the European Union, in addition to the modified forms such as deoxynivalenol-3-glucosid. Furthermore, some Fusarium, Alternaria, Aspergillus and Penicillum metabolites beside other fungal and bacterial metabolites were detected for the first time in Egypt. All of the samples were contaminated with at least four toxins. On average, 26 different metabolites were detected per sample with a trend of more metabolites in feed than in maize. The maximum number of analytes observed per samples was 54 analytes at maximum concentrations ranging from 0.04 µg kg -1 for tentoxin to 25 040 µg kg -1 for kojic acid. According to the international standards, the contamination rates in the investigated regions were not alarming, except for AFB1 in maize. The necessity of further and continuous monitoring is highly recommended to establish a database for mycotoxin occurrence. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Diverse Bacteria Inhabit Living Hyphae of Phylogenetically Diverse Fungal Endophytes▿ †

    PubMed Central

    Hoffman, Michele T.; Arnold, A. Elizabeth

    2010-01-01

    Both the establishment and outcomes of plant-fungus symbioses can be influenced by abiotic factors, the interplay of fungal and plant genotypes, and additional microbes associated with fungal mycelia. Recently bacterial endosymbionts were documented in soilborne Glomeromycota and Mucoromycotina and in at least one species each of mycorrhizal Basidiomycota and Ascomycota. Here we show for the first time that phylogenetically diverse endohyphal bacteria occur in living hyphae of diverse foliar endophytes, including representatives of four classes of Ascomycota. We examined 414 isolates of endophytic fungi, isolated from photosynthetic tissues of six species of cupressaceous trees in five biogeographic provinces, for endohyphal bacteria using microscopy and molecular techniques. Viable bacteria were observed within living hyphae of endophytic Pezizomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes from all tree species and biotic regions surveyed. A focus on 29 fungus/bacterium associations revealed that bacterial and fungal phylogenies were incongruent with each other and with taxonomic relationships of host plants. Overall, eight families and 15 distinct genotypes of endohyphal bacteria were recovered; most were members of the Proteobacteria, but a small number of Bacillaceae also were found, including one that appears to occur as an endophyte of plants. Frequent loss of bacteria following subculturing suggests a facultative association. Our study recovered distinct lineages of endohyphal bacteria relative to previous studies, is the first to document their occurrence in foliar endophytes representing four of the most species-rich classes of fungi, and highlights for the first time their diversity and phylogenetic relationships with regard both to the endophytes they inhabit and the plants in which these endophyte-bacterium symbiota occur. PMID:20435775

  17. Fungal Endocarditis.

    PubMed

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis.

  18. Therapeutic approach to respiratory infections in lung transplantation.

    PubMed

    Clajus, Carolina; Blasi, Francesco; Welte, Tobias; Greer, Mark; Fuehner, Thomas; Mantero, Marco

    2015-06-01

    Lung transplant recipients (LTRs) are at life-long risk for infections and disseminated diseases owing to their immunocompromised state. Besides organ failure and sepsis, infection can trigger acute and chronic graft rejection which increases mortality. Medical prophylaxis and treatment are based on comprehensive diagnostic work-up including previous history of infection and airway colonisation to reduce long-term complications and mortality. Common bacterial pathogens include Pseudomonas and Staphylococcus, whilst Aspergillus and Cytomegalovirus (CMV) are respectively the commonest fungal and viral pathogens. Clinical symptoms can be various in lung transplant recipients presenting an asymptomatic to severe progress. Regular control of infection parameters, daily lung function testing and lifelong follow-up in a specialist transplant centre are mandatory for early detection of bacterial, viral and fungal infections. After transplantation each patient receives intensive training with rules of conduct concerning preventive behaviour and to recognize early signs of post transplant complications. Early detection of infection and complications are important goals to reduce major complications after lung transplantation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Coral Mucus Is a Hot Spot for Viral Infections

    PubMed Central

    Nguyen-Kim, Hanh; Bouvier, Thierry; Bouvier, Corinne; Doan-Nhu, Hai; Nguyen-Ngoc, Lam; Nguyen-Thanh, Thuy; Tran-Quang, Huy; Brune, Justine

    2015-01-01

    There is increasing suspicion that viral communities play a pivotal role in maintaining coral health, yet their main ecological traits still remain poorly characterized. In this study, we examined the seasonal distribution and reproduction pathways of viruses inhabiting the mucus of the scleractinians Fungia repanda and Acropora formosa collected in Nha Trang Bay (Vietnam) during an 11-month survey. The strong coupling between epibiotic viral and bacterial abundance suggested that phages are dominant among coral-associated viral communities. Mucosal viruses also exhibited significant differences in their main features between the two coral species and were also remarkably contrasted with their planktonic counterparts. For example, their abundance (inferred from epifluorescence counts), lytic production rates (KCN incubations), and the proportion of lysogenic cells (mitomycin C inductions) were, respectively, 2.6-, 9.5-, and 2.2-fold higher in mucus than in the surrounding water. Both lytic and lysogenic indicators were tightly coupled with temperature and salinity, suggesting that the life strategy of viral epibionts is strongly dependent upon environmental circumstances. Finally, our results suggest that coral mucus may represent a highly favorable habitat for viral proliferation, promoting the development of both temperate and virulent phages. Here, we discuss how such an optimized viral arsenal could be crucial for coral viability by presumably forging complex links with both symbiotic and adjacent nonsymbiotic microorganisms. PMID:26092456

  20. Bio-clarification of water from heavy metals and microbial effluence using fungal chitosan.

    PubMed

    Tayel, Ahmed A; Gharieb, Mohamed M; Zaki, Hanaa R; Elguindy, Nihal M

    2016-02-01

    Water pollution is among the most hazardous problems that threaten human health worldwide. Chitosan is a marvelous bioactive polymer that could be produced from fungal mycelia. This study was conducted to produce chitosan from Cunninghamella elegans and to use it for water pollutants elimination, e.g. heavy metals and waterborne microorganisms, and to investigate its antibacterial mode of action against Escherichia coli. The produced fungal chitosan had a deacetylation degree of 81%, a molecular weight of 92.73 kDa and a matched FT-IR spectrum with standard shrimp chitosan. Fungal chitosan exhibited remarkable antimicrobial activity against E. coli, Staphylococcus aureus and Candida albicans. Chitosan was proved as an effective metal adsorbent, toward the examined metal ions, Cu2+, Zn2+ and Pb2+, and its adsorption capacity greatly increased with the increasing of metal concentration, especially for Cu and Zn. The scanning electron micrographs, of treated E. coli cells with fungal chitosan, indicated that the cells began to lyse and combine after 3h of exposure and chitosan particles attached to the combined cells and, after 12 h from exposure, the entire bacterial cell walls were fully disrupted and lysed. Therefore, fungal chitosan could be recommended, as a bioactive, renewable, ecofriendly and cost effective material, for overcoming water pollution problems, from chemical and microbial origins. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A putative role for homocysteine in the pathophysiology of acute bacterial meningitis in children.

    PubMed

    Coimbra, Roney Santos; Calegare, Bruno Frederico Aguilar; Candiani, Talitah Michel Sanchez; D'Almeida, Vânia

    2014-01-01

    Acute bacterial meningitis frequently causes cortical and hippocampal neuron loss leading to permanent neurological sequelae. Neuron death in acute bacterial meningitis involves the excessive activation of NMDA receptors and p53-mediated apoptosis, and the latter is triggered by the depletion of NAD + and ATP cellular stores by the DNA repair enzyme poly(ADP-ribose) polymerase. This enzyme is activated during acute bacterial meningitis in response to DNA damage induced, on its turn, by reactive oxygen and nitrogen species. An excess of homocysteine can also induce this cascade of events in hippocampal neurons. The present work aimed at investigating the possible involvement of homocysteine in the pathophysiology of meningitis by comparing its concentrations in cerebrospinal fluid (CSF) samples from children with viral or acute bacterial meningitis, and control individuals. Homocysteine and cysteine concentrations were assessed by high-performance liquid chromatography in CSF samples from nine patients with acute bacterial meningitis, 13 patients with viral meningitis and 18 controls (median age: 4 years-old; range: <1 to 13) collected by lumbar puncture at admission at the Children's Hospital Joao Paulo II - FHEMIG, from January 2010 to November 2011. We found that homocysteine accumulates up to neurotoxic levels within the central nervous system of patients with acute bacterial meningitis, but not in those with viral meningitis or control individuals. No correlation was found between homocysteine and cysteine concentrations and the cerebrospinal fluid standard cytochemical parameters. Our results suggest that HCY is produced intrathecally in response to acute bacterial meningitis and accumulates within the central nervous system reaching potentially neurotoxic levels. This is the first work to propose a role for HCY in the pathophysiology of brain damage associated with acute bacterial meningitis.

  2. Gene Expression Signatures Diagnose Influenza and Other Symptomatic Respiratory Viral Infection in Humans

    PubMed Central

    Zaas, Aimee K.; Chen, Minhua; Varkey, Jay; Veldman, Timothy; Hero, Alfred O.; Lucas, Joseph; Huang, Yongsheng; Turner, Ronald; Gilbert, Anthony; Lambkin-Williams, Robert; Øien, N. Christine; Nicholson, Bradly; Kingsmore, Stephen; Carin, Lawrence; Woods, Christopher W.; Ginsburg, Geoffrey S.

    2010-01-01

    Summary Acute respiratory infections (ARI) are a common reason for seeking medical attention and the threat of pandemic influenza will likely add to these numbers. Using human viral challenge studies with live rhinovirus, respiratory syncytial virus, and influenza A, we developed peripheral blood gene expression signatures that distinguish individuals with symptomatic ARI from uninfected individuals with > 95% accuracy. We validated this “acute respiratory viral” signature - encompassing genes with a known role in host defense against viral infections - across each viral challenge. We also validated the signature in an independently acquired dataset for influenza A and classified infected individuals from healthy controls with 100% accuracy. In the same dataset, we could also distinguish viral from bacterial ARIs (93% accuracy). These results demonstrate that ARIs induce changes in human peripheral blood gene expression that can be used to diagnose a viral etiology of respiratory infection and triage symptomatic individuals. PMID:19664979

  3. Fungal keratitis secondary to Scedosporium apiospermum infection and successful treatment with surgical and medical intervention.

    PubMed

    Kepez Yildiz, Burcin; Hasanreisoglu, Murat; Aktas, Zeynep; Aksu, Gulsah; Kocak, Burcak Comert; Akata, Fikret

    2014-04-01

    To report a rare case of severe fungal keratitis caused by Scedosporium apiospermum, which was treated with a penetrating tectonic keratoplasty and aggressive medical treatment. A 62-year-old woman with a history of soil contamination of the right eye while planting vegetables presented with a severe corneal abscess and ocular pain. The patient received medical treatment and underwent tectonic keratoplasty. Both corneal scrapings and the corneal button were evaluated microscopically. The samples were sent for aerobic and anaerobic bacterial and fungal cultures. Microbiological examinations showed S. apiospermum. The isolate was sensitive to amphoterycine B, caspofungin, voriconazole, and resistant to fluconazole. No clinical improvement was achieved with topical voriconazole, vancomycin, ceftazidime, and systemic voriconazole. A penetrating tectonic keratoplasty and lensectomy with continuation of anti-fungal therapy achieved satisfactory results. A fungal etiology should be suspected in a progressive and untreatable corneal abscess. Microbiological investigation is very important in early diagnosis. Despite early diagnosis and aggressive treatment, in selected cases removing the infected tissue surgically is vital in preserving the ocular globe and vision.

  4. Fungal Endocarditis

    PubMed Central

    Yuan, Shi-Min

    2016-01-01

    Fungal endocarditis is a rare and fatal condition. The Candida and Aspergillus species are the two most common etiologic fungi found responsible for fungal endocarditis. Fever and changing heart murmur are the most common clinical manifestations. Some patients may have a fever of unknown origin as the onset symptom. The diagnosis of fungal endocarditis is challenging, and diagnosis of prosthetic valve fungal endocarditis is extremely difficult. The optimum antifungal therapy still remains debatable. Treating Candida endocarditis can be difficult because the Candida species can form biofilms on native and prosthetic heart valves. Combined treatment appears superior to monotherapy. Combination of antifungal therapy and surgical debridement might bring about better prognosis. PMID:27737409

  5. Fungal Genomics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less

  6. Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection

    PubMed Central

    Lee, Jeong Yoon; Lee, Ji Sun; Materne, Emma C.; Rajala, Rahul; Ismail, Ashrafali M.; Seto, Donald; Dyer, David W.

    2018-01-01

    ABSTRACT Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the

  7. Detection of bacterial infection by a technetium-99m-labeled peptidoglycan aptamer.

    PubMed

    Ferreira, Iêda Mendes; de Sousa Lacerda, Camila Maria; Dos Santos, Sara Roberta; de Barros, André Luís Branco; Fernandes, Simone Odília; Cardoso, Valbert Nascimento; de Andrade, Antero Silva Ribeiro

    2017-09-01

    Nuclear medicine clinicians are still waiting for the optimal scintigraphic imaging agents capable of distinguishing between infection and inflammation, and between fungal and bacterial infections. Aptamers have several properties that make them suitable for molecular imaging. In the present study, a peptidoglycan aptamer (Antibac1) was labeled with 99m Tc and evaluated by biodistribution studies and scintigraphic imaging in infection-bearing mice. Labeling with 99m Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and in the molar excess of cysteine. The biodistribution and scintigraphic imaging studies with the 99m Tc-Antibac1 were carried out in two different experimental infection models: Bacterial-infected mice (S. aureus) and fungal-infected mice (C. albicans). A 99m Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control for both models. Radiolabeling yields were superior to 90% and 99m Tc-Antibac1 was highly stable in presence of saline, plasma, and cysteine up to 6h. Scintigraphic images of S. aureus infected mice at 1.5 and 3.0h after 99m Tc-Antibac1 injection showed target to non-target ratios of 4.7±0.9 and 4.6±0.1, respectively. These values were statistically higher than those achieved for the 99m Tc-library at the same time frames (1.6±0.4 and 1.7±0.4, respectively). Noteworthy, 99m Tc-Antibac1 and 99m Tc-library showed similar low target to non-target ratios in the fungal-infected model: 2.0±0.3 and 2.0±0.6for 99m Tc-Antibac1 and 2.1±0.3 and 1.9 ± 0.6 for 99m Tc-library, at the same times. These findings suggest that the 99m Tc-Antibac1 is a feasible imaging probe to identify a bacterial infection focus. In addition, this radiolabeled aptamer seems to be suitable in distinguishing between bacterial and fungal infection. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Aseptic and Bacterial Meningitis: Evaluation, Treatment, and Prevention.

    PubMed

    Mount, Hillary R; Boyle, Sean D

    2017-09-01

    The etiologies of meningitis range in severity from benign and self-limited to life-threatening with potentially severe morbidity. Bacterial meningitis is a medical emergency that requires prompt recognition and treatment. Mortality remains high despite the introduction of vaccinations for common pathogens that have reduced the incidence of meningitis worldwide. Aseptic meningitis is the most common form of meningitis with an annual incidence of 7.6 per 100,000 adults. Most cases of aseptic meningitis are viral and require supportive care. Viral meningitis is generally self-limited with a good prognosis. Examination maneuvers such as Kernig sign or Brudzinski sign may not be useful to differentiate bacterial from aseptic meningitis because of variable sensitivity and specificity. Because clinical findings are also unreliable, the diagnosis relies on the examination of cerebrospinal fluid obtained from lumbar puncture. Delayed initiation of antibiotics can worsen mortality. Treatment should be started promptly in cases where transfer, imaging, or lumbar puncture may slow a definitive diagnosis. Empiric antibiotics should be directed toward the most likely pathogens and should be adjusted by patient age and risk factors. Dexamethasone should be administered to children and adults with suspected bacterial meningitis before or at the time of initiation of antibiotics. Vaccination against the most common pathogens that cause bacterial meningitis is recommended. Chemoprophylaxis of close contacts is helpful in preventing additional infections.

  9. [Epidemiology of infections after liver transplantation in children].

    PubMed

    Pawłowska, J

    2001-01-01

    One of the most important problems after solid organ transplantation including liver, remains infections. Multiple risk factors play a role among which the most important are: general patients health before transplantation, prolong operative time, graft function and type of immunosuppression. The most important problems with bacterial, fungal and viral infections was described as well as treatment and profilaxis.

  10. [Fungal peritonitis due to Rhodotorula mucilaginosa in a patient with automated peritoneal dialysis: Literature review].

    PubMed

    Verdugo, Fernando J; Briones, Eduardo; Porte, Lorena; Amaro, José; Fica, Alberto

    2016-04-01

    Fungal peritonitis is a major complication of peritoneal dialysis associated with high mortality. Most survivors have a high rate of abandonment of peritoneal dialysis. We report a case of fungal peritonitis due to an unusual agent. An 83 year-old woman, with a history of type 2 diabetes mellitus and multiple episodes of bacterial peritonitis associated to technical flaws in the implementation of automated peritoneal dialysis, was admitted due to abdominal pain and cloudy peritoneal fluid. Rhodotorula mucilaginosa was identified in the peritoneal fluid by MALDI-TOF. She was treated with catheter removal and oral posaconazole for 14 days showing clinical resolution and non-recurrence.

  11. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I.

    PubMed

    Wang, Penghua; Arjona, Alvaro; Zhang, Yue; Sultana, Hameeda; Dai, Jianfeng; Yang, Long; LeBlanc, Philippe M; Doiron, Karine; Saleh, Maya; Fikrig, Erol

    2010-10-01

    Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25-mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.

  12. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts.

    PubMed

    Vannini, Candida; Carpentieri, Andrea; Salvioli, Alessandra; Novero, Mara; Marsoni, Milena; Testa, Lorenzo; de Pinto, Maria Concetta; Amoresano, Angela; Ortolani, Francesca; Bracale, Marcella; Bonfante, Paola

    2016-07-01

    Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Fungal oxygen exchange between denitrification intermediates and water.

    PubMed

    Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Anette; Wrage-Mönnig, Nicole; Well, Reinhard

    2014-02-28

    Fungi can contribute greatly to N2O production from denitrification. Therefore, it is important to quantify the isotopic signature of fungal N2O. The isotopic composition of N2O can be used to identify and analyze the processes of N2O production and N2O reduction. In contrast to bacteria, information about the oxygen exchange between denitrification intermediates and water during fungal denitrification is lacking, impeding the explanatory power of stable isotope methods. Six fungal species were anaerobically incubated with the electron acceptors nitrate or nitrite and (18)O-labeled water to determine the oxygen exchange between denitrification intermediates and water. After seven days of incubation, gas samples were analyzed for N2O isotopologues by isotope ratio mass spectrometry. All the fungal species produced N2O. N2O production was greater when nitrite was the sole electron acceptor (129 to 6558 nmol N2O g dw(-1)  h(-1)) than when nitrate was the electron acceptor (6 to 47 nmol N2O g dw(-1)  h(-1)). Oxygen exchange was complete with nitrate as electron acceptor in one of five fungi and with nitrite in two of six fungi. Oxygen exchange of the other fungi varied (41 to 89% with nitrite and 11 to 61% with nitrate). This is the first report on oxygen exchange with water during fungal denitrification. The exchange appears to be within the range previously reported for bacterial denitrification. This adds to the difficulty of differentiating N2O producing processes based on the origin of N2O-O. However, the large oxygen exchange repeatedly observed for bacteria and now also fungi could lead to less variability in the δ(18)O values of N2O from soils, which could facilitate the assessment of the extent of N2O reduction. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Production of migration inhibitory factor in response to bacterial and fungal antigens in patients with untreated Graves' disease

    PubMed Central

    Wall, Jack R.; Ryan, E. Ann

    1980-01-01

    Tests for the production of migration inhibitory factor by peripheral blood leukocytes in response to ubiquitous bacterial and fungal antigens were carried out in patients with untreated Graves' disease and in healthy control subjects. Dose-response studies, tests for the production of this factor after 72 hours' stimulation with phytohemagglutinin as a test for reserve, and tests before and after 24 hours' preculture to deplete suppressor cells were also performed in some patients. The antigens used were Candida, Trichophyton-Oidiomyces-Epidermophyton, mumps live attenuated virus and purified protein derivative of tuberculin. The production of migration inhibitory factor was measured by the agarose microdroplet method. The production of migration inhibitory factor in response to all the antigens except mumps virus was slightly greater in the patients than in the control subjects, although the differences were not significant. The dose-response characteristics and the production of migration inhibitory factor after stimulation with phytohemagglutinin were similar in the two groups. The production of migration inhibitory factor in response to suboptimal concentrations of Candida, Trichophyton-Oidiomyces-Epidermophyton and mumps virus was not enhanced in either group after 24 hours' preculture apart from a slight increase in response to mumps virus in the patients. These results fail to support the suggestion that patients with Graves' disease have a deficiency of suppressor cells. PMID:6446374

  15. Vaginal microbiota and viral sexually transmitted diseases.

    PubMed

    Nardis, C; Mosca, L; Mastromarino, P

    2013-01-01

    Healthy vaginal microbiota is an important biological barrier to pathogenic microorganisms. When this predominantly Lactobacillus community is disrupted, decreased in abundance and replaced by different anaerobes, bacterial vaginosis (BV) may occur. BV is associated with prevalence and incidence of several sexually transmitted infections. This review provides background on BV, discusses the epidemiologic data to support a role of altered vaginal microbiota for acquisition of sexually transmitted diseases and analyzes mechanisms by which lactobacilli could counteract sexually transmitted viral infections.

  16. Bacterial pneumonia in dogs and cats.

    PubMed

    Dear, Jonathan D

    2014-01-01

    Bacterial pneumonia is a common clinical diagnosis in dogs but seems to occur less commonly in cats. Underlying causes include viral infection, aspiration injury, and foreign body inhalation. Identification of the organisms involved in disease, appropriate use of antibiotics and adjunct therapy, and control of risk factors for pneumonia improve management. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Absidia corymbifera fungal infection in burns: a case report and review of the literature.

    PubMed

    Constantinides, Joannis; Misra, Alok; Nassab, Reza; Wilson, Yvonne

    2008-01-01

    Fungal infection in burn wounds can be difficult to diagnose and manage. A previously reported 10-year experience in burns patients confirms that although a marked decline has occurred in bacterial infection, fungal wound infection rates remain unaffected. Moreover, there is significant morbidity and mortality associated with fungal infections in patients with extensive burns. Absidia corymbifera is a saprophytic organism, with worldwide distribution, that is primarily isolated from soil as well as decaying vegetation and grass. It is an uncommon pathogen representing only 2 to 3% of all zygomycete infections in humans. The organism is opportunistic, rarely infecting the immunocompetent although such cases have been reported. To our knowledge, there are only two prior reports of A. corymbifera in burns patients. The ability to invade intact skin through proteolytic enzymes as well as the organism's angioinvasive propensity is associated with high mortality and demands a multidisciplinary approach. We present a case report of A. corymbifera infection in a burns patient and review the current literature.

  18. Fungal degradation of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

    1997-01-01

    As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

  19. Snake fungal disease caused by Ophidiomyces ophiodiicola in a free-ranging mud snake (Farancia abacura).

    PubMed

    Last, Lisa A; Fenton, Heather; Gonyor-McGuire, Jessica; Moore, Matthew; Yabsley, Michael J

    2016-11-01

    Snake fungal disease is an emerging infectious disease caused by the fungus Ophidiomyces ophiodiicola leading to severe dermatitis and facial disfiguration in numerous free-ranging and captive snakes. A free-ranging mud snake (Farancia abacura) from Bulloch County, Georgia, was presented for autopsy because of facial swelling and emaciation. Extensive ulceration of the skin, which was especially severe on the head, and retained shed were noted on external examination. Microscopic examination revealed severe heterophilic dermatitis with intralesional fungal hyphae and arthroconidia consistent with O. ophiodiicola A skin sample incubated on Sabouraud dextrose agar yielded a white-to-tan powdery fungal culture that was confirmed to be O. ophiodiicola by polymerase chain reaction and sequence analysis. Heavy infestation with adult tapeworms (Ophiotaenia faranciae) was present within the intestine. Various bacterial and fungal species, interpreted to either be secondary invaders or postmortem contaminants, were associated with oral lesions. Although the role of these other organisms in the overall health of this individual is not known, factors such as concurrent infections or immunosuppression should be considered in order to better understand the overall manifestation of snake fungal disease, which remains poorly characterized in its host range and geographic distribution. © 2016 The Author(s).

  20. Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies

    PubMed Central

    Lee, Ken-ichi; Kobayashi, Naoki; Watanabe, Maiko; Sugita-Konishi, Yoshiko; Tsubone, Hirokazu; Kumagai, Susumu; Hara-Kudo, Yukiko

    2014-01-01

    To elucidate the effect of fungal hyphae on the behaviour of Shiga toxin-producing Escherichia coli (STEC) O157, the spread and change in stress resistance of the bacterium were evaluated after coculture with 11 species of food-related fungi including fermentation starters. Spread distances of STEC O157 varied depending on the co-cultured fungal species, and the motile bacterial strain spread for longer distances than the non-motile strain. The population of STEC O157 increased when co-cultured on colonies of nine fungal species but decreased on colonies of Emericella nidulans and Aspergillus ochraceus. Confocal scanning microscopy visualization of green fluorescent protein-tagged STEC O157 on fungal hyphae revealed that the bacterium colonized in the water film that existed on and between hyphae. To investigate the physiological changes in STEC O157 caused by co-culturing with fungi, the bacterium was harvested after 7 days of co-culturing and tested for acid resistance. After co-culture with eight fungal species, STEC O157 showed greater acid resistance compared to those cultured without fungi. Our results indicate that fungal hyphae can spread the contamination of STEC O157 and can also enhance the stress resistance of the bacteria. PMID:23919289

  1. Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks

    PubMed Central

    McGuire, Krista L.; Payne, Sara G.; Palmer, Matthew I.; Gillikin, Caitlyn M.; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M.; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A.; Massmann, Audrey L.; Orazi, Giulia; Essene, Adam; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs. PMID:23469260

  2. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    PubMed

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  3. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  4. Viral coinfection in childhood respiratory tract infections.

    PubMed

    Martínez-Roig, A; Salvadó, M; Caballero-Rabasco, M A; Sánchez-Buenavida, A; López-Segura, N; Bonet-Alcaina, M

    2015-01-01

    The introduction of molecular techniques has enabled better understanding of the etiology of respiratory tract infections in children. The objective of the study was to analyze viral coinfection and its relationship to clinical severity. Hospitalized pediatric patients with a clinical diagnosis of respiratory infection were studied during the period between 2009-2010. Clinical and epidemiological data, duration of hospitalization, need for oxygen therapy, bacterial coinfection and need for mechanical ventilation were collected. Etiology was studied by multiplex PCR and low-density microarrays for 19 viruses. A total of 385 patients were positive, 44.94% under 12 months. The most frequently detected viruses were RSV-B: 139, rhinovirus: 114, RSV-A: 111, influenza A H1N1-2009: 93 and bocavirus: 77. Coinfection was detected in 61.81%, 36.36% with 2 viruses, 16.10% and 9.35% with 3 to 4 or more. Coinfection was higher in 2009 with 69.79 vs. 53.88% in 2010. Rhinovirus/RSV-B on 10 times and RSV-A/RSV-B on 5 times were the most detected coinfections. Hospitalization decreased with greater number of viruses (P<0,001). Oxygen therapy was required by 26.75% (one virus was detected in 55.34% of cases). A larger number of viruses resulted in less need for oxygen (P<0,001). Ten cases required mechanical ventilation, 4 patients with bacterial coinfection and 5 with viral coinfection (P=0,69). An inverse relationship was found between the number of viruses detected in nasopharyngeal aspirate, the need for oxygen therapy and hospitalization days. More epidemiological studies and improved quantitative detection techniques are needed to define the role of viral coinfections in respiratory disease and its correlation with the clinical severity. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  5. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy.

    PubMed

    Mason, Katie L; Erb Downward, John R; Mason, Kelly D; Falkowski, Nicole R; Eaton, Kathryn A; Kao, John Y; Young, Vincent B; Huffnagle, Gary B

    2012-10-01

    Candida albicans is a normal member of the gastrointestinal (GI) tract microbiota of healthy humans, but during host immunosuppression or alterations in the bacterial microbiota, C. albicans can disseminate and cause life-threatening illness. The bacterial microbiome of the GI tract, including lactic acid bacteria (LAB), plays a vital role in preventing fungal invasion. However, little is known about the role of C. albicans in shaping the bacterial microbiota during antibiotic recovery. We investigated the fungal burdens in the GI tracts of germfree mice and mice with a disturbed microbiome to demonstrate the role of the microbiota in preventing C. albicans colonization. Histological analysis demonstrated that colonization with C. albicans during antibiotic treatment does not trigger overt inflammation in the murine cecum. Bacterial diversity is reduced long term following cefoperazone treatment, but the presence of C. albicans during antibiotic recovery promoted the recovery of bacterial diversity. Cefoperazone diminishes Bacteroidetes populations long term in the ceca of mice, but the presence of C. albicans during cefoperazone recovery promoted Bacteroidetes population recovery. However, the presence of C. albicans resulted in a long-term reduction in Lactobacillus spp. and promoted Enterococcus faecalis populations. Previous studies have focused on the ability of bacteria to alter C. albicans; this study addresses the ability of C. albicans to alter the bacterial microbiota during nonpathogenic colonization.

  6. Fungal Eye Infections

    MedlinePlus

    ... fungal eye infections . Fungal eye infections are extremely rare, but they can be very serious. The most common way for someone to develop a fungal eye infection is as a result of an eye injury, particularly if the injury was caused by plant material such as a stick or a thorn. ...

  7. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.

    PubMed

    Wan, Jinrong; Zhang, Xue-Cheng; Neece, David; Ramonell, Katrina M; Clough, Steve; Kim, Sung-Yong; Stacey, Minviluz G; Stacey, Gary

    2008-02-01

    Chitin, a polymer of N-acetyl-d-glucosamine, is found in fungal cell walls but not in plants. Plant cells can perceive chitin fragments (chitooligosaccharides) leading to gene induction and defense responses. We identified a LysM receptor-like protein (LysM RLK1) required for chitin signaling in Arabidopsis thaliana. The mutation in this gene blocked the induction of almost all chitooligosaccharide-responsive genes and led to more susceptibility to fungal pathogens but had no effect on infection by a bacterial pathogen. Additionally, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants but not in the mutant. Together, our data indicate that LysM RLK1 is essential for chitin signaling in plants (likely as part of the receptor complex) and is involved in chitin-mediated plant innate immunity. The LysM RLK1-mediated chitin signaling pathway is unique, but it may share a conserved downstream pathway with the FLS2/flagellin- and EFR/EF-Tu-mediated signaling pathways. Additionally, our work suggests a possible evolutionary relationship between the chitin and Nod factor perception mechanisms due to the similarities between their potential receptors and between the signal molecules perceived by them.

  8. Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress

    PubMed Central

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Miltner, Anja; Wick, Lukas Y.; Kästner, Matthias

    2016-01-01

    Contaminant biodegradation in soils is hampered by the heterogeneous distribution of degrading communities colonizing isolated microenvironments as a result of the soil architecture. Over the last years, soil salinization was recognized as an additional problem especially in arid and semiarid ecosystems as it drastically reduces the activity and motility of bacteria. Here, we studied the importance of different spatial processes for benzoate biodegradation at an environmentally relevant range of osmotic potentials (ΔΨo) using model ecosystems exhibiting a heterogeneous distribution of the soil-borne bacterium Pseudomonas putida KT2440. Three systematically manipulated scenarios allowed us to cover the effects of (i) substrate diffusion, (ii) substrate diffusion and autonomous bacterial dispersal, and (iii) substrate diffusion and autonomous as well as mediated bacterial dispersal along glass fiber networks mimicking fungal hyphae. To quantify the relative importance of the different spatial processes, we compared these heterogeneous scenarios to a reference value obtained for each ΔΨo by means of a quasi-optimal scenario in which degraders were ab initio homogeneously distributed. Substrate diffusion as the sole spatial process was insufficient to counteract the disadvantage due to spatial degrader heterogeneity at ΔΨo ranging from 0 to −1 MPa. In this scenario, only 13.8−21.3% of the quasi-optimal biodegradation performance could be achieved. In the same range of ΔΨo values, substrate diffusion in combination with bacterial dispersal allowed between 68.6 and 36.2% of the performance showing a clear downwards trend with decreasing ΔΨo. At −1.5 MPa, however, this scenario performed worse than the diffusion scenario, possibly as a result of energetic disadvantages associated with flagellum synthesis and emerging requirements to exceed a critical population density to resist osmotic stress. Network-mediated bacterial dispersal kept biodegradation

  9. Serosurvey for Zoonotic Viral and Bacterial Pathogens Among Slaughtered Livestock in Egypt

    PubMed Central

    Horton, Katherine C.; Wasfy, Momtaz; Samaha, Hamed; Abdel-Rahman, Bassem; Safwat, Sameh; Abdel Fadeel, Moustafa; Mohareb, Emad; Dueger, Erica

    2015-01-01

    Introduction Zoonotic diseases are an important cause of human morbidity and mortality. Animal populations at locations with high risk of transmission of zoonotic pathogens offer an opportunity to study viral and bacterial pathogens of veterinary and public health concern. Methods Blood samples were collected from domestic and imported livestock slaughtered at the Muneeb abattoir in central Egypt in 2009. Samples were collected from cattle (n = 161), buffalo (n = 153), sheep (n = 174), and camels (n = 10). Samples were tested for antibodies against Leptospira spp. by a microscopy agglutination test, Coxiella burnetii by enzyme immunoassay, Brucella spp. by standard tube agglutination, and Rift Valley Fever virus (RVFV), Crimean–Congo hemorrhagic fever virus (CCHFV), sandfly fever Sicilian virus (SFSV), and sandfly fever Naples virus (SFNV) by enzyme-linked immunosorbent assay. Results Antibodies against Leptospira spp. were identified in 64 (40%) cattle, 45 (29%) buffalo, 71 (41%) sheep, and five (50%) camels; antibodies against C. burnetii in six (4%) buffalo, 14 (8%) sheep, and seven (70%) camels; and antibodies against Brucella spp. in 12 (8%) cattle, one (1%) buffalo, seven (4%) sheep, and one (10%) camel. Antibodies against RVFV were detected in two (1%) cattle and five (3%) buffalo, and antibodies against CCHFV in one (1%) cow. No antibodies against SFSV or SFNV were detected in any species. Discussion Results indicate that livestock have been exposed to a number of pathogens, although care must be taken with interpretation. It is not possible to determine whether antibodies against Leptospira spp. and RVFV in cattle and buffalo are due to prior vaccination or natural exposure. Similarly, antibodies identified in animals less than 6 months of age may be maternal antibodies transferred through colostrum rather than evidence of prior exposure. Results provide baseline evidence to indicate that surveillance within animal populations may be a useful tool to

  10. Clinical appearances, healing patterns, risk factors, and outcomes of horses with fungal keratitis: 53 cases (1978-1996)

    PubMed

    Gaarder, J E; Rebhun, W C; Ball, M A; Patten, V; Shin, S; Erb, H

    1998-07-01

    To compare initial clinical appearances, healing mechanisms, risk factors, and outcomes of horses with fungal keratitis. Retrospective analysis. 52 horses (53 eyes) with fungal keratitis. Medical records and clinical photographs of eyes were reviewed. Keratomycoses were categorized on the basis of clinical appearance at initial examination and pattern of healing. Five distinct forms of mycotic keratitis were recognized. Of 53 affected eyes, 34 (64%) retained sight and had varying degrees of corneal scarring after treatment, 6 (11%) had a cosmetic appearance but were blind, and 13 (25%) were enucleated. Bacterial-like ulcers were the most frequent type and the most difficult for predicting outcome. Eyes affected by superficial fungal keratitis were likely to be chronically infected and to require debridement and extended treatment but usually healed with minimal scarring. Keratomycosis with a surrounding furrow resulted in a grave prognosis. Aspergillus organisms were isolated from 9 of 10 such eyes. Cake-frosting material was a positive prognostic sign. Fungal corneal stromal abscesses tended to be caused by yeast. This information will aid practitioners in recognizing various forms of fungal keratitis and guide them when making therapeutic decisions and prognoses for affected horses.

  11. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton.

    PubMed

    Steele-Mortimer, O; Knodler, L A; Finlay, B B

    2000-02-01

    The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.

  12. Associations between Ectomycorrhizal Fungi and Bacterial Needle Endophytes in Pinus radiata: Implications for Biotic Selection of Microbial Communities

    PubMed Central

    Rúa, Megan A.; Wilson, Emily C.; Steele, Sarah; Munters, Arielle R.; Hoeksema, Jason D.; Frank, Anna C.

    2016-01-01

    Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM) fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata), and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest that both biotic

  13. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  14. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehling, J.; Gryganskyi, A.; Hameed, K.

    Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. Furthermore, we sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primarymore » metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/ absence of M. cysteinexigens. In independent comparative phylogenomic analyses of fungal and bacterial genomes we find that they are consistent with an ancient origin for M. elongata M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.« less

  15. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

    DOE PAGES

    Uehling, J.; Gryganskyi, A.; Hameed, K.; ...

    2017-01-11

    Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. Furthermore, we sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primarymore » metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/ absence of M. cysteinexigens. In independent comparative phylogenomic analyses of fungal and bacterial genomes we find that they are consistent with an ancient origin for M. elongata M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.« less

  16. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitson, Laura; Thissen, James B.; Gardner, Shea N.

    In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technologymore » was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae , Bacteroidaceae , and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.« less

  17. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    DOE PAGES

    Hewitson, Laura; Thissen, James B.; Gardner, Shea N.; ...

    2014-01-01

    In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technologymore » was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae , Bacteroidaceae , and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.« less

  18. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  19. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  20. Ability of procalcitonin to predict bacterial meningitis in the emergency department.

    PubMed

    Morales Casado, M I; Moreno Alonso, F; Juárez Belaunde, A L; Heredero Gálvez, E; Talavera Encinas, O; Julián-Jiménez, A

    2016-01-01

    The aim of this study was to analyse and compare procalcitonin (PCT) and C-reactive protein (CRP) as tools for detecting bacterial meningitis and predicting bacteraemia. Prospective, observational, and descriptive analytical study of 98 consecutive patients aged ≥15 years and diagnosed with acute meningitis in an emergency department between August 2009 and July 2013. We analysed 98 patients with AM (66 males [67%]); mean age was 44±21 years. The diagnosis was bacterial meningitis in 38 patients (20 with bacteraemia); viral meningitis in 33; probable viral meningitis in 15; and presumptively diagnosed partially treated acute meningitis in 12. PCT had the highest area under the ROC curve (AUC) (0.996; 95% CI, 0.987-1; p<0.001). With a cutoff of ≥ 0.74 ng/ml, PCT achieved 94.7% sensitivity, 100% specificity, negative predictive value (NPV) of 93.9%, and positive predictive value (PPV) of 100%. The mean levels for PCT were11.47±7.76 ng/ml in bacterial meningitis vs. 0.10±0.15 ng/ml in viral meningitis (p <0.001). The AUC for CRP was 0.916 and a cutoff of ≥ 90 mg/L achieved 67.5% sensitivity, 86.3% specificity, PPV of 89.2%, and NPV of 90.4%. As a predictor of bacteraemia in bacterial meningitis, only PCT delivered a significant difference (14.7±7.1 ng/mL vs. 4.68±3.54 ng/mL, p<0.001). A cutoff of ≥ 1.1 ng/mL achieved 94.6% sensitivity, 72.4% specificity, NPV of 95.4%, and PPV of 69.2%; the AUC was 0.965 (95% CI, 0.921-1; p<0.001). PCT has a high diagnostic power for acute meningitis in emergency department patients. PCT outperforms CRP in the detection of bacterial aetiology and is a good predictor of bacteraemia in bacterial meningitis. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.