Sample records for bacterial viral parasitic

  1. Acute bacterial and viral meningitis.

    PubMed

    Bartt, Russell

    2012-12-01

    Most cases of acute meningitis are infectious and result from a potentially wide range of bacterial and viral pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Acute meningitis is infectious in most cases and caused by a potentially wide range of bacterial and viral pathogens. Shifts in the epidemiology of bacterial pathogens have been influenced by changes in vaccines and their implementation. Seasonal and environmental changes influence the likely viral and rickettsial pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Pertinent testing and treatment can vary with the clinical presentation, season, and possible exposures. This article reviews the epidemiology, clinical presentation, diagnosis, and treatment of acute meningitis.

  2. Viral-bacterial associations in acute apical abscesses.

    PubMed

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  3. Inflammatory response in mixed viral-bacterial community-acquired pneumonia.

    PubMed

    Bello, Salvador; Mincholé, Elisa; Fandos, Sergio; Lasierra, Ana B; Ruiz, María A; Simon, Ana L; Panadero, Carolina; Lapresta, Carlos; Menendez, Rosario; Torres, Antoni

    2014-07-29

    The role of mixed pneumonia (virus+bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP. We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial). Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%. Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP.

  4. Bacterial and parasitic diseases of parrots.

    PubMed

    Doneley, Robert J T

    2009-09-01

    As wild-caught birds become increasingly rare in aviculture, there is a corresponding decline in the incidence of bacterial and parasitic problems and an increase in the recognition of the importance of maintaining health through better nutrition and husbandry. Nevertheless, the relatively close confines of captivity mean an increased pathogen load in the environment in which companion and aviary parrots live. This increased pathogen load leads to greater exposure of these birds to bacteria and parasites, and consequently a greater risk of infection and disease. This article discusses bacterial and parasitic infections in companion and aviary parrots. It includes the origins, pathogens, diagnosis, treatment, and some of the associated risk factors.

  5. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt

    PubMed Central

    El-Adawy, Hosny; Abdelwhab, Elsayed M.

    2017-01-01

    Egypt has a unique geographical location connecting the three old-world continents Africa, Asia and Europe. It is the country with the highest population density in the Middle East, Northern Africa and the Mediterranean basin. This review summarizes the prevalence, reservoirs, sources of human infection and control regimes of common bacterial, parasitic and viral zoonoses in animals and humans in Egypt. There is a gap of knowledge conerning the epidemiology of zoonotic diseases at the human-animal interface in different localities in Egypt. Some zoonotic agents are “exotic” for Egypt (e.g., MERS-CoV and Crimean-Congo hemorrhagic fever virus), others are endemic (e.g., Brucellosis, Schistosomiasis and Avian influenza). Transboundary transmission of emerging pathogens from and to Egypt occurred via different routes, mainly importation/exportation of apparently healthy animals or migratory birds. Control of the infectious agents and multidrug resistant bacteria in the veterinary sector is on the frontline for infection control in humans. The implementation of control programs significantly decreased the prevalence of some zoonoses, such as schistosomiasis and fascioliasis, in some localities within the country. Sustainable awareness, education and training targeting groups at high risk (veterinarians, farmers, abattoir workers, nurses, etc.) are important to lessen the burden of zoonotic diseases among Egyptians. There is an urgent need for collaborative surveillance and intervention plans for the control of these diseases in Egypt. PMID:28754024

  6. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt.

    PubMed

    Helmy, Yosra A; El-Adawy, Hosny; Abdelwhab, Elsayed M

    2017-07-21

    Egypt has a unique geographical location connecting the three old-world continents Africa, Asia and Europe. It is the country with the highest population density in the Middle East, Northern Africa and the Mediterranean basin. This review summarizes the prevalence, reservoirs, sources of human infection and control regimes of common bacterial, parasitic and viral zoonoses in animals and humans in Egypt. There is a gap of knowledge conerning the epidemiology of zoonotic diseases at the human-animal interface in different localities in Egypt. Some zoonotic agents are "exotic" for Egypt (e.g., MERS-CoV and Crimean-Congo hemorrhagic fever virus), others are endemic (e.g., Brucellosis, Schistosomiasis and Avian influenza). Transboundary transmission of emerging pathogens from and to Egypt occurred via different routes, mainly importation/exportation of apparently healthy animals or migratory birds. Control of the infectious agents and multidrug resistant bacteria in the veterinary sector is on the frontline for infection control in humans. The implementation of control programs significantly decreased the prevalence of some zoonoses, such as schistosomiasis and fascioliasis, in some localities within the country. Sustainable awareness, education and training targeting groups at high risk (veterinarians, farmers, abattoir workers, nurses, etc.) are important to lessen the burden of zoonotic diseases among Egyptians. There is an urgent need for collaborative surveillance and intervention plans for the control of these diseases in Egypt.

  7. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    PubMed Central

    Rassner, Sara M. E.; Anesio, Alexandre M.; Girdwood, Susan E.; Hell, Katherina; Gokul, Jarishma K.; Whitworth, David E.; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  8. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin.

    PubMed

    Bettarel, Y; Amblard, C; Sime-Ngando, T; Carrias, J-F; Sargos, D; Garabétian, F; Lavandier, P

    2003-02-01

    Abundances of different compartments of the microbial loop (i.e., viruses, heterotrophic bacteria, nonpigmented nanoflagellates, and pigmented nanoflagellates), bacterial heterotrophic production (BHP), viral lysis, and potential flagellate grazing impacts on the bacterial assemblages were estimated during a short-term study (24 h) conducted in June 1998 in the epilimnion (5 m) and metalimnion (10 m) of a moderate-altitude oligomesotrophic lake (Lake Pavin, France). Viral and bacterial abundances were higher in the metalimnion than in the epilimnion, whereas pigmented and nonpigmented nanoflagellates were more numerous in the epilimnion. The control of the BHP due to viral lysis (determined by examination of viral-containing bacteria using a transmission electron microscope) was significantly higher in the meta- (range = 6.0-33.7%, mean = 15.6%) than in the epilimnion (3.5-10.3%, 6.4%). The same was for the losses of BHP from the potential predation by nanoflagellates which ranged from 0.5 to 115.4% (mean = 38.7%) in the epilimnion, and from 0.7 to 97.5% (mean = 66.7%) in the metalimnion. Finally, estimated viral mediated mortality rates from the percentage of visibly infected cells and potential nanoflagellate grazing rates based on assumed clearance rates suggest that flagellates consumed a larger proportion of bacterial production than was lost to viral lysis.

  9. Management of select bacterial and parasitic conditions of raptors.

    PubMed

    Willette, Michelle; Ponder, Julia; Cruz-Martinez, Luis; Arent, Lori; Bueno Padilla, Irene; de Francisco, Olga Nicolas; Redig, Patrick

    2009-09-01

    Raptors are susceptible to a broad array of established and emerging bacterial and parasitic diseases, including babesiosis, chlamydiosis, clostridiosis, coccidiosis, cryptosporidiosis, malaria, mycobacteriosis, pasteurellosis, salmonellosis, trichomoniasis, and pododermatitis. Many of these conditions are opportunistic and can be easily managed or averted with proper preventive measures related to captive management, husbandry and diet, and veterinary care. Once infected, treatment must be prompt, appropriate, and judicious. This article examines the significance, diagnosis, management, and prevention of select bacterial and parasitic pathogens of raptors.

  10. Parasite and viral species richness of Southeast Asian bats: Fragmentation of area distribution matters

    PubMed Central

    Gay, Noellie; Olival, Kevin J.; Bumrungsri, Sara; Siriaroonrat, Boripat; Bourgarel, Mathieu; Morand, Serge

    2014-01-01

    Interest in bat-borne diseases and parasites has grown in the past decade over concerns for human health. However, the drivers of parasite diversity among bat host species are understudied as are the links between parasite richness and emerging risks. Thus, we aimed at exploring factors that explain macro and microparasite species richness in bats from Southeast Asia, a hotspot of emerging infectious diseases. First, we identified bat species that need increased sampling effort for pathogen discovery. Our approach highlights pathogen investigation disparities among species within the same genus, such as Rhinolophus and Pteropus. Secondly, comparative analysis using independent contrasts method allowed the identification of likely factors explaining parasite and viral diversity of bats. Our results showed a key role of bat distribution shape, an index of the fragmentation of bat distribution, on parasite diversity, linked to a decrease for both viral and endoparasite species richness. We discuss how our study may contribute to a better understanding of the link between parasite species richness and emergence. PMID:25161915

  11. Cerebrospinal fluid ferritin in children with viral and bacterial meningitis.

    PubMed

    Rezaei, M; Mamishi, S; Mahmoudi, S; Pourakbari, B; Khotaei, G; Daneshjou, K; Hashemi, N

    2013-01-01

    Despite the fact that the prognosis of bacterial meningitis has been improved by the influence of antibiotics, this disease is still one of the significant causes of morbidity and mortality in children. Rapid differentiation between bacterial and aseptic meningitis, and the need for immediate antibiotic treatment in the former, is crucial in the prognosis of these patients. Ferritin is one of the most sensitive biochemical markers investigated in cerebrospinal fluid (CSF) for the early diagnosis of bacterial meningitis. The present study aims to evaluate the diagnostic capability of CSF ferritin in differentiating bacterial and viral meningitis in the paediatric setting. A cross-sectional study was carried out in the referral Children's Medical Center Hospital, Tehran, during 2008 and 2009. According to the inclusion criteria, CSF samples from 42 patients with suspected meningitis were obtained and divided into two meningitis groups, bacterial (n = 18) and viral (n = 24). Ferritin and other routine determinants (i.e., leucocytes, protein and glucose) were compared between the two groups. Ferritin concentration in the bacterial meningitis group was 106.39 +/- 86.96 ng/dL, which was considerably higher than in the viral meningitis group (10.17 +/- 14.09, P < 0.001). Mean CSF protein concentration and cell count were significantly higher in the bacterial meningitis group and showed a positive correlation with CSF ferritin. In conclusion, this study suggests that CSF ferritin concentration is an accurate test for the early differentiation of bacterial and aseptic meningitis; however, further investigation on a larger cohort of patients is required to confirm this finding.

  12. The impact of bacterial and viral co‐infection in severe influenza

    PubMed Central

    Blyth, Christopher C.; Webb, Steve A. R.; Kok, Jen; Dwyer, Dominic E.; van Hal, Sebastiaan J.; Foo, Hong; Ginn, Andrew N.; Kesson, Alison M.; Seppelt, Ian; Iredell, Jonathan R.

    2013-01-01

    Please cite this paper as: Blyth et al. (2013) The impact of bacterial and viral co‐infection in severe influenza. Influenza and Other Respiratory Viruses 7(2) 168–176. Background  Many questions remain concerning the burden, risk factors and impact of bacterial and viral co‐infection in patients with pandemic influenza admitted to the intensive care unit (ICU). Objectives  To examine the burden, risk factors and impact of bacterial and viral co‐infection in Australian patients with severe influenza. Patients/Methods  A cohort study conducted in 14 ICUs was performed. Patients with proven influenza A during the 2009 influenza season were eligible for inclusion. Demographics, risk factors, clinical data, microbiological data, complications and outcomes were collected. Polymerase chain reaction for additional bacterial and viral respiratory pathogens was performed on stored respiratory samples. Results  Co‐infection was identified in 23·3–26·9% of patients with severe influenza A infection: viral co‐infection, 3·2–3·4% and bacterial co‐infection, 20·5–24·7%. Staphylococcus aureus was the most frequent bacterial co‐infection followed by Streptococcus pneumoniae and Haemophilus influenzae. Patients with co‐infection were younger [mean difference in age = 8·46 years (95% CI: 0·18–16·74 years)], less likely to have significant co‐morbidities (32·0% versus 66·2%, P = 0·004) and less frequently obese [mean difference in body mass index = 6·86 (95% CI: 1·77–11·96)] compared to those without co‐infection. Conclusions  Bacterial or viral co‐infection complicated one in four patients admitted to ICU with severe influenza A infection. Despite the co‐infected patients being younger and with fewer co‐morbidities, no significant difference in outcomes was observed. It is likely that co‐infection contributed to a need for ICU admission in those without other risk factors for severe influenza disease

  13. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection.

    PubMed

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee Jeong; Ahn, Jae Sung; Lee, Taehoon; Ahn, Jong Joon

    2017-10-01

    Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. Copyright©2017. The Korean Academy of Tuberculosis and Respiratory Diseases

  14. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

    PubMed Central

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae-Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee-Jeong; Ahn, Jae-Sung

    2017-01-01

    Background Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. PMID:28905531

  15. Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia.

    PubMed

    Voiriot, Guillaume; Visseaux, Benoit; Cohen, Johana; Nguyen, Liem Binh Luong; Neuville, Mathilde; Morbieu, Caroline; Burdet, Charles; Radjou, Aguila; Lescure, François-Xavier; Smonig, Roland; Armand-Lefèvre, Laurence; Mourvillier, Bruno; Yazdanpanah, Yazdan; Soubirou, Jean-Francois; Ruckly, Stephane; Houhou-Fidouh, Nadhira; Timsit, Jean-François

    2016-10-25

    Multiplex polymerase chain reaction (mPCR) enables recovery of viruses from airways of patients with community-acquired pneumonia (CAP), although their clinical impact remains uncertain. Among consecutive adult patients who had undergone a mPCR within 72 hours following their admission to one intensive care unit (ICU), we retrospectively included those with a final diagnosis of CAP. Four etiology groups were clustered: bacterial, viral, mixed (viral-bacterial) and no etiology. A composite criterion of complicated course (hospital death or mechanical ventilation > 7 days) was used. A subgroup analysis compared patients with bacterial and viral-bacterial CAP matched on the bacterial pathogens. Among 174 patients (132 men [76 %], age 63 [53-75] years, SAPSII 38 [27;55], median PSI score 106 [78;130]), bacterial, viral, mixed and no etiology groups gathered 46 (26 %), 53 (31 %), 45 (26 %) and 30 (17 %) patients, respectively. Virus-infected patients displayed a high creatine kinase serum level, a low platelet count, and a trend toward more frequent alveolar-interstitial infiltrates. A complicated course was more frequent in the mixed group (31/45, 69 %), as compared to bacterial (18/46, 39 %), viral (15/53, 28 %) and no etiology (12/30, 40 %) groups (p < 0.01). In multivariate analysis, the mixed (viral-bacterial) infection was independently associated with complicated course (reference: bacterial pneumonia; OR, 3.58; CI 95 %, 1.16-11; p = 0.03). The subgroup analysis of bacteria-matched patients confirmed these findings. Viral-bacterial coinfection during severe CAP in adults is associated with an impaired presentation and a complicated course.

  16. Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides.

    PubMed

    Gharavi, E E; Chaimovich, H; Cucurull, E; Celli, C M; Tang, H; Wilson, W A; Gharavi, A E

    1999-01-01

    We previously induced pathogenic antibodies against anionic phospholipids (PL) in experimental animals by immunization with lipid-free purified human beta2glycoprotein I (beta2GPI). We hypothesized that antiphospholipid antibodies (aPL) are induced by in vivo binding of foreign beta2GPI to self-PL, thus forming an immunogenic complex against which aPL antibodies are produced. If this hypothesis is true, other PL-binding proteins that are products of ubiquitous viral/bacterial agents may also induce aPL. To test this hypothesis, groups of NIH/Swiss mice were immunized with synthetic peptides of viral and bacterial origin that share structural similarity with the putative PL-binding region of beta2GPI. Compared with the control groups, animals immunized with the peptides produced significantly higher levels of aPL and anti-beta2GPI antibodies. These findings demonstrate that some PL-binding viral and bacterial proteins function like beta2GPI in inducing aPL and anti-beta2GPI production, and are consistent with a role for such viral and bacterial proteins in inducing aPL antibody production in humans.

  17. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity

    PubMed Central

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Abstract Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as “per-parasite pathogenicity”. Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence—measured as the rate of decline of CD4+ T cells—and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor–recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5–30%), and that of the per-parasite pathogenicity is 17% (4–29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12–46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. PMID:29029206

  18. CSF lactate level: a useful diagnostic tool to differentiate acute bacterial and viral meningitis.

    PubMed

    Abro, Ali Hassan; Abdou, Ahmed Saheh; Ustadi, Abdulla M; Saleh, Ahmed Alhaj; Younis, Nadeem Javeed; Doleh, Wafa F

    2009-08-01

    To evaluate the potential role of CSF lactate level in the diagnosis of acute bacterial meningitis and in the differentiation between viral and bacterial meningitis. This was a hospital based observational study, conducted at Infectious Diseases Unit, Rashid Hospital Dubai, United Arab Emirates, from July 2004 to June 2007. The patients with clinical diagnosis of acute bacterial meningitis and who had CSF Gram stain/culture positive, CSF analysis suggestive of bacterial meningitis with negative Gram stain and culture but blood culture positive for bacteria and patients with clinical diagnosis suggestive of viral meningitis supported by CSF chemical analysis with negative Gram stain and culture as well as negative blood culture for bacteria were included in the study. CT scan brain was done for all patients before lumber puncture and CSF and blood samples were collected immediately after admission. CSF chemical analysis including lactate level was done on first spinal tap. The CSF lactate level was tested by Enzymatic Colorimetric method. A total 95 adult patients of acute meningitis (53 bacterial and 42 viral) fulfilled the inclusion criteria. Among 53 bacterial meningitis patients, Neisseria meningitides were isolated in 29 (54.7%), Strept. Pneumoniae in 18 (33.96%), Staph. Aureus in 2 (3.77%), Klebsiell Pneumoniae in 2 (3.77%), Strept. Agalactiae in 1 (1.8%) and E. Coli in 1 (1.8%). All the patients with bacterial meningitis had CSF lactate > 3.8 mmol/l except one, whereas none of the patients with viral meningitis had lactate level > 3.8 mmol/l. The mean CSF lactate level in bacterial meningitis cases amounted to 16.51 +/- 6.14 mmol/l, whereas it was significantly lower in viral group 2.36 +/- 0.6 mmol/l, p < .0001. CSF lactate level was significantly high in bacterial than viral meningitis and it can provide pertinent, rapid and reliable diagnostic information. Furthermore, CSF lactate level can also differentiate bacterial meningitis from viral one in a quick

  19. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity.

    PubMed

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Adina; Ringus, Daina L.; Williams, Ryan J.

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showedmore » significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. Finally, the contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.« less

  1. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    DOE PAGES

    Howe, Adina; Ringus, Daina L.; Williams, Ryan J.; ...

    2015-10-16

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showedmore » significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. Finally, the contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.« less

  2. The Role of Viral, Host, and Secondary Bacterial Factors in Influenza Pathogenesis

    PubMed Central

    Kash, John C.; Taubenberger, Jeffery K.

    2016-01-01

    Influenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death. Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation. The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors. Host factors that enhance risk of severe influenza disease include underlying comorbidities, such as cardiac and respiratory disease, immunosuppression, and pregnancy. Viral parameters enhancing disease risk include polymerase mutations associated with host switch and adaptation, viral proteins that modulate immune and antiviral responses, and virulence factors that increase disease severity, which can be especially prominent in pandemic viruses and some zoonotic influenza viruses causing human infections. Influenza viral infections result in damage to the respiratory epithelium that facilitates secondary infection with common bacterial pneumopathogens and can lead to secondary bacterial pneumonias that greatly contribute to respiratory distress, enhanced morbidity, and death. Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza. PMID:25747532

  3. Parasitism enhances susceptibility to bacterial infection in tilapia

    USDA-ARS?s Scientific Manuscript database

    Gyrodactylus is a small elongate monogenetic parasite that mainly lives on the skin and gills of freshwater fish. Gyrodactylus causes mechanical injuries on fish epithelium that can lead to fish mortality under crowded conditions. Streptococcus iniae is a severe bacterial pathogen and the economic l...

  4. Emerging infectious diseases with cutaneous manifestations: Viral and bacterial infections.

    PubMed

    Nawas, Zeena Y; Tong, Yun; Kollipara, Ramya; Peranteau, Andrew J; Woc-Colburn, Laila; Yan, Albert C; Lupi, Omar; Tyring, Stephen K

    2016-07-01

    Given increased international travel, immigration, and climate change, bacterial and viral infections that were once unrecognized or uncommon are being seen more frequently in the Western Hemisphere. A delay in diagnosis and treatment of these diseases can lead to significant patient morbidity and mortality. However, the diagnosis and management of these infections is fraught with a lack of consistency because there is a dearth of dermatology literature on the cutaneous manifestations of these infections. We review the epidemiology, cutaneous manifestations, diagnosis, and management of these emerging bacterial and viral diseases. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study.

    PubMed

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-06-16

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose (e-nose) could fit this profile but has never been tested in this setting before. In a single-center registered trial (NTR 4601) patients admitted with AECOPD were tested with the Aeonose(®) electronic nose, and a diagnosis of viral or bacterial infection was obtained by bacterial culture on sputa and viral PCR on nose swabs. A neural network with leave-10%-out cross-validation was used to assess the e-nose data. Forty three patients were included. In the bacterial infection model, 22 positive cases were tested versus the negatives; and similarly 18 positive cases were tested in the viral infection model. The Aeonose was able to distinguish between COPD-subjects suffering from a viral infection and COPD patients without infection, showing an area under the curve (AUC) of 0.74. Similarly, for bacterial infections, an AUC of 0.72 was obtained. The Aeonose e-nose yields promising results in 'smelling' the presence or absence of a viral or bacterial respiratory infection during an acute exacerbation of COPD. Validation of these results using a new and large cohort is required before introduction into clinical practice.

  6. Cerebrospinal fluid lactate: a differential biomarker for bacterial and viral meningitis in children.

    PubMed

    Nazir, Mudasir; Wani, Wasim Ahmad; Malik, Muzaffar Ahmad; Mir, Mohd Rafiq; Ashraf, Younis; Kawoosa, Khalid; Ali, Syed Wajid

    To assess the performance of cerebrospinal fluid (CSF) lactate as a biomarker to differentiate bacterial meningitis from viral meningitis in children, and to define an optimal CSF lactate concentration that can be called significant for the differentiation. Children with clinical findings compatible with meningitis were studied. CSF lactate and other conventional CSF parameters were recorded. At a cut-off value of 3mmol/L, CSF lactate had a sensitivity of 0.90, specificity of 1.0, positive predictive value of 1.0, and negative predictive value of 0.963, with an accuracy of 0.972. The positive and negative likelihood ratios were 23.6 and 0.1, respectively. When comparing between bacterial and viral meningitis, the area under the curve for CSF lactate was 0.979. The authors concluded that CSF lactate has high sensitivity and specificity in differentiating bacterial from viral meningitis. While at a cut-off value of 3mmol/L, CSF lactate has high diagnostic accuracy for bacterial meningitis, mean levels in viral meningitis remain essentially below 2mmol/L. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  7. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations

    PubMed Central

    Chopyk, Jessica; Allard, Sarah; Nasko, Daniel J.; Bui, Anthony; Mongodin, Emmanuel F.; Sapkota, Amy R.

    2018-01-01

    Agricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October–December), where decreasing temperature and nutrient levels can affect the composition of microbial communities. Ten liters of freshwater from an agricultural pond were sampled monthly, and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, and the bacterial communities were characterized using 16S rRNA gene sequencing. The remaining filtrate was chemically concentrated for viruses, DNA-extracted, and shotgun sequenced. Bacterial community profiling showed significant fluctuations over the sampling period, corresponding to changes in the condition of the pond freshwater (e.g., pH, nutrient load). In addition, there were significant differences in the alpha-diversity and core bacterial operational taxonomic units (OTUs) between water fractions filtered through different pore sizes. The viral fraction was dominated by tailed bacteriophage of the order Caudovirales, largely those of the Siphoviridae family. Moreover, while present, genes involved in virulence/antimicrobial resistance were not enriched within the viral fraction during the study period. Instead, the viral functional profile was dominated by phage associated proteins, as well as those related to nucleotide production. Overall, these data suggest that agricultural pond water harbors a diverse core of bacterial and bacteriophage species whose abundance and composition are influenced by environmental variables characteristic of pond topology and the late season. PMID:29740420

  8. Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation

    PubMed Central

    Wang, Andrew; Huen, Sarah C.; Luan, Harding H.; Yu, Shuang; Zhang, Cuiling; Gallezot, Jean-Dominique; Booth, Carmen J.; Medzhitov, Ruslan

    2017-01-01

    Summary Acute infections are associated with a set of stereotypic behavioral responses, including anorexia, lethargy, and social withdrawal. Although these so called sickness behaviors are the most common and familiar symptoms of infections, their roles in host defense are largely unknown. Here we investigated the role of anorexia in models of bacterial and viral infections. We found that anorexia was protective while nutritional supplementation was detrimental in bacterial sepsis. Furthermore, glucose was necessary and sufficient for these effects. In contrast, nutritional supplementation protected against mortality from influenza infection and viral sepsis, while blocking glucose utilization was lethal. In both bacterial and viral models, these effects were largely independent of pathogen load and magnitude of inflammation. Instead, we identify opposing metabolic requirements tied to cellular stress adaptations critical for tolerance of differential inflammatory states. PMID:27610573

  9. Modeling the within-host dynamics of cholera: bacterial-viral interaction.

    PubMed

    Wang, Xueying; Wang, Jin

    2017-08-01

    Novel deterministic and stochastic models are proposed in this paper for the within-host dynamics of cholera, with a focus on the bacterial-viral interaction. The deterministic model is a system of differential equations describing the interaction among the two types of vibrios and the viruses. The stochastic model is a system of Markov jump processes that is derived based on the dynamics of the deterministic model. The multitype branching process approximation is applied to estimate the extinction probability of bacteria and viruses within a human host during the early stage of the bacterial-viral infection. Accordingly, a closed-form expression is derived for the disease extinction probability, and analytic estimates are validated with numerical simulations. The local and global dynamics of the bacterial-viral interaction are analysed using the deterministic model, and the result indicates that there is a sharp disease threshold characterized by the basic reproduction number [Formula: see text]: if [Formula: see text], vibrios ingested from the environment into human body will not cause cholera infection; if [Formula: see text], vibrios will grow with increased toxicity and persist within the host, leading to human cholera. In contrast, the stochastic model indicates, more realistically, that there is always a positive probability of disease extinction within the human host.

  10. Seroprevalence of viral and bacterial diseases among the bovines in Himachal Pradesh, India

    PubMed Central

    Katoch, Shailja; Dohru, Shweta; Sharma, Mandeep; Vashist, Vikram; Chahota, Rajesh; Dhar, Prasenjit; Thakur, Aneesh; Verma, Subhash

    2017-01-01

    Aim: The study was designed to measure the seroprevalence of viral and bacterial diseases: Infectious bovine rhinotracheitis, bovine viral diarrhea, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, brucellosis, and paratuberculosis among bovine of Himachal Pradesh during the year 2013-2015. Materials and Methods: The serum samples were collected from seven districts of state, namely, Bilaspur, Kangra, Kinnaur, Lahul and Spiti, Mandi, Sirmour, and Solan. The samples were screened using indirect ELISA kits to measure the seroprevalence of viral and bacterial diseases. Results: The overall seroprevalence of infectious bovine rhinotracheitis was 24.24%, bovine viral diarrhea 1.52%, bovine leukemia 9.09%, bovine parainfluenza 57.58%, bovine respiratory syncytial disease 50%, brucellosis 19.69%, and paratuberculosis 9.09% in Himachal Pradesh. The seroprevalence of bovine rhinotracheitis, bovine leukemia, bovine parainfluenza, bovine respiratory syncytial disease, and paratuberculosis in the state varied significantly (p<0.01) while was insignificant for bovine viral diarrhea and brucellosis (p>0.01). Multiple seropositivity has been observed in this study. Bovine parainfluenza virus 3 was observed commonly in mixed infection with almost all viruses and bacteria under study. Conclusion: The viral and bacterial diseases are prevalent in the seven districts of Himachal Pradesh investigated in the study. Therefore, appropriate management practices and routine vaccination programs should be adopted to reduce the prevalence of these diseases. PMID:29391682

  11. Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children

    PubMed Central

    Shailes, Hannah; Eleftherohorinou, Hariklia; Hoggart, Clive J; Cebey-Lopez, Miriam; Carter, Michael J; Janes, Victoria A; Gormley, Stuart; Shimizu, Chisato; Tremoulet, Adriana H; Barendregt, Anouk M; Salas, Antonio; Kanegaye, John; Pollard, Andrew J; Faust, Saul N; Patel, Sanjay; Kuijpers, Taco; Martinon-Torres, Federico; Burns, Jane C; Coin, Lachlan JM; Levin, Michael

    2018-01-01

    Importance As clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment whilst bacterial infection is missed in others. Objective To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. Design Febrile children presenting to participating hospitals in UK, Spain, Netherlands and USA between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation into definite bacterial, definite viral infection or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n=24) inflammatory diseases (n=48), and on published gene expression datasets. Exposures A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. Main Outcomes Definite Bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group, and the indeterminate group. Results The discovery cohort of 240 children (median age 19 months, 62% males) included 52 with definite bacterial infection of whom 36 (69%) required intensive care; and 92 with definite viral infection of whom 32 (35%) required intensive care. 96 children had indeterminate infection. Bioinformatic analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was

  12. Value of multiplex PCR to determine the bacterial and viral aetiology of pneumonia in school-age children.

    PubMed

    Aydemir, Yusuf; Aydemir, Özlem; Pekcan, Sevgi; Özdemir, Mehmet

    2017-02-01

    Conventional methods for the aetiological diagnosis of community-acquired pneumonia (CAP) are often insufficient owing to low sensitivity and the long wait for the results of culture and particularly serology, and it often these methods establish a diagnosis in only half of cases. To evaluate the most common bacterial and viral agents in CAP using a fast responsive PCR method and investigate the relationship between clinical/laboratory features and aetiology, thereby contributing to empirical antibiotic selection and reduction of treatment failure. In children aged 4-15 years consecutively admitted with a diagnosis of CAP, the 10 most commonly detected bacterial and 12 most commonly detected viral agents were investigated by induced sputum using bacterial culture and multiplex PCR methods. Clinical and laboratory features were compared between bacterial and viral pneumonia. In 78 patients, at least one virus was detected in 38 (48.7%) and at least one bacterium in 32 (41%). In addition, both bacteria and viruses were detected in 16 (20.5%) patients. Overall, the agent detection rate was 69.2%. The most common viruses were respiratory syncytial virus and influenza and the most frequently detected bacteria were S. pneumoniae and H. influenzae. PCR was superior to culture for bacterial isolation (41% vs 13%, respectively). Fever, wheezing and radiological features were not helpful in differentiating between bacterial and viral CAP. White blood cell count, CRP and ESR values were significantly higher in the bacterial/mixed aetiology group than in the viral aetiology group. In CAP, multiplex PCR is highly reliable, superior in detecting multiple pathogens and rapidly identifies aetiological agents. Clinical features are poor for differentiation between bacterial and viral infections. The use of PCR methods allow physicians to provide more appropriate antimicrobial therapy, resulting in a better response to treatment, and it may be possible for use as a routine service

  13. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection.

    PubMed

    Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E

    2017-07-01

    We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  14. High frequency of parasitic and viral stool pathogens in patients with active ulcerative colitis: report from a tropical country.

    PubMed

    Banerjee, Debabrata; Deb, Rachana; Dar, Lalit; Mirdha, Bijay R; Pati, Sunil K; Thareja, Sandeep; Falodia, Sushil; Ahuja, Vineet

    2009-01-01

    Diarrhoeal relapses in patients with ulcerative colitis (UC) may be associated with enteric infections and its diagnosis may lessen avoidable exposure to corticosteroids and/or immunosuppressants. The purpose of this study was to assess the frequency of stool pathogens (parasitic and viral) in patients with active UC. This prospective cross-sectional study included 49 consecutive patients (32 M, 17 F, mean age 35.8+/-12 years) with active UC. Three stool samples were collected from each patient and examined for parasitic infection. Rectal biopsies were obtained during sigmoidoscopy to demonstrate cytomegalovirus (CMV) inclusion bodies and to conduct qualitative polymerase chain reaction (PCR) for CMV and herpes simplex virus (HSV) DNA detection. Median duration of illness was 3.9+/-3.7 years and 83.7% of the patients had moderate to severe disease. The prevalence of parasitic infections in UC was 12%. The organisms isolated were Strongyloides stercoralis in 4%, Ankylostoma duodenale in 4%, Cryptosporidium in 2% and Entamoeba histolytica in 2% of the patients. The prevalence of CMV and HSV in rectal biopsies using qualitative PCR was 8% and 10%, respectively. No predictive factor was identified with CMV superinfection in patients with active UC. In India there is a high prevalence of parasitic and viral infections in patients with active UC. The results of the study suggest that, in tropical countries with a known high prevalence of parasitic diseases, aggressive evaluation for parasitic and viral infections should be carried out, as early identification and prompt treatment of such infections can improve the clinical course of patients with active UC.

  15. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cerebrospinal fluid monocytes in bacterial meningitis, viral meningitis, and neuroborreliosis.

    PubMed

    Martinot, M; Greigert, V; Souply, L; Rosolen, B; De Briel, D; Mohseni Zadeh, M; Kaiser, J-D

    2018-04-05

    Cerebrospinal fluid (CSF) leukocytes analysis is commonly used to diagnose meningitis and to differentiate bacterial from viral meningitis. Interpreting CSF monocytes can be difficult for physicians, especially in France where lymphocytes and monocytes results are sometimes pooled. We assessed SF monocytes in patients presenting with microbiologically confirmed meningitis (CSF leukocyte count>10/mm 3 for adults or >30/mm 3 for children<2 months), i.e. bacterial meningitis (BM), viral meningitis (VM), and neuroborreliosis (NB). Two-hundred patients (82 BM, 86 VM, and 32 NB) were included. The proportions of monocytes were higher in VM (median 8%; range 0-57%) than in BM (median 5%; range 0-60%, P=0.03) or NB (median 5%; range 0-53%, P=0.46), with a high value overlap between conditions. CSF monocytes should not be used to discriminate BM from VM and NB because of value overlaps. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Diagnostic Accuracy of FebriDx: A Rapid Test to Detect Immune Responses to Viral and Bacterial Upper Respiratory Infections.

    PubMed

    Self, Wesley H; Rosen, Jeffrey; Sharp, Stephan C; Filbin, Michael R; Hou, Peter C; Parekh, Amisha D; Kurz, Michael C; Shapiro, Nathan I

    2017-10-07

    C-reactive protein (CRP) and myxovirus resistance protein A (MxA) are associated with bacterial and viral infections, respectively. We conducted a prospective, multicenter, cross-sectional study of adults and children with febrile upper respiratory tract infections (URIs) to evaluate the diagnostic accuracy of a rapid CRP/MxA immunoassay to identify clinically significant bacterial infection with host response and acute pathogenic viral infection. The reference standard for classifying URI etiology was an algorithm that included throat bacterial culture, upper respiratory PCR for viral and atypical pathogens, procalcitonin, white blood cell count, and bandemia. The algorithm also allowed for physician override. Among 205 patients, 25 (12.2%) were classified as bacterial, 53 (25.9%) as viral, and 127 (62.0%) negative by the reference standard. For bacterial detection, agreement between FebriDx and the reference standard was 91.7%, with FebriDx having a sensitivity of 80% (95% CI: 59-93%), specificity of 93% (89-97%), positive predictive value (PPV) of 63% (45-79%), and a negative predictive value (NPV) of 97% (94-99%). For viral detection, agreement was 84%, with a sensitivity of 87% (75-95%), specificity of 83% (76-89%), PPV of 64% (63-75%), and NPV of 95% (90-98%). FebriDx may help to identify clinically significant immune responses associated with bacterial and viral URIs that are more likely to require clinical management or therapeutic intervention, and has potential to assist with antibiotic stewardship.

  18. Covariation of viral parameters with bacterial assemblage richness and diversity in the water column and sediments

    NASA Astrophysics Data System (ADS)

    Hewson, Ian; Fuhrman, Jed A.

    2007-05-01

    Viruses are hypothesized to maintain diversity in microbial assemblages by regulating the abundance of dominant competitors and thereby allowing less-dominant competitors to persist in assemblages; however, there have been few empirical data sets to support this idea. In this study, we examined the relationship between the ratio of viral abundance to bacterial abundance, viral production, and the relative richness and diversity of bacterial assemblage fingerprints, in samples taken from geographically widespread locations (North Pacific gyre, the Amazon River plume and adjacent North Atlantic gyre, Gulf of Mexico, Southern California Bight and Arafura—Coral Seas) which are oligo- to mesotrophic. Bacterial assemblage richness and diversity as measured by automated rRNA intergenic spacer (ARISA) fingerprinting were significantly and positively correlated with the ratio of virus abundance to bacteria abundance (VBR) and to the rate of virus production only in the oligotrophic North Pacific gyre. ARISA fingerprint richness/diversity were not significantly correlated to viral parameters when assessed across all samples in surface waters, suggesting there is not a singular global quantitative relationship between viral pressure and host diversity within well evolved host/virus systems in different geographic locations in plankton. In sediments off Southern California, viral parameters significantly and negatively correlated with ARISA diversity, suggesting strong viral interactions in this habitat. To examine covariation of viral parameters and the relative abundance and diversity of rarer bacterial taxa (i.e., less-dominant competitor), the richness and diversity of diazotroph communities was measured using terminal restriction fragment length polymorphism (TRFLP) of a portion ( nifH) of the nitrogenase gene. The richness and diversity of diazotrophic communities were significantly and negatively correlated with viral parameters across all locations. Since diazotrophs

  19. Epidemiology and detection as options for control of viral and parasitic foodborne disease.

    PubMed Central

    Jaykus, L. A.

    1997-01-01

    Human enteric viruses and protozoal parasites are important causes of emerging food and waterborne disease. Epidemiologic investigation and detection of the agents in clinical, food, and water specimens, which are traditionally used to establish the cause of disease outbreaks, are either cumbersome, expensive, and frequently unavailable or unattempted for the important food and waterborne enteric viruses and protozoa. However, the recent introduction of regulatory testing mandates, alternative testing strategies, and increased epidemiologic surveillance for food and waterborne disease should significantly improve the ability to detect and control these agents. We discuss new methods of investigating foodborne viral and parasitic disease and the future of these methods in recognizing, identifying, and controlling disease agents. PMID:9366607

  20. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis

    PubMed Central

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-01-01

    Abstract There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children. All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and November 2013, were enrolled in this prospective cross-sectional study. Children were divided into 2 groups of bacterial and viral meningitis, based on the results of cerebrospinal fluid (CSF) culture, polymerase chain reaction, and cytochemical profile. Diagnostic values of CSF parameters (ferritin, PCT, absolute neutrophil count [ANC], white blood cell count, and lactate) and serum parameters (PCT, ferritin, CRP, and erythrocyte sedimentation rate [ESR]) were evaluated. Among 50 patients with meningitis, 12 were diagnosed with bacterial meningitis. Concentrations of all markers were significantly different between bacterial and viral meningitis, except for serum (P = .389) and CSF (P = .136) PCT. The best rates of area under the receiver operating characteristic (ROC) curve (AUC) were achieved by lactate (AUC = 0.923) and serum-CRP (AUC = 0.889). The best negative predictive values (NPV) for bacterial meningitis were attained by ANC (100%) and lactate (97.1%). The results of our study suggest that ferritin and PCT are not strong predictive biomarkers. A combination of low CSF lactate, ANC, ESR, and serum-CRP could reasonably rule out the bacterial meningitis. PMID:28858084

  1. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania.

    PubMed

    Grybchuk, Danyil; Akopyants, Natalia S; Kostygov, Alexei Y; Konovalovas, Aleksandras; Lye, Lon-Fye; Dobson, Deborah E; Zangger, Haroun; Fasel, Nicolas; Butenko, Anzhelika; Frolov, Alexander O; Votýpka, Jan; d'Avila-Levy, Claudia M; Kulich, Pavel; Moravcová, Jana; Plevka, Pavel; Rogozin, Igor B; Serva, Saulius; Lukeš, Julius; Beverley, Stephen M; Yurchenko, Vyacheslav

    2018-01-16

    Knowledge of viral diversity is expanding greatly, but many lineages remain underexplored. We surveyed RNA viruses in 52 cultured monoxenous relatives of the human parasite Leishmania ( Crithidia and Leptomonas ), as well as plant-infecting Phytomonas Leptomonas pyrrhocoris was a hotbed for viral discovery, carrying a virus (Leptomonas pyrrhocoris ostravirus 1) with a highly divergent RNA-dependent RNA polymerase missed by conventional BLAST searches, an emergent clade of tombus-like viruses, and an example of viral endogenization. A deep-branching clade of trypanosomatid narnaviruses was found, notable as Leptomonas seymouri bearing Narna-like virus 1 (LepseyNLV1) have been reported in cultures recovered from patients with visceral leishmaniasis. A deep-branching trypanosomatid viral lineage showing strong affinities to bunyaviruses was termed " Leishbunyavirus " (LBV) and judged sufficiently distinct to warrant assignment within a proposed family termed " Leishbunyaviridae " Numerous relatives of trypanosomatid viruses were found in insect metatranscriptomic surveys, which likely arise from trypanosomatid microbiota. Despite extensive sampling we found no relatives of the totivirus Leishmaniavirus (LRV1/2), implying that it was acquired at about the same time the Leishmania became able to parasitize vertebrates. As viruses were found in over a quarter of isolates tested, many more are likely to be found in the >600 unsurveyed trypanosomatid species. Viral loss was occasionally observed in culture, providing potentially isogenic virus-free lines enabling studies probing the biological role of trypanosomatid viruses. These data shed important insights on the emergence of viruses within an important trypanosomatid clade relevant to human disease.

  2. Phage Life Cycles Behind Bacterial Biodiversity.

    PubMed

    Olszak, Tomasz; Latka, Agnieszka; Roszniowski, Bartosz; Valvano, Miguel A; Drulis-Kawa, Zuzanna

    2017-11-24

    Bacteriophages (phages or bacterial viruses) are the most abundant biological entities in our planet; their influence reaches far beyond the microorganisms they parasitize. Phages are present in every environment and shape up every bacterial population in both active and passive ways. They participate in the circulation of organic matter and drive the evolution of microorganisms by horizontal gene transfer at unprecedented scales. The mass flow of genetic information in the microbial world influences the biosphere and poses challenges for science and medicine. The genetic flow, however, depends on the fate of the viral DNA injected into the bacterial cell. The archetypal notion of phages only engaging in predatorprey relationships is slowly fading. Because of their varied development cycles, environmental conditions, and the diversity of microorganisms they parasitize, phages form a dense and highly complex web of dependencies, which has important consequences for life on Earth. The sophisticated phage-bacteria interplay includes both aggressive action (bacterial lysis) and "diplomatic negotiations" (prophage domestication). Here, we review the most important mechanisms of interactions between phages and bacteria and their evolutionary consequences influencing their biodiversity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. [EFFECTIVENESS OF FULLERENE-(TRIS-AMINOCAPRONIC ACID) HYDRATE IN THE MODEL OF EXPERIMENTAL VIRAL-BACTERIAL PNEUMONIA OF MICE].

    PubMed

    Falynskova, I N; Leonova, E I; Fedyakina, I T; Makhmudova, N R; Lepekha, L N; Mikhailova, N A; Rasnetsov, L D; Zverev, V V; Leneva, I A

    2015-01-01

    Study the effectiveness of the substance and various drug formulations of fullerene-(tris-aminocapronic acid) hydrate (FTAAH onwards) in the model of experimental viral-bacterial pneumonia of mice. BALB/c mice were infected with influenza virus A/California/04/2009 and subsequently infected with Staphylococcus aureus. The animals were treated after viral infection with the substance and various drug forms of FTAAH, as well as comparative preparations--oseltamivir and arbidol. Therapy effectiveness was evaluated by clinical indicators (survival, lifespan, animal mass decrease reduction), virological (virus titer), microbiological (density of bacteria in lungs) parameters, confirmed by pathomorphological characteristics of lungs. FTAAH therapy in injectable form was effective in the model of a combined viral-bacterial pneumonia of mice by all the studied criteria: treatment increased mice survival, reduced the decrease of their body weight, resulted in a reduction of virus titers and density of bacteria in lungs, that correlated with the data from morphological study and signs of bronchopneumonia resolution in mice. FTAAH therapy in rectal form depended on animal infection schemes, as well as preparation dose, increasing with its increase. FTAAH substance is effective in the model of experimental viral-bacterial pneumonia of mice.

  4. [Autochthonous acute viral and bacterial infections of the central nervous system (meningitis and encephalitis)].

    PubMed

    Pérez-Ruiz, Mercedes; Vicente, Diego; Navarro-Marí, José María

    2008-07-01

    Rapid diagnosis of acute viral and bacterial infections of the central nervous system (meningitis and encephalitis) is highly important for the clinical management of the patient and helps to establish early therapy that may solve life-threatening situations, to avoid unnecessary empirical treatments, to reduce hospital stay, and to facilitate appropriate interventions in the context of public health. Molecular techniques, especially real-time polymerase chain reaction, have become the fastest and most sensitive diagnostic procedures for autochthonous viral meningitis and encephalitis, and their role is becoming increasingly important for the diagnosis and control of most frequent acute bacterial meningitides. Automatic and closed systems may encourage the widespread and systematic use of molecular techniques for the diagnosis of these neurological syndromes in most laboratories.

  5. Increased Systemic Cytokine/Chemokine Expression in Asthmatic and Non-asthmatic Patients with Bacterial, Viral or Mixed Lung Infection.

    PubMed

    Giuffrida, M J; Valero, N; Mosquera, J; Duran, A; Arocha, F; Chacín, B; Espina, L M; Gotera, J; Bermudez, J; Mavarez, A; Alvarez-Mon, M

    2017-04-01

    This study was aimed to determine the profiles of serum cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP-1: monocyte chemoattract protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in individuals with an asthmatic versus a non-asthmatic background with bacterial, viral or mixed acute respiratory infection. Asthmatic (n = 14) and non-asthmatic (n = 29) patients with acute viral, bacterial or mixed (bacterial and viruses) respiratory infection were studied. Patients were also analysed as individuals with pneumonia or bronchitis. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in serum was determined by ELISA. Increased cytokine/chemokine concentration in asthmatic and non-asthmatic patients was observed. However, higher concentrations of chemokines (MCP-1 and RANTES) in asthmatic patients infected by viruses, bacteria or bacteria and viruses (mixed) than in non-asthmatic patients were observed. In general, viral and mixed infections were better cytokine/chemokine inducers than bacterial infection. Cytokine/chemokine expression was similarly increased in both asthmatic and non-asthmatic patients with pneumonia or bronchitis, except that RANTES remained at normal levels in bronchitis. Circulating cytokine profiles induced by acute viral, bacterial or mixed lung infection were not related to asthmatic background, except for chemokines that were increased in asthmatic status. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  6. Epidemiology and aetiology of maternal bacterial and viral infections in low- and middle-income countries

    PubMed Central

    Velu, Prasad Palani; Gravett, Courtney A.; Roberts, Tom K.; Wagner, Thor A.; Zhang, Jian Shayne F.; Rubens, Craig E.; Gravett, Michael G.; Campbell, Harry; Rudan, Igor

    2011-01-01

    Background Maternal morbidity and mortality in low- and middle-income countries has remained exceedingly high. However, information on bacterial and viral maternal infections, which are important contributors to poor pregnancy outcomes, is sparse and poorly characterised. This review aims to describe the epidemiology and aetiology of bacterial and viral maternal infections in low- and middle-income countries. Methods A systematic search of published literature was conducted and data on aetiology and epidemiology of maternal infections was extracted from relevant studies for analysis. Searches were conducted in parallel by two reviewers (using OVID) in the following databases: Medline (1950 to 2010), EMBASE (1980 to 2010) and Global Health (1973 to 2010). Results Data from 158 relevant studies was used to characterise the epidemiology of the 10 most extensively reported maternal infections with the following median prevalence rates: Treponema pallidum (2.6%), Neisseria gonorrhoeae (1.5%), Chlamydia trachomatis (5.8%), Group B Streptococcus (8.6%), bacterial vaginosis (20.9%), hepatitis B virus (4.3%), hepatitis C virus (1.4%), Cytomegalovirus (95.7% past infection), Rubella (8.9% susceptible) and Herpes simplex (20.7%). Large variations in the prevalence of these infections between countries and regions were noted. Conclusion This review confirms the suspected high prevalence of maternal bacterial and viral infections and identifies particular diseases and regions requiring urgent attention in public health policy planning, setting research priorities and donor funding towards reducing maternal morbidity and mortality in low- and middle-income countries. PMID:23198117

  7. Performance of C-reactive protein and procalcitonin to distinguish viral from bacterial and malarial causes of fever in Southeast Asia.

    PubMed

    Lubell, Yoel; Blacksell, Stuart D; Dunachie, Susanna; Tanganuchitcharnchai, Ampai; Althaus, Thomas; Watthanaworawit, Wanitda; Paris, Daniel H; Mayxay, Mayfong; Peto, Thomas J; Dondorp, Arjen M; White, Nicholas J; Day, Nicholas P J; Nosten, François; Newton, Paul N; Turner, Paul

    2015-11-11

    Poor targeting of antimicrobial drugs contributes to the millions of deaths each year from malaria, pneumonia, and other tropical infectious diseases. While malaria rapid diagnostic tests have improved use of antimalarial drugs, there are no similar tests to guide the use of antibiotics in undifferentiated fevers. In this study we estimate the diagnostic accuracy of two well established biomarkers of bacterial infection, procalcitonin and C-reactive protein (CRP) in discriminating between common viral and bacterial infections in malaria endemic settings of Southeast Asia. Serum procalcitonin and CRP levels were measured in stored serum samples from febrile patients enrolled in three prospective studies conducted in Cambodia, Laos and, Thailand. Of the 1372 patients with a microbiologically confirmed diagnosis, 1105 had a single viral, bacterial or malarial infection. Procalcitonin and CRP levels were compared amongst these aetiological groups and their sensitivity and specificity in distinguishing bacterial infections and bacteraemias from viral infections were estimated using standard thresholds. Serum concentrations of both biomarkers were significantly higher in bacterial infections and malaria than in viral infections. The AUROC for CRP in discriminating between bacterial and viral infections was 0.83 (0.81-0.86) compared with 0.74 (0.71-0.77) for procalcitonin (p < 0.0001). This relative advantage was evident in all sites and when stratifying patients by age and admission status. For CRP at a threshold of 10 mg/L, the sensitivity of detecting bacterial infections was 95% with a specificity of 49%. At a threshold of 20 mg/L sensitivity was 86% with a specificity of 67%. For procalcitonin at a low threshold of 0.1 ng/mL the sensitivity was 90% with a specificity of 39%. At a higher threshold of 0.5 ng/ul sensitivity was 60% with a specificity of 76%. In samples from febrile patients with mono-infections from rural settings in Southeast Asia, CRP was a highly

  8. Evaluation of Bacterial Contamination as an Indicator of Viral Contamination in a Sedimentary Aquifer in Uruguay.

    PubMed

    Gamazo, P; Victoria, M; Schijven, J F; Alvareda, E; Tort, L F L; Ramos, J; Burutaran, L; Olivera, M; Lizasoain, A; Sapriza, G; Castells, M; Colina, R

    2018-03-21

    In Uruguay, groundwater is frequently used for agricultural activities, as well as for human consumption in urban and rural areas. As in many countries worldwide, drinking water microbiological quality is evaluated only according to bacteriological standards and virological analyses are not mentioned in the legislation. In this work, the incidence of human viral (Rotavirus A, Norovirus GII, and human Adenovirus) and bacterial (total and thermotolerant coliform and Pseudomonas aeruginosa) contamination in groundwater in the Salto district, Uruguay, as well as the possible correlation between these groups of microorganisms, was studied. From a total of 134 groundwater samples, 42 (32.1%) were positive for Rotavirus, only 1 (0.7%) for both Rotavirus and Adenovirus, and 96 (72.6%) samples were positive for bacterial indicators. Results also show that Rotavirus presence was not associated with changes in chemical composition of the aquifer water. Bacteriological indicators were not adequate to predict the presence of viruses in individual groundwater samples (well scale), but a deeper spatial-temporal analysis showed that they are promising candidates to assess the viral contamination degree at aquifer scale, since from the number of wells with bacterial contamination the number of wells with viral contamination could be estimated.

  9. Travel-related acquisition of diarrhoeagenic bacteria, enteral viruses and parasites in a prospective cohort of 98 Dutch travellers.

    PubMed

    van Hattem, Jarne M; Arcilla, Maris S; Grobusch, Martin P; Bart, Aldert; Bootsma, Martin C; van Genderen, Perry J; van Gool, Tom; Goorhuis, Abraham; van Hellemond, Jaap J; Molenkamp, Richard; Molhoek, Nicky; Oude Lashof, Astrid M; Stobberingh, Ellen E; de Wever, Bob; Verbrugh, Henri A; Melles, Damian C; Penders, John; Schultsz, Constance; de Jong, Menno D

    2017-09-01

    Limited prospective data are available on the acquisition of viral, bacterial and parasitic diarrhoeagenic agents by healthy individuals during travel. To determine the frequency of travel associated acquisition of 19 pathogens in 98 intercontinental travellers, qPCR was used to detect 8 viral pathogens, 6 bacterial enteric pathogens and 5 parasite species in faecal samples collected immediately before and after travel. We found high pre-travel carriage rates of Blastocystis spp. and Dientamoeba fragilis of 32% and 19% respectively. Pre-travel prevalences of all other tested pathogens were below 3%. Blastocystis spp. (10%), Plesiomonas shigelloides (7%), D. fragilis (6%) and Shigella spp. (5%) were the most frequently acquired pathogens and acquisition of enteral viruses and hepatitis E virus in this relatively small group of travellers was rare or non-existent. Our findings suggest that the role of viruses as the cause of persisting traveller's diarrhoea is limited and bacterial pathogens are more likely as a cause of traveller's diarrhoea. The substantial proportion of travellers carrying Blastocystis spp. and D. fragilis before travel warrants cautious interpretation of positive samples in returning travellers with gastrointestinal complaints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: Bacterial succession and viral abundance pattern.

    PubMed

    Guidi, Flavio; Pezzolesi, Laura; Vanucci, Silvana

    2018-02-27

    Algal-bacterial interactions play a major role in shaping diversity of algal associated bacterial communities. Temporal variation in bacterial phylogenetic composition reflects changes of these complex interactions which occur during the algal growth cycle as well as throughout the lifetime of algal blooms. Viruses are also known to cause shifts in bacterial community diversity which could affect algal bloom phases. This study investigated on changes of bacterial and viral abundances, bacterial physiological status, and on bacterial successional pattern associated with the harmful benthic dinoflagellate Ostreopsis cf. ovata in batch cultures over the algal growth cycle. Bacterial community phylogenetic structure was assessed by 16S rRNA gene ION torrent sequencing. A comparison between bacterial community retrieved in cultures and that one co-occurring in situ during the development of the O. cf. ovata bloom from where the algal strain was isolated was also reported. Bacterial community growth was characterized by a biphasic pattern with the highest contributions (~60%) of highly active bacteria found at the two bacterial exponential growth steps. An alphaproteobacterial consortium composed by the Rhodobacteraceae Dinoroseobacter (22.2%-35.4%) and Roseovarius (5.7%-18.3%), together with Oceanicaulis (14.2-40.3%), was strongly associated with O. cf. ovata over the algal growth. The Rhodobacteraceae members encompassed phylotypes with an assessed mutualistic-pathogenic bimodal behavior. Fabibacter (0.7%-25.2%), Labrenzia (5.6%-24.3%), and Dietzia (0.04%-1.7%) were relevant at the stationary phase. Overall, the successional pattern and the metabolic and functional traits of the bacterial community retrieved in culture mirror those ones underpinning O. cf. ovata bloom dynamics in field. Viral abundances increased synoptically with bacterial abundances during the first bacterial exponential growth step while being stationary during the second step. Microbial trends

  11. Retrospective Analysis of Bacterial and Viral Co-Infections in Pneumocystis spp. Positive Lung Samples of Austrian Pigs with Pneumonia.

    PubMed

    Weissenbacher-Lang, Christiane; Kureljušić, Branislav; Nedorost, Nora; Matula, Bettina; Schießl, Wolfgang; Stixenberger, Daniela; Weissenböck, Herbert

    2016-01-01

    Aim of this study was the retrospective investigation of viral (porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), torque teno sus virus type 1 and 2 (TTSuV1, TTSuV2)) and bacterial (Bordetella bronchiseptica (B. b.), Mycoplasma hyopneumoniae (M. h.), and Pasteurella multocida (P. m.)) co-infections in 110 Pneumocystis spp. positive lung samples of Austrian pigs with pneumonia. Fifty-one % were positive for PCV2, 7% for PRRSV, 22% for TTSuV1, 48% for TTSuV2, 6% for B. b., 29% for M. h., and 21% for P. m. In 38.2% only viral, in 3.6% only bacterial and in 40.0% both, viral and bacterial pathogens were detected. In 29.1% of the cases a co-infection with 1 pathogen, in 28.2% with 2, in 17.3% with 3, and in 7.3% with 4 different infectious agents were observed. The exposure to Pneumocystis significantly decreased the risk of a co-infection with PRRSV in weaning piglets; all other odds ratios were not significant. Four categories of results were compared: I = P. spp. + only viral co-infectants, II = P. spp. + both viral and bacterial co-infectants, III = P. spp. + only bacterial co-infectants, and IV = P. spp. single infection. The evaluation of all samples and the age class of the weaning piglets resulted in a predomination of the categories I and II. In contrast, the suckling piglets showed more samples of category I and IV. In the group of fattening pigs, category II predominated. Suckling piglets can be infected with P. spp. early in life. With increasing age this single infections can be complicated by co-infections with other respiratory diseases.

  12. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE PAGES

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; ...

    2016-02-03

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  13. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burstein, David; Sun, Christine L.; Brown, Christopher T.

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  14. Discovery of trypanosomatid parasites in globally distributed Drosophila species.

    PubMed

    Chandler, James Angus; James, Pamela M

    2013-01-01

    Microbial parasites of animals include bacteria, viruses, and various unicellular eukaryotes. Because of the difficulty in studying these microorganisms in both humans and disease vectors, laboratory models are commonly used for experimental analysis of host-parasite interactions. Drosophila is one such model that has made significant contributions to our knowledge of bacterial, fungal, and viral infections. Despite this, less is known about other potential parasites associated with natural Drosophila populations. Here, we surveyed sixteen Drosophila populations comprising thirteen species from four continents and Hawaii and found that they are associated with an extensive diversity of trypanosomatids (Euglenozoa, Kinetoplastea). Phylogenetic analysis finds that Drosophila-associated trypanosomatids are closely related to taxa that are responsible for various types of leishmaniases and more distantly related to the taxa responsible for human African trypanosomiasis and Chagas disease. We suggest that Drosophila may provide a powerful system for studying the interactions between trypanosomatids and their hosts.

  15. Molecular indices of viral disease development in wild migrating salmon†.

    PubMed

    Miller, Kristina M; Günther, Oliver P; Li, Shaorong; Kaukinen, Karia H; Ming, Tobi J

    2017-01-01

    Infectious diseases can impact the physiological performance of individuals, including their mobility, visual acuity, behavior and tolerance and ability to effectively respond to additional stressors. These physiological effects can influence competitiveness, social hierarchy, habitat usage, migratory behavior and risk to predation, and in some circumstances, viability of populations. While there are multiple means of detecting infectious agents (microscopy, culture, molecular assays), the detection of infectious diseases in wild populations in circumstances where mortality is not observable can be difficult. Moreover, if infection-related physiological compromise leaves individuals vulnerable to predation, it may be rare to observe wildlife in a late stage of disease. Diagnostic technologies designed to diagnose cause of death are not always sensitive enough to detect early stages of disease development in live-sampled organisms. Sensitive technologies that can differentiate agent carrier states from active disease states are required to demonstrate impacts of infectious diseases in wild populations. We present the discovery and validation of salmon host transcriptional biomarkers capable of distinguishing fish in an active viral disease state [viral disease development (VDD)] from those carrying a latent viral infection, and viral versus bacterial disease states. Biomarker discovery was conducted through meta-analysis of published and in-house microarray data, and validation performed on independent datasets including disease challenge studies and farmed salmon diagnosed with various viral, bacterial and parasitic diseases. We demonstrate that the VDD biomarker panel is predictive of disease development across RNA-viral species, salmon species and salmon tissues, and can recognize a viral disease state in wild-migrating salmon. Moreover, we show that there is considerable overlap in the biomarkers resolved in our study in salmon with those based on similar human

  16. Molecular indices of viral disease development in wild migrating salmon†

    PubMed Central

    Günther, Oliver P.; Li, Shaorong; Kaukinen, Karia H.; Ming, Tobi J.

    2017-01-01

    Abstract Infectious diseases can impact the physiological performance of individuals, including their mobility, visual acuity, behavior and tolerance and ability to effectively respond to additional stressors. These physiological effects can influence competitiveness, social hierarchy, habitat usage, migratory behavior and risk to predation, and in some circumstances, viability of populations. While there are multiple means of detecting infectious agents (microscopy, culture, molecular assays), the detection of infectious diseases in wild populations in circumstances where mortality is not observable can be difficult. Moreover, if infection-related physiological compromise leaves individuals vulnerable to predation, it may be rare to observe wildlife in a late stage of disease. Diagnostic technologies designed to diagnose cause of death are not always sensitive enough to detect early stages of disease development in live-sampled organisms. Sensitive technologies that can differentiate agent carrier states from active disease states are required to demonstrate impacts of infectious diseases in wild populations. We present the discovery and validation of salmon host transcriptional biomarkers capable of distinguishing fish in an active viral disease state [viral disease development (VDD)] from those carrying a latent viral infection, and viral versus bacterial disease states. Biomarker discovery was conducted through meta-analysis of published and in-house microarray data, and validation performed on independent datasets including disease challenge studies and farmed salmon diagnosed with various viral, bacterial and parasitic diseases. We demonstrate that the VDD biomarker panel is predictive of disease development across RNA-viral species, salmon species and salmon tissues, and can recognize a viral disease state in wild-migrating salmon. Moreover, we show that there is considerable overlap in the biomarkers resolved in our study in salmon with those based on

  17. ESTIMATION OF THE NUMBER OF INFECTIOUS BACTERIAL OR VIRAL PARTICLES BY THE DILUTION METHOD

    PubMed Central

    Seligman, Stephen J.; Mickey, M. Ray

    1964-01-01

    Seligman, Stephen J. (University of California, Los Angeles), and M. Ray Mickey. Estimation of the number of infectious bacterial or viral particles by the dilution method. J. Bacteriol. 88:31–36. 1964.—For viral or bacterial systems in which discrete foci of infection are not obtainable, it is possible to obtain an estimate of the number of infectious particles by use of the quantal response if the assay system is such that one infectious particle can elicit the response. Unfortunately, the maximum likelihood estimate is difficult to calculate, but, by the use of a modification of Haldane's approximation, it is possible to construct a table which facilitates calculation of both the average number of infectious particles and its relative error. Additional advantages of the method are that the number of test units per dilution can be varied, the dilutions need not bear any fixed relation to each other, and the one-particle hypothesis can be readily tested. PMID:14197902

  18. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis: A cross-sectional study.

    PubMed

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-09-01

    There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children.All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and November 2013, were enrolled in this prospective cross-sectional study. Children were divided into 2 groups of bacterial and viral meningitis, based on the results of cerebrospinal fluid (CSF) culture, polymerase chain reaction, and cytochemical profile. Diagnostic values of CSF parameters (ferritin, PCT, absolute neutrophil count [ANC], white blood cell count, and lactate) and serum parameters (PCT, ferritin, CRP, and erythrocyte sedimentation rate [ESR]) were evaluated.Among 50 patients with meningitis, 12 were diagnosed with bacterial meningitis. Concentrations of all markers were significantly different between bacterial and viral meningitis, except for serum (P = .389) and CSF (P = .136) PCT. The best rates of area under the receiver operating characteristic (ROC) curve (AUC) were achieved by lactate (AUC = 0.923) and serum-CRP (AUC = 0.889). The best negative predictive values (NPV) for bacterial meningitis were attained by ANC (100%) and lactate (97.1%).The results of our study suggest that ferritin and PCT are not strong predictive biomarkers. A combination of low CSF lactate, ANC, ESR, and serum-CRP could reasonably rule out the bacterial meningitis.

  19. Parasitism and calfhood diseases.

    PubMed

    Herlich, H; Douvres, F W

    1977-02-01

    That animals can and do acquire an effective immunity against helminth parasites has been demonstrated extensively experimentally, and the fact that domestic animals such as cattle, sheep, and horses become adults while maintaining good health in spite of constant exposure to reinfection long has suggested that immunity must be important to such survival. Although our attempts to date to vaccinate calves against helminth parasites have either failed or been unsatisfactory because of the pathosis induced by the experimental vaccines, the results are not surprising or discouraging. In contrast to the long history of immunization research on bacterial and viral diseases, only within a relatively short time have serious efforts been directed at exploiting hostal immunity for prevention and control of helminthic diseases. Unlike the comparatively simple structures of viruses and bacteria, helminths are complex multicellular animals with vast arrays of antigens and complicated physiological and immunological interactions with their hosts. Much more fundamental information on helminth-bovine interactions, on helminth antigens, and on cattle antibody systems must be developed before progress on control of cattle helminths by vaccination can be meaningful.

  20. Viral infection, inflammation and schizophrenia

    PubMed Central

    Kneeland, Rachel E.; Fatemi, S. Hossein

    2012-01-01

    Schizophrenia is a severe neurodevelopmental disorder with genetic and environmental etiologies. Prenatal viral/bacterial infections and inflammation play major roles in the genesis of schizophrenia. In this review, we describe a viral model of schizophrenia tested in mice whereby the offspring of mice prenatally infected with influenza at E7, E9, E16, and E18 show significant gene, protein, and brain structural abnormalities postnatally. Similarly, we describe data on rodents exposed to bacterial infection or injected with a synthetic viral mimic (PolyI:C) also demonstrating brain structural and behavioral abnormalities. Moreover, human serologic data has been indispensible in supporting the viral theory of schizophrenia. Individuals born seropositive for bacterial and viral agents are at a significantly elevated risk of developing schizophrenia. While the specific mechanisms of prenatal viral/bacterial infections and brain disorder are unclear, recent findings suggest that the maternal inflammatory response may be associated with fetal brain injury. Preventive and therapeutic treatment options are also proposed. This review presents data related to epidemiology, human serology, and experimental animal models which support the viral model of schizophrenia. PMID:22349576

  1. Performance of thirteen clinical rules to distinguish bacterial and presumed viral meningitis in Vietnamese children.

    PubMed

    Huy, Nguyen Tien; Thao, Nguyen Thanh Hong; Tuan, Nguyen Anh; Khiem, Nguyen Tuan; Moore, Christopher C; Thi Ngoc Diep, Doan; Hirayama, Kenji

    2012-01-01

    Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC) using the method of DeLong and McNemar test for specificity comparison. Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85-90%. No clinical decision rules provided an acceptable specificity (>50%) with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule.

  2. Performance of Thirteen Clinical Rules to Distinguish Bacterial and Presumed Viral Meningitis in Vietnamese Children

    PubMed Central

    Huy, Nguyen Tien; Thao, Nguyen Thanh Hong; Tuan, Nguyen Anh; Khiem, Nguyen Tuan; Moore, Christopher C.; Thi Ngoc Diep, Doan; Hirayama, Kenji

    2012-01-01

    Background and Purpose Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. Methods A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC) using the method of DeLong and McNemar test for specificity comparison. Results Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85–90%. Conclusions No clinical decision rules provided an acceptable specificity (>50%) with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule. PMID:23209715

  3. Exposure to Electronic Cigarettes Impairs Pulmonary Anti-Bacterial and Anti-Viral Defenses in a Mouse Model

    PubMed Central

    Sussan, Thomas E.; Gajghate, Sachin; Thimmulappa, Rajesh K.; Ma, Jinfang; Kim, Jung-Hyun; Sudini, Kuladeep; Consolini, Nicola; Cormier, Stephania A.; Lomnicki, Slawo; Hasan, Farhana; Pekosz, Andrew; Biswal, Shyam

    2015-01-01

    Electronic cigarettes (E-cigs) have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor contains 7x1011 free radicals per puff. To determine whether E-cig exposure impacts pulmonary responses in mice, we developed an inhalation chamber for E-cig exposure. Mice that were exposed to E-cig vapor contained serum cotinine concentrations that are comparable to human E-cig users. E-cig exposure for 2 weeks produced a significant increase in oxidative stress and moderate macrophage-mediated inflammation. Since, COPD patients are susceptible to bacterial and viral infections, we tested effects of E-cigs on immune response. Mice that were exposed to E-cig vapor showed significantly impaired pulmonary bacterial clearance, compared to air-exposed mice, following an intranasal infection with Streptococcus pneumonia. This defective bacterial clearance was partially due to reduced phagocytosis by alveolar macrophages from E-cig exposed mice. In response to Influenza A virus infection, E-cig exposed mice displayed increased lung viral titers and enhanced virus-induced illness and mortality. In summary, this study reports a murine model of E-cig exposure and demonstrates that E-cig exposure elicits impaired pulmonary anti-microbial defenses. Hence, E-cig exposure as an alternative to cigarette smoking must be rigorously tested in users for their effects on immune response and susceptibility to bacterial and viral infections. PMID:25651083

  4. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites.

    PubMed Central

    Ebert, D; Weisser, W W

    1997-01-01

    Many viral, bacterial and protozoan parasites of invertebrates first propagate inside their host without releasing any transmission stages and then kill their host to release all transmission stages at once. Life history and the evolution of virulence of these obligately killing parasites are modelled, assuming that within-host growth is density dependent. We find that the parasite should kill the host when its per capita growth rate falls to the level of the host mortality rate. The parasite should kill its host later when the carrying capacity, K, is higher, but should kill it earlier when the parasite-independent host mortality increases or when the parasite has a higher birth rate. When K(t), for parasite growth, is not constant over the duration of an infection, but increases with time, the parasite should kill the host around the stage when the growth rate of the carrying capacity decelerates strongly. In case that K(t) relates to host body size, this deceleration in growth is around host maturation. PMID:9263465

  5. The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: implications for coevolution.

    PubMed

    King, Kayla C; Auld, Stuart K J R; Wilson, Philip J; James, Janna; Little, Tom J

    2013-02-01

    Strong selection on parasites, as well as on hosts, is crucial for fueling coevolutionary dynamics. Selection will be especially strong if parasites that encounter resistant hosts are destroyed and diluted from the local environment. We tested whether spores of the bacterial parasite Pasteuria ramosa were passed through the gut (the route of infection) of their host, Daphnia magna, and whether passaged spores remained viable for a "second chance" at infecting a new host. In particular, we tested if this viability (estimated via infectivity) depended on host genotype, whether or not the genotype was susceptible, and on initial parasite dose. Our results show that Pasteuria spores generally remain viable after passage through both susceptible and resistant Daphnia. Furthermore, these spores remained infectious even after being frozen for several weeks. If parasites can get a second chance at infecting hosts in the wild, selection for infection success in the first instance will be reduced. This could also weaken reciprocal selection on hosts and slow the coevolutionary process.

  6. The impact of albendazole treatment on the incidence of viral- and bacterial-induced diarrhea in school children in southern Vietnam: study protocol for a randomized controlled trial.

    PubMed

    Leung, Jacqueline M; Hong, Chau Tran Thi; Trung, Nghia Ho Dang; Thi, Hoa Nhu; Minh, Chau Nguyen Ngoc; Thi, Thuy Vu; Hong, Dinh Thanh; Man, Dinh Nguyen Huy; Knowles, Sarah C L; Wolbers, Marcel; Hoang, Nhat Le Thanh; Thwaites, Guy; Graham, Andrea L; Baker, Stephen

    2016-06-06

    Anthelmintics are one of the more commonly available classes of drugs to treat infections by parasitic helminths (especially nematodes) in the human intestinal tract. As a result of their cost-effectiveness, mass school-based deworming programs are becoming routine practice in developing countries. However, experimental and clinical evidence suggests that anthelmintic treatments may increase susceptibility to other gastrointestinal infections caused by bacteria, viruses, or protozoa. Hypothesizing that anthelmintics may increase diarrheal infections in treated children, we aim to evaluate the impact of anthelmintics on the incidence of diarrheal disease caused by viral and bacterial pathogens in school children in southern Vietnam. This is a randomized, double-blinded, placebo-controlled trial to investigate the effects of albendazole treatment versus placebo on the incidence of viral- and bacterial-induced diarrhea in 350 helminth-infected and 350 helminth-uninfected Vietnamese school children aged 6-15 years. Four hundred milligrams of albendazole, or placebo treatment will be administered once every 3 months for 12 months. At the end of 12 months, all participants will receive albendazole treatment. The primary endpoint of this study is the incidence of diarrheal disease assessed by 12 months of weekly active and passive case surveillance. Secondary endpoints include the prevalence and intensities of helminth, viral, and bacterial infections, alterations in host immunity and the gut microbiota with helminth and pathogen clearance, changes in mean z scores of body weight indices over time, and the number and severity of adverse events. In order to reduce helminth burdens, anthelmintics are being routinely administered to children in developing countries. However, the effects of anthelmintic treatment on susceptibility to other diseases, including diarrheal pathogens, remain unknown. It is important to monitor for unintended consequences of drug treatments in

  7. Yeast supplementation altered the metabolic response to a combined viral-bacterial challenge in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    Two treatments were evaluated in feedlot heifers to determine the effects of feeding a yeast supplement on metabolic responses to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (325 +/- 19.2 kg) were selected and randomly assigned to one of two treatments: 1) Contr...

  8. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  9. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Parasites and phytoplankton, with special emphasis on dinoflagellate infections.

    PubMed

    Park, Myung Gil; Yih, Wonho; Coats, D Wayne

    2004-01-01

    Planktonic members of most algal groups are known to harbor intracellular symbionts, including viruses, bacteria, fungi, and protozoa. Among the dinoflagellates, viral and bacterial associations were recognized a quarter century ago, yet their impact on host populations remains largely unresolved. By contrast, fungal and protozoan infections of dinoflagellates are well documented and generally viewed as playing major roles in host population dynamics. Our understanding of fungal parasites is largely based on studies for freshwater diatoms and dinoflagellates, although fungal infections are known for some marine phytoplankton. In freshwater systems, fungal chytrids have been linked to mass mortalities of host organisms, suppression or retardation of phytoplankton blooms, and selective effects on species composition leading to successional changes in plankton communities. Parasitic dinoflagellates of the genus Amoebophrya and the newly described Perkinsozoa, Parvilucifera infectans, are widely distributed in coastal waters of the world where they commonly infect photosynthetic and heterotrophic dinoflagellates. Recent work indicates that these parasites can have significant impacts on host physiology, behavior, and bloom dynamics. Thus, parasitism needs to be carefully considered in developing concepts about plankton dynamics and the flow of material in marine food webs.

  11. Household sanitation is associated with lower risk of bacterial and protozoal enteric infections, but not viral infections and diarrhoea, in a cohort study in a low-income urban neighbourhood in Vellore, India.

    PubMed

    Berendes, David; Leon, Juan; Kirby, Amy; Clennon, Julie; Raj, Suraja; Yakubu, Habib; Robb, Katharine; Kartikeyan, Arun; Hemavathy, Priya; Gunasekaran, Annai; Roy, Sheela; Ghale, Ben Chirag; Kumar, J Senthil; Mohan, Venkata Raghava; Kang, Gagandeep; Moe, Christine

    2017-09-01

    This study examined associations between household sanitation and enteric infection - including diarrhoeal-specific outcomes - in children 0-2 years of age in a low-income, dense urban neighbourhood. As part of the MAL-ED study, 230 children in a low-income, urban, Indian neighbourhood provided stool specimens at 14-17 scheduled time points and during diarrhoeal episodes in the first 2 years of life that were analysed for bacterial, parasitic (protozoa and helminths) and viral pathogens. From interviews with caregivers in 100 households, the relationship between the presence (and discharge) of household sanitation facilities and any, pathogen-specific, and diarrhoea-specific enteric infection was tested through mixed-effects Poisson regression models. Few study households (33%) reported having toilets, most of which (82%) discharged into open drains. Controlling for season and household socio-economic status, the presence of a household toilet was associated with lower risks of enteric infection (RR: 0.91, 95% CI: 0.79-1.06), bacterial infection (RR: 0.87, 95% CI: 0.75-1.02) and protozoal infection (RR: 0.64, 95% CI: 0.39-1.04), although not statistically significant, but had no association with diarrhoea (RR: 1.00, 95% CI: 0.68-1.45) or viral infections (RR: 1.12, 95% CI: 0.79-1.60). Models also suggested that the relationship between household toilets discharging to drains and enteric infection risk may vary by season. The presence of a household toilet was associated with lower risk of bacterial and protozoal enteric infections, but not diarrhoea or viral infections, suggesting the health effects of sanitation may be more accurately estimated using outcome measures that account for aetiologic agents. © 2017 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  12. Evolution of Caenorhabditis elegans host defense under selection by the bacterial parasite Serratia marcescens.

    PubMed

    Penley, McKenna J; Ha, Giang T; Morran, Levi T

    2017-01-01

    Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations.

  13. Evolution of Caenorhabditis elegans host defense under selection by the bacterial parasite Serratia marcescens

    PubMed Central

    Penley, McKenna J.; Ha, Giang T.; Morran, Levi T.

    2017-01-01

    Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations. PMID:28792961

  14. The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: implications for coevolution

    PubMed Central

    King, Kayla C; Auld, Stuart K J R; Wilson, Philip J; James, Janna; Little, Tom J

    2013-01-01

    Strong selection on parasites, as well as on hosts, is crucial for fueling coevolutionary dynamics. Selection will be especially strong if parasites that encounter resistant hosts are destroyed and diluted from the local environment. We tested whether spores of the bacterial parasite Pasteuria ramosa were passed through the gut (the route of infection) of their host, Daphnia magna, and whether passaged spores remained viable for a “second chance” at infecting a new host. In particular, we tested if this viability (estimated via infectivity) depended on host genotype, whether or not the genotype was susceptible, and on initial parasite dose. Our results show that Pasteuria spores generally remain viable after passage through both susceptible and resistant Daphnia. Furthermore, these spores remained infectious even after being frozen for several weeks. If parasites can get a second chance at infecting hosts in the wild, selection for infection success in the first instance will be reduced. This could also weaken reciprocal selection on hosts and slow the coevolutionary process. PMID:23467806

  15. Viral Infection Sensitizes Human Fetal Membranes to Bacterial Lipopolysaccharide by MERTK Inhibition and Inflammasome Activation.

    PubMed

    Cross, Sarah N; Potter, Julie A; Aldo, Paulomi; Kwon, Ja Young; Pitruzzello, Mary; Tong, Mancy; Guller, Seth; Rothlin, Carla V; Mor, Gil; Abrahams, Vikki M

    2017-10-15

    Chorioamnionitis, premature rupture of fetal membranes (FMs), and subsequent preterm birth are associated with local infection and inflammation, particularly IL-1β production. Although bacterial infections are commonly identified, other microorganisms may play a role in the pathogenesis. Because viral pandemics, such as influenza, Ebola, and Zika, are becoming more common, and pregnant women are at increased risk for associated complications, this study evaluated the impact that viral infection had on human FM innate immune responses. This study shows that a herpes viral infection of FMs sensitizes the tissue to low levels of bacterial LPS, giving rise to an exaggerated IL-1β response. Using an ex vivo human FM explant system and an in vivo mouse model of pregnancy, we report that the mechanism by which this aggravated inflammation arises is through the inhibition of the TAM receptor, MERTK, and activation of the inflammasome. The TAM receptor ligand, growth arrest specific 6, re-establishes the normal FM response to LPS by restoring and augmenting TAM receptor and ligand expression, as well as by preventing the exacerbated IL-1β processing and secretion. These findings indicate a novel mechanism by which viruses alter normal FM immune responses to bacteria, potentially giving rise to adverse pregnancy outcomes. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Microbiological and pathological examination of fatal calf pneumonia cases induced by bacterial and viral respiratory pathogens.

    PubMed

    Szeredi, Levente; Jánosi, Szilárd; Pálfi, Vilmos

    2010-09-01

    The infectious origin of fatal cases of calf pneumonia was studied in 48 calves from 27 different herds on postmortem examination. Lung tissue samples were examined by pathological, histological, bacterial culture, virus isolation and immunohistochemical methods for the detection of viral and bacterial infections. Pneumonia was diagnosed in 47/48 cases and infectious agents were found in 40/47 (85%) of those cases. The presence of multiple respiratory pathogens in 23/40 (57.5%) cases indicated the complex origin of fatal calf pneumonia. The most important respiratory pathogens were Mannheimia-Pasteurella in 36/40 (90%) cases, followed by Arcanobacterium pyogenes in 16/40 (40%) cases, Mycoplasma bovis in 12/40 (30%) cases, and bovine respiratory syncytial virus in 4/40 (10%) cases. Histophilus somni was detected in 2/40 (5%) cases, while bovine herpesvirus-1, bovine viral diarrhoea virus and parainfluenza virus-3 were each found in 1/40 (2.5%) case. Mastadenovirus, bovine coronavirus, influenza A virus or Chlamydiaceae were not detected.

  17. Differentiation of bacterial versus viral otitis media using a combined Raman scattering spectroscopy and low coherence interferometry probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.

    2016-02-01

    Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.

  18. Association of marine viral and bacterial communities with reference black carbon particles under experimental conditions: an analysis with scanning electron, epifluorescence and confocal laser scanning microscopy.

    PubMed

    Cattaneo, Raffaela; Rouviere, Christian; Rassoulzadegan, Fereidoun; Weinbauer, Markus G

    2010-11-01

    Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass, constitutes a significant fraction of the marine organic carbon pool. However, little is known about the possible interactions of BC and marine microorganisms. Here, we report the results of experiments using a standard reference BC material in high concentrations to investigate basic principles of the dynamics of natural bacterial and viral communities with BC particles. We assessed the attachment of viral and bacterial communities using scanning electron, epifluorescence and confocal laser scanning microscopy and shifts in bacterial community composition using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE). In 24-h time-course experiments, BC particles showed a strong potential for absorbing viruses and bacteria. Total viral abundance was reduced, whereas total bacterial abundance was stimulated in the BC treatments. Viral and bacterial abundance on BC particles increased with particle size, whereas the abundances of BC-associated viruses and bacteria per square micrometer surface area decreased significantly with BC particle size. DGGE results suggested that BC has the potential to change bacterial community structure and favour phylotypes related to Glaciecola sp. Our study indicates that BC could influence processes mediated by bacteria and viruses in marine ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia.

    PubMed

    Berg, Johanna; Zscheppang, Katja; Fatykhova, Diana; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Eggeling, Stephan; Schimek, Maria; Gruber, Achim D; Suttorp, Norbert; Hippenstiel, Stefan; Hocke, Andreas C

    2017-07-01

    The severity and lethality of influenza A virus (IAV) infections is frequently aggravated by secondary bacterial pneumonia. However, the mechanisms in human lung tissue that provoke this increase in fatality are unknown and therapeutic immune modulatory options are lacking.We established a human lung ex vivo co-infection model to investigate innate immune related mechanisms contributing to the susceptibility of secondary pneumococcal pneumonia.We revealed that type I and III interferon (IFN) inhibits Streptococcus pneumoniae -induced interleukin (IL)-1β release. The lack of IL-1β resulted in the repression of bacterially induced granulocyte-macrophage colony-stimulating factor (GM-CSF) liberation. Specific inhibition of IFN receptor I and III-associated tyrosine kinase 2 (Tyk2) completely restored the S. pneumoniae -induced IL-1β-GM-CSF axis, leading to a reduction of bacterial growth. A preceding IAV infection of the human alveolus leads to a type I and III IFN-dependent blockade of the early cytokines IL-1β and GM-CSF, which are key for orchestrating an adequate innate immune response against bacteria. Their virally induced suppression may result in impaired bacterial clearance and alveolar repair.Pharmacological inhibition of Tyk2 might be a new treatment option to sustain beneficial endogenous GM-CSF levels in IAV-associated secondary bacterial pneumonia. Copyright ©ERS 2017.

  20. Viral and bacterial contamination in a sedimentary aquifer in Uruguay: evaluation of coliforms as regional indicators of viral contamination.

    NASA Astrophysics Data System (ADS)

    Gamazo, Pablo; Colina, Rodney; Victoria, Matias; Alvareda, Elena; Burutatran, Luciana; Ramos, Julian; Olivera, María; Soler, Joan

    2015-04-01

    In many areas of Uruguay groundwater is the only source of water for human consumption and for industrial-agricultural economic activities. Traditionally considered as a safe source, groundwater is commonly used without any treatment. The Uruguayan law requires bacteriological (fecal) analysis for most water uses, but virological analyses are not mentioned in the legislation. In the Salto district, where groundwater is used for human consumption and for agricultural activities, bacterial contamination has been detected in several wells but no viruses analysis have been performed. The Republic University (UDELAR), with the support of the National Agency for Research and Innovation (ANII), is studying the incidence of virus and fecal bacteria in groundwater on an intensive agriculture area of the Salto district. An initial screening campaign of 44 wells was performed in which, besides total and fecal coliforms, rotavirus and adenovirus were detected. A subgroup of the screening wells (15) where selected for bimonthly sampling during a year. In accordance with literature results, single well data analysis shows that coliform and viral contamination can be considered as independent variables. However, when spatial data is integrated, coliform and viral contamination show linear correlation. In this work we present the survey results, we analyse the temporal incidence of variables like precipitation, temperature and chemical composition in well contamination and we discuss the value of coliforms as global indicator of viral contamination for the Salto aquifer.

  1. Acute metabolic responses to a combined viral-bacterial respiratory disease challenge in heifers administered transdermal flunixin meglumine

    USDA-ARS?s Scientific Manuscript database

    A trial was conducted to determine effects of altering time of transdermal flunixin meglumine (BTD; Banamine Transdermal, Merck Animal Health, Summit, NJ) administration relative to a viral-bacterial respiratory disease challenge in beef heifers. Thirty-two healthy heifers (170±21.1 kg BW) were assi...

  2. Acute immunological responses to a combined viral-bacterial respiratory disease challenge in heifers administered transdermal flunixin meglumine

    USDA-ARS?s Scientific Manuscript database

    Time of flunixin meglumine transdermal (FTD; Finadyne Transdermal, Merck Animal Health, Summit, NJ) administration relative to a viral-bacterial challenge was evaluated in beef heifers. Thirty-two beef heifers (170 ± 21.1 kg BW) were randomly assigned to one of four treatments: 1) Control (CON), rec...

  3. Parasite Carbohydrate Vaccines.

    PubMed

    Jaurigue, Jonnel A; Seeberger, Peter H

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma , and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.

  4. Parasite Carbohydrate Vaccines

    PubMed Central

    Jaurigue, Jonnel A.; Seeberger, Peter H.

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases—malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development. PMID:28660174

  5. Aetiology of acute paediatric gastroenteritis in Bulgaria during summer months: prevalence of viral infections.

    PubMed

    Mladenova, Zornitsa; Steyer, Andrej; Steyer, Adela Fratnik; Ganesh, Balasubramanian; Petrov, Petar; Tchervenjakova, Tanja; Iturriza-Gomara, Miren

    2015-03-01

    Paediatric acute gastroenteritis is a global public health problem. Comprehensive laboratory investigation for viral, bacterial and parasitic agents is helpful for improving management of acute gastroenteritis in health care settings and for monitoring and controlling the spread of these infections. Our study aimed to investigate the role of various pathogens in infantile diarrhoea in Bulgaria outside the classical winter epidemics of rotavirus and norovirus. Stool samples from 115 hospitalized children aged 0-3 years collected during summer months were tested for presence of 14 infectious agents - group A rotavirus, astrovirus, Giardia, Cryptosporidium and Entamoeba using ELISAs; norovirus by real-time RT-PCR; picobirnavirus and sapovirus by RT-PCR; adenovirus using PCR, and Salmonella, Shigella, Escherichia coli, Yersinia and Campylobacter using standard bacterial cultures. Infectious origin was established in a total of 92 cases and 23 samples remained negative. A single pathogen was found in 67 stools, of which rotaviruses were the most prevalent (56.7 %), followed by noroviruses (19.4 %), enteric adenoviruses (7.5 %), astroviruses (6.0 %), bacteria and parasites (4.5 % each) and sapoviruses (1.4 %). Rotavirus predominant genotypes were G4P[8] (46.3 %) and G2P[4] (21.4 %); for astroviruses, type 1a was the most common, while the GII.4/2006b variant was the most prevalent among noroviruses. Bacteria were observed in five cases, with Salmonella sp. as the most prevalent, while parasites were found in ten stool samples, with Giardia intestinalis in five cases. The results demonstrated high morbidity associated with viral infections and that rotavirus and norovirus remain the most common pathogens associated with severe gastroenteritis during summer months in Bulgaria, a country with a temperate climate, and significant molecular diversity among circulating virus strains. © 2015 The Authors.

  6. Acute immunological responses to a combined viral-bacterial respiratory disease challenge in feedlot heifers supplemented with yeast

    USDA-ARS?s Scientific Manuscript database

    Two treatments were evaluated in commercial feedlot heifers to determine the effects of a yeast supplement on immune responses to a combined viral-bacterial respiratory challenge. Thirty-two beef heifers (325 +/- 19.2 kg BW) were selected and randomly assigned to one of two treatments, and fed for 3...

  7. Zinc source and concentration altered physiological responses of beef heifers during a combined viral-bacterial respiratory challenge

    USDA-ARS?s Scientific Manuscript database

    Three treatments were evaluated in feedlot heifers to determine the effects of zinc supplementation on the immune response to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (255+/-15 kg) were subjected to a 30d period of Zn depletion, then randomly assigned to one ...

  8. Serum protein electrophoresis: an interesting diagnosis tool to distinguish viral from bacterial community-acquired pneumonia.

    PubMed

    Davido, B; Badr, C; Lagrange, A; Makhloufi, S; De Truchis, P; Perronne, C; Salomon, J; Dinh, A

    2016-06-01

    29-69 % of pneumonias are microbiologically documented because it can be considered as an invasive procedure with variable test sensitivity. However, it drastically impacts therapeutic strategy in particular the use of antibiotics. Serum protein electrophoresis (SPEP) is a routine and non-invasive test commonly used to identify serum protein disorders. As virus and bacteria may induce different globulins production, we hypothesize that SPEP can be used as an etiological diagnosis test. Retrospective study conducted from 1/1/13 until 5/1/15 among patient hospitalized for an acute community-acquired pneumonia based on fever, crackles and radiological abnormalities. α/β, α/γ, β/γ globulins and albumin/globulin (A/G) ratio were calculated from SPEP. Data were analyzed in 3 groups: documented viral (DVP) or bacterial pneumonia (DBP) and supposedly bacterial pneumonia (SBP). We used ANOVA statistic test with multiple comparisons using CI95 and ROC curve to compare them. 109 patients included divided into DBP (n = 16), DVP (n = 26) and SBP (n = 67). Mean age was 62 ± 18 year-old with a sex ratio M/F of 1.3. Underlying conditions (e.g. COPD, diabetes) were comparable between groups in multivariate analysis. Means of A/G ratio were 0.80 [0.76-0.84], 0.96 [0.91-1.01], 1.08 [0.99-1.16] respectively for DBP, SBP and DVP (p = 0.0002). A/G ratio cut-off value of 0.845 has a sensitivity of 87.5 % and a specificity of 73.1 %. A/G ratio seems to be an easy diagnostic tool to differentiate bacterial from viral pneumonia. A/G ratio cut-off value below 0.845 seems to be predictable of a bacterial origin and support the use of antibiotics.

  9. FilmArray® Gastrointestinal (GI) Panel for Viral Acute Gastroenteritis Detection in Pediatric Patients

    PubMed Central

    Kanwar, Neena; Jackson, Jami; Duffy, Susan; Chapin, Kimberle; Cohen, Daniel; Leber, Amy; Daly, Judy a; Pavia, Andrew; Larsen, Chari; Baca, Tanya; Bender, Jeffery; Bard, Jennifer Dien; Festekjian, Ara; Holmberg, Kristen; Bourzac, Kevin; Selvarangan, Rangaraj

    2017-01-01

    Abstract Background Acute viral gastroenteritis is one of the leading causes of diarrheal diseases. The FilmArray GI Panel is a PCR based assay that detects 22 different enteric pathogens including five viruses (Adenovirus F 40/41, Astrovirus, Norovirus GI/GII, Rotavirus A, and Sapovirus (I, II, IV, and V)) in an hour. The epidemiology and management of acute viral gastroenteritis is described. Methods Children with acute gastroenteritis were prospectively enrolled at emergency departments of five geographically different pediatric facilities during 2015–2016. Stool specimens were collected and tested by the FilmArray GI Panel. Results A total of 1157 subjects were enrolled in the study. Stool specimens from 961 subjects were collected. Subjects with viral, bacterial, and parasitic etiology as identified by the FilmArray GI Panel were 429 (44.6%), 392 (40.8%), and 41 (4.3%), respectively. Viral AGE was common in winter months from October through March (274/429; 63.9%); norovirus was the leading viral agent (205/429; 47.8%) and was more commonly detected in winter months (147/205; 71.7%). Other viruses detected include Adenovirus F 40/41, Astrovirus, Rotavirus, and Sapovirus in 94 (9.8%), 49 (5.1%), 28 (2.9%), and 97 (10.1%) specimens, respectively. Co-infections with multiple pathogens was found in 244 (25.4%) of all specimens tested. Only 39/961 subjects received a viral standard of care (SOC) test result. The FilmArray GI panel detected viruses in higher percentage of stool specimens when SOC was not requested 45% (415/922) vs. requested 36% (14/39) [P = 0.32]. Viral infections were the highest among 148 hospitalizations: virus (26.4%), bacteria (22.9%), bacteria and virus (16.9%), and parasite (0.6%) and norovirus was the leading viral etiology associated with hospitalizations (n = 27; 69.2%). AGE due to viral (24.6%) or bacterial (27.6%) causes had similar repeat visits to hospital [P = 0.45]. Conclusion Viruses are leading cause of AGE resulting in ED

  10. Comparison of the frequency of bacterial and viral infections among children with community-acquired pneumonia hospitalized across distinct severity categories: a prospective cross-sectional study.

    PubMed

    Nascimento-Carvalho, Amanda C; Ruuskanen, Olli; Nascimento-Carvalho, Cristiana M

    2016-07-22

    The comparison of the frequencies of bacterial and viral infections among children with community-acquired pneumonia (CAP) admitted in distinct severity categories, in an original study, is lacking in literature to-date. We aimed to achieve this goal. Children aged 2-59-months-old hospitalized with CAP were included in this prospective study in Salvador, Brazil. Clinical data and biological samples were collected to investigate 11 viruses and 8 bacteria. Severity was assessed by using the World Health Organization criteria. One hundred eighty-one patients were classified as "non-severe" (n = 53; 29.3 %), "severe" (n = 111; 61.3 %), or "very severe" (n = 17; 9.4 %) CAP. Overall, aetiology was detected among 156 (86.2 %) cases; viral (n = 84; 46.4 %), bacterial (n = 26; 14.4 %) and viral-bacterial (n = 46; 25.4 %) infections were identified. Viral infection frequency was similar in severe/very severe and non-severe cases (46.1 % vs. 47.2 %; p = 0.9). Pneumococcal infection increased across "non-severe" (13.2 %), "severe" (23.4 %), and "very severe" (35.3 %) cases (qui-squared test for trend p = 0.04). Among patients with detected aetiology, after excluding cases with co-infection, the frequency of sole bacterial infection was different (p = 0.04) among the categories; non-severe (12.5 %), severe (29.3 %) or very severe (55.6 %). Among these patients, sole bacterial infection was independently associated with severity (OR = 4.4 [95 % CI:1.1-17.6]; p = 0.04) in a model controlled for age (OR = 0.7 [95 % CI:0.5-1.1]; p = 0.1). A substantial proportion of cases in distinct severity subgroups had respiratory viral infections, which did not differ between severity categories. Bacterial infection, particularly pneumococcal infection, was more likely among severe/very severe cases.

  11. Point detection of bacterial and viral pathogens using oral samples

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2008-04-01

    Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.

  12. Dietary selenium in adjuvant therapy of viral and bacterial infections.

    PubMed

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. © 2015 American Society for Nutrition.

  13. Variations in prevalence of viral, bacterial, and rhizocephalan diseases and parasites of the blue crab (Callinectes sapidus).

    PubMed

    Rogers, Holly A; Taylor, Sabrina S; Hawke, John P; Anderson Lively, Julie A

    2015-05-01

    Prevalence of blue crab diseases and parasites has not been consistently monitored in the Gulf of Mexico. To establish current prevalence levels and to more fully understand population dynamics, commercial landing trends, and effects of future natural and anthropogenic disasters on animal health, we measured the prevalence of white spot syndrome virus (WSSV), Loxothylacus texanus, shell disease, and Vibrio spp. in blue crabs collected from Louisiana in 2013 and the beginning of 2014. We used PCR to detect WSSV and L. texanus infections, visual gross diagnosis for L. texanus externae and shell disease, and standard microbiological culture techniques and biochemical testing for Vibrio spp. We found no crabs infected with WSSV or L. texanus. Absence of L. texanus parasitization was expected based on the sampled salinities and the sampling focus on large crabs. Shell disease was present at a level of 54.8% and was most prevalent in the winter and summer and least prevalent in the spring. Vibrio spp. were found in the hemolymph of 22.3% of the crabs and prevalence varied by site, season, and sex. Additionally, three of 39 crabs tested were infected with reo-like virus. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effect of Ichthyophthirius multifiliis parasitism on the survival, hematology and bacterial load in channel catfish previously exposed to Edwardsiella ictaluri.

    PubMed

    Shoemaker, Craig A; Martins, Maurício L; Xu, De-Hai; Klesius, Phillip H

    2012-11-01

    The effect of Ichthyophthirius multifiliis (Ich) parasitism on survival, hematology and bacterial load in channel catfish, Ictalurus punctatus, previously exposed to Edwardsiella ictaluri was studied. Fish were exposed to E. ictaluri 1 day prior to Ich in the following treatments: (1) infected by E. ictaluri and Ich at 2,500 theronts/fish; (2) infected by E. ictaluri only; (3) infected by Ich at 2,500 theronts/fish only; and (4) non infected control. Mortality was significantly higher in fish previously exposed to E. ictaluri and then infected by Ich (71.1 %). Mortalities were 26.7 %, 28.9 % and 0 % for fish infected by E. ictaluri only, by Ich only and non-infected control, respectively. Quantitative polymerase chain reaction demonstrated the presence of E. ictaluri in the brain, gill, kidney and liver of fish infected with E. ictaluri regardless of Ich parasitism. At day 8, E. ictaluri parasitized fish had significantly more bacteria present in the brain, gill and liver, with no bacteria detected in these organs in the E. ictaluri-only treatment, suggesting that the bacteria persisted longer in parasitized fish. Decreased red blood cells count and hematocrit in fish at days 8 and 19 after co-infection suggests chronic anemia. Lymphocyte numbers significantly decreased in all infected treatments versus the non-infected controls at days 2, 8 and 19. Lymphopenia suggests that lymphocytes were actively involved in the immune response. Bacterial clearance was probably influenced by the stress of parasitism and/or the mucosal response induced by ectoparasitic Ich that resulted in the higher mortality seen in the co-infected treatment.

  15. Metazoan Parasite Vaccines: Present Status and Future Prospects

    PubMed Central

    Stutzer, Christian; Richards, Sabine A.; Ferreira, Mariette; Baron, Samantha; Maritz-Olivier, Christine

    2018-01-01

    Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines. PMID:29594064

  16. Broad activity of diphenyleneiodonium analogues against Mycobacterium tuberculosis, malaria parasites and bacterial pathogens.

    PubMed

    Nguyen, Nghi; Wilson, Danny W; Nagalingam, Gayathri; Triccas, James A; Schneider, Elena K; Li, Jian; Velkov, Tony; Baell, Jonathan

    2018-03-25

    In this study, a structure-activity relationship (SAR) compound series based on the NDH-2 inhibitor diphenyleneiodonium (DPI) was synthesised. Compounds were evaluated primarily for in vitro efficacy against Gram-positive and Gram-negative bacteria, commonly responsible for nosocomial and community acquired infections. In addition, we also assessed the activity of these compounds against Mycobacterium tuberculosis (Tuberculosis) and Plasmodium spp. (Malaria). This led to the discovery of highly potent compounds active against bacterial pathogens and malaria parasites in the low nanomolar range, several of which were significantly less toxic to mammalian cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called singlemore » guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA

  18. Resistance to a bacterial parasite in the crustacean Daphnia magna shows Mendelian segregation with dominance

    PubMed Central

    Luijckx, P; Fienberg, H; Duneau, D; Ebert, D

    2012-01-01

    The influence of host and parasite genetic background on infection outcome is a topic of great interest because of its pertinence to theoretical issues in evolutionary biology. In the present study, we use a classical genetics approach to examine the mode of inheritance of infection outcome in the crustacean Daphnia magna when exposed to the bacterial parasite Pasteuria ramosa. In contrast to previous studies in this system, we use a clone of P. ramosa, not field isolates, which allows for a more definitive interpretation of results. We test parental, F1, F2, backcross and selfed parental clones (total 284 genotypes) for susceptibility against a clone of P. ramosa using two different methods, infection trials and the recently developed attachment test. We find that D. magna clones reliably exhibit either complete resistance or complete susceptibility to P. ramosa clone C1 and that resistance is dominant, and inherited in a pattern consistent with Mendelian segregation of a single-locus with two alleles. The finding of a single host locus controlling susceptibility to P. ramosa suggests that the previously observed genotype–genotype interactions in this system have a simple genetic basis. This has important implications for the outcome of host–parasite co-evolution. Our results add to the growing body of evidence that resistance to parasites in invertebrates is mostly coded by one or few loci with dominance. PMID:22167056

  19. Resistance to a bacterial parasite in the crustacean Daphnia magna shows Mendelian segregation with dominance.

    PubMed

    Luijckx, P; Fienberg, H; Duneau, D; Ebert, D

    2012-05-01

    The influence of host and parasite genetic background on infection outcome is a topic of great interest because of its pertinence to theoretical issues in evolutionary biology. In the present study, we use a classical genetics approach to examine the mode of inheritance of infection outcome in the crustacean Daphnia magna when exposed to the bacterial parasite Pasteuria ramosa. In contrast to previous studies in this system, we use a clone of P. ramosa, not field isolates, which allows for a more definitive interpretation of results. We test parental, F1, F2, backcross and selfed parental clones (total 284 genotypes) for susceptibility against a clone of P. ramosa using two different methods, infection trials and the recently developed attachment test. We find that D. magna clones reliably exhibit either complete resistance or complete susceptibility to P. ramosa clone C1 and that resistance is dominant, and inherited in a pattern consistent with Mendelian segregation of a single-locus with two alleles. The finding of a single host locus controlling susceptibility to P. ramosa suggests that the previously observed genotype-genotype interactions in this system have a simple genetic basis. This has important implications for the outcome of host-parasite co-evolution. Our results add to the growing body of evidence that resistance to parasites in invertebrates is mostly coded by one or few loci with dominance.

  20. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    PubMed

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  1. Measurement of lipocalin-2 and syndecan-4 levels to differentiate bacterial from viral infection in children with community-acquired pneumonia.

    PubMed

    Esposito, Susanna; Bianchini, Sonia; Gambino, Monia; Madini, Barbara; Di Pietro, Giada; Umbrello, Giulia; Presicce, Maria Lory; Ruggiero, Luca; Terranova, Leonardo; Principi, Nicola

    2016-07-20

    In this study, we evaluated the lipocalin-2 (LIP2) and syndecan-4 (SYN4) levels in children who were hospitalized for radiologically confirmed CAP in order to differentiate bacterial from viral infection. The results regarding the LIP2 and SYN4 diagnostic outcomes were compared with the white blood cell (WBC) count and C reactive protein (CRP) levels. A total of 110 children <14 years old who were hospitalized for radiologically confirmed CAP were enrolled. Serum samples were obtained upon admission and on day 5 to measure the levels of LIP2, SYN4, and CRP as well as the WBC. Polymerase chain reaction of the respiratory secretions and tests on blood samples were performed to detect respiratory viruses, Streptococcus pneumoniae, and Mycoplasma pneumoniae. CAP was considered to be due to a probable bacterial infection in 74 children (67.3 %) and due to a probable viral infection in 16 children (14.5 %). Overall, 84 children (76.4 %) were diagnosed with severe CAP. The mean values of the WBC count and the LIP2 and SYN4 levels did not differ among the probable bacterial, probable viral, and undetermined cases. However, the CRP serum concentrations were significantly higher in children with probable bacterial CAP than in those with probable viral disease (32.2 ± 55.5 mg/L vs 9.4 ± 17.0 mg/L, p < 0.05). The WBC count was the best predictor of severe CAP, but the differences among the studied variables were marginal. The WBC count was significantly lower on day 5 in children with probable bacterial CAP (p < 0.01) and in those with an undetermined etiology (p < 0.01). The CRP and LIP2 levels were significantly lower 5 days after enrollment in all of the studied groups, independent of the supposed etiology of CAP (p < 0.01 for all comparisons). No statistically significant variation was observed for SYN4. Measuring the LIP2 and SYN4 levels does not appear to solve the problem of the poor reliability of routine laboratory tests in defining

  2. Pasteuria spp.: Systematics and Phylogeny of These Bacterial Parasites of Phytopathogenic Nematodes.

    PubMed

    Preston, J F; Dickson, D W; Maruniak, J E; Nong, G; Brito, J A; Schmidt, L M; Giblin-Davis, R M

    2003-06-01

    Pasteuria spp. include endospore-forming bacterial pathogens of cladoceran crustaceans and plant-parasitic nematodes. Propagation of these nematode pathogens requires attachment of soilborne endospores to nematode hosts, infection, growth, sporulation, and release of endospores to repeat the cycle of infection and propagation. The ability of these bacteria to suppress the levels of plant-parasitic nematodes in the field has made them particularly promising candidates for biocontrol of nematode diseases of plants. Genes encoding 16S ribosomal RNA have been sequenced for the cladoceran (water flea) parasite and type species, Pasteuria ramosa, and for Pasteuria spp. isolated from root-knot (Meloidogyne arenaria race 1 and Meloidogyne sp.), soybean cyst (Heterodera glycines), and sting (Belonolaimus longicaudatus) nematodes. These have provided a phylogenetic basis for their designation to a distinct clade within the family Alicyclobacillaceae of the gram-positive endospore-forming bacteria. Two apparent biotypes of P. penetrans demonstrating a host preference for different Meloidogyne spp. showed identical 16S rDNA sequences, suggesting host-recognition evolves within a given species. The sequences of genes encoding sporulation transcription factors, sigE and sigF, from P. penetrans biotype P-20 show different phylogenetic relationships to other endospore-forming bacteria, supporting their application to further discriminate Pasteuria spp. and biotypes. Distribution of an adhesin-associated epitope on polypeptides from different Pasteuria isolates provides an immunochemical approach to differentiate species and biotypes with specific host preferences. Application of bioinformatics to genomic data, as well as further characterization of the biochemical basis for host recognition, will facilitate development of Pasteuria spp. as benign alternatives to chemical nematicides.

  3. Impact and control of protozoan parasites in maricultured fishes.

    PubMed

    Buchmann, Kurt

    2015-01-01

    Aquaculture, including both freshwater and marine production, has on a world scale exhibited one of the highest growth rates within animal protein production during recent decades and is expected to expand further at the same rate within the next 10 years. Control of diseases is one of the most prominent challenges if this production goal is to be reached. Apart from viral, bacterial, fungal and metazoan infections it has been documented that protozoan parasites affect health and welfare and thereby production of fish in marine aquaculture. Representatives within the main protozoan groups such as amoebae, dinoflagellates, kinetoplastid flagellates, diplomonadid flagellates, apicomplexans, microsporidians and ciliates have been shown to cause severe morbidity and mortality among farmed fish. Well studied examples are Neoparamoeba perurans, Amyloodinium ocellatum, Spironucleus salmonicida, Ichthyobodo necator, Cryptobia salmositica, Loma salmonae, Cryptocaryon irritans, Miamiensis avidus and Trichodina jadranica. The present report provides details on the parasites' biology and impact on productivity and evaluates tools for diagnosis, control and management. Special emphasis is placed on antiprotozoan immune responses in fish and a strategy for development of vaccines is presented.

  4. Yeast supplementation reduced the immune and metabolic responses to a combined viral-bacterial respiratory disease challenge in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    Two treatments were evaluated in commercial feedlot heifers to determine the effects of a yeast supplement on immune and metabolic responses to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (324 ± 19.2 kg BW) were selected and randomly assigned to one of two treat...

  5. Bacterial parasite of a plant nematode: morphology and ultrastructure.

    PubMed Central

    Sayre, R M; Wergin, W P

    1977-01-01

    The life cycle of a bacterial endoparasite of the plant-parasitic nematode Meloidogyne incognita was examined by scanning and transmission electron microscopy. The infective stage begins with the attachment of an endospore to the surface of the nematode. A germ tube then penetrates the cuticle, and mycelil colonies form in the pseudocoelom. Sporulation is initiated when terminal cells of the mycelium enlarge to form sporangia. A septum within each sporangium divides the forespore from the basal or parasporal portion of the cell. The forespore becomes enclosed by several laminar coats. The parasporal cell remains attached to the forespore and forms the parasporal microfibers. After the newly formed spores are released into the soil, these microfibers apparently enable a mature spore to attach to the nematode. These results indicate that the endoparasite is a procaryotic organism having structural features that are more common to members of Actinomycetales and to the bacterium Pasteuria ramosa than to the sporozoans or to the family Bacillaceae, as previous investigatios have concluded. Images PMID:838678

  6. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city

    PubMed Central

    Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi

    2017-01-01

    The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had

  7. Host-Parasite-Bacteria Triangle: The Microbiome of the Parasitic Weed Phelipanche aegyptiaca and Tomato-Solanum lycopersicum (Mill.) as a Host

    PubMed Central

    Iasur Kruh, Lilach; Lahav, Tamar; Abu-Nassar, Jacline; Achdari, Guy; Salami, Raghda; Freilich, Shiri; Aly, Radi

    2017-01-01

    Broomrapes (Phelipanche/Orobanche spp.) are holoparasitic plants that subsist on the roots of a variety of agricultural crops, establishing direct connections with the host vascular system. This connection allows for the exchange of various substances and a possible exchange of endophytic microorganisms that inhabit the internal tissues of both plants. To shed some light on bacterial interactions occurring between the parasitic Phelipanche aegyptiaca and its host tomato, we characterized the endophytic composition in the parasite during the parasitization process and ascertained if these changes were accompanied by changes to endophytes in the host root. Endophyte communities of the parasitic weed were significantly different from that of the non-parasitized tomato root but no significant differences were observed between the parasite and its host after parasitization, suggesting the occurrence of bacterial exchange between these two plants. Moreover, the P. aegyptiaca endophytic community composition showed a clear shift from gram negative to gram-positive bacteria at different developmental stages of the parasite life cycle. To examine possible functions of the endophytic bacteria in both the host and the parasite plants, a number of unique bacterial candidates were isolated and characterized. Results showed that a Pseudomonas strain PhelS10, originating from the tomato roots, suppressed approximately 80% of P. aegyptiaca seed germination and significantly reduced P. aegyptiaca parasitism. The information gleaned in the present study regarding the endophytic microbial communities in this unique ecological system of two plants connected by their vascular system, highlights the potential of exploiting alternative environmentally friendly approaches for parasitic weed control. PMID:28298918

  8. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  9. The slug parasitic nematode Phasmarhabditis hermaphrodita associates with complex and variable bacterial assemblages that do not affect its virulence.

    PubMed

    Rae, Robbie G; Tourna, Maria; Wilson, Michael J

    2010-07-01

    Phasmarhabditis hermaphrodita is a nematode parasite of slugs that is commercially reared in monoxenic culture with the bacterium Moraxella osloensis and sold as a biological molluscicide. However, its bacterial associations when reared in vivo in slugs are unknown. We show that when reared in vivo in slugs, P. hermaphrodita does not retain M. osloensis and associates with complex and variable bacterial assemblages that do not influence its virulence. This is in marked contrast to the entomopathogenic nematodes that form highly specific mutualistic associations with Enterobacteriaceae that are specifically retained during in vivo growth. (c) 2010 Elsevier Inc. All rights reserved.

  10. Nuclear factor 45 of tongue sole (Cynoglossus semilaevis): evidence for functional differentiation between two isoforms in immune defense against viral and bacterial pathogens.

    PubMed

    Chi, Heng; Hu, Yong-hua; Xiao, Zhi-zhong; Sun, Li

    2014-02-01

    Nuclear factor 45 (NF45) is known to play an important role in regulating interleukin-2 expression in mammals. The function of fish NF45 is largely unknown. In a previous study, we reported the identification of a NF45 (named CsNF45) from half smooth tongue sole (Cynoglossus semilaevis). In the present study, we identified an isoform of CsNF45 (named CsNF45i) from half smooth tongue sole and examined its biological properties in comparison with CsNF45. We found that CsNF45i is a truncated version of CsNF45 and lacks the N-terminal 38 residues of CsNF45. Genetic analysis showed that the CsNF45 gene consists of 14 exons and 13 introns, and that CsNF45 and CsNF45i are the products of alternative splicing. Constitutive expression of CsNF45 and CsNF45i occurred in multiple tissues but differed in patterns. Experimental infection with viral and bacterial pathogens upregulated the expression of both isoforms but to different degrees, with potent induction of CsNF45 being induced by bacterial pathogen, while dramatic induction of CsNF45i being induced by viral pathogen. Transient transfection analysis showed that both isoforms were localized in the nucleus and able to stimulate the activity of IL-2 promoter to comparable extents. To examine their in vivo effects, the two isoforms were overexpressed in tongue sole. Subsequent analysis showed that following viral and bacterial infection, the viral loads in CsNF45i-overexpressing fish were significantly lower than those in CsNF45-overexpressing fish, whereas the bacterial loads in CsNF45-overexpressing fish were significantly lower than those in CsNF45i-overexpressing fish. These results indicate that both CsNF45 and CsNF45i possess immunoregulatory properties, however, the two isoforms most likely participate in different aspects of host immune defense that target different pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. [Neuropsychiatric sequelae of viral meningitis in adults].

    PubMed

    Damsgaard, Jesper; Hjerrild, Simon; Renvillard, Signe Groth; Leutscher, Peter Derek Christian

    2011-10-10

    Viral meningitis is considered to be a benign illness with only mild symptoms. In contrast to viral encephalitis and bacterial meningitis, the prognosis is usually good. However, retrospective studies have demonstrated that patients suffering from viral meningitis may experience cognitive impairment following the acute course of infection. Larger controlled studies are needed to elucidate the potential neuropsychiatric adverse outcome of viral meningitis.

  12. Prophage-mediated defense against viral attack and viral counter-defense

    PubMed Central

    Dedrick, Rebekah M.; Jacobs-Sera, Deborah; Guerrero Bustamante, Carlos A.; Garlena, Rebecca A.; Mavrich, Travis N.; Pope, Welkin H.; Reyes, Juan C Cervantes; Russell, Daniel A.; Adair, Tamarah; Alvey, Richard; Bonilla, J. Alfred; Bricker, Jerald S.; Brown, Bryony R.; Byrnes, Deanna; Cresawn, Steven G.; Davis, William B.; Dickson, Leon A.; Edgington, Nicholas P.; Findley, Ann M.; Golebiewska, Urszula; Grose, Julianne H.; Hayes, Cory F.; Hughes, Lee E.; Hutchison, Keith W.; Isern, Sharon; Johnson, Allison A.; Kenna, Margaret A.; Klyczek, Karen K.; Mageeney, Catherine M.; Michael, Scott F.; Molloy, Sally D.; Montgomery, Matthew T.; Neitzel, James; Page, Shallee T.; Pizzorno, Marie C.; Poxleitner, Marianne K.; Rinehart, Claire A.; Robinson, Courtney J.; Rubin, Michael R.; Teyim, Joseph N.; Vazquez, Edwin; Ware, Vassie C.; Washington, Jacqueline; Hatfull, Graham F.

    2017-01-01

    Temperate phages are common and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses infecting mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity, and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages reveals at least five distinct prophage-expressed viral defense systems that interfere with infection of lytic and temperate phages that are either closely-related (homotypic defense) or unrelated (heterotypic defense). Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defense systems include a single-subunit restriction system, a heterotypic exclusion system, and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival, and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, that acts as a highly effective counter-defense system. Prophage-mediated viral defense offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defense promotes phage co-evolution. PMID:28067906

  13. Molecular epidemiological survey of bacterial and parasitic pathogens in hard ticks from eastern China.

    PubMed

    Liu, Xiang-Ye; Gong, Xiang-Yao; Zheng, Chen; Song, Qi-Yuan; Chen, Ting; Wang, Jing; Zheng, Jie; Deng, Hong-Kuan; Zheng, Kui-Yang

    2017-03-01

    Ticks are able to transmit various pathogens-viruses, bacteria, and parasites-to their host during feeding. Several molecular epidemiological surveys have been performed to evaluate the risk of tick-borne pathogens in China, but little is known about pathogens circulating in ticks from eastern China. Therefore, this study aimed to investigate the presence of bacteria and parasites in ticks collected from Xuzhou, a 11258km 2 region in eastern China. In the present study, ticks were collected from domestic goats and grasses in urban districts of Xuzhou region from June 2015 to July 2016. After tick species identification, the presence of tick-borne bacterial and parasitic pathogens, including Anaplasma phagocytophilum, Borrelia burgdorferi, Rickettsia sp., Bartonella sp., Babesia sp., and Theileria sp., was established via conventional or nested polymerase chain reaction assays (PCR) and sequence analysis. Finally, a total of 500 questing adult ticks, identified as Haemaphysalis longicornis, were investigated. Among them, 28/500 tick samples (5.6%) were infected with A. phagocytophilum, and 23/500 (4.6%) with Theileria luwenshuni, whereas co-infection with these pathogens was detected in only 1/51 (2%) of all infected ticks. In conclusion, H. longicornis is the dominant tick species in the Xuzhou region and plays an important role in zoonotic pathogen transmission. Both local residents and animals are at a significant risk of exposure to anaplasmosis and theileriosis, due to the high rates of A. phagocytophilum and T. luwenshuni tick infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Postviral Complications: Bacterial Pneumonia.

    PubMed

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  15. Infection with parasitic nematodes confounds vaccination efficacy

    PubMed Central

    Urban, Joseph F.; Steenhard, Nina R.; Solano-Aguilar, Gloria I.; Dawson, Harry D.; Iweala, Onyinye I.; Nagler, Cathryn R.; Noland, Gregory S.; Kumar, Nirbhay; Anthony, Robert M.; Shea-Donohue, Terez; Weinstock, Joel; Gause, William C.

    2007-01-01

    T helper (Th) cells produce signature cytokine patterns, induced largely by intracellular versus extracellular pathogens that provide the cellular and molecular basis for counter regulatory expression of protective immunity during concurrent infections. The production of IL-12 and IFN-γ, for example, resulting from exposure to many bacterial, viral, and protozoan pathogens is responsible for Th1-derived protective responses that also can inhibit development of Th2-cells expressing IL-4-dependent immunity to extracellular helminth parasites and vice versa. In a similar manner, concurrent helminth infection alters optimal vaccine-induced responses in humans and livestock; however, the consequences of this condition have not been adequately studied especially in the context of a challenge infection following vaccination. Demands for new and effective vaccines to control chronic and emerging diseases, and the need for rapid deployment of vaccines for bio security concerns requires a systematic evaluation of confounding factors that limit vaccine efficacy. One common albeit overlooked confounder is the presence of gastrointestinal nematode parasites in populations of humans and livestock targeted for vaccination. This is particularly important in areas of the world were helminth infections are prevalent, but the interplay between parasites and emerging diseases that can be transmitted worldwide make this a global issue. In addition, it is not clear if the epidemic in allergic disease in industrialized countries substitutes for geohelminth infection to interfere with effective vaccination regimens. This presentation will focus on recent vaccination studies in mice experimentally infected with Heligmosomoides polygyrus to model the condition of gastrointestinal parasite infestation in mammalian populations targeted for vaccination. In addition, a large animal vaccination and challenge model against Mycoplasma hyopneumonia in swine exposed to Ascaris suum will provide a

  16. 'Drugs from bugs': bacterial effector proteins as promising biological (immune-) therapeutics.

    PubMed

    Rüter, Christian; Hardwidge, Philip R

    2014-02-01

    Immune system malfunctions cause many of the most severe human diseases. The immune system has evolved primarily to control bacterial, viral, fungal, and parasitic infections. In turn, over millions of years of coevolution, microbial pathogens have evolved various mechanisms to control and modulate the host immune system for their own benefit and survival. For example, many bacterial pathogens use virulence proteins to modulate and exploit target cell mechanisms. Our understanding of these bacterial strategies opens novel possibilities to exploit 'microbial knowledge' to control excessive immune reactions. Gaining access to strategies of microbial pathogens could lead to potentially huge benefits for the therapy of inflammatory diseases. Most work on bacterial pathogen effector proteins has the long-term aim of neutralizing the infectious capabilities of the pathogen. However, attenuated pathogens and microbial products have been used for over a century with overwhelming success in the form of vaccines to induce specific immune responses that protect against the respective infectious diseases. In this review, we focus on bacterial effector and virulence proteins capable of modulating and suppressing distinct signaling pathways with potentially desirable immune-modulating effects for treating unrelated inflammatory diseases. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. With a little help from a computer: discriminating between bacterial and viral meningitis based on dominance-based rough set approach analysis

    PubMed Central

    Gowin, Ewelina; Januszkiewicz-Lewandowska, Danuta; Słowiński, Roman; Błaszczyński, Jerzy; Michalak, Michał; Wysocki, Jacek

    2017-01-01

    Abstract Differential Diagnosis of bacterial and viral meningitis remains an important clinical problem. A number of methods to assist in the diagnoses of meningitis have been developed, but none of them have been found to have high specificity with 100% sensitivity. We conducted a retrospective analysis of the medical records of 148 children hospitalized in St. Joseph Children's Hospital in Poznań. In this study, we applied for the first time the original methodology of dominance-based rough set approach (DRSA) to diagnostic patterns of meningitis data and represented them by decision rules useful in discriminating between bacterial and viral meningitis. The induction algorithm is called VC-DomLEM; it has been implemented as software package called jMAF (http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html), based on java Rough Set (jRS) library. In the studied group, there were 148 patients (78 boys and 70 girls), and the mean age was 85 months. We analyzed 14 attributes, of which only 4 were used to generate the 6 rules, with C-reactive protein (CRP) being the most valuable. Factors associated with bacterial meningitis were: CRP level ≥86 mg/L, number of leukocytes in cerebrospinal fluid (CSF) ≥4481 μL−1, symptoms duration no longer than 2 days, or age less than 1 month. Factors associated with viral meningitis were CRP level not higher than 19 mg/L, or CRP level not higher than 84 mg/L in a patient older than 11 months with no more than 1100 μL−1 leukocytes in CSF. We established the minimum set of attributes significant for classification of patients with meningitis. This is new set of rules, which, although intuitively anticipated by some clinicians, has not been formally demonstrated until now. PMID:28796045

  18. With a little help from a computer: discriminating between bacterial and viral meningitis based on dominance-based rough set approach analysis.

    PubMed

    Gowin, Ewelina; Januszkiewicz-Lewandowska, Danuta; Słowiński, Roman; Błaszczyński, Jerzy; Michalak, Michał; Wysocki, Jacek

    2017-08-01

    Differential Diagnosis of bacterial and viral meningitis remains an important clinical problem. A number of methods to assist in the diagnoses of meningitis have been developed, but none of them have been found to have high specificity with 100% sensitivity.We conducted a retrospective analysis of the medical records of 148 children hospitalized in St. Joseph Children's Hospital in Poznań. In this study, we applied for the first time the original methodology of dominance-based rough set approach (DRSA) to diagnostic patterns of meningitis data and represented them by decision rules useful in discriminating between bacterial and viral meningitis. The induction algorithm is called VC-DomLEM; it has been implemented as software package called jMAF (http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html), based on java Rough Set (jRS) library.In the studied group, there were 148 patients (78 boys and 70 girls), and the mean age was 85 months. We analyzed 14 attributes, of which only 4 were used to generate the 6 rules, with C-reactive protein (CRP) being the most valuable.Factors associated with bacterial meningitis were: CRP level ≥86 mg/L, number of leukocytes in cerebrospinal fluid (CSF) ≥4481 μL, symptoms duration no longer than 2 days, or age less than 1 month. Factors associated with viral meningitis were CRP level not higher than 19 mg/L, or CRP level not higher than 84 mg/L in a patient older than 11 months with no more than 1100 μL leukocytes in CSF.We established the minimum set of attributes significant for classification of patients with meningitis. This is new set of rules, which, although intuitively anticipated by some clinicians, has not been formally demonstrated until now.

  19. Dual role of commensal bacteria in viral infections

    PubMed Central

    Wilks, Jessica; Beilinson, Helen; Golovkina, Tatyana V.

    2013-01-01

    Summary With our capabilities to culture and sequence the commensal bacteria that dwell on and within a host, we can now study the host in its entirety, as a supraorganism that must be navigated by the pathogen invader. At present, the majority of studies have focused on the interaction between the host’s microbiota and bacterial pathogens. This is not unwarranted, given that bacterial pathogens must compete with commensal organisms for the limited territory afforded by the host. However, viral pathogens also enter the host through surfaces coated with microbial life and encounter an immune system shaped by this symbiotic community. Therefore, we believe the microbiota cannot be ignored when examining the interplay between the host and viral pathogens. Here we review work that details mechanisms by which the microbiota either promotes or inhibits viral replication and virally-induced pathogenesis. The impact of the microbitota on viral infection promises to be a new and exciting avenue of investigation, which will ultimately lead to better treatments and preventions of virally-induced diseases. PMID:23947358

  20. Demodectic Mange, Dermatophilosis, and other parasitic and bacterial dermatologic diseases in free-ranging white-tailed deer (Odocoileus virginianus) in the United States from 1975-2012

    USDA-ARS?s Scientific Manuscript database

    The white-tailed deer (Odocoileus virginianus) is a common and widespread North American game species. To evaluate the incidence, clinical manifestations, demography, and pathology of bacterial and parasitic dermatologic diseases in white-tailed deer in the southeastern United States, we retrospecti...

  1. The Risk of Chronic Gastrointestinal Disorders Following Acute Infection with Intestinal Parasites

    PubMed Central

    Blitz, Jason; Riddle, Mark S.; Porter, Chad K.

    2018-01-01

    Background: Infectious gastroenteritis (IGE) is caused by numerous bacterial, viral, and parasitic pathogens. A history of IGE has been shown in previous studies to increase the risk of developing chronic gastrointestinal disorders and other chronic conditions. As bacteria and viruses represent the majority of pathogen-specific causes of IGE, post-infectious studies have primarily focused on these organisms. The objective of this study was to investigate an association between a history of parasite-associated IGE and the subsequent development of chronic post-infectious gastrointestinal and non-gastrointestinal disorders in a military population. Methods: International Classification of Diseases, 9th Revision Clinical Modification (ICD-9-CM) diagnostic coding data for primary exposures and outcomes were obtained for a retrospective cohort study of active component military personnel from 1998 to 2013. Exposed subjects consisted of individuals with documented infection with one of ten parasitic pathogens. Unexposed subjects were matched to exposed subjects on demographic and operational deployment history parameters. Adjusted odds ratios (aORs) were estimated using logistic regression for several chronic disorders previously shown to be associated with a history of IGE. Results: A total of 896 subjects with a parasitic exposure were matched to 3681 unexposed subjects for multivariate regression analysis. Individuals infected with Balantidium coli, Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus/Ancylostoma duodenale, and Taenia spp. had higher aOR for development of several chronic gastrointestinal disorders when compared with unexposed subjects after controlling for various covariates. Conclusion: We found that parasite-associated enteric infection increases the risk of development of post-infectious chronic gastrointestinal disorders in a military population. These results require confirmation in similar populations and in the developing world

  2. The Risk of Chronic Gastrointestinal Disorders Following Acute Infection with Intestinal Parasites.

    PubMed

    Blitz, Jason; Riddle, Mark S; Porter, Chad K

    2018-01-01

    Background: Infectious gastroenteritis (IGE) is caused by numerous bacterial, viral, and parasitic pathogens. A history of IGE has been shown in previous studies to increase the risk of developing chronic gastrointestinal disorders and other chronic conditions. As bacteria and viruses represent the majority of pathogen-specific causes of IGE, post-infectious studies have primarily focused on these organisms. The objective of this study was to investigate an association between a history of parasite-associated IGE and the subsequent development of chronic post-infectious gastrointestinal and non-gastrointestinal disorders in a military population. Methods: International Classification of Diseases, 9th Revision Clinical Modification (ICD-9-CM) diagnostic coding data for primary exposures and outcomes were obtained for a retrospective cohort study of active component military personnel from 1998 to 2013. Exposed subjects consisted of individuals with documented infection with one of ten parasitic pathogens. Unexposed subjects were matched to exposed subjects on demographic and operational deployment history parameters. Adjusted odds ratios (aORs) were estimated using logistic regression for several chronic disorders previously shown to be associated with a history of IGE. Results: A total of 896 subjects with a parasitic exposure were matched to 3681 unexposed subjects for multivariate regression analysis. Individuals infected with Balantidium coli , Ascaris lumbricoides , Strongyloides stercoralis , Necator americanus/Ancylostoma duodenale , and Taenia spp. had higher aOR for development of several chronic gastrointestinal disorders when compared with unexposed subjects after controlling for various covariates. Conclusion: We found that parasite-associated enteric infection increases the risk of development of post-infectious chronic gastrointestinal disorders in a military population. These results require confirmation in similar populations and in the developing

  3. [Development of viral vectors and the application for viral entry mechanisms].

    PubMed

    Tani, Hideki

    2011-06-01

    Virus is identified as one of the obligate intracellular parasites, which only amplify in cells of specific living things. Viral vectors, which are developed by utilizing these properties, are available in the various fields such as basic research of medical biology or application of gene therapy. Our research group has studied development of viral vectors using properties of baculovirus or vesicular stomatitis virus (VSV). Due to the development of new baculoviral vectors for mammalian cells, it is possible to be more efficient transduction of foreign gene in mammalian cells and animals. Furthermore, pseudotype or recombinant VSV possessing the envelope proteins of hepatitis C virus, Japanese encephalitis virus or baculovirus were constructed, and characteristics of the envelope proteins or entry mechanisms of these viruses were analyzed.

  4. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes.

    PubMed

    Meyer, Susan L F; Halbrendt, John M; Carta, Lynn K; Skantar, Andrea M; Liu, Ting; Abdelnabby, Hazem M E; Vinyard, Bryan T

    2009-12-01

    The antibiotic 2,4-diacetylphloroglucinol (DAPG) is produced by some isolates of the beneficial bacterium Pseudomonas fluorescens. DAPG is toxic to many organisms, and crop yield increases have been reported after application of DAPG-producing P. fluorescens. This study was conducted to determine whether DAPG is toxic to selected nematodes. The plant-parasitic nematodes Heterodera glycines, Meloidogyne incognita, Pratylenchus scribneri and Xiphinema americanum, and the bacterial-feeding nematodes Caenorhabditis elegans, Pristionchus pacificus, and Rhabditis rainai, were immersed in concentrations ranging from 0 to 100 μg/ml DAPG. Egg hatch and viability of juveniles and adults were determined. DAPG was toxic to X. americanum adults, with an LD₅₀ of 8.3 μg/ml DAPG. DAPG decreased M. incognita egg hatch, but stimulated C. elegans hatch during the first hours of incubation. Viability of M. incognita J2 and of C. elegans J1 and adults was not affected. There were no observed effects on the other nematodes. The study indicated that DAPG is not toxic to all nematodes, and did not affect the tested species of beneficial bacterial-feeding nematodes. Augmentation of DAPG-producing P. fluorescens populations for nematode biocontrol could be targeted to specific nematode species known to be affected by this compound and by other antibiotics produced by the bacteria, or these bacteria could be used for other possible effects, such as induced plant resistance.

  5. Molecular appraisal of intestinal parasitic infection in transplant recipients

    PubMed Central

    Yadav, Pooja; Khalil, Shehla; Mirdha, Bijay Ranjan

    2016-01-01

    Background & objectives: Diarrhoea is the main clinical manifestation caused by intestinal parasitic infections in patients, with special reference to transplant recipients who require careful consideration to reduce morbidity and mortality. Further, molecular characterization of some important parasites is necessary to delineate the different modes of transmission to consider appropriate management strategies. We undertook this study to investigate the intestinal parasitic infections in transplant recipients with or without diarrhoea, and the genotypes of the isolated parasites were also determined. Methods: Stool samples from 38 transplant recipients comprising 29 post-renal, two liver and seven bone marrow transplant (BMT) recipients presenting with diarrhoea and 50 transplant recipients (42 post-renal transplant, eight BMT) without diarrhoea were examined for the presence of intestinal parasites by light microscopy using wet mount, modified Ziehl–Neelsen staining for intestinal coccidia and modified trichrome staining for microsporidia. Genotypes of Cryptosporidium species were determined by multilocus genotyping using small subunit ribosomal (SSUrRNA), Cryptosporidium oocyst wall protein (COWP) and dihydrofolate reductase (DHFR) as the target genes. Assemblage study for Giardia lamblia was performed using triose phosphate isomerase (TPI) as the target gene. Samples were also screened for bacterial, fungal and viral pathogens. Results: The parasites that were detected included Cryptosporidium species (21%, 8/38), Cystoisospora (Isospora) belli (8%, 3), Cyclospora cayetanensis (5%, 2), G. lamblia (11%, 4), Hymenolepis nana (11%, 4), Strongyloides stercoralis (3%, 1) and Blastocystis hominis (3%, 1). Multilocus genotyping of Cryptosporidium species at SSUrRNA, COWP and DHFR loci could detect four isolates of C. hominis; two of C. parvum, one of mixed genotype and one could not be genotyped. All the C. hominis isolates were detected in adult post

  6. Integrated DNA and RNA extraction and purification on an automated microfluidic cassette from bacterial and viral pathogens causing community-acquired lower respiratory tract infections.

    PubMed

    Van Heirstraeten, Liesbet; Spang, Peter; Schwind, Carmen; Drese, Klaus S; Ritzi-Lehnert, Marion; Nieto, Benjamin; Camps, Marta; Landgraf, Bryan; Guasch, Francesc; Corbera, Antoni Homs; Samitier, Josep; Goossens, Herman; Malhotra-Kumar, Surbhi; Roeser, Tina

    2014-05-07

    In this paper, we describe the development of an automated sample preparation procedure for etiological agents of community-acquired lower respiratory tract infections (CA-LRTI). The consecutive assay steps, including sample re-suspension, pre-treatment, lysis, nucleic acid purification, and concentration, were integrated into a microfluidic lab-on-a-chip (LOC) cassette that is operated hands-free by a demonstrator setup, providing fluidic and valve actuation. The performance of the assay was evaluated on viral and Gram-positive and Gram-negative bacterial broth cultures previously sampled using a nasopharyngeal swab. Sample preparation on the microfluidic cassette resulted in higher or similar concentrations of pure bacterial DNA or viral RNA compared to manual benchtop experiments. The miniaturization and integration of the complete sample preparation procedure, to extract purified nucleic acids from real samples of CA-LRTI pathogens to, and above, lab quality and efficiency, represent important steps towards its application in a point-of-care test (POCT) for rapid diagnosis of CA-LRTI.

  7. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches.

    PubMed

    Uzcanga, Graciela; Lara, Eliana; Gutiérrez, Fernanda; Beaty, Doyle; Beske, Timo; Teran, Rommy; Navarro, Juan-Carlos; Pasero, Philippe; Benítez, Washington; Poveda, Ana

    2017-03-01

    Leishmaniasis is a common tropical disease that affects mainly poor people in underdeveloped and developing countries. This largely neglected infection is caused by Leishmania spp, a parasite from the Trypanosomatidae family. This parasitic disease has different clinical manifestations, ranging from localized cutaneous to more harmful visceral forms. The main limitations of the current treatments are their high cost, toxicity, lack of specificity, and long duration. Efforts to improve treatments are necessary to deal with this infectious disease. Many approved drugs to combat diseases as diverse as cancer, bacterial, or viral infections take advantage of specific features of the causing agent or of the disease. Recent evidence indicates that the specific characteristics of the Trypanosomatidae replication and repair machineries could be used as possible targets for the development of new treatments. Here, we review in detail the molecular mechanisms of DNA replication and repair regulation in trypanosomatids of the genus Leishmania and the drugs that could be useful against this disease.

  8. Viral meningitis: current issues in diagnosis and treatment.

    PubMed

    McGill, Fiona; Griffiths, Michael J; Solomon, Tom

    2017-04-01

    The purpose of this review is to give an overview of viral meningitis and then focus in on some of the areas of uncertainty in diagnostics, treatment and outcome. Bacterial meningitis has been declining in incidence over recent years. Over a similar time period molecular diagnostics have increasingly been used. Because of both of these developments viral meningitis is becoming relatively more important. However, there are still many unanswered questions. Despite improvements in diagnostics many laboratories do not use molecular methods and even when they are used many cases still remain without a proven viral aetiology identified. There are also no established treatments for viral meningitis and the one potential treatment, aciclovir, which is effective in vitro for herpes simplex virus, has never been subjected to a clinical trial. Viruses are in increasingly important cause of meningitis in the era of declining bacterial disease. The exact viral aetiology varies according to age and country. Molecular diagnostics can not only improve the rate of pathogen detection but also reduce unnecessary antibiotics use and length of hospitalization. Further research is required into treatments for viral meningitis and the impact in terms of longer term sequelae.

  9. Procalcitonin as a Serum Biomarker for Differentiation of Bacterial Meningitis From Viral Meningitis in Children: Evidence From a Meta-Analysis.

    PubMed

    Henry, Brandon Michael; Roy, Joyeeta; Ramakrishnan, Piravin Kumar; Vikse, Jens; Tomaszewski, Krzysztof A; Walocha, Jerzy A

    2016-07-01

    Several studies have explored the use of serum procalcitonin (PCT) in differentiating between bacterial and viral etiologies in children with suspected meningitis. We pooled these studies into a meta-analysis to determine the PCT diagnostic accuracy. All major databases were searched through March 2015. No date or language restrictions were applied. Eight studies (n = 616 pediatric patients) were included. Serum PCT assay was found to be very accurate for differentiating the etiology of pediatric meningitis with pooled sensitivity and specificity of 0.96 (95% CI = 0.92-0.98) and 0.89 (95% CI = 0.86-0.92), respectively. The pooled positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and area under the curve (AUC) for PCT were 7.5 (95% CI = 5.6-10.1), 0.08(95% CI = 0.04-0.14), 142.3 (95% CI = 59.5-340.4), and 0.97 (SE = 0.01), respectively. In 6 studies, PCT was found to be superior than CRP, whose DOR was only 16.7 (95%CI = 8.8-31.7). Our meta-analysis demonstrates that serum PCT assay is a highly accurate and powerful test for rapidly differentiating between bacterial and viral meningitis in children. © The Author(s) 2015.

  10. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  11. Screening for Viral Pathogens in African Simian Bushmeat Seized at A French Airport.

    PubMed

    Temmam, Sarah; Davoust, Bernard; Chaber, Anne-Lise; Lignereux, Yves; Michelle, Caroline; Monteil-Bouchard, Sonia; Raoult, Didier; Desnues, Christelle

    2017-08-01

    Illegal bushmeat traffic is an important threat to biodiversity conservation of several endangered species and may contribute to the emergence and spread of infectious diseases in humans. The hunting, manipulation and consumption of wildlife-based products, especially those of primate origin, may be a threat to human health; however, few studies have investigated the role of bushmeat trade and consumption as a potential source of human infections to date. In this study, we report the screening of viral pathogens in African simian game seized by French customs at Toulouse Blagnac Airport. Epifluorescence microscopy revealed the presence of virus-like particles in the samples, and further metagenomic sequencing of the DNA and RNA viromes confirmed the presence of sequences related to the Siphoviridae, Myoviridae and Podoviridae bacteriophage families; some of them infecting bacterial hosts that could be potentially pathogenic for humans. To increase the sensitivity of detection, twelve pan-generic PCRs targeting several viral zoonoses were performed, but no positive signal was detected. A large-scale inventory of bacteria, viruses and parasites is urgently needed to globally assess the risk for human health of the trade, manipulation and consumption of wildlife-related bushmeat. © 2016 Blackwell Verlag GmbH.

  12. The role of respiratory viruses in the etiology of bacterial pneumonia

    PubMed Central

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-01-01

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. PMID:26884414

  13. Evaluation of the Seeplex® Meningitis ACE Detection kit for the detection of 12 common bacterial and viral pathogens of acute meningitis.

    PubMed

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe

    2012-01-01

    Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.

  14. Evaluation of the Seeplex® Meningitis ACE Detection Kit for the Detection of 12 Common Bacterial and Viral Pathogens of Acute Meningitis

    PubMed Central

    Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young

    2012-01-01

    Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778

  15. A unified method to process biosolids samples for the recovery of bacterial, viral, and helminths pathogens.

    PubMed

    Alum, Absar; Rock, Channah; Abbaszadegan, Morteza

    2014-01-01

    For land application, biosolids are classified as Class A or Class B based on the levels of bacterial, viral, and helminths pathogens in residual biosolids. The current EPA methods for the detection of these groups of pathogens in biosolids include discrete steps. Therefore, a separate sample is processed independently to quantify the number of each group of the pathogens in biosolids. The aim of the study was to develop a unified method for simultaneous processing of a single biosolids sample to recover bacterial, viral, and helminths pathogens. At the first stage for developing a simultaneous method, nine eluents were compared for their efficiency to recover viruses from a 100 gm spiked biosolids sample. In the second stage, the three top performing eluents were thoroughly evaluated for the recovery of bacteria, viruses, and helminthes. For all three groups of pathogens, the glycine-based eluent provided higher recovery than the beef extract-based eluent. Additional experiments were performed to optimize performance of glycine-based eluent under various procedural factors such as, solids to eluent ratio, stir time, and centrifugation conditions. Last, the new method was directly compared with the EPA methods for the recovery of the three groups of pathogens spiked in duplicate samples of biosolids collected from different sources. For viruses, the new method yielded up to 10% higher recoveries than the EPA method. For bacteria and helminths, recoveries were 74% and 83% by the new method compared to 34% and 68% by the EPA method, respectively. The unified sample processing method significantly reduces the time required for processing biosolids samples for different groups of pathogens; it is less impacted by the intrinsic variability of samples, while providing higher yields (P = 0.05) and greater consistency than the current EPA methods.

  16. Procalcitonin as a potential predicting factor for prognosis in bacterial meningitis.

    PubMed

    Park, Bong Soo; Kim, Si Eun; Park, Si Hyung; Kim, Jinseung; Shin, Kyong Jin; Ha, Sam Yeol; Park, JinSe; Kim, Sung Eun; Lee, Byung In; Park, Kang Min

    2017-02-01

    We investigated the potential role of serum procalcitonin in differentiating bacterial meningitis from viral meningitis, and in predicting the prognosis in patients with bacterial meningitis. This was a retrospective study of 80 patients with bacterial meningitis (13 patients died). In addition, 58 patients with viral meningitis were included as the disease control groups for comparison. The serum procalcitonin level was measured in all patients at admission. Differences in demographic and laboratory data, including the procalcitonin level, were analyzed between the groups. We used the mortality rate during hospitalization as a marker of prognosis in patients with bacterial meningitis. Multiple logistic regression analysis showed that high serum levels of procalcitonin (>0.12ng/mL) were an independently significant variable for differentiating bacterial meningitis from viral meningitis. The risk of having bacterial meningitis with high serum levels of procalcitonin was at least 6 times higher than the risk of having viral meningitis (OR=6.76, 95% CI: 1.84-24.90, p=0.004). In addition, we found that high levels of procalcitonin (>7.26ng/mL) in the blood were an independently significant predictor for death in patients with bacterial meningitis. The risk of death in patients with bacterial meningitis with high serum levels of procalcitonin may be at least 9 times higher than those without death (OR=9.09, 95% CI: 1.74-47.12, p=0.016). We found that serum procalcitonin is a useful marker for differentiating bacterial meningitis from viral meningitis, and it is also a potential predicting factor for prognosis in patients with bacterial meningitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Viral activity in two contrasting lake ecosystems.

    PubMed

    Bettarel, Yvan; Sime-Ngando, Télesphore; Amblard, Christian; Dolan, John

    2004-05-01

    For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium(-1), respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (M(Pavin) = 37.7%, M(Aydat) = 18.5%) was nearly always more than the production removed by viral lysis (M(Pavin) = 16.2%, M(Aydat) = 19%) or ciliate grazing (M(Pavin) = 2.7%, M(Aydat) = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.

  18. RNA trafficking in parasitic plant systems

    PubMed Central

    LeBlanc, Megan; Kim, Gunjune; Westwood, James H.

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host–parasite connections and the potential significance of host RNAs for the parasite. Additional research on host–parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  19. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism

    PubMed Central

    Pi, Fengmei; Zhao, Zhengyi; Chelikani, Venkata; Yoder, Kristine; Kvaratskhelia, Mamuka

    2016-01-01

    The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially. PMID:27356896

  20. The evolution of parasitism in Nematoda.

    PubMed

    Blaxter, Mark; Koutsovoulos, Georgios

    2015-02-01

    Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated.

  1. Screening of protozoan and microsporidian parasites in feces of great cormorant (Phalacrocorax carbo).

    PubMed

    Rzymski, Piotr; Słodkowicz-Kowalska, Anna; Klimaszyk, Piotr; Solarczyk, Piotr; Poniedziałek, Barbara

    2017-04-01

    The global population of great cormorants (Phalacrocorax carbo L.) is on the rise. These birds, characterized by rapid metabolism, can deposit large quantities of feces, and because they breed on the land but forage on water, both terrestrial and aquatic environments can be simultaneously affected by their activities. The contribution of great cormorants in the dispersal of bacterial and viral pathogens has been immensely studied; whereas, the occurrence of eukaryotic parasites such as protozoans and microsporidians in these birds is little known. The present study investigated the presence of dispersive stages of potentially zoonotic protozoans belonging to the genera Blastocystis, Giardia and Cryptosporidium, and Microsporidia spores in feces collected from birds inhabiting the breeding colony established at one lake island in Poland, Europe. The feces were examined by coprological techniques (staining with iron hematoxylin, Ziehl-Neelsen, and modified Weber's chromotrope 2R-based trichrome), and with immunofluorescence antibody MERIFLUOR Cryptosporidium/Giardia assay. As found, the Cryptosporidium oocysts were identified rarely in 8% of samples (2/25; 3-5 × 10 3 /g) and no cysts of Giardia and Blastocystis were detected. Microsporidian spores were detected in 4% of samples (1/25) but at very high frequency (4.3 × 10 4 /g). No dispersive stages of parasites were identified in water samples collected from the littoral area near the colony. Despite the profuse defecation of cormorants, their role in the dispersion of the investigated parasites may not be as high as hypothesized.

  2. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs.

    PubMed

    Gorgoglione, Bartolomeo; Carpio, Yamila; Secombes, Christopher J; Taylor, Nick G H; Lugo, Juana María; Estrada, Mario Pablo

    2015-12-01

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens. Copyright © 2015

  3. Environmental survey to assess viral contamination of air and surfaces in hospital settings.

    PubMed

    Carducci, A; Verani, M; Lombardi, R; Casini, B; Privitera, G

    2011-03-01

    The presence of pathogenic viruses in healthcare settings represents a serious risk for both staff and patients. Direct viral detection in the environment poses significant technical problems and the indirect indicators currently in use suffer from serious limitations. The aim of this study was to monitor surfaces and air in hospital settings to reveal the presence of hepatitis C virus, human adenovirus, norovirus, human rotavirus and torque teno virus by nucleic acid assays, in parallel with measurements of total bacterial count and haemoglobin presence. In total, 114 surface and 62 air samples were collected. Bacterial contamination was very low (<1 cfu/cm(2)) on surfaces, whereas the 'medium' detected value in air was 282 cfu/m(3). Overall, 19 (16.7%) surface samples tested positive for viral nucleic acids: one for norovirus, one for human adenovirus and 17 (14.9%) for torque teno virus (TTV). Only this latter virus was directly detected in 10 air samples (16.1%). Haemoglobin was found on two surfaces. No relationship was found between viral, biochemical or bacterial indicators. The data obtained confirm the difficulty of assessing viral contamination using bacterial indicators. The frequent detection of TTV suggests its possible use as an indicator for general viral contamination of the environment. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites.

    PubMed

    Knutie, Sarah A; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-07-20

    Changes in the early-life microbiota of hosts might affect infectious disease risk throughout life, if such disruptions during formative times alter immune system development. Here, we test whether an early-life disruption of host-associated microbiota affects later-life resistance to infections by manipulating the microbiota of tadpoles and challenging them with parasitic gut worms as adults. We find that tadpole bacterial diversity is negatively correlated with parasite establishment in adult frogs: adult frogs that had reduced bacterial diversity as tadpoles have three times more worms than adults without their microbiota manipulated as tadpoles. In contrast, adult bacterial diversity during parasite exposure is not correlated with parasite establishment in adult frogs. Thus, in this experimental setup, an early-life disruption of the microbiota has lasting reductions on host resistance to infections, which is possibly mediated by its effects on immune system development. Our results support the idea that preventing early-life disruption of host-associated microbiota might confer protection against diseases later in life.Early-life microbiota alterations can affect infection susceptibility later in life, in animal models. Here, Knutie et al. show that manipulating the microbiota of tadpoles leads to increased susceptibility to parasitic infection in adult frogs, in the absence of substantial changes in the adults' microbiota.

  5. Comparison of viral infection in healthcare-associated pneumonia (HCAP) and community-acquired pneumonia (CAP).

    PubMed

    Kim, Eun Sun; Park, Kyoung Un; Lee, Sang Hoon; Lee, Yeon Joo; Park, Jong Sun; Cho, Young-Jae; Yoon, Ho Il; Lee, Choon-Taek; Lee, Jae Ho

    2018-01-01

    Although viruses are known to be the second most common etiological factor in community-acquired pneumonia (CAP), the respiratory viral profile of the patients with healthcare-associated pneumonia (HCAP) has not yet been elucidated. We investigated the prevalence and the clinical impact of respiratory virus infection in adult patients with HCAP. Patients admitted with HCAP or CAP, between January and December 2016, to a tertiary referral hospital in Korea, were prospectively enrolled, and virus identification was performed using reverse-transcription polymerase chain reaction (RT-PCR). Among 452 enrolled patients (224 with HCAP, 228 with CAP), samples for respiratory viruses were collected from sputum or endotracheal aspirate in 430 (95.1%) patients and from nasopharyngeal specimens in 22 (4.9%) patients. Eighty-seven (19.2%) patients had a viral infection, and the proportion of those with viral infection was significantly lower in the HCAP than in the CAP group (13.8% vs 24.6%, p = 0.004). In both the HCAP and CAP groups, influenza A was the most common respiratory virus, followed by entero-rhinovirus. The seasonal distributions of respiratory viruses were also similar in both groups. In the HCAP group, the viral infection resulted in a similar length of hospital stay and in-hospital mortality as viral-bacterial coinfection and bacterial infection, and the CAP group showed similar results. The prevalence of viral infection in patients with HCAP was lower than that in patients with CAP, and resulted in a similar prognosis as viral-bacterial coinfection or bacterial infection.

  6. Analogies and differences among bacterial and viral disinfection by the photo-Fenton process at neutral pH: a mini review.

    PubMed

    Giannakis, Stefanos

    2017-12-19

    Over the last years, the photo-Fenton process has been established as an effective, green alternative to chemical disinfection of waters and wastewaters. Microorganisms' inactivation is the latest success story in the application of this process at near-neutral pH, albeit without clearly elucidated inactivation mechanisms. In this review, the main pathways of the combined photo-Fenton process against the most frequent pathogen models (Escherichia coli for bacteria and MS2 bacteriophage for viruses) are analyzed. Firstly, the action of solar light is described and the specific inactivation mechanisms in bacteria (internal photo-Fenton) and viruses (genome damage) are presented. The contribution of the external pathways due to the potential presence of organic matter in generating reactive oxygen species (ROS) and their effects on microorganism inactivation are discussed. Afterwards, the effects of the gradual addition of Fe and H 2 O 2 are assessed and the differences among bacterial and viral inactivation are highlighted. As a final step, the simultaneous addition of both reagents induces the photo-Fenton in the bulk, focusing on the differences induced by the homogeneous or heterogeneous fraction of the process and the variation among the two respective targets. This work exploits the accumulated evidence on the mechanisms of bacterial inactivation and the scarce ones towards viral targets, aiming to bridge this knowledge gap and make possible the further application of the photo-Fenton process in the field of water/wastewater treatment.

  7. Viral fitness: definitions, measurement, and current insights

    USGS Publications Warehouse

    Wargo, Andrew R.; Kurath, Gael

    2012-01-01

    Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.

  8. Mutualism, parasitism and competition in the evolution of coviruses.

    PubMed Central

    Nee, S

    2000-01-01

    Coviruses are viruses with the property that their genetic information is divided up among two or more different viral particles. I model the evolution of coviruses using information on both viral virulence and the interactions between viruses and molecules that parasitize them: satellite viruses, satellite RNAs and defective interfering viruses. The model ultimately, and inevitably contains within it single-species dynamics as well as mutualistic, parasitic, cooperative and competitive relationships. The model shows that coexistence between coviruses and the self-sufficient viruses that spawned them is unlikely, in the sense that the quantitative conditions for coexistence are not easy to satisfy I also describe an abrupt transition from mutualistic two-species to single-species dynamics, showing a new sense in which questions such as 'Is a lichen one species or two?' can be given a definite answer. PMID:11127906

  9. Sex as a strategy against rapidly evolving parasites

    PubMed Central

    Tinkler, Shona K.; Tinsley, Matthew C.

    2016-01-01

    Why is sex ubiquitous when asexual reproduction is much less costly? Sex disrupts coadapted gene complexes; it also causes costs associated with mate finding and the production of males who do not themselves bear offspring. Theory predicts parasites select for host sex, because genetically variable offspring can escape infection from parasites adapted to infect the previous generations. We examine this using a facultative sexual crustacean, Daphnia magna, and its sterilizing bacterial parasite, Pasteuria ramosa. We obtained sexually and asexually produced offspring from wild-caught hosts and exposed them to contemporary parasites or parasites isolated from the same population one year later. We found rapid parasite adaptation to replicate within asexual but not sexual offspring. Moreover, sexually produced offspring were twice as resistant to infection as asexuals when exposed to parasites that had coevolved alongside their parents (i.e. the year two parasite). This fulfils the requirement that the benefits of sex must be both large and rapid for sex to be favoured by selection. PMID:28003455

  10. RNA polymerase activity is associated with viral particles isolated from Leishmania braziliensis subsp. guyanensis.

    PubMed Central

    Widmer, G; Keenan, M C; Patterson, J L

    1990-01-01

    Viral particles purified from species of the protozoan parasite Leishmania braziliensis subsp. guyanensis by centrifugation in CsCl gradients were examined for the presence of viral polymerase. We demonstrated that RNA-dependent RNA polymerase is associated with viral particles. Viral transcription was studied in vitro with pulse-chase experiments and by assaying the RNase sensitivity of the viral transcripts. Viral polymerase synthesized full-length transcripts within 1 h. Double-strained, genome-length, and single-stranded RNAs were produced in this system. The nature of the RNA extracted from virions was also tested by RNase protection assays; both single-stranded and double-stranded RNAs were found. Images PMID:2370680

  11. Non-Clostridium perfringens infectious agents producing necrotic enteritis-like lesions in poultry.

    PubMed

    Uzal, F A; Sentíes-Cué, C G; Rimoldi, G; Shivaprasad, H L

    2016-06-01

    Necrotic enteritis (NE) produced by Clostridium perfringens is amongst the most prevalent enteric diseases of chickens and turkeys. However, several other bacterial, parasitic and viral agents can cause clinical signs, gross and microscopic lesions in poultry very similar to those of NE and the diseases produced by those agents need to be differentiated from NE. The main differential diagnoses for C. perfringens NE include bacterial (Clostridium colinum, Clostridium sordellii, Clostridium difficile, Pasteurella multocida, Brachyspira spp.), parasitic (Eimeria spp., Histomonas meleagridis) and viral (Duck Herpesvirus type 1, Avian Paramyxovirus type 1) diseases. Confirmation of the diagnosis of these diseases requires identification of the aetiological agents by morphological, cultural and/or molecular methods.

  12. Neutrophil subset responses in infants with severe viral respiratory infection.

    PubMed

    Cortjens, Bart; Ingelse, Sarah A; Calis, Job C; Vlaar, Alexander P; Koenderman, Leo; Bem, Reinout A; van Woensel, Job B

    2017-03-01

    Neutrophils are the predominant inflammatory cells recruited to the respiratory tract as part of the innate immune response to viral infections. Recent reports indicate the existence of distinct functional neutrophil subsets in the circulatory compartment of adults, following severe inflammatory conditions. Here, we evaluated the occurrence of neutrophil subsets in blood and broncho-alveolar lavage fluid during severe viral respiratory infection in infants based on CD16/CD62L expression. We show that during the course of severe respiratory infection infants may develop four heterogeneous neutrophil subsets in blood (mature, immature, progenitor, and suppressive neutrophils), each with distinct activation states. However, while isolated viral respiratory infection was characterized by a relative absence of suppressive neutrophils in both blood and lungs, only patients with bacterial co-infection were shown to produce suppressive neutrophils. These data suggest the occurrence of distinct and unique neutrophil subset responses during severe viral and (secondary) bacterial respiratory infection in infants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. CSF lactate for accurate diagnosis of community-acquired bacterial meningitis.

    PubMed

    Giulieri, S; Chapuis-Taillard, C; Jaton, K; Cometta, A; Chuard, C; Hugli, O; Du Pasquier, R; Bille, J; Meylan, P; Manuel, O; Marchetti, O

    2015-10-01

    CSF lactate measurement is recommended when nosocomial meningitis is suspected, but its value in community-acquired bacterial meningitis is controversial. We evaluated the diagnostic performance of lactate and other CSF parameters in a prospective cohort of adult patients with acute meningitis. Diagnostic accuracy of lactate and other CSF parameters in patients with microbiologically documented episodes was assessed by receiver operating characteristic (ROC) curves. The cut-offs with the best diagnostic performance were determined. Forty-five of 61 patients (74%) had a documented bacterial (n = 18; S. pneumoniae, 11; N. meningitidis, 5; other, 2) or viral (n = 27 enterovirus, 21; VZV, 3; other, 3) etiology. CSF parameters were significantly different in bacterial vs. viral meningitis, respectively (p < 0.001 for all comparisons): white cell count (median 1333 vs. 143/mm(3)), proteins (median 4115 vs. 829 mg/l), CSF/blood glucose ratio (median 0.1 vs. 0.52), lactate (median 13 vs. 2.3 mmol/l). ROC curve analysis showed that CSF lactate had the highest accuracy for discriminating bacterial from viral meningitis, with a cutoff set at 3.5 mmol/l providing 100% sensitivity, specificity, PPV, NPV, and efficiency. CSF lactate had the best accuracy for discriminating bacterial from viral meningitis and should be included in the initial diagnostic workup of this condition.

  14. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roux, Simon; Hallam, Steven J.; Woyke, Tanja

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 newmore » viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.« less

  15. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes.

    PubMed

    Roux, Simon; Hallam, Steven J; Woyke, Tanja; Sullivan, Matthew B

    2015-07-22

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus-host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7-38% of 'unknown' sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus-host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.

  16. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes

    DOE PAGES

    Roux, Simon; Hallam, Steven J.; Woyke, Tanja; ...

    2015-07-22

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 newmore » viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes.« less

  17. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    PubMed

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Bacterial surface adaptation

    NASA Astrophysics Data System (ADS)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  19. Lipocalin 2 in cerebrospinal fluid as a marker of acute bacterial meningitis

    PubMed Central

    2014-01-01

    Background Early differential diagnosis between acute bacterial and viral meningitis is problematic. We aimed to investigate whether the detection of lipocalin 2, a protein of the acute innate immunity response, may be used as a marker for acute bacterial meningitis. Methods Transgenic mice expressing the human transferrin were infected by intraperitoneal route and were imaged. Cerebrospinal fluid (CSF) was sampled up to 48hours post- infection to measure lipocalin 2. We also tested a collection of 90 and 44 human CSF with confirmed acute bacterial or acute viral meningitis respectively. Results Lipocalin 2 was detected after 5 h in CSF during experimental infection in mice. Lipocalin 2 levels were significantly higher (p < 0.0001) in patients with confirmed acute bacterial meningitis (mean 125 pg/mL, range 106–145 pg/mL) than in patients with acute viral meningitis (mean 2 pg/mL, range 0–6 pg/mL) with a sensitivity of 81%, a specificity of 93%, a positive predictive value of 96% and a negative predictive value of 71% in diagnosing acute bacterial meningitis. Conclusions Increased levels of lipocalin 2 in cerebrospinal fluid may discriminate between acute bacterial and viral meningitis in patients with clinical syndrome of meningitis. PMID:24885531

  20. Sex as a strategy against rapidly evolving parasites.

    PubMed

    Auld, Stuart K J R; Tinkler, Shona K; Tinsley, Matthew C

    2016-12-28

    Why is sex ubiquitous when asexual reproduction is much less costly? Sex disrupts coadapted gene complexes; it also causes costs associated with mate finding and the production of males who do not themselves bear offspring. Theory predicts parasites select for host sex, because genetically variable offspring can escape infection from parasites adapted to infect the previous generations. We examine this using a facultative sexual crustacean, Daphnia magna, and its sterilizing bacterial parasite, Pasteuria ramosa We obtained sexually and asexually produced offspring from wild-caught hosts and exposed them to contemporary parasites or parasites isolated from the same population one year later. We found rapid parasite adaptation to replicate within asexual but not sexual offspring. Moreover, sexually produced offspring were twice as resistant to infection as asexuals when exposed to parasites that had coevolved alongside their parents (i.e. the year two parasite). This fulfils the requirement that the benefits of sex must be both large and rapid for sex to be favoured by selection. © 2016 The Author(s).

  1. [Research on the eventual cross-reactivity of anti-Wr(a) with various viral, bacterial and mycotic antigenes (author's transl)].

    PubMed

    Garelli, S; Valbonesi, M; Picerno, G; Vazzana, A

    1978-09-01

    Among the sera of 1011 blood donors, they have been collected 34 anti-Wr(a) antibodies. By IgG antiglobulin test, the titer was 1/8 or more in 21 sera. After absorption on viral, bacterial and mycotic antigens, the sera were still reactive with Wr(a) + red blood cells. These results show that no tested antigen is cross-reactive with Wr(a) antigen. However, the AA. suggest that the research of a widley diffused antigen, cross-reactive with Wr(a) + red blood cells, is a valuable approach to the problem of IgG anti-Wr(a) antibodies in normal, never transfused blood donors.

  2. Cerebrospinal fluid ferritin and albumin index: potential candidates for scoring system to differentiate between bacterial and viral meningitis in children.

    PubMed

    Jebamalar, Angelin A; Prabhat; Balakrishnapillai, Agiesh K; Parmeswaran, Narayanan; Dhiman, Pooja; Rajendiran, Soundravally

    2016-07-01

    To evaluate the diagnostic role of cerebrospinal fluid (CSF) ferritin and albumin index (AI = CSF albumin/serum albumin × 1000) in differentiating acute bacterial meningitis (ABM) from acute viral meningitis (AVM) in children. The study included 42 cases each of ABM and AVM in pediatric age group. Receiver operating characteristic (ROC) analysis was carried out for CSF ferritin and AI. Binary logistic regression was also done. CSF ferritin and AI were found significantly higher in ABM compared to AVM. Model obtained using AI and CSF ferritin along with conventional criteria is better than existing models.

  3. Opportunistic and other intestinal parasitic infections in AIDS patients, HIV seropositive healthy carriers and HIV seronegative individuals in southwest Ethiopia.

    PubMed

    Mariam, Zelalem T; Abebe, Gemeda; Mulu, Andargachew

    2008-12-01

    Human Immunodeficiency Virus (HIV) infection leads to acquired immunodeficiency syndrome (AIDS) and major causes of morbidity and mortality of such patients are opportunistic infections caused by viral, bacterial, fungal and parasitic pathogens. To determine the magnitude of opportunistic and non-opportunistic intestinal parasitic infections among AIDS patients and HIV positive carrier individuals. Cross-sectional study was conducted among AIDS patients, HIV positive healthy carriers and HIV negative individuals in Jimma University Hospital, Mother Theresa Missionary Charity Centre, Medan Acts Projects and Mekdim HIV positive persons and AIDS orphans' national association from January to May, 2004. Convenient sampling technique was employed to identify the study subjects and hence a total of 160 subjects were included. A pre-tested structured questionnaire was used to collect socio-demographic data of the patients. Stool samples were examined by direct saline, iodine wet mount, formol-ether sedimentation concentration, oocyst concentration and modified Ziehl-Neelsen staining technique. Out of 160 persons enrolled in this study 100 (62.5%) (i.e. 65 male and 35 female) were infected with one or more intestinal parasites. The highest rate 36 (69.2%) of intestinal parasites were observed among HIV/AIDS patients, followed by HIV positive healthy carriers 35 (61.4%) of and HIV negative individuals (29 (56.9%). Isospora belli 2 (3.9%), Cryptosporidum parvum 8 (15.4%), Strongyloides stercoralis 6 (11.5%) and Blastocystis 2 (3.9%) were found only in HIV/AIDS groups I. belli, C. parvum, S. stercoralis and Blastocystis are the major opportunistic intestinal parasites observed in HIV/AIDS patients. Therefore, early detection and treatment of these parasites are important to improve the quality of life of HIV/AIDS patients with diarrhoea.

  4. The role of respiratory viruses in the etiology of bacterial pneumonia: An ecological perspective.

    PubMed

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-02-15

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  5. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes

    PubMed Central

    Roux, Simon; Hallam, Steven J; Woyke, Tanja; Sullivan, Matthew B

    2015-01-01

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes. DOI: http://dx.doi.org/10.7554/eLife.08490.001 PMID:26200428

  6. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens

    PubMed Central

    Leung, Jacqueline M.; Graham, Andrea L.; Knowles, Sarah C. L.

    2018-01-01

    The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control. PMID:29867790

  7. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens.

    PubMed

    Leung, Jacqueline M; Graham, Andrea L; Knowles, Sarah C L

    2018-01-01

    The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control.

  8. Empirical Support for Optimal Virulence in a Castrating Parasite

    PubMed Central

    Jensen, Knut Helge; Little, Tom; Skorping, Arne; Ebert, Dieter

    2006-01-01

    The trade-off hypothesis for the evolution of virulence predicts that parasite transmission stage production and host exploitation are balanced such that lifetime transmission success (LTS) is maximised. However, the experimental evidence for this prediction is weak, mainly because LTS, which indicates parasite fitness, has been difficult to measure. For castrating parasites, this simple model has been modified to take into account that parasites convert host reproductive resources into transmission stages. Parasites that kill the host too early will hardly benefit from these resources, while postponing the killing of the host results in diminished returns. As predicted from optimality models, a parasite inducing castration should therefore castrate early, but show intermediate levels of virulence, where virulence is measured as time to host killing. We studied virulence in an experimental system where a bacterial parasite castrates its host and produces spores that are not released until after host death. This permits estimating the LTS of the parasite, which can then be related to its virulence. We exposed replicate individual Daphnia magna (Crustacea) of one host clone to the same amount of bacterial spores and followed individuals until their death. We found that the parasite shows strong variation in the time to kill its host and that transmission stage production peaks at an intermediate level of virulence. A further experiment tested for the genetic basis of variation in virulence by comparing survival curves of daphniids infected with parasite spores obtained from early killing versus late killing infections. Hosts infected with early killer spores had a significantly higher death rate as compared to those infected with late killers, indicating that variation in time to death was at least in part caused by genetic differences among parasites. We speculate that the clear peak in lifetime reproductive success at intermediate killing times may be caused by the

  9. Acute Viral Hepatitis in Pediatric Age Groups.

    PubMed

    Kc, Sudhamshu; Sharma, Dilip; Poudyal, Nandu; Basnet, Bhupendra Kumar

    2014-01-01

    Our clinical experience showed that there has been no decrease in pediatric cases of acute viral hepatitis in Kathmandu. The objective of the study was to analyze the etiology, clinical features, laboratory parameters, sonological findings and other to determine the probable prognostic factors of Acute Viral Hepatitis in pediatric population. Consecutive patients of suspected Acute Viral Hepatitis, below the age of 15 years, attending the liver clinic between January 2006 and December 2010 were studied. After clinical examination they were subjected to blood tests and ultrasound examination of abdomen. The patients were divided in 3 age groups; 0-5, 5-10 and 5-15 years. Clinical features, laboratory parameters, ultrasound findings were compared in three age groups. Etiology of Acute Viral Hepatitis was Hepatitis A virus 266 (85%), Hepatitis E virus in 24 (8%), Hepatitis B virus in 15 (5%). In 7(2%) patients etiology was unknown. Three patients went to acute liver failure but improved with conservative treatment. There was no statistical difference in most of the parameters studied in different age groups. Ascites was more common in 5-10 years age group. Patients with secondary bacterial infection, ultrasound evidence of prominent biliary tree and ascites were associated with increased duration of illness. Patients with history of herbal medications had prolonged cholestasis. Hepatitis A is most common cause of Acute Viral Hepatitis in pediatric population. Improper use of herbal medications, secondary bacterial infection and faulty dietary intake was associated with prolonged illness. Patients with prominent biliary radicals should be treated with antibiotics even with normal blood counts for earlier recovery.

  10. New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins

    PubMed Central

    Dias, Susana A.; Freire, João M.; Pérez-Peinado, Clara; Domingues, Marco M.; Gaspar, Diana; Vale, Nuno; Gomes, Paula; Andreu, David; Henriques, Sónia T.; Castanho, Miguel A. R. B.; Veiga, Ana S.

    2017-01-01

    The increasing prevalence of multidrug-resistant bacteria urges the development of new antibacterial agents. With a broad spectrum activity, antimicrobial peptides have been considered potential antibacterial drug leads. Using bioinformatic tools we have previously shown that viral structural proteins are a rich source for new bioactive peptide sequences, namely antimicrobial and cell-penetrating peptides. Here, we test the efficacy and mechanism of action of the most promising peptides among those previously identified against both Gram-positive and Gram-negative bacteria. Two cell-penetrating peptides, vCPP 0769 and vCPP 2319, have high antibacterial activity against Staphylococcus aureus, MRSA, Escherichia coli, and Pseudomonas aeruginosa, being thus multifunctional. The antibacterial mechanism of action of the two most active viral protein-derived peptides, vAMP 059 and vCPP 2319, was studied in detail. Both peptides act on both Gram-positive S. aureus and Gram-negative P. aeruginosa, with bacterial cell death occurring within minutes. Also, these peptides cause bacterial membrane permeabilization and damage of the bacterial envelope of P. aeruginosa cells. Overall, the results show that structural viral proteins are an abundant source for membrane-active peptides sequences with strong antibacterial properties. PMID:28522994

  11. Recurrent and Sustained Viral Infections in Primary Immunodeficiencies

    PubMed Central

    Ruffner, Melanie A.; Sullivan, Kathleen E.; Henrickson, Sarah E.

    2017-01-01

    Viral infections are commonplace and often innocuous. Nevertheless, within the population of patients with primary immunodeficiencies (PIDDs), viral infections can be the feature that drives a diagnostic evaluation or can be the most significant morbidity for the patient. This review is focused on the viral complications of PIDDs. It will focus on respiratory viruses, the most common type of viral infection in the general population. Children and adults with an increased frequency or severity of respiratory viral infections are often referred for an immunologic evaluation. The classic teaching is to investigate humoral function in people with recurrent sinopulmonary infections, but this is often interpreted to mean recurrent bacterial infections. Recurrent or very severe viral infections may also be a harbinger of a primary immunodeficiency as well. This review will also cover persistent cutaneous viral infections, systemic infections, central nervous system infections, and gastrointestinal infections. In each case, the specific viral infections may drive a diagnostic evaluation that is specific for that type of virus. This review also discusses the management of these infections, which can become problematic in patients with PIDDs. PMID:28674531

  12. Host age modulates within-host parasite competition

    PubMed Central

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-01-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. PMID:25994010

  13. Bacterial Lipopolysaccharide Destabilizes Influenza Viruses.

    PubMed

    Bandoro, Christopher; Runstadler, Jonathan A

    2017-01-01

    Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host's immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long-term persistence and

  14. Bacterial Lipopolysaccharide Destabilizes Influenza Viruses

    PubMed Central

    2017-01-01

    ABSTRACT Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host’s immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long

  15. Influence of environmental variation on the bacterioplankton community and its loss to viral lysis in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Šulčius, Sigitas; Reunamo, Anna; Paškauskas, Ričardas; Leskinen, Piia

    2018-05-01

    Coastal lagoons are continuously exposed to strong environmental gradients that determine the distribution and trophic interactions of microbial communities. Therefore, in this study we assessed whether and how environmental changes influence the bacterial community and its vulnerability to viral infection and lysis along the major environmental gradient in the Curonian Lagoon. We found significant differences in bacterial community profiles, their richness and evenness between the riverine, freshwater southern part and the Baltic Sea water intrusion-influenced northern part of the lagoon, suggesting strong environmental control of the structure of bacterial communities. Viruses were found to be play an important role in bacterial mortality in the Curonian Lagoon, being responsible for the removal of 20-50% of the bacterial standing stock. We observed differences in virioplankton decay rates and virus burst sizes between the northern and southern parts of the lagoon. However, no relationships were found between viral activity and bacterial communities within the lagoon ecosystem. The frequency of infected cells and virus-mediated bacterial mortality (VMBM) remained constant among the sampling sites irrespective of differences in bacteria community assemblages and environmental conditions. The results indicate that factors determining changes in bacterial diversity are different from the factors limiting their vulnerability to viral infection and lysis. This study also suggests that under changing environmental conditions, virus-bacteria interactions are more stable than the interacting viral and bacterial communities themselves. These findings are important for understanding the functioning of the coastal ecosystems under the rapidly changing local (spatial and temporal) and global (e.g. eutrophication, climate change) conditions.

  16. Viral infection and antiviral therapy in the neonatal intensive care unit.

    PubMed

    Barford, Galina; Rentz, Alison C; Faix, Roger G

    2004-01-01

    Viral diseases are leading causes of mortality and morbidity among infants requiring care in the neonatal intensive care unit (NICU), with ongoing discoveries of new viral pathology likely to add to the burdens posed. Many viral diseases in NICU infants are undiagnosed or appreciated only late in the course because of subtle or asymptomatic presentation, confusion with bacterial disease, and failure to consider viral disease. We present an overview of viral disease in NICU infants, with emphasis on pharmacologic agents currently employed for prophylaxis and treatment of such diseases. Advances in molecular biology and popular demand to develop antiviral agents for viral diseases (eg, human immunodeficiency virus) offer great promise for the future.

  17. Specialization of bacterial endosymbionts that protect aphids from parasitoids

    USDA-ARS?s Scientific Manuscript database

    Infection by the bacterial endosymbiont HAMILTONELLA DEFENSA is capable of protecting the pea aphid from parasitism by APHIDIUS ERVI and the black bean aphid from parasitism by LYSIPHLEBUS FABARUM. Here we investigate protection of a third aphid species, the cowpea aphid, APHIS CRACCIVORA, from 4 p...

  18. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    PubMed

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular

  19. Metagenomic characterization of viral communities in Goseong Bay, Korea

    NASA Astrophysics Data System (ADS)

    Hwang, Jinik; Park, So Yun; Park, Mirye; Lee, Sukchan; Jo, Yeonhwa; Cho, Won Kyong; Lee, Taek-Kyun

    2016-12-01

    In this study, seawater samples were collected from Goseong Bay, Korea in March 2014 and viral populations were examined by metagenomics assembly. Enrichment of marine viral particles using FeCl3 followed by next-generation sequencing produced numerous sequences. De novo assembly and BLAST search showed that most of the obtained contigs were unknown sequences and only 0.74% of sequences were associated with known viruses. As a result, 138 viruses, including bacteriophages (87%), viruses infecting algae and others (13%) were identified. The identified 138 viruses were divided into 11 orders, 14 families, 34 genera, and 133 species. The dominant viruses were Pelagibacter phage HTVC010P and Roseobacter phage SIO1. The viruses infecting algae, including the Ostreococcus species, accounted for 9.4% of total identified viruses. In addition, we identified pathogenic herpes viruses infecting fishes and giant viruses infecting parasitic acanthamoeba species. This is a comprehensive study to reveal the viral populations in the Goseong Bay using metagenomics. The information associated with the marine viral community in Goseong Bay, Korea will be useful for comparative analysis in other marine viral communities.

  20. Comparison of viral infection in healthcare-associated pneumonia (HCAP) and community-acquired pneumonia (CAP)

    PubMed Central

    Park, Kyoung Un; Lee, Sang Hoon; Lee, Yeon Joo; Park, Jong Sun; Cho, Young-Jae; Yoon, Ho Il; Lee, Choon-Taek

    2018-01-01

    Background Although viruses are known to be the second most common etiological factor in community-acquired pneumonia (CAP), the respiratory viral profile of the patients with healthcare-associated pneumonia (HCAP) has not yet been elucidated. We investigated the prevalence and the clinical impact of respiratory virus infection in adult patients with HCAP. Methods Patients admitted with HCAP or CAP, between January and December 2016, to a tertiary referral hospital in Korea, were prospectively enrolled, and virus identification was performed using reverse-transcription polymerase chain reaction (RT-PCR). Results Among 452 enrolled patients (224 with HCAP, 228 with CAP), samples for respiratory viruses were collected from sputum or endotracheal aspirate in 430 (95.1%) patients and from nasopharyngeal specimens in 22 (4.9%) patients. Eighty-seven (19.2%) patients had a viral infection, and the proportion of those with viral infection was significantly lower in the HCAP than in the CAP group (13.8% vs 24.6%, p = 0.004). In both the HCAP and CAP groups, influenza A was the most common respiratory virus, followed by entero-rhinovirus. The seasonal distributions of respiratory viruses were also similar in both groups. In the HCAP group, the viral infection resulted in a similar length of hospital stay and in-hospital mortality as viral–bacterial coinfection and bacterial infection, and the CAP group showed similar results. Conclusions The prevalence of viral infection in patients with HCAP was lower than that in patients with CAP, and resulted in a similar prognosis as viral–bacterial coinfection or bacterial infection. PMID:29447204

  1. Host age modulates within-host parasite competition.

    PubMed

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Experimental and Natural Infections of Goats with Severe Fever with Thrombocytopenia Syndrome Virus: Evidence for Ticks as Viral Vector.

    PubMed

    Jiao, Yongjun; Qi, Xian; Liu, Dapeng; Zeng, Xiaoyan; Han, Yewu; Guo, Xiling; Shi, Zhiyang; Wang, Hua; Zhou, Minghao

    2015-01-01

    Severe fever with thrombocytopenia syndrome virus (SFTSV), the causative agent for the fatal life-threatening infectious disease, severe fever with thrombocytopenia syndrome (SFTS), was first identified in the central and eastern regions of China. Although the viral RNA was detected in free-living and parasitic ticks, the vector for SFTSV remains unsettled. Firstly, an experimental infection study in goats was conducted in a bio-safety level-2 (BSL-2) facility to investigate virus transmission between animals. The results showed that infected animals did not shed virus to the outside through respiratory or digestive tract route, and the control animals did not get infected. Then, a natural infection study was carried out in the SFTSV endemic region. A cohort of naïve goats was used as sentinel animals in the study site. A variety of daily samples including goat sera, ticks and mosquitoes were collected for viral RNA and antibody (from serum only) detection, and virus isolation. We detected viral RNA from free-living and parasitic ticks rather than mosquitoes, and from goats after ticks' infestation. We also observed sero-conversion in all members of the animal cohort subsequently. The S segment sequences of the two recovered viral isolates from one infected goat and its parasitic ticks showed a 100% homology at the nucleic acid level. In our natural infection study, close contact between goats does not appear to transmit SFTSV, however, the naïve animals were infected after ticks' infestation and two viral isolates derived from an infected goat and its parasitic ticks shared 100% of sequence identity. These data demonstrate that the etiologic agent for goat cohort's natural infection comes from environmental factors. Of these, ticks, especially the predominant species Haemaphysalis longicornis, probably act as vector for this pathogen. The findings in this study may help local health authorities formulate and focus preventive measures to contain this infection.

  3. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.

    PubMed

    Abdelmohsen, Usama Ramadan; Balasubramanian, Srikkanth; Oelschlaeger, Tobias A; Grkovic, Tanja; Pham, Ngoc B; Quinn, Ronald J; Hentschel, Ute

    2017-02-01

    Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies. Copyright © 2017 Elsevier Ltd

  4. Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses

    PubMed Central

    Gasmi, Laila; Boulain, Helene; Gauthier, Jeremy; Hua-Van, Aurelie; Musset, Karine; Jakubowska, Agata K.; Aury, Jean-Marc; Volkoff, Anne-Nathalie; Huguet, Elisabeth

    2015-01-01

    Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens. PMID:26379286

  5. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonilla-Findji, Osana; Malits, Andrea; Lefèvre, Dominique; Rochelle-Newall, Emma; Lemée, Rodolphe; Weinbauer, Markus G.; Gattuso, Jean-Pierre

    2008-03-01

    To investigate the potential effects of viruses on bacterial respiration (BR), production (BP) and growth efficiency (BGE), experiments were performed using natural microbial communities from the coastal Mediterranean Sea, from a typical high-nutrient low-chlorophyll (HNLC) region in the Southern Ocean and from a naturally iron (Fe)-fertilized algal bloom above the Kerguelen Plateau (Southern Ocean). Seawater was sequentially filtered and concentrated to produce a bacterial concentrate, a viral concentrate and a virus-free ultrafiltrate. The combination of all three fractions served as treatments with active viruses. Heating or microwaving was used to inactivate viruses for the control treatments. Despite the differences in the initial trophic state and community composition of the study sites, consistent trends were found. In the presence of active viruses, BR was stimulated (up to 113%), whereas BP and BGE were reduced (up to 51%). Our results suggest that viruses enhance the role of bacteria as oxidizers of organic matter, hence as producers of CO 2, and remineralizers of CO 2, N, P and Fe. In the context of Fe-fertilization, this has important implications for the final fate of organic carbon in marine systems.

  6. A review of infectious bovine rhinotracheitis, shipping fever pneumonia and viral-bacterial synergism in respiratory disease of cattle.

    PubMed Central

    Yates, W D

    1982-01-01

    Unanswered questions on the etiology and prevention of shipping fever pneumonia have allowed this disease to remain one of the most costly to the North American cattle industry. Research in this area has indirected that while Pasteurella haemolytica and, to a lesser extent, P. multocida are involved in most cases, they seem to require additional factors to help initiate the disease process. Bovine herpes virus 1 has been shown experimentally to be one such factor. This review examines in some detail the topics of infectious bovine rhinotracheitis, shipping fever, and viral-bacterial interactions in the production of respiratory disease in various species. It deals with history, definitions, etiologies, clinical signs and lesions, and considers exposure levels, transmission and various pathogenetic mechanisms that are postulated or known to occur. PMID:6290011

  7. Inter- and intra-specific cuticle variation between amphimictic and parthenogenetic species of root-knot nematode (Meloidogyne spp.) as revealed by a bacterial parasite (Pasteuria penetrans).

    PubMed

    Davies, K G; Rowe, J A; Williamson, V M

    2008-06-01

    Specific host-parasite interactions exist between species and strains of plant parasitic root-knot nematodes and the Gram-positive bacterial hyperparasite Pasteuria penetrans. This bacterium produces endospores that adhere to the cuticle of migrating juveniles, germinate and colonise the developing female within roots. Endospore attachment of P. penetrans populations to second-stage juveniles of the root-knot nematode species Meloidogyne incognita and Meloidogyne hapla showed there were interactive differences between bacterial populations and nematode species. Infected females of M. incognita produced a few progeny which were used to establish two nematode lines from single infective juveniles encumbered with either three or 26 endospores. Single juvenile descent lines of each nematode species were produced to test whether cuticle variation was greater within M. hapla lines that reproduce by facultative meiotic parthenogenesis than within lines of M. incognita, which reproduces by obligate parthenogenesis. Assays revealed variability between broods of individual females derived from single second-stage juvenile descent lines of both M. incognita and M. hapla suggesting that progeny derived from a single individual can differ in spore adhesion in both sexual and asexual nematode species. These results suggest that special mechanisms that produced these functional differences in the cuticle surface may have evolved in both sexually and asexually reproducing nematodes as a strategy to circumvent infection by this specialised hyperparasite.

  8. Broad Surveys of DNA Viral Diversity Obtained through Viral Metagenomics of Mosquitoes

    PubMed Central

    Ng, Terry Fei Fan; Willner, Dana L.; Lim, Yan Wei; Schmieder, Robert; Chau, Betty; Nilsson, Christina; Anthony, Simon; Ruan, Yijun; Rohwer, Forest; Breitbart, Mya

    2011-01-01

    Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes. PMID:21674005

  9. A comprehensive and quantitative exploration of thousands of viral genomes

    PubMed Central

    Mahmoudabadi, Gita

    2018-01-01

    The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. PMID:29624169

  10. A comprehensive and quantitative exploration of thousands of viral genomes.

    PubMed

    Mahmoudabadi, Gita; Phillips, Rob

    2018-04-19

    The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends - such as gene density, noncoding percentage, and abundances of functional gene categories - across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. © 2018, Mahmoudabadi et al.

  11. Translational Control of Viral Gene Expression in Eukaryotes

    PubMed Central

    Gale, Michael; Tan, Seng-Lai; Katze, Michael G.

    2000-01-01

    As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell. PMID:10839817

  12. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    PubMed Central

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  13. Association between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and radiologically confirmed pneumonia in Vietnamese children.

    PubMed

    Vu, Huong Thi Thu; Yoshida, Lay Myint; Suzuki, Motoi; Nguyen, Hien Anh Thi; Nguyen, Cat Dinh Lien; Nguyen, Ai Thi Thuy; Oishi, Kengo; Yamamoto, Takeshi; Watanabe, Kiwao; Vu, Thiem Dinh

    2011-01-01

    The interplay between nasopharyngeal bacterial carriage, viral coinfection, and lower respiratory tract infections (LRTIs) is poorly understood. We explored this association in Vietnamese children aged less than 5 years. A hospital-based case-control study of pediatric LRTIs was conducted in Nha Trang, Vietnam. A total of 550 hospitalized children (274 radiologically confirmed pneumonia [RCP] and 276 other LRTIs) were enrolled and 350 healthy controls were randomly selected from the community. Polymerase chain reaction-based methods were used to measure bacterial loads of Streptococcus pneumoniae (SP), Haemophilus influenzae, and Moraxella catarrhalis and to detect 13 respiratory viruses and bacterial serotypes in nasopharyngeal samples of study participants. The median nasopharyngeal bacterial load of SP was substantially higher in children with RCP compared with healthy controls or children with other LRTIs (P < 0.001). SP load was 15-fold higher in pneumonia children with viral coinfection compared with those children without viral coinfection (1.4 x 10⁷/mL vs. 9.1 x 10⁵/mL; P 0.0001). SP load was over 200-fold higher in serotypeable SP compared with nontypeable SP (2.5 x 10⁶/mL vs. 1 x 10⁴/mL; P < 0.0001). These associations were independent of potential confounders in multiple regression models. No clear association was found between nasopharyngeal load of Haemophilus influenzae or Moraxella catarrhalis and viral coinfection in either RCP or other LRTIs groups. An increased load of SP in the nasopharynx was associated with RCP, viral coinfection, and presence of pneumococcal capsule.

  14. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    PubMed Central

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  15. [Combination therapy of chronic bacterial prostatitis].

    PubMed

    Khryanin, A A; Reshetnikov, O V

    2016-08-01

    The article discusses the possible etiological factors in the development of chronic bacterial prostatitis. The authors presented a comparative long-term analysis of morbidity from non-viral sexually transmitted infections (STIs) in Russia. Against the background of general decline in STIs incidence, a significant percentage of them is made up by urogenital trichomoniasis. The findings substantiated the advantages of combination therapy (ornidazole and ofloxacin) for bacterial urinary tract infections.

  16. Neglected Parasitic Infections in the United States: Trichomoniasis

    PubMed Central

    Secor, W. Evan; Meites, Elissa; Starr, Michelle C.; Workowski, Kimberly A.

    2014-01-01

    Trichomonas vaginalis is one of the most common human parasitic infections in the United States, as well as the most prevalent non-viral sexually transmitted infection. However, it has long received much less consideration than other parasitic and sexually transmitted diseases. Much of this inattention can be attributed to a poor understanding of the public health impact of trichomoniasis. Increasing recognition of the sequelae of infection, including increased risk of infection with human immunodeficiency virus and adverse outcomes of pregnancy, has led to increased interest in T. vaginalis. Recent innovations include development of diagnostic tests that could improve detection of the parasite. A number of important questions, such as the epidemiology among men and women, the true public health burden of symptomatic and asymptomatic T. vaginalis infections, and whether current treatments will be adequate to reduce the substantial health disparities and costs associated with trichomoniasis, need consideration to remedy neglect of this important disease. PMID:24808247

  17. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    USDA-ARS?s Scientific Manuscript database

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...

  18. Viral meningitis: which patients can be discharged from the emergency department?

    PubMed

    Mohseni, Michael M; Wilde, James A

    2012-12-01

    Even in an era when cases of viral meningitis outnumber bacterial meningitis by at least 25:1, most patients with clinical meningitis are hospitalized. We describe the clinical characteristics of an unusual outbreak of viral meningitis that featured markedly elevated cerebrospinal fluid white blood cell counts (CSF WBC). A validated prediction model for viral meningitis was applied to determine which hospital admissions could have been avoided. Data were collected retrospectively from patients presenting to our tertiary care center. Charts were reviewed in patients with CSF pleocytosis (CSF WBC > 7 cells/mm(3)) and a clinical diagnosis of meningitis between March 1, 2003 and July 1, 2003. Cases were identified through hospital infection control and by surveying all CSF specimens submitted to the microbiology laboratory during the outbreak. There were 78 cases of viral meningitis and 1 case of bacterial meningitis identified. Fifty-eight percent of the viral meningitis cases were confirmed by culture or polymerase chain reaction to be due to Enterovirus. Mean CSF WBC count was 571 cells/mm(3), including 20 patients with a CSF WBC count > 750 cells/mm(3) (25%) and 11 patients with values > 1000 cells/mm(3) (14%). Sixty-four of 78 patients (82%) were hospitalized. Rates of headache, photophobia, nuchal rigidity, vomiting, and administration of intravenous fluids in the Emergency Department were no different between admitted and discharged patients. Only 26/78 (33%) patients with viral meningitis would have been admitted if the prediction model had been used. Although not all cases of viral meningitis are necessarily suitable for outpatient management, use of a prediction model for viral meningitis may have helped decrease hospitalization by nearly 60%, even though this outbreak was characterized by unusually high levels of CSF pleocytosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The Effects of Simulated Weightlessness on Susceptibility to Viral and Bacterial Infections Using a Murine Model

    NASA Technical Reports Server (NTRS)

    Gould, C. L.

    1985-01-01

    Certain immunological responses may be compromised as a result of changes in environmental conditions, such as the physiological adaptation to and from the weightlessness which occurs during space flight and recovery. A murine antiorthostatic model was developed to simulate weightlessness. Using this model, the proposed study will determine if differences in susceptibility to viral and bacterial infections exist among mice suspended in an antiorthostatic orientation to simulate weightlessness, mice suspended in an orthostatic orientation to provide a stressful situation without the condition of weightlessness simulation, and non-suspended control mice. Inbred mouse strains which are resistant to the diabetogenic effects of the D variant of encephalomyocarditis virus (EMC-D) and the lethal effects of Salmonella typhimurium will be evaluated. Glucose tolerance tests will be performed on all EMC-D-infected and non-infected control groups. The incidence of EMC-D-induced diabetes and the percentage survival of S. typhimurium-infected animals will be determined in each group. An additional study will determine the effects of simulated weightlessness on murine responses to exogenous interferon.

  20. Review of Non-Bacterial Infections in Respiratory Medicine: Viral Pneumonia.

    PubMed

    Galván, José María; Rajas, Olga; Aspa, Javier

    2015-11-01

    Although bacteria are the main pathogens involved in community-acquired pneumonia, a significant number of community-acquired pneumonia are caused by viruses, either directly or as part of a co-infection. The clinical picture of these different pneumonias can be very similar, but viral infection is more common in the pediatric and geriatric populations, leukocytes are not generally elevated, fever is variable, and upper respiratory tract symptoms often occur; procalcitonin levels are not generally affected. For years, the diagnosis of viral pneumonia was based on cell culture and antigen detection, but since the introduction of polymerase chain reaction techniques in the clinical setting, identification of these pathogens has increased and new microorganisms such as human bocavirus have been discovered. In general, influenza virus type A and syncytial respiratory virus are still the main pathogens involved in this entity. However, in recent years, outbreaks of deadly coronavirus and zoonotic influenza virus have demonstrated the need for constant alert in the face of new emerging pathogens. Neuraminidase inhibitors for viral pneumonia have been shown to reduce transmission in cases of exposure and to improve the clinical progress of patients in intensive care; their use in common infections is not recommended. Ribavirin has been used in children with syncytial respiratory virus, and in immunosuppressed subjects. Apart from these drugs, no antiviral has been shown to be effective. Prevention with anti-influenza virus vaccination and with monoclonal antibodies, in the case of syncytial respiratory virus, may reduce the incidence of pneumonia. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  1. Effects of shortened host life span on the evolution of parasite life history and virulence in a microbial host-parasite system

    PubMed Central

    Nidelet, Thibault; Koella, Jacob C; Kaltz, Oliver

    2009-01-01

    Background Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite) host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing) or 14 (late killing) days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle. Results After 13 cycles (≈ 300 generations), parasites from the early-killing treatment were less infectious, but had shorter latency time and higher virulence than those from the late-killing treatment. Overall, shorter latency time was associated with higher parasite loads and thus presumably with more rapid within-host replication. Conclusion The analysis of the means of the two treatments is thus consistent with theory, and suggests that evolution is constrained by trade-offs between virulence, transmission and within-host growth. In contrast, we found little evidence for such trade-offs across parasite selection lines within treatments; thus, to some extent, these traits may evolve independently. This study illustrates how environmental variation (experienced by the host) can lead to the evolution of distinct parasite strategies. PMID:19320981

  2. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case–control study protocol

    PubMed Central

    Bhuiyan, Mejbah Uddin; Snelling, Thomas L; West, Rachel; Lang, Jurissa; Rahman, Tasmina; Borland, Meredith L; Thornton, Ruth; Kirkham, Lea-Ann; Sikazwe, Chisha; Martin, Andrew C; Richmond, Peter C; Smith, David W; Jaffe, Adam; Blyth, Christopher C

    2018-01-01

    Introduction Pneumonia is the leading cause of childhood morbidity and mortality globally. Introduction of the conjugate Haemophilus influenzae B and multivalent pneumococcal vaccines in developed countries including Australia has significantly reduced the overall burden of bacterial pneumonia. With the availability of molecular diagnostics, viruses are frequently detected in children with pneumonia either as primary pathogens or predispose to secondary bacterial infection. Many respiratory pathogens that are known to cause pneumonia are also identified in asymptomatic children, so the true contribution of these pathogens to childhood community-acquired pneumonia (CAP) remains unclear. Since the introduction of pneumococcal vaccines, very few comprehensive studies from developed countries have attempted to determine the bacterial and viral aetiology of pneumonia. We aim to determine the contribution of bacteria and viruses to childhood CAP to inform further development of effective diagnosis, treatment and preventive strategies. Methods and analysis We are conducting a prospective case–control study (PneumoWA) where cases are children with radiologically confirmed pneumonia admitted to Princess Margaret Hospital for Children (PMH) and controls are healthy children identified from PMH outpatient clinics and from local community immunisation clinics. The case–control ratio is 1:1 with 250 children to be recruited in each arm. Nasopharyngeal swabs are collected from both cases and controls to detect the presence of viruses and bacteria by PCR; pathogen load will be assessed by quantitative PCR. The prevalence of pathogens detected in cases and controls will be compared, the OR of detection and population attributable fraction to CAP for each pathogen will be determined; relationships between pathogen load and disease status and severity will be explored. Ethics and dissemination This study has been approved by the human research ethics committees of PMH, Perth

  3. Infectious bacterial pathogens, parasites and pathological correlations of sewage pollution as an important threat to farmed fishes in Egypt.

    PubMed

    Mahmoud, Mahmoud A; Abdelsalam, Mohamed; Mahdy, Olfat A; El Miniawy, Hala M F; Ahmed, Zakia A M; Osman, Ahmed H; Mohamed, Hussein M H; Khattab, A M; Zaki Ewiss, M A

    2016-12-01

    This paper is a part of a multi-disciplinary research "Application of Decentralized On-Site Water Treatment System in Egypt for Use in Agriculture and Producing Safe Fish and Animal Proteins". The project aimed to investigate the environmental impact of implementing sewage water before and after treatment using the effluent of the on-site decentralized Japanese' Johkasou system, in agriculture and producing fish protein. The aim is to establish such system in Egypt to strengthen the sanitary conditions of water resources. In the present study, the impact of the sewage pollution in some fish farms at El-Fayyum, Port Said and El-Dakahlia governorates in Egypt was carried out. Water and fish (Oreochromis niloticus and Mugil cephalus) samples were collected from private fish farms of such localities. Bacteriological and chemical examination of water samples revealed the existence of coliforms and many other bacterial species of significant human health hazards. The chemical parameters of water showed a marked deviation from normal levels while examination of fish flesh specimens indicated contamination with Streptococcus Sp., Staphylococcus Sp., and Salmonella in all examined localities. Other bacterial isolates of human health importance (Morganella morganii, Pseudomonas cepacia and Enterococcos durans) were identified. The parasitological examination revealed the presence of encysted metacercariae (EMC); Diplostomatidae, Prohemistomatidae and Heterphyidae. Moreover, two protozoan parasites (Mxyoboulus tilapiae and Ichthyophthirius multifilis) were also recorded. The histopathological examination revealed mild tissue reaction in case of bacterial infection and severe pathological lesions in different organs in case of EMC infection. Lamellar hyperplasia and mononuclear cell infiltration in branchial tissue was common findings. In skeletal muscles, atrophy of muscle fibres, myolysis and myophagia were detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells.

    PubMed

    Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S; Ding, Yong-Bing; Wang, Jian-Hua

    2015-12-30

    The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4(+) T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4(+) T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. Copyright © 2016, American Society

  5. The CRISPR/Cas9 system sheds new lights on the biology of protozoan parasites.

    PubMed

    Grzybek, Maciej; Golonko, Aleksandra; Górska, Aleksandra; Szczepaniak, Klaudiusz; Strachecka, Aneta; Lass, Anna; Lisowski, Paweł

    2018-06-01

    The CRISPR/Cas9 system, a natural defence system of bacterial organisms, has recently been used to modify genomes of the most important protozoa parasites. Successful genome manipulations with the CRISPR/Cas9 system are changing the present view of genetics in parasitology. The application of this system offers a major chance to overcome the current restriction in culturing, maintaining and analysing protozoan parasites, and allows dynamic analysis of parasite genes functions, leading to a better understanding of pathogenesis. CRISPR/Cas9 system will have a significant influence on the process of developing novel drugs and treatment strategies against protozoa parasites.

  6. Effect of selected gastrointestinal parasites and viral agents on fecal S100A12 concentrations in puppies as a potential comparative model.

    PubMed

    Heilmann, Romy M; Grellet, Aurélien; Grützner, Niels; Cranford, Shannon M; Suchodolski, Jan S; Chastant-Maillard, Sylvie; Steiner, Jörg M

    2018-04-17

    Previous data suggest that fecal S100A12 has clinical utility as a biomarker of chronic gastrointestinal inflammation (idiopathic inflammatory bowel disease) in both people and dogs, but the effect of gastrointestinal pathogens on fecal S100A12 concentrations is largely unknown. The role of S100A12 in parasite and viral infections is also difficult to study in traditional animal models due to the lack of S100A12 expression in rodents. Thus, the aim of this study was to evaluate fecal S100A12 concentrations in a cohort of puppies with intestinal parasites (Cystoisospora spp., Toxocara canis, Giardia sp.) and viral agents that are frequently encountered and known to cause gastrointestinal signs in dogs (coronavirus, parvovirus) as a comparative model. Spot fecal samples were collected from 307 puppies [median age (range): 7 (4-13) weeks; 29 different breeds] in French breeding kennels, and fecal scores (semiquantitative system; scores 1-13) were assigned. Fecal samples were tested for Cystoisospora spp. (C. canis and C. ohioensis), Toxocara canis, Giardia sp., as well as canine coronavirus (CCV) and parvovirus (CPV). S100A12 concentrations were measured in all fecal samples using an in-house radioimmunoassay. Statistical analyses were performed using non-parametric 2-group or multiple-group comparisons, non-parametric correlation analysis, association testing between nominal variables, and construction of a multivariate mixed model. Fecal S100A12 concentrations ranged from < 24-14,363 ng/g. Univariate analysis only showed increased fecal S100A12 concentrations in dogs shedding Cystoisospora spp. (P = 0.0384) and in dogs infected with parvovirus (P = 0.0277), whereas dogs infected with coronavirus had decreased fecal S100A12 concentrations (P = 0.0345). However, shedding of any single enteropathogen did not affect fecal S100A12 concentrations in multivariate analysis (all P > 0.05) in this study. Only fecal score and breed size had an effect on fecal S100A12

  7. Epidemiological, evolutionary, and coevolutionary implications of context-dependent parasitism.

    PubMed

    Vale, Pedro F; Wilson, Alastair J; Best, Alex; Boots, Mike; Little, Tom J

    2011-04-01

    Abstract Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster-growing parasites do not appear to cause more damage, and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we show how easily an interaction can shift from a severe interaction, that is, when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modeling pathogen evolution and disease spread under different levels of infection severity and found that environmental shifts that promote tolerance ultimately result in populations harboring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus, our results suggest two mechanisms that could underlie coevolutionary hotspots and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection.

  8. New insights into the genetic diversity of Leishmania RNA Virus 1 and its species-specific relationship with Leishmania parasites.

    PubMed

    Cantanhêde, Lilian Motta; Fernandes, Flavia Gonçalves; Ferreira, Gabriel Eduardo Melim; Porrozzi, Renato; Ferreira, Ricardo de Godoi Mattos; Cupolillo, Elisa

    2018-01-01

    Cutaneous leishmaniasis is a neglected parasitic disease that manifests in infected individuals under different phenotypes, with a range of factors contributing to its broad clinical spectrum. One factor, Leishmania RNA Virus 1 (LRV1), has been described as an endosymbiont present in different species of Leishmania. LRV1 significantly worsens the lesion, exacerbating the immune response in both experimentally infected animals and infected individuals. Little is known about the composition and genetic diversity of these viruses. Here, we investigated the relationship between the genetic composition of LRV1 detected in strains of Leishmania (Viannia) braziliensis and L. (V.) guyanensis and the interaction between the endosymbiont and the parasitic species, analyzing an approximately 850 base pair region of the viral genome. We also included one LRV1 sequence detected in L. (V.) shawi, representing the first report of LRV1 in a species other than L. braziliensis and L. guyanensis. The results illustrate the genetic diversity of the LRV1 strains analyzed here, with smaller divergences detected among viral sequences from the same parasite species. Phylogenetic analyses showed that the LRV1 sequences are grouped according to the parasite species and possibly according to the population of the parasite in which the virus was detected, corroborating the hypothesis of joint evolution of the viruses with the speciation of Leishmania parasites.

  9. [Investigation of bacterial and viral etiology in community acquired central nervous system infections with molecular methods].

    PubMed

    Kahraman, Hasip; Tünger, Alper; Şenol, Şebnem; Gazi, Hörü; Avcı, Meltem; Örmen, Bahar; Türker, Nesrin; Atalay, Sabri; Köse, Şükran; Ulusoy, Sercan; Işıkgöz Taşbakan, Meltem; Sipahi, Oğuz Reşat; Yamazhan, Tansu; Gülay, Zeynep; Alp Çavuş, Sema; Pullukçu, Hüsnü

    2017-07-01

    In this multicenter prospective cohort study, it was aimed to evaluate the bacterial and viral etiology in community-acquired central nervous system infections by standart bacteriological culture and multiplex polymerase chain reaction (PCR) methods. Patients hospitalized with central nervous system infections between April 2012 and February 2014 were enrolled in the study. Demographic and clinical information of the patients were collected prospectively. Cerebrospinal fluid (CSF) samples of the patients were examined by standart bacteriological culture methods, bacterial multiplex PCR (Seeplex meningitis-B ACE Detection (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Listeria monocytogenes, Group B streptococci) and viral multiplex PCR (Seeplex meningitis-V1 ACE Detection kits herpes simplex virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein Barr virus (EBV) and human herpes virus 6 (HHV6)) (Seeplex meningitis-V2 ACE Detection kit (enteroviruses)). Patients were classified as purulent meningitis, aseptic meningitis and encephalitis according to their clinical, CSF (leukocyte level, predominant cell type, protein and glucose (blood/CSF) levels) and cranial imaging results. Patients who were infected with a pathogen other than the detection of the kit or diagnosed as chronic meningitis and other diseases during the follow up, were excluded from the study. A total of 79 patients (28 female, 51 male, aged 42.1 ± 18.5) fulfilled the study inclusion criteria. A total of 46 patients were classified in purulent meningitis group whereas 33 were in aseptic meningitis/encephalitis group. Pathogens were detected by multiplex PCR in 41 patients. CSF cultures were positive in 10 (21.7%) patients (nine S.pneumoniae, one H.influenzae) and PCR were positive for 27 (58.6%) patients in purulent meningitis group. In this group one type of bacteria were detected in 18 patients (14 S.pneumoniae, two N

  10. Pericardial Effusion

    MedlinePlus

    ... heart was within the field of radiation Chemotherapy treatment for cancer, such as doxorubicin (Doxil) and cyclophosphamide Waste products in the blood due to kidney failure (uremia) Underactive thyroid (hypothyroidism) Viral, bacterial, fungal or parasitic infections Trauma or ...

  11. Detection of viral agents in fecal specimens of monkeys with diarrhea.

    PubMed

    Wang, Yuhuan; Tu, Xinming; Humphrey, Charles; McClure, Harold; Jiang, Xi; Qin, Chuan; Glass, Roger I; Jiang, Baoming

    2007-04-01

    Diarrheal disease is a major cause of morbidity and mortality in humans and animals, including non human primates. While the diagnostics for gastrointestinal bacterial and parasitic pathogens and their etiological role in disease are well established, little is known about the epidemiology, prevalence and role of viral agents in diarrheal illness among monkeys. We collected fecal specimens from monkeys with diarrhea that were housed in two primate colonies, the Institute of Laboratory Animal Sciences, Beijing, China and the Yerkes National Primate Research Center, Georgia, USA. We screened these fecal specimens for rotaviruses and enteric adenoviruses 40/41 by using commercial EIA kits (Rotaclone and Adenoclone), enteroviruses by RT-PCR and Southern blot hybridization, and picobirnaviruses by polyacrylamide gel electrophoresis and silver staining. Some of the specimens were examined by EM for coronaviruses and noroviruses. Of the 92 specimens from China, we found 63 (68%) positive for viruses, including enteroviruses (52%), enteric adenoviruses (21%), rotaviruses (20%), and picobirnaviruses (2%). Coronaviruses were detected in some specimens. Mixed infection of two or more viral agents was seen in 23 (25%) specimens. In the US collection, we detected enteroviruses and enteric adenoviruses in 76% (45/59) and 14% (7/50) of the specimens, respectively. Electron microscopy showed norovirus-like particles in some specimens from both colonies. Our findings indicate endemic infections with enteric viruses in monkeys of both colonies. The availability of new simian rotaviruses, enteric adenoviruses, enteroviruses, and coronaviruses and the discovery of noroviruses and picobirnaviruses may allow us to develop better diagnostics for these agents and determine which of these agents are clearly associated with gastroenteritis in monkeys.

  12. Bacterial pneumonia as an influenza complication.

    PubMed

    Martin-Loeches, Ignacio; van Someren Gréve, Frank; Schultz, Marcus J

    2017-04-01

    The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.

  13. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex.

    PubMed

    Grissett, G P; White, B J; Larson, R L

    2015-01-01

    Bovine respiratory disease (BRD) is an economically important disease of cattle and continues to be an intensely studied topic. However, literature summarizing the time between pathogen exposure and clinical signs, shedding, and seroconversion is minimal. A structured literature review of the published literature was performed to determine cattle responses (time from pathogen exposure to clinical signs, shedding, and seroconversion) in challenge models using common BRD viral and bacterial pathogens. After review a descriptive analysis of published studies using common BRD pathogen challenge studies was performed. Inclusion criteria were single pathogen challenge studies with no treatment or vaccination evaluating outcomes of interest: clinical signs, shedding, and seroconversion. Pathogens of interest included: bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), parainfluenza-3 virus, bovine respiratory syncytial virus, Mannheimia haemolytica, Mycoplasma bovis, Pastuerella multocida, and Histophilus somni. Thirty-five studies and 64 trials were included for analysis. The median days to the resolution of clinical signs after BVDV challenge was 15 and shedding was not detected on day 12 postchallenge. Resolution of BHV-1 shedding resolved on day 12 and clinical signs on day 12 postchallenge. Bovine respiratory syncytial virus ceased shedding on day 9 and median time to resolution of clinical signs was on day 12 postchallenge. M. haemolytica resolved clinical signs 8 days postchallenge. This literature review and descriptive analysis can serve as a resource to assist in designing challenge model studies and potentially aid in estimation of duration of clinical disease and shedding after natural pathogen exposure. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Using Standardized Interpretation of Chest Radiographs to Identify Adults with Bacterial Pneumonia--Guatemala, 2007-2012.

    PubMed

    Wortham, Jonathan M; Gray, Jennifer; Verani, Jennifer; Contreras, Carmen Lucia; Bernart, Chris; Moscoso, Fabiola; Moir, Juan Carlos; Reyes Marroquin, Emma Lissette; Castellan, Rigoberto; Arvelo, Wences; Lindblade, Kim; McCracken, John P

    2015-01-01

    Bacterial pneumonia is a leading cause of illness and death worldwide, but quantifying its burden is difficult due to insensitive diagnostics. Although World Health Organization (WHO) protocol standardizes pediatric chest radiograph (CXR) interpretation for epidemiologic studies of bacterial pneumonia, its validity in adults is unknown. Patients (age ≥ 15 years) admitted with respiratory infections to two Guatemalan hospitals between November 2007 and March 2012 had urine and nasopharyngeal/oropharyngeal (NP/OP) swabs collected; blood cultures and CXR were also performed at physician clinical discretion. 'Any bacterial infection' was defined as a positive urine pneumococcal antigen test, isolation of a bacterial pneumonia pathogen from blood culture, or detection of an atypical bacterial pathogen by polymerase chain reaction (PCR) of nasopharyngeal/oropharyngeal (NP/OP) specimens. 'Viral infection' was defined as detection of viral pathogens by PCR of NP/OP specimens. CXRs were interpreted according to the WHO protocol as having 'endpoint consolidation', 'other infiltrate', or 'normal' findings. We examined associations between bacterial and viral infections and endpoint consolidation. Urine antigen and/or blood culture results were available for 721 patients with CXR interpretations; of these, 385 (53%) had endpoint consolidation and 253 (35%) had other infiltrate. Any bacterial infection was detected in 119 (17%) patients, including 106 (89%) pneumococcal infections. Any bacterial infection (Diagnostic Odds Ratio [DOR] = 2.9; 95% confidence Interval (CI): 1.3-7.9) and pneumococcal infection (DOR = 3.4; 95% CI: 1.5-10.0) were associated with 'endpoint consolidation', but not 'other infiltrate' (DOR = 1.7; 95% CI: 0.7-4.9, and 1.7; 95% CI: 0.7-4.9 respectively). Viral infection was not significantly associated with 'endpoint consolidation', 'other infiltrate,' or 'normal' findings. 'Endpoint consolidation' was associated with 'any bacterial infection

  15. Low prevalence of human pathogens on fresh produce on farms and in packing facilities

    USDA-ARS?s Scientific Manuscript database

    Foodborne illness burdens individuals around the world. Consumption of produce contaminated with bacterial, parasite, and viral pathogens causes a significant proportion of cases of foodborne illness. Farms and packing facilities provide opportunities for contamination. This research aimed to determ...

  16. Parasite burdens in experimental families of coho salmon.

    USGS Publications Warehouse

    Yasutake, W.T.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    We examined the possibility that parasites affect survival rates of anadromous hatchery coho salmon Oncorhynchus kisutch during their period in the wild. Survival was estimated from the rates at which adults returned to the hatchery. The frequency of infection of heart tissue by metacercariae of Nanophyetus sp. was higher in individuals from families with relatively high survival. Various degrees of parasitic and bacterial infection were observed in all groups. We frequently saw extensive infection and tissue reaction to trophozoites of Ceratomyxa sp. (probably C. shasta) in the apparent absence of spores, suggesting that the clinical method now used to determine the presence of Ceratomyxa infection needs to be reassessed.

  17. Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite.

    PubMed

    Auld, Stuart K J R; Scholefield, Jennifer A; Little, Tom J

    2010-11-07

    Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host-parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence--a genetically determined barrier to parasite establishment and a cellular response once establishment has begun.

  18. Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite

    PubMed Central

    Auld, Stuart K. J. R.; Scholefield, Jennifer A.; Little, Tom J.

    2010-01-01

    Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host–parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence—a genetically determined barrier to parasite establishment and a cellular response once establishment has begun. PMID:20534618

  19. Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts.

    PubMed

    Libersat, Frederic; Kaiser, Maayan; Emanuel, Stav

    2018-01-01

    Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite-host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects.

  20. Genetic variation for maternal effects on parasite susceptibility.

    PubMed

    Stjernman, M; Little, T J

    2011-11-01

    The expression of infectious disease is increasingly recognized to be impacted by maternal effects, where the environmental conditions experienced by mothers alter resistance to infection in offspring, independent of heritability. Here, we studied how maternal effects (high or low food availability to mothers) mediated the resistance of the crustacean Daphnia magna to its bacterial parasite Pasteuria ramosa. We sought to disentangle maternal effects from the effects of host genetic background by studying how maternal effects varied across 24 host genotypes sampled from a natural population. Under low-food conditions, females produced offspring that were relatively resistant, but this maternal effect varied strikingly between host genotypes, i.e. there were genotype by maternal environment interactions. As infection with P. ramosa causes a substantial reduction in host fecundity, this maternal effect had a large effect on host fitness. Maternal effects were also shown to impact parasite fitness, both because they prevented the establishment of the parasites and because even when parasites did establish in the offspring of poorly fed mothers, and they tended to grow more slowly. These effects indicate that food stress in the maternal generation can greatly influence parasite susceptibility and thus perhaps the evolution and coevolution of host-parasite interactions. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  1. Host age modulates parasite infectivity, virulence and reproduction.

    PubMed

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  2. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study.

    PubMed

    Cuquemelle, E; Soulis, F; Villers, D; Roche-Campo, F; Ara Somohano, C; Fartoukh, M; Kouatchet, A; Mourvillier, B; Dellamonica, J; Picard, W; Schmidt, M; Boulain, T; Brun-Buisson, C

    2011-05-01

    To determine whether procalcitonin (PCT) levels could help discriminate isolated viral from mixed (bacterial and viral) pneumonia in patients admitted to the intensive care unit (ICU) during the A/H1N1v2009 influenza pandemic. A retrospective observational study was performed in 23 French ICUs during the 2009 H1N1 pandemic. Levels of PCT at admission were compared between patients with confirmed influenzae A pneumonia associated or not associated with a bacterial co-infection. Of 103 patients with confirmed A/H1N1 infection and not having received prior antibiotics, 48 (46.6%; 95% CI 37-56%) had a documented bacterial co-infection, mostly caused by Streptococcus pneumoniae (54%) or Staphylococcus aureus (31%). Fifty-two patients had PCT measured on admission, including 19 (37%) having bacterial co-infection. Median (range 25-75%) values of PCT were significantly higher in patients with bacterial co-infection: 29.5 (3.9-45.3) versus 0.5 (0.12-2) μg/l (P < 0.01). For a cut-off of 0.8 μg/l or more, the sensitivity and specificity of PCT for distinguishing isolated viral from mixed pneumonia were 91 and 68%, respectively. Alveolar condensation combined with a PCT level of 0.8 μg/l or more was strongly associated with bacterial co-infection (OR 12.9, 95% CI 3.2-51.5; P < 0.001). PCT may help discriminate viral from mixed pneumonia during the influenza season. Levels of PCT less than 0.8 μg/l combined with clinical judgment suggest that bacterial infection is unlikely.

  3. Epidemiological, evolutionary and co-evolutionary implications of context-dependent parasitism

    PubMed Central

    Vale, Pedro F.; Wilson, Alastair J.; Best, Alex; Boots, Mike; Little, Tom J.

    2013-01-01

    Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster growing parasites do not appear to cause more damage and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa we show how easily an interaction can shift from a severe interaction, i.e. when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modelling pathogen evolution and disease spread under different levels of infection severity, and find that environmental shifts that promote tolerance ultimately result in populations harbouring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus our results suggest two mechanisms that could underlie co-evolutionary hot- and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection. PMID:21460572

  4. Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation.

    PubMed

    Broecker, Felix; Klumpp, Jochen; Schuppler, Markus; Russo, Giancarlo; Biedermann, Luc; Hombach, Michael; Rogler, Gerhard; Moelling, Karin

    2016-01-01

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infections (RCDIs). However, long-term effects on the patients' gut microbiota and the role of viruses remain to be elucidated. Here, we characterized bacterial and viral microbiota in the feces of a cured RCDI patient at various time points until 4.5 yr post-FMT compared with the stool donor. Feces were subjected to DNA sequencing to characterize bacteria and double-stranded DNA (dsDNA) viruses including phages. The patient's microbial communities varied over time and showed little overall similarity to the donor until 7 mo post-FMT, indicating ongoing gut microbiota adaption in this time period. After 4.5 yr, the patient's bacteria attained donor-like compositions at phylum, class, and order levels with similar bacterial diversity. Differences in the bacterial communities between donor and patient after 4.5 yr were seen at lower taxonomic levels. C. difficile remained undetectable throughout the entire timespan. This demonstrated sustainable donor feces engraftment and verified long-term therapeutic success of FMT on the molecular level. Full engraftment apparently required longer than previously acknowledged, suggesting the implementation of year-long patient follow-up periods into clinical practice. The identified dsDNA viruses were mainly Caudovirales phages. Unexpectedly, sequences related to giant algae-infecting Chlorella viruses were also detected. Our findings indicate that intestinal viruses may be implicated in the establishment of gut microbiota. Therefore, virome analyses should be included in gut microbiota studies to determine the roles of phages and other viruses-such as Chlorella viruses-in human health and disease, particularly during RCDI.

  5. Human Parasites in Medieval Europe: Lifestyle, Sanitation and Medical Treatment.

    PubMed

    Mitchell, Piers D

    2015-01-01

    Parasites have been infecting humans throughout our evolution. However, not all people suffered with the same species or to the same intensity throughout this time. Our changing way of life has altered the suitability of humans to infection by each type of parasite. This analysis focuses upon the evidence for parasites from archaeological excavations at medieval sites across Europe. Comparison between the patterns of infection in the medieval period allows us to see how changes in sanitation, herding animals, growing and fertilizing crops, the fishing industry, food preparation and migration all affected human susceptibility to different parasites. We go on to explore how ectoparasites may have spread infectious bacterial diseases, and also consider what medieval medical practitioners thought of parasites and how they tried to treat them. While modern research has shown the use of a toilet decreases the risk of contracting certain intestinal parasites, the evidence for past societies presented here suggests that the invention of latrines had no observable beneficial effects upon intestinal health. This may be because toilets were not sufficiently ubiquitous until the last century, or that the use of fresh human faeces for manuring crops still ensured those parasite species were easily able to reinfect the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Human infectious diseases and risk of preeclampsia: an updated review of the literature.

    PubMed

    Nourollahpour Shiadeh, Malihe; Behboodi Moghadam, Zahra; Adam, Ishag; Saber, Vafa; Bagheri, Maryam; Rostami, Ali

    2017-10-01

    Preeclampsia (PE) is one of the major causes of maternal and perinatal morbidity and mortality, especially in low- and middle-income countries. In recent years, a growing body of literatures suggests that infections by bacteria, viruses, and parasites and their related inflammations play an important role in the pathogenesis of PE. We searched PubMed, Google scholar, and Cochrane databases using the following search words: "infection and preeclampsia," "bacterial infection and preeclampsia," "viral infection and preeclampsia" and "parasitic infection and preeclampsia." The literature review revealed that many bacteria including Helicobacter pylori, Chlamydia pneumonia, and those are involved in periodontal disease or urinary tract infections (UTIs) and some viral agents such as Cytomegalovirus, herpes simplex virus type-2, human immunodeficiency virus, and some parasites especially Plasmodium spp. and Toxoplasma gondii can be effective in development of PE. Inflammation responses against infections has major role in the inducement of PE. The shift of immunological cytokine profile of Th2 toward Th1 and high levels of pro-inflammatory cytokines (TNF-ɑ, IL-12, IFN-γ, etc.), increase of oxidative stress, increase of anti-angiogenic proteins, increase of vascular endothelial growth factor receptor 1 (sVEGFR1), and complement C5a are the main potential mechanisms related to infections and enhanced development of PE. Thus, early diagnosis and treatment of bacterial, viral, and parasitic infections could be an effective strategy to reduce the incidence of PE.

  7. Digital imaging information technology for biospeckle activity assessment relative to bacteria and parasites.

    PubMed

    Ramírez-Miquet, Evelio E; Cabrera, Humberto; Grassi, Hilda C; de J Andrades, Efrén; Otero, Isabel; Rodríguez, Dania; Darias, Juan G

    2017-08-01

    This paper reports on the biospeckle processing of biological activity using a visualization scheme based upon the digital imaging information technology. Activity relative to bacterial growth in agar plates and to parasites affected by a drug is monitored via the speckle patterns generated by a coherent source incident on the microorganisms. We present experimental results to demonstrate the potential application of this methodology for following the activity in time. The digital imaging information technology is an alternative visualization enabling the study of speckle dynamics, which is correlated to the activity of bacteria and parasites. In this method, the changes in Red-Green-Blue (RGB) color component density are considered as markers of the growth of bacteria and parasites motility in presence of a drug. The RGB data was used to generate a two-dimensional surface plot allowing an analysis of color distribution on the speckle images. The proposed visualization is compared to the outcomes of the generalized differences and the temporal difference. A quantification of the activity is performed using a parameterization of the temporal difference method. The adopted digital image processing technique has been found suitable to monitor motility and morphological changes in the bacterial population over time and to detect and distinguish a short term drug action on parasites.

  8. [Anorectal manifestations of sexually transmissible diseases. Kaposi's sarcoma].

    PubMed

    Libeskind, M; Malbran, J; Agard, D; Pannetier, C; Lecouillard, C; Ivanovic, A

    1984-01-01

    The proctologist is above all concerned with the known recrudescence of venereal diseases. Examples reviewed are diseases of bacterial origin (syphilis, gonorrhea, soft chancre, donovanosis and chlamydiosis), appropriate antibiotic therapy and diseases of viral origin (herpes, condyloma acuminatum). Also noted are other bacterial, viral and parasitic diseases and, indeed, cancers of which Kaposi's sarcoma is the example, even though these are not manifested anorectally. New data on Kaposi's sarcoma, its' relationships with venereal disease and AIDS are presented. With these complex problems, the central role of male homosexuality and lowered cellular immunity widens considerably the professional scope of the proctologist.

  9. First step in the differential diagnosis of folliculitis: cytology.

    PubMed

    Durdu, Murat; Ilkit, Macit

    2013-02-01

    Folliculitis is a superficial inflammation of the hair follicles, and can be observed in individuals of any age or race. The incidence of folliculitis is unknown because most patients only consult a doctor in cases of increasing lesions. There are various infectious and non-infectious causes of folliculitis, and the most common causative agent is Staphylococcus aureus. In addition, several Gram-negative bacterial, fungal, parasitic, and viral pathogens can cause follicular papules and pustules. In routine practice, however, these lesions are usually thought to be bacterial. Therefore, topical and/or systemic antibacterial treatment is recommended, but this involves the risk of being misused for months or even years. Cytology, a simple, rapid, inexpensive, and repeatable diagnostic method, can reveal various bacterial, fungal, viral, and parasitic pathogens. This review discusses the use of clinical sampling and staining of cytologic samples for the differential diagnosis of folliculitis, cytologic findings, and the frequency with which dermatologists use cytology to diagnose folliculitis, particularly in the age of molecular biology and more expensive, sophisticated investigations.

  10. Blood metabolome profiles of cattle colonized with Escherichia coli O157

    USDA-ARS?s Scientific Manuscript database

    Metabolomics is being increasingly used for diagnosis of asymptomatic/difficult-to-diagnose diseases in humans including parasitic (i.e. protozoan, schistosomal), viral (i.e. cytomegalovirus), bacterial (i.e. cystic fibrosis caused by Pseudomonas), genetic (i.e. autism) and cancer (i.e. gastric canc...

  11. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    PubMed

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  12. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells

    PubMed Central

    Driscoll, Timothy P.; Verhoeve, Victoria I.; Guillotte, Mark L.; Lehman, Stephanie S.; Rennoll, Sherri A.; Beier-Sexton, Magda; Rahman, M. Sayeedur; Azad, Abdu F.

    2017-01-01

    ABSTRACT Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. PMID:28951473

  13. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    PubMed

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  14. Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts

    PubMed Central

    Libersat, Frederic; Kaiser, Maayan; Emanuel, Stav

    2018-01-01

    Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite–host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects. PMID:29765342

  15. Linking internal and external bacterial community control gives mechanistic framework for pelagic virus-to-bacteria ratios.

    PubMed

    Våge, Selina; Pree, Bernadette; Thingstad, T Frede

    2016-11-01

    For more than 25 years, virus-to-bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co-evolutionary host-virus interactions, with a previously published "minimum" model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism-level properties such as cost of resistance. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Linking internal and external bacterial community control gives mechanistic framework for pelagic virus‐to‐bacteria ratios

    PubMed Central

    Pree, Bernadette; Thingstad, T. Frede

    2016-01-01

    Summary For more than 25 years, virus‐to‐bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co‐evolutionary host‐virus interactions, with a previously published “minimum” model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism‐level properties such as cost of resistance. PMID:27231817

  17. Serum soluble ST2 as diagnostic marker of systemic inflammatory reactive syndrome of bacterial etiology in children.

    PubMed

    Calò Carducci, Francesca Ippolita; Aufiero, Lelia Rotondi; Folgori, Laura; Vittucci, Anna Chiara; Amodio, Donato; De Luca, Maia; Li Pira, Giuseppina; Bergamini, Alberto; Pontrelli, Giuseppe; Finocchi, Andrea; D'Argenio, Patrizia

    2014-02-01

    Accurate and timely diagnosis of community-acquired bacterial versus viral infections in children with systemic inflammatory response syndrome (SIRS) remains challenging both for clinician and laboratory. In the quest of new biochemical markers to distinguish bacterial from viral infection, we have explored the possible role of the soluble secreted form of ST2 (sST2). This explorative prospective cohort study included children with SIRS who were suspected of having community-acquired infections. Plasma samples for sST2 measurement were obtained from 64 hospitalized children, 41 of whom had SIRS of bacterial etiology and 23 SIRS of viral etiology, and from 20 healthy, age- and sex-matched control children. sST2 measurement was carried out by enzyme-linked immunosorbent assay in parallel with standard measurements of procalcitonin (PCT) and C reactive protein (CRP). Our findings demonstrate that children with SIRS associated with bacterial infection present significantly increased levels of sST2, when compared with patients with SIRS of viral etiology and healthy children. More important, receiver operating characteristic curve analysis indicated that sST2 has a significant diagnostic performance with respect to early identification of SIRS of bacterial etiology, which was similar to that of PCT and greater than that of CRP. Finally, the combination of sST2 plus PCT and/or CRP, and PCT plus CRP increased their sensitivity and negative predictive value compared with sST2, PCT and CRP alone. In conclusion, sST2 level may prove useful in predicting bacterial etiology in children with SIRS.

  18. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  19. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy

    PubMed Central

    Elmer, Jacob J.; Christensen, Matthew D.; Rege, Kaushal

    2014-01-01

    Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases. PMID:23994344

  20. Stochastic environmental fluctuations drive epidemiology in experimental host–parasite metapopulations

    PubMed Central

    Duncan, Alison B.; Gonzalez, Andrew; Kaltz, Oliver

    2013-01-01

    Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host–parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5°C) and permissive (23°C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise. PMID:23966645

  1. Microbial minimalism: genome reduction in bacterial pathogens.

    PubMed

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  2. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.

    PubMed

    Jones, P M; George, A M

    2005-04-30

    Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.

  3. Coral Mucus Is a Hot Spot for Viral Infections

    PubMed Central

    Nguyen-Kim, Hanh; Bouvier, Thierry; Bouvier, Corinne; Doan-Nhu, Hai; Nguyen-Ngoc, Lam; Nguyen-Thanh, Thuy; Tran-Quang, Huy; Brune, Justine

    2015-01-01

    There is increasing suspicion that viral communities play a pivotal role in maintaining coral health, yet their main ecological traits still remain poorly characterized. In this study, we examined the seasonal distribution and reproduction pathways of viruses inhabiting the mucus of the scleractinians Fungia repanda and Acropora formosa collected in Nha Trang Bay (Vietnam) during an 11-month survey. The strong coupling between epibiotic viral and bacterial abundance suggested that phages are dominant among coral-associated viral communities. Mucosal viruses also exhibited significant differences in their main features between the two coral species and were also remarkably contrasted with their planktonic counterparts. For example, their abundance (inferred from epifluorescence counts), lytic production rates (KCN incubations), and the proportion of lysogenic cells (mitomycin C inductions) were, respectively, 2.6-, 9.5-, and 2.2-fold higher in mucus than in the surrounding water. Both lytic and lysogenic indicators were tightly coupled with temperature and salinity, suggesting that the life strategy of viral epibionts is strongly dependent upon environmental circumstances. Finally, our results suggest that coral mucus may represent a highly favorable habitat for viral proliferation, promoting the development of both temperate and virulent phages. Here, we discuss how such an optimized viral arsenal could be crucial for coral viability by presumably forging complex links with both symbiotic and adjacent nonsymbiotic microorganisms. PMID:26092456

  4. The past, present and future of fluorescent protein tags in anaerobic protozoan parasites.

    PubMed

    Morin-Adeline, Victoria; Šlapeta, Jan

    2016-03-01

    The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.

  5. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    PubMed

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  6. Overview of fish immune system and infectious diseases

    USDA-ARS?s Scientific Manuscript database

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  7. A putative role for homocysteine in the pathophysiology of acute bacterial meningitis in children.

    PubMed

    Coimbra, Roney Santos; Calegare, Bruno Frederico Aguilar; Candiani, Talitah Michel Sanchez; D'Almeida, Vânia

    2014-01-01

    Acute bacterial meningitis frequently causes cortical and hippocampal neuron loss leading to permanent neurological sequelae. Neuron death in acute bacterial meningitis involves the excessive activation of NMDA receptors and p53-mediated apoptosis, and the latter is triggered by the depletion of NAD + and ATP cellular stores by the DNA repair enzyme poly(ADP-ribose) polymerase. This enzyme is activated during acute bacterial meningitis in response to DNA damage induced, on its turn, by reactive oxygen and nitrogen species. An excess of homocysteine can also induce this cascade of events in hippocampal neurons. The present work aimed at investigating the possible involvement of homocysteine in the pathophysiology of meningitis by comparing its concentrations in cerebrospinal fluid (CSF) samples from children with viral or acute bacterial meningitis, and control individuals. Homocysteine and cysteine concentrations were assessed by high-performance liquid chromatography in CSF samples from nine patients with acute bacterial meningitis, 13 patients with viral meningitis and 18 controls (median age: 4 years-old; range: <1 to 13) collected by lumbar puncture at admission at the Children's Hospital Joao Paulo II - FHEMIG, from January 2010 to November 2011. We found that homocysteine accumulates up to neurotoxic levels within the central nervous system of patients with acute bacterial meningitis, but not in those with viral meningitis or control individuals. No correlation was found between homocysteine and cysteine concentrations and the cerebrospinal fluid standard cytochemical parameters. Our results suggest that HCY is produced intrathecally in response to acute bacterial meningitis and accumulates within the central nervous system reaching potentially neurotoxic levels. This is the first work to propose a role for HCY in the pathophysiology of brain damage associated with acute bacterial meningitis.

  8. Gene Expression Signatures Diagnose Influenza and Other Symptomatic Respiratory Viral Infection in Humans

    PubMed Central

    Zaas, Aimee K.; Chen, Minhua; Varkey, Jay; Veldman, Timothy; Hero, Alfred O.; Lucas, Joseph; Huang, Yongsheng; Turner, Ronald; Gilbert, Anthony; Lambkin-Williams, Robert; Øien, N. Christine; Nicholson, Bradly; Kingsmore, Stephen; Carin, Lawrence; Woods, Christopher W.; Ginsburg, Geoffrey S.

    2010-01-01

    Summary Acute respiratory infections (ARI) are a common reason for seeking medical attention and the threat of pandemic influenza will likely add to these numbers. Using human viral challenge studies with live rhinovirus, respiratory syncytial virus, and influenza A, we developed peripheral blood gene expression signatures that distinguish individuals with symptomatic ARI from uninfected individuals with > 95% accuracy. We validated this “acute respiratory viral” signature - encompassing genes with a known role in host defense against viral infections - across each viral challenge. We also validated the signature in an independently acquired dataset for influenza A and classified infected individuals from healthy controls with 100% accuracy. In the same dataset, we could also distinguish viral from bacterial ARIs (93% accuracy). These results demonstrate that ARIs induce changes in human peripheral blood gene expression that can be used to diagnose a viral etiology of respiratory infection and triage symptomatic individuals. PMID:19664979

  9. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.

    PubMed

    Elsen, A; Gervacio, D; Swennen, R; De Waele, D

    2008-07-01

    Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

  10. Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection

    PubMed Central

    Lee, Jeong Yoon; Lee, Ji Sun; Materne, Emma C.; Rajala, Rahul; Ismail, Ashrafali M.; Seto, Donald; Dyer, David W.

    2018-01-01

    ABSTRACT Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the

  11. PCR/LDR/universal array platforms for the diagnosis of infectious disease.

    PubMed

    Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M; Barany, Francis

    2010-01-01

    Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections.

  12. PCR/LDR/Universal Array Platforms for the Diagnosis of Infectious Disease

    PubMed Central

    Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M.; Barany, Francis

    2015-01-01

    Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections. PMID:20217576

  13. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna.

    PubMed

    Hall, Matthew D; Ebert, Dieter

    2012-08-22

    Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host-parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host-parasite interactions following the penetration of the parasite into the host have a distinct temporal component.

  14. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna

    PubMed Central

    Hall, Matthew D.; Ebert, Dieter

    2012-01-01

    Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host–parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host–parasite interactions following the penetration of the parasite into the host have a distinct temporal component. PMID:22593109

  15. Aseptic and Bacterial Meningitis: Evaluation, Treatment, and Prevention.

    PubMed

    Mount, Hillary R; Boyle, Sean D

    2017-09-01

    The etiologies of meningitis range in severity from benign and self-limited to life-threatening with potentially severe morbidity. Bacterial meningitis is a medical emergency that requires prompt recognition and treatment. Mortality remains high despite the introduction of vaccinations for common pathogens that have reduced the incidence of meningitis worldwide. Aseptic meningitis is the most common form of meningitis with an annual incidence of 7.6 per 100,000 adults. Most cases of aseptic meningitis are viral and require supportive care. Viral meningitis is generally self-limited with a good prognosis. Examination maneuvers such as Kernig sign or Brudzinski sign may not be useful to differentiate bacterial from aseptic meningitis because of variable sensitivity and specificity. Because clinical findings are also unreliable, the diagnosis relies on the examination of cerebrospinal fluid obtained from lumbar puncture. Delayed initiation of antibiotics can worsen mortality. Treatment should be started promptly in cases where transfer, imaging, or lumbar puncture may slow a definitive diagnosis. Empiric antibiotics should be directed toward the most likely pathogens and should be adjusted by patient age and risk factors. Dexamethasone should be administered to children and adults with suspected bacterial meningitis before or at the time of initiation of antibiotics. Vaccination against the most common pathogens that cause bacterial meningitis is recommended. Chemoprophylaxis of close contacts is helpful in preventing additional infections.

  16. Clinical prediction rule for differentiating tuberculous from viral meningitis.

    PubMed

    Hristea, A; Olaru, I D; Baicus, C; Moroti, R; Arama, V; Ion, M

    2012-06-01

    The Professor Dr Matei Bals National Institute of Infectious Diseases, Bucharest, Romania. To create a prediction rule to enable clinicians to differentiate patients with tuberculous meningitis (TBM) from those with viral meningitis. We retrospectively analysed patients admitted to a tertiary care facility between 2001 and 2011 with viral meningitis and TBM. Patients were defined as having TBM according to a recently published consensus definition, and as viral meningitis if a viral aetiology was confirmed, or after ruling out bacterial, fungal and non-infectious causes of meningitis. We identified 433 patients with viral meningitis and 101 TBM patients and compared their clinical and laboratory features. Multivariable analysis showed a statistically significant association between TBM and the following variables: duration of symptoms before admission of ≥5 days, presence of neurological impairment (altered consciousness, seizures, mild focal signs, multiple cranial nerve palsies, dense hemiplegia or paraparesis), cerebrospinal fluid/blood glucose ratio < 0.5 and cerebrospinal fluid protein level > 100 mg/dl. We propose a diagnostic score based on the coefficients derived from the logistic regression model with a sensitivity and specificity for TBM of respectively 92% and 94%. Our study suggests that easily available clinical and laboratory data are very useful for differentiating TBM from other causes of meningitis.

  17. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I.

    PubMed

    Wang, Penghua; Arjona, Alvaro; Zhang, Yue; Sultana, Hameeda; Dai, Jianfeng; Yang, Long; LeBlanc, Philippe M; Doiron, Karine; Saleh, Maya; Fikrig, Erol

    2010-10-01

    Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25-mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.

  18. Vaginal microbiota and viral sexually transmitted diseases.

    PubMed

    Nardis, C; Mosca, L; Mastromarino, P

    2013-01-01

    Healthy vaginal microbiota is an important biological barrier to pathogenic microorganisms. When this predominantly Lactobacillus community is disrupted, decreased in abundance and replaced by different anaerobes, bacterial vaginosis (BV) may occur. BV is associated with prevalence and incidence of several sexually transmitted infections. This review provides background on BV, discusses the epidemiologic data to support a role of altered vaginal microbiota for acquisition of sexually transmitted diseases and analyzes mechanisms by which lactobacilli could counteract sexually transmitted viral infections.

  19. Bacterial pneumonia in dogs and cats.

    PubMed

    Dear, Jonathan D

    2014-01-01

    Bacterial pneumonia is a common clinical diagnosis in dogs but seems to occur less commonly in cats. Underlying causes include viral infection, aspiration injury, and foreign body inhalation. Identification of the organisms involved in disease, appropriate use of antibiotics and adjunct therapy, and control of risk factors for pneumonia improve management. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Decay-accelerating Factor Limits Hemorrhage-instigated Tissue Injury and Improves Resuscitation Clinical Parameters

    DTIC Science & Technology

    2012-10-29

    thicknesswithacryostat andfixed incoldmethanol for 20min. The fixed sections were permeabilized with 0.2% Triton X-100 in PBS for 10min, then blockedwith 2% bovine ...J Inflamm 1998;48:13. [31] Garratty G. Blood group antigens as tumor markers, parasitic /bacterial/viral receptors, and their association with

  1. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose

    PubMed Central

    Auld, Stuart K. J. R; Edel, Kai H.; Little, Tom J.

    2013-01-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. PMID:23025616

  2. microRNAs in parasites and parasite infection

    PubMed Central

    Zheng, Yadong; Cai, Xuepeng; Bradley, Janette E.

    2013-01-01

    miRNAs, a subclass of small regulatory RNAs, are present from ancient unicellular protozoans to parasitic helminths and parasitic arthropods. The miRNA-silencing mechanism appears, however, to be absent in a number of protozoan parasites. Protozoan miRNAs and components of their silencing machinery possess features different from other eukaryotes, providing some clues on the evolution of the RNA-induced silencing machinery. miRNA functions possibly associate with neoblast biology, development, physiology, infection and immunity of parasites. Parasite infection can alter host miRNA expression that can favor both parasite clearance and infection. miRNA pathways are, thus, a potential target for the therapeutic control of parasitic diseases. PMID:23392243

  3. Analysis of the Bacterial Diversity in Liver Abscess: Differences between Pyogenic and Amebic Abscesses

    PubMed Central

    Reyna-Fabián, Miriam E.; Zermeño, Valeria; Ximénez, Cecilia; Flores, Janin; Romero, Miguel F.; Diaz, Daniel; Argueta, Jesús; Moran, Patricia; Valadez, Alicia; Cerritos, René

    2016-01-01

    Several recent studies have demonstrated that virulence in Entamoeba histolytica is triggered in the presence of both pathogenic and nonpathogenic bacteria species using in vitro and in vivo experimental animal models. In this study, we examined samples aspirated from abscess material obtained from patients who were clinically diagnosed with amebic liver abscess (ALA) or pyogenic liver abscess (PLA). To determine the diversity of bacterial species in the abscesses, we performed partial 16S rRNA gene sequencing. In addition, the E. histolytica and Entamoeba dispar species were genotyped using tRNA-linked short tandem repeats as specific molecular markers. The association between clinical data and bacterial and parasite genotypes were examined through a correspondence analysis. The results showed the presence of numerous bacterial groups. These taxonomic groups constitute common members of the gut microbiota, although all of the detected bacterial species have a close phylogenetic relationship with bacterial pathogens. Furthermore, some patients clinically diagnosed with PLA and ALA were coinfected with E. dispar or E. histolytica, which suggests that the virulence of these parasites increased in the presence of bacteria. However, no specific bacterial groups were associated with this effect. Together, our results suggest a nonspecific mechanism of virulence modulation by bacteria in Entamoeba. PMID:26572872

  4. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  5. Viral coinfection in childhood respiratory tract infections.

    PubMed

    Martínez-Roig, A; Salvadó, M; Caballero-Rabasco, M A; Sánchez-Buenavida, A; López-Segura, N; Bonet-Alcaina, M

    2015-01-01

    The introduction of molecular techniques has enabled better understanding of the etiology of respiratory tract infections in children. The objective of the study was to analyze viral coinfection and its relationship to clinical severity. Hospitalized pediatric patients with a clinical diagnosis of respiratory infection were studied during the period between 2009-2010. Clinical and epidemiological data, duration of hospitalization, need for oxygen therapy, bacterial coinfection and need for mechanical ventilation were collected. Etiology was studied by multiplex PCR and low-density microarrays for 19 viruses. A total of 385 patients were positive, 44.94% under 12 months. The most frequently detected viruses were RSV-B: 139, rhinovirus: 114, RSV-A: 111, influenza A H1N1-2009: 93 and bocavirus: 77. Coinfection was detected in 61.81%, 36.36% with 2 viruses, 16.10% and 9.35% with 3 to 4 or more. Coinfection was higher in 2009 with 69.79 vs. 53.88% in 2010. Rhinovirus/RSV-B on 10 times and RSV-A/RSV-B on 5 times were the most detected coinfections. Hospitalization decreased with greater number of viruses (P<0,001). Oxygen therapy was required by 26.75% (one virus was detected in 55.34% of cases). A larger number of viruses resulted in less need for oxygen (P<0,001). Ten cases required mechanical ventilation, 4 patients with bacterial coinfection and 5 with viral coinfection (P=0,69). An inverse relationship was found between the number of viruses detected in nasopharyngeal aspirate, the need for oxygen therapy and hospitalization days. More epidemiological studies and improved quantitative detection techniques are needed to define the role of viral coinfections in respiratory disease and its correlation with the clinical severity. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  6. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    PubMed

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.

  7. A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province

    PubMed Central

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  8. Serosurvey for Zoonotic Viral and Bacterial Pathogens Among Slaughtered Livestock in Egypt

    PubMed Central

    Horton, Katherine C.; Wasfy, Momtaz; Samaha, Hamed; Abdel-Rahman, Bassem; Safwat, Sameh; Abdel Fadeel, Moustafa; Mohareb, Emad; Dueger, Erica

    2015-01-01

    Introduction Zoonotic diseases are an important cause of human morbidity and mortality. Animal populations at locations with high risk of transmission of zoonotic pathogens offer an opportunity to study viral and bacterial pathogens of veterinary and public health concern. Methods Blood samples were collected from domestic and imported livestock slaughtered at the Muneeb abattoir in central Egypt in 2009. Samples were collected from cattle (n = 161), buffalo (n = 153), sheep (n = 174), and camels (n = 10). Samples were tested for antibodies against Leptospira spp. by a microscopy agglutination test, Coxiella burnetii by enzyme immunoassay, Brucella spp. by standard tube agglutination, and Rift Valley Fever virus (RVFV), Crimean–Congo hemorrhagic fever virus (CCHFV), sandfly fever Sicilian virus (SFSV), and sandfly fever Naples virus (SFNV) by enzyme-linked immunosorbent assay. Results Antibodies against Leptospira spp. were identified in 64 (40%) cattle, 45 (29%) buffalo, 71 (41%) sheep, and five (50%) camels; antibodies against C. burnetii in six (4%) buffalo, 14 (8%) sheep, and seven (70%) camels; and antibodies against Brucella spp. in 12 (8%) cattle, one (1%) buffalo, seven (4%) sheep, and one (10%) camel. Antibodies against RVFV were detected in two (1%) cattle and five (3%) buffalo, and antibodies against CCHFV in one (1%) cow. No antibodies against SFSV or SFNV were detected in any species. Discussion Results indicate that livestock have been exposed to a number of pathogens, although care must be taken with interpretation. It is not possible to determine whether antibodies against Leptospira spp. and RVFV in cattle and buffalo are due to prior vaccination or natural exposure. Similarly, antibodies identified in animals less than 6 months of age may be maternal antibodies transferred through colostrum rather than evidence of prior exposure. Results provide baseline evidence to indicate that surveillance within animal populations may be a useful tool to

  9. On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor

    PubMed Central

    Mondet, Fanny; de Miranda, Joachim R.; Kretzschmar, Andre; Le Conte, Yves; Mercer, Alison R.

    2014-01-01

    Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies. PMID:25144447

  10. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton.

    PubMed

    Steele-Mortimer, O; Knodler, L A; Finlay, B B

    2000-02-01

    The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.

  11. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitson, Laura; Thissen, James B.; Gardner, Shea N.

    In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technologymore » was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae , Bacteroidaceae , and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.« less

  12. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    DOE PAGES

    Hewitson, Laura; Thissen, James B.; Gardner, Shea N.; ...

    2014-01-01

    In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technologymore » was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae , Bacteroidaceae , and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.« less

  13. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  14. Immune antibodies and helminth products promote CXCR2-dependent repair of parasite-induced injury

    USDA-ARS?s Scientific Manuscript database

    Helminth parasites cause massive damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination. We observed that mice lacking antibodies (AID-/-) or activating Fc receptors (FcR'-/-) displayed impaired intestinal repair followi...

  15. Ability of procalcitonin to predict bacterial meningitis in the emergency department.

    PubMed

    Morales Casado, M I; Moreno Alonso, F; Juárez Belaunde, A L; Heredero Gálvez, E; Talavera Encinas, O; Julián-Jiménez, A

    2016-01-01

    The aim of this study was to analyse and compare procalcitonin (PCT) and C-reactive protein (CRP) as tools for detecting bacterial meningitis and predicting bacteraemia. Prospective, observational, and descriptive analytical study of 98 consecutive patients aged ≥15 years and diagnosed with acute meningitis in an emergency department between August 2009 and July 2013. We analysed 98 patients with AM (66 males [67%]); mean age was 44±21 years. The diagnosis was bacterial meningitis in 38 patients (20 with bacteraemia); viral meningitis in 33; probable viral meningitis in 15; and presumptively diagnosed partially treated acute meningitis in 12. PCT had the highest area under the ROC curve (AUC) (0.996; 95% CI, 0.987-1; p<0.001). With a cutoff of ≥ 0.74 ng/ml, PCT achieved 94.7% sensitivity, 100% specificity, negative predictive value (NPV) of 93.9%, and positive predictive value (PPV) of 100%. The mean levels for PCT were11.47±7.76 ng/ml in bacterial meningitis vs. 0.10±0.15 ng/ml in viral meningitis (p <0.001). The AUC for CRP was 0.916 and a cutoff of ≥ 90 mg/L achieved 67.5% sensitivity, 86.3% specificity, PPV of 89.2%, and NPV of 90.4%. As a predictor of bacteraemia in bacterial meningitis, only PCT delivered a significant difference (14.7±7.1 ng/mL vs. 4.68±3.54 ng/mL, p<0.001). A cutoff of ≥ 1.1 ng/mL achieved 94.6% sensitivity, 72.4% specificity, NPV of 95.4%, and PPV of 69.2%; the AUC was 0.965 (95% CI, 0.921-1; p<0.001). PCT has a high diagnostic power for acute meningitis in emergency department patients. PCT outperforms CRP in the detection of bacterial aetiology and is a good predictor of bacteraemia in bacterial meningitis. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Vaccination of cattle against bovine viral diarrhea virus.

    PubMed

    Newcomer, Benjamin W; Chamorro, Manuel F; Walz, Paul H

    2017-07-01

    Bovine viral diarrhea virus (BVDV) is responsible for significant losses to the cattle industry. Currently, modified-live viral (MLV) and inactivated viral vaccines are available against BVDV, often in combination with other viral and bacterial antigens. Inactivated and MLV vaccines provide cattle producers and veterinarians safe and efficacious options for herd immunization to limit disease associated with BVDV infection. Vaccination of young cattle against BVDV is motivated by prevention of clinical disease and limiting viral spread to susceptible animals. For reproductive-age cattle, vaccination to prevent viremia and birth of persistently infected offspring is considered more important, while also more difficult to achieve than prevention of clinical disease. Recent advances have been made in the understanding of BVDV vaccine efficacy. In terms of preventing clinical disease, current BVDV vaccines have been demonstrated to have a rapid onset of immunity and MLV vaccines can be effectively utilized in calves possessing maternal immunity. For reproductive protection, more recent studies using multivalent MLV vaccines have demonstrated consistent fetal protection rates in the range of 85-100% in experimental studies. Proper timing and administration of BVDV vaccines can be utilized to maximize vaccine efficacy to provide an important contribution to reducing risks associated with BVDV infection. With improvements in vaccine formulations and increased understanding of the protective immune response following vaccination, control of BVDV through vaccination can be enhanced. Copyright © 2017. Published by Elsevier B.V.

  17. Microbial Diversity and Parasitic Load in Tropical Fish of Different Environmental Conditions

    PubMed Central

    Theisen, Stefan; Abdul-Aziz, Muslihudeen A.; Mrotzek, Grit; Palm, Harry W.; Saluz, Hans Peter

    2016-01-01

    In this study we analysed fecal bacterial communities and parasites of three important Indonesian fish species, Epinephelus fuscoguttatus, Epinephelus sexfasciatus and Atule mate. We then compared the biodiversity of bacterial communities and parasites of these three fish species collected in highly polluted Jakarta Bay with those collected in less polluted Indonesian areas of Cilacap (E. sexfasciatus, A. mate) and Thousand Islands (E. fuscoguttatus). In addition, E. fuscoguttatus from net cages in an open water mariculture facility was compared with free living E. fuscoguttatus from its surroundings. Both core and shared microbiomes were investigated. Our results reveal that, while the core microbiomes of all three fish species were composed of fairly the same classes of bacteria, the proportions of these bacterial classes strongly varied. The microbial composition of phylogenetically distant fish species, i.e. A. mate and E. sexfasciatus from Jakarta Bay and Cilacap were more closely related than the microbial composition of more phylogentically closer species, i.e. E. fuscoguttatus, E. sexfasciatus from Jakarta Bay, Cilacap and Thousand Islands. In addition, we detected a weak negative correlation between the load of selected bacterial pathogens, i.e. Vibrio sp. and Photobacterium sp. and the number of endoparasites. In the case of Flavobacterium sp. the opposite was observed, i.e. a weak positive correlation. Of the three recorded pathogenic bacterial genera, Vibrio sp. was commonly found in E. fuscoguttatus from mariculture, and lessly in the vicinity of the net cages and rarely in the fishes from the heavily polluted waters from Jakarta Bay. Flavobacterium sp. showed higher counts in mariculture fish and Photobacteria sp. was the most prominent in fish inside and close to the net cages. PMID:27018789

  18. Parasite invasion following host reintroduction: a case study of Yellowstone's wolves

    PubMed Central

    Almberg, Emily S.; Cross, Paul C.; Dobson, Andrew P.; Smith, Douglas W.; Hudson, Peter J.

    2012-01-01

    Wildlife reintroductions select or treat individuals for good health with the expectation that these individuals will fare better than infected animals. However, these individuals, new to their environment, may also be particularly susceptible to circulating infections and this may result in high morbidity and mortality, potentially jeopardizing the goals of recovery. Here, using the reintroduction of the grey wolf (Canis lupus) into Yellowstone National Park as a case study, we address the question of how parasites invade a reintroduced population and consider the impact of these invasions on population performance. We find that several viral parasites rapidly invaded the population inside the park, likely via spillover from resident canid species, and we contrast these with the slower invasion of sarcoptic mange, caused by the mite Sarcoptes scabiei. The spatio-temporal patterns of mange invasion were largely consistent with patterns of host connectivity and density, and we demonstrate that the area of highest resource quality, supporting the greatest density of wolves, is also the region that appears most susceptible to repeated disease invasion and parasite-induced declines. The success of wolf reintroduction appears not to have been jeopardized by infectious disease, but now shows signs of regulation or limitation modulated by parasites. PMID:22966139

  19. Parasite invasion following host reintroduction: a case study of Yellowstone's wolves.

    PubMed

    Almberg, Emily S; Cross, Paul C; Dobson, Andrew P; Smith, Douglas W; Hudson, Peter J

    2012-10-19

    Wildlife reintroductions select or treat individuals for good health with the expectation that these individuals will fare better than infected animals. However, these individuals, new to their environment, may also be particularly susceptible to circulating infections and this may result in high morbidity and mortality, potentially jeopardizing the goals of recovery. Here, using the reintroduction of the grey wolf (Canis lupus) into Yellowstone National Park as a case study, we address the question of how parasites invade a reintroduced population and consider the impact of these invasions on population performance. We find that several viral parasites rapidly invaded the population inside the park, likely via spillover from resident canid species, and we contrast these with the slower invasion of sarcoptic mange, caused by the mite Sarcoptes scabiei. The spatio-temporal patterns of mange invasion were largely consistent with patterns of host connectivity and density, and we demonstrate that the area of highest resource quality, supporting the greatest density of wolves, is also the region that appears most susceptible to repeated disease invasion and parasite-induced declines. The success of wolf reintroduction appears not to have been jeopardized by infectious disease, but now shows signs of regulation or limitation modulated by parasites.

  20. Parasite invasion following host reintroduction: a case of Yellowstone’s wolves

    USGS Publications Warehouse

    Cross, Paul C.; Almberg, Emily S.; Dobson, Andrew P.; Smith, Douglas W.; Hudson, Peter J.

    2012-01-01

    Wildlife reintroductions select or treat individuals for good health with the expectation that these individuals will fare better than infected animals. However, these individuals, new to their environment, may also be particularly susceptible to circulating infections and this may result in high morbidity and mortality, potentially jeopardizing the goals of recovery. Here, using the reintroduction of the grey wolf (Canis lupus) into Yellowstone National Park as a case study, we address the question of how parasites invade a reintroduced population and consider the impact of these invasions on population performance. We find that several viral parasites rapidly invaded the population inside the park, likely via spillover from resident canid species, and we contrast these with the slower invasion of sarcoptic mange, caused by the mite Sarcoptes scabiei. The spatio-temporal patterns of mange invasion were largely consistent with patterns of host connectivity and density, and we demonstrate that the area of highest resource quality, supporting the greatest density of wolves, is also the region that appears most susceptible to repeated disease invasion and parasite-induced declines. The success of wolf reintroduction appears not to have been jeopardized by infectious disease, but now shows signs of regulation or limitation modulated by parasites.

  1. SIV Infection-mediated Changes in Gastrointestinal Bacterial Microbiome and Virome are Associated With Immunodeficiency and Prevented by Vaccination

    PubMed Central

    Handley, Scott A.; Desai, Chandni; Zhao, Guoyan; Droit, Lindsay; Monaco, Cynthia L.; Schroeder, Andrew C.; Nkolola, Joseph P.; Norman, Megan E.; Miller, Andrew D.; Wang, David; Barouch, Dan H.; Virgin, Herbert W.

    2016-01-01

    SUMMARY AIDS caused by simian immunodeficiency virus (SIV) infection is associated with gastrointestinal disease, systemic immune activation and, in cross sectional studies, changes in the enteric virome. Here we performed a longitudinal study of a vaccine cohort to define the natural history of changes in the fecal metagenome in SIV-infected monkeys. Matched rhesus macaques were either uninfected or intrarectally challenged with SIV, with a subset receiving the Ad26 vaccine, an adenovirus vector expressing the viral Env/Gag/Pol antigens. Progression of SIV infection to AIDS was associated with increased detection of potentially pathogenic viruses and bacterial enteropathogens. Specifically, adenoviruses were associated with an increased incidence of gastrointestinal disease and AIDS-related mortality. Viral and bacterial enteropathogens were largely absent from animals protected by the vaccine. These data suggest that the SIV-associated gastrointestinal disease is associated with the presence of both viral and bacterial enteropathogens and protection against SIV infection by vaccination prevents enteropathogen emergence. PMID:26962943

  2. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    PubMed

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  3. Edible vaccines against veterinary parasitic diseases--current status and future prospects.

    PubMed

    Jacob, Siju S; Cherian, Susan; Sumithra, T G; Raina, O K; Sankar, M

    2013-04-08

    Protection of domestic animals against parasitic infections remains a major challenge in most of the developing countries, especially in the surge of drug resistant strains. In this circumstance vaccination seems to be the sole practical strategy to combat parasites. Most of the presently available live or killed parasitic vaccines possess many disadvantages. Thus, expression of parasitic antigens has seen a continued interest over the past few decades. However, only a limited success was achieved using bacterial, yeast, insect and mammalian expression systems. This is witnessed by an increasing number of reports on transgenic plant expression of previously reported and new antigens. Oral delivery of plant-made vaccines is particularly attractive due to their exceptional advantages. Moreover, the regulatory burden for veterinary vaccines is less compared to human vaccines. This led to an incredible investment in the field of transgenic plant vaccines for veterinary purpose. Plant based vaccine trials have been conducted to combat various significant parasitic diseases such as fasciolosis, schistosomosis, poultry coccidiosis, porcine cycticercosis and ascariosis. Besides, passive immunization by oral delivery of antibodies expressed in transgenic plants against poultry coccidiosis is an innovative strategy. These trials may pave way to the development of promising edible veterinary vaccines in the near future. As the existing data regarding edible parasitic vaccines are scattered, an attempt has been made to assemble the available literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Zoonotic bacteria and parasites found in raw meat-based diets for cats and dogs.

    PubMed

    van Bree, Freek P J; Bokken, Gertie C A M; Mineur, Robin; Franssen, Frits; Opsteegh, Marieke; van der Giessen, Joke W B; Lipman, Len J A; Overgaauw, Paul A M

    2018-01-13

    Feeding raw meat-based diets (RMBDs) to companion animals has become increasingly popular. Since these diets may be contaminated with bacteria and parasites, they may pose a risk to both animal and human health. The purpose of this study was to test for the presence of zoonotic bacterial and parasitic pathogens in Dutch commercial RMBDs. We analysed 35 commercial frozen RMBDs from eight different brands. Escherichia coli serotype O157:H7 was isolated from eight products (23 per cent) and extended-spectrum beta-lactamases-producing E coli was found in 28 products (80 per cent). Listeria monocytogenes was present in 19 products (54 per cent), other Listeria species in 15 products (43 per cent) and Salmonella species in seven products (20 per cent). Concerning parasites, four products (11 per cent) contained Sarcocystis cruzi and another four (11 per cent) S tenella In two products (6 per cent) Toxoplasma gondii was found. The results of this study demonstrate the presence of potential zoonotic pathogens in frozen RMBDs that may be a possible source of bacterial infections in pet animals and if transmitted pose a risk for human beings. If non-frozen meat is fed, parasitic infections are also possible. Pet owners should therefore be informed about the risks associated with feeding their animals RMBDs. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia)

    NASA Astrophysics Data System (ADS)

    Agha, Ramsy; Saebelfeld, Manja; Manthey, Christin; Rohrlack, Thomas; Wolinska, Justyna

    2016-10-01

    Parasites are rarely included in food web studies, although they can strongly alter trophic interactions. In aquatic ecosystems, poorly grazed cyanobacteria often dominate phytoplankton communities, leading to the decoupling of primary and secondary production. Here, we addressed the interface between predator-prey and host-parasite interactions by conducting a life-table experiment, in which four Daphnia galeata genotypes were maintained on quantitatively comparable diets consisting of healthy cyanobacteria or cyanobacteria infected by a fungal (chytrid) parasite. In four out of five fitness parameters, at least one Daphnia genotype performed better on parasitised cyanobacteria than in the absence of infection. Further treatments consisting of purified chytrid zoospores and heterotrophic bacteria suspensions established the causes of improved fitness. First, Daphnia feed on chytrid zoospores which trophically upgrade cyanobacterial carbon. Second, an increase in heterotrophic bacterial biomass, promoted by cyanobacterial decay, provides an additional food source for Daphnia. In addition, chytrid infection induces fragmentation of cyanobacterial filaments, which could render cyanobacteria more edible. Our results demonstrate that chytrid parasitism can sustain zooplankton under cyanobacterial bloom conditions, and exemplify the potential of parasites to alter interactions between trophic levels.

  6. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?

    PubMed

    Longdon, Ben; Jiggins, Francis M

    2012-10-07

    Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects.

  7. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?

    PubMed Central

    Longdon, Ben; Jiggins, Francis M.

    2012-01-01

    Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects. PMID:22859592

  8. Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura)

    PubMed Central

    Allen, Julie M.; Koga, Ryuichi; Fukatsu, Takema; Sweet, Andrew D.; Johnson, Kevin P.; Reed, David L.

    2016-01-01

    ABSTRACT Roughly 10% to 15% of insect species host heritable symbiotic bacteria known as endosymbionts. The lice parasitizing mammals rely on endosymbionts to provide essential vitamins absent in their blood meals. Here, we describe two bacterial associates from a louse, Proechinophthirus fluctus, which is an obligate ectoparasite of a marine mammal. One of these is a heritable endosymbiont that is not closely related to endosymbionts of other mammalian lice. Rather, it is more closely related to endosymbionts of the genus Sodalis associated with spittlebugs and feather-chewing bird lice. Localization and vertical transmission of this endosymbiont are also more similar to those of bird lice than to those of other mammalian lice. The endosymbiont genome appears to be degrading in symbiosis; however, it is considerably larger than the genomes of other mammalian louse endosymbionts. These patterns suggest the possibility that this Sodalis endosymbiont might be recently acquired, replacing a now-extinct, ancient endosymbiont. From the same lice, we also identified an abundant bacterium belonging to the genus Rickettsia that is closely related to Rickettsia ricketsii, a human pathogen vectored by ticks. No obvious masses of the Rickettsia bacterium were observed in louse tissues, nor did we find any evidence of vertical transmission, so the nature of its association remains unclear. IMPORTANCE Many insects are host to heritable symbiotic bacteria. These heritable bacteria have been identified from numerous species of parasitic lice. It appears that novel symbioses have formed between lice and bacteria many times, with new bacterial symbionts potentially replacing existing ones. However, little was known about the symbionts of lice parasitizing marine mammals. Here, we identified a heritable bacterial symbiont in lice parasitizing northern fur seals. This bacterial symbiont appears to have been recently acquired by the lice. The findings reported here provide insights

  9. Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia populations.

    PubMed

    Duffy, Meghan A; Hall, Spencer R

    2008-04-01

    Parasites are ubiquitous and often highly virulent, yet clear examples of parasite-driven changes in host density in natural populations are surprisingly scarce. Here, we illustrate an example of this phenomenon and offer a theoretically reasonable resolution. We document the effects of two parasites, the bacterium Spirobacillus cienkowskii and the yeast Metschnikowia bicuspidata, on a common freshwater invertebrate, Daphnia dentifera. We show that while both parasites were quite virulent to individual hosts, only bacterial epidemics were associated with significant changes in host population dynamics and density. Our theoretical results may help explain why yeast epidemics did not significantly affect population dynamics. Using a model parameterized with data we collected, we argue that two prominent features of this system, rapid evolution of host resistance to the parasite and selective predation on infected hosts, both decrease peak infection prevalence and can minimize decline in host density during epidemics. Taken together, our results show that understanding the outcomes of host-parasite interactions in this Daphnia-microparasite system may require consideration of ecological context and evolutionary processes and their interaction.

  10. Early-Life Diet Affects Host Microbiota and Later-Life Defenses Against Parasites in Frogs.

    PubMed

    Knutie, Sarah A; Shea, Lauren A; Kupselaitis, Marinna; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-10-01

    Food resources can affect the health of organisms by altering their symbiotic microbiota and affecting energy reserves for host defenses against parasites. Different diets can vary in their macronutrient content and therefore they might favor certain bacterial communities of the host and affect the development and maintenance of the immune system, such as the inflammatory or antibody responses. Thus, testing the effect of diet, especially for animals with wide diet breadths, on host-associated microbiota and defenses against parasites might be important in determining infection and disease risk. Here, we test whether the early-life diet of Cuban tree frogs (Osteopilus septentrionalis) affects early- and later-life microbiota as well as later-life defenses against skin-penetrating, gut worms (Aplectana hamatospicula). We fed tadpoles two ecologically common diets: a diet of conspecifics or a diet of algae (Arthrospira sp.). We then: (1) characterized the gut microbiota of tadpoles and adults; and (2) challenged adult frogs with parasitic worms and measured host resistance (including the antibody-mediated immune response) and tolerance of infections. Tadpole diet affected bacterial communities in the guts of tadpoles but did not have enduring effects on the bacterial communities of adults. In contrast, tadpole diet had enduring effects on host resistance and tolerance of infections in adult frogs. Frogs that were fed a conspecific-based diet as tadpoles were more resistant to worm penetration compared with frogs that were fed an alga-based diet as tadpoles, but less resistant to worm establishment, which may be related to their suppressed antibody response during worm establishment. Furthermore, frogs that were fed a conspecific-based diet as tadpoles were more tolerant to the effect of parasite abundance on host mass during worm establishment. Overall, our study demonstrates that the diet of Cuban tree frog tadpoles affects the gut microbiota and defenses against

  11. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Task 1.4.2 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slezak, T; Borucki, M; Lam, M

    Good progress has been made on both bacterial and viral sequencing by the TMTI centers. While access to appropriate samples is a limiting factor to throughput, excellent progress has been made with respect to getting agreements in place with key sources of relevant materials. Sharing of sequenced genomes funded by TMTI has been extremely limited to date. The April 2010 exercise should force a resolution to this, but additional managerial pressures may be needed to ensure that rapid sharing of TMTI-funded sequencing occurs, regardless of collaborator constraints concerning ultimate publication(s). Policies to permit TMTI-internal rapid sharing of sequenced genomes shouldmore » be written into all TMTI agreements with collaborators now being negotiated. TMTI needs to establish a Web-based system for tracking samples destined for sequencing. This includes metadata on sample origins and contributor, information on sample shipment/receipt, prioritization by TMTI, assignment to one or more sequencing centers (including possible TMTI-sponsored sequencing at a contributor site), and status history of the sample sequencing effort. While this system could be a component of the AFRL system, it is not part of any current development effort. Policy and standardized procedures are needed to ensure appropriate verification of all TMTI samples prior to the investment in sequencing. PCR, arrays, and classical biochemical tests are examples of potential verification methods. Verification is needed to detect miss-labeled, degraded, mixed or contaminated samples. Regular QC exercises are needed to ensure that the TMTI-funded centers are meeting all standards for producing quality genomic sequence data.« less

  12. Diagnostic Yield of Routine Enteropathogenic Stool Tests in Pediatric Ulcerative Colitis.

    PubMed

    Ihekweazu, Faith D; Ajjarapu, Avanthi; Kellermayer, Richard

    2015-01-01

    It can be important to exclude infectious etiologies prior to adjusting immunosuppressive therapy in patients with ulcerative colitis (UC) exacerbation. We sought to determine the diagnostic yield of routine infectious stool studies in pediatric UC patients. We conducted a retrospective review of 152 pediatric UC patients at Texas Children's Hospital between January 2003 and December 2009. The patient records were followed through July 2014. The number and type of infectious stool studies performed and the results of those were collected. Three hundred fifty-four diagnostic stool tests were conducted for Clostridium difficile; 13.6% were positive. Two hundred twenty stool bacterial cultures were performed, and 1.8% were positive, all growing non-typhoid Salmonella. One of 13 (7.7%) Adenovirus PCR tests was positive. Two of 152 examinations (1.3%) for Ova and Parasites were positive. No stool tests for viral culture, viral particles, Yersinia or Rotavirus were positive. Clostridium difficile infection is common in pediatric UC, and routine screening during flares is strongly recommended. Other bacterial and parasitic infections routinely tested for are uncommon, but Salmonella may be a potentially important attribute to disease exacerbations in select patients. In patients without co-morbid conditions, the utility of performing non-specific fecal viral tests is questionable. © 2015 by the Association of Clinical Scientists, Inc.

  13. Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.

    PubMed

    Simone-Finstrom, Michael; Aronstein, Kate; Goblirsch, Michael; Rinkevich, Frank; de Guzman, Lilia

    2018-03-01

    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity

  14. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea

    PubMed Central

    Sapir, Amir; Dillman, Adler R.; Connon, Stephanie A.; Grupe, Benjamin M.; Ingels, Jeroen; Mundo-Ocampo, Manuel; Levin, Lisa A.; Baldwin, James G.; Orphan, Victoria J.; Sternberg, Paul W.

    2013-01-01

    The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere. PMID:24575084

  15. Bacterial microbiome and nematode occurrence in different potato agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 gr of soil) from five different potato farms were analyzed to ...

  16. Zoonotic diseases: health aspects of Canadian geese.

    PubMed

    Dieter, R A; Dieter, R S; Dieter, R A; Gulliver, G

    2001-11-01

    Review zoonotic diseases associated with Canadian geese. Review article: A review of the multiple physical, microbiologic and safety concerns, and methods used in controlling this potential problem. Over the last decade the Canadian goose population (protected by international treaties and protection acts) has increased rapidly such that in many cities they have become a pest rather than an admired wild bird. Their increasing numbers have caused a number of potential healthcare concerns including: physical, bacterial, parasitic, allergic and viral potential problems. The Canadian goose fecal droppings of one per minute have caused falls and the flying geese have caused air traffic accidents. Bacterial concerns, including botulism, salmonella and E. coli have all been reviewed and presented concerns. The viral Newcastle disease may be detected with hemagglutination studies and the Giardia psittaci parasites have been repeatedly found in their droppings. The Cryptosporidium parvum oocytes have been present on stool study. Definite links to human infectious diseases have been difficult to prove. Revision of the current laws and new control programs must be developed.

  17. Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, José L.; Golemba, Marcelo; Hernández, Edgardo

    Rhodopsins are broadly distributed. In this work, we analyzed 23 metagenomes corresponding to marine sediment samples from four regions that share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral rhodopsins, an initial set of 6224 bacterial rhodopsin sequences according to COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment, 123 viral (51) and non-viral (72) sequences (>50 amino acids) were finally included in further analysis. Viral rhodopsin genes were homologs of Phaeocystis globosa virus and Organic lake Phycodnavirus. Non-viral microbial rhodopsin genes weremore » ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus-Thermus and Cryptophyta and Fungi. A rescreening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 amino acids). Phylogeographic analysis revealed a geographical clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non-viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsin genes related to Actinobacteria and Chloroflexi. This is the first report about the existence of a phylogeographic association of the viral rhodopsin sequences from marine sediments.« less

  18. Infections and parasitic diseases of the gray wolf and their potential effects on wolf populations in North America.

    USGS Publications Warehouse

    Brand, C.J.; Pybus, M.J.; Ballard, W.B.; Peterson, R.O.

    1995-01-01

    Numerous infections and parasitic diseases have been reported for the gray wolf, including more than 10 viral, bacterial, and mycotic disease and more than 70 species of helminths and ectoparasites. However, few studies have documented the role of diseases in population dynamics. Disease can affect wolf populations directly by causing mortality or indirectly by affecting physiological and homeostatic processes, thriftiness, reproduction, behavior, or social structure. In addition, wolves are hosts to diseases that can affect prey species, thus affecting wolf populations indirectly by reducing prey abundance or increasing vulnerability to predation. Diseases such as canine distemper and infectious canine hepatitis are enzootic in wolf populations, whereas rabies occurs in wolves primarily as a result of transmission from other species such as artic and red foxes. Contact between wolves and domestic pets and livestock may affect the composition of diseases in wolves and their effects on wolf populations. Dogs were suspected of introducing lice and canine parovirus to several wolf populations. THe potential for disease to affect wolf populations and other wild and domestic animals should be considered in wolf management plans, particularly in plans for reintroduction of wolves to area within their former range.

  19. RNA viruses in trypanosomatid parasites: a historical overview

    PubMed Central

    Grybchuk, Danyil; Kostygov, Alexei Y; Macedo, Diego H; d’Avila-Levy, Claudia M; Yurchenko, Vyacheslav

    2018-01-01

    Viruses of trypanosomatids are now being extensively studied because of their diversity and the roles they play in flagellates’ biology. Among the most prominent examples are leishmaniaviruses implicated in pathogenesis of Leishmania parasites. Here, we present a historical overview of this field, starting with early reports of virus-like particles on electron microphotographs, and culminating in detailed molecular descriptions of viruses obtained using modern next generation sequencing-based techniques. Because of their diversity, different life cycle strategies and host specificity, we believe that trypanosomatids are a fertile ground for further explorations to better understand viral evolution, routes of transitions, and molecular mechanisms of adaptation to different hosts. PMID:29513877

  20. RNA viruses in trypanosomatid parasites: a historical overview.

    PubMed

    Grybchuk, Danyil; Kostygov, Alexei Y; Macedo, Diego H; d'Avila-Levy, Claudia M; Yurchenko, Vyacheslav

    2018-02-19

    Viruses of trypanosomatids are now being extensively studied because of their diversity and the roles they play in flagellates' biology. Among the most prominent examples are leishmaniaviruses implicated in pathogenesis of Leishmania parasites. Here, we present a historical overview of this field, starting with early reports of virus-like particles on electron microphotographs, and culminating in detailed molecular descriptions of viruses obtained using modern next generation sequencing-based techniques. Because of their diversity, different life cycle strategies and host specificity, we believe that trypanosomatids are a fertile ground for further explorations to better understand viral evolution, routes of transitions, and molecular mechanisms of adaptation to different hosts.

  1. Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host.

    PubMed

    Palomares-Rius, Juan E; Archidona-Yuste, Antonio; Cantalapiedra-Navarrete, Carolina; Prieto, Pilar; Castillo, Pablo

    2016-12-01

    Bacterial endosymbionts have been detected in some groups of plant-parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal-parasitic or free-living nematodes. This study was performed on a wide variety of plant-parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty-seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus 'Candidatus Xiphinematobacter' (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil-plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long-term evolutionary persistence between hosts and endosymbionts. © 2016 John Wiley & Sons Ltd.

  2. Microbiologic and Clinical Study of Acute Diarrhea in Children in Aswan, Egypt

    DTIC Science & Technology

    1989-01-01

    protozoa and helminth eggs in feces. Am J Trop Med Hyg 4: 23-28, 1955. 12. EI-Saili A, Kamel M, El-Din AM, Zaghloul I, Podgore JK, Mansour NS, Mikhail I... Parasitic , bacterial and viral etiology of acute diarrhea in Egyptian children. Med J Cairo University 53: 373-379, 1985. 13. Azab ME, Khalil HM, Khalifa

  3. Paternity-parasitism trade-offs: a model and test of host-parasite cooperation in an avian conspecific brood parasite.

    PubMed

    Lyon, Bruce E; Hochachka, Wesley M; Eadie, John M

    2002-06-01

    Efforts to evaluate the evolutionary and ecological dynamics of conspecific brood parasitism in birds and other animals have focused on the fitness costs of parasitism to hosts and fitness benefits to parasites. However, it has been speculated recently that, in species with biparental care, host males might cooperate with parasitic females by allowing access to the host nest in exchange for copulations. We develop a cost-benefit model to explore the conditions under which such host-parasite cooperation might occur. When the brood parasite does not have a nest of her own, the only benefit to the host male is siring some of the parasitic eggs (quasi-parasitism). Cooperation with the parasite is favored when the ratio of host male paternity of his own eggs relative to his paternity of parasitic eggs exceeds the cost of parasitism. When the brood parasite has a nest of her own, a host male can gain additional, potentially more important benefits by siring the high-value, low-cost eggs laid by the parasite in her own nest. Under these conditions, host males should be even more likely to accept parasitic eggs in return for copulations with the parasitic female. We tested these predictions for American coots (Fulica americana), a species with a high frequency of conspecific brood parasitism. Multilocus DNA profiling indicated that host males did not sire any of the parasitic eggs laid in host nests, nor did they sire eggs laid by the parasite in her own nest. We used field estimates of the model parameters from a four-year study of coots to predict the minimum levels of paternity required for the costs of parasitism to be offset by the benefits of mating with brood parasites. Observed levels of paternity were significantly lower than those predicted under a variety of assumptions, and we reject the hypothesis that host males cooperated with parasitic females. Our model clarifies the specific costs and benefits that influence host-parasite cooperation and, more generally

  4. Rapid Multiplex PCR Assay To Identify Respiratory Viral Pathogens: Moving Forward Diagnosing The Common Cold

    PubMed Central

    Gordon, Sarah M; Elegino-Steffens, Diane U; Agee, Willie; Barnhill, Jason; Hsue, Gunther

    2013-01-01

    Upper respiratory tract infections (URIs) can be a serious burden to the healthcare system. The majority of URIs are viral in etiology, but definitive diagnosis can prove difficult due to frequently overlapping clinical presentations of viral and bacterial infections, and the variable sensitivity, and lengthy turn-around time of viral culture. We tested new automated nested multiplex PCR technology, the FilmArray® system, in the TAMC department of clinical investigations, to determine the feasibility of replacing the standard viral culture with a rapid turn-around system. We conducted a feasibility study using a single-blinded comparison study, comparing PCR results with archived viral culture results from a convenience sample of cryopreserved archived nasopharyngeal swabs from acutely ill ED patients who presented with complaints of URI symptoms. A total of 61 archived samples were processed. Viral culture had previously identified 31 positive specimens from these samples. The automated nested multiplex PCR detected 38 positive samples. In total, PCR was 94.5% concordant with the previously positive viral culture results. However, PCR was only 63.4% concordant with the negative viral culture results, owing to PCR detection of 11 additional viral pathogens not recovered on viral culture. The average time to process a sample was 75 minutes. We determined that an automated nested multiplex PCR is a feasible alternative to viral culture in an acute clinical setting. We were able to detect at least 94.5% as many viral pathogens as viral culture is able to identify, with a faster turn-around time. PMID:24052914

  5. [Laboratory diagnosis of bacterial meningitis: usefulness of various tests for the determination of the etiological agent].

    PubMed

    Carbonnelle, E

    2009-01-01

    Despite breakthroughs in the diagnosis and treatment of infectious diseases, meningitis still remains an important cause of mortality and morbidity. An accurate and rapid diagnosis of acute bacterial meningitis is essential for a good outcome. The gold-standard test for diagnosis is CSF analysis. Gram staining of CSF reveals bacteria in about 50 to 80 % of cases and cultures are positive in at best 80 % of cases. However, the sensitivity of both tests is less than 50 % in patients who are already on antibiotic treatment. CSF leukocyte count and concentration of protein and glucose lack specificity and sensitivity for the diagnosis of meningitis. Other biological tests are available for the diagnosis. Latex agglutination test were adapted for rapid and direct detection of soluble bacterial antigens in CSF of patients suspected with bacterial meningitis. This test is efficient in detecting antigens of most common central nervous system bateria but lacks sensibility. Furthermore, in the early phases of acute bacterial and viral meningitis, signs and symptoms are often non specific and it is not always possible to make a differential diagnosis. Markers like CRP, procalcitonin, or sTREM-1 may be very useful for the diagnosis and to differentiate between viral and bacterial meningitis. Bacterial meningitis diagnosis and management require various biological tests and a multidisciplinary approach.

  6. Top-down and bottom-up control on bacterial diversity in a western Norwegian deep-silled fjord.

    PubMed

    Storesund, Julia E; Erga, Svein Rune; Ray, Jessica L; Thingstad, T Frede; Sandaa, Ruth-Anne

    2015-07-01

    We investigated the relationship between viruses and co-occurring bacterial communities in the Sognefjord, a deep-silled fjord in Western Norway. A combination of flow cytometry and automated ribosomal intergenic spacer analysis (ARISA) was used to assess prokaryote and viral abundances, and bacterial diversity and community composition, respectively, in depth profiles and at two different sampling seasons (November and May). With one exception, bacterial diversity did not vary between samples regardless of depth or season. The virus and prokaryote abundances as well as bacterial community composition, however, varied significantly with season and depth, suggesting a link between the Sognefjord viral community and potential bacterial host community diversity. To our knowledge, these findings provide the first description of microbial communities in the unique Sognefjord ecosystem, and in addition are in agreement with the simple model version of the 'Killing the Winner' theory (KtW), which postulates that microbial community diversity is a feature that is essentially top-down controlled by viruses, while community composition is bottom-up controlled by competition for limiting growth substrates. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Salmonella serotypeTyphi, Shigella, and intestinal parasites among food handlers at Bahir Dar University, Ethiopia.

    PubMed

    Abera, Bayeh; Yitayew, Gashaw; Amare, Hiwot

    2016-02-28

    Food handlers play a major role in the transmission of Salmonella serotype Typhi (S. Typhi), Shigella, and intestinal parasites. This study was conducted to determine the prevalence of S. Typhi, Shigella, and intestinal parasites among food handlers at Bahir Dar University, Ethiopia. A cross-sectional study was conducted in June 2014. Stool samples from 410 food handlers were examined for bacterial pathogens and parasites. Pearson's Chi-square test, Fisher's exact test, and bivariate and multivariate logistic regression analyses were used where appropriate. The prevalence of S. Typhi, Shigella, and intestinal parasites among food handlers was 11 (2.7%), 5 (1.2%), and 53 (12.9%), respectively. Among eight intestinal parasites identified, the two most prevalent intestinal parasites were hookworm 26 (6.3%) and G. lamblia 13 (3.1%). Male food handlers were more likely to be positive than were female food handlers for S. Typhi and intestinal parasites. Furthermore, food handlers who had a history of regular medical checkups were less infected with intestinal parasites. Being male (AOR: 2.1, 95% CI: 1.2, 4.4) and not attending medical checkups (AOR: 2.9, 95% CI: 1.4, 6.1) were independent predictors of intestinal parasitic infection in food handlers. Male food handlers were reluctant to have regular parasitological examinations. There was a high proportion of food handlers with S. Typhi, Shigella, and intestinal parasites in their faces. Special emphasis should be placed on S. Typhicarriers and male food handlers. Education and periodical medical checkups for intestinal parasites and S. Typhi should be considered as intervention measures.

  8. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    PubMed Central

    Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological

  9. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia.

    PubMed

    Morrison, Hilary G; McArthur, Andrew G; Gillin, Frances D; Aley, Stephen B; Adam, Rodney D; Olsen, Gary J; Best, Aaron A; Cande, W Zacheus; Chen, Feng; Cipriano, Michael J; Davids, Barbara J; Dawson, Scott C; Elmendorf, Heidi G; Hehl, Adrian B; Holder, Michael E; Huse, Susan M; Kim, Ulandt U; Lasek-Nesselquist, Erica; Manning, Gerard; Nigam, Anuranjini; Nixon, Julie E J; Palm, Daniel; Passamaneck, Nora E; Prabhu, Anjali; Reich, Claudia I; Reiner, David S; Samuelson, John; Svard, Staffan G; Sogin, Mitchell L

    2007-09-28

    The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.

  10. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity

    PubMed Central

    Chenon, Mélanie; Camborde, Laurent; Cheminant, Soizic; Jupin, Isabelle

    2012-01-01

    Selective protein degradation via the ubiquitin-proteasome system (UPS) plays an essential role in many major cellular processes, including host–pathogen interactions. We previously reported that the tightly regulated viral RNA-dependent RNA polymerase (RdRp) of the positive-strand RNA virus Turnip yellow mosaic virus (TYMV) is degraded by the UPS in infected cells, a process that affects viral infectivity. Here, we show that the TYMV 98K replication protein can counteract this degradation process thanks to its proteinase domain. In-vitro assays revealed that the recombinant proteinase domain is a functional ovarian tumour (OTU)-like deubiquitylating enzyme (DUB), as is the 98K produced during viral infection. We also demonstrate that 98K mediates in-vivo deubiquitylation of TYMV RdRp protein—its binding partner within replication complexes—leading to its stabilization. Finally, we show that this DUB activity contributes to viral infectivity in plant cells. The identification of viral RdRp as a specific substrate of the viral DUB enzyme thus reveals the intricate interplay between ubiquitylation, deubiquitylation and the interaction between viral proteins in controlling levels of RdRp and viral infectivity. PMID:22117220

  11. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria.

    PubMed

    Muñoz-Espín, Daniel; Daniel, Richard; Kawai, Yoshikazu; Carballido-López, Rut; Castilla-Llorente, Virginia; Errington, Jeff; Meijer, Wilfried J J; Salas, Margarita

    2009-08-11

    Little is known about the organization or proteins involved in membrane-associated replication of prokaryotic genomes. Here we show that the actin-like MreB cytoskeleton of the distantly related bacteria Escherichia coli and Bacillus subtilis is required for efficient viral DNA replication. Detailed analyses of B. subtilis phage ϕ29 showed that the MreB cytoskeleton plays a crucial role in organizing phage DNA replication at the membrane. Thus, phage double-stranded DNA and components of the ϕ29 replication machinery localize in peripheral helix-like structures in a cytoskeleton-dependent way. Importantly, we show that MreB interacts directly with the ϕ29 membrane-protein p16.7, responsible for attaching viral DNA at the cell membrane. Altogether, the results reveal another function for the MreB cytoskeleton and describe a mechanism by which viral DNA replication is organized at the bacterial membrane.

  12. Parasitic Cowbirds have increased immunity to West Nile and other mosquitoborne encephalitis viruses

    USGS Publications Warehouse

    Reisen, W.K.; Hahn, D.C.

    2006-01-01

    The rapid geographic spread of West Nile Virus [WNV, Flaviviridae, Flavivirus] across the United States has stimulated interest in comparative host infection studies of avian species to delineate competent reservoir hosts critical for viral amplification. Striking taxonomic differences in avian susceptibility have been noted, offering the opportunity to strategically select species on the basis of life history traits to examine aspects of pathogen virulence or host immunity. We hypothesized that avian brood parasites would show increased resistance to pathogens compared to related taxa, because they have been exposed in their evolutionary history to a wide array of infectious organisms from their different parenting species. The Brown-headed Cowbird (Molothrus ater) is a generalist brood parasite that parasitizes 200+ North American species. Elevated exposure to other species? parasites may have created an unusual degree of pathogen resistance. We compared the relative susceptibility of adult cowbirds to three closely-related non-parasitic species, Red-winged blackbirds, Tricolored blackbirds and Brewer?s blackbirds, to invading NY99 strain of WNV that is highly virulent for many passeriform birds. Previously we had experimentally infected these species with two North American mosquitoborne encephalitis viruses, western equine encephalomyelitis virus [WEEV, Togaviridae, Alphavirus] and St. Louis encephalitis virus [SLEV, Flaviviridae, Flavivirus]. Our results showed that cowbirds exhibited significantly lower viremia responses against all three viruses as well as after co-infection with both WEEV and WNV than did the three related, non-parasitic species. These data supported our hypothesis and indicated that cowbirds were more resistant to infection to both native and introduced viruses.

  13. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  14. Engineering host-derived resistance against plant parasites through RNA interference: challenges and opportunities.

    PubMed

    Runo, Steven

    2011-01-01

    RNA interference (RNAi) has rapidly advanced to become a powerful genetic tool and holds promise to revolutionizing agriculture by providing a strategy for controlling a wide array of crop pests. Numerous studies document RNAi efficacy in achieving silencing in viruses, insects, nematodes and weeds parasitizing crops. In general, host derived pest resistance through RNAi is achieved by genetically transforming host plants with double stranded RNA constructs targeted at essential parasite genes leading to generation of small interfering RNAs (siRNAs). Small interfering RNAs formed in the host are then delivered to the parasite and transported to target cells. Delivery can be oral - worms and insects, viral infections, viruses - or through a vascular connections - parasitic plants, while delivery to target cells is by cell to cell systemic movement of the silencing signal. Despite the overall optimism in generating pest resistant crops through RNAi-mediated silencing, some hurdles have recently begun to emerge. Presently, the main challenge is delivery of sufficient siRNAs, in the right cells, and at the right time to mount; a strong, durable, and broad-spectrum posttranscriptional gene silencing (PTGS) signal. This review highlights the novel strategies available for improving host derived RNAi resistance in downstream applied agriculture.

  15. Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors.

    PubMed

    Li, Ning; Ren, Aihui; Wang, Xiaoshuang; Fan, Xin; Zhao, Yong; Gao, George F; Cleary, Patrick; Wang, Beinan

    2015-01-06

    Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-β. Because TGF-β can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-β during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and α5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-β signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-β. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-β signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-β, leading to increased bacterial loading in the lungs. Our results suggest that TGF-β and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.

  16. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism.

    PubMed

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-22

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism.

  17. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism

    PubMed Central

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-01

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism. PMID:26797310

  18. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa

    PubMed Central

    Schaer, Juliane; Perkins, Susan L.; Decher, Jan; Leendertz, Fabian H.; Fahr, Jakob; Weber, Natalie; Matuschewski, Kai

    2013-01-01

    As the only volant mammals, bats are captivating for their high taxonomic diversity, for their vital roles in ecosystems—particularly as pollinators and insectivores—and, more recently, for their important roles in the maintenance and transmission of zoonotic viral diseases. Genome sequences have identified evidence for a striking expansion of and positive selection in gene families associated with immunity. Bats have also been known to be hosts of malaria parasites for over a century, and as hosts, they possess perhaps the most phylogenetically diverse set of hemosporidian genera and species. To provide a molecular framework for the study of these parasites, we surveyed bats in three remote areas of the Upper Guinean forest ecosystem. We detected four distinct genera of hemosporidian parasites: Plasmodium, Polychromophilus, Nycteria, and Hepatocystis. Intriguingly, the two species of Plasmodium in bats fall within the clade of rodent malaria parasites, indicative of multiple host switches across mammalian orders. We show that Nycteria species form a very distinct phylogenetic group and that Hepatocystis parasites display an unusually high diversity and prevalence in epauletted fruit bats. The diversity and high prevalence of novel lineages of chiropteran hemosporidians underscore the exceptional position of bats among all other mammalian hosts of hemosporidian parasites and support hypotheses of pathogen tolerance consistent with the exceptional immunology of bats. PMID:24101466

  19. [THE CLINICAL AND EPIDEMIOLOGICAL CHARACTERISTICS OF MALARIA CONCURRENT WITH OTHER INFECTIONS AND INVASIONS].

    PubMed

    Kondrashin, A V; Tokmalaev, A K; Morozov, E N; Morozova, L F

    2016-01-01

    The present review considers malaria infection concurrent with different species of helminths, bacterial and viral infections, as well as mixed malaria pathogens in the subtropical and tropical countries of the world, causing the clinical picture and epidemiological situation to be different. Malaria co-infections with different pathogenic micro-organisms, such as HIV, tuberculosis, viral hepatitides, and others, affect almost one third of the planet's population. It is known that people who are at risk for malaria may be also at risk for other parasitic and infectious diseases, most commonly helminthisms.

  20. Sunscreens Cause Coral Bleaching by Promoting Viral Infections

    PubMed Central

    Danovaro, Roberto; Bongiorni, Lucia; Corinaldesi, Cinzia; Giovannelli, Donato; Damiani, Elisabetta; Astolfi, Paola; Greci, Lucedio; Pusceddu, Antonio

    2008-01-01

    Background Coral bleaching (i.e., the release of coral symbiotic zooxanthellae) has negative impacts on biodiversity and functioning of reef ecosystems and their production of goods and services. This increasing world-wide phenomenon is associated with temperature anomalies, high irradiance, pollution, and bacterial diseases. Recently, it has been demonstrated that personal care products, including sunscreens, have an impact on aquatic organisms similar to that of other contaminants. Objectives Our goal was to evaluate the potential impact of sunscreen ingredients on hard corals and their symbiotic algae. Methods In situ and laboratory experiments were conducted in several tropical regions (the Atlantic, Indian, and Pacific Oceans, and the Red Sea) by supplementing coral branches with aliquots of sunscreens and common ultraviolet filters contained in sunscreen formula. Zooxanthellae were checked for viral infection by epifluorescence and transmission electron microscopy analyses. Results Sunscreens cause the rapid and complete bleaching of hard corals, even at extremely low concentrations. The effect of sunscreens is due to organic ultraviolet filters, which are able to induce the lytic viral cycle in symbiotic zooxanthellae with latent infections. Conclusions We conclude that sunscreens, by promoting viral infection, potentially play an important role in coral bleaching in areas prone to high levels of recreational use by humans. PMID:18414624

  1. Fitness and virulence of a bacterial endoparasite in an environmentally stressed crustacean host.

    PubMed

    Coors, Anja; De Meester, Luc

    2011-01-01

    Host-parasite interactions are shaped by the co-evolutionary arms race of parasite virulence, transmission success as well as host resistance and recovery. The virulence and fitness of parasites may depend on host condition, which is mediated, for instance, by host energy constraints. Here, we investigated to what extent stress imposed by predation threat and environmental pollutants influences host-parasite interactions. We challenged the crustacean host Daphnia magna with the sterilizing bacterial endoparasite Pasteuria ramosa and simultaneously exposed the host to fish kairomones, the pesticide carbaryl or both stressors. While parasite virulence, measured as impact on host mortality and sterilization, increased markedly after short-term pesticide exposure, it was not influenced by predation threat. Parasite fitness, measured in terms of produced transmission stages, decreased both in fish and pesticide treatments. This effect was much stronger under predation threat than carbaryl exposure, and was attributable to reduced somatic growth of the host, presumably resulting in fewer resources for parasite development. While the indirect impact of both stressors on spore loads provides evidence for host condition-dependent parasite fitness, the finding of increased virulence only under carbaryl exposure indicates a stronger physiological impact of the neurotoxic chemical compared with the effect of a non-toxic fish kairomone.

  2. Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea.

    PubMed

    Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook

    2013-12-30

    In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.

  3. Parasitism drives host genome evolution: Insights from the Pasteuria ramosa-Daphnia magna system.

    PubMed

    Bourgeois, Yann; Roulin, Anne C; Müller, Kristina; Ebert, Dieter

    2017-04-01

    Because parasitism is thought to play a major role in shaping host genomes, it has been predicted that genomic regions associated with resistance to parasites should stand out in genome scans, revealing signals of selection above the genomic background. To test whether parasitism is indeed such a major factor in host evolution and to better understand host-parasite interaction at the molecular level, we studied genome-wide polymorphisms in 97 genotypes of the planktonic crustacean Daphnia magna originating from three localities across Europe. Daphnia magna is known to coevolve with the bacterial pathogen Pasteuria ramosa for which host genotypes (clonal lines) are either resistant or susceptible. Using association mapping, we identified two genomic regions involved in resistance to P. ramosa, one of which was already known from a previous QTL analysis. We then performed a naïve genome scan to test for signatures of positive selection and found that the two regions identified with the association mapping further stood out as outliers. Several other regions with evidence for selection were also found, but no link between these regions and phenotypic variation could be established. Our results are consistent with the hypothesis that parasitism is driving host genome evolution. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi.

    PubMed

    Swevers, Luc; Liu, Jisheng; Smagghe, Guy

    2018-05-01

    RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products.

  5. Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi

    PubMed Central

    Liu, Jisheng

    2018-01-01

    RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products. PMID:29723993

  6. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    PubMed

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    Entamoeba histolytica is an amitochondriate protozoan parasite with numerous bacterium-like fermentation enzymes including the pyruvate:ferredoxin oxidoreductase (POR), ferredoxin (FD), and alcohol dehydrogenase E (ADHE). The goal of this study was to determine whether the genes encoding these cytosolic E. histolytica fermentation enzymes might derive from a bacterium by horizontal transfer, as has previously been suggested for E. histolytica genes encoding heat shock protein 60, nicotinamide nucleotide transhydrogenase, and superoxide dismutase. In this study, the E. histolytica por gene and the adhE gene of a second amitochondriate protozoan parasite, Giardia lamblia, were sequenced, and their phylogenetic positions were estimated in relation to POR, ADHE, and FD cloned from eukaryotic and eubacterial organisms. The E. histolytica por gene encodes a 1,620-amino-acid peptide that contained conserved iron-sulfur- and thiamine pyrophosphate-binding sites. The predicted E. histolytica POR showed fewer positional identities to the POR of G. lamblia (34%) than to the POR of the enterobacterium Klebsiella pneumoniae (49%), the cyanobacterium Anabaena sp. (44%), and the protozoan Trichomonas vaginalis (46%), which targets its POR to anaerobic organelles called hydrogenosomes. Maximum-likelihood, neighbor-joining, and parsimony analyses also suggested as less likely E. histolytica POR sharing more recent common ancestry with G. lamblia POR than with POR of bacteria and the T. vaginalis hydrogenosome. The G. lamblia adhE encodes an 888-amino-acid fusion peptide with an aldehyde dehydrogenase at its amino half and an iron-dependent (class 3) ADH at its carboxy half. The predicted G. lamblia ADHE showed extensive positional identities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43%) and lesser identities to the class 3 ADH of eubacteria and yeast (19 to 36%). Phylogenetic analyses inferred a closer relationship of the E

  7. A Case Control Study of Incident Rheumatological Conditions Following Acute Gastroenteritis During Military Deployment

    DTIC Science & Technology

    2013-01-01

    commonly caused by diarrhoeagenic Escherichia coli, Campylobacter spp., Shigella spp. and non- typhoidal Salmonella spp., although viral and parasitic...and coli, non-typhoidal Salmonella spp, Shigella spp and Yersinia enterocolitica.9–13 Reports of ReA following bacterial gastroenteritis are most...significantly with age. In a prospective study of culture-confirmed Campylobacter, E coli O157, Salmonella, Shigella and Yersinia infections among

  8. Emerging zoonotic viral diseases.

    PubMed

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  9. Viral Infections

    MedlinePlus

    ... to fight it off. For most viral infections, treatments can only help with symptoms while you wait ... for viral infections. There are antiviral medicines to treat some viral infections. Vaccines can help prevent you ...

  10. Cultivation of parasites.

    PubMed

    Ahmed, Nishat Hussain

    2014-07-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites.

  11. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  12. Functional Role of Infective Viral Particles on Metal Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans andmore » the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.« less

  13. Viral Lysogeny as a Potential Mechanism for Termination of a Red Tide Event

    NASA Astrophysics Data System (ADS)

    Martinez, S. B.; Kudela, R. M.; Broughton, J.

    2014-12-01

    Red tides are high-biomass blooms in the coastal ocean typically caused by dinoflagellates. While some red tides are harmful (via toxin production, high biomass, and oxygen depletion during decay), they also provide an important source of energy and carbon for other trophic levels. Red tides are often ephemeral, so while it is easy to identify one, what causes these events to terminate can vary. It has been hypothesized that viral lysis and parasitic infection may be important vectors of termination for these blooms. This study sought to compare the decay of one such bloom in Monterey Bay, California to in situ and mesocosm studies where bloom termination was due to viral lysis. To achieve this goal we used MODIS ocean color Level 2 data with spatial resolution of 1km; we identified and averaged RRS from 9 pixels within the northern "red tide incubator" region of Monterey Bay where a dinoflagellate bloom was identified. We applied the quasi-analytical algorithm (QAA) to derive the backscatter coefficient (bbp(λ)), absorption due to chlorophyll (aChl), and the gelbstoff absorption coefficient (ag). Separate equations were used to find the volume scattering function (β(ψ,λ) where ψ =140°) and the particle size distribution hyperbolic slope (ξ). A MODIS satellite time series of five days (during an eight-day period) confirmed optical changes similar to documented shifts in laboratory-controlled experiments examining viral lysis. As predicted from previous results, the decrease in chlorophyll - essentially the deterioration of the algal bloom - resulted in the anticipated decrease in bbp(λ) and VSF values as well as an increase in ξ. aChl and ag were also compared to the Morel 2009 band algorithm for Colored Dissolved Organic Matter (CDOM) and the OC3 band algorithm for chlorophyll concentration. Results indicate that the QAA retrievals cannot be statistically distinguished (using a paired t-test) from the Morel and OC3 band algorithms. Analyzing more bloom

  14. Nuclear targeting of viral and non-viral DNA.

    PubMed

    Chowdhury, E H

    2009-07-01

    The nuclear envelope presents a major barrier to transgene delivery and expression using a non-viral vector. Virus is capable of overcoming the barrier to deliver their genetic materials efficiently into the nucleus by virtue of the specialized protein components with the unique amino acid sequences recognizing cellular nuclear transport machinery. However, considering the safety issues in the clinical gene therapy for treating critical human diseases, non-viral systems are highly promising compared with their viral counterparts. This review summarizes the progress on exploring the nuclear traffic mechanisms for the prominent viral vectors and the technological innovations for the nuclear delivery of non-viral DNA by mimicking those natural processes evolved for the viruses as well as for many cellular proteins.

  15. Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens.

    PubMed

    Little, Ainslie E F; Murakami, Takahiro; Mueller, Ulrich G; Currie, Cameron R

    2006-03-22

    Parasites influence host biology and population structure, and thus shape the evolution of their hosts. Parasites often accelerate the evolution of host defences, including direct defences such as evasion and sanitation and indirect defences such as the management of beneficial microbes that aid in the suppression or removal of pathogens. Fungus-growing ants are doubly burdened by parasites, needing to protect their crops as well as themselves from infection. We show that parasite removal from fungus gardens is more complex than previously realized. In response to infection of their fungal gardens by a specialized virulent parasite, ants gather and compress parasitic spores and hyphae in their infrabuccal pockets, then deposit the resulting pellet in piles near their gardens. We reveal that the ants' infrabuccal pocket functions as a specialized sterilization device, killing spores of the garden parasite Escovopsis. This is apparently achieved through a symbiotic association with actinomycetous bacteria in the infrabuccal pocket that produce antibiotics which inhibit Escovopsis. The use of the infrabuccal pocket as a receptacle to sequester Escovopsis, and as a location for antibiotic administration by the ants' bacterial mutualist, illustrates how the combination of behaviour and microbial symbionts can be a successful defence strategy for hosts.

  16. Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens

    PubMed Central

    Little, Ainslie E.F; Murakami, Takahiro; Mueller, Ulrich G; Currie, Cameron R

    2005-01-01

    Parasites influence host biology and population structure, and thus shape the evolution of their hosts. Parasites often accelerate the evolution of host defences, including direct defences such as evasion and sanitation and indirect defences such as the management of beneficial microbes that aid in the suppression or removal of pathogens. Fungus-growing ants are doubly burdened by parasites, needing to protect their crops as well as themselves from infection. We show that parasite removal from fungus gardens is more complex than previously realized. In response to infection of their fungal gardens by a specialized virulent parasite, ants gather and compress parasitic spores and hyphae in their infrabuccal pockets, then deposit the resulting pellet in piles near their gardens. We reveal that the ants' infrabuccal pocket functions as a specialized sterilization device, killing spores of the garden parasite Escovopsis. This is apparently achieved through a symbiotic association with actinomycetous bacteria in the infrabuccal pocket that produce antibiotics which inhibit Escovopsis. The use of the infrabuccal pocket as a receptacle to sequester Escovopsis, and as a location for antibiotic administration by the ants' bacterial mutualist, illustrates how the combination of behaviour and microbial symbionts can be a successful defence strategy for hosts. PMID:17148313

  17. Parasitic scabies mites and associated bacteria joining forces against host complement defence.

    PubMed

    Swe, P M; Reynolds, S L; Fischer, K

    2014-11-01

    Scabies is a ubiquitous and contagious skin disease caused by the parasitic mite Sarcoptes scabiei Epidemiological studies have identified scabies as a causative agent for secondary skin infections caused by Staphylococcus aureus and Streptococcus pyogenes. This is an important notion, as such bacterial infections can lead to serious downstream life-threatening complications. As the complement system is the first line of host defence that confronts invading pathogens, both the mite and bacteria produce a large array of molecules that inhibit the complement cascades. It is hypothesised that scabies mite complement inhibitors may play an important role in providing a favourable micro-environment for the establishment of secondary bacterial infections. This review aims to bring together the current literature on complement inhibition by scabies mites and bacteria associated with scabies and to discuss the proposed molecular link between scabies and bacterial co-infections. © 2014 John Wiley & Sons Ltd.

  18. Membrane rafts in host-pathogen interactions.

    PubMed

    Riethmüller, Joachim; Riehle, Andrea; Grassmé, Heike; Gulbins, Erich

    2006-12-01

    Central elements in the infection of mammalian cells with viral, bacterial and parasitic pathogens include the adhesion of the pathogen to surface receptors of the cell, recruitment of additional receptor proteins to the infection-site, a re-organization of the membrane and, in particular, the intracellular signalosome. Internalization of the pathogen results in the formation of a phagosome that is supposed to fuse with lysosomes to form phagolysosomes, which serve the degradation of the pathogen, an event actively prevented by some pathogens. In summary, these changes in the infected cell permit pathogens to trigger apoptosis (for instance of macrophages paralysing the initial immune response), to invade the cell and/or to survive in the cell, but they also serve the mammalian cell to defeat the infection, for instance by activation of transcription factors and the release of cytokines. Distinct membrane domains in the plasma membrane and intracellular vesicles that are mainly composed of sphingolipids and cholesterol or enriched with the sphingolipid ceramide, are critically involved in all of these events occurring during the infection. These membrane structures are therefore very attractive targets for novel drugs to interfere with bacterial, viral and parasitic infections.

  19. Impact of gut colonization with butyrate producing microbiota on respiratory viral infection following allo-HCT.

    PubMed

    Haak, Bastiaan W; Littmann, Eric R; Chaubard, Jean-Luc; Pickard, Amanda J; Fontana, Emily; Adhi, Fatima; Gyaltshen, Yangtsho; Ling, Lilan; Morjaria, Sejal M; Peled, Jonathan U; van den Brink, Marcel R; Geyer, Alexander I; Cross, Justin R; Pamer, Eric G; Taur, Ying

    2018-04-19

    Respiratory viral infections are frequent in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT), and can potentially progress to lower respiratory tract infection (LRTI). The intestinal microbiota contributes to resistance against viral and bacterial pathogens in the lung. However, whether intestinal microbiota composition and associated changes in microbe-derived metabolites contribute to the risk of LRTI following upper respiratory tract viral infection remains unexplored in the setting of allo-HCT. Fecal samples from 360 allo-HSCT patients were collected at the time of stem cell engraftment and subjected to deep, 16S rRNA sequencing to determine microbiota composition and short-chain fatty acid levels were determined in a nested subset of fecal samples. The development of respiratory viral infections and LRTI was determined for 180 days following allo-HCT. Clinical and microbiota risk factors for LRTI were subsequently evaluated using survival analysis. Respiratory viral infection occurred in 149 (41.4%) patients. Of those, 47 (31.5%) developed LRTI. Patients with higher abundances of butyrate producing bacteria were a five-fold less likely to develop viral LRTI, independent of other factors (adjusted HR=0.22, 95% CI 0.04 - 0.69). Higher representation of butyrate-producing bacteria in the fecal microbiota is associated with increased resistance against respiratory viral infection with LRTI in allo-HCT patients. Copyright © 2018 American Society of Hematology.

  20. Bacterial endosymbionts of the psyllid Cacopsylla pyricola in the Pacific Northwestern United States (Hemiptera: Psyllidae)

    USDA-ARS?s Scientific Manuscript database

    Insects often have facultative associations with bacterial endosymbionts, which can alter the insects' susceptibility to parasitism, pathogens, plant defenses, and certain classes of insecticides. We collected pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), from pear orchards in W...

  1. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    PubMed

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  2. Temperate Bacterial Viruses as Double-Edged Swords in Bacterial Warfare

    PubMed Central

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a “replicating toxin”. However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  3. Ovarian Tumor (OTU)-domain Containing Viral Proteases Evade Ubiquitin- and ISG15-dependent Innate Immune Responses

    PubMed Central

    Frias-Staheli, Natalia; Giannakopoulos, Nadia V.; Kikkert, Marjolein; Taylor, Shannon L.; Bridgen, Anne; Paragas, Jason J.; Richt, Juergen A.; Rowland, Raymond R.; Schmaljohn, Connie S.; Lenschow, Deborah J.; Snijder, Eric J.; García-Sastre, Adolfo; Virgin, Herbert Whiting

    2007-01-01

    Summary Ubiquitin (Ub) and interferon stimulated gene product 15 (ISG15) reversibly conjugate to proteins via a conserved LRLRGG C-terminal motif, mediating important innate antiviral responses. The ovarian tumor (OTU) domain represents a superfamily of predicted proteases found in eukaryotic, bacterial and viral proteins, some of which have Ub-deconjugating activity. We show that the OTU domain-containing proteases of nairoviruses and arteriviruses hydrolyze Ub and ISG15 from cellular target proteins. This broad activity contrasts with the target specificity of known mammalian OTU domain-containing proteins. The biological significance of this activity of viral OTU domain-containing proteases was evidenced by their capacity to inhibit NF-κB dependent signaling and to antagonize the antiviral effects of ISG15 during Sindbis virus infection in vivo. The deconjugating activity of viral OTU proteases represents a novel viral immune evasion mechanism that inhibits Ub-and ISG15-dependent antiviral pathways. PMID:18078692

  4. Sore throat in primary care project: a clinical score to diagnose viral sore throat.

    PubMed

    Mistik, Selcuk; Gokahmetoglu, Selma; Balci, Elcin; Onuk, Fahri A

    2015-06-01

    Viral agents cause the majority of sore throats. However, there is not currently a score to diagnose viral sore throat. The aims of this study were (i) to find the rate of bacterial and viral causes, (ii) to show the seasonal variations and (iii) to form a new scoring system to diagnose viral sore throat. A throat culture for group A beta haemolytic streptococci (GABHS) and a nasopharyngeal swab to detect 16 respiratory viruses were obtained from each patient. Over a period of 52 weeks, a total of 624 throat cultures and polymerase chain reaction analyses were performed. Logistic regression analysis was performed to find the clinical score. Viral infection was found in 277 patients (44.3%), and GABHS infection was found in 116 patients (18.5%). An infectious cause was found in 356 patients (57.1%). Rhinovirus was the most commonly detected infectious agent overall (highest in November, 34.5%), and the highest GABHS rate was in November (32.7%). Analysis of data provided a scoring system, called the Mistik Score, to diagnose viral sore throat. The predictive model for positive viral analysis included the following variables: absence of headache, stuffy nose, sneezing, temperature of ≥37.5°C on physical examination, and the absence of tonsillar exudate and/or swelling. The probability of a positive viral analysis for a score of 5 was 82.1%. The Mistik Score may be useful to diagnose viral sore throat. We suggest its use either alone or in combination with the Modified Centor Score. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula.

    PubMed

    de Brum Vieira, Patrícia; Silva, Nícolas Luiz Feijó; Menezes, Camila Braz; da Silva, Márcia Vanusa; Silva, Denise Brentan; Lopes, Norberto Peporine; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2017-01-01

    The infection caused by Trichomonas vaginalis is the most common but overlooked non-viral sexually transmitted disease worldwide. Treatment relies on one class of drugs, the 5-nitroimidazoles, but resistance is widespread. New drugs are urgently needed. We reported the effect of crude and purified saponin fractions of Manilkara rufula against Trichomonas vaginalis. The compound responsible for antitrichomonal activity was isolated and identified as an uncommon bidesmosic saponin, Mi-saponin C. This saponin eliminated parasite viability without toxicity against the human vaginal epithelial line (HMVII). In addition, the isolated saponin fraction improved the metronidazole effect against a metronidazole-resistant isolate and dramatically reduced the cytoadherence of T. vaginalis to human cells. Investigation of the mechanism of death showed that the saponin fraction induced the parasite death due to profound membrane damage, inducing a disturbance of intracellular content without nuclear damage. To the best of our knowledge, this is the first report of antitrichomonal activity in the bidesmosic saponins of Manilkara rufula.

  6. Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula

    PubMed Central

    Silva, Nícolas Luiz Feijó; Menezes, Camila Braz; da Silva, Márcia Vanusa; Silva, Denise Brentan; Lopes, Norberto Peporine; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2017-01-01

    The infection caused by Trichomonas vaginalis is the most common but overlooked non-viral sexually transmitted disease worldwide. Treatment relies on one class of drugs, the 5-nitroimidazoles, but resistance is widespread. New drugs are urgently needed. We reported the effect of crude and purified saponin fractions of Manilkara rufula against Trichomonas vaginalis. The compound responsible for antitrichomonal activity was isolated and identified as an uncommon bidesmosic saponin, Mi-saponin C. This saponin eliminated parasite viability without toxicity against the human vaginal epithelial line (HMVII). In addition, the isolated saponin fraction improved the metronidazole effect against a metronidazole-resistant isolate and dramatically reduced the cytoadherence of T. vaginalis to human cells. Investigation of the mechanism of death showed that the saponin fraction induced the parasite death due to profound membrane damage, inducing a disturbance of intracellular content without nuclear damage. To the best of our knowledge, this is the first report of antitrichomonal activity in the bidesmosic saponins of Manilkara rufula. PMID:29190689

  7. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees.

    PubMed

    Mockler, Blair K; Kwong, Waldan K; Moran, Nancy A; Koch, Hauke

    2018-01-26

    Recent declines in bumble bee populations are of great concern, and have prompted critical evaluations of the role of pathogen introductions and host resistance in bee health. One factor that may influence host resilience when facing infection is the gut microbiota. Previous experiments with Bombus terrestris , a European bumble bee, showed that the gut microbiota can protect against Crithidia bombi , a widespread trypanosomatid parasite of bumble bees. However, the particular characteristics of the microbiome responsible for this protective effect have thus far eluded identification. Using wild and commercially-sourced Bombus impatiens , an important North American pollinator, we conducted cross-wise microbiota transplants to naïve hosts of both backgrounds, and challenged them with Crithidia As with B. terrestris , we find that microbiota-dependent protection against Crithidia operates in B. impatiens Lower Crithidia infection loads were experimentally associated with high microbiome diversity, large gut bacterial populations, and the presence of Apibacter , Lactobacillus Firm-5, and Gilliamella in the gut community. These results indicate that even subtle differences between gut community structures can have a significant impact on the microbiome's ability to defend against parasite infections. Importance Many wild bumble bee populations are under threat by human activity, including through introductions of pathogens via commercially-raised bees. Recently, it was found that the bumble bee gut microbiota can help defend against a common parasite, Crithidia bombi , but the particular factors contributing to this protection are unknown. Using both wild and commercially-raised bees, we conduct microbiota transplants to show that microbiome diversity, total gut bacterial load, and the presence of certain core members of the microbiota may all impact bee susceptibility to Crithidia infection. Bee origin (genetic background) was also a factor. Finally, by examining

  8. Viral CNS infections in children from a malaria-endemic area of Malawi: a prospective cohort study

    PubMed Central

    Mallewa, Macpherson; Vallely, Pam; Faragher, Brian; Banda, Dan; Klapper, Paul; Mukaka, Mavuto; Khofi, Harriet; Pensulo, Paul; Taylor, Terrie; Molyneux, Malcolm; Solomon, Tom

    2013-01-01

    Summary Background Fever with reduced consciousness is an important cause of hospital admission of children in sub-Saharan Africa, with high mortality. Cerebral malaria, diagnosed when acute Plasmodium falciparum infection and coma are recorded with no other apparent reason, is one important cause. We investigated whether viruses could also be an important cause of CNS infection in such patients, and examined the relative contribution of viral pathogens and malaria parasitaemia. Methods We did a prospective cohort study in Blantyre, Malawi. From March 1, 2002, to Aug 31, 2004, we enrolled children aged between 2 months and 15 years who were admitted to hospital with suspected non-bacterial CNS infections. Children with a cerebrospinal fluid (CSF) white cell count of less than 1000 cells per μL and negative bacterial microscopy and culture were deemed to have suspected viral CNS infection. Blood was examined for asexual forms of P falciparum. PCR was done on CSF or on post-mortem brain biopsy specimens to detect 15 viruses known to cause CNS infection. Findings Full outcome data were available for 513 children with suspected viral CNS infection, of whom 94 (18%) died. 163 children (32%) had P falciparum parasitaemia, of whom 34 (21%) died. At least one virus was detected in the CNS in 133 children (26%), of whom 43 (33%) died. 12 different viruses were detected; adenovirus was the most common, affecting 42 children; mumps, human herpes virus 6, rabies, cytomegalovirus, herpes simplex virus 1, and enterovirus were also important. 45 (9%) of the 513 children had both parasitaemia and viral infection, including 27 (35%) of 78 diagnosed clinically with cerebral malaria. Children with dual infection were more likely to have seizures than were those with parasitaemia alone, viral infection only, or neither (p<0·0001). 17 (38%) of the 45 children with dual infection died, compared with 26 (30%) of 88 with viral infection only, 17 (14%) of 118 with parasitaemia only, and

  9. Viral CNS infections in children from a malaria-endemic area of Malawi: a prospective cohort study.

    PubMed

    Mallewa, Macpherson; Vallely, Pam; Faragher, Brian; Banda, Dan; Klapper, Paul; Mukaka, Mavuto; Khofi, Harriet; Pensulo, Paul; Taylor, Terrie; Molyneux, Malcolm; Solomon, Tom

    2013-09-01

    Fever with reduced consciousness is an important cause of hospital admission of children in sub-Saharan Africa, with high mortality. Cerebral malaria, diagnosed when acute Plasmodium falciparum infection and coma are recorded with no other apparent reason, is one important cause. We investigated whether viruses could also be an important cause of CNS infection in such patients, and examined the relative contribution of viral pathogens and malaria parasitaemia. We did a prospective cohort study in Blantyre, Malawi. From March 1, 2002, to Aug 31, 2004, we enrolled children aged between 2 months and 15 years who were admitted to hospital with suspected non-bacterial CNS infections. Children with a cerebrospinal fluid (CSF) white cell count of less than 1000 cells per μL and negative bacterial microscopy and culture were deemed to have suspected viral CNS infection. Blood was examined for asexual forms of P falciparum. PCR was done on CSF or on post-mortem brain biopsy specimens to detect 15 viruses known to cause CNS infection. Full outcome data were available for 513 children with suspected viral CNS infection, of whom 94 (18%) died. 163 children (32%) had P falciparum parasitaemia, of whom 34 (21%) died. At least one virus was detected in the CNS in 133 children (26%), of whom 43 (33%) died. 12 different viruses were detected; adenovirus was the most common, affecting 42 children; mumps, human herpes virus 6, rabies, cytomegalovirus, herpes simplex virus 1, and enterovirus were also important. 45 (9%) of the 513 children had both parasitaemia and viral infection, including 27 (35%) of 78 diagnosed clinically with cerebral malaria. Children with dual infection were more likely to have seizures than were those with parasitaemia alone, viral infection only, or neither (p<0·0001). 17 (38%) of the 45 children with dual infection died, compared with 26 (30%) of 88 with viral infection only, 17 (14%) of 118 with parasitaemia only, and 34 (13%) of 262 with neither (p<0

  10. Different pattern of viral infections and clinical outcomes in patient with acute exacerbation of chronic obstructive pulmonary disease and chronic obstructive pulmonary disease with pneumonia.

    PubMed

    Kim, Ho-Cheol; Choi, Sang-Ho; Huh, Jin-Won; Sung, Heungsup; Hong, Sang Bum; Lim, Chae-Man; Koh, Younsuck

    2016-12-01

    Respiratory viruses are well-known causes of acute exacerbation of chronic obstructive pulmonary disease (AE-COPD) and also important pathogens for concomitant pneumonia in COPD (CP-COPD). However, the differences in a viral infection pattern and clinical impacts of respiratory viruses between the two groups have not been well investigated. The clinical and microbiological data from COPD patients admitted with AE-COPD (n = 281) or CP-COPD (n = 284) between January 2010 and December 2012 were reviewed. After excluding 88 patients (40 with AE-COPD and 48 with CP-COPD) who did not undergo a multiplex RT-PCR test for respiratory viruses, the demographic characteristics, identified viruses, and clinical outcomes of the AE-COPD and CP-COPD groups were compared. Respiratory viruses were identified in 41.9% of AE-COPD group and 33.5% of the CP-COPD groups. The most common virus was influenza virus in the AE-COPD group (33.7%) versus human coronavirus (24.1%) in the CP-COPD group. Influenza virus was significantly more common in the AE-ACOPD group than in the CP-COPD group (P < 0.01). In-hospital mortality of AE-COPD and CP-COPD were 1.2% and 12.3%, respectively (P < 0.01). Among CP-COPD patients, in-hospital mortality of patients with only viral infection group, only bacterial infection group, and viral-bacterial co-infection were 2.6%, 25.8%, and 17.5%, respectively (P = 0.01). Respiratory viruses were commonly identified in both AE-COPD and CP-COPD, influenza virus and human coronavirus were the most common viruses identified in AE-COPD and CP-COPD patients, respectively. The mortality rates of only viral infection group was significantly lower than only bacterial infection or viral-bacterial co-infection group in CP-COPD patients. J. Med. Virol. 88:2092-2099, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Ocean acidification and viral replication cycles: Frequency of lytically infected and lysogenic cells during a mesocosm experiment in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Tsiola, Anastasia; Pitta, Paraskevi; Giannakourou, Antonia; Bourdin, Guillaume; Marro, Sophie; Maugendre, Laure; Pedrotti, Maria Luiza; Gazeau, Frédéric

    2017-02-01

    The frequency of lytically infected and lysogenic cells (FLIC and FLC, respectively) was estimated during an in situ mesocosm experiment studying the impact of ocean acidification on the plankton community of a low nutrient low chlorophyll (LNLC) system in the north-western Mediterranean Sea (Bay of Villefranche, France) in February/March 2013. No direct effect of elevated partial pressure of CO2 (pCO2) on viral replication cycles could be detected. FLC variability was negatively correlated to heterotrophic bacterial and net community production as well as the ambient bacterial abundance, confirming that lysogeny is a prevailing life strategy under unfavourable-for-the-hosts conditions. Further, the phytoplankton community, assessed by chlorophyll a concentration and the release of >0.4 μm transparent exopolymeric particles, was correlated with the occurrence of lysogeny, indicating a possible link between photosynthetic processes and bacterial growth. Higher FLC was found occasionally at the highest pCO2-treated mesocosm in parallel to subtle differences in the phytoplankton community. This observation suggests that elevated pCO2 could lead to short-term alterations in lysogenic dynamics coupled to phytoplankton-derived processes. Correlation of FLIC with any environmental parameter could have been obscured by the sampling time or the synchronization of lysis to microbial processes not assessed in this experiment. Furthermore, alterations in microbial and viral assemblage composition and gene expression could be a confounding factor. Viral-induced modifications in organic matter flow affect bacterial growth and could interact with ocean acidification with unpredictable ecological consequences.

  12. Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    PubMed Central

    2011-01-01

    Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the

  13. Parasites infecting the cultured oyster Crassostrea gasar (Adanson, 1757) in Northeast Brazil.

    PubMed

    Queiroga, Fernando Ramos; Vianna, Rogério Tubino; Vieira, Cairé Barreto; Farias, Natanael Dantas; Da Silva, Patricia Mirella

    2015-05-01

    The oyster Crassostrea gasar is a species widely used as food and a source of income for the local population of the estuaries of Northeast Brazil. Perkinsus marinus and Perkinsus olseni are deleterious parasites for oyster farming and were recently detected in Brazil. In this study, a histopathologic survey of the oyster C. gasar cultured in the estuary of the River Mamanguape (Paraíba State) was performed. Adult oysters were collected in December 2011 and March, May, August and October 2012 and processed for histology and Perkinsus sp. identification by molecular analyses. Histopathological analysis revealed the presence of parasitic organisms including viral gametocytic hypertrophy, prokaryote-like colonies, protozoans (Perkinsus sp. and Nematopsis sp.) and metazoans (Tylocephalum sp. and cestodes). Other commensal organisms were also detected (the protozoan Ancistrocoma sp. and the turbellarian Urastoma sp.). The protozoan parasite Perkinsus sp. had the highest overall prevalence among the symbiotic organisms studied (48.9%), followed by Nematopsis sp. (36.3%). The other organisms were only sporadically observed. Only the protozoan Perkinsus sp. caused alterations in the oysters' infected organs. Molecular analyses confirmed the presence of P. marinus, P. olseni and Perkinsus beihaiensis infecting the oyster C. gasar. This is the first report of P. beihaiensis in this oyster species.

  14. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress

    PubMed Central

    2013-01-01

    Background Every year, substantial crop loss occurs globally, as a result of bacterial, fungal, parasite and viral infections in rice. Here, we present an in-depth investigation of the transcriptomic response to infection with the destructive bacterial pathogen Xanthomonas oryzae pv. oryzae(Xoo) in both resistant and susceptible varieties of Oryza sativa. A comparative analysis to fungal, parasite and viral infection in rice is also presented. Results Within 24 h of Xoo inoculation, significant reduction of cell wall components and induction of several signalling components, membrane bound receptor kinases and specific WRKY and NAC transcription factors was prominent, providing a framework for how the presence of this pathogen was signalled and response mounted. Extensive comparative analyses of various other pathogen responses, including in response to infection with another bacterium (Xoc), resistant and susceptible parasite infection, fungal, and viral infections, led to a proposed model for the rice biotic stress response. In this way, a conserved induction of calcium signalling functions, and specific WRKY and NAC transcription factors, was identified in response to all biotic stresses. Comparison of these responses to abiotic stress (cold, drought, salt, heat), enabled the identification of unique genes responsive only to bacterial infection, 240 genes responsive to both abiotic and biotic stress, and 135 genes responsive to biotic, but not abiotic stresses. Functional significance of a number of these genes, using genetic inactivation or over-expression, has revealed significant stress-associated phenotypes. While only a few antagonistic responses were observed between biotic and abiotic stresses, e.g. for a number of endochitinases and kinase encoding genes, some of these may be crucial in explaining greater pathogen infection and damage under abiotic stresses. Conclusions The analyses presented here provides a global view of the responses to multiple

  15. Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two Daphnia magna clones differing in carbaryl sensitivity.

    PubMed

    De Coninck, Dieter I M; De Schamphelaere, Karel A C; Jansen, Mieke; De Meester, Luc; Janssen, Colin R

    2013-04-15

    Natural and chemical stressors occur simultaneously in the aquatic environment. Their combined effects on biota are usually difficult to predict from their individual effects due to interactions between the different stressors. Several recent studies have suggested that synergistic effects of multiple stressors on organisms may be more common at high compared to low overall levels of stress. In this study, we used a three-way full factorial design to investigate whether interactive effects between a natural stressor, the bacterial parasite Pasteuria ramosa, and a chemical stressor, the insecticide carbaryl, were different between two genetically distinct clones of Daphnia magna that strongly differ in their sensitivity to carbaryl. Interactive effects on various life-history and physiological endpoints were assessed as significant deviations from the reference Independent Action (IA) model, which was implemented by testing the significance of the two-way carbaryl×parasite interaction term in two-way ANOVA's on log-transformed observational data for each clone separately. Interactive effects (and thus significant deviations from IA) were detected in both the carbaryl-sensitive clone (on survival, early reproduction and growth) and in the non-sensitive clone (on growth, electron transport activity and prophenoloxidase activity). No interactions were found for maturation rate, filtration rate, and energy reserve fractions (carbohydrate, protein, lipid). Furthermore, only antagonistic interactions were detected in the non-sensitive clone, while only synergistic interactions were observed in the carbaryl sensitive clone. Our data clearly show that there are genetically determined differences in the interactive effects following combined exposure to carbaryl and Pasteuria in D. magna. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Respiratory viral infections in children with asthma: do they matter and can we prevent them?

    PubMed Central

    2012-01-01

    Background Asthma is a major public health problem with a huge social and economic burden affecting 300 million people worldwide. Viral respiratory infections are the major cause of acute asthma exacerbations and may contribute to asthma inception in high risk young children with susceptible genetic background. Acute exacerbations are associated with decreased lung growth or accelerated loss of lung function and, as such, add substantially to both the cost and morbidity associated with asthma. Discussion While the importance of preventing viral infection is well established, preventive strategies have not been well explored. Good personal hygiene, hand-washing and avoidance of cigarette smoke are likely to reduce respiratory viral infections. Eating a healthy balanced diet, active probiotic supplements and bacterial-derived products, such as OM-85, may reduce recurrent infections in susceptible children. There are no practical anti-viral therapies currently available that are suitable for widespread use. Summary Hand hygiene is the best measure to prevent the common cold. A healthy balanced diet, active probiotic supplements and immunostimulant OM-85 may reduce recurrent infections in asthmatic children. PMID:22974166

  17. SURVEILLANCE FOR VIRAL AND PARASITIC PATHOGENS IN A VULNERABLE AFRICAN LION (PANTHERA LEO) POPULATION IN THE NORTHERN TULI GAME RESERVE, BOTSWANA.

    PubMed

    McDermid, Kimberly R; Snyman, Andrei; Verreynne, Frederick J; Carroll, John P; Penzhorn, Banie L; Yabsley, Michael J

    2017-01-01

    African lion ( Panthera leo ) numbers are decreasing rapidly and populations are becoming smaller and more fragmented. Infectious diseases are one of numerous issues threatening free-ranging lion populations, and low-density populations are particularly at risk. We collected data on the prevalence and diversity of viral and parasitic pathogens in a small lion population in eastern Botswana. During 2012 and 2014, blood samples were collected from 59% (n=13) of the adult-subadult lions in the Northern Tuli Game Reserve in eastern Botswana. One lion had antibodies to feline panleukopenia virus, two had antibodies to canine distemper virus, and two had feline calicivirus antibodies. Ten of the 13 had antibodies to feline immunodeficiency virus and 11 had feline herpesvirus antibodies. All lions were negative for antibodies to feline coronavirus. Blood samples from all lions were negative for Trypanosoma, Anaplasma, Theileria, and Ehrlichia spp. by molecular testing; however, all lions were positive for Babesia spp. by reverse line blot hybridization assay. Sequencing of amplicons from four lions revealed four groups of Babesia spp. including several genetic variants of Babesia felis , Babesia lengau, and Babesia canis and a group of novel Babesia sequences which were only 96% similar to other Babesia spp. Six lions were infested with four species of ticks (Rhipicentor nuttalli, Rhipicephalus simus, Rhipicephalus sulcatus, and Rhipicephalus appendiculatus). These data provide the first health assessment of this population and can be used to identify management and conservation strategies to decrease the impact of pathogens on this population. This is particularly important as there is an initiative to incorporate this population into a larger metapopulation of lions from adjacent South Africa and Zimbabwe.

  18. When parasites become prey: ecological and epidemiological significance of eating parasites

    USGS Publications Warehouse

    Johnson, Pieter T.J.; Dobson, Andrew P.; Lafferty, Kevin D.; Marcogliese, David J.; Memmott, Jane; Orlofske, Sarah A.; Poulin, Robert; Thieltges, David W.

    2010-01-01

    Recent efforts to include parasites in food webs have drawn attention to a previously ignored facet of foraging ecology: parasites commonly function as prey within ecosystems. Because of the high productivity of parasites, their unique nutritional composition and their pathogenicity in hosts, their consumption affects both food-web topology and disease risk in humans and wildlife. Here, we evaluate the ecological, evolutionary and epidemiological significance of feeding on parasites, including concomitant predation, grooming, predation on free-living stages and intraguild predation. Combining empirical data and theoretical models, we show that consumption of parasites is neither rare nor accidental, and that it can sharply affect parasite transmission and food web properties. Broader consideration of predation on parasites will enhance our understanding of disease control, food web structure and energy transfer, and the evolution of complex life cycles.

  19. Parasites that cause problems in Malaysia: soil-transmitted helminths and malaria parasites.

    PubMed

    Singh, B; Cox-Singh, J

    2001-12-01

    Malaysia is a developing country with a range of parasitic infections. Indeed, soil-transmitted helminths and malaria parasites continue to have a significant impact on public health in Malaysia. In this article, the prevalence and distribution of these parasites, the problems associated with parasitic infections, the control measures taken to deal with these parasites and implications for the future will be discussed.

  20. Viral tRNA Mimicry from a Biocommunicative Perspective

    PubMed Central

    Ariza-Mateos, Ascensión; Gómez, Jordi

    2017-01-01

    RNA viruses have very small genomes which limits the functions they can encode. One of the strategies employed by these viruses is to mimic key factors of the host cell so they can take advantage of the interactions and activities these factors typically participate in. The viral RNA genome itself was first observed to mimic cellular tRNA over 40 years ago. Since then researchers have confirmed that distinct families of RNA viruses are accessible to a battery of cellular factors involved in tRNA-related activities. Recently, potential tRNA-like structures have been detected within the sequences of a 100 mRNAs taken from human cells, one of these being the host defense interferon-alpha mRNA; these are then additional to the examples found in bacterial and yeast mRNAs. The mimetic relationship between tRNA, cellular mRNA, and viral RNA is the central focus of two considerations described below. These are subsequently used as a preface for a final hypothesis drawing on concepts relating to mimicry from the social sciences and humanities, such as power relations and creativity. Firstly, the presence of tRNA-like structures in mRNAs indicates that the viral tRNA-like signal could be mimicking tRNA-like elements that are contextualized by the specific carrier mRNAs, rather than, or in addition to, the tRNA itself, which would significantly increase the number of potential semiotic relations mediated by the viral signals. Secondly, and in particular, mimicking a host defense mRNA could be considered a potential new viral strategy for survival. Finally, we propose that mRNA’s mimicry of tRNA could be indicative of an ancestral intracellular conflict in which species of mRNAs invaded the cell, but from within. As the meaning of the mimetic signal depends on the context, in this case, the conflict that arises when the viral signal enters the cell can change the meaning of the mRNAs’ internal tRNA-like signals, from their current significance to that they had in the

  1. Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing.

    PubMed

    Monteiro, Carolina Cunha; Villegas, Luis Eduardo Martinez; Campolina, Thais Bonifácio; Pires, Ana Clara Machado Araújo; Miranda, Jose Carlos; Pimenta, Paulo Filemon Paolucci; Secundino, Nagila Francinete Costa

    2016-08-31

    Parasites of the genus Leishmania cause a broad spectrum of diseases, collectively known as leishmaniasis, in humans worldwide. American cutaneous leishmaniasis is a neglected disease transmitted by sand fly vectors including Lutzomyia intermedia, a proven vector. The female sand fly can acquire or deliver Leishmania spp. parasites while feeding on a blood meal, which is required for nutrition, egg development and survival. The microbiota composition and abundance varies by food source, life stages and physiological conditions. The sand fly microbiota can affect parasite life-cycle in the vector. We performed a metagenomic analysis for microbiota composition and abundance in Lu. intermedia, from an endemic area in Brazil. The adult insects were collected using CDC light traps, morphologically identified, carefully sterilized, dissected under a microscope and the females separated into groups according to their physiological condition: (i) absence of blood meal (unfed = UN); (ii) presence of blood meal (blood-fed = BF); and (iii) presence of developed ovaries (gravid = GR). Then, they were processed for metagenomics with Illumina Hiseq Sequencing in order to be sequence analyzed and to obtain the taxonomic profiles of the microbiota. Bacterial metagenomic analysis revealed differences in microbiota composition based upon the distinct physiological stages of the adult insect. Sequence identification revealed two phyla (Proteobacteria and Actinobacteria), 11 families and 15 genera; 87 % of the bacteria were Gram-negative, while only one family and two genera were identified as Gram-positive. The genera Ochrobactrum, Bradyrhizobium and Pseudomonas were found across all of the groups. The metagenomic analysis revealed that the microbiota of the Lu. intermedia female sand flies are distinct under specific physiological conditions and consist of 15 bacterial genera. The Ochrobactrum, Bradyrhizobium and Pseudomonas were the common genera. Our results detailing

  2. Fate of Bacterial and Viral Bio-Warfare Agents in Disinfected Waters

    DTIC Science & Technology

    2010-10-01

    600 nm; approximately 4 h). An aliquot of 0.4 mL bacterial culture is spread onto the surface of Sporulation Media A Medium (SMA) and incubated at...dishes containing Sporulation Medium Sterile distilled water at 4 °C 70% EtOH Crystal violet Stain 1.2 Sporulation media A: Nutrient broth 8g/L...phase (approximately 4 h). 2.2 Seeding the Sporulation Plates 1. Label 150 mm Petri dishes of SM A Medium. 2. Inoculate, by aseptically spreading

  3. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture

    PubMed Central

    Gambelli, Lavinia; Cremers, Geert; Mesman, Rob; Guerrero, Simon; Dutilh, Bas E.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; van Niftrik, Laura

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer, and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analyzed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced) electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study. PMID:27877158

  4. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites.

    PubMed

    Auld, Stuart K J R; Hall, Spencer R; Housley Ochs, Jessica; Sebastian, Mathew; Duffy, Meghan A

    2014-08-01

    Parasite prevalence shows tremendous spatiotemporal variation. Theory indicates that this variation might stem from life-history characteristics of parasites and key ecological factors. Here, we illustrate how the interaction of an important predator and the schedule of transmission potential of two parasites can explain parasite abundance. A field survey showed that a noncastrating fungus (Metschnikowia bicuspidata) commonly infected a dominant zooplankton host (Daphnia dentifera), while a castrating bacterial parasite (Pasteuria ramosa) was rare. This result seemed surprising given that the bacterium produces many more infectious propagules (spores) than the fungus upon host death. The fungus's dominance can be explained by the schedule of within-host growth of parasites (i.e., how transmission potential changes over the course of infection) and the release of spores from "sloppy" predators (Chaoborus spp., who consume Daphnia prey whole and then later regurgitate the carapace and parasite spores). In essence, sloppy predators create a niche that the faster-schedule fungus currently occupies. However, a selection experiment showed that the slower-schedule bacterium can evolve into this faster-schedule, predator-mediated niche (but pays a cost in maximal spore yield to do so). Hence, our study shows how parasite life history can interact with predation to strongly influence the ecology, epidemiology, and evolution of infectious disease.

  5. Viral meningitis.

    PubMed

    Chadwick, David R

    2005-01-01

    Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available.

  6. Factors shaping bacterial phylogenetic and functional diversity in coastal waters of the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Boras, Julia A.; Vaqué, Dolors; Maynou, Francesc; Sà, Elisabet L.; Weinbauer, Markus G.; Sala, Maria Montserrat

    2015-03-01

    To evaluate the main factors shaping bacterioplankton phylogenetic and functional diversity in marine coastal waters, we carried out a two-year study based on a monthly sampling in Blanes Bay (NW Mediterranean). We expected the key factors driving bacterial diversity to be (1) temperature and nutrient concentration, together with chlorophyll a concentration as an indicator of phytoplankton biomass and, hence, a carbon source for bacteria (here called bottom-up factors), and (2) top-down pressure (virus- and protist-mediated mortality of bacteria). Phylogenetic diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA. Functional diversity was assessed by using monomeric carbon sources in Biolog EcoPlates and by determining the activity of six extracellular enzymes. Our results indicate that the bacterial phylogenetic and functional diversity in this coastal system is shaped mainly by bottom-up factors. A dendrogram analysis of the DGGE banding patterns revealed three main sample clusters. Two clusters differed significantly in temperature, nitrate and chlorophyll a concentration, and the third was characterized by the highest losses of bacterial production due to viral lysis detected over the whole study period. Protistan grazing had no effect on bacterial functional diversity, since there were no correlations between protist-mediated mortality (PMM) and extracellular enzyme activities, and utilization of only two out of the 31 carbon sources (N-acetyl-D-glucosamine and α-cyclodextrin) was correlated with PMM. In contrast, virus-mediated mortality correlated with changes in the percentage of use of four carbon sources, and also with specific leu-aminopeptidase and β-glucosidase activity. This suggests that viral lysate provides a pool of labile carbon sources, presumably including amino acids and glucose, which may inhibit proteolytic and glucosidic activity. Our results indicate that bottom-up factors play a more important role than

  7. Developmental Stage of Parasites Influences the Structure of Fish-Parasite Networks

    PubMed Central

    Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis

    2013-01-01

    Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries. PMID:24124506

  8. Developmental stage of parasites influences the structure of fish-parasite networks.

    PubMed

    Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis

    2013-01-01

    Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries.

  9. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.

    PubMed

    Darani, Hossein Yousofi; Yousefi, Morteza

    2012-12-01

    An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.

  10. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.

    PubMed

    Jex, Aaron R; Littlewood, D Timothy; Gasser, Robin B

    2015-01-01

    Mitochondrial (mt) genomics has significant implications in a range of fundamental areas of parasitology, including evolution, systematics, and population genetics as well as explorations of mt biochemistry, physiology, and function. Mt genomes also provide a rich source of markers to aid molecular epidemiological and ecological studies of key parasites. However, there is still a paucity of information on mt genomes for many metazoan organisms, particularly parasitic helminths, which has often related to challenges linked to sequencing from tiny amounts of material. The advent of next-generation sequencing (NGS) technologies has paved the way for low cost, high-throughput mt genomic research, but there have been obstacles, particularly in relation to post-sequencing assembly and analyses of large datasets. In this chapter, we describe protocols for the efficient amplification and sequencing of mt genomes from small portions of individual helminths, and highlight the utility of NGS platforms to expedite mt genomics. In addition, we recommend approaches for manual or semi-automated bioinformatic annotation and analyses to overcome the bioinformatic "bottleneck" to research in this area. Taken together, these approaches have demonstrated applicability to a range of parasites and provide prospects for using complete mt genomic sequence datasets for large-scale molecular systematic and epidemiological studies. In addition, these methods have broader utility and might be readily adapted to a range of other medium-sized molecular regions (i.e., 10-100 kb), including large genomic operons, and other organellar (e.g., plastid) and viral genomes.

  11. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model.

    PubMed

    Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik

    2016-11-01

    Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population.

    PubMed

    Janowski, Andrew; Newland, Jason

    2017-01-01

    In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with Streptococcus agalactiae . We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.

  13. Mutational analysis reveals a noncontractile but interactive role of actin and profilin in viral RNA-dependent RNA synthesis.

    PubMed

    Harpen, Mary; Barik, Tiasha; Musiyenko, Alla; Barik, Sailen

    2009-11-01

    As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role.

  14. Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli.

    PubMed

    Shapiro, Jason W; Williams, Elizabeth S C P; Turner, Paul E

    2016-01-01

    Background. How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its host Escherichia coli. Results. The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist of E. coli. We then allowed E. coli and M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria. Conclusions. These data suggest a positive correlation between the positive effects of M13 on E. coli hosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria.

  15. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  16. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.

  17. Expansion of space station diagnostic capability to include serological identification of viral and bacterial infections

    NASA Technical Reports Server (NTRS)

    Hejtmancik, Kelly E.

    1987-01-01

    It is necessary that an adequate microbiology capability be provided as part of the Health Maintenance Facility (HMF) to support expected microbial disease events during long periods of space flight. The applications of morphological and biochemical studies to confirm the presence of certain bacterial and fungal disease agents are currently available and under consideration. This confirmation would be greatly facilitated through employment of serological methods to aid in the identification for not only bacterial and fungal agents, but viruses as well. A number of serological approached were considered, particularly the use of Enzyme Linked Immunosorbent Assays (ELISAs), which could be utilized during space flight conditions. A solid phase, membrane supported ELISA for the detection of Bordetella pertussis was developed to show a potential model system that would meet the HMF requirements and specifications for the future space station. A second model system for the detection of Legionella pneumophilia, an expected bacterial disease agent, is currently under investigation.

  18. [Quantification of parasites in aquatic environments in the Province of Salta, Argentina].

    PubMed

    Cacciabue, Dolores Gutiérrez; Juárez, María M; Poma, Hugo R; Garcé, Beatriz; Rajal, Verónica B

    2014-01-01

    Microbiological pollution of recreational waters is a major problem for public health as it may transmit waterborne diseases. To assess water quality, current legislation only requires limits for bacterial indicators; however, these organisms do not accurately predict the presence of parasites. Small number of parasites is usually present in water and although they are capable of causing disease, they may not be high enough to be detected. Detection therefore requires water samples to be concentrated. In this work three recreational aquatic environments located in the province of Salta were monitored over one year. For parasite quantification, water samples were collected every three months and concentrated by ultrafiltration. Detection was performed by microscopy. In addition, monthly monitoring was carried out in each aquatic environment: physicochemical variables were measured in situ and bacteriological counts were determined by traditional microbiological techniques. Of 14 parasites identified, at least nine were detected in each aquatic environment sampled. While bacteriological contamination decreased in most cases during winter (76-99%), parasites were present year-round, becoming a continual threat to public health. Thus, we here propose that it is necessary to use specific parasitological indicators to prevent waterborne disease transmission. Our results suggest that Entamoeba would be a suitable indicator as it was found in all environments and showed minimal seasonal variation. The results obtained in this study have epidemiological relevance and will allow decision-makers to propose solutions for water protection in order to care for population health. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  19. Pattern of co-infection by enteric pathogenic parasites among HIV sero-positive individuals in a Tertiary Care Hospital, Mumbai, India.

    PubMed

    Ahmed, Nishat Hussain; Chowdhary, Abhay

    2015-01-01

    One of the major medical concerns in people living with HIV/AIDS (PLHA) is management of diarrhea that can lead to severe morbidity and mortality. Such clinical scenario warrants an analysis of intestinal parasites, which are important opportunistic pathogens in PLHA. Owing to the scarcity of recent pattern of intestinal opportunistic infections from this region, the study was designed to determine the opportunistic parasites causing diarrhea in PLHA; and to find out whether there is any significant difference in the enteric parasitic pathogens in patients with different immunological status and in those on highly active anti retro-viral therapy (HAART). Analysis of the spectrum of intestinal parasites was carried out with 192 subjects in two groups (142 HIV sero-positive patients having diarrhea and 50 HIV sero-negative patients having diarrhea). The routine light microscopic examination was carried out to determine the infection and CD4+ T-Lymphocyte count was estimated using flow cytometry. Enteric parasites were detected in 35.9% of HIV sero-positive patients having diarrhea and 18% of HIV sero-negative patients having diarrhea. Most common opportunistic enteric parasite was Isospora belli (11.5%); others were Entamoeba histolytica (4.7%), Cryptosporidium sp. (3.6%), Strongyloides stercoralis (3.1%), Giardia intestinalis (3.1%) and Cyclospora cayatanenesis (1.6%). Opportunistic enteric parasites were detected in significantly low numbers in patients with CD4+ T-Lymphocyte counts >500 cells/ml; and in those taking HAART.

  20. Direct molecular testing to assess the incidence of meningococcal and other bacterial causes of meningitis among persons reported with unspecified bacterial meningitis.

    PubMed

    Ramautar, Arianne E; Halse, Tanya A; Arakaki, Lola; Antwi, Mike; Del Rosso, Paula; Dorsinville, Marie; Nazarian, Elizabeth; Steiner-Sichel, Linda; Lee, Lillian; Dickinson, Michelle; Wroblewski, Danielle; Dumas, Nellie; Musser, Kimberlee; Isaac, Beth; Rakeman, Jennifer; Weiss, Don

    2015-11-01

    Confirmed and probable cases of invasive Neisseria meningitidis (Nm) infection are reportable in New York City. We conducted a study to identify Nm among culture-negative reports of bacterial and viral meningitis. During the study period, 262 reports of suspected meningitis were eligible. Cerebrospinal fluid (CSF) specimens from 138 patients were obtained for testing. No Nm cases were detected. Results from real-time polymerase chain reaction and 16S on CSF specimens were concordant with hospital microbiology findings in 80%; however, other pathogenic organisms were detected in 14 culture-negative specimens. New York City's surveillance system appears to be effective at capturing cases of Nm meningitis. Nucleic acid testing is useful for detecting the presence of bacterial DNA when antibiotic therapy precedes lumbar puncture or bacterial cultures are negative. It remains unanswered whether culture-negative cases of Nm bacteremia are being missed by reportable disease surveillance. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Density- and trait-mediated effects of a parasite and a predator in a tri-trophic food web

    PubMed Central

    Banerji, Aabir; Duncan, Alison B; Griffin, Joanne S; Humphries, Stuart; Petchey, Owen L; Kaltz, Oliver

    2015-01-01

    1. Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density or trait mediated. 2. We studied a tri-trophic food chain comprised of (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum) and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling and analyses of host (Paramecium) morphology and behaviour. 3. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. 4. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. 5. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. 6. A mixture of

  2. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence

    PubMed Central

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D.

    2015-01-01

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. PMID:25761710

  3. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    PubMed

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-07

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    PubMed

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  5. Paradigms for parasite conservation.

    PubMed

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  6. Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection.

    PubMed

    O'Brien, Kevin B; Schultz-Cherry, Stacey; Knoll, Laura J

    2011-09-01

    Outbreaks of influenza A viruses are associated with significant human morbidity worldwide. Given the increasing resistance to the available influenza drugs, new therapies for the treatment of influenza virus infection are needed. An alternative approach is to identify products that enhance a protective immune response. In these studies, we demonstrate that infecting mice with the Th1-inducing parasite Toxoplasma gondii prior to highly pathogenic avian H5N1 influenza virus infection led to decreased lung viral titers and enhanced survival. A noninfectious fraction of T. gondii soluble antigens (STAg) elicited an immune response similar to that elicited by live parasites, and administration of STAg 2 days after H5N1 influenza virus infection enhanced survival, lowered viral titers, and reduced clinical disease. STAg administration protected H5N1 virus-infected mice lacking lymphocytes, suggesting that while the adaptive immune response was not required for enhanced survival, it was necessary for STAg-mediated viral clearance. Mechanistically, we found that administration of STAg led to increased production of gamma interferon (IFN-γ) from natural killer (NK) cells, which were both necessary and sufficient for survival. Further, administration of exogenous IFN-γ alone enhanced survival from H5N1 influenza virus infection, although not to the same level as STAg treatment. These studies demonstrate that a noninfectious T. gondii extract enhances the protective immune response against severe H5N1 influenza virus infections even when a single dose is administered 2 days postinfection.

  7. Marine actinomycetes: a new source of compounds against the human malaria parasite.

    PubMed

    Prudhomme, Jacques; McDaniel, Eric; Ponts, Nadia; Bertani, Stéphane; Fenical, William; Jensen, Paul; Le Roch, Karine

    2008-06-04

    Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite. We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage. These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to

  8. Effects of Bacterial Microflora of the Lower Digestive Tract of Free-Range Waterfowl on Influenza Virus Activation ▿

    PubMed Central

    King, Marcus D.; Guentzel, M. Neal; Arulanandam, Bernard P.; Bodour, Adria A.; Brahmakshatriya, Vinayak; Lupiani, Blanca; Chambers, James P.

    2011-01-01

    Proteolytic cleavage activation of influenza virus hemagglutinin (HA0) is required for cell entry via receptor-mediated endocytosis. Despite numerous studies describing bacterial protease-mediated influenza A viral activation in mammals, very little is known about the role of intestinal bacterial flora of birds in hemagglutinin cleavage/activation. Therefore, the cloaca of wild waterfowl was examined for (i) representative bacterial types and (ii) their ability to cleave in a “trypsin-like” manner the precursor viral hemagglutinin molecule (HA0). Using radiolabeled HA0, bacterial secretion-mediated trypsin-like conversion of HA0 to HA1 and HA2 peptide products was observed to various degrees in 42 of 44 bacterial isolates suggestive of influenza virus activation in the cloaca of wild waterfowl. However, treatment of uncleaved virus with all bacterial isolates gave rise to substantially reduced emergent virus progeny compared with what was expected. Examination of two isolates exhibiting pronounced trypsin-like conversion of HA0 to HA1 and HA2 peptide products and low infectivity revealed lipase activity to be present. Because influenza virus possesses a complex lipid envelope, the presence of lipid hydrolase activity could in part account for the observed less-than-expected level of viable progeny. A thorough characterization of respective isolate protease HA0 hydrolysis products as well as other resident activities (i.e., lipase) is ongoing such that the role of these respective contributors in virus activation/inactivation can be firmly established. PMID:21531837

  9. Miscellaneous parasitic diseases

    USGS Publications Warehouse

    Cole, Rebecca A.; Friend, M.

    1999-01-01

    Free-ranging wild birds are afflicted with numerous other parasites that occasionally cause illness and death. Some of these parasites, such as two of the trematodes or flukes highlighted below, can cause major die-offs. This section about parasitic diseases concludes with descriptions of some additional parasites that field biologists may encounter in wild birds. This listing is by no means complete and it is intended only to increase awareness of the diversity of types of parasites that might be encountered during examinations of wild birds. One should not assume that the parasites found during the examination of bird carcasses caused their death. Because parasites of birds vary greatly in size from a protozoa of a few microns in length to tapeworms of several inches in length and because they can be found in virtually all tissues, body cavities and other locations within the bird, the observation of the parasites will depend on their visibility and the thoroughness of the examination. Therefore, it is generally beneficial to submit bird carcasses to qualified disease diagnostic laboratories to obtain evaluations of the significance of endoparasites or of ectoparasites. The methods that are used to preserve the carcass, tissues, or other specimens can enhance or compromise the ability of specialists to identify the parasite to species, and even to genera, in some instances. Therefore, whenever possible, it is best to contact the diagnostic laboratory that will receive the specimens and obtain instructions for collecting, preserving, and shipping field samples (See Chapters 2 and 3).

  10. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    USGS Publications Warehouse

    Thieltges, David W.; Amundsen, Per-Arne; Hechinger, Ryan F.; Johnson, Pieter T.J.; Lafferty, Levin D.; Mouritsen, Kim N.; Preston, Daniel L.; Reise, Karsten; Zander, C. Dieter; Poulin, Robert

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free-living parasite life-cycle stages (4–30%). Parasite life-cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.

  11. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?

    PubMed

    Leung, Tommy L F

    2017-02-01

    Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite-host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free-living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite-host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have

  12. Role of neutrophil to lymphocyte and monocyte to lymphocyte ratios in the diagnosis of bacterial infection in patients with fever.

    PubMed

    Naess, Are; Nilssen, Siri Saervold; Mo, Reidun; Eide, Geir Egil; Sjursen, Haakon

    2017-06-01

    To study the role of the neutrophil:lymphocyte ratio (NLR) and monocyte:lymphocyte ratio (MLR) in discriminating between different patient groups hospitalized for fever due to infection and those without infection. For 299 patients admitted to hospital for fever with unknown cause, a number of characteristics including NLR and MLR were recorded. These characteristics were used in a multiple multinomial regression analysis to estimate the probability of a final diagnostic group of bacterial, viral, clinically confirmed, or no infection. Both NLR and MLR significantly predicted final diagnostic group. Being highly correlated, however, both variables could not be retained in the same model. Both variables also interacted significantly with duration of fever. Generally, higher values of NLR and MLR indicated larger probabilities for bacterial infection and low probabilities for viral infection. Patients with septicemia had significantly higher NLR compared to patients with other bacterial infections with fever for less than one week. White blood cell counts, neutrophil counts, and C-reactive proteins did not differ significantly between septicemia and the other bacterial infection groups. NLR is a more useful diagnostic tool to identify patients with septicemia than other more commonly used diagnostic blood tests. NLR and MLR may be useful in the diagnosis of bacterial infection among patients hospitalized for fever.

  13. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar).

    PubMed

    Zueva, Ksenia J; Lumme, Jaakko; Veselov, Alexey E; Kent, Matthew P; Primmer, Craig R

    2018-06-01

    Understanding the genomic basis of host-parasite adaptation is important for predicting the long-term viability of species and developing successful management practices. However, in wild populations, identifying specific signatures of parasite-driven selection often presents a challenge, as it is difficult to unravel the molecular signatures of selection driven by different, but correlated, environmental factors. Furthermore, separating parasite-mediated selection from similar signatures due to genetic drift and population history can also be difficult. Populations of Atlantic salmon (Salmo salar L.) from northern Europe have pronounced differences in their reactions to the parasitic flatworm Gyrodactylus salaris Malmberg 1957 and are therefore a good model to search for specific genomic regions underlying inter-population differences in pathogen response. We used a dense Atlantic salmon SNP array, along with extensive sampling of 43 salmon populations representing the two G. salaris response extremes (extreme susceptibility vs resistant), to screen the salmon genome for signatures of directional selection while attempting to separate the parasite effect from other factors. After combining the results from two independent genome scan analyses, 57 candidate genes potentially under positive selection were identified, out of which 50 were functionally annotated. This candidate gene set was shown to be functionally enriched for lymph node development, focal adhesion genes and anti-viral response, which suggests that the regulation of both innate and acquired immunity might be an important mechanism for salmon response to G. salaris. Overall, our results offer insights into the apparently complex genetic basis of pathogen susceptibility in salmon and highlight methodological challenges for separating the effects of various environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. [Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia].

    PubMed

    Lu, Yun-Yun; Luo, Rong; Fu, Zhou

    2017-09-01

    To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P<0.05). There were significant differences in the incidence rate of viral infection between different season groups (P<0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin

  15. Ecosystem consequences of fish parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2008-01-01

    In most aquatic ecosystems, fishes are hosts to parasites and, sometimes, these parasites can affect fish biology. Some of the most dramatic cases occur when fishes are intermediate hosts for larval parasites. For example, fishes in southern California estuaries are host to many parasites. The most common of these parasites, Euhaplorchis californiensis, infects the brain of the killifish Fundulus parvipinnis and alters its behaviour, making the fish 10–30 times more susceptible to predation by the birds that serve as its definitive host. Parasites like E. californiensis are embedded in food webs because they require trophic transmission. In the Carpinteria Salt Marsh estuarine food web, parasites dominate the links and comprise substantial amount of biomass. Adding parasites to food webs alters important network statistics such as connectance and nestedness. Furthermore, some free-living stages of parasites are food items for free-living species. For instance, fishes feed on trematode cercariae. Being embedded in food webs makes parasites sensitive to changes in the environment. In particular, fishing and environmental disturbance, by reducing fish populations, may reduce parasite populations. Indirect evidence suggests a decrease in parasites in commercially fished species over the past three decades. In addition, environmental degradation can affect fish parasites. For these reasons, parasites in fishes may serve as indicators of environmental impacts.

  16. Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology

    PubMed Central

    Marine, Rachel L; Nasko, Daniel J; Wray, Jeffrey; Polson, Shawn W; Wommack, K Eric

    2017-01-01

    Chaperonins are protein-folding machinery found in all cellular life. Chaperonin genes have been documented within a few viruses, yet, surprisingly, analysis of metagenome sequence data indicated that chaperonin-carrying viruses are common and geographically widespread in marine ecosystems. Also unexpected was the discovery of viral chaperonin sequences related to thermosome proteins of archaea, indicating the presence of virioplankton populations infecting marine archaeal hosts. Virioplankton large subunit chaperonin sequences (GroELs) were divergent from bacterial sequences, indicating that viruses have carried this gene over long evolutionary time. Analysis of viral metagenome contigs indicated that: the order of large and small subunit genes was linked to the phylogeny of GroEL; both lytic and temperate phages may carry group I chaperonin genes; and viruses carrying a GroEL gene likely have large double-stranded DNA (dsDNA) genomes (>70 kb). Given these connections, it is likely that chaperonins are critical to the biology and ecology of virioplankton populations that carry these genes. Moreover, these discoveries raise the intriguing possibility that viral chaperonins may more broadly alter the structure and function of viral and cellular proteins in infected host cells. PMID:28731469

  17. Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology.

    PubMed

    Marine, Rachel L; Nasko, Daniel J; Wray, Jeffrey; Polson, Shawn W; Wommack, K Eric

    2017-11-01

    Chaperonins are protein-folding machinery found in all cellular life. Chaperonin genes have been documented within a few viruses, yet, surprisingly, analysis of metagenome sequence data indicated that chaperonin-carrying viruses are common and geographically widespread in marine ecosystems. Also unexpected was the discovery of viral chaperonin sequences related to thermosome proteins of archaea, indicating the presence of virioplankton populations infecting marine archaeal hosts. Virioplankton large subunit chaperonin sequences (GroELs) were divergent from bacterial sequences, indicating that viruses have carried this gene over long evolutionary time. Analysis of viral metagenome contigs indicated that: the order of large and small subunit genes was linked to the phylogeny of GroEL; both lytic and temperate phages may carry group I chaperonin genes; and viruses carrying a GroEL gene likely have large double-stranded DNA (dsDNA) genomes (>70 kb). Given these connections, it is likely that chaperonins are critical to the biology and ecology of virioplankton populations that carry these genes. Moreover, these discoveries raise the intriguing possibility that viral chaperonins may more broadly alter the structure and function of viral and cellular proteins in infected host cells.

  18. Pharyngitis - viral

    MedlinePlus

    ... throat is due to a viral infection. The antibiotics will not help. Using them to treat viral infections helps bacteria become resistant to antibiotics. With some sore throats (such as those caused ...

  19. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  20. Undiagnosed Acute Viral Febrile Illnesses, Sierra Leone

    PubMed Central

    Rossi, Cynthia A.; Khan, Sheik H.; Goba, Augustine; Fair, Joseph N.

    2014-01-01

    Sierra Leone in West Africa is in a Lassa fever–hyperendemic region that also includes Guinea and Liberia. Each year, suspected Lassa fever cases result in submission of ≈500–700 samples to the Kenema Government Hospital Lassa Diagnostic Laboratory in eastern Sierra Leone. Generally only 30%–40% of samples tested are positive for Lassa virus (LASV) antigen and/or LASV-specific IgM; thus, 60%–70% of these patients have acute diseases of unknown origin. To investigate what other arthropod-borne and hemorrhagic fever viral diseases might cause serious illness in this region and mimic Lassa fever, we tested patient serum samples that were negative for malaria parasites and LASV. Using IgM-capture ELISAs, we evaluated samples for antibodies to arthropod-borne and other hemorrhagic fever viruses. Approximately 25% of LASV-negative patients had IgM to dengue, West Nile, yellow fever, Rift Valley fever, chikungunya, Ebola, and Marburg viruses but not to Crimean-Congo hemorrhagic fever virus. PMID:24959946

  1. Detection of Viral and Bacterial Pathogens in Hospitalized Children With Acute Respiratory Illnesses, Chongqing, 2009–2013

    PubMed Central

    Wei, Lan; Liu, Wei; Zhang, Xiao-Ai; Liu, En-Mei; Wo, Yin; Cowling, Benjamin J.; Cao, Wu-Chun

    2015-01-01

    Abstract Acute respiratory infections (ARIs) cause large disease burden each year. The codetection of viral and bacterial pathogens is quite common; however, the significance for clinical severity remains controversial. We aimed to identify viruses and bacteria in hospitalized children with ARI and the impact of mixed detections. Hospitalized children with ARI aged ≤16 were recruited from 2009 to 2013 at the Children's Hospital of Chongqing Medical University, Chongqing, China. Nasopharyngeal aspirates (NPAs) were collected for detection of common respiratory viruses by reverse transcription polymerase chain reaction (RT-PCR) or PCR. Bacteria were isolated from NPAs by routine culture methods. Detection and codetection frequencies and clinical features and severity were compared. Of the 3181 hospitalized children, 2375 (74.7%) were detected with ≥1 virus and 707 (22.2%) with ≥1 bacteria, 901 (28.3%) with ≥2 viruses, 57 (1.8%) with ≥2 bacteria, and 542 (17.0%) with both virus and bacteria. The most frequently detected were Streptococcus pneumoniae, respiratory syncytial virus, parainfluenza virus, and influenza virus. Clinical characteristics were similar among different pathogen infections for older group (≥6 years old), with some significant difference for the younger. Cases with any codetection were more likely to present with fever; those with ≥2 virus detections had higher prevalence of cough; cases with virus and bacteria codetection were more likely to have cough and sputum. No significant difference in the risk of pneumonia, severe pneumonia, and intensive care unit admission were found for any codetection than monodetection. There was a high codetection rate of common respiratory pathogens among hospitalized pediatric ARI cases, with fever as a significant predictor. Cases with codetection showed no significant difference in severity than those with single pathogens. PMID:25906103

  2. Endogenous System Microbes as Treatment Process ...

    EPA Pesticide Factsheets

    Monitoring the efficacy of treatment strategies to remove pathogens in decentralized systems remains a challenge. Evaluating log reduction targets by measuring pathogen levels is hampered by their sporadic and low occurrence rates. Fecal indicator bacteria are used in centralized systems to indicate the presence of fecal pathogens, but are ineffective decentralized treatment process indicators as they generally occur at levels too low to assess log reduction targets. System challenge testing by spiking with high loads of fecal indicator organisms, like MS2 coliphage, has limitations, especially for large systems. Microbes that are endogenous to the decentralized system, occur in high abundances and mimic removal rates of bacterial, viral and/or parasitic protozoan pathogens during treatment could serve as alternative treatment process indicators to verify log reduction targets. To identify abundant microbes in wastewater, the bacterial and viral communities were examined using deep sequencing. Building infrastructure-associated bacteria, like Zoogloea, were observed as dominant members of the bacterial community in graywater. In blackwater, bacteriophage of the order Caudovirales constituted the majority of contiguous sequences from the viral community. This study identifies candidate treatment process indicators in decentralized systems that could be used to verify log removal during treatment. The association of the presence of treatment process indic

  3. The role of epigenetics in host-parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum.

    PubMed

    Vilcinskas, Andreas

    2016-08-01

    Recent studies addressing experimental host-parasite coevolution and transgenerational immune priming in insects provide evidence for heritable shifts in host resistance or parasite virulence. These rapid reciprocal adaptations may thus be transferred to offspring generations by either genetic changes or mechanisms that do not involve changes in the germline DNA sequence. Epigenetic inheritance refers to changes in gene expression that are heritable across generations and mediated by epigenetic modifications passed from parents to offspring. Highlighting the role of epigenetics in host-parasite coevolution, this review discusses the involvement of DNA methylation, histone acetylation/deacetylation and microRNAs in the interactions between bacterial or fungal parasites and model host insects such as the greater wax moth Galleria mellonella and the red flour beetle Tribolium castaneum. These epigenetic mechanisms are thought to participate in generation-spanning transcriptional reprogramming in the host insect, often linking immunity with developmentally related gene expression and contributing to the heredity of acquired adaptations. It is proposed that the interactions during host-parasite coevolution can therefore be expanded beyond reciprocal genetic changes to include reciprocal epigenetic changes. Epigenetics is thus a promising and prospering field in the context of host-parasite coevolution. Copyright © 2016 The Author. Published by Elsevier GmbH.. All rights reserved.

  4. Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent

    PubMed Central

    Li, Linlin; Deng, Xutao; Mee, Edward T.; Collot-Teixeira, Sophie; Anderson, Rob; Schepelmann, Silke; Minor, Philip D.; Delwart, Eric

    2014-01-01

    Unbiased metagenomic sequencing holds significant potential as a diagnostic tool for the simultaneous detection of any previously genetically described viral nucleic acids in clinical samples. Viral genome sequences can also inform on likely phenotypes including drug susceptibility or neutralization serotypes. In this study, different variables of the laboratory methods often used to generate viral metagenomics libraries on the efficiency of viral detection and virus genome coverage were compared. A biological reagent consisting of 25 different human RNA and DNA viral pathogens was used to estimate the effect of filtration and nuclease digestion, DNA/RNA extraction methods, pre-amplification and the use of different library preparation kits on the detection of viral nucleic acids. Filtration and nuclease treatment led to slight decreases in the percentage of viral sequence reads and number of viruses detected. For nucleic acid extractions silica spin columns improved viral sequence recovery relative to magnetic beads and Trizol extraction. Pre-amplification using random RT-PCR while generating more viral sequence reads resulted in detection of fewer viruses, more overlapping sequences, and lower genome coverage. The ScriptSeq library preparation method retrieved more viruses and a greater fraction of their genomes than the TruSeq and Nextera methods. Viral metagenomics sequencing was able to simultaneously detect up to 22 different viruses in the biological reagent analyzed including all those detected by qPCR. Further optimization will be required for the detection of viruses in biologically more complex samples such as tissues, blood, or feces. PMID:25497414

  5. Use of bacterial artificial chromosomes in generating targeted mutations in human and mouse cytomegaloviruses.

    PubMed

    Borst, Eva Maria; Benkartek, Corinna; Messerle, Martin

    2007-05-01

    Cloning of cytomegalovirus (CMV) genomes as bacterial artificial chromosomes (BAC) in E. coli and their manipulation using the techniques of bacterial genetics has greatly facilitated the construction of CMV mutants. This unit describes easily applicable procedures that allow rapid introduction of any kind of targeted mutation into BAC-cloned CMV genomes. Protocols for the reconstitution of virus from isolated BAC DNA, preparation of a virus stock, and isolation and characterization of viral DNA are also included. Special emphasis is laid on description of critical steps and thorough characterization of the altered BACs.

  6. Comparative Genomics of Candidate Phylum TM6 Suggests That Parasitism Is Widespread and Ancestral in This Lineage

    PubMed Central

    Yeoh, Yun Kit; Sekiguchi, Yuji; Parks, Donovan H.; Hugenholtz, Philip

    2016-01-01

    Candidate phylum TM6 is a major bacterial lineage recognized through culture-independent rRNA surveys to be low abundance members in a wide range of habitats; however, they are poorly characterized due to a lack of pure culture representatives. Two recent genomic studies of TM6 bacteria revealed small genomes and limited gene repertoire, consistent with known or inferred dependence on eukaryotic hosts for their metabolic needs. Here, we obtained additional near-complete genomes of TM6 populations from agricultural soil and upflow anaerobic sludge blanket reactor metagenomes which, together with the two publicly available TM6 genomes, represent seven distinct family level lineages in the TM6 phylum. Genome-based phylogenetic analysis confirms that TM6 is an independent phylum level lineage in the bacterial domain, possibly affiliated with the Patescibacteria superphylum. All seven genomes are small (1.0–1.5 Mb) and lack complete biosynthetic pathways for various essential cellular building blocks including amino acids, lipids, and nucleotides. These and other features identified in the TM6 genomes such as a degenerated cell envelope, ATP/ADP translocases for parasitizing host ATP pools, and protein motifs to facilitate eukaryotic host interactions indicate that parasitism is widespread in this phylum. Phylogenetic analysis of ATP/ADP translocase genes suggests that the ancestral TM6 lineage was also parasitic. We propose the name Dependentiae (phyl. nov.) to reflect dependence of TM6 bacteria on host organisms. PMID:26615204

  7. Phage or foe: an insight into the impact of viral predation on microbial communities.

    PubMed

    Fernández, Lucía; Rodríguez, Ana; García, Pilar

    2018-05-01

    Since their discovery, bacteriophages have been traditionally regarded as the natural enemies of bacteria. However, recent advances in molecular biology techniques, especially data from "omics" analyses, have revealed that the interplay between bacterial viruses and their hosts is far more intricate than initially thought. On the one hand, we have become more aware of the impact of viral predation on the composition and genetic makeup of microbial communities thanks to genomic and metagenomic approaches. Moreover, data obtained from transcriptomic, proteomic, and metabolomic studies have shown that responses to phage predation are complex and diverse, varying greatly depending on the bacterial host, phage, and multiplicity of infection. Interestingly, phage exposure may alter different phenotypes, including virulence and biofilm formation. The complexity of the interactions between microbes and their viral predators is also evidenced by the link between quorum-sensing signaling pathways and bacteriophage resistance. Overall, new data increasingly suggests that both temperate and virulent phages have a positive effect on the evolution and adaptation of microbial populations. From this perspective, further research is still necessary to fully understand the interactions between phage and host under conditions that allow co-existence of both populations, reflecting more accurately the dynamics in natural microbial communities.

  8. Seasonal variation in parasite infection patterns of marine fish species from the Northern Wadden Sea in relation to interannual temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Schade, Franziska M.; Raupach, Michael J.; Mathias Wegner, K.

    2016-07-01

    Marine environmental conditions are naturally changing throughout the year, affecting life cycles of hosts as well as parasites. In particular, water temperature is positively correlated with the development of many parasites and pathogenic bacteria, increasing the risk of infection and diseases during summer. Interannual temperature fluctuations are likely to alter host-parasite interactions, which may result in profound impacts on sensitive ecosystems. In this context we investigated the parasite and bacterial Vibrionaceae communities of four common small fish species (three-spined stickleback Gasterosteus aculeatus, Atlantic herring Clupea harengus, European sprat Sprattus sprattus and lesser sand eel Ammodytes tobianus) in the Northern Wadden Sea over a period of two years. Overall, we found significantly increased relative diversities of infectious species at higher temperature differentials. On the taxon-specific level some macroparasite species (trematodes, nematodes) showed a shift in infection peaks that followed the water temperatures of preceding months, whereas other parasite groups showed no effects of temperature differentials on infection parameters. Our results show that even subtle changes in seasonal temperatures may shift and modify the phenology of parasites as well as opportunistic pathogens that can have far reaching consequences for sensitive ecosystems.

  9. Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses

    PubMed Central

    Hébrard, Eugénie; Bessin, Yannick; Michon, Thierry; Longhi, Sonia; Uversky, Vladimir N; Delalande, François; Van Dorsselaer, Alain; Romero, Pedro; Walter, Jocelyne; Declerk, Nathalie; Fargette, Denis

    2009-01-01

    Background VPgs are viral proteins linked to the 5' end of some viral genomes. Interactions between several VPgs and eukaryotic translation initiation factors eIF4Es are critical for plant infection. However, VPgs are not restricted to phytoviruses, being also involved in genome replication and protein translation of several animal viruses. To date, structural data are still limited to small picornaviral VPgs. Recently three phytoviral VPgs were shown to be natively unfolded proteins. Results In this paper, we report the bacterial expression, purification and biochemical characterization of two phytoviral VPgs, namely the VPgs of Rice yellow mottle virus (RYMV, genus Sobemovirus) and Lettuce mosaic virus (LMV, genus Potyvirus). Using far-UV circular dichroism and size exclusion chromatography, we show that RYMV and LMV VPgs are predominantly or partly unstructured in solution, respectively. Using several disorder predictors, we show that both proteins are predicted to possess disordered regions. We next extend theses results to 14 VPgs representative of the viral diversity. Disordered regions were predicted in all VPg sequences whatever the genus and the family. Conclusion Based on these results, we propose that intrinsic disorder is a common feature of VPgs. The functional role of intrinsic disorder is discussed in light of the biological roles of VPgs. PMID:19220875

  10. Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli

    PubMed Central

    Williams, Elizabeth S.C.P.; Turner, Paul E.

    2016-01-01

    Background. How host-symbiont interactions coevolve between mutualism and parasitism depends on the ecology of the system and on the genetic and physiological constraints of the organisms involved. Theory often predicts that greater reliance on horizontal transmission favors increased costs of infection and may result in more virulent parasites or less beneficial mutualists. We set out to understand transitions between parasitism and mutualism by evolving the filamentous bacteriophage M13 and its host Escherichia coli. Results. The effect of phage M13 on bacterial fitness depends on the growth environment, and initial assays revealed that infected bacteria reproduce faster and to higher density than uninfected bacteria in 96-well microplates. These data suggested that M13 is, in fact, a facultative mutualist of E. coli. We then allowed E. coli and M13 to evolve in replicated environments, which varied in the relative opportunity for horizontal and vertical transmission of phage in order to assess the evolutionary stability of this mutualism. After 20 experimental passages, infected bacteria from treatments with both vertical and horizontal transmission of phage had evolved the fastest growth rates. At the same time, phage from these treatments no longer benefited the ancestral bacteria. Conclusions. These data suggest a positive correlation between the positive effects of M13 on E. coli hosts from the same culture and the negative effects of the same phage toward the ancestral bacterial genotype. The results also expose flaws in applying concepts from the virulence-transmission tradeoff hypothesis to mutualism evolution. We discuss the data in the context of more recent theory on how horizontal transmission affects mutualisms and explore how these effects influence phages encoding virulence factors in pathogenic bacteria. PMID:27257543

  11. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slezak, T; Borucki, M; Lenhoff, R

    2009-09-29

    virulence or host range genes. This approach will provide information that can be used by structural biologists to help develop therapeutics and vaccines. We have pointed out such high priority strains of which we are aware, and note that if any such isolates should be discovered, they will rise to the top priority. We anticipate difficulty locating samples with unusual resistance phenotypes, in particular. Sequencing strategies for isolates in queue 1 should aim for as complete finishing status as possible, since high-quality initial annotation (gene-calling) will be necessary for the follow-on protein structure analyses contributing to countermeasure development. Queue 2 for sequencing determination will be more dynamic than queue 1, and samples will be added to it as they become available to the TMTI program. 2. Selection of isolates that will provide broader information about diversity and phylogenetics and aid in specific detection as well as forensics. This approach focuses on sequencing of isolates that will provide better resolution of variants that are (or were) circulating in nature. The finishing strategy for queue 2 does not require complete closing with annotation. This queue is more static, as there is considerable phylogenetic data, and in this report we have sought to reveal gaps and make suggestions to fill them given existing sequence data and strain information. In this report we identify current sequencing gaps in both priority queue categories. Note that this is most applicable to the bacterial pathogens, as most viruses are by default in queue 1. The Phase I focus of this project is on viral hemorrhagic fever viruses and Category A bacterial agents as defined to us by TMTI. We have carried out individual analyses on each species of interest, and these are included as chapters in this report. Viruses and bacteria are biologically very distinct from each other and require different methods of analysis and criteria for sequencing prioritization. Therefore

  12. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.

    PubMed

    Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando

    2016-10-01

    African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF

  13. Sloth hair as a novel source of fungi with potent anti-parasitic, anti-cancer and anti-bacterial bioactivity.

    PubMed

    Higginbotham, Sarah; Wong, Weng Ruh; Linington, Roger G; Spadafora, Carmenza; Iturrado, Liliana; Arnold, A Elizabeth

    2014-01-01

    The extraordinary biological diversity of tropical forests harbors a rich chemical diversity with enormous potential as a source of novel bioactive compounds. Of particular interest are new environments for microbial discovery. Sloths--arboreal mammals commonly found in the lowland forests of Panama--carry a wide variety of micro- and macro-organisms on their coarse outer hair. Here we report for the first time the isolation of diverse and bioactive strains of fungi from sloth hair, and their taxonomic placement. Eighty-four isolates of fungi were obtained in culture from the surface of hair that was collected from living three-toed sloths (Bradypus variegatus, Bradypodidae) in Soberanía National Park, Republic of Panama. Phylogenetic analyses revealed a diverse group of Ascomycota belonging to 28 distinct operational taxonomic units (OTUs), several of which are divergent from previously known taxa. Seventy-four isolates were cultivated in liquid broth and crude extracts were tested for bioactivity in vitro. We found a broad range of activities against strains of the parasites that cause malaria (Plasmodium falciparum) and Chagas disease (Trypanosoma cruzi), and against the human breast cancer cell line MCF-7. Fifty fungal extracts were tested for antibacterial activity in a new antibiotic profile screen called BioMAP; of these, 20 were active against at least one bacterial strain, and one had an unusual pattern of bioactivity against Gram-negative bacteria that suggests a potentially new mode of action. Together our results reveal the importance of exploring novel environments for bioactive fungi, and demonstrate for the first time the taxonomic composition and bioactivity of fungi from sloth hair.

  14. Sloth Hair as a Novel Source of Fungi with Potent Anti-Parasitic, Anti-Cancer and Anti-Bacterial Bioactivity

    PubMed Central

    Higginbotham, Sarah; Wong, Weng Ruh; Linington, Roger G.; Spadafora, Carmenza; Iturrado, Liliana; Arnold, A. Elizabeth

    2014-01-01

    The extraordinary biological diversity of tropical forests harbors a rich chemical diversity with enormous potential as a source of novel bioactive compounds. Of particular interest are new environments for microbial discovery. Sloths – arboreal mammals commonly found in the lowland forests of Panama – carry a wide variety of micro- and macro-organisms on their coarse outer hair. Here we report for the first time the isolation of diverse and bioactive strains of fungi from sloth hair, and their taxonomic placement. Eighty-four isolates of fungi were obtained in culture from the surface of hair that was collected from living three-toed sloths (Bradypus variegatus, Bradypodidae) in Soberanía National Park, Republic of Panama. Phylogenetic analyses revealed a diverse group of Ascomycota belonging to 28 distinct operational taxonomic units (OTUs), several of which are divergent from previously known taxa. Seventy-four isolates were cultivated in liquid broth and crude extracts were tested for bioactivity in vitro. We found a broad range of activities against strains of the parasites that cause malaria (Plasmodium falciparum) and Chagas disease (Trypanosoma cruzi), and against the human breast cancer cell line MCF-7. Fifty fungal extracts were tested for antibacterial activity in a new antibiotic profile screen called BioMAP; of these, 20 were active against at least one bacterial strain, and one had an unusual pattern of bioactivity against Gram-negative bacteria that suggests a potentially new mode of action. Together our results reveal the importance of exploring novel environments for bioactive fungi, and demonstrate for the first time the taxonomic composition and bioactivity of fungi from sloth hair. PMID:24454729

  15. Role of parasitic vaccines in integrated control of parasitic diseases in livestock

    PubMed Central

    Sharma, Neelu; Singh, Veer; Shyma, K. P.

    2015-01-01

    Parasitic infections adversely affect animal’s health and threaten profitable animal production, thus affecting the economy of our country. These infections also play a major role in the spread of zoonotic diseases. Parasitic infections cause severe morbidity and mortality in animals especially those affecting the gastrointestinal system and thus affect the economy of livestock owner by decreasing the ability of the farmer to produce economically useful animal products. Due to all these reasons proper control of parasitic infection is critically important for sustained animal production. The most common and regularly used method to control parasitic infection is chemotherapy, which is very effective but has several disadvantages like drug resistance and drug residues. Integrated approaches to control parasitic infections should be formulated including grazing management, biological control, genetic resistance of hosts, and parasitic vaccines. India ranks first in cattle and buffalo population, but the majority of livestock owners have fewer herds, so other measures like grazing management, biological control, genetic resistance of hosts are not much practical to use. The most sustainable and economical approach to control parasitic infection in our country is to vaccinate animals, although vaccines increase the initial cost, but the immunity offered by the vaccine are long lived. Thus, vaccination of animals for various clinical, chronic, subclinical parasitic infections will be a cheaper and effective alternative to control parasitic infection for long time and improve animal production. PMID:27047140

  16. Viral etiology of aseptic meningitis among children in southern Iran.

    PubMed

    Hosseininasab, Ali; Alborzi, Abdolvahab; Ziyaeyan, Mazyar; Jamalidoust, Marzieh; Moeini, Mahsa; Pouladfar, Gholamreza; Abbasian, Amin; Kadivar, Mohamad Rahim

    2011-05-01

    Aseptic meningitis refers to a clinical syndrome of meningeal inflammation in which bacteria cannot be identified in the cerebrospinal fluid (CSF). The viral etiology and the epidemiological, clinical, and laboratory characteristics of aseptic meningitis among children aged 2 months to 15 years in Shiraz, southern Iran were determined. From May 2007 to April 2008, 65 patients were admitted to the hospital with aseptic meningitis. Seven viruses, non-polio human enteroviruses, mumps virus, herpes simplex virus (HSV), varicella-zoster virus (VZV), human cytomegalovirus (HCMV), human herpes virus type 6 (HHV-6), and Epstein-Barr virus (EBV) were investigated by polymerase chain reaction (PCR) method. Viruses were detected in 30 (46.2%) patients in whom non-polio human enterovirus and mumps virus were detected in 13 (43.3%) and 11 (36.7%), respectively. The remaining 6 (20%) of the cases were caused by HSV, VZV, HCMV, and HHV-6. Haemophilus influenzae and non-polio human enterovirus were detected in one patient simultaneously. Viral meningitis was found to be more frequent during spring and summer. The majority (66.6%) of the patients were treated in the hospital for 10 days and had received antibiotics in the case of bacterial meningitis. Rapid diagnosis of viral meningitis using PCR testing of CSF can help shorten hospitalization, and avoid the unnecessary use of antibiotics. Copyright © 2011 Wiley-Liss, Inc.

  17. Parasites in marine food webs

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  18. The Protein Kinase Double-Stranded RNA-Dependent (PKR) Enhances Protection against Disease Cause by a Non-Viral Pathogen

    PubMed Central

    White, Christine L.; Patel, Krupen; Lamb, Bruce; Sen, Ganes C.; Subauste, Carlos S.

    2013-01-01

    PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR−/− mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway. PMID:23990781

  19. Specific interactions between host and parasite genotypes do not act as a constraint on the evolution of antiviral resistance in Drosophila.

    PubMed

    Carpenter, Jennifer A; Hadfield, Jarrod D; Bangham, Jenny; Jiggins, Francis M

    2012-04-01

    Genetic correlations between parasite resistance and other traits can act as an evolutionary constraint and prevent a population from evolving increased resistance. For example, previous studies have found negative genetic correlations between host resistance and life-history traits. In invertebrates, the level of resistance often depends on the combination of the host and parasite genotypes, and in this study, we have investigated whether such specific resistance also acts as an evolutionary constraint. We measured the resistance of different genotypes of the fruit fly Drosophila melanogaster to different genotypes of a naturally occurring pathogen, the sigma virus. Using a multitrait analysis, we examine whether genetic covariances alter the potential to select for general resistance against all of the different viral genotypes. We found large amounts of heritable variation in resistance, and evidence for specific interactions between host and parasite, but these interactions resulted in little constraint on Drosophila evolving greater resistance. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  20. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections.

    PubMed

    Houssin, Timothée; Cramer, Jérémy; Grojsman, Rébecca; Bellahsene, Lyes; Colas, Guillaume; Moulet, Hélène; Minnella, Walter; Pannetier, Christophe; Leberre, Maël; Plecis, Adrien; Chen, Yong

    2016-04-21

    To control future infectious disease outbreaks, like the 2014 Ebola epidemic, it is necessary to develop ultrafast molecular assays enabling rapid and sensitive diagnoses. To that end, several ultrafast real-time PCR systems have been previously developed, but they present issues that hinder their wide adoption, notably regarding their sensitivity and detection volume. An ultrafast, sensitive and large-volume real-time PCR system based on microfluidic thermalization is presented herein. The method is based on the circulation of pre-heated liquids in a microfluidic chip that thermalize the PCR chamber by diffusion and ultrafast flow switches. The system can achieve up to 30 real-time PCR cycles in around 2 minutes, which makes it the fastest PCR thermalization system for regular sample volume to the best of our knowledge. After biochemical optimization, anthrax and Ebola simulating agents could be respectively detected by a real-time PCR in 7 minutes and a reverse transcription real-time PCR in 7.5 minutes. These detections are respectively 6.4 and 7.2 times faster than with an off-the-shelf apparatus, while conserving real-time PCR sample volume, efficiency, selectivity and sensitivity. The high-speed thermalization also enabled us to perform sharp melting curve analyses in only 20 s and to discriminate amplicons of different lengths by rapid real-time PCR. This real-time PCR microfluidic thermalization system is cost-effective, versatile and can be then further developed for point-of-care, multiplexed, ultrafast and highly sensitive molecular diagnoses of bacterial and viral diseases.

  1. Clinical characteristics of children with viral single- and co-infections and a petechial rash.

    PubMed

    Schneider, Henriette; Adams, Ortwin; Weiss, Christel; Merz, Ulrich; Schroten, Horst; Tenenbaum, Tobias

    2013-05-01

    Children with petechial rash are more likely to undergo invasive diagnostics, to be treated with antibiotics for potential bacterial infection and to be hospitalized. However, viruses have also been associated with petechial rash. Nonetheless, a systematic analysis of viral infections with modern available techniques as quantitative real-time polymerase chain reaction in the context of petechial rash is lacking. The purpose of this pediatric study was to prospectively uncover viral pathogens that may promote the emergence of petechiae and to analyze the correlation with the clinical characteristics and course. We conducted a prospective study in children (0 to 18 years) presenting with petechiae and signs or symptoms of infection at the emergency department between November 2009 and March 2012. In nasopharyngeal aspirates the following viruses were analyzed by quantitative real-time polymerase chain reaction: cytomegalovirus, Epstein-Barr virus, parvovirus B19, influenza A and B, parainfluenza viruses, human respiratory syncytial virus A and B, human metapneumovirus, rhinovirus, enterovirus, adenovirus, human coronavirus OC43, 229E, NL63 and human bocavirus. A viral pathogen was identified in 67% of the analyzed 58 cases with petechial rash. Virus positive patients showed a significantly higher incidence of lower respiratory tract infections. Forty-one percent were viral coinfections, which were significantly younger than virus negative patients, had a higher leukocyte count and were hospitalized for a longer time. A petechial rash is frequently associated viral single- and coinfections and can rapidly be identified via quantitative real-time polymerase chain reaction.

  2. Viral Regulation of Prokaryotic Carbon Metabolism in a Hypereutrophic Freshwater Reservoir Ecosystem (Villerest, France)

    PubMed Central

    Pradeep Ram, Angia Sriram; Colombet, Jonathan; Perriere, Fanny; Thouvenot, Antoine; Sime-Ngando, Télesphore

    2016-01-01

    The current consensus concerning the viral regulation of prokaryotic carbon metabolism is less well-studied, compared to substrate availability. We explored the seasonal and vertical distribution of viruses and its relative influence on prokaryotic carbon metabolism in a hypereutrophic reservoir, Lake Villerest (France). Flow cytometry and transmission electron microscopy (TEM) analyses to determine viral abundance (VA; range = 6.1–63.5 × 107 ml-1) and viral infection rates of prokaryotes (range = 5.3–32%) respectively suggested that both the parameters varied more significantly with depths than with seasons. Prokaryotic growth efficiency (PGE, considered as a proxy of prokaryotic carbon metabolism) calculated from prokaryotic production and respiration measurements (PGE = prokaryotic production/[prokaryotic production + prokaryotic respiration] × 100) varied from 14 to 80% across seasons and depths. Viruses through selective lyses had antagonistic impacts on PGE by regulating key prokaryotic metabolic processes (i.e., production and respiration). Higher viral lysis accompanied by higher respiration rates and lower PGE in the summer (mean = 22.9 ± 10.3%) than other seasons (mean = 59.1 ± 18.6%), led to significant loss of carbon through bacterial-viral loop and shifted the reservoir system to net heterotrophy. Our data therefore suggests that the putative adverse impact of viruses on the growth efficiency of the prokaryotic community can have strong implications on nutrient flux patterns and on the overall ecosystem metabolism in anthropogenic dominated aquatic systems such as Lake Villerest. PMID:26903963

  3. Reduction of parasitic lasing

    NASA Technical Reports Server (NTRS)

    Storm, Mark E. (Inventor)

    1994-01-01

    A technique was developed which carefully retro-reflects precisely controlled amounts of light back into a laser system thereby intentionally forcing the laser system components to oscillate in a new resonator called the parasitic oscillator. The parasitic oscillator uses the laser system to provide the gain and an external mirror is used to provide the output coupling of the new resonator. Any change of gain or loss inside the new resonator will directly change the lasing threshold of the parasitic oscillator. This change in threshold can be experimentally measured as a change in the absolute value of reflectivity, provided by the external mirror, necessary to achieve lasing in the parasitic oscillator. Discrepancies between experimental data and a parasitic oscillator model are direct evidence of optical misalignment or component performance problems. Any changes in the optical system can instantly be measured as a change in threshold for the parasitic oscillator. This technique also enables aligning the system for maximum parasitic suppression with the system fully operational.

  4. How have fisheries affected parasite communities?

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  5. Viruses of parasites as actors in the parasite-host relationship: A "ménage à trois".

    PubMed

    Gómez-Arreaza, Amaranta; Haenni, Anne-Lise; Dunia, Irene; Avilán, Luisana

    2017-02-01

    The complex parasite-host relationship involves multiple mechanisms. Moreover, parasites infected by viruses modify this relationship adding more complexity to the system that now comprises three partners. Viruses infecting parasites were described several decades ago. However, until recently little was known about the viruses involved and their impact on the resulting disease caused to the hosts. To clarify this situation, we have concentrated on parasitic diseases caused to humans and on how virus-infected parasites could alter the symptoms inflicted on the human host. It is clear that the effect caused to the human host depends on the virus and on the parasite it has infected. Consequently, the review is divided as follows: Viruses with a possible effect on the virulence of the parasite. This section reviews pertinent articles showing that infection of parasites by viruses might increase the detrimental effect of the tandem virus-parasite on the human host (hypervirulence) or decrease virulence of the parasite (hypovirulence). Parasites as vectors affecting the transmission of viruses. In some cases, the virus-infected parasite might facilitate the transfer of the virus to the human host. Parasites harboring viruses with unidentified effects on their host. In spite of recently renewed interest in parasites in connection with their viruses, there still remains a number of cases in which the effect of the virus of a given parasite on the human host remains ambiguous. The triangular relationship between the virus, the parasite and the host, and the modulation of the pathogenicity and virulence of the parasites by viruses should be taken into account in the rationale of fighting against parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Predation on transmission stages reduces parasitism: sea anemones consume transmission stages of a barnacle parasite.

    PubMed

    Fong, Caitlin R; Kuris, Armand M

    2017-06-01

    While parasites serve as prey, it is unclear how the spatial distribution of parasite predators provides transmission control and influences patterns of parasitism. Because many of its organisms are sessile, the rocky intertidal zone is a valuable but little used system to understand spatial patterns of parasitism and elucidate the underlying mechanisms driving these patterns. Sea anemones and barnacles are important space competitors in the rocky intertidal zone along the Pacific coast of North America. Anemones are voracious, indiscriminate predators; thus, they may intercept infectious stages of parasites before they reach a host. We investigate whether a sea anemone protects an associated barnacle from parasitism by Hemioniscus balani, an isopod parasitic castrator. At Coal Oil Point, Santa Barbara, California USA, 29% of barnacles were within 1 cm from an anemone at the surveyed tidal height. Barnacles associated with anemones had reduced parasite prevalence and higher reproductive productivity than those remote from sea anemones. In the laboratory, anemones readily consumed the transmission stage of the parasite. Hence, anemone consumption of parasite transmission stages may provide a mechanism by which community context regulates parasite prevalence at a local scale. Our results suggest predation may be an important process providing parasite transmission control.

  7. Sequencing Needs for Viral Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S N; Lam, M; Mulakken, N J

    2004-01-26

    We built a system to guide decisions regarding the amount of genomic sequencing required to develop diagnostic DNA signatures, which are short sequences that are sufficient to uniquely identify a viral species. We used our existing DNA diagnostic signature prediction pipeline, which selects regions of a target species genome that are conserved among strains of the target (for reliability, to prevent false negatives) and unique relative to other species (for specificity, to avoid false positives). We performed simulations, based on existing sequence data, to assess the number of genome sequences of a target species and of close phylogenetic relatives (''nearmore » neighbors'') that are required to predict diagnostic signature regions that are conserved among strains of the target species and unique relative to other bacterial and viral species. For DNA viruses such as variola (smallpox), three target genomes provide sufficient guidance for selecting species-wide signatures. Three near neighbor genomes are critical for species specificity. In contrast, most RNA viruses require four target genomes and no near neighbor genomes, since lack of conservation among strains is more limiting than uniqueness. SARS and Ebola Zaire are exceptional, as additional target genomes currently do not improve predictions, but near neighbor sequences are urgently needed. Our results also indicate that double stranded DNA viruses are more conserved among strains than are RNA viruses, since in most cases there was at least one conserved signature candidate for the DNA viruses and zero conserved signature candidates for the RNA viruses.« less

  8. Host and parasite morphology influence congruence between host and parasite phylogenies.

    PubMed

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. Phage selection for bacterial cheats leads to population decline

    PubMed Central

    Vasse, Marie; Torres-Barceló, Clara; Hochberg, Michael E.

    2015-01-01

    While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. PMID:26538598

  10. Isolation of prawn ( Exopalaemon carinicauda) lipopolysaccharide and β-1, 3-glucan binding protein gene and its expression in responding to bacterial and viral infections

    NASA Astrophysics Data System (ADS)

    Ge, Qianqian; Li, Jian; Duan, Yafei; Li, Jitao; Sun, Ming; Zhao, Fazhen

    2016-04-01

    The pattern recognition proteins (PRPs) play a major role in immune response of crustacean to resist pathogens. In the present study, as one of PRPs, lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) gene in the ridge tail white prawn ( Exopalaemon carinicauda) ( EcLGBP) was isolated. The full-length cDNA of EcLGBP was 1338 bp, encoding a polypeptide of 366 amino acid residules. The deduced amino acid sequence of EcLGBP shared high similarities with LGBP and BGBP from other crustaceans. Some conservative domains were predicted in EcLGBP sequence. EcLGBP constitutively expressed in most tissues at different levels, and the highest expression was observed in hepatopancreas. With infection time, the cumulative mortality increased gradually followed by the proliferation of Vibrio parahaemolyticus and white spot syndrome virus (WSSV). The expression of EcLGBP in response to V. parahaemolyticus infection was up-regulated in hemocytes and hepatopancreas, and the up-regulation in hepatopancreas was earlier than that in hemocytes. EcLGBP expression after WSSV infection increased at 3 h, then significantly decreased in both hemocytes and hepatopancreas. The results indicated that EcLGBP was involved in the immune defense against bacterial and viral infections.

  11. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts.

    PubMed

    Emelianoff, Vanya; Chapuis, Elodie; Le Brun, Nathalie; Chiral, Magali; Moulia, Catherine; Ferdy, Jean-Baptiste

    2008-04-01

    In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.

  12. Parasites in harbour seals ( Phoca vitulina) from the German Wadden Sea between two Phocine Distemper Virus epidemics

    NASA Astrophysics Data System (ADS)

    Lehnert, K.; Raga, J. A.; Siebert, U.

    2007-12-01

    Parasites were collected from 107 harbour seals ( Phoca vitulina) found on the coasts of Schleswig-Holstein, Germany, between 1997 and 2000. The prevalence of the parasites and their associated pathology were investigated. Eight species of parasites, primarily nematodes, were identified from the examined organs: two anisakid nematodes ( Pseudoterranova decipiens (sensu lato) , Contracaecum osculatum (sensu lato)) from the stomach, Otostrongylus circumlitus (Crenosomatidae) and Parafilaroides gymnurus (Filaroididae) from the respiratory tract, one filarioid nematode ( Acanthocheilonema spirocauda) from the heart, two acanthocephalans, Corynosoma strumosum and C. semerme (Polymorphidae), from the intestine and an ectoparasite, Echinophthirius horridus (Anoplura, Insecta). Lungworm infection was the most prominent parasitological finding and secondary bacterial bronchopneumonia the most pathogenic lesion correlated with the parasites. Heavy nematode burdens in the respiratory tract were highly age-related and more frequent in young seals. A positive correlation was observed between high levels of pulmonary infection and severity of bronchopneumonia. The prevalence of lungworms in this study was higher than in seals that died during the 1988/1989 Phocine Distemper Virus epidemic, and the prevalence of acanthocephalans and heartworms had decreased compared to findings from the first die-off.

  13. Niche metabolism in parasitic protozoa

    PubMed Central

    Ginger, Michael L

    2005-01-01

    Complete or partial genome sequences have recently become available for several medically and evolutionarily important parasitic protozoa. Through the application of bioinformatics complete metabolic repertoires for these parasites can be predicted. For experimentally intractable parasites insight provided by metabolic maps generated in silico has been startling. At its more extreme end, such bioinformatics reckoning facilitated the discovery in some parasites of mitochondria remodelled beyond previous recognition, and the identification of a non-photosynthetic chloroplast relic in malarial parasites. However, for experimentally tractable parasites, mapping of the general metabolic terrain is only a first step in understanding how the parasite modulates its streamlined, yet still often puzzlingly complex, metabolism in order to complete life cycles within host, vector, or environment. This review provides a comparative overview and discussion of metabolic strategies used by several different parasitic protozoa in order to subvert and survive host defences, and illustrates how genomic data contribute to the elucidation of parasite metabolism. PMID:16553311

  14. Canine viral infections.

    PubMed

    Willis, A M

    2000-09-01

    The ophthalmic effects of viral infection are varied. With the added possibility for pathologic effects of attenuated vaccine viruses, the diagnosis of viral diseases can be a challenge. In many cases, ocular manifestations can provide added support to a presumptive diagnosis of viral disease, thereby underscoring the benefit of thorough ophthalmic examination of any animal with nonspecific signs of illness.

  15. Viral Epitranscriptomics

    PubMed Central

    Kennedy, Edward M.; Courtney, David G.; Tsai, Kevin

    2017-01-01

    ABSTRACT Although it has been known for over 40 years that eukaryotic mRNAs bear internal base modifications, it is only in the last 5 years that the importance of these modifications has begun to come into focus. The most common mRNA modification, the addition of a methyl group to the N6 position of adenosine (m6A), has been shown to affect splicing, translation, and stability, and m6A is also essential for embryonic development in organisms ranging from plants to mice. While all viral transcripts examined so far have been found to be extensively m6A modified, the role, if any, of m6A in regulating viral gene expression and replication was previously unknown. However, recent data generated using HIV-1 as a model system strongly suggest that sites of m6A addition not only are evolutionarily conserved but also enhance virus replication. It is therefore likely that the field of viral epitranscriptomics, which can be defined as the study of functionally relevant posttranscriptional modifications of viral RNA transcripts that do not change the nucleotide sequence of that RNA, is poised for a major expansion in scientific interest and may well fundamentally change our understanding of how viral replication is regulated. PMID:28250115

  16. Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs.

    PubMed

    Hoover, Jeffrey P; Robinson, Scott K

    2007-03-13

    Why do many hosts accept costly avian brood parasitism even when parasitic eggs and nestlings differ dramatically in appearance from their own? Scientists argue that evolutionary lag or equilibrium can explain this evolutionary enigma. Few, however, consider the potential of parasitic birds to enforce acceptance by destroying eggs or nestlings of hosts that eject parasitic eggs and thereby reject parasitism. This retaliatory "mafia" behavior has been reported in one species of parasitic cuckoo but never in parasitic cowbirds. Here we present experimental evidence of mafia behavior in the brown-headed cowbird (Molothrus ater), a widely distributed North American brood parasite. We manipulated ejection of cowbird eggs and cowbird access to predator-proof nests in a common host to test experimentally for mafia behavior. When cowbird access was allowed, 56% of "ejector" nests were depredated compared with only 6% of "accepter" nests. No nests were destroyed when cowbird access was always denied or when access was denied after we removed cowbird eggs, indicating that cowbirds were responsible. Nonparasitized nests were depredated at an intermediate rate (20%) when cowbirds were allowed access, suggesting that cowbirds may occasionally "farm" hosts to create additional opportunities for parasitism. Cowbirds parasitized most (85%) renests of the hosts whose nests were depredated. Ejector nests produced 60% fewer host offspring than accepter nests because of the predatory behavior attributed to cowbirds. Widespread predatory behaviors in cowbirds could slow the evolution of rejection behaviors and further threaten populations of some of the >100 species of regular cowbird hosts.

  17. Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs

    PubMed Central

    Hoover, Jeffrey P.; Robinson, Scott K.

    2007-01-01

    Why do many hosts accept costly avian brood parasitism even when parasitic eggs and nestlings differ dramatically in appearance from their own? Scientists argue that evolutionary lag or equilibrium can explain this evolutionary enigma. Few, however, consider the potential of parasitic birds to enforce acceptance by destroying eggs or nestlings of hosts that eject parasitic eggs and thereby reject parasitism. This retaliatory “mafia” behavior has been reported in one species of parasitic cuckoo but never in parasitic cowbirds. Here we present experimental evidence of mafia behavior in the brown-headed cowbird (Molothrus ater), a widely distributed North American brood parasite. We manipulated ejection of cowbird eggs and cowbird access to predator-proof nests in a common host to test experimentally for mafia behavior. When cowbird access was allowed, 56% of “ejector” nests were depredated compared with only 6% of “accepter” nests. No nests were destroyed when cowbird access was always denied or when access was denied after we removed cowbird eggs, indicating that cowbirds were responsible. Nonparasitized nests were depredated at an intermediate rate (20%) when cowbirds were allowed access, suggesting that cowbirds may occasionally “farm” hosts to create additional opportunities for parasitism. Cowbirds parasitized most (85%) renests of the hosts whose nests were depredated. Ejector nests produced 60% fewer host offspring than accepter nests because of the predatory behavior attributed to cowbirds. Widespread predatory behaviors in cowbirds could slow the evolution of rejection behaviors and further threaten populations of some of the >100 species of regular cowbird hosts. PMID:17360549

  18. From the microbiome to the central nervous system, an update on the epidemiology and pathogenesis of bacterial meningitis in childhood

    PubMed Central

    Janowski, Andrew B; Newland, Jason G

    2017-01-01

    In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with Streptococcus agalactiae. We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis. PMID:28184287

  19. Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    PubMed Central

    Conrad, Melissa D.; Gorman, Andrew W.; Schillinger, Julia A.; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E.; Carlton, Jane M.

    2012-01-01

    Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease. PMID:22479659

  20. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    PubMed

    Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M

    2012-01-01

    Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  1. Racial and Ethnic Differences in Antibiotic Use for Viral Illness in Emergency Departments.

    PubMed

    Goyal, Monika K; Johnson, Tiffani J; Chamberlain, James M; Casper, T Charles; Simmons, Timothy; Alessandrini, Evaline A; Bajaj, Lalit; Grundmeier, Robert W; Gerber, Jeffrey S; Lorch, Scott A; Alpern, Elizabeth R

    2017-10-01

    In the primary care setting, there are racial and ethnic differences in antibiotic prescribing for acute respiratory tract infections (ARTIs). Viral ARTIs are commonly diagnosed in the pediatric emergency department (PED), in which racial and ethnic differences in antibiotic prescribing have not been previously reported. We sought to investigate whether patient race and ethnicity was associated with differences in antibiotic prescribing for viral ARTIs in the PED. This is a retrospective cohort study of encounters at 7 PEDs in 2013, in which we used electronic health data from the Pediatric Emergency Care Applied Research Network Registry. Multivariable logistic regression was used to examine the association between patient race and ethnicity and antibiotics administered or prescribed among children discharged from the hospital with viral ARTI. Children with bacterial codiagnoses, chronic disease, or who were immunocompromised were excluded. Covariates included age, sex, insurance, triage level, provider type, emergency department type, and emergency department site. Of 39 445 PED encounters for viral ARTIs that met inclusion criteria, 2.6% (95% confidence interval [CI] 2.4%-2.8%) received antibiotics, including 4.3% of non-Hispanic (NH) white, 1.9% of NH black, 2.6% of Hispanic, and 2.9% of other NH children. In multivariable analyses, NH black (adjusted odds ratio [aOR] 0.44; CI 0.36-0.53), Hispanic (aOR 0.65; CI 0.53-0.81), and other NH (aOR 0.68; CI 0.52-0.87) children remained less likely to receive antibiotics for viral ARTIs. Compared with NH white children, NH black and Hispanic children were less likely to receive antibiotics for viral ARTIs in the PED. Future research should seek to understand why racial and ethnic differences in overprescribing exist, including parental expectations, provider perceptions of parental expectations, and implicit provider bias. Copyright © 2017 by the American Academy of Pediatrics.

  2. Parasite Microbiome Project: Systematic Investigation of Microbiome Dynamics within and across Parasite-Host Interactions.

    PubMed

    Dheilly, Nolwenn M; Bolnick, Daniel; Bordenstein, Seth; Brindley, Paul J; Figuères, Cédric; Holmes, Edward C; Martínez Martínez, Joaquín; Phillips, Anna J; Poulin, Robert; Rosario, Karyna

    2017-01-01

    Understanding how microbiomes affect host resistance, parasite virulence, and parasite-associated diseases requires a collaborative effort between parasitologists, microbial ecologists, virologists, and immunologists. We hereby propose the Parasite Microbiome Project to bring together researchers with complementary expertise and to study the role of microbes in host-parasite interactions. Data from the Parasite Microbiome Project will help identify the mechanisms driving microbiome variation in parasites and infected hosts and how that variation is associated with the ecology and evolution of parasites and their disease outcomes. This is a call to arms to prevent fragmented research endeavors, encourage best practices in experimental approaches, and allow reliable comparative analyses across model systems. It is also an invitation to foundations and national funding agencies to propel the field of parasitology into the microbiome/metagenomic era.

  3. A Host-Based RT-PCR Gene Expression Signature to Identify Acute Respiratory Viral Infection

    PubMed Central

    Zaas, Aimee K.; Burke, Thomas; Chen, Minhua; McClain, Micah; Nicholson, Bradly; Veldman, Timothy; Tsalik, Ephraim L.; Fowler, Vance; Rivers, Emanuel P.; Otero, Ronny; Kingsmore, Stephen F.; Voora, Deepak; Lucas, Joseph; Hero, Alfred O.; Carin, Lawrence; Woods, Christopher W.; Ginsburg, Geoffrey S.

    2014-01-01

    Improved ways to diagnose acute respiratory viral infections could decrease inappropriate antibacterial use and serve as a vital triage mechanism in the event of a potential viral pandemic. Measurement of the host response to infection is an alternative to pathogen-based diagnostic testing and may improve diagnostic accuracy. We have developed a host-based assay with a reverse transcription polymerase chain reaction (RT-PCR) TaqMan low-density array (TLDA) platform for classifying respiratory viral infection. We developed the assay using two cohorts experimentally infected with influenza A H3N2/Wisconsin or influenza A H1N1/Brisbane, and validated the assay in a sample of adults presenting to the emergency department with fever (n = 102) and in healthy volunteers (n = 41). Peripheral blood RNA samples were obtained from individuals who underwent experimental viral challenge or who presented to the emergency department and had microbiologically proven viral respiratory infection or systemic bacterial infection. The selected gene set on the RT-PCR TLDA assay classified participants with experimentally induced influenza H3N2 and H1N1 infection with 100 and 87% accuracy, respectively. We validated this host gene expression signature in a cohort of 102 individuals arriving at the emergency department. The sensitivity of the RT-PCR test was 89% [95% confidence interval (CI), 72 to 98%], and the specificity was 94% (95% CI, 86 to 99%). These results show that RT-PCR–based detection of a host gene expression signature can classify individuals with respiratory viral infection and sets the stage for prospective evaluation of this diagnostic approach in a clinical setting. PMID:24048524

  4. Inevitability of Genetic Parasites

    PubMed Central

    Iranzo, Jaime; Puigbò, Pere; Lobkovsky, Alexander E.; Wolf, Yuri I.

    2016-01-01

    Abstract Almost all cellular life forms are hosts to diverse genetic parasites with various levels of autonomy including plasmids, transposons and viruses. Theoretical modeling of the evolution of primordial replicators indicates that parasites (cheaters) necessarily evolve in such systems and can be kept at bay primarily via compartmentalization. Given the (near) ubiquity, abundance and diversity of genetic parasites, the question becomes pertinent: are such parasites intrinsic to life? At least in prokaryotes, the persistence of parasites is linked to the rate of horizontal gene transfer (HGT). We mathematically derive the threshold value of the minimal transfer rate required for selfish element persistence, depending on the element duplication and loss rates as well as the cost to the host. Estimation of the characteristic gene duplication, loss and transfer rates for transposons, plasmids and virus-related elements in multiple groups of diverse bacteria and archaea indicates that most of these rates are compatible with the long term persistence of parasites. Notably, a small but non-zero rate of HGT is also required for the persistence of non-parasitic genes. We hypothesize that cells cannot tune their horizontal transfer rates to be below the threshold required for parasite persistence without experiencing highly detrimental side-effects. As a lower boundary to the minimum DNA transfer rate that a cell can withstand, we consider the process of genome degradation and mutational meltdown of populations through Muller’s ratchet. A numerical assessment of this hypothesis suggests that microbial populations cannot purge parasites while escaping Muller’s ratchet. Thus, genetic parasites appear to be virtually inevitable in cellular organisms. PMID:27503291

  5. Parasites and marine invasions

    USGS Publications Warehouse

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  6. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the

  7. Northeast India Helminth Parasite Information Database (NEIHPID): Knowledge Base for Helminth Parasites.

    PubMed

    Biswal, Devendra Kumar; Debnath, Manish; Kharumnuid, Graciously; Thongnibah, Welfrank; Tandon, Veena

    2016-01-01

    Most metazoan parasites that invade vertebrate hosts belong to three phyla: Platyhelminthes, Nematoda and Acanthocephala. Many of the parasitic members of these phyla are collectively known as helminths and are causative agents of many debilitating, deforming and lethal diseases of humans and animals. The North-East India Helminth Parasite Information Database (NEIHPID) project aimed to document and characterise the spectrum of helminth parasites in the north-eastern region of India, providing host, geographical distribution, diagnostic characters and image data. The morphology-based taxonomic data are supplemented with information on DNA sequences of nuclear, ribosomal and mitochondrial gene marker regions that aid in parasite identification. In addition, the database contains raw next generation sequencing (NGS) data for 3 foodborne trematode parasites, with more to follow. The database will also provide study material for students interested in parasite biology. Users can search the database at various taxonomic levels (phylum, class, order, superfamily, family, genus, and species), or by host, habitat and geographical location. Specimen collection locations are noted as co-ordinates in a MySQL database and can be viewed on Google maps, using Google Maps JavaScript API v3. The NEIHPID database has been made freely available at http://nepiac.nehu.ac.in/index.php.

  8. Northeast India Helminth Parasite Information Database (NEIHPID): Knowledge Base for Helminth Parasites

    PubMed Central

    Debnath, Manish; Kharumnuid, Graciously; Thongnibah, Welfrank; Tandon, Veena

    2016-01-01

    Most metazoan parasites that invade vertebrate hosts belong to three phyla: Platyhelminthes, Nematoda and Acanthocephala. Many of the parasitic members of these phyla are collectively known as helminths and are causative agents of many debilitating, deforming and lethal diseases of humans and animals. The North-East India Helminth Parasite Information Database (NEIHPID) project aimed to document and characterise the spectrum of helminth parasites in the north-eastern region of India, providing host, geographical distribution, diagnostic characters and image data. The morphology-based taxonomic data are supplemented with information on DNA sequences of nuclear, ribosomal and mitochondrial gene marker regions that aid in parasite identification. In addition, the database contains raw next generation sequencing (NGS) data for 3 foodborne trematode parasites, with more to follow. The database will also provide study material for students interested in parasite biology. Users can search the database at various taxonomic levels (phylum, class, order, superfamily, family, genus, and species), or by host, habitat and geographical location. Specimen collection locations are noted as co-ordinates in a MySQL database and can be viewed on Google maps, using Google Maps JavaScript API v3. The NEIHPID database has been made freely available at http://nepiac.nehu.ac.in/index.php PMID:27285615

  9. Molecular evidence for host-parasite co-speciation between lizards and Schellackia parasites.

    PubMed

    Megía-Palma, Rodrigo; Martínez, Javier; Cuervo, José J; Belliure, Josabel; Jiménez-Robles, Octavio; Gomes, Verónica; Cabido, Carlos; Pausas, Juli G; Fitze, Patrick S; Martín, José; Merino, Santiago

    2018-05-05

    Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ∼35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host-parasite

  10. Efficacy and safety of withholding antimicrobial treatment in children with cancer, fever and neutropenia, with a demonstrated viral respiratory infection: a randomized clinical trial.

    PubMed

    Santolaya, M E; Alvarez, A M; Acuña, M; Avilés, C L; Salgado, C; Tordecilla, J; Varas, M; Venegas, M; Villarroel, M; Zubieta, M; Toso, A; Bataszew, A; Farfán, M J; de la Maza, V; Vergara, A; Valenzuela, R; Torres, J P

    2017-03-01

    To determine efficacy and safety of withholding antimicrobials in children with cancer, fever and neutropenia (FN) with a demonstrated respiratory viral infection. Prospective, multicentre, randomized study in children presenting with FN at five hospitals in Santiago, Chile, evaluated at admission for diagnosis of bacterial and viral pathogens including PCR-microarray for 17 respiratory viruses. Children positive for a respiratory virus, negative for a bacterial pathogen and with a favourable evolution after 48 h of antimicrobial therapy were randomized to either maintain or withhold antimicrobials. Primary endpoint was percentage of episodes with uneventful resolution. Secondary endpoints were days of fever/hospitalization, bacterial infection, sepsis, admission to paediatric intensive care unit (PICU) and death. A total of 319 of 951 children with FN episodes recruited between July 2012 and December 2015 had a respiratory virus as a unique identified microorganism, of which 176 were randomized, 92 to maintain antimicrobials and 84 to withdraw. Median duration of antimicrobial use was 7 days (range 7-9 days) versus 3 days (range 3-4 days), with similar frequency of uneventful resolution (89/92 (97%) and 80/84 (95%), respectively, not significant; OR 1.48; 95% CI 0.32-6.83, p 0.61), and similar number of days of fever (2 versus 1), days of hospitalization (6 versus 6) and bacterial infections throughout the episode (2%-1%), with one case of sepsis requiring admission to PICU in the group that maintained antimicrobials, without any deaths. The reduction of antimicrobials in children with FN and respiratory viral infections, based on clinical and microbiological/molecular diagnostic criteria, should favour the adoption of evidence-based management strategies in this population. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Peroxiredoxins in Parasites

    PubMed Central

    Gretes, Michael C.; Poole, Leslie B.

    2012-01-01

    Abstract Significance: Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. Recent Advances: Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. Critical Issues: The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. Future Directions: The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed. Antioxid. Redox Signal. 17, 608–633. PMID:22098136

  12. Viral Disease Networks?

    NASA Astrophysics Data System (ADS)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  13. Pathology Associated with White Spot Virus (WSV) Infection in Wild Broodstock of Tiger Prawns (Penaeus monodon)

    PubMed Central

    Kua, Beng Chu; Rashid, Noraziah Mat

    2012-01-01

    A total of six wild broodstocks of tiger prawns, Penaeus monodon, were found positive for White Spot Virus (WSV) with an IQ2000 detection kit. Using histopathology, the intranuclear inclusion of haemocyte due to WSV infection was observed in the epithelium cells of the antennal gland, stomach and gills. This result confirmed that the wild broodstocks were positive with WSV without showing any white spot. Additionally, histopathological examination also revealed an accumulation of haemocytes around the hepatopancreatic tubules resulting from bacterial infection. Encapsulation and nodule formation, as well as related necrosis, were also observed around the hepatopancreatic tubules infected with a metazoan parasite. Encysted tylocephalum larval cestodes were observed in the hepatopancreas, with haemocytic aggregation being observed around the infected tubules. These findings showed some bacterial and parasitic infections which, in addition to the viral infection itself, could contribute to the 80% mortality rate in wild broodstocks infected with WSV. PMID:24575228

  14. [Parasitic and viral marker detection in pregnant adolescents and their newborn infants at risk].

    PubMed

    Contreras, M C; Escaff, V; Salinas, P; Saavedra, T; Suárez, M

    1995-01-01

    We have investigated the prevalence of antibodies against Toxoplasma gondii, Trypanosoma cruzzi, Hepatitis B virus, cytomegalovirus, rubella virus, and human immunodeficiency virus in 139 adolescent pregnant women and in their high risk newborn children. The methods employed were the Sabin and Feldman reaction, complement fixation reaction, ELISA, and xenodiagnostic 30.9% of the pregnant group were seropositive for T. gondii, both mothers and newborns were IgM-negative. Two mothers (1.4%) presented anti T. cruzii antibodies, and one newborn child had circulating parasites. Related to the virological studies, 93.5% of the population were anti CMV antibodies positive and all their newborns were IgM (-) 90.6% of the adolescents were rubella positive and one was seropositive to VIH. We conclude that the prevalence found in this group of adolescent pregnant women are not significantly different to the one reported for the general pregnant women population.

  15. Itchy fish and viral dermatopathies: sampling, diagnosis, and management of common viral diseases.

    PubMed

    Weber, E P Scott

    2013-09-01

    Viral dermatopathies of fish bear clinical signs similar to those of dermatopathies from other causes. This article offers an overview to approaching dermatologic presentations in fish, with an emphasis on sampling, diagnosis, and management of viral dermatopathies, building on previous publications. It is vital to recognize clinical signs associated with viral dermatopathies because there are currently no treatments available. Avoidance and prevention is the key to controlling viral diseases in fish. Optimizing husbandry practices and providing appropriate quarantine procedures can help prevent viral disease outbreaks in collection and aquaculture stocks. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract

    PubMed Central

    Pasquali, Christian; Salami, Olawale; Taneja, Manisha; Gollwitzer, Eva S.; Trompette, Aurelien; Pattaroni, Céline; Yadava, Koshika; Bauer, Jacques; Marsland, Benjamin J.

    2014-01-01

    Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae. PMID:25593914

  17. An outbreak of viral gastroenteritis associated with adequately prepared oysters.

    PubMed Central

    Chalmers, J. W.; McMillan, J. H.

    1995-01-01

    Over Christmas 1993, an outbreak of food poisoning occurred among guests in a hotel in South West Scotland. Evidence from a cohort study strongly suggested that raw oysters were the vehicle for infection, probably due to a Small Round Structured Virus (SRSV). Detailed enquiry about the source and preparation of the oysters revealed no evidence of any unsafe handling at any stage in the food chain, nor any evidence of bacterial contamination. It is suggested that the present standards of preparation and monitoring are inadequate to protect the consumer, and that bacteriophage monitoring may be a useful method of screening for viral contamination in future. PMID:7641830

  18. 3,4-Methylenedioxymethamphetamine (MDMA) alters acute gammaherpesvirus burden and limits Interleukin 27 responses in a mouse model of viral infection

    PubMed Central

    Nelson, Daniel A.; Singh, Sam J.; Young, Amy B.; Tolbert, Melanie D.; Bost, Kenneth L.

    2011-01-01

    Aims To test whether 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) abuse might increase the susceptibility, or alter the immune response, to murine gammaherpesvirus 68 (HV-68) and/or bacterial lipopolysaccharide. Methods Groups of experimental and control mice were subjected to three day binges of MDMA, and the effect of this drug abuse on acute and latent HV-68 viral burden were assessed. In vitro and in vivo studies were also performed to assess the MDMA effect on IL-27 expression in virally infected or LPS-exposed macrophages and dendritic cells, and latently infected animals, exposed to this drug of abuse. Results Acute viral burden was significantly increased in MDMA-treated mice when compared to controls. However the latent viral burden, and physiological and behavioral responses were not altered in infected mice despite repeated bingeing with MDMA. MDMA could limit the IL-27 response of HV-68 infected or LPS-exposed macrophages and dendritic cells in vitro and in vivo, demonstrating the ability of this drug to alter normal cytokine responses in the context of a viral infection and/or a TLR4 agonist. Conclusion MDMA bingeing could alter the host’s immune response resulting in greater acute viral replication and reductions in the production of the cytokine, IL-27 during immune responses. PMID:21269783

  19. Bacterial Origin of a Mitochondrial Outer Membrane Protein Translocase

    PubMed Central

    Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M.; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

    2012-01-01

    Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes. PMID:22778261

  20. Extracellular vesicles in parasitic diseases

    PubMed Central

    Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.

    2014-01-01

    Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932

  1. Incidence and Predictors of Bacterial infection in Febrile Children with Sickle Cell Disease.

    PubMed

    Morrissey, Benita J; Bycroft, Thomas P; Almossawi, Ofran; Wilkey, Olufunke B; Daniels, Justin G

    2015-01-01

    Children with sickle cell disease are at increased risk of developing bacteremia and other serious bacterial infections. Fever is a common symptom in sickle cell disease and can also occur with sickle cell crises and viral infections. We aimed to evaluate the incidence and predictors of bacteremia and bacterial infection in children with sickle cell disease presenting with fever to a district hospital and sickle cell center in London. A retrospective analysis was performed on all attendances of children (aged under 16 years) with sickle cell disease presenting with a fever of 38.5 °C or higher over a 1-year period. Confirmed bacterial infection was defined as bacteremia, bacterial meningitis, urinary tract infection (UTI), pneumonia, osteomyelitis or other bacterial infection with positive identification of organism. Children were defined as having a suspected bacterial infection if a bacterial infection was suspected clinically, but no organism was identified. Over a 1-year period there were 88 episodes analyzed in 59 children. Bacteremia occurred in 3.4% of episodes and confirmed bacterial infection in 7.0%. Suspected bacterial infection occurred in 33.0%. One death occurred from Salmonella typhirium septicemia. C-reactive protein (CRP) level and white blood cell (WBC) count were both significantly associated with bacterial infection (p = 0.004 and 0.02, respectively.) In conclusion, bacterial infections continue to be a significant problem in children with sickle cell disease. C-reactive protein was significantly associated with bacterial infections, and could be included in clinical risk criteria for febrile children with sickle cell disease.

  2. Age spectrometry of infant death rates as a probe of immunity: Identification of two peaks due to viral and bacterial diseases respectively

    NASA Astrophysics Data System (ADS)

    Berrut, Sylvie; Richmond, Peter; Roehner, Bertrand M.

    2017-11-01

    After birth, setting up an effective immune system is a major challenge for all living organisms. In this paper we show that this process can be explored by using the age-specific infant death rate as a kind of sensor. This is made possible because, as shown by the authors in Berrut et al. (2016), between birth and a critical age tc, for all mammals the death rate decreases with age as a smooth hyperbolic function. For humans tc is equal to 10 years. It turns out that for some causes of deaths and specific ages the hyperbolic fall displays temporary spikes which, it is assumed, correspond to specific events in the organism's response to exogenous factors. One of these spikes occurs 10 days after birth and there is another at the age of 300 days. It is shown that the first spike is related to viral infections whereas the second is related to bacterial diseases. By going back to former time periods during which infant mortality was much higher than it is currently, one gets a magnified view of these peaks. They give us useful information about how an organism adapts to new conditions. Apart from the reaction to pathogens, the same methodology can be used to study the response to changes in other external conditions, e.g. temperature or oxygen level.

  3. Distribution and life strategies of two bacterial populations in a eutrophic lake

    PubMed

    Weinbauer; Hofle

    1998-10-01

    Monoclonal antibodies and epifluorescence microscopy were used to determine the depth distribution of two indigenous bacterial populations in the stratified Lake Plusssee and characterize their life strategies. Populations of Comamonas acidovorans PX54 showed a depth distribution with maximum abundances in the oxic epilimnion, whereas Aeromonas hydrophila PU7718 showed a depth distribution with maximum abundances in the anoxic thermocline layer (metalimnion), i. e., in the water layer with the highest microbial activity. Resistance of PX54 to protist grazing and high metabolic versatility and growth rate of PU7718 were the most important life strategy traits for explaining the depth distribution of the two bacterial populations. Maximum abundance of PX54 was 16,000 cells per ml, and maximum abundance of PU7718 was 20,000 cells per ml. Determination of bacterial productivity in dilution cultures with different-size fractions of dissolved organic matter (DOM) from lake water indicates that low-molecular-weight (LMW) DOM is less bioreactive than total DOM (TDOM). The abundance and growth rate of PU7718 were highest in the TDOM fractions, whereas those of PX54 were highest in the LMW DOM fraction, demonstrating that PX54 can grow well on the less bioreactive DOM fraction. We estimated that 13 to 24% of the entire bacterial community and 14% of PU7718 were removed by viral lysis, whereas no significant effect of viral lysis on PX54 could be detected. Growth rates of PX54 (0.11 to 0.13 h-1) were higher than those of the entire bacterial community (0.04 to 0.08 h-1) but lower than those of PU7718 (0.26 to 0.31 h-1). In undiluted cultures, the growth rates were significantly lower, pointing to density effects such as resource limitation or antibiosis, and the effects were stronger for PU7718 and the entire bacterial community than for PX54. Life strategy characterizations based on data from literature and this study revealed that the fast-growing and metabolically

  4. The utility of biomarkers in differentiating bacterial from non-bacterial lower respiratory tract infection in hospitalized children: difference of the diagnostic performance between acute pneumonia and bronchitis.

    PubMed

    Hoshina, Takayuki; Nanishi, Etsuro; Kanno, Shunsuke; Nishio, Hisanori; Kusuhara, Koichi; Hara, Toshiro

    2014-10-01

    The aim of this study is to investigate the utility of several biomarkers in differentiating bacterial community-acquired lower respiratory tract infection (CA-LRTI) from non-bacterial CA-LRTI in children and the difference of their diagnostic performance between pneumonia and bronchitis. A retrospective cohort study composed of 108 pediatric patients hospitalized for CA-LRTI was performed during 2010-2013. Based on the findings of chest X-ray and sputum samples, patients were divided into 4 categories, group of bacterial pneumonia or bronchitis, and non-bacterial (viral or etiology-unknown) pneumonia or bronchitis. Peripheral white blood cell and neutrophil counts, and serum C-reactive protein (CRP) and procalcitonin (PCT) levels were compared among the 4 groups. Finally, 54 patients were the subject of this study. In the patients with pneumonia, serum CRP and PCT levels were significantly elevated in the group of bacterial pneumonia (CRP: p = 0.02, PCT: p = 0.0008). The area under the receiver operating characteristic curve for PCT for distinguishing between bacterial and non-bacterial pneumonia was the largest, and sensitivity, specificity, positive predictive value and negative predictive value of PCT were best among 4 markers. On the other hand, in the patients with bronchitis, neutrophil count was significantly decreased in non-bacterial bronchitis whereas no significant differences of WBC count, CRP level or PCT level were seen. In conclusion, PCT was the most useful marker to differentiate bacterial pneumonia whereas neutrophil count contributed most to the discrimination of bacterial bronchitis. The diagnostic performance of biomarkers may be different between pneumonia and bronchitis. Copyright © 2014. Published by Elsevier Ltd.

  5. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae.

    PubMed

    O'Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David

    2015-01-01

    Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni.

  6. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David

    2015-01-01

    Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni. PMID:25715048

  7. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.

    PubMed

    Hussain, Tahir; Yogavel, Manickam; Sharma, Amit

    2015-04-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocyte-spreading behaviour of the diamondback moth, Plutella xylostella.

    PubMed

    Gad, Wael; Kim, Yonggyun

    2008-04-01

    Histone H4 is highly conserved and forms a central-core nucleosome with H3 in eukaryotic chromatin. Its covalent modification at the protruding N-terminal region from the nucleosomal core can change the chromatin conformation in order to regulate gene expression. A viral H4 was found in the genome of Cotesia plutellae bracovirus (CpBV). The obligate host of the virus is an endoparasitoid wasp, C. plutellae, which parasitizes the diamondback moth, Plutella xylostella, and interrupts host development and immune reactions. CpBV has been regarded as a major source for interrupting the physiological processes during parasitization. CpBV H4 shows high sequence identity with the amino acid sequence of P. xylostella H4 except for an extended N-terminal region (38 aa). This extended N-terminal CpBV H4 contains nine lysine residues. CpBV H4 was expressed in P. xylostella parasitized by C. plutellae. Western blot analysis using a wide-spectrum H4 antibody showed two H4s in parasitized P. xylostella. In parasitized haemocytes, CpBV H4 was detected predominantly in the nucleus and was highly acetylated. The effect of CpBV H4 on haemocytes was analysed by transient expression using a eukaryotic expression vector, which was injected into non-parasitized P. xylostella. Expression of CpBV H4 was confirmed in the transfected P. xylostella by RT-PCR and immunofluorescence assays. Haemocytes of the transfected larvae lost their spreading ability on an extracellular matrix. Inhibition of the cellular immune response by transient expression was reversed by RNA interference using dsRNA of CpBV H4. These results suggest that CpBV H4 plays a critical role in suppressing host immune responses during parasitization.

  9. Viral Predation and Host Immunity Structure Microbial Communities in a Terrestrial Deep Subsurface, Hydraulically Fractured Shale System

    NASA Astrophysics Data System (ADS)

    Daly, R. A.; Mouser, P. J.; Trexler, R.; Wrighton, K. C.

    2014-12-01

    Despite a growing appreciation for the ecological role of viruses in marine and gut systems, little is known about their role in the terrestrial deep (> 2000 m) subsurface. We used assembly-based metagenomics to examine the viral component in fluids from hydraulically fractured Marcellus shale gas wells. Here we reconstructed microbial and viral genomes from samples collected 7, 82, and 328 days post fracturing. Viruses accounted for 4.14%, 0.92% and 0.59% of the sample reads that mapped to the assembly. We identified 6 complete, circularized viral genomes and an additional 92 viral contigs > 5 kb with a maximum contig size of 73.6 kb. A BLAST comparison to NCBI viral genomes revealed that 85% of viral contigs had significant hits to the viral order Caudovirales, with 43% of sequences belonging to the family Siphoviridae, 38% to Myoviridae, and 12% to Podoviridae. Enrichment of Caudovirales viruses was supported by a large number of predicted proteins characteristic of tailed viruses including terminases (TerL), tape measure, tail formation, and baseplate related proteins. The viral contigs included evidence of lytic and temperate lifestyles, with the 7 day sample having the greatest number of detected lytic viruses. Notably in this sample, the most abundant virus was lytic and its inferred host, a member of the Vibrionaceae, was not detected at later time points. Analyses of CRISPR sequences (a viral and foreign DNA immune system in bacteria and archaea), linked 18 viral contigs to hosts. CRISPR linkages increased through time and all bacterial and archaeal genomes recovered in the final time point had genes for CRISPR-mediated viral defense. The majority of CRISPR sequences linked phage genomes to several Halanaerobium strains, which are the dominant and persisting members of the community inferred to be responsible for carbon and sulfur cycling in these shales. Network analysis revealed that several viruses were present in the 82 and 328 day samples; this viral

  10. Mechanism of Membranous Tunnelling Nanotube Formation in Viral Genome Delivery

    PubMed Central

    Peralta, Bibiana; Gil-Carton, David; Castaño-Díez, Daniel; Bertin, Aurelie; Boulogne, Claire; Oksanen, Hanna M.; Bamford, Dennis H.; Abrescia, Nicola G. A.

    2013-01-01

    In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems. PMID:24086111

  11. Serologic Survey for Selected Viral and Bacterial Swine Pathogens in Colombian Collared Peccaries ( Pecari tajacu) and Feral Pigs ( Sus scrofa).

    PubMed

    Montenegro, Olga L; Roncancio, Nestor; Soler-Tovar, Diego; Cortés-Duque, Jimena; Contreras-Herrera, Jorge; Sabogal, Sandra; Acevedo, Luz Dary; Navas-Suárez, Pedro Enrique

    2018-06-14

    In South America, wild populations of peccaries coexist with domestic and feral pigs, with poorly understood consequences. We captured 58 collared peccaries ( Pecari tajacu) and 15 feral pigs ( Sus scrofa) in locations of Colombia where coexistence of these species is known. Blood samples were tested for antibodies against four viral agents, classical swine fever virus (CSFV), Aujeszky's disease virus (ADV), porcine circovirus (PCV-2), and vesicular stomatitis virus (New Jersey and Indiana subtypes) and two bacterial agents, Brucella spp. and six serovars of Leptospira interrogans. The prevalence of CSFV was 5% (3/58) in collared peccaries and 7% (1/15) in feral pigs. The prevalence of PCV-2 was 7% (1/15) in collared peccaries and 67% (2/3) in feral pigs. Vesicular stomatitis prevalence was 33% (8/24) in collared peccaries and 67% (4/6) in feral pigs. Leptospira prevalence was 78% (39/50) in collared peccary and 100% (8/8) in feral pigs; bratislava, grippotyphosa, icterohaemorrhagiae, and pomona were the most frequent serovars. Also, the only white-lipped peccary ( Tayassu pecari) sampled was positive for L. interrogans serovar bratislava and for vesicular stomatitis virus, New Jersey strain. No samples were positive for ADV or Brucella. The seroprevalence of antibodies against L. interrogans was similar to that observed in other studies. Icterohaemorrhagiae appears to be a common serovar among in situ and ex situ peccary populations. Positive antibodies against PVC-2 represent a novel report of exposure to this pathogen in Colombian peccaries. Our results indicate the possible transmission of various pathogens, important for pig farms, in the studied pig and peccaries.

  12. Protein moonlighting in parasitic protists.

    PubMed

    Ginger, Michael L

    2014-12-01

    Reductive evolution during the adaptation to obligate parasitism and expansions of gene families encoding virulence factors are characteristics evident to greater or lesser degrees in all parasitic protists studied to date. Large evolutionary distances separate many parasitic protists from the yeast and animal models upon which classic views of eukaryotic biochemistry are often based. Thus a combination of evolutionary divergence, niche adaptation and reductive evolution means the biochemistry of parasitic protists is often very different from their hosts and to other eukaryotes generally, making parasites intriguing subjects for those interested in the phenomenon of moonlighting proteins. In common with other organisms, the contribution of protein moonlighting to parasite biology is only just emerging, and it is not without controversy. Here, an overview of recently identified moonlighting proteins in parasitic protists is provided, together with discussion of some of the controversies.

  13. Plant immunity: a lesson from pathogenic bacterial effector proteins.

    PubMed

    Cui, Haitao; Xiang, Tingting; Zhou, Jian-Min

    2009-10-01

    Phytopathogenic bacteria inject an array of effector proteins into host cells to alter host physiology and assist the infection process. Some of these effectors can also trigger disease resistance as a result of recognition in the plant cell by cytoplasmic immune receptors. In addition to effector-triggered immunity, plants immunity can be triggered upon the detection of Pathogen/Microbe-Associated Molecular Patterns by surface-localized immune receptors. Recent progress indicates that many bacterial effector proteins use a variety of biochemical properties to directly attack key components of PAMP-triggered immunity and effector-triggered immunity, providing new insights into the molecular basis of plant innate immunity. Emerging evidence indicate that the evolution of disease resistance in plants is intimately linked to the mechanism by which bacterial effectors promote parasitism. This review focuses on how these studies have conceptually advanced our understanding of plant-pathogen interactions.

  14. It's a predator-eat-parasite world: how characteristics of predator, parasite and environment affect consumption.

    PubMed

    Orlofske, Sarah A; Jadin, Robert C; Johnson, Pieter T J

    2015-06-01

    Understanding the effects of predation on disease dynamics is increasingly important in light of the role ecological communities can play in host-parasite interactions. Surprisingly, however, few studies have characterized direct predation of parasites. Here we used an experimental approach to show that consumption of free-living parasite stages is highly context dependent, with significant influences of parasite size, predator size and foraging mode, as well as environmental condition. Among the four species of larval trematodes and two types of predators (fish and larval damselflies) studied here, parasites with larger infective stages (size >1,000 μm) were most vulnerable to predation by fish, while small-bodied fish and damselflies (size <10 mm) consumed the most infectious stages. Small parasite species (size approx. 500 μm) were less frequently consumed by both fish and larval damselflies. However, these results depended strongly on light availability; trials conducted in the dark led to significantly fewer parasites consumed overall, especially those with a size of <1,000 μm, emphasizing the importance of circadian shedding times of parasite free-living stages for predation risk. Intriguingly, active predation functioned to help limit fishes' infection by directly penetrating parasite species. Our results are consistent with established theory developed for predation on zooplankton that emphasizes the roles of body size, visibility and predation modes and further suggest that consumer-resource theory may provide a predictive framework for when predators should significantly influence parasite transmission. These results contribute to our understanding of transmission in natural systems, the role of predator-parasite links in food webs and the evolution of parasite morphology and behavior.

  15. Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor.

    PubMed

    Zhu, Jia-Ying; Ze, Sang-Zi; Stanley, David W; Yang, Bin

    2014-09-01

    Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor. The cDNAs for ecCuZnSOD, icCuZnSOD, and MnSOD, respectively, encode 24.55, 15.81, and 23.14 kDa polypeptides, which possess structural features typical of other insect SODs. They showed 20-94% identity to other known SOD sequences from Bombyx mori, Musca domestica, Nasonia vitripennis, Pediculus humanus corporis, and Tribolium castaneum. Expression of these genes was analyzed in selected tissues and developmental stages, and following exposure to Escherichia coli and parasitization by Scleroderma guani. We recorded expression of all three SODs in cuticle, fat body, and hemocytes and in the major developmental stages. Relatively higher expressions were detected in late-instar larvae and pupae, compared to other developmental stages. Transcriptional levels were upregulated following bacterial infection. Analysis of pupae parasitized by S. guani revealed that expression of T. molitor SOD genes was significantly induced following parasitization. We infer that these genes act in immune response and in host-parasitoid interactions. © 2014 Wiley Periodicals, Inc.

  16. Viral posterior uveitis

    PubMed Central

    Lee, Joanne H.; Agarwal, Aniruddha; Mahendradas, Padmamalini; Lee, Cecilia S.; Gupta, Vishali; Pavesio, Carlos E.; Agrawal, Rupesh

    2017-01-01

    The causes of posterior uveitis can be divided into infectious, autoimmune, or masquerade syndromes. Viral infections, a significant cause of sight-threatening ocular diseases in the posterior segment, include human herpesviruses, measles, rubella, and arboviruses such as dengue, West Nile, and chikungunya virus. Viral posterior uveitis may occur as an isolated ocular disease in congenital or acquired infections or as part of a systemic viral illness. Many viruses remain latent in the infected host with a risk of reactivation that depends on various factors, including virulence and host immunity, age, and comorbidities. Although some viral illnesses are self-limiting and have a good visual prognosis, others, such as cytomegalovirus retinitis or acute retinal necrosis, may result in serious complications and profound vision loss. Since some of these infections may respond well to antiviral therapy, it is important to work up all cases of posterior uveitis to rule out an infectious etiology. We review the clinical features, diagnostic tools, treatment regimens, and long-term outcomes for each of these viral posterior uveitides. PMID:28012878

  17. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology.

    PubMed

    Ittig, Simon J; Schmutz, Christoph; Kasper, Christoph A; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R; Nigg, Erich A; Arrieumerlou, Cécile

    2015-11-23

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. © 2015 Ittig et al.

  18. Role of parasites in cancer.

    PubMed

    Mandong, B M; Ngbea, J A; Raymond, Vhriterhire

    2013-01-01

    In areas of parasitic endemicity, the occurrence of cancer that is not frequent may be linked with parasitic infection. Epidemiological correlates between some parasitic infections and cancer is strong, suggesting a strong aetiological association. The common parasites associated with human cancers are schistosomiasis, malaria, liver flukes (Clonorchis sinenses, Opistorchis viverrini). To review the pathology, literature and methods of diagnosis. Literature review from peer reviewed Journals cited in PubMed and local journals. Parasites may serve as promoters of cancer in endemic areas of infection.

  19. Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato

    PubMed Central

    Tjiurutue, Muvari Connie; Palmer-Young, Evan C.; Adler, Lynn S.

    2016-01-01

    Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp.) preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum). In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua) and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics. PMID:27529694

  20. Kullback Leibler divergence in complete bacterial and phage genomes

    PubMed Central

    Akhter, Sajia; Kashef, Mona T.; Ibrahim, Eslam S.; Bailey, Barbara

    2017-01-01

    The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback–Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses. PMID:29204318

  1. Kullback Leibler divergence in complete bacterial and phage genomes.

    PubMed

    Akhter, Sajia; Aziz, Ramy K; Kashef, Mona T; Ibrahim, Eslam S; Bailey, Barbara; Edwards, Robert A

    2017-01-01

    The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback-Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses.

  2. The Bidirectional Relationship between Sleep and Immunity against Infections

    PubMed Central

    Ibarra-Coronado, Elizabeth G.; Pantaleón-Martínez, Ana Ma.; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed. PMID:26417606

  3. The Bidirectional Relationship between Sleep and Immunity against Infections.

    PubMed

    Ibarra-Coronado, Elizabeth G; Pantaleón-Martínez, Ana Ma; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  4. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size

    PubMed Central

    2014-01-01

    Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left

  5. Comparison of enterovirus detection in cerebrospinal fluid with Bacterial Meningitis Score in children

    PubMed Central

    Pires, Frederico Ribeiro; Franco, Andréia Christine Bonotto Farias; Gilio, Alfredo Elias; Troster, Eduardo Juan

    2017-01-01

    ABSTRACT Objective To measure the role of enterovirus detection in cerebrospinal fluid compared with the Bacterial Meningitis Score in children with meningitis. Methods A retrospective cohort based on analysis of medical records of pediatric patients diagnosed as meningitis, seen at a private and tertiary hospital in São Paulo, Brazil, between 2011 and 2014. Excluded were patients with critical illness, purpura, ventricular shunt or recent neurosurgery, immunosuppression, concomitant bacterial infection requiring parenteral antibiotic therapy, and those who received antibiotics 72 hours before lumbar puncture. Results The study included 503 patients. Sixty-four patients were excluded and 94 were not submitted to all tests for analysis. Of the remaining 345 patients, 7 were in the Bacterial Meningitis Group and 338 in the Aseptic Meningitis Group. There was no statistical difference between the groups. In the Bacterial Meningitis Score analysis, of the 338 patients with possible aseptic meningitis (negative cultures), 121 of them had one or more points in the Bacterial Meningitis Score, with sensitivity of 100%, specificity of 64.2%, and negative predictive value of 100%. Of the 121 patients with positive Bacterial Meningitis Score, 71% (86 patients) had a positive enterovirus detection in cerebrospinal fluid. Conclusion Enterovirus detection in cerebrospinal fluid was effective to differentiate bacterial from viral meningitis. When the test was analyzed together with the Bacterial Meningitis Score, specificity was higher when compared to Bacterial Meningitis Score alone. PMID:28767914

  6. Parasitism and the biodiversity-functioning relationship

    USGS Publications Warehouse

    Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.

    2018-01-01

    Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.

  7. How Many Parasites Species a Frog Might Have? Determinants of Parasite Diversity in South American Anurans

    PubMed Central

    Campião, Karla Magalhães; Ribas, Augusto Cesar de Aquino; Morais, Drausio Honorio; da Silva, Reinaldo José; Tavares, Luiz Eduardo Roland

    2015-01-01

    There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts’ phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts’ phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts’ clade diversification suggests it is strongly influenced by ecological and contemporary constrains. PMID:26473593

  8. How Many Parasites Species a Frog Might Have? Determinants of Parasite Diversity in South American Anurans.

    PubMed

    Campião, Karla Magalhães; Ribas, Augusto Cesar de Aquino; Morais, Drausio Honorio; da Silva, Reinaldo José; Tavares, Luiz Eduardo Roland

    2015-01-01

    There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts' phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts' phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts' clade diversification suggests it is strongly influenced by ecological and contemporary constrains.

  9. Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus-Associated Pneumonia Among Children Aged <5 Years in the PERCH Study.

    PubMed

    Higdon, Melissa M; Le, Tham; O'Brien, Katherine L; Murdoch, David R; Prosperi, Christine; Baggett, Henry C; Brooks, W Abdullah; Feikin, Daniel R; Hammitt, Laura L; Howie, Stephen R C; Kotloff, Karen L; Levine, Orin S; Scott, J Anthony G; Thea, Donald M; Awori, Juliet O; Baillie, Vicky L; Cascio, Stephanie; Chuananon, Somchai; DeLuca, Andrea N; Driscoll, Amanda J; Ebruke, Bernard E; Endtz, Hubert P; Kaewpan, Anek; Kahn, Geoff; Karani, Angela; Karron, Ruth A; Moore, David P; Park, Daniel E; Rahman, Mohammed Ziaur; Salaudeen, Rasheed; Seidenberg, Phil; Somwe, Somwe Wa; Sylla, Mamadou; Tapia, Milagritos D; Zeger, Scott L; Deloria Knoll, Maria; Madhi, Shabir A

    2017-06-15

    Lack of a gold standard for identifying bacterial and viral etiologies of pneumonia has limited evaluation of C-reactive protein (CRP) for identifying bacterial pneumonia. We evaluated the sensitivity and specificity of CRP for identifying bacterial vs respiratory syncytial virus (RSV) pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) multicenter case-control study. We measured serum CRP levels in cases with World Health Organization-defined severe or very severe pneumonia and a subset of community controls. We evaluated the sensitivity and specificity of elevated CRP for "confirmed" bacterial pneumonia (positive blood culture or positive lung aspirate or pleural fluid culture or polymerase chain reaction [PCR]) compared to "RSV pneumonia" (nasopharyngeal/oropharyngeal or induced sputum PCR-positive without confirmed/suspected bacterial pneumonia). Receiver operating characteristic (ROC) curves were constructed to assess the performance of elevated CRP in distinguishing these cases. Among 601 human immunodeficiency virus (HIV)-negative tested controls, 3% had CRP ≥40 mg/L. Among 119 HIV-negative cases with confirmed bacterial pneumonia, 77% had CRP ≥40 mg/L compared with 17% of 556 RSV pneumonia cases. The ROC analysis produced an area under the curve of 0.87, indicating very good discrimination; a cut-point of 37.1 mg/L best discriminated confirmed bacterial pneumonia (sensitivity 77%) from RSV pneumonia (specificity 82%). CRP ≥100 mg/L substantially improved specificity over CRP ≥40 mg/L, though at a loss to sensitivity. Elevated CRP was positively associated with confirmed bacterial pneumonia and negatively associated with RSV pneumonia in PERCH. CRP may be useful for distinguishing bacterial from RSV-associated pneumonia, although its role in discriminating against other respiratory viral-associated pneumonia needs further study. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  10. Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus–Associated Pneumonia Among Children Aged <5 Years in the PERCH Study

    PubMed Central

    Le, Tham; O’Brien, Katherine L.; Murdoch, David R.; Prosperi, Christine; Baggett, Henry C.; Brooks, W. Abdullah; Feikin, Daniel R.; Hammitt, Laura L.; Howie, Stephen R. C.; Kotloff, Karen L.; Levine, Orin S.; Scott, J. Anthony G.; Thea, Donald M.; Awori, Juliet O.; Baillie, Vicky L.; Cascio, Stephanie; Chuananon, Somchai; DeLuca, Andrea N.; Driscoll, Amanda J.; Ebruke, Bernard E.; Endtz, Hubert P.; Kaewpan, Anek; Kahn, Geoff; Karani, Angela; Karron, Ruth A.; Moore, David P.; Park, Daniel E.; Rahman, Mohammed Ziaur; Salaudeen, Rasheed; Seidenberg, Phil; Somwe, Somwe Wa; Sylla, Mamadou; Tapia, Milagritos D.; Zeger, Scott L.; Deloria Knoll, Maria; Madhi, Shabir A.; O’Brien, Katherine L.; Levine, Orin S.; Knoll, Maria Deloria; Feikin, Daniel R.; DeLuca, Andrea N.; Driscoll, Amanda J.; Fancourt, Nicholas; Fu, Wei; Hammitt, Laura L.; Higdon, Melissa M.; Kagucia, E. Wangeci; Karron, Ruth A.; Li, Mengying; Park, Daniel E.; Prosperi, Christine; Wu, Zhenke; Zeger, Scott L.; Watson, Nora L.; Crawley, Jane; Murdoch, David R.; Brooks, W. Abdullah; Endtz, Hubert P.; Zaman, Khalequ; Goswami, Doli; Hossain, Lokman; Jahan, Yasmin; Ashraf, Hasan; Howie, Stephen R. C.; Ebruke, Bernard E.; Antonio, Martin; McLellan, Jessica; Machuka, Eunice; Shamsul, Arifin; Zaman, Syed M.A.; Mackenzie, Grant; Scott, J. Anthony G.; Awori, Juliet O.; Morpeth, Susan C.; Kamau, Alice; Kazungu, Sidi; Ominde, Micah Silaba; Kotloff, Karen L.; Tapia, Milagritos D.; Sow, Samba O.; Sylla, Mamadou; Tamboura, Boubou; Onwuchekwa, Uma; Kourouma, Nana; Toure, Aliou; Madhi, Shabir A.; Moore, David P.; Adrian, Peter V.; Baillie, Vicky L.; Kuwanda, Locadiah; Mudau, Azwifarwi; Groome, Michelle J.; Mahomed, Nasreen; Baggett, Henry C.; Thamthitiwat, Somsak; Maloney, Susan A.; Bunthi, Charatdao; Rhodes, Julia; Sawatwong, Pongpun; Akarasewi, Pasakorn; Thea, Donald M.; Mwananyanda, Lawrence; Chipeta, James; Seidenberg, Phil; Mwansa, James; Wa Somwe, Somwe; Kwenda, Geoffrey; Anderson, Trevor P.; Mitchell, Joanne

    2017-01-01

    Abstract Background. Lack of a gold standard for identifying bacterial and viral etiologies of pneumonia has limited evaluation of C-reactive protein (CRP) for identifying bacterial pneumonia. We evaluated the sensitivity and specificity of CRP for identifying bacterial vs respiratory syncytial virus (RSV) pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) multicenter case-control study. Methods. We measured serum CRP levels in cases with World Health Organization–defined severe or very severe pneumonia and a subset of community controls. We evaluated the sensitivity and specificity of elevated CRP for “confirmed” bacterial pneumonia (positive blood culture or positive lung aspirate or pleural fluid culture or polymerase chain reaction [PCR]) compared to “RSV pneumonia” (nasopharyngeal/oropharyngeal or induced sputum PCR-positive without confirmed/suspected bacterial pneumonia). Receiver operating characteristic (ROC) curves were constructed to assess the performance of elevated CRP in distinguishing these cases. Results. Among 601 human immunodeficiency virus (HIV)–negative tested controls, 3% had CRP ≥40 mg/L. Among 119 HIV-negative cases with confirmed bacterial pneumonia, 77% had CRP ≥40 mg/L compared with 17% of 556 RSV pneumonia cases. The ROC analysis produced an area under the curve of 0.87, indicating very good discrimination; a cut-point of 37.1 mg/L best discriminated confirmed bacterial pneumonia (sensitivity 77%) from RSV pneumonia (specificity 82%). CRP ≥100 mg/L substantially improved specificity over CRP ≥40 mg/L, though at a loss to sensitivity. Conclusions. Elevated CRP was positively associated with confirmed bacterial pneumonia and negatively associated with RSV pneumonia in PERCH. CRP may be useful for distinguishing bacterial from RSV-associated pneumonia, although its role in discriminating against other respiratory viral-associated pneumonia needs further study. PMID:28575375

  11. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection

    PubMed Central

    Goodacre, Norman; Aljanahi, Aisha; Nandakumar, Subhiksha; Mikailov, Mike

    2018-01-01

    ABSTRACT Detection of distantly related viruses by high-throughput sequencing (HTS) is bioinformatically challenging because of the lack of a public database containing all viral sequences, without abundant nonviral sequences, which can extend runtime and obscure viral hits. Our reference viral database (RVDB) includes all viral, virus-related, and virus-like nucleotide sequences (excluding bacterial viruses), regardless of length, and with overall reduced cellular sequences. Semantic selection criteria (SEM-I) were used to select viral sequences from GenBank, resulting in a first-generation viral database (VDB). This database was manually and computationally reviewed, resulting in refined, semantic selection criteria (SEM-R), which were applied to a new download of updated GenBank sequences to create a second-generation VDB. Viral entries in the latter were clustered at 98% by CD-HIT-EST to reduce redundancy while retaining high viral sequence diversity. The viral identity of the clustered representative sequences (creps) was confirmed by BLAST searches in NCBI databases and HMMER searches in PFAM and DFAM databases. The resulting RVDB contained a broad representation of viral families, sequence diversity, and a reduced cellular content; it includes full-length and partial sequences and endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Testing of RVDBv10.2, with an in-house HTS transcriptomic data set indicated a significantly faster run for virus detection than interrogating the entirety of the NCBI nonredundant nucleotide database, which contains all viral sequences but also nonviral sequences. RVDB is publically available for facilitating HTS analysis, particularly for novel virus detection. It is meant to be updated on a regular basis to include new viral sequences added to GenBank. IMPORTANCE To facilitate bioinformatics analysis of high-throughput sequencing (HTS) data for the detection of both known and novel viruses, we have

  12. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection.

    PubMed

    Goodacre, Norman; Aljanahi, Aisha; Nandakumar, Subhiksha; Mikailov, Mike; Khan, Arifa S

    2018-01-01

    Detection of distantly related viruses by high-throughput sequencing (HTS) is bioinformatically challenging because of the lack of a public database containing all viral sequences, without abundant nonviral sequences, which can extend runtime and obscure viral hits. Our reference viral database (RVDB) includes all viral, virus-related, and virus-like nucleotide sequences (excluding bacterial viruses), regardless of length, and with overall reduced cellular sequences. Semantic selection criteria (SEM-I) were used to select viral sequences from GenBank, resulting in a first-generation viral database (VDB). This database was manually and computationally reviewed, resulting in refined, semantic selection criteria (SEM-R), which were applied to a new download of updated GenBank sequences to create a second-generation VDB. Viral entries in the latter were clustered at 98% by CD-HIT-EST to reduce redundancy while retaining high viral sequence diversity. The viral identity of the clustered representative sequences (creps) was confirmed by BLAST searches in NCBI databases and HMMER searches in PFAM and DFAM databases. The resulting RVDB contained a broad representation of viral families, sequence diversity, and a reduced cellular content; it includes full-length and partial sequences and endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Testing of RVDBv10.2, with an in-house HTS transcriptomic data set indicated a significantly faster run for virus detection than interrogating the entirety of the NCBI nonredundant nucleotide database, which contains all viral sequences but also nonviral sequences. RVDB is publically available for facilitating HTS analysis, particularly for novel virus detection. It is meant to be updated on a regular basis to include new viral sequences added to GenBank. IMPORTANCE To facilitate bioinformatics analysis of high-throughput sequencing (HTS) data for the detection of both known and novel viruses, we have

  13. Viral Hemorrhagic Fevers

    MedlinePlus

    ... Controls Cancel Submit Search the CDC Viral Hemorrhagic Fevers (VHFs) Note: Javascript is disabled or is not ... visit this page: About CDC.gov . Viral Hemorrhagic Fevers (VHFs) Virus Families Arenaviruses Old World/New World ...

  14. Comparison of the disinfection efficacy of chlorine-based products for inactivation of viral indicators and pathogenic bacteria in produce wash water.

    PubMed

    Chaidez, Cristobal; Moreno, Maria; Rubio, Werner; Angulo, Miguel; Valdez, Benigno

    2003-09-01

    Outbreaks of pathogenic bacteria infections associated with the consumption of fresh produce has occurred with increased frequency in recent years. This study was undertaken to determine the efficacy of three commonly used disinfectants in packing-houses of Culiacan, Mexico (sodium hypochlorite [NaOCl], trichlor-s-triazinetrione [TST] and thrichlormelamine [TCM]) for inactivation of viral indicators and pathogenic bacteria inoculated onto produce wash water. Each microbial challenge consisted of 2 L of water containing approximately 8 log10 bacterial CFU ml(-1), and 8 log10 viral PFU ml(-1) treated with 100 and 300 mg l(-1) of total chlorine with modified turbidity. Water samples were taken after 2 min of contact with chlorine-based products and assayed for the particular microorganisms. TST and NaOCl were found to effectively reduce for bacterial pathogens and viral indicators 8 log10 and 7 log10, respectively (alpha=0.05). The highest inactivation rate was observed when the turbidity was low and the disinfectant was applied at 300 mg l(-1). TCM did not show effective results when compared with the TST and NaOCl (P<0.05). These findings suggest that turbidity created by the organic and inorganic material present in the water tanks carried by the fresh produce may affect the efficacy of the chlorine-based products.

  15. Metazoan Parasites of Antarctic Fishes.

    PubMed

    Oğuz, Mehmet Cemal; Tepe, Yahya; Belk, Mark C; Heckmann, Richard A; Aslan, Burçak; Gürgen, Meryem; Bray, Rodney A; Akgül, Ülker

    2015-06-01

    To date, there have been nearly 100 papers published on metazoan parasites of Antarctic fishes, but there has not yet been any compilation of a species list of fish parasites for this large geographic area. Herein, we provide a list of all documented occurrences of monogenean, cestode, digenean, acanthocephalan, nematode, and hirudinean parasites of Antarctic fishes. The list includes nearly 250 parasite species found in 142 species of host fishes. It is likely that there are more species of fish parasites, which are yet to be documented from Antarctic waters.

  16. Characterization of the Skin Microbiota in Italian Stream Frogs (Rana italica) Infected and Uninfected by a Cutaneous Parasitic Disease

    PubMed Central

    Federici, Ermanno; Rossi, Roberta; Fidati, Laura; Paracucchi, Romina; Scargetta, Silvia; Montalbani, Elena; Franzetti, Andrea; La Porta, Gianandrea; Fagotti, Anna; Simonceli, Francesca; Cenci, Giovanni; Di Rosa, Ines

    2015-01-01

    In human and wildlife populations, the natural microbiota plays an important role in health maintenance and the prevention of emerging infectious diseases. In amphibians, infectious diseases have been closely associated with population decline and extinction worldwide. Skin symbiont communities have been suggested as one of the factors driving the different susceptibilities of amphibians to diseases. The activity of the skin microbiota of amphibians against fungal pathogens, such as Batrachochytrium dendrobatidis, has been examined extensively, whereas its protective role towards the cutaneous infectious diseases caused by Amphibiocystidium parasites has not yet been elucidated in detail. In the present study, we investigated, for the first time, the cutaneous microbiota of the Italian stream frog (Rana italica) and characterized the microbial assemblages of frogs uninfected and infected by Amphibiocystidium using the Illumina next-generation sequencing of 16S rRNA gene fragments. A total of 629 different OTUs belonging to 16 different phyla were detected. Bacterial populations shared by all individuals represented only one fifth of all OTUs and were dominated by a small number of OTUs. Statistical analyses based on Bray-Curtis distances showed that uninfected and infected specimens had distinct cutaneous bacterial community structures. Phylotypes belonging to the genera Janthinobacterium, Pseudomonas, and Flavobacterium were more abundant, and sometimes almost exclusively present, in uninfected than in infected specimens. These bacterial populations, known to exhibit antifungal activity in amphibians, may also play a role in protection against cutaneous infectious diseases caused by Amphibiocystidium parasites. PMID:26370166

  17. AIDS-associated parasitic diarrhoea.

    PubMed

    Arora, D R; Arora, B

    2009-01-01

    Since the advent of human immunodeficiency virus infection, with its profound and progressive effect on the cellular immune system, a group of human opportunistic pathogens has come into prominence. Opportunistic parasitic infection can cause severe morbidity and mortality. Because many of these infections are treatable, an early and accurate diagnosis is important. This can be accomplished by a variety of methods such as direct demonstration of parasites and by serological tests to detect antigen and/or specific antibodies. However, antibody response may be poor in these patients and therefore immunodiagnostic tests have to be interpreted with caution. Cryptosporidium parvum, Isospora belli, Cyclospora cayetanensis, Microsporidia, Entamoeba histolytica and Strongyloides stercoralis are the commonly detected parasites. Detection of these parasites will help in proper management of these patients because drugs are available for most of these parasitic infections.

  18. Cloning of a very virulent plus, 686 strain of Marek’s disease virus as a bacterial artificial chromosome

    USDA-ARS?s Scientific Manuscript database

    Bacterial artificial chromosome (BAC) vectors were first developed to facilitate propagation and manipulation of large DNA fragments. This technology was later used to clone full-length genomes of large DNA viruses to study viral gene function. Marek’s disease virus (MDV) is a highly oncogenic herpe...

  19. Pets and Parasites

    MedlinePlus

    ... in Children and TeensRead MoreBMI Calculator Cat and Dog BitesCat-Scratch DiseaseAvoiding SnakebitesDog Bites: How to Teach ... and Parasites Pets and Parasites Share Print A dog may be man’s best friend. However, household pets ...

  20. Influenza Virus Induces Bacterial and Nonbacterial Otitis Media

    PubMed Central

    Diavatopoulos, Dimitri A.; Thornton, Ruth; Pedersen, John; Strugnell, Richard A.; Wise, Andrew K.; Reading, Patrick C.; Wijburg, Odilia L.

    2011-01-01

    Otitis media (OM) is one of the most common childhood diseases. OM can arise when a viral infection enables bacteria to disseminate from the nasopharynx to the middle ear. Here, we provide the first infant murine model for disease. Mice coinfected with Streptococcus pneumoniae and influenza virus had high bacterial load in the middle ear, middle ear inflammation, and hearing loss. In contrast, mice colonized with S. pneumoniae alone had significantly less bacteria in the ear, minimal hearing loss, and no inflammation. Of interest, infection with influenza virus alone also caused some middle ear inflammation and hearing loss. Overall, this study provides a clinically relevant and easily accessible animal model to study the pathogenesis and prevention of OM. Moreover, we provide, to our knowledge, the first evidence that influenza virus alone causes middle ear inflammation in infant mice. This inflammation may then play an important role in the development of bacterial OM. PMID:21930608