Sample records for bacterially produced metabolite

  1. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation.

    PubMed

    Wakefield, Jennifer; Hassan, Hossam M; Jaspars, Marcel; Ebel, Rainer; Rateb, Mostafa E

    2017-01-01

    The frequent re-isolation of known compounds is one of the major challenges in drug discovery. Many biosynthetic genes are not expressed under standard culture conditions, thus limiting the chemical diversity of microbial compounds that can be obtained through fermentation. On the other hand, the competition during co-cultivation of two or more different microorganisms in most cases leads to an enhanced production of constitutively present compounds or an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain under different fermentation conditions. Herein, we report the dual induction of newly detected bacterial and fungal metabolites by the co-cultivation of the marine-derived fungal isolate Aspergillus fumigatus MR2012 and two hyper-arid desert bacterial isolates Streptomyces leeuwenhoekii strain C34 and strain C58. Co-cultivation of the fungal isolate MR2012 with the bacterial strain C34 led to the production of luteoride D, a new luteoride derivative and pseurotin G, a new pseurotin derivative in addition to the production of terezine D and 11- O -methylpseurotin A which were not traced before from this fungal strain under different fermentation conditions. In addition to the previously detected metabolites in strain C34, the lasso peptide chaxapeptin was isolated under co-culture conditions. The gene cluster for the latter compound had been identified through genome scanning, but it had never been detected before in the axenic culture of strain C34. Furthermore, when the fungus MR2012 was co-cultivated with the bacterial strain C58, the main producer of chaxapeptin, the titre of this metabolite was doubled, while additionally the bacterial metabolite pentalenic acid was detected and isolated for the first time from this strain, whereas the major fungal metabolites that were produced under axenic culture were suppressed. Finally, fermentation of the MR2012 by itself led to the isolation of the new diketopiperazine

  2. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.

    PubMed

    Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy

    2015-03-01

    Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria.

    PubMed

    Tyc, Olaf; Song, Chunxu; Dickschat, Jeroen S; Vos, Michiel; Garbeva, Paolina

    2017-04-01

    The rich diversity of secondary metabolites produced by soil bacteria has been appreciated for over a century, and advances in chemical analysis and genome sequencing continue to greatly advance our understanding of this biochemical complexity. However, we are just at the beginning of understanding the physicochemical properties of bacterial metabolites, the factors that govern their production and ecological roles. Interspecific interactions and competitor sensing are among the main biotic factors affecting the production of bacterial secondary metabolites. Many soil bacteria produce both volatile and soluble compounds. In contrast to soluble compounds, volatile organic compounds can diffuse easily through air- and gas-filled pores in the soil and likely play an important role in long-distance microbial interactions. In this review we provide an overview of the most important soluble and volatile classes of secondary metabolites produced by soil bacteria, their ecological roles, and their possible synergistic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cytotoxicity of lapachol metabolites produced by probiotics.

    PubMed

    Oliveira Silva, E; Cruz de Carvalho, T; Parshikov, I A; Alves dos Santos, R; Silva Emery, F; Jacometti Cardoso Furtado, N A

    2014-07-01

    Probiotics are currently added to a variety of functional foods to provide health benefits to the host and are commonly used by patients with gastrointestinal complaints or diseases. The therapeutic effects of lapachol continue to inspire studies to obtain derivatives with improved bioactivity and lower unwanted effects. Therefore, the general goal of this study was to show that probiotics are able to convert lapachol and are important to assess the effects of bacterial metabolism on drug performance and toxicity. The microbial transformations of lapachol were carried out by Bifidobacterium sp. and Lactobacillus acidophilus and different metabolites were produced in mixed and isolated cultures. The cytotoxic activities against breast cancer and normal fibroblast cell lines of the isolated metabolites (4α-hydroxy-2,2-dimethyl-5-oxo-2,3,4,4α,5,9β-hexahydroindeno[1,2-β]pyran-9β-carboxilic acid, a new metabolite produced by mixed culture and dehydro-α-lapachone produced by isolated cultures) were assessed and compared with those of lapachol. The new metabolite displayed a lower activity against a breast cancer cell line (IC50 = 532.7 μmol l(-1) ) than lapachol (IC50 = 72.3 μmol l(-1) ), while dehydro-α-lapachone (IC50 = 10.4 μmol l(-1) ) displayed a higher activity than lapachol. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. Probiotics have been used in dairy products to promote human health and have the ability to metabolize drugs and other xenobiotics. Naphthoquinones, such as lapachol, are considered privileged scaffolds due to their high propensity to interact with biological targets. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. The developed approach highlights the importance of probiotics to assess

  5. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    PubMed

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  6. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.

    PubMed

    Hettinga, K A; van Valenberg, H J F; Lam, T J G M; van Hooijdonk, A C M

    2008-10-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.

  7. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus.

    PubMed

    Becker, Matthew H; Brucker, Robert M; Schwantes, Christian R; Harris, Reid N; Minbiole, Kevin P C

    2009-11-01

    The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 microM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.

  8. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function

    PubMed Central

    Clark, Chase M.; Costa, Maria S.

    2018-01-01

    For decades, researchers have lacked the ability to rapidly correlate microbial identity with bacterial metabolism. Since specialized metabolites are critical to bacterial function and survival in the environment, we designed a data acquisition and bioinformatics technique (IDBac) that utilizes in situ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze protein and specialized metabolite spectra recorded from single bacterial colonies picked from agar plates. We demonstrated the power of our approach by discriminating between two Bacillus subtilis strains in <30 min solely on the basis of their differential ability to produce cyclic peptide antibiotics surfactin and plipastatin, caused by a single frameshift mutation. Next, we used IDBac to detect subtle intraspecies differences in the production of metal scavenging acyl-desferrioxamines in a group of eight freshwater Micromonospora isolates that share >99% sequence similarity in the 16S rRNA gene. Finally, we used IDBac to simultaneously extract protein and specialized metabolite MS profiles from unidentified Lake Michigan sponge-associated bacteria isolated from an agar plate. In just 3 h, we created hierarchical protein MS groupings of 11 environmental isolates (10 MS replicates each, for a total of 110 spectra) that accurately mirrored phylogenetic groupings. We further distinguished isolates within these groupings, which share nearly identical 16S rRNA gene sequence identity, based on interspecies and intraspecies differences in specialized metabolite production. IDBac is an attempt to couple in situ MS analyses of protein content and specialized metabolite production to allow for facile discrimination of closely related bacterial colonies. PMID:29686101

  9. The Bacterially Produced Metabolite Violacein Is Associated with Survival of Amphibians Infected with a Lethal Fungus ▿

    PubMed Central

    Becker, Matthew H.; Brucker, Robert M.; Schwantes, Christian R.; Harris, Reid N.; Minbiole, Kevin P. C.

    2009-01-01

    The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 μM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria. PMID:19717627

  10. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease.

    PubMed

    Lowe-Power, Tiffany M; Hendrich, Connor G; von Roepenack-Lahaye, Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J; Allen, Caitilyn

    2018-04-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Inhibiting effect of bioactive metabolites produced by mushroom cultivation on bacterial quorum sensing-regulated behaviors.

    PubMed

    Zhu, Hu; Wang, Shou-Xian; Zhang, Shuai-Shuai; Cao, Chun-Xu

    2011-01-01

    This study aimed to search for novel quorum sensing (QS) inhibitors from mushroom and to analyze their inhibitory activity, with a view to their possible use in controlling detrimental infections. The bioactive metabolites produced by mushroom cultivation were tested for their abilities to inhibit QS-regulated behavior. All mushroom strains were cultivated in potato-dextrose medium by large-scale submerged fermentation. The culture supernatant was condensed into 0.2 vol by freeze-drying. The condensed supernatant was sterilized by filtration through a 0.22-μm membrane filter and added to Chromobacterium violaceum CV026 cultures, which were used to monitor QS inhibition. Inhibitory activity was measured by quantifying violacein production using a microplate reader. The results have revealed that, of 102 mushroom strains, the bioactive metabolites produced by 14 basidiomycetes were found to inhibit violacein production, a QS-regulated behavior in C. violaceum. Higher fungi can produce QS-inhibitory compounds. Copyright © 2011 S. Karger AG, Basel.

  12. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02.

    PubMed

    Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping

    2016-09-02

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process.

  13. Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India.

    PubMed

    Skariyachan, S; G Rao, A; Patil, M R; Saikia, B; Bharadwaj Kn, V; Rao Gs, J

    2014-03-01

    Marine coastal areas of India have vast diversity of sponges which harbours many endosymbiotic bacteria which are the source of many potential antimicrobial metabolites. This study focuses the screening and characterization of drug-producing bacteria symbiotically which are associated with marine sponges collected from Gulf of Mannar, South Coast India. Six different sponges were collected and they were identified on the basis of their morphology. The drug-producing isolates were screened by agar overlay method towards various clinical strains. The secondary metabolites were characterized and were found to be quinones, alkaloids, flavanoids and flavonyl glycosides. The metabolites showed significant inhibitory properties against clinical strains that were further identified as chromophoric and fluorophoric in nature. Ethyl acetate extracts of chromophore and floureophore substances showed significant inhibitory properties against Methicillin resistant Staphylococcus aureus (MRSA) and Salmonella typhi respectively. 16S rRNA gene sequencing of theses isolates revealed that chomophore-producing strain were closely related to Pseudomonas spp. RHLB12, isolated from Callyspongia spp. and floureophore-producing bacteria was related to Bacillus licheniformis T6-1 which was isolated from Haliclona spp. Hence, our study demonstrated that antimicrobial metabolites extracted from symbiotic bacteria associated with marine sponges have high therapeutic potential against many bacterial pathogens including multidrug-resistant strains. This is the first study demonstrating antimicrobial potential of flurophoric and chromophoric metabolites extracted from bacterial biosymbionts associated with marine sponges. Our study has significant scope as Indian coastal area especially harbours vast varieties of sponges with novel secondary metabolites-producing organisms. The natural metabolites extracted from sponge-derived bacteria pave novel therapeutic remedy against various pathogens when

  14. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice.

    PubMed

    Druart, Céline; Bindels, Laure B; Schmaltz, Robert; Neyrinck, Audrey M; Cani, Patrice D; Walter, Jens; Ramer-Tait, Amanda E; Delzenne, Nathalie M

    2015-08-01

    The gut microbiota is able to modulate host physiology through the production of bioactive metabolites. Our recent studies suggest that changes in gut microbiota composition upon prebiotics supplementation alter tissue levels of PUFA-derived metabolites in mice. However, in vivo evidence that gut microbes produces PUFA-derived metabolites is lacking. This study aimed to decipher the contribution of gut microbes versus that of the host in PUFA-derived metabolite production. To achieve this goal, we compared the proportion of PUFA-derived metabolites and the expression of fatty acid desaturases in germ-free (GF) and conventionalized (CONV) mice fed either a low fat or Western diet. Higher concentrations of PUFA-derived metabolites were found in the colonic contents of conventionalized mice (CONV) mice compared to GF mice. The abundance of these metabolites in host tissues was modulated by dietary treatments but not by microbial status. Although microbial status did significantly influence desaturase expression, no correlations between host enzymes and tissue PUFA-derived metabolite levels were observed. Together, these results highlight the ability of the gut microbiota to produce PUFA-derived metabolites from dietary PUFA. However, microbial production of these metabolites in colonic contents is not necessarily associated with modifications of their concentration in host tissues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX.

    PubMed

    Domröse, Andreas; Weihmann, Robin; Thies, Stephan; Jaeger, Karl-Erich; Drepper, Thomas; Loeschcke, Anita

    2017-12-01

    Microbial secondary metabolites represent a rich source of valuable compounds with a variety of applications in medicine or agriculture. Effective exploitation of this wealth of chemicals requires the functional expression of the respective biosynthetic genes in amenable heterologous hosts. We have previously established the TREX system which facilitates the transfer, integration and expression of biosynthetic gene clusters in various bacterial hosts. Here, we describe the yTREX system, a new tool adapted for one-step yeast recombinational cloning of gene clusters. We show that with yTREX, Pseudomonas putida secondary metabolite production strains can rapidly be constructed by random targeting of chromosomal promoters by Tn5 transposition. Feasibility of this approach was corroborated by prodigiosin production after yTREX cloning, transfer and expression of the respective biosynthesis genes from Serratia marcescens . Furthermore, the applicability of the system for effective pathway rerouting by gene cluster adaptation was demonstrated using the violacein biosynthesis gene cluster from Chromobacterium violaceum , producing pathway metabolites violacein, deoxyviolacein, prodeoxyviolacein, and deoxychromoviridans. Clones producing both prodigiosin and violaceins could be readily identified among clones obtained after random chromosomal integration by their strong color-phenotype. Finally, the addition of a promoter-less reporter gene enabled facile detection also of phenazine-producing clones after transfer of the respective phenazine-1-carboxylic acid biosynthesis genes from Pseudomonas aeruginosa . All compounds accumulated to substantial titers in the mg range. We thus corroborate here the suitability of P. putida for the biosynthesis of diverse natural products, and demonstrate that the yTREX system effectively enables the rapid generation of secondary metabolite producing bacteria by activation of heterologous gene clusters, applicable for natural compound

  16. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    PubMed Central

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  17. Bacterial Signaling to the Nervous System through Toxins and Metabolites.

    PubMed

    Yang, Nicole J; Chiu, Isaac M

    2017-03-10

    Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Isolation of bacterial metabolites as natural inducers for larval settlement in the marine polychaete Hydroides elegans (Haswell).

    PubMed

    Harder, Tilmann; Lau, Stanley Chun Kwan; Dahms, Hans-Uwe; Qian, Pei-Yuan

    2002-10-01

    The bacterial component of marine biofilms plays an important role in the induction of larval settlement in the polychaete Hydroides elegans. In this study, we provide experimental evidence that bacterial metabolites comprise the chemical signal for larval settlement. Bacteria were isolated from biofilms, purified and cultured according to standard procedures. Bacterial metabolites were isolated from spent culture broth by chloroform extraction as well as by closed-loop stripping and adsorption of volatile components on surface-modified silica gel. A pronounced biological activity was exclusively observed when concentrated metabolites were adsorbed on activated charcoal. Larvae did not respond to waterbome metabolites when prevented from contacting the bacterial film surface. These results indicate that an association of the chemical signal with a sorbent-like substratum may be an essential cofactor for the expression of biological activity. The functional role of bacterial exopolymers as an adsorptive matrix for larval settlement signals is discussed.

  19. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens.

    PubMed

    Vogt, Stefanie L; Peña-Díaz, Jorge; Finlay, B Brett

    2015-08-01

    Gastrointestinal pathogens must overcome many obstacles in order to successfully colonize a host, not the least of which is the presence of the gut microbiota, the trillions of commensal microorganisms inhabiting mammals' digestive tracts, and their products. It is well established that a healthy gut microbiota provides its host with protection from numerous pathogens, including Salmonella species, Clostridium difficile, diarrheagenic Escherichia coli, and Vibrio cholerae. Conversely, pathogenic bacteria have evolved mechanisms to establish an infection and thrive in the face of fierce competition from the microbiota for space and nutrients. Here, we review the evidence that gut microbiota-generated metabolites play a key role in determining the outcome of infection by bacterial pathogens. By consuming and transforming dietary and host-produced metabolites, as well as secreting primary and secondary metabolites of their own, the microbiota define the chemical environment of the gut and often determine specific host responses. Although most gut microbiota-produced metabolites are currently uncharacterized, several well-studied molecules made or modified by the microbiota are known to affect the growth and virulence of pathogens, including short-chain fatty acids, succinate, mucin O-glycans, molecular hydrogen, secondary bile acids, and the AI-2 quorum sensing autoinducer. We also discuss challenges and possible approaches to further study of the chemical interplay between microbiota and gastrointestinal pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Merging chemical ecology with bacterial genome mining for secondary metabolite discovery.

    PubMed

    Vizcaino, Maria I; Guo, Xun; Crawford, Jason M

    2014-02-01

    The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host-bacteria interactions.

  1. Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones.

    PubMed

    Guadamuro, Lucía; Dohrmann, Anja B; Tebbe, Christoph C; Mayo, Baltasar; Delgado, Susana

    2017-04-17

    Isoflavones are polyphenols with estrogenic activity found mainly in soy and soy-derived products that need to be metabolised in the intestine by the gut bacteria to be fully active. There is little knowledge about isoflavone bioconversion and equol production in the human intestine. In this work, we developed an in vitro anaerobic culture model based on faecal slurries to assess the impact of isoflavone supplementation on the overall intestinal bacterial composition changes and associated metabolic transformations. In the faecal anaerobic batch cultures of this study bioconversion of isoflavones into equol was possible, suggesting the presence of viable equol-producing bacterial taxa within the faeces of menopausal women with an equol producer phenotype. The application of high-throughput DNA sequencing of 16S rRNA gene amplicons revealed the composition of the faecal cultures to be modified by the addition of isoflavones, with enrichment of some bacterial gut members associated with the metabolism of phenolics and/or equol production, such as Collinsella, Faecalibacterium and members of the Clostridium clusters IV and XIVa. In addition, the concentration of short-chain fatty acids (SCFAs) detected in the isoflavone-containing faecal cultures was higher in those inoculated with faecal slurries from equol-producing women. This study constitutes the first step in the development of a faecal culturing system with isoflavones that would further allow the selection and isolation of intestinal bacterial types able to metabolize these compounds and produce equol in vitro. Although limited by the low number of faecal cultures analysed and the inter-individual bacterial diversity, the in vitro results obtained in this work tend to indicate that soy isoflavones might provide an alternative energy source for the increase of equol-producing taxa and enhancement of SCFAs production. SCFAs and equol are both considered pivotal bacterial metabolites in the triggering of

  2. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3

    PubMed Central

    Yasmin, Sumera; Hafeez, Fauzia Y.; Mirza, Muhammad S.; Rasul, Maria; Arshad, Hafiz M. I.; Zubair, Muhammad; Iqbal, Mazhar

    2017-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is widely prevalent and causes Bacterial Leaf Blight (BLB) in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693). This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin), rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs) as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM) used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The results provide

  3. A common bacterial metabolite elicits prion-based bypass of glucose repression

    PubMed Central

    Garcia, David M; Dietrich, David; Clardy, Jon; Jarosz, Daniel F

    2016-01-01

    Robust preference for fermentative glucose metabolism has motivated domestication of the budding yeast Saccharomyces cerevisiae. This program can be circumvented by a protein-based genetic element, the [GAR+] prion, permitting simultaneous metabolism of glucose and other carbon sources. Diverse bacteria can elicit yeast cells to acquire [GAR+], although the molecular details of this interaction remain unknown. Here we identify the common bacterial metabolite lactic acid as a strong [GAR+] inducer. Transient exposure to lactic acid caused yeast cells to heritably circumvent glucose repression. This trait had the defining genetic properties of [GAR+], and did not require utilization of lactic acid as a carbon source. Lactic acid also induced [GAR+]-like epigenetic states in fungi that diverged from S. cerevisiae ~200 million years ago, and in which glucose repression evolved independently. To our knowledge, this is the first study to uncover a bacterial metabolite with the capacity to potently induce a prion. DOI: http://dx.doi.org/10.7554/eLife.17978.001 PMID:27906649

  4. Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring.

    PubMed

    Morelli, Lidia; Andreasen, Sune Zoëga; Jendresen, Christian Bille; Nielsen, Alex Toftgaard; Emnéus, Jenny; Zór, Kinga; Boisen, Anja

    2017-11-20

    During the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min -1 flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield. The obtained data showed good correlation with HPLC analysis.

  5. Endocidal Regulation of Secondary Metabolites in the Producing Organisms

    PubMed Central

    Li, Shiyou; Wang, Ping; Yuan, Wei; Su, Zushang; Bullard, Steven H.

    2016-01-01

    Secondary metabolites are defined as organic compounds that are not directly involved in the normal growth, development, and reproduction of an organism. They are widely believed to be responsible for interactions between the producing organism and its environment, with the producer avoiding their toxicities. In our experiments, however, none of the randomly selected 44 species representing different groups of plants and insects can avoid autotoxicity by its endogenous metabolites once made available. We coined the term endocides (endogenous biocides) to describe such metabolites that can poison or inhibit the parent via induced biosynthesis or external applications. Dosage-dependent endocides can selectively induce morphological mutations in the parent organism (e.g., shrubbiness/dwarfism, pleiocotyly, abnormal leaf morphogenesis, disturbed phyllotaxis, fasciated stems, and variegation in plants), inhibit its growth, development, and reproduction and cause death than non-closely related species. The propagule, as well as the organism itself contains or produces adequate endocides to kill itself. PMID:27389069

  6. Effects of Temperature on Bacterial Communities and Metabolites during Fermentation of Myeolchi-Aekjeot, a Traditional Korean Fermented Anchovy Sauce.

    PubMed

    Jung, Ji Young; Lee, Hyo Jung; Chun, Byung Hee; Jeon, Che Ok

    2016-01-01

    Myeolchi-aekjeot (MA) in Korea is produced outdoors without temperature controls, which is a major obstacle to produce commercial MA products with uniform quality. To investigate the effects of temperature on MA fermentation, pH, bacterial abundance and community, and metabolites were monitored during fermentation at 15°C, 20°C, 25°C, and 30°C. Initial pH values were approximately 6.0, and pH values increased after approximately 42 days, with faster increases at higher temperatures. Bacterial abundances increased rapidly in all MA samples after quick initial decreases during early fermentation and then they again steadily decreased after reaching their maxima, which were significantly greater at higher temperatures. Bacterial community analysis revealed that Proteobacteria and Tenericutes were predominant in all initial MA samples, but they were rapidly displaced by Firmicutes as fermentation progressed. Photobacterium and Mycoplasma belonging to Proteobacteria and Tenericutes, respectively, which may include potentially pathogenic strains, were dominant in initial MA, but decreased with the growth of Chromohalobacter, which occurred faster at higher temperatures--they were dominant until 273 and 100 days at 15°C and 20°C, respectively, but not detected after 30 days at 25°C and 30°C. Chromohalobacter also decreased with the appearance of subsequent genera belonging to Firmicutes in all MA samples. Tetragenococcus, halophilic lactic acid bacteria, appeared predominantly at 20°C, 25°C, and 30°C; they were most abundant at 30°C, but not detected at 15°C. Alkalibacillus and Lentibacillus appeared as dominant genera with the decrease of Tetragenococcus at 25°C and 30°C, but only Lentibacillus was dominant at 15°C and 20°C. Metabolite analysis showed that amino acids related to tastes were major metabolites and their concentrations were relatively higher at high temperatures. This study suggests that high temperatures (approximately 30°C) may be

  7. Identification of astilbin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.

    PubMed

    Zhao, Min; Xu, Jun; Qian, Dawei; Guo, Jianming; Jiang, Shu; Shang, Er-xin; Duan, Jin-ao

    2014-07-01

    Astilbin, mainly isolated from a commonly used herbal medicine, Smilax glabra Roxb (SGR), exhibits a variety of pharmacological activities and biological effects. It is metabolized by intestinal bacteria after oral administration which leads to the variation of ethnopharmacological profile of this traditional medicine. However, little is known on the interactions of this active compound with intestinal bacteria, which would be very helpful in unravelling how SGR works. In this study, different pure bacteria from human feces were isolated and were used to investigate their conversion capability of astilbin. Ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technique combined with Metabolynx(TM) software was used to analyze astilbin and its metabolites. The parent compound and two metabolites (quercetin and eriodictyol) were detected in the isolated bacterial samples compared with blank samples. Quercetin was present in Enterococcus sp. 8B, 8-2 and 9-2 samples. Eriodictyol was only identified in Enterococcus sp. 8B sample. The metabolic routes and metabolites of astilbin produced by the different intestinal bacteria are reported for the first time. This will be useful for the investigation of the pharmacokinetic study of astilbin in vivo and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor.

    PubMed

    Čihák, Matouš; Kameník, Zdeněk; Šmídová, Klára; Bergman, Natalie; Benada, Oldřich; Kofroňová, Olga; Petříčková, Kateřina; Bobek, Jan

    2017-01-01

    Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor . Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer ( quorum sensing ) and/or play a role in competitive microflora repression ( quorum quenching ) in their nature environments.

  9. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    PubMed Central

    Čihák, Matouš; Kameník, Zdeněk; Šmídová, Klára; Bergman, Natalie; Benada, Oldřich; Kofroňová, Olga; Petříčková, Kateřina; Bobek, Jan

    2017-01-01

    Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing) and/or play a role in competitive microflora repression (quorum quenching) in their nature environments. PMID:29326665

  10. Effects of carbon dioxide on metabolite production and bacterial communities during kimchi fermentation.

    PubMed

    Park, Doo Hyun

    2018-04-24

    Bacterial communities and metabolites in kimchi fermented under conventional conditions (CC) compared to CO 2 -rich environments (CO 2 ) were analyzed. After a 20-day fermentation, lactic and acetic acid productions were 54 and 69 mM under CC, and 19 and 12 mM under CO 2 , respectively. The final pH of kimchi fermented under CC (CC-fermenting) and CO 2 (CO 2 -fermenting) were 4.1 and 4.7, respectively. For bacterial communities, OTU and Chao1 indices were both 35 in fresh kimchi, 10 and 15 in CC-fermenting kimchi, and 8 and 24 in CO 2 -fermenting kimchi, respectively. Shannon and Simpson indices were 3.47 and 0.93 in fresh kimchi, 1.87-0.06 and 0.46-0.01 in CC-fermenting kimchi, and 1.65-0.44 and 0.63-0.12 in CO 2 -fermenting kimchi, respectively. Non-lactic acid bacteria were eliminated in fermenting kimchi after 12 days under CC and 6 days under CO 2 . I conclude that carbon dioxide can alter bacterial communities, reduce metabolite production, and improve fermented kimchi quality.

  11. [Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16].

    PubMed

    Wang, Jingjie; Zhao, Dongyang; Liu, Yonggui; Ao, Xiang; Fan, Rui; Duan, Zhengqiao; Liu, Yanping; Chen, Qianqian; Jin, Zhixiong; Wan, Yongji

    2014-07-04

    We screened bacterial strains that have strong antagonism against Beauveria bassiana, an important pathogen of silkworm industry, and detected the antagonistic activity of lipopeptide metabolites. We identified bacterium SWB16 by morphological observation, physiological and biochemical experiments, 16SrRNA, and gyrA gene sequence analysis, tested antagonistic activity of strain SWB16 against Beauveria bassiana by measuring the inhibition zone diameter using filter paper diffusion method (Kirby-Bauer method), obtained lipopeptide metabolites of the strain using methanol extraction and observed the antagonism of strain SWB16 lipopeptide extracts against the conidia and hyphae of Beauveria bassiana, detected main ingredients and genes of lipopeptide metabolites by high-performance liquid chromatography-mass spectrometry and PCR amplification. SWB16 isolated from tissue of plant Dioscorea zingiberensis C. H. Wright belongs to Bacillus amyloliquefaciens and showed high antagonistic activity to Beauveria bassiana, and the lipopeptide extracts of isolate SWB16 exhibited significant inhibition to conidial germination and mycelial growth of Beauveria bassiana. The result of mass spectrometric detection indicated main component of the lipopeptide metabolites were fengcin and iturin, and genes fenB, ituA involved in the synthesis of them were amplified in the genome. Bacillus amyloliquefaciens strain SWB16 could produce lipopeptide antibiotics with strong antagonism to the entomopathogenic fungus Beauveria bassiana, and the results suggested that strain SWB16 has potential application value for controlling white muscardine of economic insects including silkworm.

  12. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites.

    PubMed

    Omura, S; Ikeda, H; Ishikawa, J; Hanamoto, A; Takahashi, C; Shinose, M; Takahashi, Y; Horikawa, H; Nakazawa, H; Osonoe, T; Kikuchi, H; Shiba, T; Sakaki, Y; Hattori, M

    2001-10-09

    Streptomyces avermitilis is a soil bacterium that carries out not only a complex morphological differentiation but also the production of secondary metabolites, one of which, avermectin, is commercially important in human and veterinary medicine. The major interest in this genus Streptomyces is the diversity of its production of secondary metabolites as an industrial microorganism. A major factor in its prominence as a producer of the variety of secondary metabolites is its possession of several metabolic pathways for biosynthesis. Here we report sequence analysis of S. avermitilis, covering 99% of its genome. At least 8.7 million base pairs exist in the linear chromosome; this is the largest bacterial genome sequence, and it provides insights into the intrinsic diversity of the production of the secondary metabolites of Streptomyces. Twenty-five kinds of secondary metabolite gene clusters were found in the genome of S. avermitilis. Four of them are concerned with the biosyntheses of melanin pigments, in which two clusters encode tyrosinase and its cofactor, another two encode an ochronotic pigment derived from homogentiginic acid, and another polyketide-derived melanin. The gene clusters for carotenoid and siderophore biosyntheses are composed of seven and five genes, respectively. There are eight kinds of gene clusters for type-I polyketide compound biosyntheses, and two clusters are involved in the biosyntheses of type-II polyketide-derived compounds. Furthermore, a polyketide synthase that resembles phloroglucinol synthase was detected. Eight clusters are involved in the biosyntheses of peptide compounds that are synthesized by nonribosomal peptide synthetases. These secondary metabolite clusters are widely located in the genome but half of them are near both ends of the genome. The total length of these clusters occupies about 6.4% of the genome.

  13. Cytological effects of fungal metabolites produced by fungi isolated from Egyptian poultry feedstuffs.

    PubMed

    Abdou, R F; Megalla, S E; Moharram, A M; Abdel-Gawad, K M; Sherif, T H; el-Syed Mahmood, A L; Lottfy, A E

    1989-01-01

    The cytogenetic effects of fungal metabolites produced by 113 strains belonging to 36 fungal species and isolated form 5 substrates of commercial poultry feedstuffs were tested for their effect on the growing root meristems of Allium cepa. The fungal metabolites of Paecilomyces canescens, Aspergillus fumigatus, Syncephalastrum racemosum, Aspergillus terreus and Mucor hiemalis strongly suppressed cell division. Metabolites from other strains had less effect on cell division but permitted the appearance of several abnormalities through different mitotic stages. In general, chromosomal aberrations were more obvious with metabolites of Aspergillus species, Mucor circinelloides and Cladosporium cladosporioides. The mutagenic effects produced by these fungal metabolites reflect the risk that might take place through the consumption of these contaminated feedstuffs.

  14. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication.

    PubMed

    Martín, Juan F; Casqueiro, Javier; Liras, Paloma

    2005-06-01

    Many secondary metabolites (e.g. antibiotics and mycotoxins) are toxic to the microorganisms that produce them. The clusters of genes that are responsible for the biosynthesis of secondary metabolites frequently contain genes for resistance to these toxic metabolites, such as different types of multiple drug resistance systems, to avoid suicide of the producer strains. Recently there has been research into the efflux systems of secondary metabolites in bacteria and in filamentous fungi, such as the large number of ATP-binding cassette transporters found in antibiotic-producing Streptomyces species and that are involved in penicillin secretion in Penicillium chrysogenum. A different group of efflux systems, the major facilitator superfamily exporters, occur very frequently in a variety of bacteria that produce pigments or antibiotics (e.g. the cephamycin and thienamycin producers) and in filamentous fungi that produce mycotoxins. Such efflux systems include the CefT exporters that mediate cephalosporin secretion in Acremonium chrysogenum. The evolutionary origin of these efflux systems and their relationship with current resistance determinants in pathogenic bacteria has been analyzed. Genetic improvement of the secretion systems of secondary metabolites in the producer strain has important industrial applications.

  15. Effects of Temperature on Bacterial Communities and Metabolites during Fermentation of Myeolchi-Aekjeot, a Traditional Korean Fermented Anchovy Sauce

    PubMed Central

    Chun, Byung Hee; Jeon, Che Ok

    2016-01-01

    Myeolchi-aekjeot (MA) in Korea is produced outdoors without temperature controls, which is a major obstacle to produce commercial MA products with uniform quality. To investigate the effects of temperature on MA fermentation, pH, bacterial abundance and community, and metabolites were monitored during fermentation at 15°C, 20°C, 25°C, and 30°C. Initial pH values were approximately 6.0, and pH values increased after approximately 42 days, with faster increases at higher temperatures. Bacterial abundances increased rapidly in all MA samples after quick initial decreases during early fermentation and then they again steadily decreased after reaching their maxima, which were significantly greater at higher temperatures. Bacterial community analysis revealed that Proteobacteria and Tenericutes were predominant in all initial MA samples, but they were rapidly displaced by Firmicutes as fermentation progressed. Photobacterium and Mycoplasma belonging to Proteobacteria and Tenericutes, respectively, which may include potentially pathogenic strains, were dominant in initial MA, but decreased with the growth of Chromohalobacter, which occurred faster at higher temperatures––they were dominant until 273 and 100 days at 15°C and 20°C, respectively, but not detected after 30 days at 25°C and 30°C. Chromohalobacter also decreased with the appearance of subsequent genera belonging to Firmicutes in all MA samples. Tetragenococcus, halophilic lactic acid bacteria, appeared predominantly at 20°C, 25°C, and 30°C; they were most abundant at 30°C, but not detected at 15°C. Alkalibacillus and Lentibacillus appeared as dominant genera with the decrease of Tetragenococcus at 25°C and 30°C, but only Lentibacillus was dominant at 15°C and 20°C. Metabolite analysis showed that amino acids related to tastes were major metabolites and their concentrations were relatively higher at high temperatures. This study suggests that high temperatures (approximately 30°C) may be

  16. Penicillium spp.: prolific producer for harnessing cytotoxic secondary metabolites.

    PubMed

    Koul, Mytre; Singh, Shashank

    2017-01-01

    Secondary metabolites from fungal endophytes have become an interesting, attractive, and alternative source for novel pharmaceuticals. Several novel compounds with diversified chemical structures have been isolated from endophytic fungi. The genus Penicillium has been exploited worldwide for its biosynthetic potential for producing highly versatile cytotoxic secondary metabolites. Many of the compounds isolated from various species of the genus Penicillium have shown promising in-vitro as well as in-vivo growth-inhibitory properties against different human cancers. Thus, in relation to this genus, Penicillium represents the most dependable source of cytotoxic compounds with potential applications as leads for anticancer drugs. This review outlines endophytic secondary metabolites from the genus Penicillium with a relevant role as cytotoxic agents.

  17. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    PubMed

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals

  18. The gut microbiota metabolite indole alleviates liver inflammation in mice.

    PubMed

    Beaumont, Martin; Neyrinck, Audrey M; Olivares, Marta; Rodriguez, Julie; de Rocca Serra, Audrey; Roumain, Martin; Bindels, Laure B; Cani, Patrice D; Evenepoel, Pieter; Muccioli, Giulio G; Demoulin, Jean-Baptiste; Delzenne, Nathalie M

    2018-06-15

    The gut microbiota regulates key hepatic functions, notably through the production of bacterial metabolites that are transported via the portal circulation. We evaluated the effects of metabolites produced by the gut microbiota from aromatic amino acids (phenylacetate, benzoate, p-cresol, and indole) on liver inflammation induced by bacterial endotoxin. Precision-cut liver slices prepared from control mice, Kupffer cell (KC)-depleted mice, and obese mice ( ob/ ob) were treated with or without LPS and bacterial metabolites. We observed beneficial effects of indole that dose-dependently reduced the LPS-induced up-regulation of proinflammatory mediators at both mRNA and protein levels in precision-cut liver slices prepared from control or ob/ ob mice. KC depletion partly prevented the antiinflammatory effects of indole, notably through a reduction of nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain-containing 3 (NLRP3) pathway activation. In vivo, the oral administration of indole before an LPS injection reduced the expression of key proteins of the NF-κB pathway and downstream proinflammatory gene up-regulation. Indole also prevented LPS-induced alterations of cholesterol metabolism through a transcriptional regulation associated with increased 4β-hydroxycholesterol hepatic levels. In summary, indole appears as a bacterial metabolite produced from tryptophan that is able to counteract the detrimental effects of LPS in the liver. Indole could be a new target to develop innovative strategies to decrease hepatic inflammation.-Beaumont, M., Neyrinck, A. M., Olivares, M., Rodriguez, J., de Rocca Serra, A., Roumain, M., Bindels, L. B., Cani, P. D., Evenepoel, P., Muccioli, G. G., Demoulin, J.-B., Delzenne, N. M. The gut microbiota metabolite indole alleviates liver inflammation in mice.

  19. Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites

    PubMed Central

    Loudon, Andrew H.; Holland, Jessica A.; Umile, Thomas P.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; Harris, Reid N.

    2014-01-01

    Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd

  20. Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities.

    PubMed

    Pham, Hoang Nam; Michalet, Serge; Bodillis, Josselin; Nguyen, Tien Dat; Nguyen, Thi Kieu Oanh; Le, Thi Phuong Quynh; Haddad, Mohamed; Nazaret, Sylvie; Dijoux-Franca, Marie-Geneviève

    2017-07-01

    Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata's rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.

  1. Chemical screening method for the rapid identification of microbial sources of marine invertebrate-associated metabolites.

    PubMed

    Berrue, Fabrice; Withers, Sydnor T; Haltli, Brad; Withers, Jo; Kerr, Russell G

    2011-03-21

    Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.

  2. The effects of metabolite molecules produced by drinking water-isolated bacteria on their single and multispecies biofilms.

    PubMed

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2011-08-01

    The elucidation of the mechanisms by which diverse species survive and interact in drinking water (DW) biofilm communities may allow the identification of new biofilm control strategies. The purpose of the present study was to investigate the effects of metabolite molecules produced by bacteria isolated from DW on biofilm formation. Six opportunistic bacteria, viz. Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp. isolated from a drinking water distribution systems (DWDS) were used to form single and multispecies biofilms in the presence and absence of crude cell-free supernatants produced by the partner bacteria. Biofilms were characterized in terms of mass and metabolic activity. Additionally, several physiological aspects regulating interspecies interactions (sessile growth rates, antimicrobial activity of cell-free supernatants, and production of iron chelators) were studied to identify bacterial species with biocontrol potential in DWDS. Biofilms of Methylobacterium sp. had the highest growth rate and M. mucogenicum biofilms the lowest. Only B. cepacia was able to produce extracellular iron-chelating molecules. A. calcoaceticus, B. cepacia, Methylobacterium sp. and M. mucogenicum biofilms were strongly inhibited by crude cell-free supernatants from the other bacteria. The crude cell-free supernatants of M. mucogenicum and S. capsulata demonstrated a high potential for inhibiting the growth of counterpart biofilms. Multispecies biofilm formation was strongly inhibited in the absence of A. calcoaceticus. Only crude cell-free supernatants produced by B. cepacia and A. calcoaceticus had no inhibitory effects on multispecies biofilm formation, while metabolite molecules of M. mucogenicum showed the most significant biocontrol potential.

  3. 3'-NADP and 3'-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1.

    PubMed

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-10-28

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), are substantially different from the ubiquitous co-enzyme 2'-NADP and the calcium mobilizer 2'-NAADP. Interestingly, 3'-NADP and 3'-NAADP have previously been used as inhibitors or signaling molecules but were regarded as "artificial" compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3'-phosphorylated NAD derivatives. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.

    PubMed

    Arpaia, Nicholas; Campbell, Clarissa; Fan, Xiying; Dikiy, Stanislav; van der Veeken, Joris; deRoos, Paul; Liu, Hui; Cross, Justin R; Pfeffer, Klaus; Coffer, Paul J; Rudensky, Alexander Y

    2013-12-19

    Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.

  5. Bacterial Unculturability and the Formation of Intercellular Metabolic Networks.

    PubMed

    Pande, Samay; Kost, Christian

    2017-05-01

    The majority of known bacterial species cannot be cultivated under laboratory conditions. Here we argue that the adaptive emergence of obligate metabolic interactions in natural bacterial communities can explain this pattern. Bacteria commonly release metabolites into the external environment. Accumulating pools of extracellular metabolites create an ecological niche that benefits auxotrophic mutants, which have lost the ability to autonomously produce the corresponding metabolites. In addition to a diffusion-based metabolite transfer, auxotrophic cells can use contact-dependent means to obtain nutrients from other co-occurring cells. Spatial colocalisation and a continuous coevolution further increase the nutritional dependency and optimise fluxes through combined metabolic networks. Thus, bacteria likely function as networks of interacting cells that reciprocally exchange nutrients and biochemical functions rather than as physiologically autonomous units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria.

    PubMed

    Teasdale, Margaret E; Liu, Jiayuan; Wallace, Joselynn; Akhlaghi, Fatemeh; Rowley, David C

    2009-02-01

    Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 microg/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding.

  7. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective.

    PubMed

    Mousa, Walaa Kamel; Raizada, Manish N

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.

  8. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens.

    PubMed

    Vinale, F; Marra, R; Scala, F; Ghisalberti, E L; Lorito, M; Sivasithamparam, K

    2006-08-01

    Trichoderma harzianum strains T22 and T39 are two micro-organisms used as active agents in a variety of commercial biopesticides and biofertilizers and widely applied amongst field and greenhouse crops. The production, isolation, biological and chemical characterization of the main secondary metabolites produced by these strains are investigated. Of the three major compounds produced by strain T22, one is a new azaphilone that shows marked in vitro inhibition of Rhizoctonia solani, Pythium ultimum and Gaeumannomyces graminis var. tritici. In turn, filtrates from strain T39 were demonstrated to contain two compounds previously isolated from other T. harzianum strains and a new butenolide. The production of the isolated metabolites was also monitored by liquid chromatography/mass spectrometry during in vitro interaction with R. solani. This paper reports the isolation and characterization of the main secondary metabolites obtained from culture filtrates of two T. harzianum strains and their production during antagonistic interaction with the pathogen R. solani. This is the first work on secondary metabolites produced by the commercially applied strains T22 and T39. Our results provide a better understanding of the metabolism of these fungi, which are both widely used as biopesticides and/or biofertilizers in biocontrol.

  9. Chemosensation of Bacterial Secondary Metabolites Modulates Neuroendocrine Signaling and Behavior of C. elegans

    PubMed Central

    Meisel, Joshua D.; Panda, Oishika; Mahanti, Parag; Schroeder, Frank C.; Kim, Dennis H.

    2014-01-01

    Summary Discrimination among pathogenic and beneficial microbes is essential for host organism immunity and homeostasis. Here, we show that chemosensory detection of two secondary metabolites produced by Pseudomonas aeruginosa modulates a neuroendocrine signaling pathway that promotes avoidance behavior in the simple animal host Caenorhabditis elegans. Secondary metabolites phenazine-1-carboxamide and pyochelin activate a G protein-signaling pathway in the ASJ chemosensory neuron pair that induces expression of the neuromodulator DAF-7/TGF-β. DAF-7, in turn, activates a canonical TGF-β signaling pathway in adjacent interneurons to modulate aerotaxis behavior and promote avoidance of pathogenic P. aeruginosa. Our data provide a chemical, genetic, and neuronal basis for how the behavior and physiology of a simple animal host can be modified by the microbial environment, and suggest that secondary metabolites produced by microbes may provide environmental cues that contribute to pathogen recognition and host survival. PMID:25303524

  10. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    PubMed

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The

  11. [Influence of corynebacteria metabolites on antagonistic activity of H2O2 producing lactobacilli].

    PubMed

    Bukharin, O V; Sgibnev, A V

    2012-01-01

    Study combined influence of Corynebacterium genus bacteria metabolites and H2O2 producing lactobacilli on survival rate of Staphylococcus aureus, Escherichia coli and Lactobacillus acidophilus. The ability to inhibit catalase of the test strains used and to reduce bactericidal effect of hydroxyl radical were determined in corynebacteria. H2O2 containing metabolites were obtained by cultivating lactobacilli in mineral medium, the amount of H2O2 was determined by oxidation of TMB by peroxidase. Bactericidal effect of lactobacilli metabolites for test strains treated by corynebacteria metabolites was evaluated by seeding results. Results. Inhibitio by corynebacteria metabolites of S. aureus catalase activity by 30-40% and E. coli catalase activ ity by 40-70% was shown. A reduction of bactericidal effect of hydroxyl radicals by corynebacteria metabolites by 30-35% for S. aureus, 38-42% for E. coli and 70-73% for L. acidophilus was noted. The enchantment of bactericidal effect of lactobacilli after treatment of the test strain by corynebacteria metabolites against S. aureus and E. coli manifested by reduction of the numbe of viable cells by 2-3 lg CFU. For L. acidophilus the bactericidal effect oflactobacilli metabolite in the same conditions reduced, and that led to the increase ofviability by 2-4 lg PFU. A conclusion on the possibility of regulation by associative bacteria the manifestations of antagonistic activity of H2O2 producing dominant microorganisms is made based on the data obtained.

  12. Improvement of reverse-phase high pressure liquid chromatographic resolution of benzo(a)pyrene metabolites using organic amines: application to metabolites produced by fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjessum, K.; Stegeman, J.J.

    1979-10-15

    Addition of primary organic amines, such as n-butylamine, to the mobile phase altered the capacity factors and selectivity of benzo(a)pyrene metabolites obtained with reverse-phase high pressure liquid chromatography on an ODS column. Separation of benzo(a)pyrene phenols in particular was improved with 8 of the 10 available metabolites resolved, including those known to be biologically produced. The method offers sufficiently improved resolution or convenience that it should prove useful in comparative studies of metabolism of benzo(a)-pyrene and other polynuclear aromatic hydrocarbons. Applying the method to analysis of benzo(a)pyrene metabolites produced in vitro by hepatic microsomes from the marine fish Stenotomus versicolormore » indicated the principal phenolic derivatives produced by this fish were 1-hydroxy-, 3-hydroxy-, 7-hydroxy-, and 9-hydroxybenzo(a)pyrene.« less

  13. The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective

    PubMed Central

    Mousa, Walaa Kamel; Raizada, Manish N.

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048

  14. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  15. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    PubMed Central

    Lu, Liang; Wang, Jijie; Xu, Ying; Wang, Kailing; Hu, Yingwei; Tian, Renmao; Yang, Bo; Lai, Qiliang; Li, Yongxin; Zhang, Weipeng; Shao, Zongze; Lam, Henry; Qian, Pei-Yuan

    2014-01-01

    Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use. PMID:25298017

  16. 3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1*♦

    PubMed Central

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-01-01

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3′-hydroxyl group. Both products of AvrRxo1, 3′-NADP and 3′-nicotinic acid adenine dinucleotide phosphate (3′-NAADP), are substantially different from the ubiquitous co-enzyme 2′-NADP and the calcium mobilizer 2′-NAADP. Interestingly, 3′-NADP and 3′-NAADP have previously been used as inhibitors or signaling molecules but were regarded as “artificial” compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3′-phosphorylated NAD derivatives. PMID:27621317

  17. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp.

    PubMed

    Badawi, Nora; Rønhede, Stig; Olsson, Stefan; Kragelund, Birthe B; Johnsen, Anders H; Jacobsen, Ole Stig; Aamand, Jens

    2009-10-01

    Phenylurea herbicides are used worldwide, and often pollute surface- and groundwater in concentrations exceeding the limit value for drinking water (0.1 microg l(-1)). Bacteria degrade phenylurea herbicides by successive N-dealkylation to substituted aniline products. Little is known about the corresponding fungal pathways, however. We here report degradation of chlorotoluron, diuron, isoproturon and linuron by the soil fungus Mortierella sp. Gr4. Degradation was fastest with linuron and resulted in successively dealkylated metabolites and 3,4-dichloroaniline. A major new metabolite was detected that has not yet been fully identified. Thin layer chromatography and nuclear magnetic resonance spectroscopy indicate that it is a non-aromatic diol. Degradation of isoproturon, chlorotoluron and diuron involved successive N-demethylation and, in the case of isoproturon and chlorotoluron, additional hydroxylation. A new hydroxylated isoproturon metabolite was detected. The study thus shows that the fungal pathways differ from the bacterial pathways and yield new metabolites of possible environmental concern.

  18. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts.

    PubMed

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Martinez, Ignacio Juarez; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadam; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-06-05

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.

  19. Gut microbial metabolites of polyunsaturated fatty acids correlate with specific fecal bacteria and serum markers of metabolic syndrome in obese women.

    PubMed

    Druart, Céline; Dewulf, Evelyne M; Cani, Patrice D; Neyrinck, Audrey M; Thissen, Jean-Paul; Delzenne, Nathalie M

    2014-04-01

    The aim of this human study was to assess the influence of prebiotic-induced gut microbiota modulation on PUFA-derived bacterial metabolites production. Therefore, we analyzed the circulating fatty acid profile including CLA/CLnA in obese women treated during 3 months with inulin-type fructan prebiotics. In these patients, we had already determined gut microbiota composition by phylogenetic microarray and qPCR analysis of 16S rDNA. Some PUFA-derived bacterial metabolites were detected in the serum of obese patients. Despite the prebiotic-induced modulation of gut microbiota, including changes in CLA/CLnA-producing bacteria, the treatment did not impact significantly on the circulating level of these metabolites. However, some PUFA-derived bacterial metabolites were positively correlated with specific fecal bacteria (Bifidobacterium spp., Eubacterium ventriosum and Lactobacillus spp.) and inversely correlated with serum cholesterol (total, LDL, HDL). These correlations suggest a potential beneficial effect of some of these metabolites but this remains to be confirmed by further investigation.

  20. Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α-amylase producing strain

    PubMed Central

    Fooladi, J; Sajjadian, A

    2010-01-01

    Background Screening is a routine procedure for isolation of microorganisms which are able to produce special metabolites. Purified thermostable α-amylase from bacterial sources is widely used in different industries. In this study we analyzed samples collected from three different hot springs in Iran to detect any strains capable of producing thermostable α-amylase. Materials and Methods Hot water samples from Larijan (67°C, pH 6.5), Mahallat (46°C, pH 7), and Meshkinshahr (82°C, pH 6), were cultivated in screening starch agar plates and incubated at 65°C for 24 hours. Thereafter, the plates were stained with Gram's iodine solution. Results and Discussion The bacterial colonies from the Meshkinshahr hot-spring produced the largest haloforming zone. Based on the phenotypic tests, the strain was identified as Bacillus sp. The culture condition was optimized for biosynthesis of α-amylase. The enzyme was produced at maximum level when it was incubated at 70°C in the presence of soluble starch (1%) at pH 6. The addition of calcium (10 mM) and peptone (1%) to the mineral medium, shortened the lag period and improved the growth and α-amylase synthesis. The addition of glucose (1%) to the culture greatly diminished the syntheses of α -amylase. Importantly, the enzyme extract retained 100% activity when incubated for 45 minutes at 100°C. Conclusion The Meshkinshahr hot-spring is rich in the Bacillus spp thermostable α-amylase producing strain of the thermophilic bacterial population. Iranian hot-springs like Meshkinshahr, have large microbial storages and can be used as sources of different biological products like enzymes. The enzyme which was produced with Bacillus sp. could hydrolyse polymers like starch and was used at laboratory scale successfully. PMID:22347550

  1. Bacterial fermentation platform for producing artificial aromatic amines

    PubMed Central

    Masuo, Shunsuke; Zhou, Shengmin; Kaneko, Tatsuo; Takaya, Naoki

    2016-01-01

    Aromatic amines containing an aminobenzene or an aniline moiety comprise versatile natural and artificial compounds including bioactive molecules and resources for advanced materials. However, a bio-production platform has not been implemented. Here we constructed a bacterial platform for para-substituted aminobenzene relatives of aromatic amines via enzymes in an alternate shikimate pathway predicted in a Pseudomonad bacterium. Optimization of the metabolic pathway in Escherichia coli cells converted biomass glucose to 4-aminophenylalanine with high efficiency (4.4 g L−1 in fed-batch cultivation). We designed and produced artificial pathways that mimicked the fungal Ehrlich pathway in E. coli and converted 4-aminophenylalanine into 4-aminophenylethanol and 4-aminophenylacetate at 90% molar yields. Combining these conversion systems or fungal phenylalanine decarboxylases, the 4-aminophenylalanine-producing platform fermented glucose to 4-aminophenylethanol, 4-aminophenylacetate, and 4-phenylethylamine. This original bacterial platform for producing artificial aromatic amines highlights their potential as heteroatoms containing bio-based materials that can replace those derived from petroleum. PMID:27167511

  2. Thermo-stability, dose effects and shelf-life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmai

    USDA-ARS?s Scientific Manuscript database

    Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. In previous work, the concentrated, or cell-free metabolites of X. szentirmaii exhibited high toxicity against various fungal plant pathogens and showed great potential ...

  3. Evolution of the phenazine biosynthesis pathway and diversity of phenazine-producing Pseudomonas spp. in dryland wheat-producing areas of Washington state

    USDA-ARS?s Scientific Manuscript database

    Phenazines are versatile secondary metabolites of bacterial origin that function as signaling compounds and contribute to the ecological fitness and pathogenicity of the producing strains. A 2007-2008 survey of commercial dryland fields in central Washington State (annual precipitation <15 in) revea...

  4. Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities.

    PubMed

    Patin, Nastassia V; Schorn, Michelle; Aguinaldo, Kristen; Lincecum, Tommie; Moore, Bradley S; Jensen, Paul R

    2017-02-15

    Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S

  5. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil.

    PubMed

    Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas

    2013-10-01

    The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites

  6. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    PubMed Central

    Schmidt, Ruth; Köberl, Martina; Mostafa, Amr; Ramadan, Elshahat M.; Monschein, Marlene; Jensen, Kenneth B.; Bauer, Rudolf; Berg, Gabriele

    2014-01-01

    Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14) from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18) already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as to influence the plant metabolome. PMID:24600444

  7. Supplementing Blends of Sugars, Amino Acids, and Secondary Metabolites to the Diet of Termites (Reticulitermes flavipes) Drive Distinct Gut Bacterial Communities.

    PubMed

    Huang, Xing-Feng; Chaparro, Jacqueline M; Reardon, Kenneth F; Judd, Timothy M; Vivanco, Jorge M

    2016-10-01

    Although it is well known that diet is one of the major modulators of the gut microbiome, how the major components of diet shape the gut microbial community is not well understood. Here, we developed a simple system that allows the investigation of the impact of given compounds as supplements of the diet on the termite gut microbiome. The 16S rRNA pyrosequencing analysis revealed that feeding termites different blends of sugars and amino acids did not majorly impact gut community composition; however, ingestion of blends of secondary metabolites caused shifts in gut bacterial community composition. The supplementation of sugars and amino acids reduced the richness significantly, and sugars alone increased the evenness of the gut bacterial community significantly. Secondary metabolites created the most dramatic effects on the microbial community, potentially overriding the effect of other types of compounds. Furthermore, some microbial groups were stimulated specifically by particular groups of compounds. For instance, termites fed with secondary metabolites contained more Firmicutes and Spirochaetes compared to the other treatments. In conclusion, our results suggest that the termite (Reticulitermes flavipes) can be used as a simple and effective system to test the effects of particular chemical compounds in modulating the gut microbiome.

  8. A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus

    USDA-ARS?s Scientific Manuscript database

    Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Some bacterial, fungal and plant metabolites including Amaryllidaceae alkaloids belonging to different chemical subgroups, including anthracenes, azoxymethoxytetrahydropy...

  9. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.

    PubMed

    Medema, Marnix H; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    2011-07-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org.

  10. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  11. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

    PubMed Central

    Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-01-01

    Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported. PMID:23443101

  13. Impact of Violacein-Producing Bacteria on Survival and Feeding of Bacterivorous Nanoflagellates

    PubMed Central

    Matz, Carsten; Deines, Peter; Boenigk, Jens; Arndt, Hartmut; Eberl, Leo; Kjelleberg, Staffan; Jürgens, Klaus

    2004-01-01

    We studied the role of bacterial secondary metabolites in the context of grazing protection against protozoans. A model system was used to examine the impact of violacein-producing bacteria on feeding rates, growth, and survival of three common bacterivorous nanoflagellates. Freshwater isolates of Janthinobacterium lividum and Chromobacterium violaceum produced the purple pigment violacein and exhibited acute toxicity to the nanoflagellates tested. High-resolution video microscopy revealed that these bacteria were ingested by the flagellates at high rates. The uptake of less than three bacteria resulted in rapid flagellate cell death after about 20 min and cell lysis within 1 to 2 h. In selectivity experiments with nontoxic Pseudomonas putida MM1, flagellates did not discriminate against pigmented strains. Purified violacein from cell extracts of C. violaceum showed high toxicity to nanoflagellates. In addition, antiprotozoal activity was found to positively correlate with the violacein content of the bacterial strains. Pigment synthesis in C. violaceum is regulated by an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system. An AHL-deficient, nonpigmented mutant provided high flagellate growth rates, while the addition of the natural C. violaceum AHL could restore toxicity. Moreover, it was shown that the presence of violacein-producing bacteria in an otherwise nontoxic bacterial diet considerably inhibited flagellate population growth. Our results suggest that violacein-producing bacteria possess a highly effective survival mechanism which may exemplify the potential of some bacterial secondary metabolites to undermine protozoan grazing pressure and population dynamics. PMID:15006783

  14. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates.

    PubMed

    Matz, Carsten; Deines, Peter; Boenigk, Jens; Arndt, Hartmut; Eberl, Leo; Kjelleberg, Staffan; Jürgens, Klaus

    2004-03-01

    We studied the role of bacterial secondary metabolites in the context of grazing protection against protozoans. A model system was used to examine the impact of violacein-producing bacteria on feeding rates, growth, and survival of three common bacterivorous nanoflagellates. Freshwater isolates of Janthinobacterium lividum and Chromobacterium violaceum produced the purple pigment violacein and exhibited acute toxicity to the nanoflagellates tested. High-resolution video microscopy revealed that these bacteria were ingested by the flagellates at high rates. The uptake of less than three bacteria resulted in rapid flagellate cell death after about 20 min and cell lysis within 1 to 2 h. In selectivity experiments with nontoxic Pseudomonas putida MM1, flagellates did not discriminate against pigmented strains. Purified violacein from cell extracts of C. violaceum showed high toxicity to nanoflagellates. In addition, antiprotozoal activity was found to positively correlate with the violacein content of the bacterial strains. Pigment synthesis in C. violaceum is regulated by an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system. An AHL-deficient, nonpigmented mutant provided high flagellate growth rates, while the addition of the natural C. violaceum AHL could restore toxicity. Moreover, it was shown that the presence of violacein-producing bacteria in an otherwise nontoxic bacterial diet considerably inhibited flagellate population growth. Our results suggest that violacein-producing bacteria possess a highly effective survival mechanism which may exemplify the potential of some bacterial secondary metabolites to undermine protozoan grazing pressure and population dynamics.

  15. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology.

    PubMed

    Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A

    2017-01-01

    Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these "singleton" BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus's metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized

  16. Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.

    PubMed Central

    Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin

    2016-01-01

    ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including

  17. Bacterial metabolite S-equol modulates glucagon-like peptide-1 secretion from enteroendocrine L cell line GLUTag cells via actin polymerization.

    PubMed

    Harada, Kazuki; Sada, Shoko; Sakaguchi, Hidekazu; Takizawa, Mai; Ishida, Rika; Tsuboi, Takashi

    2018-07-02

    S-equol is one of gut bacterial metabolites produced from soybean isoflavone daizein. While S-equol is known to promote glucose-induced insulin secretion from pancreatic β cells, whether S-equol affects glucagon-like peptide-1 (GLP-1) secretion from enteroendoceine L cells remains unclear. Here we assessed the effect of S-equol on GLP-1 secretion from mouse enteroendocrine L cell line GLUTag cells. GLUTag cells expressed GPR30 and estrogen receptors, which are putative S-equol receptors. Application of S-equol induced an increase in intracellular Ca 2+ levels via GPR30. However, S-equol did not enhance GLP-1 exocytosis, and long-term treatment of S-equol suppressed GLP-1 secretion. Moreover, immunocytochemistry revealed that S-equol increased the density of cortical actin filaments via G 12/13 signaling under GPR30. These data suggest that S-equol prevents GLP-1 secretion as a result of competing regulation between Ca 2+ mobilization and actin reorganization. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Old drug new use--amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity.

    PubMed

    Kong, Ren; Liu, Timothy; Zhu, Xiaoping; Ahmad, Syed; Williams, Alfred L; Phan, Alexandria T; Zhao, Hong; Scott, John E; Yeh, Li-An; Wong, Stephen T C

    2014-07-01

    Irinotecan (CPT-11) induced diarrhea occurs frequently in patients with cancer and limits its usage. Bacteria β-glucuronidase (GUS) enzymes in intestines convert the nontoxic metabolite of CPT-11, SN-38G, to toxic SN-38, and finally lead to damage of intestinal epithelial cells and diarrhea. We previously reported amoxapine as a potent GUS inhibitor in vitro. To further understand the molecular mechanism of amoxapine and its potential for treatment of CPT-11-induced diarrhea, we studied the binding modes of amoxapine and its metabolites by docking and molecular dynamics simulation, and tested the in vivo efficacy on mice in combination with CPT-11. The binding of amoxapine, its metabolites, 7-hydroxyamoxapine and 8-hydroxyamoxapine, and a control drug loxapine with GUS was explored by computational protocols. The in vitro potencies of metabolites were measured by Escherichia coli GUS enzyme and cell-based assay. Low-dosage daily oral administration was designed to use along with CPT-11 to treat tumor-bearing mice. Computational modeling results indicated that amoxapine and its metabolites bound in the active site of GUS and satisfied critical pharmacophore features: aromatic features near bacterial loop residue F365' and hydrogen bond toward E413. Amoxapine and its metabolites were demonstrated as potent in vitro. Administration of low dosages of amoxapine with CPT-11 in mice achieved significant suppression of diarrhea and reduced tumor growth. Amoxapine has great clinical potential to be rapidly translated to human subjects for irinotecan-induced diarrhea. ©2014 American Association for Cancer Research.

  19. Old drug new use - Amoxapine and its metabolites as potent bacterial β-glucuronidase inhibitors for alleviating cancer drug toxicity

    PubMed Central

    Kong, Ren; Liu, Timothy; Zhu, Xiaoping; Ahmad, Syed; Williams, Alfred L.; Phan, Alexandria T; Zhao, Hong; Scott, John E.; Yeh, Li-An; Wong, Stephen TC

    2014-01-01

    Purpose Irinotecan (CPT-11) induced diarrhea occurs frequently in cancer patients and limits its usage. Bacteria β-glucuronidase (GUS) enzymes in intestines convert the non-toxic metabolite of CPT-11, SN-38G, to toxic SN-38, and finally lead to damage of intestinal epithelial cells and diarrhea. We previously reported amoxapine as potent GUS inhibitor in vitro. To further understand the molecular mechanism of amoxapine and its potential for treatment of CPT-11 induced diarrhea, we studied the binding modes of amoxapine and its metabolites by docking and molecular dynamics simulation, and tested the in vivo efficacy on mice in combination with CPT-11. Experimental Design The binding of amoxapine, its metabolites, 7-hydroxyamoxapine and 8-hydroxyamoxapine, and a control drug loxapine with GUS was explored by computational protocols. The in vitro potencies of metabolites were measured by E. Coli GUS enzyme and cell-based assay. Low dosage daily oral administration was designed to use along with CPT-11 to treat tumor-bearing mice. Results Computational modeling results indicated that amoxapine and its metabolites bound in the active site of GUS and satisfied critical pharmacophore features: aromatic features near bacterial loop residue F365’ and hydrogen bond toward E413. Amoxapine and its metabolites were demonstrated as potent in vitro. Administration of low dosages of amoxapine with CPT-11 in mice achieved significant suppression of diarrhea and reduced tumor growth. Conclusions Amoxapine has great clinical potential to be rapidly translated to human subjects for irinotecan induced diarrhea. PMID:24780296

  20. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    PubMed Central

    Mansson, Maria; Gram, Lone; Larsen, Thomas O.

    2011-01-01

    Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS). Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation. PMID:22131950

  1. A panorama of bacterial inulinases: Production, purification, characterization and industrial applications.

    PubMed

    Singh, Ram Sarup; Chauhan, Kanika; Kennedy, John F

    2017-03-01

    Inulinases are important hydrolysing enzymes which specifically act on β-2, 1 linkages of inulin to produce fructose or fructooligosaccharides. Fungi, yeasts and bacteria are the potent microbial sources of inulinases. The data on bacterial inulinases is scarce as compared to other microbial sources. Inulinases yield from bacteria is very less as compared to fungal and yeast sources of inulinases. Submerged fermentation (SmF) is the method of choice for the production of inulinases from bacterial sources. Moreover, inulin is a potent substrate for the production of inulinases in SmF. Many bacterial inulinases have been reported to display magnificent environment abiding features and variability in their biophysical and biochemical properties. These properties have attracted intention of many researchers towards exploring adverse ecological niches for more distinctive inulinase producing bacterial strains. Inulinases are substantially important in current biotechnological era due to their numerous industrial applications. High fructose syrup and fructooligosaccharides are two major industrial applications of inulinases. Additionally, there are many reports on the production of various metabolites like citric acid, lactic acid, ethanol, biofuels, butanediol etc. using mixed cultures of inulinase producing organisms with other microorganisms. The present review mainly envisages inulinase producing bacterial sources, inulinase production, purification, characterization and their applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    PubMed

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-07-20

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors.

  3. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    PubMed

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  4. Dynamic microbial succession of Shanxi aged vinegar and its correlation with flavor metabolites during different stages of acetic acid fermentation.

    PubMed

    Zhu, Yunping; Zhang, Feifei; Zhang, Chengnan; Yang, Li; Fan, Guangsen; Xu, Youqiang; Sun, Baoguo; Li, Xiuting

    2018-06-05

    Shanxi aged vinegar (SAV), one of the famous Chinese vinegars, is produced by multispecies solid-state fermentation in which the acetic acid fermentation stage (AAF) is especially important. However, how bacterial succession and their metabolites change along with the different stages of AAF is still poorly understood. In this study, we investigated the dynamic bacterial succession and flavor formation in three batches of SAV using high-throughput sequencing and metabolomics approaches. It is interesting to find that AAF can be divided into three stages based on its bacterial community succession (early stage, days 0-4; medium stage, days 5-21; and later stage, days 22-26). Pantoea, Pediococcus, Lactococcus and Rhizobium played an important role in the early stage; Lactobacillus was dominant in the medium stage (67.72%); and Acetobacter, Komagataeibacter and Kroppenstedtia were the key bacteria in the later stage. A total of seven organic acids and 42 volatile constituents (esters, alcohol, ketones and aldehydes) were detected during the AAF. Spearman correlation analysis showed a significant correlation between the bacterial community and these flavor metabolites during the AAF of the SAV. This is the first report to explore the relationships between volatile flavor metabolites and bacterial community succession by a three-staged method and provide theoretical support for a flavor formation mechanism in traditional SAV.

  5. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    PubMed

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Environmental monitoring and assessment of antibacterial metabolite producing actinobacteria screened from marine sediments in south coastal regions of Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Garka, Shruthi; Puttaswamy, Sushmitha; Shanbhogue, Shobitha; Devaraju, Raksha; Narayanappa, Rajeswari

    2017-06-01

    Assessment of the therapeutic potential of secondary metabolite producing microorganisms from the marine coastal areas imparts scope and application in the field of environmental monitoring. The present study aims to screen metabolites with antibacterial potential from actionbacteria associated with marine sediments collected from south coastal regions of Karnataka, India. The actinobacteria were isolated and characterized from marine sediments by standard protocol. The metabolites were extracted, and antibacterial potential was analyzed against eight hospital associated bacteria. The selected metabolites were partially characterized by proximate analysis, SDS-PAGE, and FTIR-spectroscopy. The antibiogram of the test clinical isolates revealed that they were emerged as multidrug-resistant strains (P ≤ 0.05). Among six actinobacteria (IS1-1S6) screened, 100 μl -1 metabolite from IS1 showed significant antibacterial activities against all the clinical isolates except Pseudomonas aeruginosa. IS2 demonstrated antimicrobial potential towards Proteus mirabilis, Streptococcus pyogenes, and Escherichia coli. The metabolite from IS3 showed activity against Strep. pyogenes and E. coli. The metabolites from IS4, IS5, and IS6 exhibited antimicrobial activities against Ps. aeruginosa (P ≤ 0.05). The two metabolites that depicted highest antibacterial activities against the test strains were suggested to be antimicrobial peptides with low molecular weight. These isolates were characterized and designated as Streptomyces sp. strain mangaluru01 and Streptomyces sp. mangaloreK01 by 16S ribosomal DNA (rDNA) sequencing. This study suggests that south coastal regions of Karnataka, India, are one of the richest sources of antibacterial metabolites producing actinobacteria and monitoring of these regions for therapeutic intervention plays profound role in healthcare management.

  7. Metabolic Signatures of Bacterial Vaginosis

    PubMed Central

    Morgan, Martin T.; Fiedler, Tina L.; Djukovic, Danijel; Hoffman, Noah G.; Raftery, Daniel; Marrazzo, Jeanne M.

    2015-01-01

    ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. PMID:25873373

  8. Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2.

    PubMed

    Su, Chun; Xiang, Zhaoju; Liu, Yibo; Zhao, Xinqing; Sun, Yan; Li, Zhi; Li, Lijun; Chang, Fan; Chen, Tianjun; Wen, Xinrong; Zhou, Yidan; Zhao, Furong

    2016-11-03

    Gram-negative bacteria of the genus Serratia are potential producers of many useful secondary metabolites, such as prodigiosin and serrawettins, which have potential applications in environmental bioremediation or in the pharmaceutical industry. Several Serratia strains produce prodigiosin and serrawettin W1 as the main bioactive compounds, and the biosynthetic pathways are co-regulated by quorum sensing (QS). In contrast, the Serratia strain, which can simultaneously produce prodigiosin and serrawettin W2, has not been reported. This study focused on analyzing the genomic sequence of Serratia sp. strain YD25 T isolated from rhizosphere soil under continuously planted burley tobacco collected from Yongding, Fujian province, China, which is unique in producing both prodigiosin and serrawettin W2. A hybrid polyketide synthases (PKS)-non-ribosomal peptide synthetases (NRPS) gene cluster putatively involved in biosynthesis of antimicrobial serrawettin W2 was identified in the genome of YD25 T , and its biosynthesis pathway was proposed. We found potent antimicrobial activity of serrawettin W2 purified from YD25 T against various pathogenic bacteria and fungi as well as antitumor activity against Hela cells. Subsequently, comparative genomic analyses were performed among a total of 133 Serratia species. The prodigiosin biosynthesis gene cluster in YD25 T belongs to the type I pig cluster, which is the main form of pig-encoding genes existing in most of the pigmented Serratia species. In addition, a complete autoinducer-2 (AI-2) system (including luxS, lsrBACDEF, lsrGK, and lsrR) as a conserved bacterial operator is found in the genome of Serratia sp. strain YD25 T . Phylogenetic analysis based on concatenated Lsr and LuxS proteins revealed that YD25 T formed an independent branch and was clearly distant from the strains that solely produce either prodigiosin or serrawettin W2. The Fe (III) ion reduction assay confirmed that strain YD25 T could produce an AI-2 signal

  9. Screening of Intestinal Bacterial Metabolites of Platycodin D Using Ultra-Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry.

    PubMed

    Zhang, Wei; Qian, Shi-Hui; Qian, Da-Wei; Li, Song-Lin

    2016-01-01

    Platycodin D (PD), a bioactive triterpenoid saponin isolated from Platycodi Radix (PR), possesses a vast range of biological activities. Although the pharmacological activities and pharmacokinetics of PD have been well demonstrated, information regarding the intestinal metabolisms of PD is very limited. In this study, human and rat fecal microflora were prepared and anaerobically incubated with PD at 37[Formula: see text]C for 48[Formula: see text]h, respectively. A highly sensitive and specific ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was developed for the analysis of PD and related metabolites in the reaction samples. A Liquid-liquid extraction method was used for sample pretreatment and the chromatographic separation was performed on a 1.7 [Formula: see text]m particle size Syncronis C[Formula: see text] column using gradient elution system. Finally, a total of seven metabolites were detected and tentatively identified, such as the demethylation metabolite (M1), deoxidation metabolites (M3, M7) and hydrolysis at the C-28 oligosaccharide metabolites (M5, M6), which were first discovered in this experiment. The results indicate that hydrolysis, demethylation, dehydroxylation, and acetylation were the major metabolic pathways of PDin vitro. Additionally, four bacterial strains from human feces including Enterococcus sp.41, Bacillus sp.46, Escherichia sp.49 A and Escherichia sp.64 were detected and further identified with 16S rRNA gene sequencing due to their relatively strong metabolic capacity toward PD. The present study provides important information about the metabolism of PD, which will help elucidate the impact of intestinal bacteria on this active component.

  10. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications

    PubMed Central

    Narsing Rao, Manik Prabhu; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications. PMID:28690593

  11. The Usefulness of Non-Toxic Plant Metabolites in the Control of Bacterial Proliferation.

    PubMed

    Gutiérrez, Sergio; Morán, Alfredo; Martínez-Blanco, Honorina; Ferrero, Miguel A; Rodríguez-Aparicio, Leandro B

    2017-09-01

    The effect of generally recognised as safe (GRAS) plant metabolites in regulating the growth of human pathogenic and probiotic bacteria and in the formation of biofilm was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against both pathogenic and probiotic microorganisms, at a subinhibitory concentration (SIC) of ≤50 μg ml -1 . Genistein, hydroquinone, p-hydroxybenzoic acid and resveratrol also showed antibacterial effects but at a wide concentration range (SIC = 50-1000 μg ml -1 ). Catechin, gallic acid, protocatechuic acid and cranberry extracts were the most biologically compatible molecules (SIC ≥ 1000 μg ml -1 ). Regarding the effect on biofilm, it was observed that thymol, carvacrol and eugenol showed antibiofilm activity against all potential pathogenic bacteria tested whilst specifically enhancing probiotic aggregation. Catechin, genistein and cranberry extracts did not inhibit the pathogenic aggregation but they stimulated probiotic biofilm formation, whilst gallic acid, protocateuchic acid, hydroquinone, p-hydroxybenzoic acid and resveratrol did not show opposite effect on biofilm formation between pathogenic and probiotic microorganisms. These results indicate that an appropriate combination of GRAS plant metabolites, which have traditionally been used as dietary constituents due to their health-promoting characteristics, can also be extremely useful in the regulation of bacterial proliferation in the intestinal microbiota. Hence, it is suggested to apply these natural GRAS molecules as dietary supplements in the food industry in order to promote probiotic viability and to prevent or reduce colonisation or proliferation of intestinal pathogens.

  12. Isolation and screening of proangiogenic and antiangiogenic metabolites producing rare actinobacteria from soil.

    PubMed

    Azarakhsh, Y; Mohammadipanah, F; Nassiri, S M; Siavashi, V; Hamedi, J

    2017-06-01

    Angiogenesis is a physiological process that has important impacts on the pathology and healing of various diseases, and its induction or inhibition by bioactive actinobacterial metabolites can help the treatment of some diseases. In this study, the effects of actinobacterial extract in the process of angiogenesis have been explored. In this research, proangiogenic and antiangiogenic metabolites producing actinobacteria were isolated from soil samples and their fermentation broth were extracted and after evaluation of their toxicity by MTT assay, antiangiogenic and proangiogenic activities were screened against human umbilical vein endothelial cells (HUVECs) by in vitro tube formation and migration assay. Isolated strains were identified through molecular techniques. The results showed that Nocardiopsis arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts had a high potential of anti-angiogenic activity on HUVECs. For the first time proangiogenic potency of a rare actinobacterium, Kribbella sp. UTMC 522, was reported, and N. arvandica UTMC 103 and Nonomuraea sp. UTMC 2180 extracts inhibits the proliferation, migration and angiogenesis activity of HUVECs with reasonable potency. Metabolites of the introduced rare actinobacteria are potent proangiogenic and angiogenic inhibitors. Identification of angiogenic-antiangiogenic mechanisms and purification of the extracts would be useful in therapeutic angiogenesis. © 2017 The Society for Applied Microbiology.

  13. Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens.

    PubMed

    Suryawanshi, R K; Patil, C D; Borase, H P; Narkhede, C P; Stevenson, A; Hallsworth, J E; Patil, S V

    2015-02-01

    To exploit the microbial ecology of bacterial metabolite production and, specifically, to: (i) evaluate the potential use of the pigments prodigiosin and violacein as additives to commercial sunscreens for protection of human skin, and (ii) determine antioxidant and antimicrobial activities (against pathogenic bacteria) for these two pigments. Prodigiosin and violacein were used to supplement extracts of Aloe vera leaf and Cucumis sativus (cucumber) fruit which are known to have photoprotective activity, as well as some commercial sunscreen preparations. For each, sunscreen protection factors (SPFs) were determined spectrophotometrically. Assays for antimicrobial activity were carried out using 96-well plates to quantify growth inhibition of Staphylococcus aureus and Escherichia coli. For the plant extracts, SPFs were increased by an order of magnitude (i.e. up to ~3.5) and those for the commercial sunscreens increased by 10-22% (for 4% w/w violacein) and 20-65% (for 4% w/w prodigiosin). The antioxidant activities of prodigiosin and violacein were approximately 30% and 20% those of ascorbic acid (a well-characterized, potent antioxidant). Violacein inhibited S. aureus (IC50 6.99 ± 0.146 μM) but not E. coli, whereas prodigiosin was effective against both of these bacteria (IC50 values were 0.68 ± 0.06 μM and 0.53 ± 0.03 μM, respectively). The bacterial pigments prodigiosin and violacein exhibited antioxidant and antimicrobial activities and were able to increase the SPF of commercial sunscreens as well as the extracts of the two plant species tested. These pigments have potential as ingredients for a new product range of and, indeed, represent a new paradigm for sunscreens that utilize substances of biological origin. We discussed the biotechnological potential of these bacterial metabolites for use in commercial sunscreens, and the need for studies of mammalian cells to determine safety. © 2014 Society of Cosmetic Scientists and the Société Fran

  14. Ceramidastin, a novel bacterial ceramidase inhibitor, produced by Penicillium sp. Mer-f17067.

    PubMed

    Inoue, Hiroyuki; Someno, Tetsuya; Kato, Taira; Kumagai, Hiroyuki; Kawada, Manabu; Ikeda, Daishiro

    2009-02-01

    Decrease of ceramide in the skin is one of the aggravating factors of atopic dermatitis. The skin is often infected by ceramidase-producing bacteria, such as Pseudomonas aeruginosa. The bacterial ceramidase then degrades ceramide in the skin. To develop anti-atopic dermatitis drugs, we searched for ceramidase inhibitors, which led to the discovery of ceramidastin, a novel inhibitor of bacterial ceramidase, from the culture broth of Penicillium sp. Mer-f17067. Ceramidastin inhibited the bacterial ceramidase with an IC(50) value of 6.25 microg ml(-1). Here we describe the isolation, physicochemical properties, structure determination and biological activity of ceramidastin.

  15. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products.

    PubMed

    Zarins-Tutt, Joseph Scott; Barberi, Tania Triscari; Gao, Hong; Mearns-Spragg, Andrew; Zhang, Lixin; Newman, David J; Goss, Rebecca Jane Miriam

    2016-01-01

    Covering: up to 2015. Over the centuries, microbial secondary metabolites have played a central role in the treatment of human diseases and have revolutionised the pharmaceutical industry. With the increasing number of sequenced microbial genomes revealing a plethora of novel biosynthetic genes, natural product drug discovery is entering an exciting second golden age. Here, we provide a concise overview as an introductory guide to the main methods employed to unlock or up-regulate these so called 'cryptic', 'silent' and 'orphan' gene clusters, and increase the production of the encoded natural product. With a predominant focus on bacterial natural products we will discuss the importance of the bioinformatics approach for genome mining, the use of first different and simple culturing techniques and then the application of genetic engineering to unlock the microbial treasure trove.

  16. The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis

    PubMed Central

    Sulyok, Michael; Liu, Xingzhong; Rao, Mingyong

    2016-01-01

    Pu-erh is a tea produced in Yunnan, China by microbial fermentation of fresh Camellia sinensis leaves by two processes, the traditional raw fermentation and the faster, ripened fermentation. We characterized fungal and bacterial communities in leaves and both Pu-erhs by high-throughput, rDNA-amplicon sequencing and we characterized the profile of bioactive extrolite mycotoxins in Pu-erh teas by quantitative liquid chromatography-tandem mass spectrometry. We identified 390 fungal and 629 bacterial OTUs from leaves and both Pu-erhs. Major findings are: 1) fungal diversity drops and bacterial diversity rises due to raw or ripened fermentation, 2) fungal and bacterial community composition changes significantly between fresh leaves and both raw and ripened Pu-erh, 3) aging causes significant changes in the microbial community of raw, but not ripened, Pu-erh, and, 4) ripened and well-aged raw Pu-erh have similar microbial communities that are distinct from those of young, raw Ph-erh tea. Twenty-five toxic metabolites, mainly of fungal origin, were detected, with patulin and asperglaucide dominating and at levels supporting the Chinese custom of discarding the first preparation of Pu-erh and using the wet tea to then brew a pot for consumption. PMID:27337135

  17. Characterization of Bacterial Communities Associated with the Tyrian Purple Producing Gland in a Marine Gastropod

    PubMed Central

    Ngangbam, Ajit Kumar; Baten, Abdul; Waters, Daniel L. E.; Whalan, Steve; Benkendorff, Kirsten

    2015-01-01

    Dicathais orbita is a marine mollusc recognised for the production of anticancer compounds that are precursors to Tyrian purple. This study aimed to assess the diversity and identity of bacteria associated with the Tyrian purple producing hypobranchial gland, in comparison with foot tissue, using a high-throughput sequencing approach. Taxonomic and phylogenetic analysis of variable region V1-V3 of 16S rRNA bacterial gene amplicons in QIIME and MEGAN were carried out. This analysis revealed a highly diverse bacterial assemblage associated with the hypobranchial gland and foot tissues of D. orbita. The dominant bacterial phylum in the 16S rRNA bacterial profiling data set was Proteobacteria followed by Bacteroidetes, Tenericutes and Spirochaetes. In comparison to the foot, the hypobranchial gland had significantly lower bacterial diversity and a different community composition, based on taxonomic assignment at the genus level. A higher abundance of indole producing Vibrio spp. and the presence of bacteria with brominating capabilities in the hypobranchial gland suggest bacteria have a potential role in biosynthesis of Tyrian purple in D. orbita. PMID:26488885

  18. Ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry for determination of avicularin metabolites produced by a human intestinal bacterium.

    PubMed

    Zhao, Min; Xu, Jun; Qian, Dawei; Guo, Jianming; Jiang, Shu; Shang, Er-xin; Duan, Jin-ao; Yang, Jing; Du, Le-yue

    2014-02-15

    Intestinal bacteria from human were screened to isolate the specific bacteria involved in the metabolism of avicularin. A Gram-positive anaerobic bacterium, strain 46, capable of metabolizing avicularin (quercetin-3-O-arabinoside) was isolated for the first time. Its 16S rRNA gene sequence showed 99% similarity with that of Bacillus. Then strain 46 was identified as a species of the genus Bacillus, and was named to be Bacillus sp. 46. Additionally, the metabolites were analyzed by ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) technique combined with Metabolynx™ software. The structure of these metabolites were proposed and confirmed by comparing the UPLC retention time and MS/MS spectrum with that of authentic standards. Parent compound and six metabolites were detected in the isolated bacterial samples compared with blank samples. Avicularin (M1) was anaerobic metabolized to its aglycone quercetin (M2) and methoxylated avicularin (M3, M4), then quercetin was converted to quercetin glycosides: quercetin-3-O-rhamnoside (M5), quercetin-3-O-glucoside (M6) and quercetin-7-O-glucoside (M7) by Bacillus sp. 46. The metabolic pathway and metabolites of avicularin by the intestinal bacterium Bacillus sp. 46 were reported for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Antibacterial metabolites synthesized by psychrotrophic bacteria isolated from cold-freshwater environments.

    PubMed

    Barros, Javier; Becerra, José; González, Carlos; Martínez, Miguel

    2013-03-01

    The ability of three psychrotrophic Gram-negative bacilli isolated from Chilean Patagonian cold freshwater rivers to produce bioactive metabolites was evaluated. The strains were isolated from cold waters rivers and identified by their biochemical properties and 16S rRNA gene analysis. The metabolites fractions showing antibacterial activity were obtained by solvent extraction and partially characterized by gas-mass chromatography (GC-MS). Antibacterial activity of the fractions was evaluated by an agar-well diffusion test upon 14 bacterial strains, both Gram positive and Gram negative. Thermal and proteolytic resistances of the antibacterial metabolites fractions were also evaluated. Molecular analysis allows the identification of the three Patagonian strains as Pseudomonas sp. RG-6 (Pseudomonas brenneri 99.6 % identity), Pseudomonas sp. RG-8 (Pseudomonas trivialis 99.6 % identity) and Yersinia sp. RP-3 (Yersinia aldovae 99.5 % identity). These extracts were able to inhibit both Gram-positive and Gram-negative bacteria but not Listeria monocytogenes. The antibacterial activity of the filtrated supernatants was lost at temperatures ≥60 °C, and was not affected by proteinase K treatment. The chemical structure of the active molecule remains to be elucidated, although the GC-MS analysis of the filtrates suggests that compounds like sesquiterpenes derivatives from β-maaliene or δ-selinene could be responsible of this antibacterial activity. Pristine cold freshwater streams showed to be interesting sources of metabolites-producing microorganisms with antibacterial activity.

  20. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.

    PubMed

    Ceccato-Antonini, Sandra Regina

    2018-05-25

    Ethanol bio-production in Brazil has some unique characteristics that inevitably lead to bacterial contamination, which results in the production of organic acids and biofilms and flocculation that impair the fermentation yield by affecting yeast viability and diverting sugars to metabolites other than ethanol. The ethanol-producing units commonly give an acid treatment to the cells after each fermentative cycle to decrease the bacterial number, which is not always effective. An alternative strategy must be employed to avoid bacterial multiplication but must be compatible with economic, health and environmental aspects. This review analyzes the issue of bacterial contamination in sugarcane-based fuel ethanol fermentation, and the potential strategies that may be utilized to control bacterial growth besides acid treatment and antibiotics. We have emphasized the efficiency and suitability of chemical products other than acids and those derived from natural sources in industrial conditions. In addition, we have also presented bacteriocins, bacteriophages, and beneficial bacteria as non-conventional antimicrobial agents to mitigate bacterial contamination in the bioethanol industry.

  1. Marine-Derived Penicillium Species as Producers of Cytotoxic Metabolites

    PubMed Central

    Su, Mingzhi; Song, Shao-Jiang; Jung, Jee H.

    2017-01-01

    Since the discovery of penicillin, Penicillium has become one of the most attractive fungal genera for the production of bioactive molecules. Marine-derived Penicillium has provided numerous excellent pharmaceutical leads over the past decades. In this review, we focused on the cytotoxic metabolites * (* Cytotoxic potency was referred to five different levels in this review, extraordinary (IC50/LD50: <1 μM or 0.5 μg/mL); significant (IC50/LD50: 1~10 μM or 0.5~5 μg/mL); moderate (IC50/LD50: 10~30 μM or 5~15 μg/mL); mild (IC50/LD50: 30~50 μM or 15~25 μg/mL); weak (IC50/LD50: 50~100 μM or 25~50 μg/mL). The comparative potencies of positive controls were referred when they were available). produced by marine-derived Penicillium species, and on their cytotoxicity mechanisms, biosyntheses, and chemical syntheses. PMID:29064452

  2. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    PubMed Central

    Frisvad, Jens C.; Kocev, Dragi; Džeroski, Sašo; Gunde-Cimerman, Nina

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone. PMID:28036382

  3. Rhizosphere Protists Change Metabolite Profiles in Zea mays.

    PubMed

    Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis

    2018-01-01

    Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.

  4. Rhizosphere Protists Change Metabolite Profiles in Zea mays

    PubMed Central

    Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis

    2018-01-01

    Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth. PMID:29780370

  5. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    PubMed

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  6. Proteolysis produced within biofilms of bacterial isolates from raw milk tankers.

    PubMed

    Teh, Koon Hoong; Flint, Steve; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Lindsay, Denise

    2012-06-15

    In this study, six bacterial isolates that produced thermo-resistant enzymes isolated from the internal surfaces of raw milk tankers were evaluated for their ability to produce proteolysis within either single culture biofilms or co-culture biofilms. Biofilms were formed in an in vitro model system that simulated the upper internal surface of a raw milk tanker during a typical summer's day of milk collection in New Zealand. The bacterial isolates were further evaluated for their ability to form biofilms at 25, 30 and 37°C. Mutual and competitive effects were observed in some of the co-culture biofilms, with all isolates being able to form biofilms in either single culture or co-culture at the three temperatures. The proteolysis was also evaluated in both biofilms and corresponding planktonic cultures. The proteolysis per cell decreased as the temperature of incubation (20-37°C) increased. Furthermore, mutualistic interactions in terms of proteolysis were observed when cultures were grown as co-culture biofilms. This is the first study to show that proteolytic enzymes can be produced in biofilms on the internal surfaces of raw milk tankers. This has important implications for the cleaning and the temperature control of raw milk transport tankers. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Properties and applications of undecylprodigiosin and other bacterial prodigiosins.

    PubMed

    Stankovic, Nada; Senerovic, Lidija; Ilic-Tomic, Tatjana; Vasiljevic, Branka; Nikodinovic-Runic, Jasmina

    2014-05-01

    The growing demand to fulfill the needs of present-day medicine in terms of novel effective molecules has lead to reexamining some of the old and known bacterial secondary metabolites. Bacterial prodigiosins (prodiginines) have a long history of being re markable multipurpose compounds, best examined for their anticancer and antimalarial activities. Production of prodigiosin in the most common producer strain Serratia marcescens has been described in great detail. However, few reports have discussed the ecophysiological roles of these molecules in the producing strains, as well as their antibiotic and UV-protective properties. This review describes recent advances in the production process, biosynthesis, properties, and applications of bacterial prodigiosins. Special emphasis is put on undecylprodigiosin which has generally been a less studied member of the prodigiosin family. In addition, it has been suggested that proteins involved in undecylprodigiosin synthesis, RedG and RedH, could be a useful addition to the biocatalytic toolbox being able to mediate regio- and stereoselective oxidative cyclization. Judging by the number of recent references (216 for the 2007-2013 period), it has become clear that undecylprodigiosin and other bacterial prodigiosins still hold surprises in terms of valuable properties and applicative potential to medical and other industrial fields and that they still deserve continuing research curiosity.

  8. Diverse bacterial PKS sequences derived from okadaic acid-producing dinoflagellates.

    PubMed

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S

    2008-05-22

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  9. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    PubMed Central

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S.

    2008-01-01

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum. PMID:18728765

  10. In Situ Analysis of Bacterial Lipopeptide Antibiotics by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    PubMed

    Debois, Delphine; Ongena, Marc; Cawoy, Hélène; De Pauw, Edwin

    2016-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique developed in the late 1990s enabling the two-dimensional mapping of a broad variety of biomolecules present at the surface of a sample. In many applications including pharmaceutical studies or biomarker discovery, the distribution of proteins, lipids or drugs, and metabolites may be visualized within tissue sections. More recently, MALDI MSI has become increasingly applied in microbiology where the versatility of the technique is perfectly suited to monitor the metabolic dynamics of bacterial colonies. The work described here is focused on the application of MALDI MSI to map secondary metabolites produced by Bacilli, especially lipopeptides, produced by bacterial cells during their interaction with their environment (bacteria, fungi, plant roots, etc.). This chapter addresses the advantages and challenges that the implementation of MALDI MSI to microbiological samples entails, including detailed protocols on sample preparation (from both microbiologist and mass spectrometrist points of view), matrix deposition, and data acquisition and interpretation. Lipopeptide images recorded from confrontation plates are also presented.

  11. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce.

    PubMed

    Radhakrishnan, Ramalingam; Lee, In-Jung

    2016-12-01

    The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA 1 , GA 3 , GA 7 , GA 8 , GA 9 , GA 12 , GA 19 , GA 20 , GA 24 , GA 34 and GA 53 ) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. [Co-occurence of indol-producing bacterial strains in the vagina of women infected with Chlamydia trachomatis].

    PubMed

    Romanik, Małgorzata; Martirosian, Gayane; Wojciechowska-Wieja, Anna; Cieślik, Katarzyna; Kaźmierczak, Wojciech

    2007-08-01

    The aim of this study was to determine if cervicitis, caused by Chlamydia trachomatis (C. trachomatis), has an influence on the frequency of occurrence of selected aerobic and anaerobic bacterial strains, connected with etiology of aerobic vaginitis (AV) and bacterial vaginosis (BV). Indole-producing bacteria have received particular attention due to their possibly inductive role in chronic cervicitis caused by C. trachomatis. The swabs from vagina and cervical canal have been obtained from 122 women (aged 18-40). The presence of C. trachomatis antigen had been detected and diagnosed with the help of direct immunofluorescence, BV with Amesl and Nugent criteria, whereas the AV with Donders criteria. The identification of the bacterial strains isolated from vagina has been performed according to classical microbiological diagnostics. Disruption of vaginal microflora (4-10 in Nugent score) was determined in 11,5% of observed women. AV was diagnosed in 4.5% women with chlamydial cervicitis, BV was diagnosed in 10.9% and 5.45% of these women, on the basis of Amsel and Nugent criteria respectively. Indole-producing bacterial strains connected with BV and AV (Peptostreptococcus anaerobius, Propionibacterium acnes, Escherichia coli) have been isolated significantly more often from vagina of women infected with C trachomatis (p = 0.0405, chi2 = 4.20) and these findings confirm co-importance of indole-producing bacterial strains in cervicitis caused by C trachomatis .

  13. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    PubMed

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    PubMed

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  15. Gas-Phase Stability of Negatively Charged Organophosphate Metabolites Produced by Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Mizuno, Hajime; Toyo'oka, Toshimasa

    2017-12-01

    The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D- myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 -, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 - in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. [Figure not available: see fulltext.

  16. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp.

    PubMed

    Keswani, Chetan; Mishra, Sandhya; Sarma, Birinchi Kumar; Singh, Surya Pratap; Singh, Harikesh Bahadur

    2014-01-01

    Recent shift in trends of agricultural practices from application of synthetic fertilizers and pesticides to organic farming has brought into focus the use of microorganisms that carryout analogous function. Trichoderma spp. is one of the most popular genera of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. Exploitation of the diverse nature of secondary metabolites produced by different species of Trichoderma augments their extensive utility in agriculture and related industries. As a result, Trichoderma has achieved significant success as a powerful biocontrol agent at global level. The endorsement of Trichoderma spp. by scientific community is based on the understanding of its mechanisms of action against a large set of fungal, bacterial and in certain cases viral infections. However, it is still an agnostic view that there could be any single major mode of operation, although it is argued that all mechanisms operate simultaneously in a synchronized fashion. The central idea behind this review article is to emphasize the potentiality of applications of target specific secondary metabolites of Trichoderma for controlling phytopathogens as a substitute of commercially available whole organism formulations. With the aim to this point, we have compiled an inclusive list of secondary metabolites produced by different species of Trichoderma and their applications in diverse areas with the major emphasis on agriculture. Outlining the importance and diverse activities of secondary metabolites of Trichoderma besides its relevance to agriculture would generate greater understanding of their other important and beneficial applications apart from target specific biopesticides.

  17. Colonic Absorption of Low-Molecular-Weight Metabolites Influenced by the Intestinal Microbiome: A Pilot Study.

    PubMed

    Matsumoto, Mitsuharu; Ooga, Takushi; Kibe, Ryoko; Aiba, Yuji; Koga, Yasuhiro; Benno, Yoshimi

    2017-01-01

    Low-molecular-weight metabolites produced by the intestinal microbiome play a direct role in health and disease. However, little is known about the ability of the colon to absorb these metabolites. It is also unclear whether these metabolites are bioavailable. Here, metabolomics techniques (capillary electrophoresis with time-of-flight mass spectrometry, CE-TOFMS), germ-free (GF) mice, and colonized (Ex-GF) mice were used to identify the colonic luminal metabolites transported to colonic tissue and/or blood. We focused on the differences in each metabolite between GF and Ex-GF mice to determine the identities of metabolites that are transported to the colon and/or blood. CE-TOFMS identified 170, 246, 166, and 193 metabolites in the colonic feces, colonic tissue, portal plasma, and cardiac plasma, respectively. We classified the metabolites according to the following influencing factors: (i) the membrane transport system of the colonocytes, (ii) metabolism during transcellular transport, and (iii) hepatic metabolism based on the similarity in the ratio of each metabolite between GF and Ex-GF mice and found 62 and 22 metabolites that appeared to be absorbed from the colonic lumen to colonocytes and blood, respectively. For example, 11 basic amino acids were transported to the systemic circulation from the colonic lumen. Furthermore, many low-molecular-weight metabolites influenced by the intestinal microbiome are bioavailable. The present study is the first to report the transportation of metabolites from the colonic lumen to colonocytes and somatic blood in vivo, and the present findings are critical for clarifying host-intestinal bacterial interactions.

  18. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi.

    PubMed

    Jeong, Sang Hyeon; Jung, Ji Young; Lee, Se Hee; Jin, Hyun Mi; Jeon, Che Ok

    2013-06-03

    Dongchimi, one of the most common types of watery kimchi in Korea, was prepared using radish and its pH values, microbial cell numbers, bacterial communities, and metabolites were monitored periodically to investigate the fermentation process of watery kimchi. The bacterial abundance increased quickly during the early fermentation period and the pH values concurrently decreased rapidly without any initial pH increase. After 15 days of fermentation, the bacterial abundance decreased rapidly with the increase of Saccharomyces abundance and then increased again with a decrease of Saccharomyces abundance after 40 days of fermentation, suggesting that bacteria and Saccharomyces have a direct antagonistic relationship. Finally, after 60 days of fermentation, a decrease in bacterial abundance and the growth of Candida were concurrently observed. Community analysis using pyrosequencing revealed that diverse genera such as Leuconostoc, Lactobacillus, Pseudomonas, Pantoea, and Weissella were present at initial fermentation (day 0), but Leuconostoc became predominant within only three days of fermentation and remained predominant until the end of fermentation (day 100). Metabolite analysis using (1)H NMR showed that the concentrations of free sugars (fructose and glucose) were very low during the early fermentation period, but their concentrations increased rapidly although lactate, mannitol, and acetate were produced. After 30 days of fermentation, quick consumption of free sugars and production of glycerol and ethanol were observed concurrently with the growth of Saccharomyces, levels of which might be considered for use as a potential indicator of dongchimi quality and fermentation time. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. [Synthetic biology toward microbial secondary metabolites and pharmaceuticals].

    PubMed

    Wu, Lin-Zhuan; Hong, Bin

    2013-02-01

    Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.

  20. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model

    PubMed Central

    Patil, Avinash S.; Swamy, Geeta K.; Murtha, Amy P.; Heine, R. Phillips; Zheng, Xiaomei; Grotegut, Chad A.

    2015-01-01

    Objective: We seek to characterize the effect of progesterone metabolites on spontaneous and oxytocin-induced uterine contractility. Study Design: Spontaneous contractility was studied in mouse uterine horns after treatment with progesterone, 2α-hydroxyprogesterone, 6β-hydroxyprogesterone (6β-OHP), 16α-hydroxyprogesterone (16α-OHP), or 17-hydroxyprogesterone caproate (17-OHPC) at 10−9 to 10−6 mol/L. Uterine horns were exposed to progestins (10−6 mol/L), followed by increasing concentrations of oxytocin (1-100 nmol/L) to study oxytocin-induced contractility. Contraction parameters were compared for each progestin and matched vehicle control using repeated measures 2-way analysis of variance. In vitro metabolism of progesterone by recombinant cytochrome P450 3A (CYP3A) microsomes (3A5, 3A5, and 3A7) identified major metabolites. Results: Oxytocin-induced contractile frequency was decreased by 16α-OHP (P = .03) and increased by 6β-OHP (P = .05). Progesterone and 17-OHPC decreased oxytocin-induced contractile force (P = .02 and P = .04, respectively) and frequency (P = .02 and P = .03, respectively). Only progesterone decreased spontaneous contractile force (P = .02). Production of 16α-OHP and 6β-OHP metabolites were confirmed in all CYP3A isoforms tested. Conclusion: Progesterone metabolites produced by maternal or fetal CYP3A enzymes influence uterine contractility. PMID:26037300

  1. Colonic luminal microbiota and bacterial metabolite composition in pregnant Huanjiang mini-pigs: effects of food composition at different times of pregnancy

    PubMed Central

    Kong, Xiang-feng; Ji, Yu-jiao; Li, Hua-wei; Zhu, Qian; Blachier, F.; Geng, Mei-mei; Chen, Wen; Yin, Yu-long

    2016-01-01

    The gut harbours diverse and complex microbiota, which influence body health including nutrient metabolism, immune development, and protection from pathogens. Pregnancy is associated with immune and metabolic changes that might be related to microbiota compositional dynamics. We therefore investigated the colonic luminal bacteria community in Huanjiang mini-pigs fed diets with different nutrient levels from the first to third trimester of pregnancy. The concentrations of intestinal metabolites including short-chain fat acids, NH3-N, indole, skatole, and bioamines were also determined. We found that the colonic bacteria species richness estimators (Chao1 and ACE) decreased with increased gestational age. The dominant phyla identified were Firmicutes and Bacteroidetes; the dominant genera were Lactobacillus, Treponema, Ruminococcus, Clostridium, and Prevotella. In addition, microbiota displayed spatial and temporal heterogeneity in composition, diversity, and species abundance in different colonic segments from the first to third trimester of pregnancy. Furthermore, the bacterial metabolites also changed according to the diet used and the pregnancy stage. These findings suggest that colonic bacteria richness decreased as gestational age increased, and that the higher nutrient level diet increased the production of metabolites related to nitrogen metabolism. However, although the higher nutrient diet was associated with pregnancy syndrome, causal links remain to be determined. PMID:27917879

  2. Simplified Protocol for Carba NP Test for Enhanced Detection of Carbapenemase Producers Directly from Bacterial Cultures

    PubMed Central

    Pasteran, Fernando; Tijet, Nathalie; Melano, Roberto G.

    2015-01-01

    We compared carbapenemase detection among 266 Gram-negative bacilli (161 carbapenemase producers) using the Carba NP tests issued by the CLSI (CNPt-CLSI) and a novel protocol (CNPt-direct) designed for carbapenemase detection direct from bacterial cultures (instead of bacterial extracts required by the CLSI tests). The specificities were comparable (100%), but the CNPt-direct was more sensitive (98% versus 84%). The CNPt-direct was easier to perform due to the direct use of colonies and offered a more robust detection of carbapenemase producers. PMID:26424841

  3. Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor.

    PubMed

    Adams, P; Lynch, J M; De Leij, F A A M

    2007-12-01

    To determine the role of fungal metabolites in the desorption of metals. Desorption of Zn from charcoal by three different fungi was compared against metal desorption with reverse osmosis water, a 0.1% Tween 80 solution and a 0.1 mol l(-1) CaCl(2) solution. All three fungal filtrates desorbed three times more Zn than either 0.1% Tween 80 or 0.1 mol l(-1) CaCl(2). Metal chelator production in Trichoderma harzianum and Coriolus versicolor was constitutively expressed while chelator production in Trichoderma reesei was induced by Zn. The presence of Zn inhibited the production of metal chelators by C. versicolor. Only C. versicolor was found to produce oxalic acid (a strong metal chelator). All fungi caused a marked decrease in pH, although this was not enough to explain the increased desorption of the metals by the different fungal filtrates. Metal chelation via organic acids and proteins are the main mechanisms by which the fungal filtrates increase zinc desorption. The results of this study explain why plants inoculated with T. harzianum T22 take up more metal from soil, than noninoculated plants while metabolites produced by fungi could be used for metal leaching from contaminated soils.

  4. Simplified Protocol for Carba NP Test for Enhanced Detection of Carbapenemase Producers Directly from Bacterial Cultures.

    PubMed

    Pasteran, Fernando; Tijet, Nathalie; Melano, Roberto G; Corso, Alejandra

    2015-12-01

    We compared carbapenemase detection among 266 Gram-negative bacilli (161 carbapenemase producers) using the Carba NP tests issued by the CLSI (CNPt-CLSI) and a novel protocol (CNPt-direct) designed for carbapenemase detection direct from bacterial cultures (instead of bacterial extracts required by the CLSI tests). The specificities were comparable (100%), but the CNPt-direct was more sensitive (98% versus 84%). The CNPt-direct was easier to perform due to the direct use of colonies and offered a more robust detection of carbapenemase producers. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. The Ability of Bacterial Cocaine Esterase to Hydrolyze Cocaine Metabolites and Their Simultaneous Quantification Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Brim, Remy L.; Noon, Kathleen R.; Collins, Gregory T.; Nichols, Joseph; Narasimhan, Diwahar; Sunahara, Roger K.

    2011-01-01

    Cocaine toxicity is a widespread problem in the United States, responsible for more than 500,000 emergency department visits a year. There is currently no U.S. Food and Drug Administration-approved pharmacotherapy to directly treat cocaine toxicity. To this end, we have developed a mutant bacterial cocaine esterase (DM-CocE), which has been previously shown to rapidly hydrolyze cocaine into inert metabolites, preventing and reversing toxicity with limited immunogenic potential. Herein we describe the ability of DM-CocE to hydrolyze the active cocaine metabolites norcocaine and cocaethylene and its inability to hydrolyze benzoylecgonine. DM-CocE hydrolyzes norcocaine and cocaethylene with 58 and 45% of its catalytic efficiency for cocaine in vitro as measured by a spectrophotometric assay. We have developed a mass spectrometry method to simultaneously detect cocaine, benzoylecgonine, norcocaine, and ecgonine methyl ester to quantify the effect of DM-CocE on normal cocaine metabolism in vivo. DM-CocE administered to rats 10 min after a convulsant dose of cocaine alters the normal metabolism of cocaine, rapidly decreasing circulating levels of cocaine and norcocaine while increasing ecgonine methyl ester formation. Benzoylecgonine was not hydrolyzed in vivo, but circulating concentrations were reduced, suggesting that DM-CocE may bind and sequester this metabolite. These findings suggest that DM-CocE may reduce cocaine toxicity by eliminating active and toxic metabolites along with the parent cocaine molecule. PMID:21885621

  6. Antibiotics produced by Streptomyces.

    PubMed

    Procópio, Rudi Emerson de Lima; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de

    2012-01-01

    Streptomyces is a genus of Gram-positive bacteria that grows in various environments, and its shape resembles filamentous fungi. The morphological differentiation of Streptomyces involves the formation of a layer of hyphae that can differentiate into a chain of spores. The most interesting property of Streptomyces is the ability to produce bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, immunosuppressants, and especially antibiotics. The production of most antibiotics is species specific, and these secondary metabolites are important for Streptomyces species in order to compete with other microorganisms that come in contact, even within the same genre. Despite the success of the discovery of antibiotics, and advances in the techniques of their production, infectious diseases still remain the second leading cause of death worldwide, and bacterial infections cause approximately 17 million deaths annually, affecting mainly children and the elderly. Self-medication and overuse of antibiotics is another important factor that contributes to resistance, reducing the lifetime of the antibiotic, thus causing the constant need for research and development of new antibiotics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  7. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites

    PubMed Central

    Veeramachaneni, D. N. Rao; Walters, William A.; Lozupone, Catherine; Palmer, Jennifer; Hewage, M. K. Kurundu; Bhatnagar, Rohil; Amir, Amnon; Kennett, Mary J.; Knight, Rob

    2017-01-01

    ABSTRACT Bisphenol A (BPA) accumulates in the maturing gut and liver in utero and is known to alter gut bacterial profiles in offspring. Gut bacterial dysbiosis may contribute to chronic colonic and systemic inflammation. We hypothesized that perinatal BPA exposure-induced intestinal (and liver) inflammation in offspring is due to alterations in the microbiome and colonic metabolome. The 16S rRNA amplicon sequencing analysis revealed differences in beta diversity with a significant reduction in the relative abundances of short-chain fatty acid (SCFA) producers such as Oscillospira and Ruminococcaceae due to BPA exposure. Furthermore, BPA exposure reduced fecal SCFA levels and increased systemic lipopolysaccharide (LPS) levels. BPA exposure-increased intestinal permeability was ameliorated by the addition of SCFA in vitro. Metabolic fingerprints revealed alterations in global metabolism and amino acid metabolism. Thus, our findings indicate that perinatal BPA exposure may cause gut bacterial dysbiosis and altered metabolite profiles, particularly SCFA profiles, leading to chronic colon and liver inflammation. IMPORTANCE Emerging evidence suggests that environmental toxicants may influence inflammation-promoted chronic disease susceptibility during early life. BPA, an environmental endocrine disruptor, can transfer across the placenta and accumulate in fetal gut and liver. However, underlying mechanisms for BPA-induced colonic and liver inflammation are not fully elucidated. In this report, we show how perinatal BPA exposure in rabbits alters gut microbiota and their metabolite profiles, which leads to colonic and liver inflammation as well as to increased gut permeability as measured by elevated serum lipopolysaccharide (LPS) levels in the offspring. Also, perinatal BPA exposure leads to reduced levels of gut bacterial diversity and bacterial metabolites (short-chain fatty acids [SCFA]) and elevated gut permeability—three common early biomarkers of inflammation

  8. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation.

    PubMed

    Eid, Noura; Enani, Sumia; Walton, Gemma; Corona, Giulia; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2014-01-01

    The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.

  9. Secondary metabolites from marine microorganisms.

    PubMed

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  10. Effect of volatile metabolites of dill, radish and garlic on growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.; Borodina, E. V.; Ushakova, S. A.; Rygalov, V. Ye; Gitelson, J. I.

    2001-07-01

    In a model experiment plants were grown in sealed chambers on expanded clay aggregate under the luminance of 150 W/m 2 PAR and the temperature of 24°C. Seven bacterial strains under investigation, replicated on nutrient medium surface in Petri dishes, were grown in the atmosphere of cultivated plants. Microbial response was evaluated by the difference between colony size in experiment and in control. In control, bacteria grew in the atmosphere of clean air. To study the effect of volatile metabolites of various plant on microbial growth, the experimental data were compared with the background values defined for each individual experiment. Expanded clay aggregate, luminance, temperature and sealed chamber (without plants) for the background were the same. Volatile metabolites from 28-days old radish plants have been reliably established to have no effect on the growth of microbes under investigation. Metabolites of 30-days old dill and 50-days old garlic have been established to have reliable bacteriostatic effect on the growth of three bacterial strains. Dill and garlic have been found to have different range of effects of volatile substances on bacterial growth. Volatile metabolites of dill and garlic differed in their effect on the sensitivity spectrum of bacteria. An attempt has been made to describe the obtained data mathematically.

  11. Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility, and predation.

    PubMed

    Volz, Carsten; Kegler, Carsten; Müller, Rolf

    2012-11-21

    Motile predatory Myxobacteria are producers of multiple secondary metabolites and, on starvation, undergo concerted cellular differentiation to form multicellular fruiting bodies. These abilities demand myxobacterial genomes to encode sophisticated regulatory networks that are not satisfactorily understood. Here, we present two bacterial enhancer binding proteins (bEBPs) encoded in Myxococcus xanthus acting as direct regulators of secondary metabolites intriguingly exhibiting activating and inhibitory effects. Elucidation of a regulon for each bEBP enabled us to unravel their role in myxococcal development, predation, and motility. Interestingly, both bEBPs are able to interact by forming a hetero-oligomeric complex. Our findings represent an alternative mode of operation of bEBPs, which are currently thought to enhance promoter activity by acting as homo-oligomers. Furthermore, a direct link between secondary metabolite gene expression and predation, motility, and cellular development could be shown for the first time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting.

    PubMed

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó; Kuttner, Eva; Ásgeirsdóttir, Margrét E; Young, Louise C; Green, David H; Edrada-Ebel, Ruangelie; Duncan, Katherine R

    2016-01-08

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149-2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.

  13. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting

    PubMed Central

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó.; Kuttner, Eva; Ásgeirsdóttir, Margrét E.; Young, Louise C.; Green, David H.; Edrada-Ebel, Ruangelie; Duncan, Katherine R.

    2016-01-01

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149–2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations. PMID:26761036

  14. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community

    PubMed Central

    2013-01-01

    Background Butyrate, which is produced by the human microbiome, is essential for a well-functioning colon. Bacteria that produce butyrate are phylogenetically diverse, which hinders their accurate detection based on conventional phylogenetic markers. As a result, reliable information on this important bacterial group is often lacking in microbiome research. Results In this study we describe a gene-targeted approach for 454 pyrotag sequencing and quantitative polymerase chain reaction for the final genes in the two primary bacterial butyrate synthesis pathways, butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk). We monitored the establishment and early succession of butyrate-producing communities in four patients with ulcerative colitis who underwent a colectomy with ileal pouch anal anastomosis and compared it with three control samples from healthy colons. All patients established an abundant butyrate-producing community (approximately 5% to 26% of the total community) in the pouch within the 2-month study, but patterns were distinctive among individuals. Only one patient harbored a community profile similar to the healthy controls, in which there was a predominance of but genes that are similar to reference genes from Acidaminococcus sp., Eubacterium sp., Faecalibacterium prausnitzii and Roseburia sp., and an almost complete absence of buk genes. Two patients were greatly enriched in buk genes similar to those of Clostridium butyricum and C. perfringens, whereas a fourth patient displayed abundant communities containing both genes. Most butyrate producers identified in previous studies were detected and the general patterns of taxa found were supported by 16S rRNA gene pyrotag analysis, but the gene-targeted approach provided more detail about the potential butyrate-producing members of the community. Conclusions The presented approach provides quantitative and genotypic insights into butyrate-producing communities and facilitates a more specific

  15. Oxygen Reduction Reaction Affected by Sulfate-Reducing Bacteria: Different Roles of Bacterial Cells and Metabolites.

    PubMed

    Wu, Jiajia; Liu, Huaiqun; Wang, Peng; Zhang, Dun; Sun, Yan; Li, Ee

    2017-09-01

    Sulfate-reducing bacteria (SRB) were found to be capable of tolerating a certain amount of oxygen (O 2 ), but how they affect oxygen reduction reaction (ORR) has not been clear. The present work investigated the impact of SRB on ORR in 3.5 wt% sodium chloride solution with the cyclic voltammetry method. The addition of SRB culture solution hampered both the reduction of O 2 to superoxide (O 2 ·- ) and hydrogen peroxide (H 2 O 2 ) to water (H 2 O), and the influence of SRB metabolites was much larger than that of bacterial cells. Sulfide and extracellular polymeric substances (EPS), typical inorganic and organic metabolic products, had great impact on ORR. Sulfide played an important role in the decrease of cathodic current for H 2 O 2 reduction due to its hydrolysis and chemical reaction activity with H 2 O 2 . EPS were sticky, easy to adsorb on the electrode surface and abundant in functional groups, which hindered the transformation of O 2 into O 2 ·- and favored the reduction of H 2 O 2 to H 2 O.

  16. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, R.F.; Cheng, S.M.; Fedorak, P.M.

    Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2'-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2'-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2'-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B{sub 12}, and it degraded 2,2'-dithiodibenzoic acid in pure culture when the mediummore » was supplemented with this vitamin. Isolate RM6 also degraded 2,2'-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2'-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2'-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.« less

  17. Lasiodiplodia sp. ME4-2, an endophytic fungus from the floral parts of Viscum coloratum, produces indole-3-carboxylic acid and other aromatic metabolites.

    PubMed

    Qian, Chao-Dong; Fu, Yu-Hang; Jiang, Fu-Sheng; Xu, Zheng-Hong; Cheng, Dong-Qing; Ding, Bin; Gao, Cheng-Xian; Ding, Zhi-Shan

    2014-11-30

    Studies on endophytes, a relatively under-explored group of microorganisms, are currently popular amongst biologists and natural product researchers. A fungal strain (ME4-2) was isolated from flower samples of mistletoe (Viscum coloratum) during a screening program for endophytes. As limited information on floral endophytes is available, the aim of the present study is to characterise fungal endophytes using their secondary metabolites. ME4-2 grew well in both natural and basic synthetic media but produced no conidia. Sequence analysis of its internal transcribed spacer rDNA demonstrated that ME4-2 forms a distinct branch within the genus Lasiodiplodia and is closely related to L. pseudotheobromae. This floral endophyte was thus identified as Lasiodiplodia sp. based on its molecular biological characteristics. Five aromatic compounds, including cyclo-(Trp-Ala), indole-3-carboxylic acid (ICA), indole-3-carbaldehyde, mellein and 2-phenylethanol, were found in the culture. The structures of these compounds were determined using spectroscopic methods combined with gas chromatography. To the best of our knowledge, our work is the first to report isolation of these aromatic metabolites from a floral endophyte. Interestingly, ICA, a major secondary metabolite produced by ME4-2, seemed to be biosynthesized via an unusual pathway. Furthermore, our results indicate that the fungus ME4-2 is a potent producer of 2-phenylethanol, which is a common component of floral essential oils. This study introduces a fungal strain producing several important aromatic metabolites with pharmaceutical or food applications and suggests that endophytic fungi isolated from plant flowers are promising natural sources of aromatic compounds.

  18. Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology

    PubMed Central

    2017-01-01

    ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that

  19. Biosynthesis of human diazepam and clonazepam metabolites.

    PubMed

    de Paula, Núbia C; Araujo Cordeiro, Kelly C F; de Melo Souza, Paula L; Nogueira, Diogo F; da Silva e Sousa, Diego B; Costa, Maísa B; Noël, François; de Oliveira, Valéria

    2015-03-01

    A screening of fungal and microbial strains allowed to select the best microorganisms to produce in high yields some of the human metabolites of two benzodiazepine drugs, diazepam and clonazepam, in order to study new pharmacological activities and for chemical standard proposes. Among the microorganisms tested, Cunninghamella echinulata ATCC 9244 and Rhizopus arrhizus ATCC 11145 strains, were the most active producers of the mains metabolites of diazepam which included demethylated, hydroxylated derivatives. Beauveria bassiana ATCC 7159 and Chaetomium indicum LCP 984200 produced the 7 amino-clonazepam metabolite and a product of acid hydrolysis of this benzodiazepine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media

    PubMed Central

    Zarei, Omid; Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam

    2016-01-01

    Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this procedure mechanical methods such as high temperature and pressure were utilized to produce the yeast extract. The growth of the bacteria feed with the produced yeast extract was monitored in order to assess the quality of the product. The results showed that the quality of the produced yeast extract was very promising concluded from the growth pattern of bacterial cells in media prepared from this product and was comparable with that of the three commercial yeast extracts in terms of bacterial growth properties. One of the main advantages of the current method was that no chemicals and enzymes were used, leading to the reduced production cost. The method is very simple and cost effective, and can be performed in a reasonable time making it suitable for being adopted by research laboratories. Furthermore, it can be scaled up to produce large quantities for industrial applications. PMID:28243289

  1. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.

    PubMed

    Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong

    2015-02-01

    The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.

  2. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A comprehensive review of glycosylated bacterial natural products

    PubMed Central

    Elshahawi, Sherif I.; Shaaban, Khaled A.; Kharel, Madan K.

    2015-01-01

    A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts. PMID:25735878

  4. [Molecular regulation of microbial secondary metabolites--a review].

    PubMed

    Wang, Linqi; Tan, Huarong

    2009-04-01

    Microbial secondary metabolites play an important role in the field of industry, agriculture, medicine and human health. The molecular regulation of secondary metabolites is gradually becoming noticeable and intriguing. In recent years, many researches have demonstrated that secondary metabolite biosynthesis is tightly linked to the physiological and developmental status in its producer. It is suggested that the biosynthesis of secondary metabolites involves in complex process concerning multi-level regulation. Here we reviewed the recent research progress on the molecular regulation of secondary metabolites in microorganisms. In known about ten thousand kinds of natural secondary metabolites, most of them (about 60%) were produced by Streptomycete. Therefore, the regulation of secondary metabolites in Streptomyces is chosen as the mainline in this review. Additionally, several well-studied antibiotics as the representative members were targeted. Finally, some suggestions, in response to the issues at present, have been presented in this paper.

  5. Fusarial wilt control and growth promotion of pigeon pea through bioactive metabolites produced by two plant growth promoting rhizobacteria.

    PubMed

    Dutta, S; Morang, P; Nishanth Kumar, S; Dileep Kumar, B S

    2014-03-01

    The bioactive metabolites produced by two plant growth promoting rhizobacteria strains, a Pseudomonas aeruginosa strain RRLJ 04 and a Bacillus cereus strain BS 03, which showed growth promotion and disease control in pigeon pea against Fusarium udum, were isolated and screened for their efficacy to control fusarial wilt of pigeon pea under gnotobiotic and nursery condition. Bioactive metabolites viz., BM 1 and BM 2 from RRLJ 04 and BM 3 from BS 03 also showed in vitro antibiosis against F. udum. Seeds treated with 50 μl seed⁻¹ of BM 1, 30 μl seed⁻¹ of BM 2 and 70 μl seed⁻¹ of BM 3 and grown in pathogen infested soil showed suppression of wilt disease besides growth enhancement. Per cent disease control was 90 % with BM 2 application as compared to 87 and 83 %, respectively in BM 1 and BM 3 after 90 days of growth. BM 2 treated plants were more resistant to the pathogen as compared to the other fractions tested. Mycelial dry weight was found to be reduced on treatment with the bioactive metabolites. Formation of chlamydospore-like structures was observed in the pathogen mycelium treated with BM 3. The analytical studies confirmed that two of these metabolites are phenazine derivatives.

  6. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth.

    PubMed

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T; Artaev, Viatcheslav B; Jiang, Liying; Ilag, Leopold L; Zubarev, Roman A

    2015-09-28

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms.

  7. Production of human metabolites by gastrointestinal bacteria as a potential source of post-mortem alteration of antemortem drug/metabolite concentrations.

    PubMed

    Martindale, Stephanie M; Powers, Robert H; Bell, Suzanne C

    2015-01-01

    Previous studies have demonstrated that bacterial species are capable of transforming complex chemical substances. Several of these species, native to the human gastrointestinal tract, are active in postmortem decomposition. They have potential to cause biotransformations affecting compound-to-metabolite ratios within the human body, especially after death. Investigation of postmortem effects could supply valuable information, especially concerning compound identification and confirmation. The purpose of this research was to investigate the effects of Escherichia coli, Bacteroides fragilis, and Clostridium perfringens on diazepam and flunitrazepam in Reinforced Clostridial Medium, and to compare bacterial biotransformation products to those of human metabolism. A decrease in diazepam concentration between pre- and post-incubation was observed for samples inoculated with Escherichia coli (14.7-20.2%) as well as Bacteroides fragilis (13.9-25.7%); however there was no corresponding increase in concentration for the monitored human metabolites. Flunitrazepam demonstrated a greater concentration loss when incubated with individual bacterial species as well as mixed culture (79.2-100.0%). Samples incubated with Bacteroides fragilis, Clostridium perfringens, and mixed culture resulted in nearly complete conversion of flunitrazepam. Increased 7-aminoflunitrazepam concentrations accounted for the majority of the conversion; however discrepancies in the mass balance of the reaction suggested the possibility of a minor metabolite that was not monitored in the current analysis. These experiments served as a pilot study and proof of concept that can be adapted and applied to a realm of possibilities. Ultimately, this methodology would be ideal to study compounds that are too toxic or lethal for animal and human metabolic investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Aspergillus flavus secondary metabolites: more than just aflatoxins

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of t...

  9. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    PubMed Central

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  10. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    PubMed

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  11. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml -1 to 38.80 ± 1.35 μg ml -1 . We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  13. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China

    PubMed Central

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds. PMID:26221957

  14. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China.

    PubMed

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds.

  15. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng.

    PubMed

    Lee, Mee Youn; Singh, Digar; Kim, Sung Han; Lee, Sang Jun; Lee, Choong Hwan

    2016-06-22

    Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.

  16. Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios

    PubMed Central

    Gromek, Samantha M.; Suria, Andrea M.; Fullmer, Matthew S.; Garcia, Jillian L.; Gogarten, Johann Peter; Nyholm, Spencer V.; Balunas, Marcy J.

    2016-01-01

    Female members of many cephalopod species house a bacterial consortium in the accessory nidamental gland (ANG), part of the reproductive system. These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens, and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae) of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium. PMID:27660622

  17. Effect of daily intake of pomegranate juice on fecal microbiota and feces metabolites from healthy volunteers.

    PubMed

    Mosele, Juana I; Gosalbes, María-José; Macià, Alba; Rubió, Laura; Vázquez-Castellanos, Jorge F; Jiménez Hernández, Nuria; Moya, Andrés; Latorre, Amparo; Motilva, María-José

    2015-10-01

    The purpose of the study was to evaluate the effect, regarding the metabolic and microbial profile of feces, of diet supplementation of healthy adults with pomegranate juice (PJ). Twelve healthy adults were recruited to the study, which consisted of the intake of 200 mL/day of PJ during 4 weeks. Feces were collected before and after the supplementation with PJ. Metabolites (phenolic catabolites, short-chain fatty acids, and fecal steroids) and microbial profile were analyzed at baseline and at 4 weeks. Fecal phenolic metabolites, 3-phenylpropionic acid, catechol, hydroxytyrosol, and urolithin A, showed a significant increase in their concentration after supplementation with PJ. Among fecal steroids, parallel to the significant increase of cholesterol concentration, a significant decrease of coprostanol was observed. Although no significant changes in the microbiota profile were observed, different relationships between initial microbiota and the metabolites produced were found. Catechol showed positive and negative correlation with Oscillospora and Paraprevotella genera, respectively, and 3-phenylpropionic acid was positively correlated with Odoribacter genus. Inclusion of PJ in the diet did not significantly alter the gut microbiota composition in healthy adults, but the individual bacterial composition could contribute to the generation of potential health-promoting phenolic metabolites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The use of genomics and chemistry to screen for secondary metabolites in bacillus spp. biocontrol organisms

    USDA-ARS?s Scientific Manuscript database

    Recent advances in DNA sequencing technologies have revolutionized the way we study bacterial biological control strains. These advances have provided the ability to rapidily characterize the secondary metabolite potential of these bacterial strains. A variety of bioinformatics tools have been devel...

  19. Extracellular metabolites limit bacterial susceptibility to predation in a protist-specific manner and their regulation may be protist-induced

    USDA-ARS?s Scientific Manuscript database

    Bacteria employ various strategies to evade protozoan predation, including production and release of bioactive compounds. This capability may be instrumental in determining bacterial resistance to protozoan grazing, thereby enhancing survival of producing strains in soil environments. A limited numb...

  20. A wide diversity of bacteria from the human gut produces and degrades biogenic amines.

    PubMed

    Pugin, Benoit; Barcik, Weronika; Westermann, Patrick; Heider, Anja; Wawrzyniak, Marcin; Hellings, Peter; Akdis, Cezmi A; O'Mahony, Liam

    2017-01-01

    Background : Biogenic amines (BAs) are metabolites produced by the decarboxylation of amino acids with significant physiological functions in eukaryotic and prokaryotic cells. BAs can be produced by bacteria in fermented foods, but little is known concerning the potential for microbes within the human gut microbiota to produce or degrade BAs. Objective : To isolate and identify BA-producing and BA-degrading microbes from the human gastrointestinal tract. Design : Fecal samples from human volunteers were screened on multiple growth media, under multiple growth conditions. Bacterial species were identified using 16S rRNA sequencing and BA production or degradation was assessed using ultra-performance liquid chromatography. Results : In total, 74 BA-producing or BA-degrading strains were isolated from the human gut. These isolates belong to the genera Bifidobacterium , Clostridium , Enterococcus , Lactobacillus , Pediococcus , Streptococcus , Enterobacter , Escherichia , Klebsiella , Morganella and Proteus . While differences in production or degradation of specific BAs were observed at the strain level, our results suggest that these metabolic activities are widely spread across different taxa present within the human gut microbiota. Conclusions : The isolation and identification of microbes from the human gut with BA-producing and BA-degrading metabolic activity is an important first step in developing a better understanding of how these metabolites influence health and disease.

  1. Streptomyces metabolites in divergent microbial interactions.

    PubMed

    Takano, Hideaki; Nishiyama, Tatsuya; Amano, Sho-ichi; Beppu, Teruhiko; Kobayashi, Michihiko; Ueda, Kenji

    2016-03-01

    Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.

  2. Monitoring of Microbial Metabolites and Bacterial Diversity in Beef Stored under Different Packaging Conditions ▿ †

    PubMed Central

    Ercolini, Danilo; Ferrocino, Ilario; Nasi, Antonella; Ndagijimana, Maurice; Vernocchi, Pamela; La Storia, Antonietta; Laghi, Luca; Mauriello, Gianluigi; Guerzoni, M. Elisabetta; Villani, Francesco

    2011-01-01

    Beef chops were stored at 4°C under different conditions: in air (A), modified-atmosphere packaging (MAP), vacuum packaging (V), or bacteriocin-activated antimicrobial packaging (AV). After 0 to 45 days of storage, analyses were performed to determine loads of spoilage microorganisms, microbial metabolites (by solid-phase microextraction [SPME]-gas chromatography [GC]-mass spectrometry [MS] and proton nuclear magnetic resonance [1H NMR]), and microbial diversity (by PCR–denaturing gradient gel electrophoresis [DGGE] and pyrosequencing). The microbiological shelf life of meat increased with increasing selectivity of storage conditions. Culture-independent analysis by pyrosequencing of DNA extracted directly from meat showed that Brochothrix thermosphacta dominated during the early stages of storage in A and MAP, while Pseudomonas spp. took over during further storage in A. Many different bacteria, several of which are usually associated with soil rather than meat, were identified in V and AV; however, lactic acid bacteria (LAB) dominated during the late phases of storage, and Carnobacterium divergens was the most frequent microorganism in AV. Among the volatile metabolites, butanoic acid was associated with the growth of LAB under V and AV storage conditions, while acetoin was related to the other spoilage microbial groups and storage conditions. 1H NMR analysis showed that storage in air was associated with decreases in lactate, glycogen, IMP, and ADP levels and with selective increases in levels of 3-methylindole, betaine, creatine, and other amino acids. The meat microbiota is significantly affected by storage conditions, and its changes during storage determine complex shifts in the metabolites produced, with a potential impact on meat quality. PMID:21803905

  3. Effect of different in vitro culture extracts of black pepper (Piper nigrum L.) on toxic metabolites-producing strains.

    PubMed

    Ahmad, Nisar; Abbasi, Bilal Haider; Fazal, Hina

    2016-03-01

    In the present study, the effect of different in vitro cultures (callus, in vitro shoots) and commercially available peppercorn extract was investigated for its activity against toxic metabolite-producing strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Candida albicans). These in vitro cultures were extracted with ethanol, hexane, and chloroform, and the antipathogenic activity was determined by well-diffusion method. Hexane extract of callus showed 22 mm zone of inhibition against B. cereus, 23 mm against S. aureus, while regenerated shoots and seeds have shown 24.3 and 26 mm zones of inhibition. The ethanolic extracts of regenerated Piper shoots have shown 25 mm activity against S. aureus, 21 mm against B. cereus, and 16 mm in the case of C. albicans in comparison with standard antibiotics. Peppercorn extracts in chloroform and ethanol had shown activities against B. cereus (23.6 mm) and B. subtilis (23.5 mm). During in vitro organogenesis and morphogenesis, cells and tissues produced a comparable phytochemicals profile like mother plant. Morphogenesis is critically controlled by the application of exogenous plant-growth regulators. Such addition alters the hormonal transduction pathways, and cells under in vitro conditions regenerate tissues, which are dependant on the physiological state of cells, and finally enhance the production of secondary metabolites. To the best of our knowledge, this is the first report to compare the antimicrobial potential of in vitro regenerated tissues and peppercorn with standard antibiotics. In conclusion, most of the extracts showed pronounced activities against all the pathogenic microbes. This is a preliminary work, and the minimum inhibitory concentration values needs to be further explored. Regenerated tissues of P. nigrum are a good source of biologically active metabolites for antimicrobial activities, and callus culture presented itself as

  4. Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation.

    PubMed

    Luo, Yaguang; Zhou, Bin; Van Haute, Sam; Nou, Xiangwu; Zhang, Boce; Teng, Zi; Turner, Ellen R; Wang, Qin; Millner, Patricia D

    2018-04-01

    Determining the minimal effective free chlorine (FC) concentration for preventing pathogen survival and cross-contamination during produce washing is critical for developing science- and risk-based food safety practices. The correlation between dynamic FC concentrations and bacterial survival was investigated during commercial washing of chopped Romaine lettuce, shredded Iceberg lettuce, and diced cabbage as pathogen inoculation study during commercial operation is not feasible. Wash water was sampled every 30 min and assayed for organic loading, FC, and total aerobic mesophilic bacteria after chlorine neutralization. Water turbidity, chemical oxygen demand, and total dissolved solids increased significantly over time, with more rapid increases in diced cabbage water. Combined chlorine increased consistently while FC fluctuated in response to rates of chlorine dosing, product loading, and water replenishment. Total bacterial survival showed a strong correlation with real-time FC concentration. Under approximately 10 mg/L, increasing FC significantly reduced the frequency and population of surviving bacteria detected. Increasing FC further resulted in the reduction of the aerobic plate count to below the detection limit (50 CFU/100 mL), except for a few sporadic positive samples with low cell counts. This study confirms that maintaining at least 10 mg/L FC in wash water strongly reduced the likelihood of bacterial survival and thus potential cross contamination of washed produce. Published by Elsevier Ltd.

  5. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS.

    PubMed

    Abdallah, Mohamed F; Girgin, Gözde; Baydar, Terken; Krska, Rudolf; Sulyok, Michael

    2017-10-01

    The present study aimed to investigate the occurrence of multiple toxic fungal and bacterial metabolites in 156 animal feed (n = 77) and maize (n = 79) samples collected from three regions in Upper Egypt. The target analytes were quantified using the 'dilute and shoot' approach, followed by a liquid chromatography tandem mass spectrometry analysis. In total, 115 fungal and bacterial metabolites were detected in both matrices, including the regulated mycotoxins in the European Union, in addition to the modified forms such as deoxynivalenol-3-glucosid. Furthermore, some Fusarium, Alternaria, Aspergillus and Penicillum metabolites beside other fungal and bacterial metabolites were detected for the first time in Egypt. All of the samples were contaminated with at least four toxins. On average, 26 different metabolites were detected per sample with a trend of more metabolites in feed than in maize. The maximum number of analytes observed per samples was 54 analytes at maximum concentrations ranging from 0.04 µg kg -1 for tentoxin to 25 040 µg kg -1 for kojic acid. According to the international standards, the contamination rates in the investigated regions were not alarming, except for AFB1 in maize. The necessity of further and continuous monitoring is highly recommended to establish a database for mycotoxin occurrence. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus Against Verticillium dahliae.

    PubMed

    Mohamad, Osama A A; Li, Li; Ma, Jin-Biao; Hatab, Shaimaa; Xu, Lin; Guo, Jian-Wei; Rasulov, Bakhtiyor A; Liu, Yong-Hong; Hedlund, Brian P; Li, Wen-Jun

    2018-01-01

    Endophytic bacteria associated with medicinal plants possess unique strategies that enhance growth and suvival of host plants, many of which are mediated by distinctive secondary metabolites. These bacteria and their secondary metabolites are important subjects for both basic and applied research aimed at sustainable agriculture. In the present study, 114 endophytic strains isolated from the wild ethnomedicinal plant Glycyrrhiza uralensis (licorice) were screened for their in vitro antimicrobial activities against common fungal pathogens of tomato ( Fusarium oxysporum f. sp., Fulvia fulva , Alternaria solani ), cotton ( Fusarium oxysporum f. sp. Vesinfectum, Verticillium dahliae ), pomegranite ( Ceratocystis fimbriata ), Cymbidinium ( Colletotrichum gloeosporioides ), and Tsao-ko ( Pestalotiopsis microspora and Fusarium graminearum ) and the common bacteria Staphylococcus aureus , Bacillus cereus , Salmonella enteritidis , and Escherichia coli . Several Bacillus strains, particularly Bacillus atrophaeus and Bacillus mojavensis , had a broad spectrum of antifungal and antibacterial activity. A total of 16 strains, selected based on broad antimicrobial activity, were shown to contain at least one putative secondary metabolite-encoding gene (i.e., polyketide synthase or non-ribosomal peptide synthetase) and/or one lytic enzyme (i.e., protease, cellulase, lipase, chitinase), which may be important mediators of antagonistic activity against pathogens. Five strains, representing Bacillus atrophaeus and Bacillus mojavensis , were selected for plant growth chamber experiments based on strong in vitro antifungal activities. All five strains significantly reduced disease severity in Arabidopsis thaliana plants challenged with V. dahlia infection. Gas-chromatography/mass-spectrometry analysis of cell-free extracts of Bacillus atrophaeus strain XEGI50 showed that at least 13 compounds were produced only during co-cultivation with V. dahlia , including putative compounds known

  7. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study.

    PubMed

    Šket, Robert; Treichel, Nicole; Debevec, Tadej; Eiken, Ola; Mekjavic, Igor; Schloter, Michael; Vital, Marius; Chandler, Jenna; Tiedje, James M; Murovec, Boštjan; Prevoršek, Zala; Stres, Blaž

    2017-01-01

    We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O 2 (F i O 2 ) and partial pressure of inspired O 2 (P i O 2 ) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α 1 -antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase ( but ) and butyrate kinase ( buk ) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation ( p < 0.05). In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological

  8. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study

    PubMed Central

    Šket, Robert; Treichel, Nicole; Debevec, Tadej; Eiken, Ola; Mekjavic, Igor; Schloter, Michael; Vital, Marius; Chandler, Jenna; Tiedje, James M.; Murovec, Boštjan; Prevoršek, Zala; Stres, Blaž

    2017-01-01

    We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05). In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward the

  9. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus.

    PubMed

    Brucker, Robert M; Harris, Reid N; Schwantes, Christian R; Gallaher, Thomas N; Flaherty, Devon C; Lam, Brianna A; Minbiole, Kevin P C

    2008-11-01

    Disease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen's growth at relatively low concentrations (68.9 and 1.82 microM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 microM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations.

  10. Antifungal activity of microbial secondary metabolites.

    PubMed

    Coleman, Jeffrey J; Ghosh, Suman; Okoli, Ikechukwu; Mylonakis, Eleftherios

    2011-01-01

    Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi.

  11. Antifungal Activity of Microbial Secondary Metabolites

    PubMed Central

    Okoli, Ikechukwu; Mylonakis, Eleftherios

    2011-01-01

    Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi. PMID:21966496

  12. Functional characterization of IgA-targeted bacterial taxa from malnourished Malawian children that produce diet-dependent enteropathy

    PubMed Central

    Kau, Andrew L.; Planer, Joseph D.; Liu, Jie; Rao, Sindhuja; Yatsunenko, Tanya; Trehan, Indi; Manary, Mark J.; Liu, Ta-Chiang; Stappenbeck, Thaddeus S.; Maleta, Kenneth M.; Ashorn, Per; Dewey, Kathryn G.; Houpt, Eric R.; Hsieh, Chyi-Song; Gordon, Jeffrey I.

    2015-01-01

    To gain insights into the interrelationships among childhood undernutrition, the gut microbiota, and gut mucosal immune/barrier function, we purified bacterial strains targeted by IgA from the fecal microbiota of two cohorts of Malawian infants and children. IgA responses to several bacterial taxa, including Enterobacteriaceae, correlated with anthropometric measurements of nutritional status in longitudinal studies. The relationship between IgA responses and growth was further explained by enteropathogen burden. Gnotobiotic mouse recipients of an IgA+-bacterial consortium purified from the gut microbiota of undernourished children exhibited a diet-dependent enteropathy characterized by rapid disruption of the small intestinal and colonic epithelial barrier, weight loss and sepsis that could be prevented by administering two IgA-targeted bacterial species from a healthy microbiota. Dissection of a culture collection of 11 IgA-targeted strains from an undernourished donor, sufficient to transmit these phenotypes, disclosed that Enterobacteriaceae interacted with other consortium members to produce enteropathy. These findings indicate that bacterial targets of IgA responses have etiologic, diagnostic, and therapeutic implications for childhood undernutrition. PMID:25717097

  13. Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain.

    PubMed

    Peitzsch, Mirko; Sulyok, Michael; Täubel, Martin; Vishwanath, Vinay; Krop, Esmeralda; Borràs-Santos, Alicia; Hyvärinen, Anne; Nevalainen, Aino; Krska, Rudolf; Larsson, Lennart

    2012-08-01

    Secondary metabolites produced by fungi and bacteria are among the potential agents that contribute to adverse health effects observed in occupants of buildings affected by moisture damage, dampness and associated microbial growth. However, few attempts have been made to assess the occurrence of these compounds in relation to moisture damage and dampness in buildings. This study conducted in the context of the HITEA project (Health Effects of Indoor Pollutants: Integrating microbial, toxicological and epidemiological approaches) aimed at providing systematic information on the prevalence of microbial secondary metabolites in a large number of school buildings in three European countries, considering both buildings with and without moisture damage and/or dampness observations. In order to address the multitude and diversity of secondary metabolites a large number of more than 180 analytes was targeted in settled dust and surface swab samples using liquid chromatography/mass spectrometry (LC/MS) based methodology. While 42%, 58% and 44% of all samples collected in Spanish, Dutch and Finnish schools, respectively, were positive for at least one of the metabolites analyzed, frequency of detection for the individual microbial secondary metabolites - with the exceptions of emodin, certain enniatins and physcion - was low, typically in the range of and below 10% of positive samples. In total, 30 different fungal and bacterial secondary metabolites were found in the samples. Some differences in the metabolite profiles were observed between countries and between index and reference school buildings. A major finding in this study was that settled dust derived from moisture damaged, damp schools contained larger numbers of microbial secondary metabolites at higher levels compared to respective dust samples from schools not affected by moisture damage and dampness. This observation was true for schools in each of the three countries, but became statistically significant only

  14. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi.

    PubMed

    Frisvad, Jens C; Andersen, Birgitte; Thrane, Ulf

    2008-02-01

    A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.

  15. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Ability of sea-water bacterial consortium to produce electricity and denitrify water

    NASA Astrophysics Data System (ADS)

    Maruvada, Nagasamrat V. V.; Tommasi, Tonia; Kaza, Kesava Rao; Ruggeri, Bernardo

    Sea is a store house for varied types of microbes with an ability to reduce and oxidize substances like iron, sulphur, carbon dioxide, etc. Most of these processes happen in the sea water environment, but can be applied for purification of wastewater. In the present paper, we discuss the use of a consortium of seawater bacteria in a fuel cell to produce electricity by oxidizing organic matter and reducing nitrates. We also discuss how the growth of the bacterial consortium can lead to an increased electricity production and decreased diffusional resistance in the cell. The analysis was done using electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Here, we use bicarbonate buffered solution, which is the natural buffering agent found in sea. We show that the seawater bacterial consortium can be used in both the anode and cathode parts of the cell. The results confirm the adaptability of the seawater bacteria to different environments and can be used for various applications. Heritage, Erasmus Mundus Programme, European Commission.

  17. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    PubMed

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  18. Purification of bacteriocins produced by lactic acid bacteria.

    PubMed

    Saavedra, Lucila; Castellano, Patricia; Sesma, Fernando

    2004-01-01

    Bacteriocins are antibacterial substances of a proteinaceous nature that are produced by different bacterial species. Lactic acid bacteria (LAB) produce biologically active peptides or protein complexes that display a bactericidal mode of action almost exclusively toward Gram-positive bacteria and particularly toward closely related species. Generally they are active against food spoilage and foodborne pathogenic microorganisms including Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. There is an increased tendency to use natural occurring metabolites to prevent the growth of undesirable flora in foodstuffs. These metabolites could replace the use of chemical additives such as sorbic acid, sulfur dioxide, nitrite, nitrate, and others. For instance, bacteriocins produced by LAB may be promising for use as bio-preservaties. Bacteriocins of lactic acid bacteria are typically cationic, hydrophobic peptides and differ widely in many characteristics including molecular weight, presence of particular groups of amino acids, pI, net positive charge, and post-translational modifications of certain amino acids. This heterogeneity within the LAB bacteriocins may explain the different procedures for isolation and purification developed so far. The methods most frequently used for isolation, concentration, and purification involve salt precipitation of bacteriocins from culture supernatants, followed by various combinations of gel filtration, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). In this chapter, a protocol is described that combines several methods used in our laboratory for the purification of two cationic bacteriocins, Lactocin 705AL and Enterocin CRL10, produced by Lactobacillus casei CRL705 and Enterococcus mundtii CRL10, respectively.

  19. Metabolite Profiling of Candidatus Liberibacter Infection in Hamlin Sweet Oranges.

    PubMed

    Hung, Wei-Lun; Wang, Yu

    2018-04-18

    Huanglongbing (HLB), also known as citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas), is considered the most serious citrus disease in the world. CLas infection has been shown to greatly affect metabolite profiles in citrus fruits. However, because of uneven distribution of CLas throughout the tree and a minimum bacterial titer requirement for polymerase chain reaction (PCR) detection, the infected trees may test false negative. To prevent this, metabolites of healthy Hamlin oranges (CLas-) obtained from the citrus undercover protection systems (CUPS) were investigated. Comparison of the metabolite profile of juice obtained from CLas- and CLas+ (asymptomatic and symptomatic) trees revealed significant differences in both volatile and nonvolatile metabolites. However, no consistent pattern could be observed in alcohols, esters, sesquiterpenes, sugars, flavanones, and limonoids as compared to previous studies. These results suggest that CLas may affect metabolite profiles of citrus fruits earlier than detecting infection by PCR. Citric acid, nobiletin, malic acid, and phenylalanine were identified as the metabolic biomarkers associated with the progression of HLB. Thus, the differential metabolites found in this study may serve as the biomarkers of HLB in its early stage, and the metabolite signature of CLas infection may provide useful information for developing a potential treatment strategy.

  20. Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development

    PubMed Central

    López de Felipe, Félix; de las Rivas, Blanca; Muñoz, Rosario

    2014-01-01

    The microorganisms in the human gastrointestinal tract have a profound influence on the transformation of food into metabolites which can impact human health. Gallic acid (GA) and pyrogallol (PG) are bioactive compounds displaying diverse biological properties, including carcinogenic inhibiting activities. However, its concentration in fruits and vegetables is generally low. These metabolites can be also generated as final products of tannin metabolism by microbes endowed with tannase, which opens up the possibility of their anti-cancer potential being increased. Patients with colorectal cancer (CRC) display an imbalanced gut microbiota respect to healthy population. The recent use of next generation sequencing technologies has greatly improved knowledge of the identity of bacterial species that colonize non-tumorous and tumorous tissues of CRC patients. This information provides a unique opportunity to shed light on the role played by gut microorganisms in the different stages of this disease. We here review the recently published gut microbiome associated to CRC patients and highlight tannase as an underlying gene function of bacterial species that selectively colonize tumorous tissues, but not adjacent non-malignant tissues. Given the anti-carcinogenic roles of GA and PG produced by gut tannin-degrading bacteria, we provide an overview of the possible consequences of this intriguing coincidence for CRC development. PMID:25538697

  1. Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development.

    PubMed

    López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2014-01-01

    The microorganisms in the human gastrointestinal tract have a profound influence on the transformation of food into metabolites which can impact human health. Gallic acid (GA) and pyrogallol (PG) are bioactive compounds displaying diverse biological properties, including carcinogenic inhibiting activities. However, its concentration in fruits and vegetables is generally low. These metabolites can be also generated as final products of tannin metabolism by microbes endowed with tannase, which opens up the possibility of their anti-cancer potential being increased. Patients with colorectal cancer (CRC) display an imbalanced gut microbiota respect to healthy population. The recent use of next generation sequencing technologies has greatly improved knowledge of the identity of bacterial species that colonize non-tumorous and tumorous tissues of CRC patients. This information provides a unique opportunity to shed light on the role played by gut microorganisms in the different stages of this disease. We here review the recently published gut microbiome associated to CRC patients and highlight tannase as an underlying gene function of bacterial species that selectively colonize tumorous tissues, but not adjacent non-malignant tissues. Given the anti-carcinogenic roles of GA and PG produced by gut tannin-degrading bacteria, we provide an overview of the possible consequences of this intriguing coincidence for CRC development.

  2. Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction

    PubMed Central

    Kidd, Petra; Kuffner, Melanie; Prieto-Fernández, Ángeles; Hann, Stephan; Monterroso, Carmela; Sessitsch, Angela; Wenzel, Walter; Puschenreiter, Markus

    2013-01-01

    The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants. PMID:23793627

  3. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: an in vitro and in silico investigation.

    PubMed

    Skariyachan, Sinosh; Acharya, Archana B; Subramaniyan, Saumya; Babu, Sumangala; Kulkarni, Shruthi; Narayanappa, Rajeswari

    2016-09-01

    The current study explores therapeutic potential of metabolites extracted from marine sponge (Cliona sp.)-associated bacteria against MDR pathogens and predicts the binding prospective of probable lead molecules against VP40 target of Ebola virus. The metabolite-producing bacteria were characterized by agar overlay assay and as per the protocols in Bergey's manual of determinative bacteriology. The antibacterial activities of extracted metabolites were tested against clinical pathogens by well-diffusion assay. The selected metabolite producers were characterized by 16S rDNA sequencing. Chemical screening and Fourier Transform Infrared (FTIR) analysis for selected compounds were performed. The probable lead molecules present in the metabolites were hypothesized based on proximate analysis, FTIR data, and literature survey. The drug-like properties and binding potential of lead molecules against VP40 target of Ebola virus were hypothesized by computational virtual screening and molecular docking. The current study demonstrated that clear zones around bacterial colonies in agar overlay assay. Antibiotic sensitivity profiling demonstrated that the clinical isolates were multi-drug resistant, however; most of them showed sensitivity to secondary metabolites (MIC-15 μl/well). The proximate and FTIR analysis suggested that probable metabolites belonged to alkaloids with O-H, C-H, C=O, and N-H groups. 16S rDNA characterization of selected metabolite producers demonstrated that 96% and 99% sequence identity to Comamonas testosteroni and Citrobacter freundii, respectively. The docking studies suggested that molecules such as Gymnastatin, Sorbicillactone, Marizomib, and Daryamide can designed as probable lead candidates against VP40 target of Ebola virus.

  4. Production and purification of anti-bacterial biometabolite from wild-type Lactobacillus, isolated from fermented bamboo shoot: future suggestions and a proposed system for secondary metabolite onsite recovery during continuous fermentation.

    PubMed

    Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C

    2015-02-01

    Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.

  5. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy.

    PubMed

    Kau, Andrew L; Planer, Joseph D; Liu, Jie; Rao, Sindhuja; Yatsunenko, Tanya; Trehan, Indi; Manary, Mark J; Liu, Ta-Chiang; Stappenbeck, Thaddeus S; Maleta, Kenneth M; Ashorn, Per; Dewey, Kathryn G; Houpt, Eric R; Hsieh, Chyi-Song; Gordon, Jeffrey I

    2015-02-25

    To gain insights into the interrelationships among childhood undernutrition, the gut microbiota, and gut mucosal immune/barrier function, we purified bacterial strains targeted by immunoglobulin A (IgA) from the fecal microbiota of two cohorts of Malawian infants and children. IgA responses to several bacterial taxa, including Enterobacteriaceae, correlated with anthropometric measurements of nutritional status in longitudinal studies. The relationship between IgA responses and growth was further explained by enteropathogen burden. Gnotobiotic mouse recipients of an IgA(+) bacterial consortium purified from the gut microbiota of undernourished children exhibited a diet-dependent enteropathy characterized by rapid disruption of the small intestinal and colonic epithelial barrier, weight loss, and sepsis that could be prevented by administering two IgA-targeted bacterial species from a healthy microbiota. Dissection of a culture collection of 11 IgA-targeted strains from an undernourished donor, sufficient to transmit these phenotypes, disclosed that Enterobacteriaceae interacted with other consortium members to produce enteropathy. These findings indicate that bacterial targets of IgA responses have etiologic, diagnostic, and therapeutic implications for childhood undernutrition. Copyright © 2015, American Association for the Advancement of Science.

  6. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears.

    PubMed

    Schwab, Clarissa; Cristescu, Bogdan; Boyce, Mark S; Stenhouse, Gordon B; Gänzle, Michael

    2009-12-01

    Gut physiology, host phylogeny, and diet determine the composition of the intestinal microbiota. Grizzly bears (Ursus arctos horribilis) belong to the Order Carnivora, yet feed on an omnivorous diet. The role of intestinal microflora in grizzly bear digestion has not been investigated. Microbiota and microbial activity were analysed from the feces of wild and captive grizzly bears. Bacterial composition was determined using culture-dependent and culture-independent methods. The feces of wild and captive grizzly bears contained log 9.1 +/- 0.5 and log 9.2 +/- 0.3 gene copies x g(-1), respectively. Facultative anaerobes Enterobacteriaceae and enterococci were dominant in wild bear feces. Among the strict anaerobes, the Bacteroides-Prevotella-Porphyromonas group was most prominent. Enterobacteriaceae were predominant in the feces of captive grizzly bears, at log 8.9 +/- 0.5 gene copies x g(-1). Strict anaerobes of the Bacteroides-Prevotella-Porphyromonas group and the Clostridium coccoides cluster were present at log 6.7 +/- 0.9 and log 6.8 +/- 0.8 gene copies x g(-1), respectively. The presence of lactate and short-chain fatty acids (SCFAs) verified microbial activity. Total SCFA content and composition was affected by diet. SCFA composition in the feces of captive grizzly bears resembled the SCFA composition of prey-consuming wild animals. A consistent data set was obtained that associated fecal microbiota and metabolites with the distinctive gut physiology and diet of grizzly bears.

  7. Bacterially produced human B7-1 protein encompassing its complete extracellular domain maintains its costimulatory activity in vitro.

    PubMed

    Shen, W; Wang, Y; Geng, Y; Si, L

    2000-08-01

    To investigate which of the two immunoglobulin (Ig)-like domains, immunoglobulin variable region homologous domain IgV (hB7-1 IgV), or immunoglobulin constant region homologous domain IgC (hB7-1 IgC) on human B7-1 molecule contain the receptor binding sites, and to evaluate if the B7-1 molecule expressed in bacteria has biological activity. PCR was used to amplify three fragments of hB7-1 IgV, hB7-1 IgC and complete extracellular region of human B7-1 containing both the IgV and IgC domains (hB7-1 IgV + IgC). Three recombinants, pQE9-hB7-1 IgV, pQE9-hB7-1 IgC and pQE9-Hb7-1 (IgV + IgC) were generated by cloning the PCR products into a prokaryote expression plasmid (pQE-9) and were introduced into the host stain M15. The relevant target hexahistidine-tagged proteins were identified by SDS-PAGE and Western blotting. With the presence of the first signal imitated by anti-CD3 antibody, T cell activation was observed by exposing purified T lymphocytes to each soluble form of the three bacterially-produced human B7-1 proteins and [3H]-TdR incorporation. Three recombinant proteins of human B7-1, hB7-1 IgV, hB7-1 IgC and hB7-1 (IgV + IgC) were produced and detected in both soluble and inclusive body forms from engineered bacterial cells. With the presence of anti-CD3 antibody, T lymphocytes proliferated when co-stimulated by bacterially produced hB7-1 (IgV + IgC), but not by either hB7-1 IgV or hB7-1 IgC. Functional glycoprotein human B7-1 could be produced in bacterial cells. Both extracellular immunoglobulin-like domains are necessary for B7-1 to react with its counter receptors.

  8. Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum

    PubMed Central

    Abdel-Azeem, Ahmed M.; Zaki, Sherif M.; Khalil, Waleed F.; Makhlouf, Noha A.; Farghaly, Lamiaa M.

    2016-01-01

    The aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1–CG7), being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half – strength potato dextrose broth for 21 days at 28°C on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA) rat model were examined and compared with the effects of methotrexate (MTX) as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM) were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05) in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6) and MTX treatment groups 6 days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82) compared to (13.8 ± 0.98) in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55) was significantly lower than that of the positive control group (3.33 ± 0.82). In contrast, the ethyl acetate extract of CG6 (EACG6) treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KC

  9. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago.

    PubMed

    Mohan, Gopi; Thipparamalai Thangappanpillai, Ajith Kumar; Ramasamy, Balagurunathan

    2016-09-01

    Twenty-one species of sponges were recorded under the class of Demospongiae and Calcareous sponges of which 19 species were new to Agatti reef. A total of 113 Sponge endosymbiotic bacterial strains were isolated from twenty-one species of sponges and screened for antimicrobial activity. Five bacterial strains of sponge endosymbiotic bacteria (SEB) namely SEB32, SEB33, SEB36, SEB43 and SEB51 showed antimicrobial activity against virulent marine fish pathogens such as Vibrio alginolyticus , Vibrio vulnificus , Vibrio parahaemolyticus , Aeromonas salmonicida , Flavobacterium sp., Edwardsiella sp., Proteus mirabilis and Citrobacter brackii . The secondary metabolites produced by SEB32 from sponge Dysidea fragilis (Montagu, 1818) [48] was selected with broad range of antibacterial activity and subjected for production, characterization by series of chromatography techniques and spectroscopic methods. Based on the results of FT-IR and mass spectrometry, the active molecule was tentatively predicted as "Pyrrol" and the structure is Pyrrolo[1,2 -a ]pyrazine-1,4-dione, hexahydro- with molecular formula of C7H10N2O2. The LC 50 of active molecule was 31 μg/ml and molecular weight of the metabolites was 154. The potential strain SEB32 was identified by gene sequence (GenBank Accession number JX985748) and identified as Bacillus sp. from GenBank database.

  10. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    PubMed

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-02-25

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis.

  11. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07

    PubMed Central

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  12. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures.

    PubMed

    Patel, Sanjay K S; Kumar, Prasun; Singh, Mamtesh; Lee, Jung-Kul; Kalia, Vipin C

    2015-01-01

    Biological production of hydrogen (H2) and polyhydroxybutyrate (PHB) from pea-shell slurry (PSS) was investigated using defined mixed culture (MMC4, composed of Enterobacter, Proteus, Bacillus spp.). Under batch culture, 19.0LH2/kg of PSS (total solid, TS, 2%w/v) was evolved. Using effluent from the H2 producing stage, Bacillus cereus EGU43 could produce 12.4% (w/w) PHB. Dilutions of PSS hydrolysate containing glucose (0.5%, w/v) resulted in 45-75LH2/kg TS fed and 19.1% (w/w) of PHB content. Under continuous culture, MMC4 immobilized on coconut coir (CC) lead to an H2 yield of 54L/kg TS fed and a PHB content of 64.7% (w/w). An improvement of 2- and 3.7-fold in H2 and PHB yields were achieved in comparison to control. This integrative approach using defined set of bacterial strains can prove effective in producing biomolecules from biowastes. Copyright © 2014. Published by Elsevier Ltd.

  13. Regulatory cross talk and microbial induction of fungal secondary metabolite gene clusters.

    PubMed

    Nützmann, Hans-Wilhelm; Schroeckh, Volker; Brakhage, Axel A

    2012-01-01

    Filamentous fungi are well-known producers of a wealth of secondary metabolites with various biological activities. Many of these compounds such as penicillin, cyclosporine, or lovastatin are of great importance for human health. Genome sequences of filamentous fungi revealed that the encoded potential to produce secondary metabolites is much higher than the actual number of compounds produced during cultivation in the laboratory. This finding encouraged research groups to develop new methods to exploit the silent reservoir of secondary metabolites. In this chapter, we present three successful strategies to induce the expression of secondary metabolite gene clusters. They are based on the manipulation of the molecular processes controlling the biosynthesis of secondary metabolites and the simulation of stimulating environmental conditions leading to altered metabolic profiles. The presented methods were successfully applied to identify novel metabolites. They can be also used to significantly increase product yields. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Small-molecule elicitation of microbial secondary metabolites.

    PubMed

    Pettit, Robin K

    2011-07-01

    Microbial natural products continue to be an unparalleled resource for pharmaceutical lead discovery, but the rediscovery rate is high. Bacterial and fungal sequencing studies indicate that the biosynthetic potential of many strains is much greater than that observed by fermentation. Prodding the expression of such silent (cryptic) pathways will allow us to maximize the chemical diversity available from microorganisms. Cryptic metabolic pathways can be accessed in the laboratory using molecular or cultivation-based approaches. A targeted approach related to cultivation-based methods is the application of small-molecule elicitors to specifically affect transcription of secondary metabolite gene clusters. With the isolation of the novel secondary metabolites lunalides A and B, oxylipins, cladochromes F and G, nygerone A, chaetoglobosin-542, -540 and -510, sphaerolone, dihydrosphaerolone, mutolide and pestalone, and the enhanced production of known secondary metabolites like penicillin and bacitracin, chemical elicitation is proving to be an effective way to augment natural product libraries. © 2010 The Authors. Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Quantifying the Dynamics of Bacterial Secondary Metabolites by Spectral Multi-Photon Microscopy

    PubMed Central

    Sullivan, Nora L.; Tzeranis, Dimitrios S.; Wang, Yun; So, Peter T.C.; Newman, Dianne

    2011-01-01

    Phenazines, a group of fluorescent small molecules produced by the bacterium Pseudomonas aeruginosa, play a role in maintaining cellular redox homeostasis. Phenazines have been challenging to study in vivo due to their redox activity, presence both intra- and extracellularly, and their diverse chemical properties. Here, we describe a non-invasive in vivo optical technique to monitor phenazine concentrations within bacterial cells using time-lapsed spectral multi-photon fluorescence microscopy. This technique enables simultaneous monitoring of multiple weakly-fluorescent molecules (phenazines, siderophores, NAD(P)H) expressed by bacteria in culture. This work provides the first in vivo measurements of reduced phenazine concentration as well as the first description of the temporal dynamics of the phenazine-NAD(P)H redox system in Pseudomonas aeruginosa, illuminating an unanticipated role for 1-hydroxyphenazine. Similar approaches could be used to study the abundance and redox dynamics of a wide range of small molecules within bacteria, both as single cells and in communities. PMID:21671613

  16. Endophytes are hidden producers of maytansine in Putterlickia roots.

    PubMed

    Kusari, Souvik; Lamshöft, Marc; Kusari, Parijat; Gottfried, Sebastian; Zühlke, Sebastian; Louven, Kathrin; Hentschel, Ute; Kayser, Oliver; Spiteller, Michael

    2014-12-26

    Several recent studies have lent evidence to the fact that certain so-called plant metabolites are actually biosynthesized by associated microorganisms. In this work, we show that the original source organism(s) responsible for the biosynthesis of the important anticancer and cytotoxic compound maytansine is the endophytic bacterial community harbored specifically within the roots of Putterlickia verrucosa and P. retrospinosa plants. Evaluation of the root endophytic community by chemical characterization of their fermentation products using HPLC-HRMS(n), along with a selective microbiological assay using the maytansine-sensitive type strain Hamigera avellanea revealed the endophytic production of maytansine. This was further confirmed by the presence of AHBA synthase genes in the root endophytic communities. Finally, MALDI-imaging-HRMS was used to demonstrate that maytansine produced by the endophytes is typically accumulated mainly in the root cortex of both plants. Our study, thus, reveals that maytansine is actually a biosynthetic product of root-associated endophytic microorganisms. The knowledge gained from this study provides fundamental insights on the biosynthesis of so-called plant metabolites by endophytes residing in distinct ecological niches.

  17. The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa.

    PubMed

    Troppens, Danielle M; Chu, Meiling; Holcombe, Lucy J; Gleeson, Olive; O'Gara, Fergal; Read, Nick D; Morrissey, John P

    2013-07-01

    The bacterial secondary metabolite 2,4-diacetylphloroglucinol (DAPG) is of interest as an active ingredient of biological control strains of Pseudomonas fluorescens and as a potential lead pharmaceutical molecule because of its capacity to inhibit growth of diverse microbial and non-microbial cells. The mechanism by which this occurs is unknown and in this study the filamentous fungus Neurospora crassa was used as a model to investigate the effects of DAPG on a eukaryotic cell. Colony growth, conidial germination and cell fusion assays confirmed the inhibitory nature of DAPG towards N. crassa. A number of different fluorescent dyes and fluorescent protein reporters were used to assess the effects of DAPG treatment on mitochondrial and other cellular functions. DAPG treatment led to changes in mitochondrial morphology, and rapid loss of mitochondrial membrane potential. These effects are likely to be responsible for the toxicity of DAPG. It was also found that DAPG treatment caused extracellular calcium to be taken up by conidial germlings leading to a transient increase in cytosolic free Ca(2+) with a distinct concentration dependent Ca(2+) signature. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors

    PubMed Central

    Janek, Daniela; Zipperer, Alexander; Kulik, Andreas; Krismer, Bernhard; Peschel, Andreas

    2016-01-01

    The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. PMID:27490492

  19. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom.

    PubMed

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-09-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB.

  20. The structures of three metabolites of the algal hepatotoxin okadaic acid produced by oxidation with human cytochrome P450

    PubMed Central

    Liu, Li; Guoa, Fujiang; Crain, Sheila; Quilliam, Michael A.; Wang, Xiaotang; Rein, Kathleen S.

    2012-01-01

    Four metabolites of okadaic acid were generated by incubation with human recombinant cytochrome P450 3A4. The structures of two of the four metabolites have been determined by MS/MS experiments and 1D and 2D NMR methods using 94 and 133 μg of each metabolite. The structure of a third metabolite was determined by oxidation to a metabolite of known structure. Like okadaic acid, the metabolites are inhibitors of protein phosphatase PP2A. Although one of the metabolites does have an α,β unsaturated carbonyl with the potential to form adducts with an active site cysteine, all of the metabolites are reversible inhibitors of PP2A. PMID:22608922

  1. Diversity of Both the Cultivable Protease-Producing Bacteria and Bacterial Extracellular Proteases in the Coastal Sediments of King George Island, Antarctica

    PubMed Central

    Zhou, Ming-Yang; Wang, Guang-Long; Li, Dan; Zhao, Dian-Li; Qin, Qi-Long; Chen, Xiu-Lan; Chen, Bo; Zhou, Bai-Cheng; Zhang, Xi-Ying; Zhang, Yu-Zhong

    2013-01-01

    Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 105 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%), Flavobacterium (21.0%) and Lacinutrix (16.2%). Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea. PMID:24223990

  2. Deep Sea Actinomycetes and Their Secondary Metabolites

    PubMed Central

    Kamjam, Manita; Sivalingam, Periyasamy; Deng, Zinxin; Hong, Kui

    2017-01-01

    Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces. PMID:28507537

  3. Biologically Active Secondary Metabolites from the Fungi.

    PubMed

    Bills, Gerald F; Gloer, James B

    2016-11-01

    Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops

  4. Zinc Oxide Nanoparticles Influence Microflora in Ileal Digesta and Correlate Well with Blood Metabolites.

    PubMed

    Feng, Yanni; Min, Lingjiang; Zhang, Weidong; Liu, Jing; Hou, Zhumei; Chu, Meiqiang; Li, Lan; Shen, Wei; Zhao, Yong; Zhang, Hongfu

    2017-01-01

    Zinc oxide nanoparticles (ZnO NPs) are used widely in consumer and industrial products, however, their influence on gut microbiota and metabolism and their mutual interactions are not fully understood. In this study, the effects of ZnO NPs on ileal bacterial communities, plasma metabolites, and correlations between them were investigated. Hens were fed with different concentrations of ZnO NPs [based on Zn; 0 mg/kg (control), 25 mg/kg, 50 mg/kg, and 100 mg/kg] for 9 weeks. Subsequently, ileal digesta and blood plasma were collected for analysis of microflora and metabolites, respectively. The V3-V4 region of the 16S rRNA gene of ileal digesta microbiota was sequenced using the Illumina HiSeq 2500 platform. The predominant bacterial community in the ileum belongs to the phylum Firmicutes. The richness of the bacterial community was negatively correlated with increasing amounts of ZnO NPs ( r = -0.636, P < 0.01); when ZnO NP levels were at 100 mg/kg, microbiota diversity was significantly decreased ( P < 0.05). The community structure determined by LEfSe analysis indicated that Bacilli, Fusobacteria, and Proteobacteria were changed, and Lactobacillus was reduced by ZnO NPs. Moreover, metabolism as analyzed by nuclear magnetic resonance (NMR) indicated that glucose, some amino acids, and other metabolites were changed by ZnO NPs. Choline, lactate, and methionine were positively correlated with bacterial richness. In summary, ZnO NPs could influence the levels of microflora in ileal digesta, particularly Lactobacillus . Furthermore, the richness of the microbiota was related to changes in choline, lactate, and methionine metabolism.

  5. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn.

    PubMed

    Mundo, Jorge; Villeda-Hernández, Juana; Herrera-Ruiz, Maribel; Gutiérrez, María Del Carmen; Arellano-García, Jesús; León-Rivera, Ismael; Perea-Arango, Irene

    2017-10-01

    Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H 2 O and WAsc-CH 2 Cl 2 . For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H 2 O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H 2 O and WAsc-CH 2 Cl 2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers.

    PubMed

    Edwards, Arwyn; Mur, Luis A J; Girdwood, Susan E; Anesio, Alexandre M; Stibal, Marek; Rassner, Sara M E; Hell, Katherina; Pachebat, Justin A; Post, Barbara; Bussell, Jennifer S; Cameron, Simon J S; Griffith, Gareth Wyn; Hodson, Andrew J; Sattler, Birgit

    2014-08-01

    Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids and polysaccharides was inferred, underlining the importance of bacterial community structure in the properties of cryoconite. Thus, combined application of T-RFLP and FT-IR metabolite fingerprinting promises high throughput, and hence, rapid assessment of community structure-function relationships. Pyrosequencing revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine and Arctic cryoconite habitats, reflecting the impact of local and regional conditions on the challenges of thriving in glacial ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Dendritic cells produce eicosanoids, which modulate generation and functions of antigen-presenting cells.

    PubMed

    Harizi, H; Gualde, N

    2002-01-01

    Eicosanoids have been shown to be potent immunoregulatory arachidonic acid (AA) metabolites. AA is the precursor of prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) which are able to modulate both inflammation and the immune response. Dendritic cells process and present antigens to T lymphocytes. They are highly specialized antigen-presenting cells (APC) and usually considered as 'professional APC'. In the present paper, we report some data on the biosynthetic capacity of murine APC from the bone marrow (BM-DCs) to produce AA metabolites. Using an ELISA we have observed that BM-DCs spontaneously produce both PGE(2) and LTB(4) whose production increased in response to bacterial lipopolysaccharides (LPS). In addition we found that LTB(4) production was twice as high when both COX pathways were blocked with selective COX-inhibitors. We have also investigated the effect of PGE(2) and LTB(4) on the in vitro generation of the so-called BM-DCs. Exogenous PGE(2) and LTB(4) added to bone marrow cultures inhibit and promote, respectively, BM-DC generation. PGE(2) added to the maturing BM-DCs reduces their MHC class-II expression.

  8. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    DOE PAGES

    Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; ...

    2014-12-12

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometrymore » data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.« less

  9. Novel comprehensive multidimensional liquid chromatography approach for elucidation of the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 strain.

    PubMed

    Cacciola, Francesco; Mangraviti, Domenica; Rigano, Francesca; Donato, Paola; Dugo, Paola; Mondello, Luigi; Cortes, Hernan J

    2018-06-01

    Shikimic acid is a intermediate of aromatic amino acid biosynthesis and the preferred starting material for production of the most commonly prescribed anti-influenza drug, Tamiflu. Its six-membered carbocyclic ring is adorned with several chiral centers and various functionalities, making shikimic acid a valuable chiral synthon. When microbially-produced, in addition to shikimic acid, numerous other metabolites are exported out of the cytoplasm and accumulate in the culture medium. This extracellular matrix of metabolites is referred to as the microbosphere. Due to the high sample complexity, in this study, the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 was analyzed by liquid chromatography and comprehensive two-dimensional liquid chromatography coupled to photodiode array and mass spectrometry detection. GC analysis of the trimethylsilyl derivatives was also carried out in order to support the elucidation of the selected metabolites in the microbosphere. The elucidation of the metabolic fraction of this bacterial strain might be of valid aid for improving, through genetic changes, the concentration and yield of shikimic acid synthesized from glucose. Graphical abstract.

  10. Yeast synthetic biology for high-value metabolites.

    PubMed

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  11. Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production.

    PubMed

    Abd El Razak, Ahmed; Ward, Alan C; Glassey, Jarka

    2014-02-01

    Water samples from three different environments including Mid Atlantic Ridge, Red Sea and Mediterranean Sea were screened in order to isolate new polyunsaturated fatty acids (PUFAs) bacterial producers especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Two hundred and fifty-one isolates were screened for PUFA production and among them the highest number of producers was isolated from the Mid-Atlantic Ridge followed by the Red Sea while no producers were found in the Mediterranean Sea samples. The screening strategy included a simple colourimetric method followed by a confirmation via GC/MS. Among the tested producers, an isolate named 66 was found to be a potentially high PUFA producer producing relatively high levels of EPA in particular. A Plackett-Burman statistical design of experiments was applied to screen a wide number of media components identifying glycerol and whey as components of a production medium. The potential low-cost production medium was optimised by applying a response surface methodology to obtain the highest productivity converting industrial by-products into value-added products. The maximum achieved productivity of EPA was 20 mg/g, 45 mg/l, representing 11% of the total fatty acids, which is approximately five times more than the amount produced prior to optimisation. The production medium composition was 10.79 g/l whey and 6.87 g/l glycerol. To our knowledge, this is the first investigation of potential bacteria PUFA producers from Mediterranean and Red Seas providing an evaluation of a colourimetric screening method as means of rapid screening of a large number of isolates.

  12. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  13. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    NASA Astrophysics Data System (ADS)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  14. Bioprospecting from cultivable bacterial communities of marine sediment and invertebrates from the underexplored Ubatuba region of Brazil.

    PubMed

    Tangerina, Marcelo M P; Correa, Hebelin; Haltli, Brad; Vilegas, Wagner; Kerr, Russell G

    2017-01-01

    Shrimp fisheries along the Brazilian coast have significant environmental impact due to high by-catch rates (21 kg per kilogram of shrimp). Typically discarded, by-catch contains many invertebrates that may host a great variety of bacterial genera, some of which may produce bioactive natural products with biotechnological applications. Therefore, to utilize by-catch that is usually discarded we explored the biotechnological potential of culturable bacteria of two abundant by-catch invertebrate species, the snail Olivancillaria urceus and the sea star Luidia senegalensis. Sediment from the collection area was also investigated. Utilizing multiple isolation approaches, 134 isolates were obtained from the invertebrates and sediment. Small-subunit rRNA (16S) gene sequencing revealed that the isolates belonged to Proteobacteria, Firmicutes and Actinobacteria phyla and were distributed among 28 genera. Several genera known for their capacity to produce bioactive natural products (Micromonospora, Streptomyces, Serinicoccus and Verrucosispora) were retrieved from the invertebrate samples. To query the bacterial isolates for their ability to produce bioactive metabolites, all strains were fermented and fermentation extracts profiled by UP LC-HRMS and tested for antimicrobial activity. Four strains exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus warneri.

  15. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals.

    PubMed

    Wang, Xiaoxue; Wang, Jianping; Rao, Benqiang; Deng, Li

    2017-06-01

    Colorectal cancer is one of the most common types of cancer in the world and its morbidity and mortality rates are increasing due to alterations to human lifestyle and dietary habits. The relationship between human gut flora and colorectal cancer has attracted increasing attention. In the present study, a metabolic fingerprinting technique that combined pyrosequencing with gas chromatography-mass spectrometry was utilized to compare the differences in gut flora profiling and fecal metabolites between healthy individuals and patients with colorectal cancer. The results demonstrated that there were no significant differences in the abundance and diversity of gut flora between healthy individuals and patients with colorectal cancer (P>0.05) and the dominant bacterial phyla present in the gut of both groups included Firmicutes , Bacteroidetes and Verrucomicrobia . At the bacterial strain/genus level, significant differences were observed in the relative abundance of 18 species of bacteria (P<0.05). Analysis of fecal metabolites demonstrated that the metabolic profiles of healthy individuals and patients with colorectal cancer were distinct. The levels of short-chain fatty acid metabolites, including acetic acid, valeric acid, isobutyric acid and isovaleric acid, and of nine amino acids in patients with colorectal cancer were significantly higher than those in healthy individuals (P<0.05). However, the levels of butyrate, oleic acid, trans-oleic acid, linoleic acid, glycerol, monoacyl glycerol, myristic acid, ursodesoxycholic acid and pantothenic acid in patients with colorectal cancer were significantly lower than those in healthy individuals (P<0.05). Pearson rank correlation analysis demonstrated that there was a correlation between gut flora profiling and metabolite composition. These findings suggest that gut flora disorder results in the alteration of bacterial metabolism, which may be associated with the pathogenesis of colorectal cancer. The results of the

  16. Employing immuno-affinity for the analysis of various microbial metabolites of the mycotoxin deoxynivalenol.

    PubMed

    Zhu, Yan; Hassan, Yousef I; Shao, Suqin; Zhou, Ting

    2018-06-29

    Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly detected in grains infested with Fusarium species. The maximum tolerated levels of DON in the majority of world's countries are restricted to 0.75 mg kg -1 within the human food chain and to less than 1-5 mg kg -1 in animal feed depending on the feed material and/or animal species due to DON's short and long-term adverse effects on human health and animal productivity. The ability to accurately analyze DON and some of its fungal/bacterial metabolites is increasingly gaining a paramount importance in food/feed analysis and research. In this study, we used the immuno-affinity approach to enrich and detect DON and three of its bacterial metabolites, namely 3-epi-DON, 3-keto-DON, and deepoxy-DON (DOM-1). The optimized enrichment step coupled with high performance liquid chromatography can accurately and reproducibly quantify the aforementioned metabolites in feed matrixes (silage extract as an example in this case). It minimizes any background interface and provides a fast and easy-to-operate protocol for the analytical determination of such metabolites. More importantly, the presented data demonstrates the ability of the utilized monoclonal antibody, generated originally to capture DON in Enzyme-Linked Immunosorbent Assays (ELISA), to cross react with three less/non-toxic DON metabolites. This raises the concerns about the genuine need to account for such cross-reactivity when DON contamination is assessed through an immuno-affinity based analyses using the investigated antibody. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  17. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  18. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  19. Comparative Survey of Rumen Microbial Communities and Metabolites across One Caprine and Three Bovine Groups, Using Bar-Coded Pyrosequencing and 1H Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Lee, Hyo Jung; Jung, Ji Young; Oh, Young Kyoon; Lee, Sang-Suk; Madsen, Eugene L.

    2012-01-01

    Pyrosequencing of 16S rRNA genes (targeting Bacteria and Archaea) and 1H nuclear magnetic resonance were applied to investigate the rumen microbiota and metabolites of Hanwoo steers in the growth stage (HGS), Hanwoo steers in the late fattening stage (HFS), Holstein-Friesian dairy cattle (HDC), and Korean native goats (KNG) in the late fattening stage. This was a two-part investigation. We began by comparing metabolites and microbiota of Hanwoo steers at two stages of husbandry. Statistical comparisons of metabolites and microbial communities showed no significant differences between HFS and HGS (differing by a dietary shift at 24 months and age [67 months versus 12 months]). We then augmented the study by extending the investigation to HDC and KNG. Overall, pyrosequencing of 16S rRNA genes showed that the rumens had highly diverse microbial communities containing many previously undescribed microorganisms. Bioinformatic analysis revealed that the bacterial sequences were predominantly affiliated with four phyla—Bacteroidetes, Firmicutes, Fibrobacteres, and Proteobacteria—in all ruminants. However, interestingly, the bacterial reads belonging to Fibrobacteres were present at a very low abundance (<0.1%) in KNG. Archaeal community analysis showed that almost all of these reads fell into a clade related to, but distinct from, known cultivated methanogens. Statistical analyses showed that the microbial communities and metabolites of KNG were clearly distinct from those of other ruminants. In addition, bacterial communities and metabolite profiles of HGS and HDC, fed similar diets, were distinctive. Our data indicate that bovine host breeds override diet as the key factor that determines bacterial community and metabolite profiles in the rumen. PMID:22706048

  20. Identification of the antibacterial compound produced by the marine epiphytic bacterium Pseudovibrio sp. D323 and related sponge-associated bacteria.

    PubMed

    Penesyan, Anahit; Tebben, Jan; Lee, Matthew; Thomas, Torsten; Kjelleberg, Staffan; Harder, Tilmann; Egan, Suhelen

    2011-01-01

    Surface-associated marine bacteria often produce secondary metabolites with antagonistic activities. In this study, tropodithietic acid (TDA) was identified to be responsible for the antibacterial activity of the marine epiphytic bacterium Pseudovibrio sp. D323 and related strains. Phenol was also produced by these bacteria but was not directly related to the antibacterial activity. TDA was shown to effectively inhibit a range of marine bacteria from various phylogenetic groups. However TDA-producers themselves were resistant and are likely to possess resistance mechanism preventing autoinhibition. We propose that TDA in isolate D323 and related eukaryote-associated bacteria plays a role in defending the host organism against unwanted microbial colonisation and, possibly, bacterial pathogens.

  1. A modular modulation method for achieving increases in metabolite production.

    PubMed

    Acerenza, Luis; Monzon, Pablo; Ortega, Fernando

    2015-01-01

    Increasing the production of overproducing strains represents a great challenge. Here, we develop a modular modulation method to determine the key steps for genetic manipulation to increase metabolite production. The method consists of three steps: (i) modularization of the metabolic network into two modules connected by linking metabolites, (ii) change in the activity of the modules using auxiliary rates producing or consuming the linking metabolites in appropriate proportions and (iii) determination of the key modules and steps to increase production. The mathematical formulation of the method in matrix form shows that it may be applied to metabolic networks of any structure and size, with reactions showing any kind of rate laws. The results are valid for any type of conservation relationships in the metabolite concentrations or interactions between modules. The activity of the module may, in principle, be changed by any large factor. The method may be applied recursively or combined with other methods devised to perform fine searches in smaller regions. In practice, it is implemented by integrating to the producer strain heterologous reactions or synthetic pathways producing or consuming the linking metabolites. The new procedure may contribute to develop metabolic engineering into a more systematic practice. © 2015 American Institute of Chemical Engineers.

  2. Bacterial symbionts and natural products.

    PubMed

    Crawford, Jason M; Clardy, Jon

    2011-07-21

    The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses.

  3. Chemoprofile and functional diversity of fungal and bacterial endophytes and role of ecofactors - A review.

    PubMed

    Shah, Aiyatullah; Hassan, Qazi Parvaiz; Mushtaq, Saleem; Shah, Aabid Manzoor; Hussain, Aehtesham

    2017-10-01

    Endophytes represent a hidden world within plants. Almost all plants that are studied harbor one or more endophytes, which help their host to survive against pathogens and changing adverse environmental conditions. Fungal and bacterial endophytes with distinct ecological niches show important biological activities and ecological functions. Their unique physiological and biochemical characteristics lead to the production of niche specific secondary metabolites that may have pharmacological potential. Identification of specific secondary metabolites in adverse environment can also help us in understanding mechanisms of host tolerance against stress condition such as biological invasions, salt, drought, temperature. These metabolites include micro as well as macromolecules, which they produce through least studied yet surprising mechanisms like xenohormesis, toxin-antitoxin system, quorum sensing. Therefore, future studies should focus on unfolding all the underlying molecular mechanisms as well as the impact of physical and biochemical environment of a specific host over endophytic function and metabolite elicitation. Need of the hour is to reshape the focus of research over endophytes and scientifically drive their ecological role toward prospective pharmacological as well as eco-friendly biological applications. This may help to manage these endophytes especially from untapped ecoregions as a useful undying biological tool to meet the present challenges as well as lay a strong and logical basis for any impending challenges. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bacterial symbionts and natural products

    PubMed Central

    Crawford, Jason M.; Clardy, Jon

    2011-01-01

    The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses. In the last ten years, a series of shocking revelations – the molecular equivalents of a reality TV show’s uncovering the true parents of a well known individual or a deeply hidden family secret – altered the study of genetically encoded small molecules, natural products for short. These revelations all involved natural products produced by bacterial symbionts, and while details differed, two main plot lines emerged: parentage, in which the real producers of well known natural products with medical potential were not the organisms from which they were originally discovered, and hidden relationships, in which bacterially produced small molecules turned out to be the unsuspected regulators of complex interactions. For chemists, these studies led to new molecules, new biosynthetic pathways, and an understanding of the biological functions these molecules fulfill. PMID:21594283

  5. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    PubMed

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Pharmacologically active plant metabolites as survival strategy products.

    PubMed

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  7. Bacterial membrane proteomics.

    PubMed

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  8. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    PubMed

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  9. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions

    PubMed Central

    Deveau, Aurélie; Gross, Harald; Palin, Béatrice; Mehnaz, Samina; Schnepf, Max; Leblond, Pierre; Dorrestein, Pieter C.; Aigle, Bertrand

    2016-01-01

    Microorganisms can be versatile in their interactions with each other, being variously beneficial, neutral or antagonistic in their effect. Although this versatility has been observed among many microorganisms and in many environments, little is known regarding the mechanisms leading to these changes in behavior. In the present work, we analyzed the mechanism by which the soil bacterium Pseudomonas fluorescens BBc6R8 shifts from stimulating the growth of the ectomycorrhizal fungus Laccaria bicolor S238N to killing the fungus. We show that among the three secondary metabolites produced by the bacterial strain—the siderophores enantio-pyochelin and pyoverdine, and the biosurfactant viscosin—the siderophores are mainly responsible for the antagonistic activity of the bacterium under iron-limited conditions. While the bacterial strain continues to produce beneficial factors, their effects are overridden by the action of their siderophores. This antagonistic activity of the strain P. fluorescens BBC6R8 in iron-depleted environments is not restricted to its influence on L. bicolor, since it was also seen to inhibit the growth of the actinomycete Streptomyces ambofaciens ATCC23877. We show that the strain P. fluorescens BBc6R8 uses different strategies to acquire iron, depending on certain biotic and abiotic factors. PMID:27199346

  10. Identification of isoquercitrin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.

    PubMed

    Lu, Linling; Qian, Dawei; Yang, Jing; Jiang, Shu; Guo, Jianming; Shang, Er-xin; Duan, Jin-ao

    2013-04-01

    In this paper, ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and the MetaboLynx™ software combined with mass defect filtering were applied to identity the metabolites of isoquercitrin using an intestinal mixture of bacteria and 96 isolated strains from human feces. The human incubated samples collected for 72 h in the anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC-Q-TOF/MS within 10 min. The parent compound and five metabolites were identified by eight isolated strains, including Bacillus sp. 17, Veillonella sp. 23 and 32 and Bacteroides sp. 40, 41, 56, 75 and 88 in vitro. The results indicate that quercetin, acetylated isoquercitrin, dehydroxylated isoquercitrin, hydroxylated quercetin and hydroxymethylated quercetin are the major metabolites of isoquercitrin. Furthermore, a possible metabolic pathway for the biotransformation of isoquercitrin was established in intestinal flora. This study will be helpful for understanding the metabolic route of isoquercitrin and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    PubMed

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  12. Automated analysis of oxidative metabolites

    NASA Technical Reports Server (NTRS)

    Furner, R. L. (Inventor)

    1974-01-01

    An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde.

  13. A New View of the Bacterial Cytosol Environment

    PubMed Central

    Cossins, Benjamin P.; Jacobson, Matthew P.; Guallar, Victor

    2011-01-01

    The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg2+ ions were prominent in NIMS and almost absent free in solution. Κ+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution. PMID:21695225

  14. Bioactive Secondary Metabolites Produced by the Fungal Endophytes of Conifers.

    PubMed

    Stierle, Andrea A; Stierle, Donald B

    2015-10-01

    This is a review of bioactive secondary metabolites isolated from conifer-associated endophytic fungi from 1990-2014. This includes compounds with antimicrobial, anti-inflammatory, anti-proliferative and cytotoxic activity towards human cancer cell lines, and activity against either plant pathogens or plant insect pests. Compounds that were originally reported without associated activity were included if other studies ascribed activity to these compounds. Compounds were not included if they were exclusively phytotoxic or if they were isolated from active extracts but were not determined to be the active component of that extract.

  15. Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California Current.

    PubMed

    Kharbush, Jenan J; Ugalde, Juan A; Hogle, Shane L; Allen, Eric E; Aluwihare, Lihini I

    2013-12-01

    Hopanoids are pentacyclic triterpenoid lipids produced by many prokaryotes as cell membrane components. The structural variations of composite hopanoids, or bacteriohopanepolyols (BHPs), produced by various bacterial genera make them potentially useful molecular biomarkers of bacterial communities and metabolic processes in both modern and ancient environments. Building on previous work suggesting that organisms in low-oxygen environments are important contributors to BHP production in the marine water column and that there may be physiological roles for BHPs specific to these environments, this study investigated the relationship between trends in BHP structural diversity and abundance and the genetic diversity of BHP producers for the first time in a low-oxygen environment of the Eastern Tropical North Pacific. Amplification of the hopanoid biosynthesis gene for squalene hopene cyclase (sqhC) indicated far greater genetic diversity than would be predicted by examining BHP structural diversity alone and that greater sqhC genetic diversity exists in the marine environment than is represented by cultured representatives and most marine metagenomes. In addition, the genetic relationships in this data set suggest microaerophilic environments as potential "hot spots" of BHP production. Finally, structural analysis of BHPs showed that an isomer of the commonly observed BHP bacteriohopanetetrol may be linked to a producer that is more abundant in low-oxygen environments. Results of this study increase the known diversity of BHP producers and provide a detailed phylogeny with implications for the role of hopanoids in modern bacteria, as well as the evolutionary history of hopanoid biosynthesis, both of which are important considerations for future interpretations of the marine sedimentary record.

  16. A symbiont-produced protein and bacterial symbiosis in Amoeba proteus.

    PubMed

    Pak, J W; Jeon, K W

    1997-01-01

    Gram symbiotic X-bacteria present in the xD strain of Amoeba proteus as required cell components, synthesize and export a large amount of a 29-kDa protein (S29x) into the host's cytoplasm across bacterial and symbiosome membranes. The S29x protein produced by E. coli transformed with the s29x gene is also rapidly secreted into the culture medium. Inside amoebae, S29x enters the host's nucleus as detected by confocal and immunoelectron microscopy, although it is not clear if S29x is selectively accumulated inside the nucleus. The deduced amino-acid sequence of S29x has a stretch of basic amino acids that could act as a nuclear localization signal, but there is no signal peptide at the N-terminus and the transport of S29x is energy independent. The functions of S29x are not known, but in view of its prominent presence inside the amoeba's nucleus, S29x is suspected to be involved in affecting the expression of amoeba's nuclear gene(s).

  17. Major bioactive metabolites from marine fungi: A Review.

    PubMed

    Hasan, Saba; Ansari, Mohammad Israil; Ahmad, Anis; Mishra, Maitreyi

    2015-01-01

    Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.

  18. Regulation and Role of Fungal Secondary Metabolites.

    PubMed

    Macheleidt, Juliane; Mattern, Derek J; Fischer, Juliane; Netzker, Tina; Weber, Jakob; Schroeckh, Volker; Valiante, Vito; Brakhage, Axel A

    2016-11-23

    Fungi have the capability to produce a tremendous number of so-called secondary metabolites, which possess a multitude of functions, e.g., communication signals during coexistence with other microorganisms, virulence factors during pathogenic interactions with plants and animals, and in medical applications. Therefore, research on this topic has intensified significantly during the past 10 years and thus knowledge of regulatory mechanisms and the understanding of the role of secondary metabolites have drastically increased. This review aims to depict the complexity of all the regulatory elements involved in controlling the expression of secondary metabolite gene clusters, ranging from epigenetic control and signal transduction pathways to global and specific transcriptional regulators. Furthermore, we give a short overview on the role of secondary metabolites, focusing on the interaction with other microorganisms in the environment as well as on pathogenic relationships.

  19. Influence of geosmin-producing Streptomyces on the growth and volatile metabolites of yeasts during chinese liquor fermentation.

    PubMed

    Du, Hai; Lu, Hu; Xu, Yan

    2015-01-14

    Diverse Streptomyces species act as geosmin producers in the Chinese liquor-making process, causing an earthy, off-odor containment. Through microbiological and metabolite analyses, this paper investigates the influence of several geosmin-producing Streptomyces on the microbial community of a brewing system. The antifungal activity against functional liquor-brewing microbes was assayed by an agar diffusion method. Several Streptomyces, most notably Streptomyces sampsonii QC-2, inhibited the growth of the brewing functional yeasts and molds in pure culture. In a simulated coculture, Streptomyces spp. reduced the flavor compounds (alcohols and esters) contributed by yeasts. Nine components in Streptomyces sampsonii QC-2 broth were detected by ultraperformance liquid chromatography coupled with photo diode array (UPLC–PDA), with characteristic ultraviolet absorptions at 360, 380, and 400 nm. The main products of Streptomyces sampsonii QC-2 were identified by ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF–MS/MS), and confirmed by standard mass spectrometry. The antifungal active components were revealed as a series of heptaene macrolide antibiotics.

  20. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  1. Characterization of the methemoglobin forming metabolites of benzocaine and lidocaine.

    PubMed

    Hartman, Neil; Zhou, Hongfei; Mao, Jinzhe; Mans, Daniel; Boyne, Michael; Patel, Vikram; Colatsky, Thomas

    2017-05-01

    1. Topical anesthesia with benzocaine or lidocaine occasionally causes methemoglobinemia, an uncommon but potentially fatal disorder where the blood has a reduced ability to transport oxygen. Previous in vitro studies using human whole blood have shown that benzocaine causes more methemoglobin (MetHb) formation than lidocaine, and that both compounds require metabolic transformation to form the MetHb producing species. In the current investigation, the active species of benzocaine forming the MetHb was investigated. 2. HPLC analysis of benzocaine samples incubated with human hepatic S9 showed the formation of a peak with the same UV spectrum and retention time as benzocaine hydroxylamine (BenzNOH). To confirm the activity of BenzNOH, MetHb production following exposure to the compound was determined in whole human blood using an Avoximeter 4000 CO-oximeter. 3. BenzNOH produced MetHb in a concentration dependent manner without the need for metabolic activation. Benzocaine in the presence of metabolic activation required a concentration of 500 μM to produce a similar degree of MetHb formation as 20 μM BenzNOH without activation. Previous work suggested that two metabolites of lidocaine may also form MetHb; N-hydroxyxylidine and 4-hydroxyxylidine. Of these two metabolites 4-hydroxyxylidine produced the most MetHb in whole blood in vitro in the absence of metabolic activation, however BenzNOH produced up to 14.2 times more MetHb than 4-hydroxyxylidine at a similar concentration. 4. These results suggest that the ability of benzocaine to form MetHb is likely to be mediated through its hydroxylamine metabolite and that this metabolite is inherently more active than the potentially MetHb-forming metabolites of lidocaine.

  2. Investigation of prevalence of free Shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages and its correlation with STEC bacterial hosts in a produce-growing area in Salinas, California.

    PubMed

    Liao, Yen-Te; Quintela, Irwin A; Nguyen, Kimberly; Salvador, Alexandra; Cooley, Michael B; Wu, Vivian C H

    2018-01-01

    Shiga toxin-producing E. coli (STEC) causes approximately 265,000 illnesses and 3,600 hospitalizations annually and is highly associated with animal contamination due to the natural reservoir of ruminant gastrointestinal tracts. Free STEC-specific bacteriophages against STEC strains are also commonly isolated from fecal-contaminated environment. Previous studies have evaluated the correlation between the prevalence of STEC-specific bacteriophages and STEC strains to improve animal-associated environment. However, the similar information regarding free STEC-specific bacteriophages prevalence in produce growing area is lacking. Thus, the objectives of this research were to determine the prevalence of STEC-specific phages, analyze potential effects of environmental factors on the prevalence of the phages, and study correlations between STEC-specific bacteriophages and the bacterial hosts in pre-harvest produce environment. Surface water from 20 samples sites was subjected to free bacteriophage isolation using host strains of both generic E. coli and STEC (O157, six non-O157 and one O179 strains) cocktails, and isolation of O157 and non-O157 STEC strains by use of culture methods combined with PCR-based confirmation. The weather data were obtained from weather station website. Free O145- and O179-specific bacteriophages were the two most frequently isolated bacteriophages among all (O45, O145, O157 and O179) in this study. The results showed June and July had relatively high prevalence of overall STEC-specific bacteriophages with minimum isolation of STEC strains. In addition, the bacteriophages were likely isolated in the area-around or within city-with predominant human impact, whereas the STEC bacterial isolates were commonly found in agriculture impact environment. Furthermore, there was a trend that the sample sites with positive of free STEC bacteriophage did not have the specific STEC bacterial hosts. The findings of the study enable us to understand the ecology

  3. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    PubMed

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  4. Salmonella Typhi and Salmonella Paratyphi A elaborate distinct systemic metabolite signatures during enteric fever

    PubMed Central

    Näsström, Elin; Vu Thieu, Nga Tran; Dongol, Sabina; Karkey, Abhilasha; Voong Vinh, Phat; Ha Thanh, Tuyen; Johansson, Anders; Arjyal, Amit; Thwaites, Guy; Dolecek, Christiane; Basnyat, Buddha; Baker, Stephen; Antti, Henrik

    2014-01-01

    The host–pathogen interactions induced by Salmonella Typhi and Salmonella Paratyphi A during enteric fever are poorly understood. This knowledge gap, and the human restricted nature of these bacteria, limit our understanding of the disease and impede the development of new diagnostic approaches. To investigate metabolite signals associated with enteric fever we performed two dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC/TOFMS) on plasma from patients with S. Typhi and S. Paratyphi A infections and asymptomatic controls, identifying 695 individual metabolite peaks. Applying supervised pattern recognition, we found highly significant and reproducible metabolite profiles separating S. Typhi cases, S. Paratyphi A cases, and controls, calculating that a combination of six metabolites could accurately define the etiological agent. For the first time we show that reproducible and serovar specific systemic biomarkers can be detected during enteric fever. Our work defines several biologically plausible metabolites that can be used to detect enteric fever, and unlocks the potential of this method in diagnosing other systemic bacterial infections. DOI: http://dx.doi.org/10.7554/eLife.03100.001 PMID:24902583

  5. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    PubMed

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  7. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals

    PubMed Central

    Wang, Xiaoxue; Wang, Jianping; Rao, Benqiang; Deng, Li

    2017-01-01

    Colorectal cancer is one of the most common types of cancer in the world and its morbidity and mortality rates are increasing due to alterations to human lifestyle and dietary habits. The relationship between human gut flora and colorectal cancer has attracted increasing attention. In the present study, a metabolic fingerprinting technique that combined pyrosequencing with gas chromatography-mass spectrometry was utilized to compare the differences in gut flora profiling and fecal metabolites between healthy individuals and patients with colorectal cancer. The results demonstrated that there were no significant differences in the abundance and diversity of gut flora between healthy individuals and patients with colorectal cancer (P>0.05) and the dominant bacterial phyla present in the gut of both groups included Firmicutes, Bacteroidetes and Verrucomicrobia. At the bacterial strain/genus level, significant differences were observed in the relative abundance of 18 species of bacteria (P<0.05). Analysis of fecal metabolites demonstrated that the metabolic profiles of healthy individuals and patients with colorectal cancer were distinct. The levels of short-chain fatty acid metabolites, including acetic acid, valeric acid, isobutyric acid and isovaleric acid, and of nine amino acids in patients with colorectal cancer were significantly higher than those in healthy individuals (P<0.05). However, the levels of butyrate, oleic acid, trans-oleic acid, linoleic acid, glycerol, monoacyl glycerol, myristic acid, ursodesoxycholic acid and pantothenic acid in patients with colorectal cancer were significantly lower than those in healthy individuals (P<0.05). Pearson rank correlation analysis demonstrated that there was a correlation between gut flora profiling and metabolite composition. These findings suggest that gut flora disorder results in the alteration of bacterial metabolism, which may be associated with the pathogenesis of colorectal cancer. The results of the present

  8. Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus

    PubMed Central

    Pan, Hongmiao; Feng, Jinhui; Cerniglia, Carl E.

    2018-01-01

    Azo dyes are widely used in the plastic, paper, cosmetics, food, and pharmaceutical industries. Some metabolites of these dyes are potentially genotoxic. The toxic effects of azo dyes and their potential reduction metabolites on Staphylococcus aureus ATCC BAA 1556 were studied. When the cultures were incubated with 6, 18, and 36 μg/ml of Orange II and Sudan III for 48 h, 76.3, 68.5, and 61.7% of Orange II and 97.8, 93.9, and 75.8% of Sudan III were reduced by the bacterium, respectively. In the presence of 36 μg/ml Sudan III, the cell viability of the bacterium decreased to 61.9% after 48 h of incubation, whereas the cell viability of the control culture without the dye was 71.5%. Moreover, the optical density of the bacterial cultures at 10 h decreased from 0.74 to 0.55, indicating that Sudan III is able to inhibit growth of the bacterium. However, Orange II had no significant effects on either cell growth or cell viability of the bacterium at the tested concentrations. 1-Amino-2-naphthol, a metabolite common to Orange II and Sudan III, was capable of inhibiting cell growth of the bacterium at 1 μg/ml and completely stopped bacterial cell growth at 24–48 μg/ml. On the other hand, the other metabolites of Orange II and Sudan III, namely sulfanilic acid, p-phenylenediamine, and aniline, showed no significant effects on cell growth. p-Phenylenediamine exhibited a synergistic effect with 1-amino-2-naphthol on cell growth inhibition. All of the dye metabolites had no significant effects on cell viability of the bacterium. PMID:21451978

  9. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.

    PubMed

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F

    2011-08-02

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.

  10. Rifaximin Modulates the Vaginal Microbiome and Metabolome in Women Affected by Bacterial Vaginosis

    PubMed Central

    Picone, Gianfranco; Cruciani, Federica; Brigidi, Patrizia; Calanni, Fiorella; Donders, Gilbert; Capozzi, Francesco; Vitali, Beatrice

    2014-01-01

    Bacterial vaginosis (BV) is a common vaginal disorder characterized by the decrease of lactobacilli and overgrowth of Gardnerella vaginalis and resident anaerobic vaginal bacteria. In the present work, the effects of rifaximin vaginal tablets on vaginal microbiota and metabolome of women affected by BV were investigated by combining quantitative PCR and a metabolomic approach based on 1H nuclear magnetic resonance. To highlight the general trends of the bacterial communities and metabolomic profiles in response to the antibiotic/placebo therapy, a multivariate statistical strategy was set up based on the trajectories traced by vaginal samples in a principal component analysis space. Our data demonstrated the efficacy of rifaximin in restoring a health-like condition in terms of both bacterial communities and metabolomic features. In particular, rifaximin treatment was significantly associated with an increase in the lactobacillus/BV-related bacteria ratio, as well as with an increase in lactic acid concentration and a decrease of a pool of metabolites typically produced by BV-related bacteria (acetic acid, succinate, short-chain fatty acids, and biogenic amines). Among the tested dosages of rifaximin (100 and 25 mg for 5 days and 100 mg for 2 days), 25 mg for 5 days was found to be the most effective. PMID:24709255

  11. Towards microbial fermentation metabolites as markers for health benefits of prebiotics.

    PubMed

    Verbeke, Kristin A; Boobis, Alan R; Chiodini, Alessandro; Edwards, Christine A; Franck, Anne; Kleerebezem, Michiel; Nauta, Arjen; Raes, Jeroen; van Tol, Eric A F; Tuohy, Kieran M

    2015-06-01

    Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to support a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metabolites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments to provide a more accurate picture of their nutrikinetics are needed.

  12. Mutagenicity of 1-nitropyrene metabolites from lung S9.

    PubMed

    King, L C; Kohan, M J; Ball, L M; Lewtas, J

    1984-04-01

    The mutagenicity of 1-nitropyrene metabolites from rabbit lung S9 incubates was evaluated using the Salmonella typhimurium plate incorporation assay with strain TA98, with and without Aroclor-induced rat liver S9. The following metabolites were isolated, identified and quantitated by HPLC: 1-nitropyrene -4,5- or -9,10-dihydrodiol (K-DHD), N-acetyl-1-aminopyrene ( NAAP ), 1-aminopyrene (1-AMP), 10-hydroxy-1-nitropyrene, 4-, 5-, 6-, 8- or 9-monohydroxy-1-nitropyrene (phenols) and 3-hydroxy-1-nitropyrene. The predominant metabolites formed by lung S9 incubates were K-DHD, 3-OH-1-nitropyrene and phenols. All of the metabolites were mutagenic in the absence of the exogenous rat liver S9 metabolic activation system, and several, including two unidentified metabolites were more potent than the parent 1-nitropyrene. The mutagenicity of 3 of the metabolites ( NAAP , 10-OH-1-nitropyrene and phenols) were enhanced by S9 while most of the other metabolites were less mutagenic in the presence of S9. These results indicate that lung tissue is capable of both oxidative and reductive metabolism which produced mutagenic metabolites, several of which were more potent than the parent compound, 1-NP.

  13. Comparing the impact of ultrafine particles from petrodiesel and biodiesel combustion to bacterial metabolism by targeted HPLC-MS/MS metabolic profiling.

    PubMed

    Zhong, Fanyi; Xu, Mengyang; Schelli, Katie; Rutowski, Joshua; Holmén, Britt A; Zhu, Jiangjiang

    2017-08-01

    Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs.

    PubMed

    Ji, Yujiao; Guo, Qiuping; Yin, Yulong; Blachier, Francois; Kong, Xiangfeng

    2018-01-01

    findings indicate that L -proline supplementation modifies both the colonic microbiota composition and the luminal concentrations of several bacterial metabolites. Furthermore, our data show that both the microbiota composition and the concentrations of bacterial metabolites are evolving in the course of pregnancy. These results are discussed in terms of possible implication in terms of luminal environment and consequences for gut physiology and health.

  15. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds.

    PubMed

    Cornelison, Christopher T; Gabriel, Kyle T; Barlament, Courtney; Crow, Sidney A

    2014-02-01

    The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease.

  16. S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora.

    PubMed

    Setchell, Kenneth D R; Clerici, Carlo; Lephart, Edwin D; Cole, Sidney J; Heenan, Claire; Castellani, Danilo; Wolfe, Brian E; Nechemias-Zimmer, Linda; Brown, Nadine M; Lund, Trent D; Handa, Robert J; Heubi, James E

    2005-05-01

    The discovery of equol in human urine more than 2 decades ago and the finding that it is bacterially derived from daidzin, an isoflavone abundant in soy foods, led to the current nutritional interest in soy foods. Equol, unlike the soy isoflavones daidzein or genistein, has a chiral center and therefore can occur as 2 distinct diastereoisomers. Because it was unclear which enantiomer was present in humans, our objectives were to characterize the exact structure of equol, to examine whether the S- and R-equol enantiomers are bioavailable, and to ascertain whether the differences in their conformational structure translate to significant differences in affinity for estrogen receptors. With the use of chiral-phase HPLC and mass spectrometry, equol was isolated from human urine and plasma, and its enantiomeric structure was defined. Human fecal flora were cultured in vitro and incubated with daidzein to ascertain the stereospecificity of the bacterial production of equol. The pharmacokinetics of S- and R- equol were determined in 3 healthy adults after single-bolus oral administration of both enantiomers, and the affinity of each equol enantiomer for estrogen receptors was measured. Our studies definitively establish S-equol as the exclusive product of human intestinal bacterial synthesis from soy isoflavones and also show that both enantiomers are bioavailable. S-equol has a high affinity for estrogen receptor beta (K(i) = 0.73 nmol/L), whereas R-equol is relatively inactive. Humans have acquired an ability to exclusively synthesize S-equol from the precursor soy isoflavone daidzein, and it is significant that, unlike R-equol, this enantiomer has a relatively high affinity for estrogen receptor beta.

  17. Trichoderma secondary metabolites that affect plant metabolism.

    PubMed

    Vinale, Francesco; Sivasithamparam, Krishnapillai; Ghisalberti, Emilio L; Ruocco, Michelina; Wood, Sheridan; Lorito, Matteo

    2012-11-01

    Recently, there have been many exciting new developments relating to the use of Trichoderma spp. as agents for biocontrol of pathogens and as plant growth promoters. Several mechanisms have been proposed to explain the positive effects of these microorganisms on the plant host. One factor that contributes to their beneficial biological activities is related to the wide variety of metabolites that they produce. These metabolites have been found not only to directly inhibit the growth and pathogenic activities of the parasites, but also to increase disease resistance by triggering the system of defence in the plant host. In addition, these metabolites are also capable of enhancing plant growth, which enables the plant to counteract the disease with compensatory vegetative growth by the augmented production of root and shoot systems. This review takes into account the Trichoderma secondary metabolites that affect plant metabolism and that may play an important role in the complex interactions of this biocontrol agent with the plant and pathogens.

  18. Biodegradation of γ-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA.

    PubMed

    Nanasato, Yoshihiko; Namiki, Sayuri; Oshima, Masao; Moriuchi, Ryota; Konagaya, Ken-Ichi; Seike, Nobuyasu; Otani, Takashi; Nagata, Yuji; Tsuda, Masataka; Tabei, Yutaka

    2016-09-01

    γ-HCH was successfully degraded using LinA-expressed transgenic hairy root cultures of Cucurbita moschata . Fusing an endoplasmic reticulum-targeting signal peptide to LinA was essential for stable accumulation in the hairy roots. The pesticide γ-hexachlorocyclohexane (γ-HCH) is a persistent organic pollutant (POP) that raises public health and environmental pollution concerns worldwide. Although several isolates of γ-HCH-degrading bacteria are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the bacterial survival rate. Cucurbita species incorporate significant amounts of POPs from soils compared with other plant species. Here, we describe a novel bioremediation strategy that combines the bacterial degradation of γ-HCH and the efficient uptake of γ-HCH by Cucurbita species. We produced transgenic hairy root cultures of Cucurbita moschata that expressed recombinant bacterial linA, isolated from the bacterium Sphingobium japonicum UT26. The LinA protein was accumulated stably in the hairy root cultures by fusing an endoplasmic reticulum (ER)-targeting signal peptide to LinA. Then, we demonstrated that the cultures degraded more than 90 % of γ-HCH (1 ppm) overnight and produced the γ-HCH metabolite 1,2,4-trichlorobenzene, indicating that LinA degraded γ-HCH. These results indicate that the gene linA has high potential for phytoremediation of environmental γ-HCH.

  19. Multi-Omics Analysis Reveals a Correlation between the Host Phylogeny, Gut Microbiota and Metabolite Profiles in Cyprinid Fishes

    PubMed Central

    Li, Tongtong; Long, Meng; Li, Huan; Gatesoupe, François-Joël; Zhang, Xujie; Zhang, Qianqian; Feng, Dongyue; Li, Aihua

    2017-01-01

    Gut microbiota play key roles in host nutrition and metabolism. However, little is known about the relationship between host genetics, gut microbiota and metabolic profiles. Here, we used high-throughput sequencing and gas chromatography/mass spectrometry approaches to characterize the microbiota composition and the metabolite profiles in the gut of five cyprinid fish species with three different feeding habits raised under identical husbandry conditions. Our results showed that host species and feeding habits significantly affect not only gut microbiota composition but also metabolite profiles (ANOSIM, p ≤ 0.05). Mantel test demonstrated that host phylogeny, gut microbiota, and metabolite profiles were significantly related to each other (p ≤ 0.05). Additionally, the carps with the same feeding habits had more similarity in gut microbiota composition and metabolite profiles. Various metabolites were correlated positively with bacterial taxa involved in food degradation. Our results shed new light on the microbiome and metabolite profiles in the gut content of cyprinid fishes, and highlighted the correlations between host genotype, fish gut microbiome and putative functions, and gut metabolite profiles. PMID:28367147

  20. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum.

    PubMed

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases.

  1. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum

    PubMed Central

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases. PMID:25762345

  2. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333.

    PubMed

    Kavitha, Alapati; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra

    2010-06-01

    An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces. 2010 Elsevier Masson SAS. All rights reserved.

  3. The AMP-Activated Protein Kinase Homolog Snf1 Concerts Carbon Utilization, Conidia Production and the Biosynthesis of Secondary Metabolites in the Taxol-Producer Pestalotiopsis microspora.

    PubMed

    Wang, Dan; Li, Yingying; Wang, Haichuan; Wei, Dongsheng; Akhberdi, Oren; Liu, Yanjie; Xiang, Biyun; Hao, Xiaoran; Zhu, Xudong

    2018-01-24

    Highly conserved, the Snf1/AMPK is a central regulator of carbon metabolism and energy production in the eukaryotes. However, its function in filamentous fungi has not been well established. In this study, we reported functional characterization of Snf1/AMPK in the growth, development and secondary metabolism in the filamentous fungus Pestalotiopsis microspora . By deletion of the yeast SNF1 homolog, we found that it regulated the utilization of carbon sources, e.g., sucrose, demonstrating a conserved function of this kinase in filamentous fungus. Importantly, several novel functions of SNF1 were unraveled. For instance, the deletion strain displayed remarkable retardation in vegetative growth and pigmentation and produced a diminished number of conidia, even in the presence of the primary carbon source glucose. Deletion of the gene caused damages in the cell wall as shown by its hypersensitivities to Calcofluor white and Congo red, suggesting a critical role of Snf1 in maintaining cell wall integrity. Furthermore, the mutant strain Δ snf1 was hypersensitive to stress, e.g., osmotic pressure (1 M sorbitol), drug G418 and heat shock, though the mechanism remains to be illustrated. Significantly, disruption of the gene altered the production of secondary metabolites. By high-performance liquid chromatography (HPLC) profiling, we found that Δ snf1 barely produced secondary metabolites, e.g., the known product pestalotiollide B. This study suggests that Snf1 is a key regulator in filamentous fungus Pestalotiopsis microspora concerting carbon metabolism and the filamentous growth, conidiation, cell wall integrity, stress tolerance and the biosynthesis of secondary metabolites.

  4. The AMP-Activated Protein Kinase Homolog Snf1 Concerts Carbon Utilization, Conidia Production and the Biosynthesis of Secondary Metabolites in the Taxol-Producer Pestalotiopsis microspora

    PubMed Central

    Wang, Dan; Li, Yingying; Wang, Haichuan; Wei, Dongsheng; Akhberdi, Oren; Liu, Yanjie; Xiang, Biyun; Hao, Xiaoran; Zhu, Xudong

    2018-01-01

    Highly conserved, the Snf1/AMPK is a central regulator of carbon metabolism and energy production in the eukaryotes. However, its function in filamentous fungi has not been well established. In this study, we reported functional characterization of Snf1/AMPK in the growth, development and secondary metabolism in the filamentous fungus Pestalotiopsis microspora. By deletion of the yeast SNF1 homolog, we found that it regulated the utilization of carbon sources, e.g., sucrose, demonstrating a conserved function of this kinase in filamentous fungus. Importantly, several novel functions of SNF1 were unraveled. For instance, the deletion strain displayed remarkable retardation in vegetative growth and pigmentation and produced a diminished number of conidia, even in the presence of the primary carbon source glucose. Deletion of the gene caused damages in the cell wall as shown by its hypersensitivities to Calcofluor white and Congo red, suggesting a critical role of Snf1 in maintaining cell wall integrity. Furthermore, the mutant strain Δsnf1 was hypersensitive to stress, e.g., osmotic pressure (1 M sorbitol), drug G418 and heat shock, though the mechanism remains to be illustrated. Significantly, disruption of the gene altered the production of secondary metabolites. By high-performance liquid chromatography (HPLC) profiling, we found that Δsnf1 barely produced secondary metabolites, e.g., the known product pestalotiollide B. This study suggests that Snf1 is a key regulator in filamentous fungus Pestalotiopsis microspora concerting carbon metabolism and the filamentous growth, conidiation, cell wall integrity, stress tolerance and the biosynthesis of secondary metabolites. PMID:29364863

  5. Slime-producing Staphylococcus epidermidis and S. aureus in acute bacterial conjunctivitis in soft contact lens wearers.

    PubMed

    Catalanotti, Piergiorgio; Lanza, Michele; Del Prete, Antonio; Lucido, Maria; Catania, Maria Rosaria; Gallè, Francesca; Boggia, Daniela; Perfetto, Brunella; Rossano, Fabio

    2005-10-01

    In recent years, an increase in ocular pathologies related to soft contact lens has been observed. The most common infectious agents were Staphylococcus spp. Some strains produce an extracellular polysaccharidic slime that can cause severe infections. Polysaccharide synthesis is under genetic control and involves a specific intercellular adhesion (ica) locus, in particular, icaA and icaD genes. Conjunctival swabs from 97 patients with presumably bacterial bilateral conjunctivitis, wearers of soft contact lenses were examined. We determined the ability of staphylococci to produce slime, relating it to the presence of icaA and icaD genes. We also investigated the antibiotic susceptibility and Pulsed Field Gel Electrophoresis (PFGE) patterns of the clinical isolates. We found that 74.1% of the S. epidermidis strains and 61.1% of the S. aureus strains isolated were slime producers and showed icaA and icaD genes. Both S. epidermidis and S. aureus slime-producing strains exhibited more surface hydrophobicity than non-producing slime strains. The PFGE patterns overlapped in S. epidermidis strains with high hydrophobicity. The similar PFGE patterns were not related to biofilm production. We found scarce matching among the Staphylococcus spp. studied, slime production, surface hydrophobicity and antibiotic susceptibility.

  6. Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota.

    PubMed

    Leiva, Diego; Clavero-León, Claudia; Carú, Margarita; Orlando, Julieta

    2016-11-01

    Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli.

    PubMed

    Sharifi-Rad, J; Soufi, L; Ayatollahi, S A M; Iriti, M; Sharifi-Rad, M; Varoni, E M; Shahri, F; Esposito, S; Kuhestani, K; Sharifi-Rad, M

    2016-09-19

    Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 is one of the most important human pathogenic microorganisms, which can cause life-threatening infections. Xanthium strumarium L. is a plant with anti-bacterial activity against gram-negative and gram-positive bacteria. This study aims to demonstrate in vitro efficacy of the essential oil (EO) extracted from Xanthium strumarium L. against E. coli O157:H7. Using the agar test diffusion, the effect of Xanthium strumarium L. EO (5, 10, 15, 30, 60, and 120 mg/mL) was verified at each of the four different growth phases of E. coli O157:H7. Cell counts of viable cells and colony forming unit (CFU) were determined at regular time points using Breed's method and colony counting method, respectively. No viable cell was detectable after the 1 hour-exposure to X. strumarium EO at 30, 60, and 120 mg/mL concentrations. No bacterial colony was formed after 1 h until the end of the incubation period at 24 h. At lower concentrations, the number of bacteria cells decreased and colonies could be observed only after incubation. At the exponential phase, the EO at 15 mg/mL was only bacteriostatic, while from 30 mg/mL started to be bactericidal. X. strumarium EO antibacterial activity against Shiga toxin-producing E. coli O157:H7 is dependent on EO concentration and physiological state of the microorganisms tested. The best inhibitory activity was achieved during the late exponential and the stationary phases.

  8. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed

    Preveena, Jagadesan; Bhore, Subhash J

    2013-01-01

    In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study.

  9. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions.

    PubMed

    Deveau, Aurélie; Gross, Harald; Palin, Béatrice; Mehnaz, Samina; Schnepf, Max; Leblond, Pierre; Dorrestein, Pieter C; Aigle, Bertrand

    2016-08-01

    Microorganisms can be versatile in their interactions with each other, being variously beneficial, neutral or antagonistic in their effect. Although this versatility has been observed among many microorganisms and in many environments, little is known regarding the mechanisms leading to these changes in behavior. In the present work, we analyzed the mechanism by which the soil bacterium Pseudomonas fluorescens BBc6R8 shifts from stimulating the growth of the ectomycorrhizal fungus Laccaria bicolor S238N to killing the fungus. We show that among the three secondary metabolites produced by the bacterial strain-the siderophores enantio-pyochelin and pyoverdine, and the biosurfactant viscosin-the siderophores are mainly responsible for the antagonistic activity of the bacterium under iron-limited conditions. While the bacterial strain continues to produce beneficial factors, their effects are overridden by the action of their siderophores. This antagonistic activity of the strain P. fluorescens BBC6R8 in iron-depleted environments is not restricted to its influence on L. bicolor, since it was also seen to inhibit the growth of the actinomycete Streptomyces ambofaciens ATCC23877. We show that the strain P. fluorescens BBc6R8 uses different strategies to acquire iron, depending on certain biotic and abiotic factors. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    PubMed Central

    Quecine, Maria Carolina; Kidarsa, Teresa A.; Goebel, Neal C.; Shaffer, Brenda T.; Henkels, Marcella D.; Zabriskie, T. Mark

    2015-01-01

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. PMID:26655755

  11. A tricyclic pyrrolobenzodiazepine produced by Klebsiella oxytoca is associated with cytotoxicity in antibiotic-associated hemorrhagic colitis.

    PubMed

    Tse, Herman; Gu, Qiangshuai; Sze, Kong-Hung; Chu, Ivan K; Kao, Richard Y-T; Lee, Kam-Chung; Lam, Ching-Wan; Yang, Dan; Tai, Sherlock Shing-Chiu; Ke, Yihong; Chan, Elaine; Chan, Wan-Mui; Dai, Jun; Leung, Sze-Pui; Leung, Suet-Yi; Yuen, Kwok-Yung

    2017-11-24

    Cytotoxin-producing Klebsiella oxytoca is the causative agent of antibiotic-associated hemorrhagic colitis (AAHC). Recently, the cytotoxin associated with AAHC was identified as tilivalline, a known pentacyclic pyrrolobenzodiazepine (PBD) metabolite produced by K. oxytoca Although this assertion of tilivalline's role in AAHC is supported by evidence from animal experiments, some key aspects of this finding appear to be incompatible with toxicity mechanisms of known PBD toxins. We therefore hypothesized that K. oxytoca may produce some other uncharacterized cytotoxins. To address this question, we investigated whether tilivalline alone is indeed necessary and sufficient to induce cytotoxicity or whether K. oxytoca also produces other cytotoxins. LC-MS- and NMR-based metabolomic analyses revealed the presence of an abundant tricyclic PBD, provisionally designated kleboxymycin, in the supernatant of toxigenic K. oxytoca strains. Moreover, by generating multiple mutants with gene deletions affecting tilivalline biosynthesis, we show that a tryptophanase-deficient, tilivalline-negative K. oxytoca mutant induced cytotoxicity in vitro similar to tilivalline-positive K. oxytoca strains. Furthermore, synthetic kleboxymycin exhibited greater than 9-fold higher cytotoxicity than tilivalline in TC 50 cell culture assays. We also found that the biosynthetic pathways for kleboxymycin and tilivalline appear to overlap, as tilivalline is an indole derivative of kleboxymycin. In summary, our results indicate that tilivalline is not essential for inducing cytotoxicity observed in K. oxytoca -associated AAHC and that kleboxymycin is a tilivalline-related bacterial metabolite with even higher cytotoxicity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Marine sponge alkaloids as a source of anti-bacterial adjuvants

    PubMed Central

    Melander, Roberta J.; Liu, Hong-bing; Stephens, Matthew D.; Bewley, Carole A.; Melander, Christian

    2018-01-01

    Novel approaches that do not rely upon developing microbicidal compounds are sorely needed to combat multidrug resistant (MDR) bacteria. The potential of marine secondary metabolites to serve as a source of non-traditional anti-bacterial agents is demonstrated by showing that pyrrole-imidazole alkaloids inhibit biofilm formation and suppress antibiotic resistance. PMID:27876320

  13. Metabolic regulation and overproduction of primary metabolites

    PubMed Central

    Sanchez, Sergio; Demain, Arnold L.

    2008-01-01

    Summary Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well‐known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum‐derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and

  14. Exceptional Production of both Prodigiosin and Cycloprodigiosin as Major Metabolic Constituents by a Novel Marine Bacterium, Zooshikella rubidus S1-1 ▿ †

    PubMed Central

    Lee, Jong Suk; Kim, Yong-Sook; Park, Sooyeon; Kim, Jihoon; Kang, So-Jung; Lee, Mi-Hwa; Ryu, Sangryeol; Choi, Jong Myoung; Oh, Tae-Kwang; Yoon, Jung-Hoon

    2011-01-01

    A Gram-negative, red-pigment-producing marine bacterial strain, designated S1-1, was isolated from the tidal flat sediment of the Yellow Sea, Korea. On the basis of phenotypic, phylogenetic, and genetic data, strain S1-1 (KCTC 11448BP) represented a new species of the genus Zooshikella. Thus, we propose the name Zooshikella rubidus sp. nov. Liquid chromatography and mass spectrometry of the red pigments produced by strain S1-1 revealed that the major metabolic compounds were prodigiosin and cycloprodigiosin. In addition, this organism produced six minor prodigiosin analogues, including two new structures that were previously unknown. To our knowledge, this is the first description of a microorganism that simultaneously produces prodigiosin and cycloprodigiosin as two major metabolites. Both prodigiosin and cycloprodigiosin showed antimicrobial activity against several microbial species. These bacteria were approximately 1.5-fold more sensitive to cycloprodigiosin than to prodigiosin. The metabolites also showed anticancer activity against human melanoma cells, which showed significantly more sensitivity to prodigiosin than to cycloprodigiosin. The secondary metabolite profiles of strain S1-1 and two reference bacterial strains were compared by liquid chromatography-mass spectrometry. Multivariate statistical analyses based on secondary metabolite profiles by liquid chromatography-mass spectrometry indicated that the metabolite profile of strain S1-1 could clearly be distinguished from those of two phylogenetically related, prodigiosin-producing bacterial strains. PMID:21642414

  15. Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation.

    PubMed

    Tan, Jian K; McKenzie, Craig; Mariño, Eliana; Macia, Laurence; Mackay, Charles R

    2017-04-26

    Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.

  16. antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers.

    PubMed

    Blin, Kai; Medema, Marnix H; Kazempour, Daniyal; Fischbach, Michael A; Breitling, Rainer; Takano, Eriko; Weber, Tilmann

    2013-07-01

    Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that automates this process. Here, we present the highly improved antiSMASH 2.0 release, available at http://antismash.secondarymetabolites.org/. For the new version, antiSMASH was entirely re-designed using a plug-and-play concept that allows easy integration of novel predictor or output modules. antiSMASH 2.0 now supports input of multiple related sequences simultaneously (multi-FASTA/GenBank/EMBL), which allows the analysis of draft genomes comprising multiple contigs. Moreover, direct analysis of protein sequences is now possible. antiSMASH 2.0 has also been equipped with the capacity to detect additional classes of secondary metabolites, including oligosaccharide antibiotics, phenazines, thiopeptides, homo-serine lactones, phosphonates and furans. The algorithm for predicting the core structure of the cluster end product is now also covering lantipeptides, in addition to polyketides and non-ribosomal peptides. The antiSMASH ClusterBlast functionality has been extended to identify sub-clusters involved in the biosynthesis of specific chemical building blocks. The new features currently make antiSMASH 2.0 the most comprehensive resource for identifying and analyzing novel secondary metabolite biosynthetic pathways in microorganisms.

  17. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats.

    PubMed

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy') contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. MDMA (1-20 mg·kg(-1)) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1-10 mg·kg(-1)) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats

    PubMed Central

    Schindler, Charles W; Thorndike, Eric B; Blough, Bruce E; Tella, Srihari R; Goldberg, Steven R; Baumann, Michael H

    2014-01-01

    BACKGROUND AND PURPOSE The cardiovascular effects produced by 3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) contribute to its acute toxicity, but the potential role of its metabolites in these cardiovascular effects is not known. Here we examined the effects of MDMA metabolites on cardiovascular function in rats. EXPERIMENTAL APPROACH Radiotelemetry was employed to evaluate the effects of s.c. administration of racemic MDMA and its phase I metabolites on BP, heart rate (HR) and locomotor activity in conscious male rats. KEY RESULTS MDMA (1–20 mg·kg−1) produced dose-related increases in BP, HR and activity. The peak effects on HR occurred at a lower dose than peak effects on BP or activity. The N-demethylated metabolite, 3,4-methylenedioxyamphetamine (MDA), produced effects that mimicked those of MDMA. The metabolite 3,4-dihydroxymethamphetamine (HHMA; 1–10 mg·kg−1) increased HR more potently and to a greater extent than MDMA, whereas 3,4-dihydroxyamphetamine (HHA) increased HR, but to a lesser extent than HHMA. Neither dihydroxy metabolite altered motor activity. The metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA) did not affect any of the parameters measured. The tachycardia produced by MDMA and HHMA was blocked by the β-adrenoceptor antagonist propranolol. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that HHMA may contribute significantly to the cardiovascular effects of MDMA in vivo. As such, determining the molecular mechanism of action of HHMA and the other hydroxyl metabolites of MDMA warrants further study. PMID:24328722

  19. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria

    PubMed Central

    Augimeri, Richard V.; Varley, Andrew J.; Strap, Janice L.

    2015-01-01

    Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host–bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3′→5′)-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host–bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles. PMID:26635751

  20. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  1. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.

    PubMed

    Yang, Jing; Qian, Dawei; Jiang, Shu; Shang, Er-xin; Guo, Jianming; Duan, Jin-ao

    2012-06-01

    In this paper, rutin was metabolized by human intestinal bacteria and five isolated strains including Bacillus sp. 52, Bacteroides sp. 45, 42, 22 and Veillonella sp. 32, the metabolites were identified using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). As a result, Bacillus sp. 52 and Bacteroides sp. 45 could metabolize rutin to quercetin 3-O-glucoside and leucocyanidin. Bacteroides sp. 42 and Veillonella sp. 32 could convert rutin to leucocyanidin. Bacteroides sp. 22 could hydrolyze rutin to quercetin-3-O-glucoside. In order to further explain the metabolism pathway of rutin, the β-D-glucosidase and α-L-rhamnosidase activities of five strains were determined. Bacteroides sp. 22 could produce α-L-rhamnosidase but did not produce β-D-glucosidase or β-D-glucosidase activity was too low to be detected. The other four strains all demonstrated α-L-rhamnosidase and β-D-glucosidase activities. Furthermore, α-L-rhamnosidase and β-D-glucosidase activities of Veillonella sp. 32 and Bacteroides sp. 42 were higher than those of Bacteroides sp. 45 and Bacillus sp. 52. Based on these results, we can propose the deglycosylated rout of rutin: rutin was metabolized to be quercetin-3-O-glucoside by α-L-rhamnosidase produced from these bacteria, thereafter, quercetin-3-O-glucoside was further metabolized by β-D-glucosidase to form leucocyanidin. Because of the higher enzyme activity in Veillonella sp. 32 and Bacteroides sp. 42, quercetin-3-O-glucoside was completely metabolized to leucocyanidin by these two bacteria. Due to the lack of β-D-glucosidase activity, Bacteroides sp. 22 could not further metabolize quercetin-3-O-glucoside to leucocyanidin. This study will be helpful for understanding the deglycosylated rout of rutin and the role of different intestinal bacteria on the metabolism of natural compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    PubMed

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.

  3. Robust volcano plot: identification of differential metabolites in the presence of outliers.

    PubMed

    Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro

    2018-04-11

    The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .

  4. Activation of cryptic metabolite production through gene disruption: Dimethyl furan-2,4-dicarboxylate produced by Streptomyces sahachiroi.

    PubMed

    Simkhada, Dinesh; Zhang, Huitu; Mori, Shogo; Williams, Howard; Watanabe, Coran M H

    2013-01-01

    At least 65% of all small molecule drugs on the market today are natural products, however, re-isolation of previously identified and characterized compounds has become a serious impediment to the discovery of new bioactive natural products. Here, genetic knockout of an unusual non-ribosomal peptide synthetase (NRPS) C-PCP-C module, aziA2, is performed resulting in the accumulation of the secondary metabolite, dimethyl furan-2,4-dicarboxylate. The cryptic metabolite represents the first non-azinomycin related compound to be isolated and characterized from the soil bacterium, S. sahachiroi. The results from this study suggest that abolishing production of otherwise predominant natural products through genetic knockout may constitute a means to "activate" the production of novel secondary metabolites that would otherwise lay dormant within microbial genome sequences.

  5. A simple synthesis of 2-keto-3-deoxy-D-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress.

    PubMed

    Grison, Claire M; Renard, Brice-Loïc; Grison, Claude

    2014-02-01

    2-Keto-3-deoxy-D-erythro-hexonic acid (KDG) is the key intermediate metabolite of the Entner Doudoroff (ED) pathway. A simple, efficient and stereoselective synthesis of KDG isopropyl ester is described in five steps from 2,3-O-isopropylidene-D-threitol with an overall yield of 47%. KDG isopropyl ester is studied as an attractive marker of a functional Entner Doudoroff pathway. KDG isopropyl ester is used to promote growth of ammonium producing bacterial strains, showing interesting features in the remediation of heavy-metal polluted soils. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  7. Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce.

    PubMed

    Jacxsens, L; Devlieghere, F; Ragaert, P; Vanneste, E; Debevere, J

    2003-06-25

    The quality of four types of fresh-cut produce, packaged in consumer-sized packages under an equilibrium modified atmosphere and stored at 7 degrees C, was assessed by establishing the relation between the microbial outgrowth and the corresponding production of nonvolatile compounds and related sensory disorders. In vitro experiments, performed on a lettuce-juice-agar, demonstrated the production of nonvolatile compounds by spoilage causing lactic acid bacteria and Enterobacteriaceae. Pseudomonas fluorescens and yeasts, however, were not able to produce detectable amounts of nonvolatile metabolites. The type of spoilage and quality deterioration in vivo depended on the type of vegetable. Mixed lettuce and chicory endives, leafy tissues, containing naturally low concentrations of sugars, showed a spoilage dominated by Gram-negative microorganisms, which are not producing nonvolatile compounds. Sensory problems were associated with visual properties and the metabolic activity of the plant tissue. Mixed bell peppers and grated celeriac, on the other hand, demonstrated a fast and intense growth of spoilage microorganisms, dominated by lactic acid bacteria and yeasts. This proliferation resulted in detectable levels of organic acids and the rejection by the trained sensory panel was based on the negative perception of the organoleptical properties (off-flavour, odour and taste). The applied microbiological criteria corresponded well with detectable changes in sensory properties and measurable concentrations of nonvolatile compounds, surely in the cases where lactic acid bacteria and yeasts were provoking spoilage. Consequently, the freshness of minimally processed vegetables, sensitive for outgrowth of lactic acid bacteria and yeasts (e.g., carrots, celeriac, bell peppers, mixtures with non-leafy vegetables) can be evaluated via analysis of the produced nonvolatile compounds.

  8. Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese.

    PubMed

    Le Boucher, Clémentine; Gagnaire, Valérie; Briard-Bion, Valérie; Jardin, Julien; Maillard, Marie-Bernadette; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Lortal, Sylvie; Jeanson, Sophie; Thierry, Anne

    2016-01-01

    In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Human metabolites of brevetoxin PbTx-2: Identification and confirmation of structure

    PubMed Central

    Guo, Fujiang; An, Tianying; Rein, Kathleen S.

    2010-01-01

    Four metabolites were identified upon incubation of brevetoxin (PbTx-2) with human liver microsomes. Chemical transformation of PbTx-2 confirmed the structures of three known metabolites BTX-B5, PbTx-9 and 41, 43-dihydro-BTX-B5 and a previously unknown metabolite, 41, 43-dihydro-PbTx-2. These metabolites were also observed upon incubation of PbTx-2 with nine human recombinant cytochrome P450s (1A1, 1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). Cytochrome P450 3A4 produced oxidized metabolites while other CYPs generated the reduced products. PMID:20600229

  10. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease.

    PubMed

    Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S

    2015-01-01

    Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy.

  11. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease

    PubMed Central

    Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S

    2015-01-01

    Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy. PMID:25531678

  12. Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11.

    PubMed

    Moreira, Irina S; Bessa, Vânia S; Murgolo, Sapia; Piccirillo, Clara; Mascolo, Giuseppe; Castro, Paula M L

    2018-05-15

    Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory pharmaceutical which is detected in the environment at concentrations which can pose a threat to living organisms. In this study, biodegradation of DCF was assessed using the bacterial strain Labrys portucalensis F11. Biotransformation of 70% of DCF (1.7-34 μM), supplied as the sole carbon source, was achieved in 30 days. Complete degradation was reached via co-metabolism with acetate, over a period of 6 days for 1.7 µM and 25 days for 34 μM of DCF. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. DCF degradation by strain F11 proceeds mainly by hydroxylation reactions; the formation of benzoquinone imine species seems to be a central step in the degradation pathway. Moreover, this is the first report that identified conjugated metabolites, resulting from sulfation reactions of DCF by bacteria. Stoichiometric liberation of chlorine and no detection of metabolites at the end of the experiments are strong indications of complete degradation of DCF by strain F11. To the best of our knowledge this is the first report that points to complete degradation of DCF by a single bacterial strain isolated from the environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus.

    PubMed

    Kim, Jiyoung; Choi, Jung Nam; Kim, Pil; Sok, Dai-Eun; Nam, Soo-Wan; Lee, Choong Hwan

    2009-01-01

    Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.

  14. Reactivation of latent HIV-1 by a wide variety of butyric acid-producing bacteria.

    PubMed

    Imai, Kenichi; Yamada, Kiyoshi; Tamura, Muneaki; Ochiai, Kuniyasu; Okamoto, Takashi

    2012-08-01

    Latently infected cells harbor human immunodeficiency virus type 1 (HIV-1) proviral DNA copies integrated in heterochromatin, allowing persistence of transcriptionally silent proviruses. It is widely accepted that hypoacetylation of histone proteins by histone deacetylases (HDACs) is involved in maintaining the HIV-1 latency by repressing viral transcription. HIV-1 replication can be induced from latently infected cells by environmental factors, such as inflammation and co-infection with other microbes. It is known that a bacterial metabolite butyric acid inhibits catalytic action of HDAC and induces transcription of silenced genes including HIV-1 provirus. There are a number of such bacteria in gut, vaginal, and oral cavities that produce butyric acid during their anaerobic glycolysis. Since these organs are known to be the major site of HIV-1 transmission and its replication, we explored a possibility that explosive viral replication in these organs could be ascribable to butyric acid produced from anaerobic resident bacteria. In this study, we demonstrate that the culture supernatant of various bacteria producing butyric acid could greatly reactivate the latently-infected HIV-1. These bacteria include Fusobacterium nucleatum (commonly present in oral cavity, and gut), Clostridium cochlearium, Eubacterium multiforme (gut), and Anaerococcus tetradius (vagina). We also clarified that butyric acid in these culture supernatants could induce histone acetylation and HIV-1 replication by inhibiting HDAC. Our observations indicate that butyric acid-producing bacteria could be involved in AIDS progression by reactivating the latent HIV provirus and, subsequently, by eliminating such bacterial infection may contribute to the prevention of the AIDS development and transmission.

  15. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  16. Metal homeostasis in infectious disease: recent advances in bacterial metallophores and the human metal-withholding response.

    PubMed

    Neumann, Wilma; Gulati, Anmol; Nolan, Elizabeth M

    2017-04-01

    A tug-of-war between the mammalian host and bacterial pathogen for nutrients, including first-row transition metals (e.g. Mn, Fe, Zn), occurs during infection. Here we present recent advances about three metal-chelating metabolites that bacterial pathogens deploy when invading the host: staphylopine, staphyloferrin B, and enterobactin. These highlights provide new insights into the mechanisms of bacterial metal acquisition and regulation, as well as the contributions of host-defense proteins during the human innate immune response. The studies also underscore that the chemical composition of the microenvironment at an infection site can influence bacterial pathogenesis and the innate immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    PubMed

    Quecine, Maria Carolina; Kidarsa, Teresa A; Goebel, Neal C; Shaffer, Brenda T; Henkels, Marcella D; Zabriskie, T Mark; Loper, Joyce E

    2015-12-11

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed Central

    Preveena, Jagadesan; Bhore, Subhash J.

    2013-01-01

    Background: In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. Objective: The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Materials and Methods: Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Results: Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Conclusion: Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study. PMID:24501447

  19. Alkylphenol metabolites in fish bile as biomarkers of exposure to offshore oil industry produced water in feral fish.

    PubMed

    Beyer, Jonny; Sundt, Rolf C; Sanni, Steinar; Sydnes, Magne O; Jonsson, Grete

    2011-01-01

    The measurement of low-concentration alkylphenol (AP) exposure in fish is relevant in connection with monitoring and risk assessment of offshore oil industry produced water (PW) discharges. Detection of AP markers in fish bile offers significantly greater sensitivity than detection of AP in tissues such as liver. Recent studies revealed that gas chromatography-mass spectrometry in electron ionization mode (GC-EI-MS) enabled a selective and sensitive analytical detection of PW AP in mixtures with unknown composition. A procedure consisting of enzymatic deconjugation of metabolites in fish bile followed by derivatization with bis(trimethylsilyl)trifluoroacetamide and then separation and quantification of derivatized AP using GC-EI-MS is presented. The use of this procedure as a possible recommended approach for assessment and biomonitoring of AP contamination in fish populations living down-current from offshore oil production fields is presented.

  20. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    PubMed

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The distribution of active β-glucosidase-producing microbial communities in composting.

    PubMed

    Zang, Xiangyun; Liu, Meiting; Wang, Han; Fan, Yihong; Zhang, Haichang; Liu, Jiawen; Xing, Enlu; Xu, Xiuhong; Li, Hongtao

    2017-12-01

    The composting ecosystem is a suitable source for the discovery of novel microorganisms and secondary metabolites. Cellulose degradation is an important part of the global carbon cycle, and β-glucosidases complete the final step of cellulose hydrolysis by converting cellobiose to glucose. This work analyzes the succession of β-glucosidase-producing microbial communities that persist throughout cattle manure - rice straw composting, and evaluates their metabolic activities and community advantage during the various phases of composting. Fungal and bacterial β-glucosidase genes belonging to glycoside hydrolase families 1 and 3 (GH1 and GH3) amplified from DNA were classified and gene abundance levels were analyzed. The major reservoirs of β-glucosidase genes were the fungal phylum Ascomycota and the bacterial phyla Firmicutes, Actinobacteria, Proteobacteria, and Deinococcus-Thermus. This indicates that a diverse microbial community utilizes cellobiose. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting; there was a shift to Actinomycetes in the maturing stage. Proteobacteria accounted for the highest proportions during the heating and thermophilic phases of composting. By contrast, the fungal phylum Ascomycota was a minor microbial community constituent in thermophilic phase of composting. Combined with the analysis of the temperature, cellulose degradation rate and the carboxymethyl cellulase and β-glucosidase activities showed that the bacterial GH1 family β-glucosidase genes make greater contribution in cellulose degradation at the later thermophilic stage of composting. In summary, even GH1 bacteria families β-glucosidase genes showing low abundance in DNA may be functionally important in the later thermophilic phase of composting. The results indicate that a complex community of bacteria and fungi expresses β-glucosidases in compost. Several β-glucosidase-producing

  2. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters.

    PubMed

    Blin, Kai; Medema, Marnix H; Kottmann, Renzo; Lee, Sang Yup; Weber, Tilmann

    2017-01-04

    Secondary metabolites produced by microorganisms are the main source of bioactive compounds that are in use as antimicrobial and anticancer drugs, fungicides, herbicides and pesticides. In the last decade, the increasing availability of microbial genomes has established genome mining as a very important method for the identification of their biosynthetic gene clusters (BGCs). One of the most popular tools for this task is antiSMASH. However, so far, antiSMASH is limited to de novo computing results for user-submitted genomes and only partially connects these with BGCs from other organisms. Therefore, we developed the antiSMASH database, a simple but highly useful new resource to browse antiSMASH-annotated BGCs in the currently 3907 bacterial genomes in the database and perform advanced search queries combining multiple search criteria. antiSMASH-DB is available at http://antismash-db.secondarymetabolites.org/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Secondary metabolites: applications on cultural heritage.

    PubMed

    Sasso, S; Scrano, L; Bonomo, M G; Salzano, G; Bufo, S A

    2013-01-01

    Biological sciences and related bio-technology play a very important role in research projects concerning protection and preservation of cultural heritage for future generations. In this work secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga) ICMP 11096 strain and crude extract of glycoalkaloids from Solanaceae plants, were tested against a panel of microorganisms isolated from calcarenite stones of two historical bridges located in Potenza and in Campomaggiore (Southern Italy). The isolated bacteria belong to Bacillus cereus and Arthrobacter agilis species, while fungi belong to Aspergillus, Penicillium, Coprinellus, Fusarium, Rhizoctonio and Stemphylium genera. Bga broth (unfiltered) and glycoalkaloids extracts were able to inhibit the growth of all bacterial isolates. Bga culture was active against fungal colonies, while Solanaceae extract exerted bio-activity against Fusarium and Rhizoctonia genera.

  4. Biodegradation of malathion, α- and β-endosulfan by bacterial strains isolated from agricultural soil in Veracruz, Mexico.

    PubMed

    Jimenez-Torres, Catya; Ortiz, Irmene; San-Martin, Pablo; Hernandez-Herrera, R Idalia

    2016-12-01

    The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO 2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.

  5. Toxigenic strains of Fusarium moniliforme and Fusarium proliferatum isolated from dairy cattle feed produce fumonisins, moniliformin and a new C21H38N2O6 metabolite phytotoxic to Lemna minor L.

    PubMed

    Vesonder, R F; Wu, W; Weisleder, D; Gordon, S H; Krick, T; Xie, W; Abbas, H K; McAlpin, C E

    2000-05-01

    Corn samples suspected of causing refusal-to-eat syndrome in dairy cattle were examined mycologically. Fusarium moniliforme (14 isolates) and F. proliferatum (12 isolates) were the predominant fungi present. These isolates were tested for mycotoxin production on rice at 25 degrees C. Each strain of F. moniliforme produced fumonisin B1 (FB1: 378-15,600 ppm) and fumonisin B2 (FB2: 2-1050 ppm). Each strain of F. proliferatum produced moniliformin (45-16,000 ppm), FB1 (27-6140 ppm), and FB2 (5-1550 ppm). In addition, a new Fusarium metabolite of molecular composition C21H38N2O6 was produced by 10 of the F. moniliforme isolates and 7 of the F. proliferatum isolates. The metabolite's 1H- and 13C-NMR, HRFAB/MS and IR spectra indicate an alpha amino acid. It is toxic to Lemna minor L. duckweed (LD50 100 micrograms/mL).

  6. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa.

    PubMed

    Kumari, Rima; Barsainya, Manjari; Singh, Devendra Pratap

    2017-02-01

    Biogenic synthesis of silver nanoparticles (AgNPs) using extracellular metabolites from the bacterium Pseudomonas aeruginosa DM1 offers an eco-friendly and sustainable way of metal nanoparticle synthesis. The present work highlights the biotransformation of silver nitrate solution into AgNP, mediated by extracellular secondary metabolite pyoverdine, a siderophore produced by P. aeruginosa. The bioreduction of silver ions into AgNPs by using pyoverdine was recorded in terms of Fourier transform infrared spectroscopy (FTIR) analysis and color change in the reaction mixture (AgNO 3 + pyoverdine) from pale yellow to dark brown with absorption maxima at 415 nm. The results of X-ray diffraction (XRD) analysis of AgNPs showed its crystalline face-centered cubic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures of AgNPs showed spherical morphology of AgNP in the range of 45-100 nm, with tendency of agglomerations. The energy-dispersive X-ray (EDX) analysis of particles provided strong signal of elemental silver with few minor peaks of other impurities. The present approach offers a unique in vitro method of metal nanoparticle synthesis by exogenously produced bacterial secondary metabolites, where direct contact between the toxic metal and biological resource material can be avoided. The biologically synthesized AgNPs are found to have anti-algal effects against two species of Chlorella (Chlorella vulgaris and Chlorella pyenoidosa), as indicated by zone of growth inhibition on algal culture plates. Further results exhibit concentration-dependent progressive inhibition of chlorophyll content in the algal cells by AgNPs, confirming the algicidal effect of AgNPs.

  7. Behind Every Good Metabolite there is a Great Enzyme (and perhaps a structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Phan, Isabelle; Cron, Lisabeth

    Today, due to great technological advancements, it is possible to study everything at the same time. This ability has given birth to “totality” studies in the fields of genomics, transcriptomics, proteomics, and metabolomics. In turn, the combined study of all these global analyses gave birth to the field of systems biology. Another “totality” field brought to life with new emerging technologies is structural genomics, an effort to determine the three-dimensional structure of every protein encoded in a genome. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a specialized structural genomics effort composed of academic (University of Washington), governmentmore » (Pacific Northwest National Laboratory), not-for-profit (Seattle BioMed), and commercial (Emerald BioStructures) institutions that is funded by the National Institute of Allergy and Infectious Diseases (Federal Contract: HHSN272200700057C and HHSN27220120025C) to apply genome-scale approaches in solving protein structures from biodefense organisms, as well as those causing emerging and re-emerging disease. In five years over 540 structures have been deposited into the Protein Data Bank (PDB) by SSGICD. About one third of all SSGCID structures contain bound ligands, many of which are metabolites or metabolite analogues present in the cell. These proteins structures are the blueprints for the structure-based design of the next generation of drugs against bacterial pathogens and other infectious diseases. Many of the selected SSGCID targets are annotated enzymes from known metabolomic pathways essential to cellular vitality since selectively “knocking-out” one of the enzymes in an important pathway with a drug may be fatal to the organism. One reason metabolomic pathways are important is because of the small molecules, or metabolites, produced at various steps in these pathways and identified by metabolomic studies. Unlike genomics, transcriptomics, and proteomics that

  8. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans.

    PubMed

    Beaumont, Martin; Portune, Kevin Joseph; Steuer, Nils; Lan, Annaïg; Cerrudo, Victor; Audebert, Marc; Dumont, Florent; Mancano, Giulia; Khodorova, Nadezda; Andriamihaja, Mireille; Airinei, Gheorghe; Tomé, Daniel; Benamouzig, Robert; Davila, Anne-Marie; Claus, Sandrine Paule; Sanz, Yolanda; Blachier, François

    2017-10-01

    Background: Although high-protein diets (HPDs) are frequently consumed for body-weight control, little is known about the consequences for gut microbiota composition and metabolic activity and for large intestine mucosal homeostasis. Moreover, the effects of HPDs according to the source of protein need to be considered in this context. Objective: The objective of this study was to evaluate the effects of the quantity and source of dietary protein on microbiota composition, bacterial metabolite production, and consequences for the large intestinal mucosa in humans. Design: A randomized, double-blind, parallel-design trial was conducted in 38 overweight individuals who received a 3-wk isocaloric supplementation with casein, soy protein, or maltodextrin as a control. Fecal and rectal biopsy-associated microbiota composition was analyzed by 16S ribosomal DNA sequencing. Fecal, urinary, and plasma metabolomes were assessed by 1 H-nuclear magnetic resonance. Mucosal transcriptome in rectal biopsies was determined with the use of microarrays. Results: HPDs did not alter the microbiota composition, but induced a shift in bacterial metabolism toward amino acid degradation with different metabolite profiles according to the protein source. Correlation analysis identified new potential bacterial taxa involved in amino acid degradation. Fecal water cytotoxicity was not modified by HPDs, but was associated with a specific microbiota and bacterial metabolite profile. Casein and soy protein HPDs did not induce inflammation, but differentially modified the expression of genes playing key roles in homeostatic processes in rectal mucosa, such as cell cycle or cell death. Conclusions: This human intervention study shows that the quantity and source of dietary proteins act as regulators of gut microbiota metabolite production and host gene expression in the rectal mucosa, raising new questions on the impact of HPDs on the large intestine mucosa homeostasis. This trial was registered

  9. Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs

    PubMed Central

    Brundige, Dottie R.; Maga, Elizabeth A.; Klasing, Kirk C.

    2009-01-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health. PMID:19847666

  10. Consumption of pasteurized human lysozyme transgenic goats' milk alters serum metabolite profile in young pigs.

    PubMed

    Brundige, Dottie R; Maga, Elizabeth A; Klasing, Kirk C; Murray, James D

    2010-08-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats' milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats' milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health.

  11. Gut microbiota derived metabolites in cardiovascular health and disease.

    PubMed

    Wang, Zeneng; Zhao, Yongzhong

    2018-05-03

    Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.

  12. Species specificity of symbiosis and secondary metabolism in ascidians.

    PubMed

    Tianero, Ma Diarey B; Kwan, Jason C; Wyche, Thomas P; Presson, Angela P; Koch, Michael; Barrows, Louis R; Bugni, Tim S; Schmidt, Eric W

    2015-03-01

    Ascidians contain abundant, diverse secondary metabolites, which are thought to serve a defensive role and which have been applied to drug discovery. It is known that bacteria in symbiosis with ascidians produce several of these metabolites, but very little is known about factors governing these 'chemical symbioses'. To examine this phenomenon across a wide geographical and species scale, we performed bacterial and chemical analyses of 32 different ascidians, mostly from the didemnid family from Florida, Southern California and a broad expanse of the tropical Pacific Ocean. Bacterial diversity analysis showed that ascidian microbiomes are highly diverse, and this diversity does not correlate with geographical location or latitude. Within a subset of species, ascidian microbiomes are also stable over time (R=-0.037, P-value=0.499). Ascidian microbiomes and metabolomes contain species-specific and location-specific components. Location-specific bacteria are found in low abundance in the ascidians and mostly represent strains that are widespread. Location-specific metabolites consist largely of lipids, which may reflect differences in water temperature. By contrast, species-specific bacteria are mostly abundant sequenced components of the microbiomes and include secondary metabolite producers as major components. Species-specific chemicals are dominated by secondary metabolites. Together with previous analyses that focused on single ascidian species or symbiont type, these results reveal fundamental properties of secondary metabolic symbiosis. Different ascidian species have established associations with many different bacterial symbionts, including those known to produce toxic chemicals. This implies a strong selection for this property and the independent origin of secondary metabolite-based associations in different ascidian species. The analysis here streamlines the connection of secondary metabolite to producing bacterium, enabling further biological and

  13. Metabolism of boldione in humans by mass spectrometric techniques: detection of pseudoendogenous metabolites.

    PubMed

    de la Torre, Xavier; Curcio, Davide; Colamonici, Cristiana; Molaioni, Francesco; Botrè, Francesco

    2013-01-01

    Boldione is an anabolic androgenic steroid (AAS) related to boldenone, androstenedione, and testosterone bearing two double bonds in C1 and C4 positions. Boldione is rapidly transformed to the well-known AAS boldenone, being both compounds included in the list of prohibited substances and methods published yearly by the World Anti-Doping Agency (WADA). After the administration of boldione to a male volunteer, the already described urinary metabolites of boldenone produced after reduction in C4, oxydoreduction in C3 and C17, and hydroxylation have been detected. In addition, minor new metabolites have been detected and their structure postulated after mass spectrometric analyses. Finally, the reduction of the double bound in C1 produces metabolites identical to the endogenously produced ones. A method based on gas chromatography coupled to isotope ratio mass spectrometry (GC/C/IRMS) after a urine sample purification by high performance liquid chromatography (HPLC) permitted to confirm the main synthetic like boldione/boldenone metabolite (17β-hydroxy-5β-androst-1-en-3-one) and boldenone at trace levels (< 5 ng/mL) and then to establish its synthetic or endogenous origin, and to determine the exogenous origin of metabolites with the same chemical structure of the endogenous ones. The detection of pseudoendogenous androgens of synthetic origin partially overlapped boldenone and its main metabolite detection, being an additional proof of synthetic steroids misuse. By the use of IRMS, the correct evaluation of the modifications of the steroid profile after the administration of synthetic AAS that could be converted into endogenous like ones is possible. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    PubMed

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research.

    PubMed

    Sato, Fumihiko; Kumagai, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed.

  16. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi [Los Alamos, NM; Ganguly, Kumkum [Los Alamos, NM; Silks, Louis A [Los Alamos, NM

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  17. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  18. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences.

    PubMed

    Montagnier, Luc; Aïssa, Jamal; Ferris, Stéphane; Montagnier, Jean-Luc; Lavallée, Claude

    2009-06-01

    A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases.

  19. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface

    PubMed Central

    Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.

    2015-01-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012

  20. Bacterial Transformations of Naphthothiophenes

    PubMed Central

    Kropp, K. G.; Andersson, J. T.; Fedorak, P. M.

    1997-01-01

    Naphthothiophenes are minor components of fossil fuels, and they can enter the environment from oil spills. Naphtho[2,1-b]thiophene, naphtho[2,3-b]thiophene, and 1-methylnaphtho[2,1-b]thiophene were synthesized and used in biodegradation studies with 1-methylnaphthalene (1-MN)-degrading Pseudomonas strains W1, F, and BT1. Cultures were incubated with one of the naphthothiophenes with or without 1-MN, acidified, and extracted with CH(inf2)Cl(inf2). The extracts were analyzed by gas chromatography with flame photometric and mass detectors to characterize sulfur-containing metabolites and with an atomic emission detector for quantification. Only strain W1 was able to grow on naphtho[2,1-b]thiophene, but strains F and BT1 cometabolized this compound if 1-MN was present. 1-MN was required by all three strains to metabolize naphtho[2,3-b]thiophene, which was more resistant to biodegradation than the [2,1-b] isomer. Two metabolites of naphtho [2,1-b]thiophene were purified, analyzed by (sup1)H nuclear magnetic resonance spectroscopy, and found to be 4-hydroxybenzothiophene-5-carboxylic acid (metabolite I) and 5-hydroxybenzothiophene-4-carboxylic acid (metabolite II). In cultures of strain W1 grown for 7 days on 52 (mu)mol of naphtho[2,1-b]thiophene, >84% of the substrate was degraded and metabolites I and II accounted for 19 and 9%, respectively, of the original amount of naphtho[2,1-b]thiophene. When 1-MN was present, strain W1 degraded >97% of the naphtho[2,1-b]thiophene and similar amounts of metabolite II were produced, but metabolite I did not accumulate. 1-MN was shown to promote the further degradation of metabolite I, but not of metabolite II, by strain W1. Thus, 1-MN enhanced the biodegradation of naphtho[2,1-b]thiophene. Approximately 70% of the 1-methylnaphtho [2,1-b]thiophene added to cultures of strain W1 with 1-MN was recovered as 4-hydroxy-3-methylbenzothiophene-5-carboxylic acid, the 3-methyl analog of metabolite I. The methyl substitution hindered further

  1. Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from Vochysia divergens Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites.

    PubMed

    Savi, Daiani C; Shaaban, Khaled A; Gos, Francielly Maria Wilke Ramos; Ponomareva, Larissa V; Thorson, Jon S; Glienke, Chirlei; Rohr, Jürgen

    2018-02-15

    Microorganisms associated with plants are highly diverse and can produce a large number of secondary metabolites, with antimicrobial, anti-parasitic and cytotoxic activities. We are particularly interested in exploring endophytes from medicinal plants found in the Pantanal, a unique and widely unexplored wetland in Brazil. In a bio-prospecting study, strains LGMF1213 and LGMF1215 were isolated as endophytes from Vochysia divergens, and by morphological and molecular phylogenetic analyses were characterized as Phaeophleospora vochysiae sp. nov. The chemical assessment of this species reveals three major compounds with high biological activity, cercoscosporin (1), isocercosporin (2) and the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone (3). Besides the isolation of P. vochysiae as endophyte, the production of cercosporin compounds suggest that under specific conditions this species causes leaf spots, and may turn into a pathogen, since leaf spots are commonly caused by species of Cercospora that produce related compounds. In addition, the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone showed considerable antimicrobial activity and low cytotoxicity, which needs further exploration.

  2. Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea

    PubMed Central

    Charlesworth, James C.; Burns, Brendan P.

    2015-01-01

    Archaea are an understudied domain of life often found in “extreme” environments in terms of temperature, salinity, and a range of other factors. Archaeal proteins, such as a wide range of enzymes, have adapted to function under these extreme conditions, providing biotechnology with interesting activities to exploit. In addition to producing structural and enzymatic proteins, archaea also produce a range of small peptide molecules (such as archaeocins) and other novel secondary metabolites such as those putatively involved in cell communication (acyl homoserine lactones), which can be exploited for biotechnological purposes. Due to the wide array of metabolites produced there is a great deal of biotechnological potential from antimicrobials such as diketopiperazines and archaeocins, as well as roles in the cosmetics and food industry. In this review we will discuss the diversity of small molecules, both peptide and nonpeptide, produced by archaea and their potential biotechnological applications. PMID:26504428

  3. Acanthamoeba and bacteria produce antimicrobials to target their counterpart

    PubMed Central

    2014-01-01

    Background In the microbial ecosystem, microbes compete for space and nutrients. Consequently, some have developed the ability to kill or inhibit the growth of other competing microbes by producing antimicrobial substances. As the ‘producer’ species are generally immune to these substances, their compounds act on the competing microbial species and give the producer more space and access to nutrients for growth. Many currently used antibiotics were developed by exploiting this potential of certain microbes. Findings Here, the free-living amoeba, Acanthamoeba castellanii, was investigated for its antibacterial activity against representative Gram positive and Gram negative bacteria, while bacterial isolates were tested for their anti-amoebic properties. Conditioned medium from A. castellanii showed remarkable bactericidal properties against methicillin-resistant Staphylococcus aureus (MRSA) exhibiting almost 100% kill rate, but had limited effect against Acinetobacter sp., Pseudomonas aeruginosa and vancomycin-resistant Enterococcus faecalis (VRE). Similarly, the conditioned medium of E. coli K1 and Enterobacter sp., exhibited potent anti-Acanthamoebic effects in a concentration-dependent manner. Conditioned media of Acanthamoeba, E. coli K1 and Enterobacter sp. showed no cytotoxicity in vitro when tested against human brain microvascular endothelial cells. Active molecule/s in aforementioned amoebic and two bacterial conditioned media were 5 – 10 kDa, and <5 kDa respectively. Conclusions A. castellanii conditioned medium showed potent bactericidal properties against MRSA. The active molecule(s) are heat- and pronase-resistant, and in the 5 to 10 kDa molecular mass range. Contrary to this, E. coli K1 and Enterobacter sp., conditioned medium showed anti-amoebic effects that are <5 kDa in molecular mass, suggestive of active metabolites. PMID:24479709

  4. Formation of bacterial nanocells

    NASA Astrophysics Data System (ADS)

    Vainshtein, Mikhail; Kudryashova, Ekaterina; Suzina, Natalia; Ariskina, Elena; Voronkov, Vadim

    1998-07-01

    Existence of nanobacteria received increasing attention both in environmental microbiology/geomicro-biology and in medical microbiology. In order to study a production of nanoforms by typical bacterial cells. Effects of different physical factors were investigated. Treatment of bacterial cultures with microwave radiation, or culturing in field of electric current resulted in formation a few types of nanocells. The number and type of nanoforms were determined with type and dose of the treatment. The produced nanoforms were: i) globules, ii) clusters of the globules--probably produced by liaison, iii) nanocells coated with membrane. The viability of the globules is an object opened for doubts. The nanocells discovered multiplication and growth on solidified nutrient media. The authors suggest that formation of nanocells is a common response of bacteria to stress-actions produced by different agents.

  5. Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations▿

    PubMed Central

    Papalexandratou, Zoi; Falony, Gwen; Romanens, Edwina; Jimenez, Juan Carlos; Amores, Freddy; Daniel, Heide-Marie; De Vuyst, Luc

    2011-01-01

    Traditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species were Pichia kudriavzevii and Pichia manshurica, followed by Saccharomyces cerevisiae. Leuconostoc pseudomesenteroides (glucose and fructose fermenting), Fructobacillus tropaeoli-like (fructose fermenting), and Lactobacillus fermentum (citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates. Tatumella saanichensis and Tatumella punctata were among the members of the family Enterobacteriaceae present during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely, Candida sorbosivorans-like. Acetic acid bacteria, whose main representative was Acetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans. PMID

  6. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  7. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE PAGES

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...

    2016-11-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  8. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  9. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    PubMed Central

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S.

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well. PMID:26500617

  10. D-lactic acid measurements in the diagnosis of bacterial infections.

    PubMed Central

    Smith, S M; Eng, R H; Campos, J M; Chmel, H

    1989-01-01

    Body fluids suspected of bacterial infection were cultured and examined for the presence of D-lactic acid, a specific bacterial metabolite. We examined 206 patients and 264 specimens. D-Lactic acid was found in concentrations of greater than or equal to 0.15 mM in 11 of 11 infected and 6 of 40 noninfected ascitic fluids, 6 of 6 infected and 4 of 33 noninfected pleural fluids, 4 of 4 infected and 0 of 13 noninfected synovial fluids, and 26 of 27 infected and 2 of 130 noninfected cerebrospinal fluids. The overall sensitivity was 79.7%, and the specificity was 99.5% when the D-lactic acid concentration was at least 0.15 mM. The most important clinical utility of the D-lactic acid measurement appears to be for patients with bacterial infection in various body compartments and in patients who have already received antimicrobial therapy. An elevation in D-lactic acid may indicate the presence of bacterial infection even when cultures are negative. PMID:2715313

  11. Isolation of hydroquinone (benzene-1,4-diol) metabolite from halotolerant Bacillus methylotrophicus MHC10 and its inhibitory activity towards bacterial pathogens.

    PubMed

    Jeyanthi, Venkadapathi; Anbu, Periasamy; Vairamani, Mariappanadar; Velusamy, Palaniyandi

    2016-03-01

    A halotolerant bacterial isolate-MHC10 with broad spectrum antibacterial activity against clinical pathogens was isolated from saltpans located in Tuticorin and Chennai (India). 16S rRNA gene analysis of MHC10 revealed close similarity to that of Bacillus methylotrophicus. The culture conditions of B. methylotrophicus MHC10 strain were optimized for antibacterial production using different carbon and nitrogen sources, as well as varying temperature, pH, sodium chloride (NaCl) concentrations and incubation periods. The maximum antibacterial activity of B. methylotrophicus MHC10 was attained when ZMB was optimized with 1 % (w/v) glucose, 0.1 % (w/v) soybean meal which corresponded to a C/N ratio of 38.83, temperature at 37 °C, pH 7.0 and 8 % NaCl. The activity remained stable between 72 and 96 h and then drastically decreased after 96 h. Solvent extraction followed by chromatographic purification steps led to the isolation of hydroquinone (benzene-1,4-diol). The structure of the purified compound was elucidated based on FTIR, (1)H NMR, and (13)C NMR spectroscopy. The compound exhibited efficient antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. The minimum inhibitory concentration (MIC) for Gram-positive pathogens ranged from 15.625 to 62.5 µg/mL(-1), while it was between 7.81 and 250 µg/mL(-1) for Gram-negative bacterial pathogens. This is the first report of hydroquinone produced by halotolerant B. methylotrophicus exhibiting promising antibacterial activity.

  12. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities.

    PubMed

    Slack, Gregory J; Puniani, Eva; Frisvad, Jens C; Samson, Robert A; Miller, J David

    2009-04-01

    As part of studies of metabolites from fungi common in the built environment in Canadian homes, we investigated metabolites from strains of three Eurotium species, namely E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally identified as Aspergillus ustus. The latter have been recently assigned as the new species A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metabolites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in E. amstelodami. This species also produced questin and neoechinulin E as minor metabolites. This is the first report of epiheveadride occurring as a natural product, and the first nonadride isolated from Eurotium species. Unlike strains from mainly infection-related samples, largely from Europe, neither ophiobolins G and H nor austins were detected in the Canadian strains of A. insuetus and A. calidoustus tested, all of which had been reported from the latter species. TMC-120 A, B, C and a sesquiterpene drimane are reported with certainty for the first time from indoor isolates, as well as two novel related methyl isoquinoline alkaloids.

  13. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    PubMed Central

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-01-01

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology. PMID:27775594

  14. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential.

    PubMed

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-10-20

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  15. Endophytes as sources of antibiotics.

    PubMed

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Role of antimicrobial peptides in controlling symbiotic bacterial populations.

    PubMed

    Mergaert, P

    2018-04-25

    Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.

  17. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  18. EFFECTS OF ULTRAVIOLET-B LIGHT AND POLYAROMATIC HYDROCARBON EXPOSURE ON SEA URCHIN DEVELOPMENT AND BACTERIAL BIOLUMINESCENCE

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are relatively common contaminants of the Gulf of Mexico and may be activated to more toxic metabolites by ultraviolet-B (UV-B) light. A marine bacterial bioassay system (Vibrio fischeri) which focused on the reduction of luciferase-mediate...

  19. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor.

    PubMed

    Marques, Joana Montezano; de Almeida, Fernando Pereira; Lins, Ulysses; Seldin, Lucy; Korenblum, Elisa

    2012-06-01

    To better understand the impact of nitrate in Brazilian oil reservoirs under souring processes and corrosion, the goal of this study was to analyse the effect of nitrate on bacterial biofilms formed on carbon steel coupons using reactors containing produced water from a Brazilian oil platform. Three independent experiments were carried out (E1, E2 and E3) using the same experimental conditions and different incubation times (5, 45 and 80 days, respectively). In every experiment, two biofilm-reactors were operated: one was treated with continuous nitrate flow (N reactor), and the other was a control reactor without nitrate (C reactor). A Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis approach using the 16S rRNA gene was performed to compare the bacterial groups involved in biofilm formation in the N and C reactors. DGGE profiles showed remarkable changes in community structure only in experiments E2 and E3. Five bands extracted from the gel that represented the predominant bacterial groups were identified as Bacillus aquimaris, B. licheniformis, Marinobacter sp., Stenotrophomonas maltophilia and Thioclava sp. A reduction in the sulfate-reducing bacteria (SRB) most probable number counts was observed only during the longer nitrate treatment (E3). Carbon steel coupons used for biofilm formation had a slightly higher weight loss in N reactors in all experiments. When the coupon surfaces were analysed by scanning electron microscopy, an increase in corrosion was observed in the N reactors compared with the C reactors. In conclusion, nitrate reduced the viable SRB counts. Nevertheless, the nitrate dosing increased the pitting of coupons.

  20. Phage selection for bacterial cheats leads to population decline

    PubMed Central

    Vasse, Marie; Torres-Barceló, Clara; Hochberg, Michael E.

    2015-01-01

    While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. PMID:26538598

  1. Production of secondary metabolites by some terverticillate penicillia on carbohydrate-rich and meat substrates.

    PubMed

    Núñez, Félix; Westphal, Carmen D; Bermúdez, Elena; Asensio, Miguel A

    2007-12-01

    Most terverticillate penicillia isolated from dry-cured meat products are toxigenic, but their ability to produce hazardous metabolites on meat-based substrates is not well known. The production of extrolites by selected terverticillate penicillia isolated from dry-cured ham has been studied on carbohydrate-rich media (malt extract agar, Czapek yeast autolysate agar, rice extract agar, and rice), meat extract triolein salt agar, and ham slices. Chloroform extracts from the selected strains grown on malt extract agar were toxic for the brine shrimp (Artemia salina) larvae and VERO cells at a concentration of 2 mg/ml, but 0.02 mg/ml produced no toxic effect. Analysis by high-pressure liquid chromatography (HPLC) coupled with photodiode array detection (DAD) or with mass spectrometry (MS) and an atmospheric pressure chemical ionization (APCI) source revealed different biologically active metabolites: cyclopiazonic acid and rugulovasine A from Penicillium commune; verrucosidin, anacine, puberuline, verrucofortine, and viridicatols from Penicillium polonicum; arisugacin and viridicatols from Penicillium echinulatum; and compactin and viridicatols from Penicillium solitum. Most of these metabolites, including the amino acid-derived compounds, were produced in the media containing high levels of carbohydrates. High concentrations of nitrogen compounds in the medium does not imply a greater production of the metabolites studied, not even those derived from the amino acids. However, molds growing on dry-cured ham are able to synthesize limited amounts of some secondary metabolites, a fact not previously reported. The combination of HPLC coupled with DAD and MS-APCI was useful for identification of closely related terverticillate Penicillium species from dry-cured ham. These techniques could be used to characterize the risk associated with the potential production of secondary metabolites in cured meats.

  2. Ex Vivo Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus spp. Efficiently Controls Foliar Diseases Caused by Alternaria spp.

    PubMed

    Ali, Gul Shad; El-Sayed, Ashraf S A; Patel, Jaimin S; Green, Kari B; Ali, Mohammad; Brennan, Mary; Norman, David

    2016-01-15

    Bacterial biological control agents (BCAs) are largely used as live products to control plant pathogens. However, due to variable environmental and ecological factors, live BCAs usually fail to produce desirable results against foliar pathogens. In this study, we investigated the potential of cell-free culture filtrates of 12 different bacterial BCAs isolated from flower beds for controlling foliar diseases caused by Alternaria spp. In vitro studies showed that culture filtrates from two isolates belonging to Bacillus subtilis and Bacillus amyloliquefaciens displayed strong efficacy and potencies against Alternaria spp. The antimicrobial activity of the culture filtrate of these two biological control agents was effective over a wider range of pH (3.0 to 9.0) and was not affected by autoclaving or proteolysis. Comparative liquid chromatography-mass spectrometry (LC-MS) analyses showed that a complex mixture of cyclic lipopeptides, primarily of the fengycin A and fengycin B families, was significantly higher in these two BCAs than inactive Bacillus spp. Interaction studies with mixtures of culture filtrates of these two species revealed additive activity, suggesting that they produce similar products, which was confirmed by LC-tandem MS analyses. In in planta pre- and postinoculation trials, foliar application of culture filtrates of B. subtilis reduced lesion sizes and lesion frequencies caused by Alternaria alternata by 68 to 81%. Taken together, our studies suggest that instead of live bacteria, culture filtrates of B. subtilis and B. amyloliquefaciens can be applied either individually or in combination for controlling foliar diseases caused by Alternaria species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Ex Vivo Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus spp. Efficiently Controls Foliar Diseases Caused by Alternaria spp.

    PubMed Central

    El-Sayed, Ashraf S. A.; Patel, Jaimin S.; Green, Kari B.; Ali, Mohammad; Brennan, Mary; Norman, David

    2015-01-01

    Bacterial biological control agents (BCAs) are largely used as live products to control plant pathogens. However, due to variable environmental and ecological factors, live BCAs usually fail to produce desirable results against foliar pathogens. In this study, we investigated the potential of cell-free culture filtrates of 12 different bacterial BCAs isolated from flower beds for controlling foliar diseases caused by Alternaria spp. In vitro studies showed that culture filtrates from two isolates belonging to Bacillus subtilis and Bacillus amyloliquefaciens displayed strong efficacy and potencies against Alternaria spp. The antimicrobial activity of the culture filtrate of these two biological control agents was effective over a wider range of pH (3.0 to 9.0) and was not affected by autoclaving or proteolysis. Comparative liquid chromatography-mass spectrometry (LC-MS) analyses showed that a complex mixture of cyclic lipopeptides, primarily of the fengycin A and fengycin B families, was significantly higher in these two BCAs than inactive Bacillus spp. Interaction studies with mixtures of culture filtrates of these two species revealed additive activity, suggesting that they produce similar products, which was confirmed by LC-tandem MS analyses. In in planta pre- and postinoculation trials, foliar application of culture filtrates of B. subtilis reduced lesion sizes and lesion frequencies caused by Alternaria alternata by 68 to 81%. Taken together, our studies suggest that instead of live bacteria, culture filtrates of B. subtilis and B. amyloliquefaciens can be applied either individually or in combination for controlling foliar diseases caused by Alternaria species. PMID:26519395

  4. Natural metabolites for parasitic weed management.

    PubMed

    Vurro, Maurizio; Boari, Angela; Evidente, Antonio; Andolfi, Anna; Zermane, Nadjia

    2009-05-01

    Compounds of natural origin, such as phytotoxins produced by fungi or natural amino acids, could be used in parasitic weed management strategies by interfering with the early growth stages of the parasites. These metabolites could inhibit seed germination or germ tube elongation, so preventing attachment to the host plant, or, conversely, stimulate seed germination in the absence of the host, contributing to a reduction in the parasite seed bank. Some of the fungal metabolites assayed were very active even at very low concentrations, such as some macrocyclic trichothecenes, which at 0.1 microM strongly suppressed the germination of Orobanche ramosa L. seeds. Interesting results were also obtained with some novel toxins, such as phyllostictine A, highly active in reducing germ tube elongation and seed germination both of O. ramosa and of Cuscuta campestris Yuncker. Among the amino acids tested, methionine and arginine were particularly interesting, as they were able to suppress seed germination at concentrations lower than 1 mM. Some of the fungal metabolites tested were also able to stimulate the germination of O. ramosa seeds. The major findings in this research field are described and discussed.

  5. Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Stefan; Swenson, Tami L.; Lau, Rebecca

    Exometabolomics enables analysis of metabolite utilization of low molecular weight organic substances by soil bacteria. Thus, environmentally-based defined media are needed to examine ecologically relevant patterns of substrate utilization. Here, we describe an approach for the construction of defined media using untargeted characterization of water soluble soil microbial metabolites from a saprolite soil collected from the Oak Ridge Field Research Center (ORFRC). To broadly characterize metabolites, both liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) were used. With this approach, 96 metabolites were identified, including amino acids, amino acid derivatives, sugars, sugar alcohols, mono- and di-carboxylic acids,more » nucleobases, and nucleosides. From this pool of metabolites, 25 were quantified. Molecular weight cut-off filtration determined the fraction of carbon accounted for by the quantified metabolites and revealed that these soil metabolites have an uneven quantitative distribution (e.g., trehalose accounted for 9.9% of the < 1 kDa fraction). This quantitative information was used to formulate two soil defined media (SDM), one containing 23 metabolites (SDM1) and one containing 46 (SDM2). To evaluate the viability of the SDM, we examined the growth of 30 phylogenetically diverse soil bacterial isolates from the ORFRC field site. The simpler SDM1 supported the growth of 13 isolates while the more complex SDM2 supported 15 isolates. To investigate SDM1 substrate preferences, one isolate, Pseudomonas corrugata strain FW300-N2E2 was selected for a time-series exometabolomics analysis. Interestingly, it was found that this organism preferred lower-abundance substrates such as guanine, glycine, proline and arginine and glucose and did not utilize the more abundant substrates maltose, mannitol, trehalose and uridine. These results demonstrate the viability and utility of using exometabolomics to construct a

  6. Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites

    PubMed Central

    Jenkins, Stefan; Swenson, Tami L.; Lau, Rebecca; Rocha, Andrea M.; Aaring, Alex; Hazen, Terry C.; Chakraborty, Romy; Northen, Trent R.

    2017-01-01

    Exometabolomics enables analysis of metabolite utilization of low molecular weight organic substances by soil bacteria. Environmentally-based defined media are needed to examine ecologically relevant patterns of substrate utilization. Here, we describe an approach for the construction of defined media using untargeted characterization of water soluble soil microbial metabolites from a saprolite soil collected from the Oak Ridge Field Research Center (ORFRC). To broadly characterize metabolites, both liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) were used. With this approach, 96 metabolites were identified, including amino acids, amino acid derivatives, sugars, sugar alcohols, mono- and di-carboxylic acids, nucleobases, and nucleosides. From this pool of metabolites, 25 were quantified. Molecular weight cut-off filtration determined the fraction of carbon accounted for by the quantified metabolites and revealed that these soil metabolites have an uneven quantitative distribution (e.g., trehalose accounted for 9.9% of the <1 kDa fraction). This quantitative information was used to formulate two soil defined media (SDM), one containing 23 metabolites (SDM1) and one containing 46 (SDM2). To evaluate the viability of the SDM, we examined the growth of 30 phylogenetically diverse soil bacterial isolates from the ORFRC field site. The simpler SDM1 supported the growth of 13 isolates while the more complex SDM2 supported 15 isolates. To investigate SDM1 substrate preferences, one isolate, Pseudomonas corrugata strain FW300-N2E2 was selected for a time-series exometabolomics analysis. Interestingly, it was found that this organism preferred lower-abundance substrates such as guanine, glycine, proline and arginine and glucose and did not utilize the more abundant substrates maltose, mannitol, trehalose and uridine. These results demonstrate the viability and utility of using exometabolomics to construct a tractable

  7. Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites

    DOE PAGES

    Jenkins, Stefan; Swenson, Tami L.; Lau, Rebecca; ...

    2017-12-22

    Exometabolomics enables analysis of metabolite utilization of low molecular weight organic substances by soil bacteria. Thus, environmentally-based defined media are needed to examine ecologically relevant patterns of substrate utilization. Here, we describe an approach for the construction of defined media using untargeted characterization of water soluble soil microbial metabolites from a saprolite soil collected from the Oak Ridge Field Research Center (ORFRC). To broadly characterize metabolites, both liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) were used. With this approach, 96 metabolites were identified, including amino acids, amino acid derivatives, sugars, sugar alcohols, mono- and di-carboxylic acids,more » nucleobases, and nucleosides. From this pool of metabolites, 25 were quantified. Molecular weight cut-off filtration determined the fraction of carbon accounted for by the quantified metabolites and revealed that these soil metabolites have an uneven quantitative distribution (e.g., trehalose accounted for 9.9% of the < 1 kDa fraction). This quantitative information was used to formulate two soil defined media (SDM), one containing 23 metabolites (SDM1) and one containing 46 (SDM2). To evaluate the viability of the SDM, we examined the growth of 30 phylogenetically diverse soil bacterial isolates from the ORFRC field site. The simpler SDM1 supported the growth of 13 isolates while the more complex SDM2 supported 15 isolates. To investigate SDM1 substrate preferences, one isolate, Pseudomonas corrugata strain FW300-N2E2 was selected for a time-series exometabolomics analysis. Interestingly, it was found that this organism preferred lower-abundance substrates such as guanine, glycine, proline and arginine and glucose and did not utilize the more abundant substrates maltose, mannitol, trehalose and uridine. These results demonstrate the viability and utility of using exometabolomics to construct a

  8. Integrating mass spectrometry and genomics for cyanobacterial metabolite discovery

    PubMed Central

    Bertin, Matthew J.; Kleigrewe, Karin; Leão, Tiago F.; Gerwick, Lena

    2016-01-01

    Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression. Hence, a combination of cutting edge and traditional techniques has been required to elucidate their secondary metabolite biosynthetic pathways. Here, we review the discovery and refined biochemical understanding of the olefin synthase and fatty acid ACP reductase/aldehyde deformylating oxygenase pathways to hydrocarbons, and the curacin A, jamaicamide A, lyngbyabellin, columbamide, and a trans-acyltransferase macrolactone pathway encoding phormidolide. We integrate into this discussion the use of genomics, mass spectrometric networking, biochemical characterization, and isolation and structure elucidation techniques. PMID:26578313

  9. Marine-Derived Metabolites of S-Adenosylmethionine as Templates for New Anti-Infectives

    PubMed Central

    Sufrin, Janice R.; Finckbeiner, Steven; Oliver, Colin M.

    2009-01-01

    S-Adenosylmethionine (AdoMet) is a key biochemical co-factor whose proximate metabolites include methylated macromolecules (e.g., nucleic acids, proteins, phospholipids), methylated small molecules (e.g., sterols, biogenic amines), polyamines (e.g., spermidine, spermine), ethylene, and N-acyl-homoserine lactones. Marine organisms produce numerous AdoMet metabolites whose novel structures can be regarded as lead compounds for anti-infective drug design. PMID:19841722

  10. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy.

    PubMed

    Roux, Aurélie; Thévenot, Etienne A; Seguin, François; Olivier, Marie-Françoise; Junot, Christophe

    There is a lack of comprehensive studies documenting the impact of sample collection conditions on metabolic composition of human urine. To address this issue, two experiments were performed at a 3-month interval, in which midstream urine samples from healthy individuals were collected, pooled, divided into several aliquots and kept under specific conditions (room temperature, 4 °C, with or without preservative) up to 72 h before storage at -80 °C. Samples were analyzed by high-performance liquid chromatography coupled to high-resolution mass spectrometry and bacterial contamination was monitored by turbidimetry. Multivariate analyses showed that urinary metabolic fingerprints were affected by the presence of preservatives and also by storage at room temperature from 24 to 72 h, whereas no change was observed for urine samples stored at 4 °C over a 72-h period. Investigations were then focused on 280 metabolites previously identified in urine: 19 of them were impacted by the kind of sample collection protocol in both experiments, including 12 metabolites affected by bacterial contamination and 7 exhibiting poor chemical stability. Finally, our results emphasize that the use of preservative prevents bacterial overgrowth, but does not avoid metabolite instability in solution, whereas storage at 4 °C inhibits bacterial overgrowth at least over a 72-h period and slows the chemical degradation process. Consequently, and for further LC/MS analyses, human urine samples should be kept at 4 °C if their collection is performed over 24 h.

  11. Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; van Valenberg, Hein J F; Winata, Vera; Wang, Xiaoxi; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J

    2015-08-01

    The objective of this study was to investigate the effect of preculturing of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 under sublethal stress conditions on their survival and metabolite formation in set-yoghurt. Prior to co-cultivation with yoghurt starters in milk, the two probiotic strains were precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor. The activity of sublethally precultured probiotics was evaluated during fermentation and refrigerated storage by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated adaptive stress responses of the two probiotic strains resulting in their viability improvement without adverse influence on milk acidification. A complementary metabolomic approach using SPME-GC/MS and (1)H-NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Principal component analysis revealed substantial impact of the activity of sublethally precultured probiotics on metabolite formation demonstrated by distinctive volatile and non-volatile metabolite profiles of set-yoghurt. Changes in relative abundance of various aroma compounds suggest that incorporation of stress-adapted probiotics considerably influences the organoleptic quality of product. This study provides new information on the application of stress-adapted probiotics in an actual food-carrier environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of viroid infection on the dynamics of phenolic metabolites in the apoplast of tomato

    USDA-ARS?s Scientific Manuscript database

    Plants are capable of producing a wide array of secondary metabolites which serve many functions, due to their bioactive, redox or structural properties. Subtle changes in the external or internal environment can cause significant changes in the array of secondary metabolites presented in the tissu...

  13. Uncultured microorganisms as a source of secondary metabolites.

    PubMed

    Lewis, Kim; Epstein, Slava; D'Onofrio, Anthony; Ling, Losee L

    2010-08-01

    The vast majority of microbial species are 'uncultured' and do not grow under laboratory conditions. This has led to the development of a number of methods to culture these organisms in a simulated natural environment. Approaches include placing cells in chambers that allow diffusion of compounds from the natural environment, traps enclosed with porous membranes that specifically capture organisms forming hyphae--actinobacteria and microfungi, and growth in the presence of cultivable helper species. Repeated cultivation in situ produces domesticated variants that can grow on regular media in vitro, and can be scaled up for secondary metabolite production. The co-culture approach has led to the identification of the first class of growth factors for uncultured bacteria, iron-chelating siderophores. It appears that many uncultured organisms from diverse taxonomical groups have lost the ability to produce siderophores, and depend on neighboring species for growth. The new cultivation approaches allow for the exploitation of the secondary metabolite potential of the previously inaccessible microorganisms.

  14. Evidence for the Biosynthesis of Bryostatins by the Bacterial Symbiont “Candidatus Endobugula sertula” of the Bryozoan Bugula neritina

    PubMed Central

    Davidson, S. K.; Allen, S. W.; Lim, G. E.; Anderson, C. M.; Haygood, M. G.

    2001-01-01

    The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont “Candidatus Endobugula sertula.” In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-“E. sertula” association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria. PMID:11571152

  15. Predicting effects of structural stress in a genome-reduced model bacterial metabolism

    NASA Astrophysics Data System (ADS)

    Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles

    2012-08-01

    Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.

  16. A review of the volatile metabolites of fungi found on wood substrates.

    PubMed

    McAfee, B J; Taylor, A

    1999-01-01

    The holdings of eight collections of fungi have been examined for organisms isolated from wood and/or trees. Further selection of these fungi has been made according to their reported ability to produce volatile, biologically active metabolites. It is emphasized that the isolates in the collections do not necessarily produce such metabolites. The list of fungi fulfilling these conditions is slightly augmented by reports we have found in the literature, where the fungi concerned have not yet been deposited. The biochemistry of these compounds is considered with particular emphasis on their biosynthesis including that by Homo sapiens. The physiological and toxicological activity of these metabolites is reviewed especially with reference to their potential role in the complex symbioses existent in, for example, a tree. The review concludes with a discussion of areas of botany deserving increased attention in the hope that this will stimulate further work. The statements in the review are based on 173 references.

  17. Applications of bacterial cellulose and its composites in biomedicine.

    PubMed

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

  18. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila.

    PubMed

    Andersen, Birgitte; Dongo, Anita; Pryor, Barry M

    2008-02-01

    Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species. The purpose of the present study was to describe the methodology behind metabolite profiling in chemotaxonomy using A. dauci, A. porri, A. solani, and A. tomatophila strains as examples of the group. The results confirmed that A. dauci, A. solani, and A. tomatophila are three distinct species each with their own specific metabolite profiles, and that A. solani and A. tomatophila both produce altersolanol A, altertoxin I, and macrosporin. By using automated chemical image analysis and other multivariate statistic analyses, three sets of species-specific metabolites could be selected, one each for A. dauci, A. solani, and A. tomatophila.

  19. Integrating multiple analytical datasets to compare metabolite profiles of mouse colonic-cecal contents and feces

    USDA-ARS?s Scientific Manuscript database

    The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of fec...

  20. Construction of a metagenomic DNA library of sponge symbionts and screening of antibacterial metabolites

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhu, Tianjiao; Li, Dehai; Cui, Chengbin; Fang, Yuchun; Liu, Hongbing; Liu, Peipei; Gu, Qianqun; Zhu, Weiming

    2006-04-01

    To study the bioactive metabolites produced by sponge-derived uncultured symbionts, a metagenomic DNA library of the symbionts of sponge Gelliodes gracilis was constructed. The average size of DNA inserts in the library was 20 kb. This library was screened for antibiotic activity using paper dise assaying. Two clones displayed the antibacterial activity against Micrococcus tetragenus. The metabolites of these two clones were analyzed through HPLC. The result showed that their metabolites were quite different from those of the host E. coli DH5α and the host containing vector pHZ132. This study may present a new approach to exploring bioactive metabolites of sponge symbionts.

  1. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    PubMed Central

    Everett, Jeremy R.

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field. PMID:25750701

  2. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency.

    PubMed

    Everett, Jeremy R

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.

  3. Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise.

    PubMed

    Zhao, Xia; Zhang, Zhujun; Hu, Bin; Huang, Wei; Yuan, Chao; Zou, Lingyun

    2018-01-01

    A few animal studies have shown that wheel running could reverse an unhealthy status by shifting the gut microbial composition, but no investigations have studied the effect of endurance running, such as marathon running, on human gut microbial communities. Since many findings have shown that marathon running immediately causes metabolic changes in blood, urine, muscles and lymph that potentially impact the gut microbiota (GM) within several hours. Here, we investigated whether the GM immediately responds to the enteric changes in amateur half-marathon runners. Alterations in the metabolic profile and microbiota were investigated in fecal samples based on an untargeted metabolomics methodology and 16S rDNA sequencing analysis. A total of 40 fecal metabolites were found significantly changed after finishing a half-marathon race. The most significantly different metabolites were organic acids (the major increased metabolites) and nucleic acid components (the major decreased metabolites). The enteric changes induced by running did not affect the α-diversity of the GM, but the abundances of certain microbiota members were shown to be significantly different before and after running. The family Coriobacteriaceae was identified as a potential biomarker that links exercise with health improvement. Functional prediction showed a significantly activated "Cell motility" function of GM within participants after running. Correlation analysis indicated that the observed differential GM in our study might have been the shared outcome of running and diet. This study provided knowledge regarding the health impacts of marathon running from the perspective of GM for the first time. Our data indicated that long-distance endurance running can immediately cause striking metabolic changes in the gut environment. Gut microbes can rapidly respond to the altered fecal metabolites by adjusting certain bacterial taxa. These findings highlighted the health-promoting benefits of exercise from

  4. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis

    PubMed Central

    Halter, David; Goulhen-Chollet, Florence; Gallien, Sébastien; Casiot, Corinne; Hamelin, Jérôme; Gilard, Françoise; Heintz, Dimitri; Schaeffer, Christine; Carapito, Christine; Van Dorsselaer, Alain; Tcherkez, Guillaume; Arsène-Ploetze, Florence; Bertin, Philippe N

    2012-01-01

    Euglena mutabilis is a photosynthetic protist found in acidic aquatic environments such as peat bogs, volcanic lakes and acid mine drainages (AMDs). Through its photosynthetic metabolism, this protist is supposed to have an important role in primary production in such oligotrophic ecosystems. Nevertheless, the exact contribution of E. mutabilis in organic matter synthesis remains unclear and no evidence of metabolite secretion by this protist has been established so far. Here we combined in situ proteo-metabolomic approaches to determine the nature of the metabolites accumulated by this protist or potentially secreted into an AMD. Our results revealed that the secreted metabolites are represented by a large number of amino acids, polyamine compounds, urea and some sugars but no fatty acids, suggesting a selective organic matter contribution in this ecosystem. Such a production may have a crucial impact on the bacterial community present on the study site, as it has been suggested previously that prokaryotes transport and recycle in situ most of the metabolites secreted by E. mutabilis. Consequently, this protist may have an indirect but important role in AMD ecosystems but also in other ecological niches often described as nitrogen-limited. PMID:22237547

  5. Discovery of antimicrobial lipodepsipeptides produced by a Serratia sp. within mosquito microbiomes.

    PubMed

    Ganley, Jack; Carr, Gavin; Ioerger, Thomas; Sacchettini, James; Clardy, Jon; Derbyshire, Emily

    2018-04-26

    The Anopheles mosquito that harbors the Plasmodium parasite contains a microbiota that can influence both the vector and parasite. In recent years, insect-associated microbes have highlighted the untapped potential of exploiting interspecies interactions to discover bioactive compounds. In this study, we report the discovery of nonribosomal lipodepsipeptides that are produced by a Serratia sp. within the midgut and salivary glands of A. stephensi mosquitoes. The lipodepsipeptides, stephensiolides A-K, have antibiotic activity and facilitate bacterial surface motility. Bioinformatic analyses indicate that the stephensiolides are ubiquitous in nature and are likely important for Serratia spp. colonization within mosquitoes, humans, and other ecological niches. Our results demonstrate the usefulness of probing insect-microbiome interactions, enhance our understanding of the chemical ecology within Anopheles mosquitoes, and provide a secondary metabolite scaffold to further investigate this complex relationship. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster.

    PubMed

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture.

  7. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses.

    PubMed

    Opelt, Katja; Chobot, Vladimir; Hadacek, Franz; Schönmann, Susan; Eberl, Leo; Berg, Gabriele

    2007-11-01

    High acidity, low temperature and extremely low concentration of nutrients form Sphagnum bogs into extreme habitats for organisms. Little is known about the bacteria associated with living Sphagnum plantlets, especially about their function for the host. Therefore, we analysed the endo- and ectophytic bacterial populations associated with two widely distributed Sphagnum species, Sphagnum magellanicum and Sphagnum fallax, by a multiphasic approach. The screening of 1222 isolates for antagonistic activity resulted in 326 active isolates. The bacterial communities harboured a high proportion of antifungal (26%) but a low proportion of antibacterial isolates (0.4%). Members of the genus Burkholderia (38%) were found to be the most dominant group of antagonistic bacteria. The finding that a large proportion (89%) of the antagonistic bacteria produced antifungal compounds may provide an explanation for the well-known antimicrobial activity of certain Sphagnum species. The secondary metabolites of the Sphagnum species themselves were analysed by HPLC-PDA. The different spectra of detected compounds may not only explain the antifungal activity but also the species specificity of the microbial communities. The latter was analysed using cultivation-independent single-stranded conformation polymorphism (SSCP) analysis. Using Burkholderia-specific primers we found a high diversity of Burkholderia isolates in the endophytic and ectophytic habitats of Sphagnum. Furthermore, a high diversity of nitrogen-fixing bacteria was detected by using nifH-specific primers, especially inside Sphagnum mosses. In conclusion, this study provides evidence that both Sphagnum species were colonized by characteristic bacterial populations, which appear to be important for pathogen defence and nitrogen fixation.

  8. Culturable bacterial communities associated to Brazilian Oscarella species (Porifera: Homoscleromorpha) and their antagonistic interactions.

    PubMed

    Laport, Marinella Silva; Bauwens, Mathieu; de Oliveira Nunes, Suzanne; Willenz, Philippe; George, Isabelle; Muricy, Guilherme

    2017-04-01

    Sponges offer an excellent model to investigate invertebrate-microorganism interactions. Furthermore, bacteria associated with marine sponges represent a rich source of bioactive metabolites. The aim of this study was to characterize the bacteria inhabiting a genus of sponges, Oscarella, and their potentiality for antimicrobial production. Bacterial isolates were recovered from different Oscarella specimens, among which 337 were phylogenetically identified. The culturable community was dominated by Proteobacteria and Firmicutes, and Vibrio was the most frequently isolated genus, followed by Shewanella. When tested for antimicrobial production, bacteria of the 12 genera isolated were capable of producing antimicrobial substances. The majority of strains were involved in antagonistic interactions and inhibitory activities were also observed against bacteria of medical importance. It was more pronounced in some isolated genera (Acinetobacter, Bacillus, Photobacterium, Shewanella and Vibrio). These findings suggest that chemical antagonism could play a significant role in shaping bacterial communities within Oscarella, a genus classified as low-microbial abundance sponge. Moreover, the identified strains may contribute to the search for new sources of antimicrobial substances, an important strategy for developing therapies to treat infections caused by multidrug-resistant bacteria. This study was the first to investigate the diversity and antagonistic activity of bacteria isolated from Oscarella spp. It highlights the biotechnological potential of sponge-associated bacteria.

  9. Antibiotic efficacy is linked to bacterial cellular respiration

    PubMed Central

    Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J.; Khalil, Ahmad S.; Collins, James J.

    2015-01-01

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes—the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy. PMID:26100898

  10. Metabolism of 2,4-dichlorophenol in tobacco engineered with bacterial degradative genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, E.J.; Sekine, M.; Gordon, M.P.

    1990-05-01

    The potential use of plants in toxic waste remediation has been overlooked. While chlorophenols are relatively slowly metabolized in Nicotiana tabacum var. Xanthi leaf extracts, chlorocatechols are rapidly metabolized, presumably by polyphenol oxidases. Our initial focus has been the fate of 2,4-dichlorophenol (2,4DCP) in var. Xanthi plants which express a bacterial 2,4DCP hydroxylase, which converts 2,4DCP to 3,5-dichlorocatechol. The roots of wild type and 2,4DCP hydroxylase transgenic plants growing in hydroponics were exposed to {sup 14}C-2,4DCP. Approximately 95% of {sup 14}C-2,4DCP metabolites remained in the roots when exposed to 2,4DCP. Upon extraction of root tissue, three major metabolites were foundmore » in untransformed plants and four major metabolites in transformed plants. Upon digestion with beta-D-glucosidase, these metabolites disappeared concomitant with the appearance of free 2,4DCP in wild type plants and 2,4DCP and 3,5-dichlorocatechol in transgenic plants. It is apparent that the chlorophenols are not readily available substrates for polyphenol oxidases in whole plants.« less

  11. Direct detection of glucuronide metabolites of lidocaine in sheep urine.

    PubMed

    Doran, Gregory S; Smith, Alistair K; Rothwell, Jim T; Edwards, Scott H

    2018-02-15

    The anaesthetic lidocaine is metabolised quickly to produce a series of metabolites, including several hydroxylated metabolites, which are further metabolised by addition of a glucuronic acid moiety. Analysis of these glucuronide metabolites in urine is performed indirectly by cleaving the glucuronic acid group using β-glucuronidase. However, direct analysis of intact glucuronide conjugates is a more straightforward approach as it negates the need for long hydrolysis incubations, and minimises the oxidation of sensitive hydrolysis products, while also distinguishing between the two forms of hydroxylated metabolites. A method was developed to identify three intact glucuronides of lidocaine in sheep urine using LC-MS/MS, which was further confirmed by the synthesis of glucuronide derivatives of 3OH-MEGX and 4OH-LIDO. Direct analysis of urine allowed the detection of the glucuronide metabolites of hydroxylidocaine (OH-LIDO), hydroxyl-monoethylglycinexylidide (OH-MEGX), and hydroxy-2,6-xylidine (OH-XYL). Analysis of urine before and after β-glucuronidase digestion showed that the efficiency of hydrolysis of these glucuronide metabolites may be underestimated in some studies. Analysis of urine in the current study from three different sheep with similar glucuronide metabolite concentrations resulted in different hydrolysis efficiencies, which may have been a result of different levels of substrate binding by matrix components, preventing enzyme cleavage. The use of direct analysis of intact glucuronides has the benefit of being less influenced by these matrix effects, while also allowing analysis of unstable metabolites like 4OH-XYL, which rapidly oxidises after hydrolysis. Additionally, direct analysis is less expensive and less time consuming, while providing more information about the status of hydroxylated metabolites in urine. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  12. Biliary bacterial factors determine the path of gallstone formation.

    PubMed

    Stewart, Lygia; Grifiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2006-11-01

    Bacteria cause pigment gallstones and can act as a nidus for cholesterol gallstone formation. Bacterial factors that facilitate gallstone formation include beta-glucuronidase (bG), phospholipase (PhL), and slime. The current study sought to determine whether bacterial factors influence the path of gallstone formation. A total of 382 gallstones were cultured and/or examined using scanning electron microscopy (SEM). Bacteria were tested for bG and slime production. Gallstone composition was determined using infrared spectrography. Ca-palmitate presence documented bacterial PhL production. Groups were identified based upon bacterial factors present: slime and bGPhL (slime/bGPhL), bGPhL only, and slime only. Influence of bacterial stone-forming factors on gallstone composition and morphology was analyzed. Bacteria were present in 75% of pigment, 76% of mixed, and 20% of cholesterol stones. Gallstones with bGPhL producing bacteria contained more pigment (71% vs. 26%, P < .0001). The slime/bGPhL group was associated (79%) with pigment stones, bGPhL was associated (56%) with mixed stones, while slime (or none) only was associated (67%) with cholesterol stones (P < .031, all comparisons). Bacterial properties determined the path of gallstone formation. Bacteria that produced all stone-forming factors promoted pigment stone formation, while those that produced only bGPhL promoted mixed stone formation. Bacteria that only produced slime lacked the ability to generate pigment solids, and consequently were more common in the centers of cholesterol stones. This shows how bacterial characteristics may govern the process of gallstone formation.

  13. Global biogeographic sampling of bacterial secondary metabolism

    PubMed Central

    Charlop-Powers, Zachary; Owen, Jeremy G; Reddy, Boojala Vijay B; Ternei, Melinda A; Guimarães, Denise O; de Frias, Ulysses A; Pupo, Monica T; Seepe, Prudy; Feng, Zhiyang; Brady, Sean F

    2015-01-01

    Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites. Our data indicate a correlation between two factors, geographic distance and biome-type, and the biosynthetic diversity found in soil environments. By assigning reads to known gene clusters we identify hotspots of biomedically relevant biosynthetic diversity. These observations not only provide new insights into the natural world, they also provide a road map for guiding future natural products discovery efforts. DOI: http://dx.doi.org/10.7554/eLife.05048.001 PMID:25599565

  14. A Glutathione S-Transferase Catalyzes the Dehalogenation of Inhibitory Metabolites of Polychlorinated Biphenyls

    PubMed Central

    Fortin, Pascal D.; Horsman, Geoff P.; Yang, Hao M.; Eltis, Lindsay D.

    2006-01-01

    BphK is a glutathione S-transferase of unclear physiological function that occurs in some bacterial biphenyl catabolic (bph) pathways. We demonstrated that BphK of Burkholderia xenovorans strain LB400 catalyzes the dehalogenation of 3-chloro 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), compounds that are produced by the cometabolism of polychlorinated biphenyls (PCBs) by the bph pathway and that inhibit the pathway's hydrolase. A one-column protocol was developed to purify heterologously produced BphK. The purified enzyme had the greatest specificity for 3-Cl HOPDA (kcat/Km, ∼104 M−1 s−1), which it dechlorinated approximately 3 orders of magnitude more efficiently than 4-chlorobenzoate, a previously proposed substrate of BphK. The enzyme also catalyzed the dechlorination of 5-Cl HOPDA and 3,9,11-triCl HOPDA. By contrast, BphK did not detectably transform HOPDA, 4-Cl HOPDA, or chlorinated 2,3-dihydroxybiphenyls. The BphK-catalyzed dehalogenation proceeded via a ternary-complex mechanism and consumed 2 equivalents of glutathione (GSH) (Km for GSH in the presence of 3-Cl HOPDA, ∼0.1 mM). A reaction mechanism consistent with the enzyme's specificity is proposed. The ability of BphK to dehalogenate inhibitory PCB metabolites supports the hypothesis that this enzyme was recruited to facilitate PCB degradation by the bph pathway. PMID:16740949

  15. Microbial Successions and Metabolite Changes during Fermentation of Salted Shrimp (Saeu-Jeot) with Different Salt Concentrations

    PubMed Central

    Lee, Se Hee; Jung, Ji Young; Jeon, Che Ok

    2014-01-01

    To investigate the effects of salt concentration on saeu-jeot (salted shrimp) fermentation, four sets of saeu-jeot samples with 20%, 24%, 28%, and 32% salt concentrations were prepared, and the pH, bacterial and archaeal abundances, bacterial communities, and metabolites were monitored during the entire fermentation period. Quantitative PCR showed that Bacteria were much more abundant than Archaea in all saeu-jeot samples, suggesting that bacterial populations play more important roles than archaeal populations even in highly salted samples. Community analysis indicated that Vibrio, Photobacterium, Psychrobacter, Pseudoalteromonas, and Enterovibrio were identified as the initially dominant genera, and the bacterial successions were significantly different depending on the salt concentration. During the early fermentation period, Salinivibrio predominated in the 20% salted samples, whereas Staphylococcus, Halomonas, and Salimicrobium predominated in the 24% salted samples; eventually, Halanaerobium predominated in the 20% and 24% salted samples. The initially dominant genera gradually decreased as the fermentation progressed in the 28% and 32% salted samples, and eventually Salimicrobium became predominant in the 28% salted samples. However, the initially dominant genera still remained until the end of fermentation in the 32% salted samples. Metabolite analysis showed that the amino acid profile and the initial glycerol increase were similar in all saeu-jeot samples regardless of the salt concentration. After 30–80 days of fermentation, the levels of acetate, butyrate, and methylamines in the 20% and 24% salted samples increased with the growth of Halanaerobium, even though the amino acid concentrations steadily increased until approximately 80–107 days of fermentation. This study suggests that a range of 24–28% salt concentration in saeu-jeot fermentation is appropriate for the production of safe and tasty saeu-jeot. PMID:24587230

  16. Erinacine C: A novel approach to produce the secondary metabolite by submerged cultivation of Hericium erinaceus.

    PubMed

    Wolters, Niklas; Schembecker, Gerhard; Merz, Juliane

    2015-12-01

    Erinacine C is a cyathane scaffold-based secondary metabolite, which is naturally produced by the filamentous fungus Hericium erinaceus and has a high potential to treat nervous diseases such as Alzheimer's disease. The investigated approach consists of combining an optimised precultivation of H. erinaceus with an enhanced erinacine C production by developing a suitable main cultivation medium enabling the utilisation of high biomass contents. The final erinacine C production medium is buffered by 100 mM HEPES to ensure a stable pH value of 7.5 during main cultivation at inoculation ratios of up to 5:10 (v/v). The medium components, such as 5.0 g L(-1) oatmeal, 1.5 g L(-1) calcium carbonate, and 0.5 g L(-1) Edamin(®) K are crucial for an increased erinacine C production. Besides, different carbon to nitrogen ratios of 25, 64, and 103 do not affect the erinacine C synthesis. The investigated approach enables the production of 2.73 g erinacine C per litre main cultivation broth, which is tenfold higher than published data. In addition, erinacine C biosynthesis is determined to occur mainly in the first six days of main cultivation. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Bacterial Degradation of Phosphonates Bound to High-Molecular-Weight Dissolved Organic Matter Produces Methane and Other Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sosa, O.; Ferron Smith, S.; Karl, D. M.; DeLong, E.; Repeta, D.

    2016-02-01

    The biological degradation of dissolved organic matter (DOM) plays important roles in the carbon cycle and energy balance of the ocean. Yet, the biochemical pathways that drive DOM turnover remain to be fully characterized. In this study, we tested the ability of two open ocean bacterial isolates (a Pseudomonas stutzeri strain (Gammaproteobacteria) and a Sulfitobacter isolate (Alphaproteobacteria)) to degrade DOM phosphonates. Each isolate encoded a complete phosphonate degradation pathway in its genome, and each was able to degrade simple alkyl-phosphonates like methyl phosphonate, releasing methane (or other short chain hydrocarbon gases) as a result. We found that cultures incubated in the presence of HMW DOM polysaccharides also produced methane and other trace gases under aerobic conditions. To demonstrate that phosphonates were the source of these gases, we constructed a P. stutzeri mutant disabled in the phosphonate degradation pathway. Unlike the wild type, the mutant strain was deficient in the production of methane and other gases from HMW DOM-associated phosphonates. These observations support the hypothesis that DOM-bound methyl phosphonates may be a significant source of methane in the water column, and that bacterial degradation of these compounds likely contribute to the subsurface methane maxima observed throughout the world's oceans.

  18. Establishing the Secondary Metabolite Profile of the Marine Fungus: Tolypocladium geodes sp. MF458 and Subsequent Optimisation of Bioactive Secondary Metabolite Production

    PubMed Central

    Kebede, Bethlehem; Wrigley, Stephen K.; Prashar, Anjali; Rahlff, Janina; Wolf, Markus; Reinshagen, Jeanette; Gribbon, Philip; Imhoff, Johannes F.; Silber, Johanna; Labes, Antje; Ellinger, Bernhard

    2017-01-01

    As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A (1), efrapeptin D (2), pyridoxatin (3), terricolin A (4), malettinins B and E (5 and 6), and tolypocladenols A1/A2 (8), we identified a new secondary metabolite which we termed tolypocladenol C (7). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E (5 and 6) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields. PMID:28333084

  19. In Vivo Efficacy of Ceftaroline Fosamil in a Methicillin-Resistant Panton-Valentine Leukocidin-Producing Staphylococcus aureus Rabbit Pneumonia Model

    PubMed Central

    Hayez, Davy; Da Silva, Sonia; Labrousse, Delphine; Biek, Donald; Badiou, Cedric; Dumitrescu, Oana; Guerard, Pascal; Charles, Pierre-Emmanuel; Piroth, Lionel; Lina, Gerard; Vandenesch, Francois; Chavanet, Pascal

    2014-01-01

    Ceftaroline, the active metabolite of the prodrug ceftaroline fosamil, is a cephalosporin with broad-spectrum in vitro activity against Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Streptococcus pneumoniae (MDRSP), and common Gram-negative pathogens. This study investigated the in vivo activity of ceftaroline fosamil compared with clindamycin, linezolid, and vancomycin in a severe pneumonia model due to MRSA-producing Panton-Valentine leukocidin (PVL). A USA300 PVL-positive clone was used to induce pneumonia in rabbits. Infected rabbits were randomly assigned to no treatment or simulated human-equivalent dosing with ceftaroline fosamil, clindamycin, linezolid, or vancomycin. Residual bacterial concentrations in the lungs and spleen were assessed after 48 h of treatment. PVL expression was measured using a specific enzyme-linked immunosorbent assay (ELISA). Ceftaroline, clindamycin, and linezolid considerably reduced mortality rates compared with the control, whereas vancomycin did not. Pulmonary and splenic bacterial titers and PVL concentrations were greatly reduced by ceftaroline, clindamycin, and linezolid. Ceftaroline, clindamycin, and linezolid were associated with reduced pulmonary tissue damage based on significantly lower macroscopic scores. Ceftaroline fosamil, clindamycin, and, to a lesser extent, linezolid were efficient in reducing bacterial titers in both the lungs and spleen and decreasing macroscopic scores and PVL production compared with the control. PMID:24395236

  20. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    PubMed

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  1. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities

    PubMed Central

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems. PMID:23840423

  2. Global Profiling of Metabolite and Lipid Soluble Microbial Products in Anaerobic Wastewater Reactor Supernatant Using UPLC-MSE.

    PubMed

    Tipthara, Phornpimon; Kunacheva, Chinagarn; Soh, Yan Ni Annie; Wong, Stephen C C; Pin, Ng Sean; Stuckey, David C; Boehm, Bernhard O

    2017-02-03

    Identification of soluble microbial products (SMPs) released during bacterial metabolism in mixed cultures in bioreactors is essential to understanding fundamental mechanisms of their biological production. SMPs constitute one of the main foulants (together with colloids and bacterial flocs) in membrane bioreactors widely used to treat and ultimately recycle wastewater. More importantly, the composition and origin of potentially toxic, carcinogenic, or mutagenic SMPs in renewable/reused water supplies must be determined and controlled. Certain classes of SMPs have previously been studied by GC-MS, LC-MS, and MALDI-ToF MS; however, a more comprehensive LC-MS-based method for SMP identification is currently lacking. Here we develop a UPLC-MS approach to profile and identify metabolite SMPs in the supernatant of an anaerobic batch bioreactor. The small biomolecules were extracted into two fractions based on their polarity, and separate methods were then used for the polar and nonpolar metabolites in the aqueous and lipid fractions, respectively. SMPs that increased in the supernatant after feed addition were identified primarily as phospholipids, ceramides, with cardiolipins in the highest relative abundance, and these lipids have not been previously reported in wastewater effluent.

  3. Effects of Secondary Metabolites of Permafrost Bacillus sp. on Cytokine Synthesis by Human Peripheral Blood Mononuclear Cells.

    PubMed

    Kalenova, L F; Kolyvanova, S S; Bazhin, A S; Besedin, I M; Mel'nikov, V P

    2017-06-01

    We studied the effects of secondary metabolites of Bacillus sp. isolated from late Neogene permafrost on secretion of proinflammatory (TNF-α, IL-1β, IL-8, IL-2, and IFNγ) and antiinflammatory (IL-4 and IL-10) cytokines by human peripheral blood mononuclear cells. It was found that metabolites of Bacillus sp. produced more potent effect on cytokine secretion than mitogen phytohemagglutinin and metabolites of Bacillus cereus, medicinal strain IP5832. Activity of metabolites depended on the temperature of bacteria incubation. "Cold" metabolites of Bacillus sp. (isolated at -5°C) primarily induced Th1-mediated secretion of IFNγ, while "warm" metabolites (obtained at 37°C) induced Th2-mediated secretion of IL-4. The results suggest that Bacillus sp. metabolites are promising material for the development of immunomodulating drugs.

  4. Filamentous fungal biofilm for production of human drug metabolites.

    PubMed

    Amadio, Jessica; Casey, Eoin; Murphy, Cormac D

    2013-07-01

    In drug development, access to drug metabolites is essential for assessment of toxicity and pharmacokinetic studies. Metabolites are usually acquired via chemical synthesis, although biological production is potentially more efficient with fewer waste management issues. A significant problem with the biological approach is the effective half-life of the biocatalyst, which can be resolved by immobilisation. The fungus Cunninghamella elegans is well established as a model of mammalian metabolism, although it has not yet been used to produce metabolites on a large scale. Here, we describe immobilisation of C. elegans as a biofilm, which can transform drugs to important human metabolites. The biofilm was cultivated on hydrophilic microtiter plates and in shake flasks containing a steel spring in contact with the glass. Fluorescence and confocal scanning laser microscopy revealed that the biofilm was composed of a dense network of hyphae, and biochemical analysis demonstrated that the matrix was predominantly polysaccharide. The medium composition was crucial for both biofilm formation and biotransformation of flurbiprofen. In shake flasks, the biofilm transformed 86% of the flurbiprofen added to hydroxylated metabolites within 24 h, which was slightly more than planktonic cultures (76%). The biofilm had a longer effective lifetime than the planktonic cells, which underwent lysis after 2×72 h cycles, and diluting the Sabouraud dextrose broth enabled the thickness of the biofilm to be controlled while retaining transformation efficiency. Thus, C. elegans biofilm has the potential to be applied as a robust biocatalyst for the production of human drug metabolites required for drug development.

  5. Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review.

    PubMed

    Negreiros de Carvalho, Patrícia Lunardelli; Silva, Eliane de Oliveira; Chagas-Paula, Daniela Aparecida; Hortolan Luiz, Jaine Honorata; Ikegaki, Masaharu

    2016-01-01

    In the natural products research, a valuable approach is the prospection of uncommon sources and unexplored habitat. Special attention has been given to endophytic fungi because of their ability to produce new and interesting secondary metabolites, which have several biological applications. The endophytes establish exclusive symbiotic relationships with plants and the metabolic interactions may support the synthesis of some similar valuables compounds. Among secondary metabolites, phenol-derived structures are responsible for several bioactivities such as antioxidant, cytotoxic, antimicrobial, among others. Phenolic compounds might be biosynthesized from the shikimate pathway. Although shikimic acid is a common precursor in plants, it is described as rare in microorganisms. To the best of our knowledge, this is the first review about phenolic compounds produced by endophytic fungi and a comparison has been made with those produced by the plant host. This review covers 124 phenolic secondary metabolites produced by endophytic fungi. Considering the data analyzed by us, only seven of such compounds were isolated from fungi and from their hosts. These observations claim for more attention to phenolic compounds produced by endophytic fungi with a view to understand the real importance of these compounds to endophytes survival.

  6. Flagella-Driven Flows Circumvent Diffusive Bottlenecks that Inhibit Metabolite Exchange

    NASA Astrophysics Data System (ADS)

    Short, Martin; Solari, Cristian; Ganguly, Sujoy; Kessler, John; Goldstein, Raymond; Powers, Thomas

    2006-03-01

    The evolution of single cells to large and multicellular organisms requires matching the organisms' needs to the rate of exchange of metabolites with the environment. This logistic problem can be a severe constraint on development. For organisms with a body plan that approximates a spherical shell, such as colonies of the volvocine green algae, the required current of metabolites grows quadratically with colony radius whereas the rate at which diffusion can exchange metabolites grows only linearly with radius. Hence, there is a bottleneck radius beyond which the diffusive current cannot keep up with metabolic demands. Using Volvox carteri as a model organism, we examine experimentally and theoretically the role that advection of fluid by surface-mounted flagella plays in enhancing nutrient uptake. We show that fluid flow driven by the coordinated beating of flagella produces a convective boundary layer in the concentration of a diffusing solute which in turn renders the metabolite exchange rate quadratic in the colony radius. This enhanced transport circumvents the diffusive bottleneck, allowing increase in size and thus evolutionary transitions to multicellularity in the Volvocales.

  7. Effects of progesterone and its metabolites on human granulosa cells.

    PubMed

    Pietrowski, D; Gong, Y; Mairhofer, M; Gessele, R; Sator, M

    2014-02-01

    The corpus luteum (CL) is under control of gonadotrophic hormones and produces progesterone, which is necessary for endometrial receptivity. Recent studies have shown that progesterone and its metabolites are involved in cell proliferation and apoptosis of cancer cells. Here weanalyzed the role of progesterone and its meta-bolites on luteinized granulosa cells (LGC) by FACS analysis and quantitative Real-Time PCR. We detected the mRNA of the progesterone metabolizing genes SRD5A1, AKR1C1, and AKR1C2 in LGC. The stimulation of LGC with progesterone or progesterone metabolites did not show any effect on the mRNA expression of these genes. However, a downregulation of Fas expression was found to be accomplished by progesterone and human chorionic gonadotropin. Our findings do not support the concept of an effect of progesterone metabolites on LGCs. However, it suggests an antiapoptotic effect of hCG and progesterone during corpus luteum development by downregulation of Fas. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  9. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  10. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    NASA Astrophysics Data System (ADS)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2017-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  11. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.

    PubMed

    Kaimoyo, Evans; Farag, Mohamed A; Sumner, Lloyd W; Wasmann, Catherine; Cuello, Joel L; VanEtten, Hans

    2008-01-01

    Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research.

  12. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  13. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-06-19

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  14. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species.

    PubMed

    Adamek, Martina; Alanjary, Mohammad; Sales-Ortells, Helena; Goodfellow, Michael; Bull, Alan T; Winkler, Anika; Wibberg, Daniel; Kalinowski, Jörn; Ziemert, Nadine

    2018-06-01

    Genome mining tools have enabled us to predict biosynthetic gene clusters that might encode compounds with valuable functions for industrial and medical applications. With the continuously increasing number of genomes sequenced, we are confronted with an overwhelming number of predicted clusters. In order to guide the effective prioritization of biosynthetic gene clusters towards finding the most promising compounds, knowledge about diversity, phylogenetic relationships and distribution patterns of biosynthetic gene clusters is necessary. Here, we provide a comprehensive analysis of the model actinobacterial genus Amycolatopsis and its potential for the production of secondary metabolites. A phylogenetic characterization, together with a pan-genome analysis showed that within this highly diverse genus, four major lineages could be distinguished which differed in their potential to produce secondary metabolites. Furthermore, we were able to distinguish gene cluster families whose distribution correlated with phylogeny, indicating that vertical gene transfer plays a major role in the evolution of secondary metabolite gene clusters. Still, the vast majority of the diverse biosynthetic gene clusters were derived from clusters unique to the genus, and also unique in comparison to a database of known compounds. Our study on the locations of biosynthetic gene clusters in the genomes of Amycolatopsis' strains showed that clusters acquired by horizontal gene transfer tend to be incorporated into non-conserved regions of the genome thereby allowing us to distinguish core and hypervariable regions in Amycolatopsis genomes. Using a comparative genomics approach, it was possible to determine the potential of the genus Amycolatopsis to produce a huge diversity of secondary metabolites. Furthermore, the analysis demonstrates that horizontal and vertical gene transfer play an important role in the acquisition and maintenance of valuable secondary metabolites. Our results cast

  15. The Structural Basis for Recognition of the PreQ0 Metabolite by an Unusually Small Riboswitch Aptamer Domain*S⃞♦

    PubMed Central

    Spitale, Robert C.; Torelli, Andrew T.; Krucinska, Jolanta; Bandarian, Vahe; Wedekind, Joseph E.

    2009-01-01

    Riboswitches are RNA elements that control gene expression through metabolite binding. The preQ1 riboswitch exhibits the smallest known ligand-binding domain and is of interest for its economical organization and high affinity interactions with guanine-derived metabolites required to confer tRNA wobbling. Here we present the crystal structure of a preQ1 aptamer domain in complex with its precursor metabolite preQ0. The structure is highly compact with a core that features a stem capped by a well organized decaloop. The metabolite is recognized within a deep pocket via Watson-Crick pairing with C15. Additional hydrogen bonds are made to invariant bases U6 and A29. The ligand-bound state confers continuous helical stacking throughout the core fold, thus providing a platform to promote Watson-Crick base pairing between C9 of the decaloop and the first base of the ribosome-binding site, G33. The structure offers insight into the mode of ribosome-binding site sequestration by a minimal RNA fold stabilized by metabolite binding and has implications for understanding the molecular basis by which bacterial genes are regulated. PMID:19261617

  16. Monitoring microbial metabolites using an inductively coupled resonance circuit

    PubMed Central

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-01-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power. PMID:26264183

  17. Monitoring microbial metabolites using an inductively coupled resonance circuit

    NASA Astrophysics Data System (ADS)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  18. In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology

    PubMed Central

    Hariri, Benjamin M.; Payne, Sakeena J.; Chen, Bei; Mansfield, Corrine; Doghramji, Laurel J.; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Niv, Masha Y.

    2016-01-01

    Background: T2R bitter taste receptors play a crucial role in sinonasal innate immunity by upregulating mucociliary clearance and nitric oxide (NO) production in response to bitter gram-negative quorum-sensing molecules in the airway surface liquid. Previous studies showed that phytochemical flavonoid metabolites, known as anthocyanidins, taste bitter and have antibacterial effects. Our objectives were to examine the effects of anthocyanidins on NO production by human sinonasal epithelial cells and ciliary beat frequency, and their impact on common sinonasal pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods: Ciliary beat frequency and NO production were measured by using digital imaging of differentiated air-liquid interface cultures prepared from primary human cells isolated from residual surgical material. Plate-based assays were used to determine the effects of anthocyanidins on bacterial swimming and swarming motility. Biofilm formation and planktonic growth were also assessed. Results: Anthocyanidin compounds triggered epithelial cells to produce NO but not through T2R receptors. However, anthocyanidins did not impact ciliary beat frequency. Furthermore, they did not reduce biofilm formation or planktonic growth of P. aeruginosa. In S. aureus, they did not reduce planktonic growth, and only one compound had minimal antibiofilm effects. The anthocyanidin delphinidin and anthocyanin keracyanin were found to promote bacterial swimming, whereas anthocyanidin cyanidin and flavonoid myricetin did not. No compounds that were tested inhibited bacterial swarming. Conclusion: Results of this study indicated that, although anthocyanidins may elicited an innate immune NO response from human cells, they do not cause an increase in ciliary beating and they may also cause a pathogenicity-enhancing effect in P. aeruginosa. Additional studies are necessary to understand how this would affect the use of anthocyanidins as therapeutics. This study emphasized the

  19. Integrative metabolomics for characterizing unknown low-abundance metabolites by capillary electrophoresis-mass spectrometry with computer simulations.

    PubMed

    Lee, Richard; Ptolemy, Adam S; Niewczas, Liliana; Britz-McKibbin, Philip

    2007-01-15

    Characterization of unknown low-abundance metabolites in biological samples is one the most significant challenges in metabolomic research. In this report, an integrative strategy based on capillary electrophoresis-electrospray ionization-ion trap mass spectrometry (CE-ESI-ITMS) with computer simulations is examined as a multiplexed approach for studying the selective nutrient uptake behavior of E. coli within a complex broth medium. On-line sample preconcentration with desalting by CE-ESI-ITMS was performed directly without off-line sample pretreatment in order to improve detector sensitivity over 50-fold for cationic metabolites with nanomolar detection limits. The migration behavior of charged metabolites were also modeled in CE as a qualitative tool to support MS characterization based on two fundamental analyte physicochemical properties, namely, absolute mobility (muo) and acid dissociation constant (pKa). Computer simulations using Simul 5.0 were used to better understand the dynamics of analyte electromigration, as well as aiding de novo identification of unknown nutrients. There was excellent agreement between computer-simulated and experimental electropherograms for several classes of cationic metabolites as reflected by their relative migration times with an average error of <2.0%. Our studies revealed differential uptake of specific amino acids and nucleoside nutrients associated with distinct stages of bacterial growth. Herein, we demonstrate that CE can serve as an effective preconcentrator, desalter, and separator prior to ESI-MS, while providing additional qualitative information for unambiguous identification among isobaric and isomeric metabolites. The proposed strategy is particularly relevant for characterizing unknown yet biologically relevant metabolites that are not readily synthesized or commercially available.

  20. Secondary metabolites produced by Sardiniella urbana, a new emerging pathogen on European hackberry.

    PubMed

    Cimmino, Alessio; Maddau, Lucia; Masi, Marco; Linaldeddu, Benedetto Teodoro; Evidente, Antonio

    2018-05-30

    In this study the production of secondary metabolites by a virulent strain of Sardiniella urbana, a recently described pathogen originally found on declining European hackberry trees in Italy, was investigated for the first time. Chemical analysis of the culture filtrate extracts led to the isolation of three well known compounds as R-(-)-mellein and (3R,4R)-and (3R,4S)-4-hydroxy melleins which were identified by spectroscopic methods (essentially NMR and ESIMS). The isolated compounds were tested for their phytotoxic, antifungal and zootoxic activities. Among them, only R-(-)-mellein was found to be active.

  1. Co-cultivation of Sorangium cellulosum strains affects cellular growth and biosynthesis of secondary metabolite epothilones.

    PubMed

    Li, Peng-fei; Li, Shu-guang; Li, Zhi-feng; Zhao, Lin; Wang, Ting; Pan, Hong-wei; Liu, Hong; Wu, Zhi-hong; Li, Yue-zhong

    2013-08-01

    Sorangium cellulosum, a cellulolytic myxobacterium, is capable of producing a variety of bioactive secondary metabolites. Epothilones are anti-eukaryotic secondary metabolites produced by some S. cellulosum strains. In this study, we analyzed interactions between 12 strains of S. cellulosum consisting of epothilone-producers and non-epothilone producers isolated from two distinct soil habitats. Co-cultivation on filter papers showed that different Sorangium strains inhibited one another's growth, whereas epothilone production by the producing strains changed markedly for most (73%) pairwise mixtures. Using a quantitative polymerase chain reaction, we demonstrated that the expression of epothilone biosynthetic genes in the epothilone producers typically changed significantly when these bacteria were mixed with non-producing strains. The results indicated that intraspecies interactions between different S. cellulosum strains not only inhibited the growth of partners, but also could change epothilone production. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Richards, Gil F. (Inventor); Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  3. Spatial regulation of a common precursor from two distinct genes generates metabolite diversity

    DOE PAGES

    Guo, Chun -Jun; Sun, Wei -Wen; Bruno, Kenneth S.; ...

    2015-07-13

    In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPSlike genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas inmore » conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.« less

  4. Utilizing melatonin to combat bacterial infections and septic injury

    PubMed Central

    Hu, Wei; Deng, Chao; Ma, Zhiqiang; Wang, Dongjin; Fan, Chongxi; Li, Tian; Di, Shouyin; Gong, Bing

    2017-01-01

    Melatonin, also known as N‐acetyl‐5‐methoxytryptamine, is a ubiquitously acting molecule that is produced by the pineal gland and other organs of animals, including humans. As melatonin and its metabolites are potent antioxidants and free radical scavengers, they are protective against a variety of disorders. Moreover, multiple molecular targets of melatonin have been identified, and its actions are both receptor‐mediated and receptor‐independent. Recent studies have shown that melatonin may be useful in fighting against sepsis and septic injury due to its antioxidative and anti‐inflammatory actions; the results generally indicate a promising therapeutic application for melatonin in the treatment of sepsis. To provide a comprehensive understanding regarding the protective effects of melatonin against septic injury, in the present review we have evaluated the published literature in which melatonin has been used to treat experimental and clinical sepsis. Firstly, we present the evidence from studies that have used melatonin to resist bacterial pathogens. Secondly, we illustrate the protective effect of melatonin against septic injury and discuss the possible mechanisms. Finally, the potential directions for future melatonin research against sepsis are summarized. PMID:28213968

  5. Fermented functional foods based on probiotics and their biogenic metabolites.

    PubMed

    Stanton, Catherine; Ross, R Paul; Fitzgerald, Gerald F; Van Sinderen, Douwe

    2005-04-01

    The claimed health benefits of fermented functional foods are expressed either directly through the interaction of ingested live microorganisms, bacteria or yeast with the host (probiotic effect) or indirectly as a result of ingestion of microbial metabolites produced during the fermentation process (biogenic effect). Although still far from fully understood, several probiotic mechanisms of action have been proposed, including competitive exclusion, competition for nutrients and/or stimulation of an immune response. The biogenic properties of fermented functional foods result from the microbial production of bioactive metabolites such as certain vitamins, bioactive peptides, organic acids or fatty acids during fermentation.

  6. Species-level assessment of secondary metabolite diversity among Hamigera species and a taxonomic note on the genus

    PubMed Central

    Igarashi, Yasuhiro; Hanafusa, Tomoaki; Gohda, Fumiya; Peterson, Stephen; Bills, Gerald

    2014-01-01

    Secondary metabolite phenotypes in nine species of the Hamigera clade were analysed to assess their correlations to a multi-gene species-level phylogeny. High-pressure-liquid-chromatography-based chemical analysis revealed three distinctive patterns of secondary metabolite production: (1) the nine species could be divided into two groups on the basis of production of the sesquiterpene tricinonoic acid; (2) the tricinonoic acid-producing group produced two cyclic peptides avellanins A and B; (3) the tricinonoic acid-non-producing group could be further divided into two groups according to the production of avellanins A and B. The chemical phenotype was consistent with the phylogeny of the species, although metabolite patterns were not diagnostic at the species level. In addition, the taxonomy of the Hamigera clade was updated with the new combination Hamigera ingelheimensis proposed for Merimbla ingelheimensis, so that all species in the clade are now in the same genus. PMID:25379334

  7. Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels.

    PubMed

    Nielsen, Lene Nørby; Roager, Henrik M; Casas, Mònica Escolà; Frandsen, Henrik L; Gosewinkel, Ulrich; Bester, Kai; Licht, Tine Rask; Hendriksen, Niels Bohse; Bahl, Martin Iain

    2018-02-01

    Recently, concerns have been raised that residues of glyphosate-based herbicides may interfere with the homeostasis of the intestinal bacterial community and thereby affect the health of humans or animals. The biochemical pathway for aromatic amino acid synthesis (Shikimate pathway), which is specifically inhibited by glyphosate, is shared by plants and numerous bacterial species. Several in vitro studies have shown that various groups of intestinal bacteria may be differently affected by glyphosate. Here, we present results from an animal exposure trial combining deep 16S rRNA gene sequencing of the bacterial community with liquid chromatography mass spectrometry (LC-MS) based metabolic profiling of aromatic amino acids and their downstream metabolites. We found that glyphosate as well as the commercial formulation Glyfonova ® 450 PLUS administered at up to fifty times the established European Acceptable Daily Intake (ADI = 0.5 mg/kg body weight) had very limited effects on bacterial community composition in Sprague Dawley rats during a two-week exposure trial. The effect of glyphosate on prototrophic bacterial growth was highly dependent on the availability of aromatic amino acids, suggesting that the observed limited effect on bacterial composition was due to the presence of sufficient amounts of aromatic amino acids in the intestinal environment. A strong correlation was observed between intestinal concentrations of glyphosate and intestinal pH, which may partly be explained by an observed reduction in acetic acid produced by the gut bacteria. We conclude that sufficient intestinal levels of aromatic amino acids provided by the diet alleviates the need for bacterial synthesis of aromatic amino acids and thus prevents an antimicrobial effect of glyphosate in vivo. It is however possible that the situation is different in cases of human malnutrition or in production animals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Enhanced degradation and soil depth effects on the fate of atrazine and major metabolites in Colorado and Mississippi soils.

    PubMed

    Krutz, L Jason; Shaner, Dale L; Zablotowicz, Robert M

    2010-01-01

    The aim of this report is to inform modelers of the differences in atrazine fate between s-triazine-adapted and nonadapted soils as a function of depth in the profile and to recommend atrazine and metabolite input values for pesticide process submodules. The objectives of this study were to estimate the atrazine-mineralizing bacterial population, cumulative atrazine mineralization, atrazine persistence, and metabolite (desethylatrazine [DEA], deisopropylatrazine [DIA], and hydroxyatrazine [HA]) formation and degradation in Colorado and Mississippi s-triazine-adapted and nonadapted soils at three depths (0-5, 5-15, and 15-30 cm). Regardless of depth, the AMBP and cumulative atrazine mineralization was at least 3.8-fold higher in s-triazine-adapted than nonadapted soils. Atrazine half-life (T1/2) values pooled over nonadapted soils and depths approximated historic estimates (T1/2 = 60 d). Atrazine persistence in all depths of s-triazine-adapted soils was at least fourfold lower than that of the nonadapted soil. Atrazine metabolite concentrations were lower in s-triazine-adapted than in nonadapted soil by 35 d after incubation regardless of depth. Results indicate that (i) reasonable fate and transport modeling of atrazine will require identifying if soils are adapted to s-triazine herbicides. For example, our data confirm the 60-d T1/2 for atrazine in nonadapted soils, but a default input value of 6 d for atrazine is required for s-triazine adapted soils. (ii) Literature estimates for DEA, DIA, and HA T1/2 values in nonadapted soils are 52, 36, and 60 d, respectively, whereas our analysis indicates that reasonable T1/2 values for s-triazine-adapted soils are 10 d for DEA, 8 d for DIA, and 6 d for HA. (iii) An estimate for the relative distribution of DIA, DEA, and HA produced in nonadapted soils is 18, 72, and 10% of parent, respectively. In s-triazine-adapted soils, the values were 6, 23, and 71% for DIA, DEA, and HA, respectively. The effects of soil adaptation on

  9. Identification of gonadotropin-releasing hormone metabolites in greyhound urine.

    PubMed

    Palmer, David; Rademaker, Katie; Martin, Ingrid; Hessell, Joan; Howitt, Rob

    2017-10-01

    Gonadotropin-releasing hormone (GnRH) is a 10-residue peptide hormone that induces secretion of luteinizing hormone (LH) and follicle-stimulating hormone into the blood from the pituitary gland. In males, LH acts on the testes to produce testosterone. The performance-enhancing potential of testosterone makes administration of exogenous GnRH a concern in sports doping control. Detection of GnRH abuse is challenging owing to its rapid clearance from the body and its degradation in urine. Following recent investigations of GnRH abuse in racing greyhounds in New Zealand, we carried out a GnRH administration study in greyhounds in an attempt to identify GnRH metabolites that might provide more facile detection of GnRH abuse; little information is available on in vivo metabolites of exogenous GnRH in any species and none in dogs. We identified three C-terminal GnRH metabolites in urine: GnRH 5-10, GnRH 6-10, and GnRH 7-10. These metabolites and intact GnRH, which was also detected in urine, were all excreted over a 1-3 h period after GnRH administration. Two of the GnRH metabolites - GnRH 5-10 and GnRH 6-10 - were more stable in urine than intact GnRH offering improved potential to detect GnRH administration. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Messing with Bacterial Quorum Sensing

    PubMed Central

    González, Juan E.; Keshavan, Neela D.

    2006-01-01

    Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria. PMID:17158701

  11. Phenotypic and genomic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insights into its biotechnological relevance.

    PubMed

    Presta, Luana; Bosi, Emanuele; Fondi, Marco; Maida, Isabel; Perrin, Elena; Miceli, Elisangela; Maggini, Valentina; Bogani, Patrizia; Firenzuoli, Fabio; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Fani, Renato

    2017-04-01

    In recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea. In particular, EpRS3 is able to inhibit growth of different bacterial pathogens (Bcc, Acinetobacter baumannii, and Klebsiella pneumoniae) which might be related to the presence of gene clusters involved in the biosynthesis of different types of secondary metabolites. The outcomes presented in this work highlight the fact that the strain possesses huge biotechnological potential; indeed, it also shows antimicrobial effects upon well-described multidrug-resistant (MDR) human pathogens, and it affects plant root elongation and morphology, mimicking indole acetic acid (IAA) action. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. The Gut Microbiome and the Brain

    PubMed Central

    Galland, Leo

    2014-01-01

    Abstract The human gut microbiome impacts human brain health in numerous ways: (1) Structural bacterial components such as lipopolysaccharides provide low-grade tonic stimulation of the innate immune system. Excessive stimulation due to bacterial dysbiosis, small intestinal bacterial overgrowth, or increased intestinal permeability may produce systemic and/or central nervous system inflammation. (2) Bacterial proteins may cross-react with human antigens to stimulate dysfunctional responses of the adaptive immune system. (3) Bacterial enzymes may produce neurotoxic metabolites such as D-lactic acid and ammonia. Even beneficial metabolites such as short-chain fatty acids may exert neurotoxicity. (4) Gut microbes can produce hormones and neurotransmitters that are identical to those produced by humans. Bacterial receptors for these hormones influence microbial growth and virulence. (5) Gut bacteria directly stimulate afferent neurons of the enteric nervous system to send signals to the brain via the vagus nerve. Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome. Their role in multiple sclerosis and the neurologic manifestations of celiac disease is being studied. Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics. PMID:25402818

  13. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    PubMed

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  14. Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits

    PubMed Central

    Watson, Emma; MacNeil, Lesley T.; Ritter, Ashlyn D.; Yilmaz, L. Safak; Rosebrock, Adam P.; Caudy, Amy A.; Walhout, Albertha J. M.

    2014-01-01

    SUMMARY Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here we used an interspecies systems biology approach with Caenorhabditis elegans and two if its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal’s gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development and reduces fertility, but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. PMID:24529378

  15. Activation of the Silent Secondary Metabolite Production by Introducing Neomycin-Resistance in a Marine-Derived Penicillium purpurogenum G59

    PubMed Central

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-01-01

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α,6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1–5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1–5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways. PMID:25913704

  16. Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59.

    PubMed

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-04-22

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1-5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1-5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.

  17. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    PubMed Central

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C.; Latham, Catherine F.; Ramsland, Paul A.; Gugasyan, Raffi; Cone, Richard A.; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs. PMID:26082720

  18. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy.

    PubMed

    Iebba, Valerio; Guerrieri, Francesca; Di Gregorio, Vincenza; Levrero, Massimo; Gagliardi, Antonella; Santangelo, Floriana; Sobolev, Anatoly P; Circi, Simone; Giannelli, Valerio; Mannina, Luisa; Schippa, Serena; Merli, Manuela

    2018-05-29

    In liver cirrhosis (LC), impaired intestinal functions lead to dysbiosis and possible bacterial translocation (BT). Bacteria or their byproducts within the bloodstream can thus play a role in systemic inflammation and hepatic encephalopathy (HE). We combined 16S sequencing, NMR metabolomics and network analysis to describe the interrelationships of members of the microbiota in LC biopsies, faeces, peripheral/portal blood and faecal metabolites with clinical parameters. LC faeces and biopsies showed marked dysbiosis with a heightened proportion of Enterobacteriaceae. Our approach showed impaired faecal bacterial metabolism of short-chain fatty acids (SCFAs) and carbon/methane sources in LC, along with an enhanced stress-related response. Sixteen species, mainly belonging to the Proteobacteria phylum, were shared between LC peripheral and portal blood and were functionally linked to iron metabolism. Faecal Enterobacteriaceae and trimethylamine were positively correlated with blood proinflammatory cytokines, while Ruminococcaceae and SCFAs played a protective role. Within the peripheral blood and faeces, certain species (Stenotrophomonas pavanii, Methylobacterium extorquens) and metabolites (methanol, threonine) were positively related to HE. Cirrhotic patients thus harbour a 'functional dysbiosis' in the faeces and peripheral/portal blood, with specific keystone species and metabolites related to clinical markers of systemic inflammation and HE.

  19. Non-nodulated bacterial leaf symbiosis promotes the evolutionary success of its host plants in the coffee family (Rubiaceae).

    PubMed

    Verstraete, Brecht; Janssens, Steven; Rønsted, Nina

    2017-08-01

    Every plant species on Earth interacts in some way or another with microorganisms and it is well known that certain forms of symbiosis between different organisms can drive evolution. Within some clades of Rubiaceae (coffee family), a specific plant-bacteria interaction exists in which non-pathological endophytes are present in the leaves of their hosts. It is hypothesized that the bacterial endophytes, either alone or by interacting with the host, provide chemical protection against herbivory or pathogens by producing toxic or otherwise advantageous secondary metabolites. If the bacteria indeed have a direct beneficial influence on their hosts, it is reasonable to assume that the endophytes may increase the fitness of their hosts and therefore it is probable that their presence also has an influence on the long-term evolution of the particular plant lineages. In this study, the possible origin in time of non-nodulated bacterial leaf symbiosis in the Vanguerieae tribe of Rubiaceae is elucidated and dissimilarities in evolutionary dynamics between species with endophytes versus species without are investigated. Bacterial leaf symbiosis is shown to have most probably originated in the Late Miocene, a period when the savannah habitat is believed to have expanded on the African continent and herbivore pressure increased. The presence of bacterial leaf endophytes appears to be restricted to Old World lineages so far. Plant lineages with leaf endophytes show a significantly higher speciation rate than plant lineages without endophytes, while there is only a small difference in extinction rate. The transition rate shows that evolving towards having endophytes is twice as fast as evolving towards not having endophytes, suggesting that leaf symbiosis must be beneficial for the host plants. We conclude that the presence of bacterial leaf endophytes may also be an important driver for speciation of host plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Production and characterization of bioactive metabolites from piezotolerant deep sea fungus Nigrospora sp. in submerged fermentation.

    PubMed

    Arumugam, G K; Srinivasan, S K; Joshi, G; Gopal, D; Ramalingam, K

    2015-01-01

    To produce and characterize bioactive metabolites from piezotolerant marine fungus Nigrospora sp. in submerged fermentation. A distinct marine strain, Nigrospora sp. NIOT has been isolated from a depth of 800 m at the Arabian Sea. The 18S rRNA and internal transcribed spacers (ITS) analysis demonstrates its close association with the genus Nigrospora. Effect of pH, temperature, salinity, carbon source and amino acids was studied to optimize the fermentation conditions. Optimal mycelia growth and secondary metabolites production were observed at 6·0-8·0 pH, 20-30°C temperature, 7·5% salinity, sucrose as carbon source and tryptophan as amino acid source. The extracellular secondary metabolites exhibited high antimicrobial activities against both gram-positive and gram-negative pathogenic bacteria with minimal inhibitory concentration (MIC) values higher than 30 μg ml(-1). Strongest cytotoxicity was observed in all cell lines tested, GI50 (growth inhibition by 50%) was calculated to be 1·35, 3·2, 0·13 and 0·35 μg ml(-1) against U937, MCF-7, A673 and Jurkat, respectively. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) analyses of secondary metabolites confirmed the production of antimicrobial and anticancer substances. A piezotolerant fungus Nigrospora sp. NIOT isolated from deep sea environment was successfully cultured under submerged fermentation. The secondary metabolites produced from this organism showed potent antimicrobial and anticancer activities with immediate application to cosmetics and pharmaceutical industries. This is the first study exploring Nigrospora sp. from 800 m in marine environment. This deep sea fungus under optimized culture conditions effectively produced bioactive secondary metabolites such as griseofulvin, spirobenzofuran and pyrone derivatives at higher concentrations. © 2014 The Society for Applied Microbiology.

  1. Occurrence of Ochratoxins, Fumonisin B2 , Aflatoxins (B1 and B2 ), and Other Secondary Fungal Metabolites in Dried Date Palm Fruits from Egypt: A Mini-Survey.

    PubMed

    Abdallah, Mohamed F; Krska, Rudolf; Sulyok, Michael

    2018-02-01

    This study was conducted to investigate the natural co-occurrence of 295 fungal and bacterial metabolites in 28 samples of dried date palm fruits collected from different shops distributed in Assiut Governorate, Upper Egypt in 2016. Extraction and quantification of the target analytes were done using the "dilute and shoot" approach followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In total, 30 toxic fungal metabolites were detected. Among these metabolites, 4 types of ochratoxins including ochratoxin type A and B were quantified in 3 samples (11%) with a contamination range from 1.48 to 6070 μg/kg for ochratoxin A and from 0.28 to 692 μg/kg for ochratoxin B. In addition, fumonisin B 2 was observed in 2 (7%) samples with contamination levels ranging from 4.99 to 16.2 μg/kg. The simultaneous detection of fumonisin B 2 in the same contaminated samples with ochratoxins indicates the fungal attack by Aspergillus niger species during storage. Only 1 sample was contaminated with aflatoxin B 1 (14.4 μg/kg) and B 2 (2.44 μg/kg). The highest maximum concentration (90400 μg/kg) was for kojic acid that contaminated 43% of the samples. To the best of the authors' knowledge, this is the first report of the natural co-occurrence of fumonisin B 2 and ochratoxin A and B in addition to a wide range of other fungal metabolites in date palm fruits. Mycotoxins are secondary metabolites produced by different fungi. These metabolites pose a potential risk on human health since they contaminate many food commodities. Among these, date palm fruits which are an integral part of diet in several countries. Therefore, detection of mycotoxins is a prerequisite to insure the safety of food. Here, different types of mycotoxins have been detected in levels that may have health hazard. © 2018 Institute of Food Technologists®.

  2. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production

    PubMed Central

    De Bruyn, Florac; Zhang, Sophia Jiyuan; Pothakos, Vasileios; Torres, Julio; Lambot, Charles; Moroni, Alice V.; Callanan, Michael; Sybesma, Wilbert; Weckx, Stefan

    2016-01-01

    ABSTRACT The postharvest treatment and processing of fresh coffee cherries can impact the quality of the unroasted green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through two different wet and dry methods to monitor differences in the microbial community structure and in substrate and metabolite profiles. The changes were followed throughout the postharvest processing chain, from harvest to drying, by implementing up-to-date techniques, encompassing multiple-step metagenomic DNA extraction, high-throughput sequencing, and multiphasic metabolite target analysis. During wet processing, a cohort of lactic acid bacteria (i.e., Leuconostoc, Lactococcus, and Lactobacillus) was the most commonly identified microbial group, along with enterobacteria and yeasts (Pichia and Starmerella). Several of the metabolites associated with lactic acid bacterial metabolism (e.g., lactic acid, acetic acid, and mannitol) produced in the mucilage were also found in the endosperm. During dry processing, acetic acid bacteria (i.e., Acetobacter and Gluconobacter) were most abundant, along with Pichia and non-Pichia (Candida, Starmerella, and Saccharomycopsis) yeasts. Accumulation of associated metabolites (e.g., gluconic acid and sugar alcohols) took place in the drying outer layers of the coffee cherries. Consequently, both wet and dry processing methods significantly influenced the microbial community structures and hence the composition of the final green coffee beans. This systematic approach to dissecting the coffee ecosystem contributes to a deeper understanding of coffee processing and might constitute a state-of-the-art framework for the further analysis and subsequent control of this complex biotechnological process. IMPORTANCE Coffee production is a long process, starting with the harvest of coffee cherries and the on-farm drying of their beans. In a later stage, the dried green coffee beans are roasted and ground in order to

  3. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production.

    PubMed

    De Bruyn, Florac; Zhang, Sophia Jiyuan; Pothakos, Vasileios; Torres, Julio; Lambot, Charles; Moroni, Alice V; Callanan, Michael; Sybesma, Wilbert; Weckx, Stefan; De Vuyst, Luc

    2017-01-01

    The postharvest treatment and processing of fresh coffee cherries can impact the quality of the unroasted green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through two different wet and dry methods to monitor differences in the microbial community structure and in substrate and metabolite profiles. The changes were followed throughout the postharvest processing chain, from harvest to drying, by implementing up-to-date techniques, encompassing multiple-step metagenomic DNA extraction, high-throughput sequencing, and multiphasic metabolite target analysis. During wet processing, a cohort of lactic acid bacteria (i.e., Leuconostoc, Lactococcus, and Lactobacillus) was the most commonly identified microbial group, along with enterobacteria and yeasts (Pichia and Starmerella). Several of the metabolites associated with lactic acid bacterial metabolism (e.g., lactic acid, acetic acid, and mannitol) produced in the mucilage were also found in the endosperm. During dry processing, acetic acid bacteria (i.e., Acetobacter and Gluconobacter) were most abundant, along with Pichia and non-Pichia (Candida, Starmerella, and Saccharomycopsis) yeasts. Accumulation of associated metabolites (e.g., gluconic acid and sugar alcohols) took place in the drying outer layers of the coffee cherries. Consequently, both wet and dry processing methods significantly influenced the microbial community structures and hence the composition of the final green coffee beans. This systematic approach to dissecting the coffee ecosystem contributes to a deeper understanding of coffee processing and might constitute a state-of-the-art framework for the further analysis and subsequent control of this complex biotechnological process. Coffee production is a long process, starting with the harvest of coffee cherries and the on-farm drying of their beans. In a later stage, the dried green coffee beans are roasted and ground in order to brew a cup of coffee

  4. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model

    PubMed Central

    Zhang, Linlin; Tian, Xueying; Kuang, Shan; Liu, Ge; Zhang, Chengsheng; Sun, Chaomin

    2017-01-01

    Phenazine and its derivatives are very important secondary metabolites produced from Pseudomonas spp. and have exhibited broad-spectrum antifungal and antibacterial activities. However, till date, there are few reports about marine derived Pseudomonas and its production of phenazine metabolites. In this study, we isolated a marine Pseudomonas aeruginosa strain PA31x which produced natural product inhibiting the growth of Vibrio anguillarum C312, one of the most serious bacterial pathogens in marine aquaculture. Combining high-resolution electro-spray-ionization mass spectroscopy and nuclear magnetic resonance spectroscopy analyses, the functional compound against V. anguillarum was demonstrated to be phenazine-1-carboxylic acid (PCA), an important phenazine derivative. Molecular studies indicated that the production of PCA by P. aeruginosa PA31x was determined by gene clusters phz1 and phz2 in its genome. Electron microscopic results showed that treatment of V. anguillarum with PCA developed complete lysis of bacterial cells with fragmented cytoplasm being released to the surrounding environment. Additional evidence indicated that reactive oxygen species generation preceded PCA-induced microbe and cancer cell death. Notably, treatment with PCA gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA. PMID:28289406

  5. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    PubMed

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  6. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    PubMed Central

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G.; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A. M.; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground. PMID:26731567

  7. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus

    PubMed Central

    Bracarense, Adriana A.P.; Takahashi, Jacqueline A.

    2014-01-01

    Biosynthesis of active secondary metabolites by fungi occurs as a specific response to the different growing environments. Changes in this environment alter the chemical and biological profiles leading to metabolites diversification and consequently to novel pharmacological applications. In this work, it was studied the influence of three parameters (fermentation length, medium composition and aeration) in the biosyntheses of antimicrobial metabolites by the fungus Aspergillus parasiticus in 10 distinct fermentation periods. Metabolism modulation in two culturing media, CYA and YES was evaluated by a 22 full factorial planning (ANOVA) and on a 23 factorial planning, role of aeration, medium composition and carbohydrate concentration were also evaluated. In overall, 120 different extracts were prepared, their HPLC profiles were obtained and the antimicrobial activity against A. flavus, C. albicans, E. coli and S. aureus of all extracts was evaluated by microdilution bioassay. Yield of kojic acid, a fine chemical produced by the fungus A. parasiticus was determined in all extracts. Statistical analyses pointed thirteen conditions able to modulate the production of bioactive metabolites by A. parasiticus. Effect of carbon source in metabolites diversification was significant as shown by the changes in the HPLC profiles of the extracts. Most of the extracts presented inhibition rates higher than that of kojic acid as for the extract obtained after 6 days of fermentation in YES medium under stirring. Kojic acid was not the only metabolite responsible for the activity since some highly active extracts showed to possess low amounts of this compound, as determined by HPLC. PMID:24948950

  8. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    PubMed

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.

  9. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    PubMed

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review demonstrates the ecological significance of such plant secondary metabolites in the highly diverse interactions between insects and plants.

  10. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens.

    PubMed

    Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M

    2017-09-01

    Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    PubMed

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin.

    PubMed

    Park, Doo-Sang; Oh, Hyun-Woo; Jeong, Won-Jin; Kim, Hyangmi; Park, Ho-Yong; Bae, Kyung Sook

    2007-10-01

    In this study, bacterial communities within the guts of several longicorn beetles were investigated by a culture-dependent method. A total of 142 bacterial strains were isolated from nine species of longicorn beetle, including adults and larvae. A comparison of their partial 16S rRNA gene sequences showed that most of the bacteria constituting the gut communities can typically be found in soil, plants and the intestines of animals, and approximately 10% were proposed as unreported. Phylogenetic analysis demonstrated that the bacterial species comprised 7 phyla, and approximately half were Gammaproteobacteria. Actinobacteria were the second most populous group (19%), followed by Firmicutes (13%) and Alphaproteobacteria (11%). Betaproteobacteria, Flavobacteria, and Acidobacteria were minor constituents. The taxonomic compositions of the isolates were variable according to the species of longicorn beetle. Particularly, an abundance of Actinobacteria existed in Moechotypa diphysis and Mesosa hirsute, which eat broadleaf trees; however, no Actinobacteria were isolated from Corymbia rubra and Monochamus alternatus, which are needle-leaf eaters. Considerable proportions of xylanase and pectinase producing bacteria in the guts of the longicorn beetles implied that the bacteria may play an important role in the digestion of woody diets. Actinobacteria and Gammaproteobacteria were the dominant xylanase producers in the guts of the beetles.

  13. Distribution of secondary metabolite biosynthetic gene clusters in 343 Fusarium genomes

    USDA-ARS?s Scientific Manuscript database

    Fusarium consists of over 200 phylogenetically distinct species, many of which cause important crop diseases and/or produce mycotoxins and other secondary metabolites (SMs). Some fusaria also cause opportunistic infections in humans and other animals. To investigate the distribution of biosynthetic ...

  14. Production of microbial secondary metabolites: regulation by the carbon source.

    PubMed

    Ruiz, Beatriz; Chávez, Adán; Forero, Angela; García-Huante, Yolanda; Romero, Alba; Sánchez, Mauricio; Rocha, Diana; Sánchez, Brenda; Rodríguez-Sanoja, Romina; Sánchez, Sergio; Langley, Elizabeth

    2010-05-01

    Microbial secondary metabolites are low molecular mass products, not essential for growth of the producing cultures, but very important for human health. They include antibiotics, antitumor agents, cholesterol-lowering drugs, and others. They have unusual structures and are usually formed during the late growth phase of the producing microorganisms. Its synthesis can be influenced greatly by manipulating the type and concentration of the nutrients formulating the culture media. Among these nutrients, the effect of the carbon sources has been the subject of continuous studies for both, industry and research groups. Different mechanisms have been described in bacteria and fungi to explain the negative carbon catabolite effects on secondary metabolite production. Their knowledge and manipulation have been useful either for setting fermentation conditions or for strain improvement. During the last years, important advances have been reported on these mechanisms at the biochemical and molecular levels. The aim of the present review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.

  15. New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE).

    PubMed

    Sanchon-Lopez, Beatriz; Everett, Jeremy R

    2016-09-02

    A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.

  16. Fungi producing significant mycotoxins.

    PubMed

    2012-01-01

    Mycotoxins are secondary metabolites of microfungi that are known to cause sickness or death in humans or animals. Although many such toxic metabolites are known, it is generally agreed that only a few are significant in causing disease: aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, and ergot alkaloids. These toxins are produced by just a few species from the common genera Aspergillus, Penicillium, Fusarium, and Claviceps. All Aspergillus and Penicillium species either are commensals, growing in crops without obvious signs of pathogenicity, or invade crops after harvest and produce toxins during drying and storage. In contrast, the important Fusarium and Claviceps species infect crops before harvest. The most important Aspergillus species, occurring in warmer climates, are A. flavus and A. parasiticus, which produce aflatoxins in maize, groundnuts, tree nuts, and, less frequently, other commodities. The main ochratoxin A producers, A. ochraceus and A. carbonarius, commonly occur in grapes, dried vine fruits, wine, and coffee. Penicillium verrucosum also produces ochratoxin A but occurs only in cool temperate climates, where it infects small grains. F. verticillioides is ubiquitous in maize, with an endophytic nature, and produces fumonisins, which are generally more prevalent when crops are under drought stress or suffer excessive insect damage. It has recently been shown that Aspergillus niger also produces fumonisins, and several commodities may be affected. F. graminearum, which is the major producer of deoxynivalenol and zearalenone, is pathogenic on maize, wheat, and barley and produces these toxins whenever it infects these grains before harvest. Also included is a short section on Claviceps purpurea, which produces sclerotia among the seeds in grasses, including wheat, barley, and triticale. The main thrust of the chapter contains information on the identification of these fungi and their morphological characteristics, as well as factors

  17. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior

    PubMed Central

    Fischer, Caleb N; Trautman, Eric P; Crawford, Jason M; Stabb, Eric V; Handelsman, Jo; Broderick, Nichole A

    2017-01-01

    Animals host multi-species microbial communities (microbiomes) whose properties may result from inter-species interactions; however, current understanding of host-microbiome interactions derives mostly from studies in which elucidation of microbe-microbe interactions is difficult. In exploring how Drosophila melanogaster acquires its microbiome, we found that a microbial community influences Drosophila olfactory and egg-laying behaviors differently than individual members. Drosophila prefers a Saccharomyces-Acetobacter co-culture to the same microorganisms grown individually and then mixed, a response mainly due to the conserved olfactory receptor, Or42b. Acetobacter metabolism of Saccharomyces-derived ethanol was necessary, and acetate and its metabolic derivatives were sufficient, for co-culture preference. Preference correlated with three emergent co-culture properties: ethanol catabolism, a distinct volatile profile, and yeast population decline. Egg-laying preference provided a context-dependent fitness benefit to larvae. We describe a molecular mechanism by which a microbial community affects animal behavior. Our results support a model whereby emergent metabolites signal a beneficial multispecies microbiome. DOI: http://dx.doi.org/10.7554/eLife.18855.001 PMID:28068220

  18. Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation.

    PubMed

    Jeong, Sang Hyeon; Lee, Hyo Jung; Jung, Ji Young; Lee, Se Hee; Seo, Hye-Young; Park, Wan-Soo; Jeon, Che Ok

    2013-01-01

    To investigate the effects of red pepper powder on kimchi fermentation, Baechu (Chinese cabbage) and Mu (radish) kimchi, with and without red pepper powder, were prepared and their characteristics, including pH, colony-forming units (CFU), microbial communities, and metabolites, were periodically monitored for 40days. Measurements of pH and CFU showed that the lag phases of kimchi fermentation were clearly extended by the addition of red pepper powder. Microbial community analysis using a barcoded pyrosequencing analysis showed that the bacterial diversities in kimchi with red pepper powder decreased more slowly than kimchi without red pepper powder as kimchi fermentation progressed. The kimchi microbial communities were represented mainly by the genera Leuconostoc and Lactobacillus in all kimchi, and the abundance of Weissella was negligible in kimchi without red pepper powder. However, interestingly, kimchi with red pepper powder contained much higher proportions of Weissella than kimchi without red pepper powder, while the proportions of Leuconostoc and Lactobacillus were evidently lower in kimchi with red pepper powder compared to kimchi without red pepper powder. Metabolite analysis using a (1)H NMR technique also showed that the fermentation of kimchi with red pepper powder progressed a little more slowly than that of kimchi without red pepper powder. Principle component analysis using microbial communities and metabolites supported the finding that the addition of red pepper powder into kimchi resulted in the slowing of the kimchi fermentation process, especially during the early fermentation period and influenced the microbial succession and metabolite production during the kimchi fermentation processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Effects of One-Week Empirical Antibiotic Therapy on the Early Development of Gut Microbiota and Metabolites in Preterm Infants.

    PubMed

    Zhu, Danping; Xiao, Sa; Yu, Jialin; Ai, Qing; He, Yu; Cheng, Chen; Zhang, Yunhui; Pan, Yun

    2017-08-14

    The early postnatal period is the most dynamic and vulnerable stage in the assembly of intestinal microbiota. Antibiotics are commonly prescribed to newborn preterm babies and are frequently used for a prolonged duration in China. We hypothesized that the prolonged antibiotic therapy would affect the early development of intestinal microbiota and their metabolites. To test this hypothesis, we analyzed the stool microbiota and metabolites in 36 preterm babies with or without antibiotic treatment. These babies were divided into three groups, including two groups treated with the combination of penicillin and moxalactam or piperacillin-tazobactam for 7 days, and the other group was free of antibiotics. Compared to the antibiotic-free group, both antibiotic-treated groups had distinct gut microbial communities and metabolites, including a reduction of bacterial diversity and an enrichment of harmful bacteria such as Streptococcus and Pseudomonas. In addition, there was a significant difference in the composition of gut microbiota and their metabolites between the two antibiotic-treated groups, where the piperacillin-tazobactam treatment group showed an overgrowth of Enterococcus. These findings suggest that prolonged antibiotic therapy affects the early development of gut microbiota in preterm infants, which should be considered when prescribing antibiotics for this population.

  20. Exposure measurement of aflatoxins and aflatoxin metabolites in human body fluids. A short review.

    PubMed

    Leong, Yin-Hui; Latiff, Aishah A; Ahmad, Nurul Izzah; Rosma, Ahmad

    2012-05-01

    Aflatoxins are highly toxic secondary fungal metabolites mainly produced by Aspergillus flavus and A. parasiticus. Human exposure to aflatoxins may result directly from ingestion of contaminated foods, or indirectly from consumption of foods from animals previously exposed to aflatoxins in feeds. This paper focuses on exposure measurement of aflatoxins and aflatoxin metabolites in various human body fluids. Research on different metabolites present in blood, urine, breast milk, and other human fluids or tissues including their detection techniques is reviewed. The association between dietary intake of aflatoxins and biomarker measurement is also highlighted. Finally, aspects related to the differences between aflatoxin determination in food versus the biomarker approach are discussed.

  1. The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats

    PubMed Central

    Nelson, Tiffanie M.; Rogers, Tracey L.; Brown, Mark V.

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness. PMID:24386245

  2. The gut bacterial community of mammals from marine and terrestrial habitats.

    PubMed

    Nelson, Tiffanie M; Rogers, Tracey L; Brown, Mark V

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness.

  3. Thermogenic effects of sibutramine and its metabolites

    PubMed Central

    Connoley, Ian P; Liu, Yong-Ling; Frost, Ian; Reckless, Ian P; Heal, David J; Stock, Michael J

    1999-01-01

    The thermogenic activity of the serotonin and noradrenaline reuptake inhibitor sibutramine (BTS 54524; Reductil) was investigated by measuring oxygen consumption (VO2) in rats treated with sibutramine or its two pharmacologically-active metabolites. Sibutramine caused a dose-dependent rise in VO2, with a dose of 10 mg kg−1 of sibutramine or its metabolites producing increases of up to 30% that were sustained for at least 6 h, and accompanied by significant increases (0.5–1.0°C) in body temperature. Based on the accumulation in vivo of radiolabelled 2-deoxy-[3H]-glucose, sibutramine had little or no effect on glucose utilization in most tissues, but caused an 18 fold increase in brown adipose tissue (BAT). Combined high, non-selective doses (20 mg kg−1) of the β-adrenoceptor antagonists, atenolol and ICI 118551, inhibited completely the VO2 response to sibutramine, but the response was unaffected by low, β1-adrenoceptor-selective (atenolol) or β2-adrenoceptor-selective (ICI 118551) doses (1 mg kg−1). The ganglionic blocking agent, chlorisondamine (15 mg kg−1), inhibited completely the VO2 response to the metabolites of sibutramine, but had no effect on the thermogenic response to the β3-adrenoceptor-selective agonist BRL 35135. Similar thermogenic responses were produced by simultaneous injection of nisoxetine and fluoxetine at doses (30 mg kg−1) that had no effect on VO2 when injected individually. It is concluded that stimulation of thermogenesis by sibutramine requires central reuptake inhibition of both serotonin and noradrenaline, resulting in increased efferent sympathetic activation of BAT thermogenesis via β3-adrenoceptor, and that this contributes to the compound's activity as an anti-obesity agent. PMID:10217544

  4. [Secondary Metabolites from Marine Microorganisms. I. Secondary Metabolites from Marine Actinomycetes].

    PubMed

    Orlova, T I; Bulgakova, V G; Polin, A N

    2015-01-01

    Review represents data on new active metabolites isolated from marine actinomycetes published in 2007 to 2014. Marine actinomycetes are an unlimited source of novel secondary metabolites with various biological activities. Among them there are antibiotics, anticancer compounds, inhibitors of biochemical processes.

  5. Recent Insights into the Diversity, Frequency and Ecological Roles of Phenazines in Fluorescent Pseudomonas spp.

    USDA-ARS?s Scientific Manuscript database

    Phenazine compounds represent a large class of bacterial metabolites that are produced by some fluorescent Pseudomonas spp. and a few other bacterial genera. Phenazines were first noted in the scientific literature over 100 years ago, but for a long time were considered to be pigments of uncertain f...

  6. The past, present and future of secondary metabolite research in the Dothideomycetes.

    PubMed

    Muria-Gonzalez, Mariano Jordi; Chooi, Yit-Heng; Breen, Susan; Solomon, Peter S

    2015-01-01

    The Dothideomycetes represents a large and diverse array of fungi in which prominent plant pathogens are over-represented. Species within the Cochliobolus, Alternaria, Pyrenophora and Mycosphaerella (amongst others) all cause diseases that threaten food security in many parts of the world. Significant progress has been made over the past decade in understanding how some of these pathogens cause disease at a molecular level. It is reasonable to suggest that much of this progress can be attributed to the increased availability of genome sequences. However, together with revealing mechanisms of pathogenicity, these genome sequences have also highlighted the capacity of the Dothideomycetes to produce an extensive array of secondary metabolites, far greater than originally thought. Indeed, it is now clear that we appear to have only scratched the surface to date in terms of the identification of secondary metabolites produced by these fungi. In the first half of this review, we examine the current status of secondary metabolite research in the Dothideomycetes and highlight the diversity of the molecules discovered thus far, in terms of both structure and biological activity. In the second part of this review, we survey the emerging techniques and technologies that will be required to shed light on the vast array of secondary metabolite potential that is encoded within these genomes. Experimental design, analytical chemistry and synthetic biology are all discussed in the context of how they will contribute to this field. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  7. Identification and characterization of a bacterial hydrosulphide ion channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czyzewski, Bryan K.; Wang, Da-Neng

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a keymore » intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.« less

  8. Bioactive Secondary Metabolites from a Thai Collection of Soil and Marine-Derived Fungi of the Genera Neosartorya and Aspergillus.

    PubMed

    Zin, War War May; Prompanya, Chadaporn; Buttachon, Suradet; Kijjoa, Anake

    2016-01-01

    Fungi are microorganisms which can produce interesting secondary metabolites with structural diversity. Although terrestrial fungi have been extensively investigated for their bioactive secondary metabolites such as antibiotics, marine-derived fungi have only recently attracted attention of Natural Products chemists. Our group has been working on the secondary metabolites produced by the cultures of the fungi of the genera Neosartorya and Aspergillus, collected from soil and marine environments from the tropical region for the purpose of finding new leads for anticancer and antibacterial drugs. This review covers only the secondary metabolites of four soil and six marine-derived species of Neosarorya as well as a new species of marine-derived Aspergillus, investigated by our group. In total, we have isolated fifty three secondary metabolites which can be categorized as polyketides (two), isocoumarins (six), terpenoids (two), meroterpenes (fourteen), alkaloids (twenty eight) and cyclic peptide (one). The anticancer and antibacterial activities of these fungal metabolites are also discussed. Among fifty three secondary metabolites isolated, only the alkaloid eurochevalierine and the cadinene sesquiterpene, isolated from the soil fungus N. pseudofisheri, showed relevant in vitro cytostatic activity against glioblastoma (U373) and non-small cell lung cancer (A549) cell lines while the meroditerpene aszonapyrone A exhibited strong antibacterial activity against multidrug-resistant Gram-positive bacteria and also strong antibiofilm activity in these isolates.

  9. Mutagenic, cytotoxic, and teratogenic effects of 2-acetylaminofluorene and reactive metabolites in vitro.

    PubMed

    Faustman-Watts, E M; Yang, H Y; Namkung, M J; Greenaway, J C; Fantel, A G; Juchau, M R

    1984-01-01

    The embryotoxic, mutagenic, and cytotoxic properties of 2-acetylaminofluorene (AAF) and two of its reactive metabolites, N-acetoxy-2-acetylaminofluorene (AAAF) and 2-nitrosofluorene (NF) were assessed in vitro. A combined embryo culture/biotransformation system was used to determine the ability of these compounds to produce embryonic malformations, growth retardation, and/or embryolethality. Salmonella typhimurium auxotrophs (his-) were utilized to measure the mutagenic and cytotoxic potentials of these compounds. The parent compound, AAF, did not produce embryonic malformations or mutagenicity in the absence of an added cytochrome P-450-dependent monooxygenase system. Both metabolites produced each of the measured toxic effects without supplementation of a bioactivation system. However, the three chemicals each elicited a different spectrum of malformations. Bioactivated AAF produced neural tube abnormalities, whereas embryos treated with AAAF primarily exhibited prosencephalic malformations, and NF produced abnormalities of axial rotation or flexure. NF was approximately ten times more potent than AAAF as a direct-acting mutagen but only slightly more active in producing embryonic malformations in vitro. The results indicated that differential effects on the various measured parameters could be produced by these chemicals. The results indicated further that neither NF nor AAAF appeared to be individually responsible for the neural tube abnormalities generated by biotransformed AAF.

  10. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    PubMed

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Production of bacterial cellulose from alternate feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  12. Production of Bacterial Cellulose from Alternate Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  13. Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers.

    PubMed

    Li, Bo; Guo, Kenan; Zeng, Li; Zeng, Benhua; Huo, Ran; Luo, Yuanyuan; Wang, Haiyang; Dong, Meixue; Zheng, Peng; Zhou, Chanjuan; Chen, Jianjun; Liu, Yiyun; Liu, Zhao; Fang, Liang; Wei, Hong; Xie, Peng

    2018-01-31

    Major depressive disorder (MDD) is a common mood disorder. Gut microbiota may be involved in the pathogenesis of depression via the microbe-gut-brain axis. Liver is vulnerable to exposure of bacterial products translocated from the gut via the portal vein and may be involved in the axis. In this study, germ-free mice underwent fecal microbiota transplantation from MDD patients and healthy controls. Behavioral tests verified the depression model. Metabolomics using gas chromatography-mass spectrometry, nuclear magnetic resonance, and liquid chromatography-mass spectrometry determined the influence of microbes on liver metabolism. With multivariate statistical analysis, 191 metabolites were distinguishable in MDD mice from control (CON) mice. Compared with CON mice, MDD mice showed lower levels for 106 metabolites and higher levels for 85 metabolites. These metabolites are associated with lipid and energy metabolism and oxidative stress. Combined analyses of significantly changed proteins in livers from another depression model induced by chronic unpredictive mild stress returned a high score for the Lipid Metabolism, Free Radical Scavenging, and Molecule Transports network, and canonical pathways were involved in energy metabolism and tryptophan degradation. The two mouse models of depression suggest that changes in liver metabolism might be involved in the pathogenesis of MDD. Conjoint analyses of fecal, serum, liver, and hippocampal metabolites from fecal microbiota transplantation mice suggested that aminoacyl-tRNA biosynthesis significantly changed and fecal metabolites showed a close relationship with the liver. These findings may help determine the biological mechanisms of depression and provide evidence about "depression microbes" impacting on liver metabolism.

  14. Towards de novo identification of metabolites by analyzing tandem mass spectra.

    PubMed

    Böcker, Sebastian; Rasche, Florian

    2008-08-15

    Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem

  15. Discovery of secondary metabolites from Bacillus spp. biocontrol strains using genome mining and mass spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Genome sequencing, data mining and mass spectrometry were used to identify secondary metabolites produced by several Bacillus spp. biocontrol strains. These biocontrol strains have shown promise in managing Fusarium head blight in wheat. Draft genomes were produced and screened in silico using genom...

  16. Stable coexistence of five bacterial strains as a cellulose-degrading community.

    PubMed

    Kato, Souichiro; Haruta, Shin; Cui, Zong Jun; Ishii, Masaharu; Igarashi, Yasuo

    2005-11-01

    A cellulose-degrading defined mixed culture (designated SF356) consisting of five bacterial strains (Clostridium straminisolvens CSK1, Clostridium sp. strain FG4, Pseudoxanthomonas sp. strain M1-3, Brevibacillus sp. strain M1-5, and Bordetella sp. strain M1-6) exhibited both functional and structural stability; namely, no change in cellulose-degrading efficiency was observed, and all members stably coexisted through 20 subcultures. In order to investigate the mechanisms responsible for the observed stability, "knockout communities" in which one of the members was eliminated from SF356 were constructed. The dynamics of the community structure and the cellulose degradation profiles of these mixed cultures were determined in order to evaluate the roles played by each eliminated member in situ and its impact on the other members of the community. Integration of each result gave the following estimates of the bacterial relationships. Synergistic relationships between an anaerobic cellulolytic bacterium (C. straminisolvens CSK1) and two strains of aerobic bacteria (Pseudoxanthomonas sp. strain M1-3 and Brevibacillus sp. strain M1-5) were observed; the aerobes introduced anaerobic conditions, and C. straminisolvens CSK1 supplied metabolites (acetate and glucose). In addition, there were negative relationships, such as the inhibition of cellulose degradation by producing excess amounts of acetic acid by Clostridium sp. strain FG4, and growth suppression of Bordetella sp. strain M1-6 by Brevibacillus sp. strain M1-5. The balance of the various types of relationships (both positive and negative) is thus considered to be essential for the stable coexistence of the members of this mixed culture.

  17. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry

    PubMed Central

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-01-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions. PMID:27594817

  18. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry.

    PubMed

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-10-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.

  19. Glycerol as an additional carbon source for bacterial cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Agustin, Y. E.; Padmawijaya, K. S.; Rixwari, H. F.; Yuniharto, V. A. S.

    2018-03-01

    Bacterial cellulose, the fermentation result of Acetobacter xylinus can be produced when glycerol was used as an additional carbon source. In this research, bacterial cellulose produced in two different fermentation medium, Hestrin and Scharmm (HS) medium and HS medium with additional MgSO4. Concentration of glycerol that used in this research were 0%; 5%; 10%; and 15% (v/v). The optimum conditions of bacterial cellulose production on each experiment variations determined by characterization of the mechanical properties, including thickness, tensile strength and elongation. Fourier Transform Infra Red Spectroscopy (FTIR) revealed the characterization of bacterial cellulose. Results showed that the growth rate of bacterial cellulose in HS-MgSO4-glycerol medium was faster than in HS-glycerol medium. Increasing concentrations of glycerol will lower the value of tensile strength and elongation. Elongation test showed that the elongation bacterial cellulose (BC) with the addition of 4.95% (v/v) glycerol in the HS-MgSO4 medium is the highest elongation value. The optimum bacterial cellulose production was achieved when 4.95% (v/v) of glycerol added into HS-MgSO4 medium with stress at break of 116.885 MPa and 4.214% elongation.

  20. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future

    PubMed Central

    Mazard, Sophie; Penesyan, Anahit; Ostrowski, Martin; Paulsen, Ian T.; Egan, Suhelen

    2016-01-01

    Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects. PMID:27196915

  1. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future.

    PubMed

    Mazard, Sophie; Penesyan, Anahit; Ostrowski, Martin; Paulsen, Ian T; Egan, Suhelen

    2016-05-17

    Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.

  2. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    PubMed

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae. © 2015 Wiley Periodicals, Inc.

  3. Analysis of the cocobiota and metabolites of Moniliophthora perniciosa-resistant Theobroma cacao beans during spontaneous fermentation in southern Brazil.

    PubMed

    Bastos, Valdeci S; Santos, Maria Fs; Gomes, Laidson P; Leite, Analy Mo; Flosi Paschoalin, Vânia M; Del Aguila, Eduardo M

    2018-03-25

    Cocoa bean fermentation is a spontaneous process involving a succession of microbial activities, yeasts, lactic acid, and acetic acid bacteria. The spontaneous fermentation of cocoa beans by Theobroma cacao TSH565 clonal variety, a highly productive hybrid resistant to Moniliophthora perniciosa and Phytophthora spp., was investigated. The natural cocobiota involved in the spontaneous fermentation of this hybrid in southern Brazil, was investigated by using both a culture-dependent microbiological analysis and a molecular analysis. The changes in the physicochemical characteristics and the kinetics of substrate utilization and metabolite production during fermentation were also evaluated. Yeasts (178) and bacteria (244) isolated during fermentation were identified by partial sequencing of the ITS and 16S rDNAs, respectively. After 144 h of fermentation, the indigenous yeast community was composed of Hanseniaspora spp., Saccharomyces spp., and Pichia spp. The bacterial population comprised Lactococcus spp., Staphylococcus spp., Acetobacter spp. and Lactobacilli strains. The kinetics of substrate transformation reflected the dynamic composition of the cocobiota. Substrates such as glucose, fructose, sucrose, and citric acid, present at the beginning of fermentation, were metabolized to produce ethanol, acetic acid, and lactic acid. The results described here provide new insights into microbial diversity in cocoa bean-pulp mass fermentation and the kinetics of metabolites synthesis, and pave the way for the selection of starter cultures to increase efficiency and consistency to obtain homogeneous and best quality cocoa products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Broad spectrum antibiotic compounds and use thereof

    DOEpatents

    Koglin, Alexander; Strieker, Matthias

    2016-07-05

    The discovery of a non-ribosomal peptide synthetase (NRPS) gene cluster in the genome of Clostridium thermocellum that produces a secondary metabolite that is assembled outside of the host membrane is described. Also described is the identification of homologous NRPS gene clusters from several additional microorganisms. The secondary metabolites produced by the NRPS gene clusters exhibit broad spectrum antibiotic activity. Thus, antibiotic compounds produced by the NRPS gene clusters, and analogs thereof, their use for inhibiting bacterial growth, and methods of making the antibiotic compounds are described.

  5. Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex.

    PubMed

    Loveridge, E Joel; Jones, Cerith; Bull, Matthew J; Moody, Suzy C; Kahl, Małgorzata W; Khan, Zainab; Neilson, Louis; Tomeva, Marina; Adams, Sarah E; Wood, Andrew C; Rodriguez-Martin, Daniel; Pinel, Ingrid; Parkhill, Julian; Mahenthiralingam, Eshwar; Crosby, John

    2017-07-01

    Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the β-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization. IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted. Copyright © 2017

  6. Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope.

    PubMed

    Hasim, Sahar; Allison, David P; Mendez, Berlin; Farmer, Abigail T; Pelletier, Dale A; Retterer, Scott T; Campagna, Shawn R; Reynolds, Todd B; Doktycz, Mitchel J

    2018-01-01

    The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus -derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin's mode of action and a better understanding of its selectivity.

  7. Microbial production of metabolites and associated enzymatic reactions under high pressure.

    PubMed

    Dong, Yongsheng; Jiang, Hua

    2016-11-01

    High environmental pressure exerts an external stress on the survival of microorganisms that are commonly found under normal pressure. In response, many growth traits alter, including cell morphology and physiology, cellular structure, metabolism, physical and chemical properties, the reproductive process, and defense mechanisms. The high-pressure technology (HP) has been industrially utilized in pressurized sterilization, synthesis of stress-induced products, and microbial/enzymatic transformation of chemicals. This article reviews current research on pressure-induced production of metabolites in normal-pressure microbes and their enzymatic reactions. Factors that affect the production of such metabolites are summarized, as well as the effect of pressure on the performance of microbial fermentation and the yield of flavoring compounds, different categories of induced enzymatic reactions and their characteristics in the supercritical carbon dioxide fluid, effects on enzyme activity, and the selection of desirable bacterial strains. Technological challenges are discussed, and future research directions are proposed. Information presented here will benefit the research, development, and application of the HP technology to improve microbial fermentation and enzymatic production of biologically active substances, thereby help to meet their increasing demand from the ever-expanding market.

  8. Taxonomic structure and stability of the bacterial community in belgian sourdough ecosystems as assessed by culture and population fingerprinting.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2008-04-01

    A total of 39 traditional sourdoughs were sampled at 11 bakeries located throughout Belgium which were visited twice with a 1-year interval. The taxonomic structure and stability of the bacterial communities occurring in these traditional sourdoughs were assessed using both culture-dependent and culture-independent methods. A total of 1,194 potential lactic acid bacterium (LAB) isolates were tentatively grouped and identified by repetitive element sequence-based PCR, followed by sequence-based identification using 16S rRNA and pheS genes from a selection of genotypically unique LAB isolates. In parallel, all samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of V3-16S rRNA gene amplicons. In addition, extensive metabolite target analysis of more than 100 different compounds was performed. Both culturing and DGGE analysis showed that the species Lactobacillus sanfranciscensis, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus pontis dominated the LAB population of Belgian type I sourdoughs. In addition, DGGE band sequence analysis demonstrated the presence of Acetobacter sp. and a member of the Erwinia/Enterobacter/Pantoea group in some samples. Overall, the culture-dependent and culture-independent approaches each exhibited intrinsic limitations in assessing bacterial LAB diversity in Belgian sourdoughs. Irrespective of the LAB biodiversity, a large majority of the sugar and amino acid metabolites were detected in all sourdough samples. Principal component-based analysis of biodiversity and metabolic data revealed only little variation among the two samples of the sourdoughs produced at the same bakery. The rare cases of instability observed could generally be linked with variations in technological parameters or differences in detection capacity between culture-dependent and culture-independent approaches. Within a sampling interval of 1 year, this study reinforces previous observations that the bakery environment

  9. Proteome Analysis of the Penicillin Producer Penicillium chrysogenum

    PubMed Central

    Jami, Mohammad-Saeid; Barreiro, Carlos; García-Estrada, Carlos; Martín, Juan-Francisco

    2010-01-01

    Proteomics is a powerful tool to understand the molecular mechanisms causing the production of high penicillin titers by industrial strains of the filamentous fungus Penicillium chrysogenum as the result of strain improvement programs. Penicillin biosynthesis is an excellent model system for many other bioactive microbial metabolites. The recent publication of the P. chrysogenum genome has established the basis to understand the molecular processes underlying penicillin overproduction. We report here the proteome reference map of P. chrysogenum Wisconsin 54-1255 (the genome project reference strain) together with an in-depth study of the changes produced in three different strains of this filamentous fungus during industrial strain improvement. Two-dimensional gel electrophoresis, peptide mass fingerprinting, and tandem mass spectrometry were used for protein identification. Around 1000 spots were visualized by “blue silver” colloidal Coomassie staining in a non-linear pI range from 3 to 10 with high resolution, which allowed the identification of 950 proteins (549 different proteins and isoforms). Comparison among the cytosolic proteomes of the wild-type NRRL 1951, Wisconsin 54-1255 (an improved, moderate penicillin producer), and AS-P-78 (a penicillin high producer) strains indicated that global metabolic reorganizations occurred during the strain improvement program. The main changes observed in the high producer strains were increases of cysteine biosynthesis (a penicillin precursor), enzymes of the pentose phosphate pathway, and stress response proteins together with a reduction in virulence and in the biosynthesis of other secondary metabolites different from penicillin (pigments and isoflavonoids). In the wild-type strain, we identified enzymes to utilize cellulose, sorbitol, and other carbon sources that have been lost in the high penicillin producer strains. Changes in the levels of a few specific proteins correlated well with the improved penicillin

  10. Separation and detection of amino acid metabolites of Escherichia coli in microbial fuel cell with CE.

    PubMed

    Wang, Wei; Ma, Lihong; Lin, Ping; Xu, Kaixuan

    2016-07-01

    In this work, CE-LIF was employed to investigate the amino acid metabolites produced by Escherichia coli (E. coli) in microbial fuel cell (MFC). Two peptides, l-carnosine and l-alanyl-glycine, together with six amino acids, cystine, alanine, lysine, methionine, tyrosine, arginine were separated and detected in advance by a CE-LIF system coupled with a homemade spontaneous injection device. The injection device was devised to alleviate the effect of electrical discrimination for analytes during sample injection. All analytes could be completely separated within 8 min with detection limits of 20-300 nmol/L. Then this method was applied to analyze the substrate solution containing amino acid metabolites produced by E. coli. l-carnosine, l-alanyl-glycine, and cystine were used as the carbon, nitrogen, and sulfur source for the E. coli culture in the MFC to investigate the amino acid metabolites during metabolism. Two MFCs were used to compare the activity of metabolism of the bacteria. In the sample collected at the running time 200 h of MFC, the amino acid methionine was discovered as the metabolite with the concentrations 23.3 μg/L. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level

    PubMed Central

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-01-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial–microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner. PMID:28742069

  12. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level.

    PubMed

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-12-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.

  13. An in vitro biofilm model to examine the effect of antibiotic ointments on biofilms produced by burn wound bacterial isolates.

    PubMed

    Hammond, Adrienne A; Miller, Kyle G; Kruczek, Cassandra J; Dertien, Janet; Colmer-Hamood, Jane A; Griswold, John A; Horswill, Alexander R; Hamood, Abdul N

    2011-03-01

    Topical treatment of burn wounds is essential as reduced blood supply in the burned tissues restricts the effect of systemic antibiotics. On the burn surface, microorganisms exist within a complex structure termed a biofilm, which enhances bacterial resistance to antimicrobial agents significantly. Since bacteria differ in their ability to develop biofilms, the susceptibility of these biofilms to topically applied antibiotics varies, making it essential to identify which topical antibiotics efficiently disrupt or prevent biofilms produced by these pathogens. Yet, a simple in vitro assay to compare the susceptibility of biofilms produced by burn wound isolates to different topical antibiotics has not been reported. Biofilms were developed by inoculating cellulose disks on agar plates with burn wound isolates and incubating for 24h. The biofilms were then covered for 24h with untreated gauze or gauze coated with antibiotic ointment and remaining microorganisms were quantified and visualized microscopically. Mupirocin and triple antibiotic ointments significantly reduced biofilms produced by the Staphylococcus aureus and Pseudomonas aeruginosa burn wound isolates tested, as did gentamicin ointment, with the exception of one P. aeruginosa clinical isolate. The described assay is a practical and reproducible approach to identify topical antibiotics most effective in eliminating biofilms produced by burn wound isolates. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  14. Assessment of the bacterial impact on the post-mortem formation of zinc protoporphyrin IX in pork meat.

    PubMed

    Ghadiri Khozroughi, Amin; Kroh, Lothar W; Schlüter, Oliver; Rawel, Harshadrai

    2018-08-01

    The post-mortem accumulation of the heme biosynthesis metabolite zinc protoporphyrin IX (ZnPP) in porcine muscle is associated with both a meat-inherent and a bacterial enzymatic reaction during meat storage. To estimate the bacterial impact on ZnPP formation, meat and meat-like media were investigated by HPLC-FLD (and MALDI-TOF-MS) after inoculation with a representative microorganism (P. fluorescens). Results indicate the principal ability of meat-inherent bacteria to form ZnPP in meat extracts and meat-like media, but not on the meat muscle. Thus it was concluded that the ZnPP formation in meat is due to a meat-inherent enzymatic reaction induced by porcine ferrochelatase (FECH), while the bacterial (FECH) induced reaction seems to be not significant. Copyright © 2018. Published by Elsevier Ltd.

  15. Impact of dietary fiber fermentation from cereal grains on metabolite production by the fecal microbiota from normal weight and obese individuals.

    PubMed

    Yang, Junyi; Keshavarzian, Ali; Rose, Devin J

    2013-09-01

    Gut bacteria may influence obesity through the metabolites produced by dietary fiber fermentation (mainly, short-chain fatty acids [SCFA]). Five cereal grain samples (wheat, rye, maize [corn], rice, and oats) were subjected to in vitro digestion and fermentation using fecal samples from 10 obese and nine normal weight people. No significant differences in total SCFA production between the normal weight and obese groups were observed [279 (12) vs. 280 (12), mean (standard error), respectively; P=.935]. However, the obese microbiota resulted in elevated propionate production compared with that of normal weight [24.8(2.2) vs. 17.8(1.9), respectively; P=.008]. Rye appeared to be particularly beneficial among grain samples due to the lowest propionate production and highest butyrate production during fermentation. These data suggest that the dietary fibers from cereal grains affect bacterial metabolism differently in obese and normal weight classes and that certain grains may be particularly beneficial for promoting gut health in obese states.

  16. Surveying N2O-producing pathways in bacteria.

    PubMed

    Stein, Lisa Y

    2011-01-01

    Nitrous oxide (N(2)O) is produced by bacteria as an intermediate of both dissimilatory and detoxification pathways under a range of oxygen levels, although the majority of N(2)O is released in suboxic to anoxic environments. N(2)O production under physiologically relevant conditions appears to require the reduction of nitric oxide (NO) produced from the oxidation of hydroxylamine (nitrification), reduction of nitrite (denitrification), or by host cells of pathogenic bacteria. In a single bacterial isolate, N(2)O-producing pathways can be complex, overlapping, involve multiple enzymes with the same function, and require multiple layers of regulatory machinery. This overview discusses how to identify known N(2)O-producing inventory and regulatory sequences within bacterial genome sequences and basic physiological approaches for investigating the function of that inventory. A multitude of review articles have been published on individual enzymes, pathways, regulation, and environmental significance of N(2)O-production encompassing a large diversity of bacterial isolates. The combination of next-generation deep sequencing platforms, emerging proteomics technologies, and basic microbial physiology can be used to expand what is known about N(2)O-producing pathways in individual bacterial species to discover novel inventory and unifying features of pathways. A combination of approaches is required to understand and generalize the function and control of N(2)O production across a range of temporal and spatial scales within natural and host environments. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Insights from 20 years of bacterial genome sequencing

    DOE PAGES

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran; ...

    2015-02-27

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about

  18. Insights from 20 years of bacterial genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about

  19. Effects of Interactions of Auxin-Producing Bacteria and Bacterial-Feeding Nematodes on Regulation of Peanut Growths

    PubMed Central

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil. PMID:25867954

  20. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    PubMed

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  1. Systemic metabolite changes in wild-type C57BL/6 mice fed black raspberries

    PubMed Central

    Pan, Pan; Skaer, Chad W.; Wang, Hsin-Tzu; Kreiser, Michael A.; Stirdivant, Steven M.; Oshima, Kiyoko; Huang, Yi-Wen; Young, Matthew R.; Wang, Li-Shu

    2017-01-01

    Introduction Freeze-dried black raspberries (BRBs) elicit chemopreventive effects against colorectal cancer in humans and in rodents. The study objective was to investigate potential BRB-caused metabolite changes using wild-type (WT) C57BL/6 mice. Methods and results WT mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver, and fecal specimens collected from both diet groups. BRBs significantly changed the levels of 41 colonic mucosa metabolites, 40 liver metabolites and 34 fecal metabolites compared to control diet-fed mice. BRBs reduced 34 lipid metabolites in colonic mucosa and increased levels of amino acids in liver. One metabolite, 3-[3-(sulfooxy) phenyl] propanoic acid, might be a useful biomarker of BRB consumption. In addition, BRB powder was found to contain 30-fold higher levels of linolenate compared to control diets. Consistently, multiple omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including stearidonate, docosapentaenoate (ω-3 DPA), eicosapentaenoate (EPA) and docosahexaenoate (DHA), were significantly elevated in livers of BRB-fed mice. Conclusion The data from the current study suggest that BRBs produce systemic metabolite changes in multiple tissue matrices, supporting our hypothesis that BRBs may serve as both a chemopreventive agent and a beneficial dietary supplement. PMID:28094560

  2. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging

    PubMed Central

    Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi

    2014-01-01

    Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467

  3. Metabolomics for secondary metabolite research.

    PubMed

    Breitling, Rainer; Ceniceros, Ana; Jankevics, Andris; Takano, Eriko

    2013-11-11

    Metabolomics, the global characterization of metabolite profiles, is becoming an increasingly powerful tool for research on secondary metabolite discovery and production. In this review we discuss examples of recent technological advances and biological applications of metabolomics in the search for chemical novelty and the engineered production of bioactive secondary metabolites.

  4. Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system

    DOE PAGES

    Jawdy, Sara S.; Gunter, Lee E.; Engle, Nancy L.; ...

    2016-04-26

    Here, the biological function of the plant-microbiome system is the result of contributions from the host plant and microbiome members. In this work we study the function of a simplified community consisting of Pseudomonas and Burkholderia bacterial strains isolated from Populus hosts and inoculated on axenic Populus cutting in controlled laboratory conditions. Inoculation individually with either bacterial isolate increased root growth relative to uninoculated controls. Root area, photosynthetic efficiency, gene expression and metabolite expression data in individual and dual inoculated treatments indicate that the effects of these bacteria are unique and additive, suggesting that the function of a microbiome communitymore » may be predicted from the additive functions of the individual members.« less

  5. Strain improvement of industrially important microorganisms based on resistance to toxic metabolites and abiotic stress.

    PubMed

    Fiedurek, Jan; Trytek, Mariusz; Szczodrak, Janusz

    2017-06-01

    Improvement of the biosynthetic capabilities of industrially relevant microbes to produce desired metabolites in higher quantities is one of the important topics of modern biotechnology. In this article, different strategies of improvement of mutated microbial strains are briefly described. This is followed by the first comprehensive review of the literature on obtaining high yielding microorganisms, that is, mutants exhibiting resistance to antimetabolites, nutritional repression, and abiotic stresses as well as tolerance to solvents and toxic substrates or products. Furthermore, the efficiency of the microbial metabolites produced by improved microbial strains, advantages, and limitations, as well as future prospects for strategies of strain development are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites.

    PubMed

    Song, Ju Yeon; Yoo, Young Ji; Lim, Si-Kyu; Cha, Sun Ho; Kim, Ji-Eun; Roe, Jung-Hye; Kim, Jihyun F; Yoon, Yeo Joon

    2016-02-10

    Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.

    PubMed

    Molina-Ramírez, Carlos; Enciso, Carla; Torres-Taborda, Mabel; Zuluaga, Robin; Gañán, Piedad; Rojas, Orlando J; Castro, Cristina

    2018-05-27

    Bacterial cellulose (BC) was produced by Komagataeibacter medellinensis using Hestrin and Schramm modified medium in the presence of alternative energy sources (AES), such as ethanol and acetic acid, to explore the effect of AES on the characteristics and properties of the resulting BC. In this study, the physicochemical and structural characteristics of the obtained BC were determined using Fourier-transform infrared spectroscopy, X-ray diffraction spectrometry, thermogravimetric analysis, and mechanical testing analysis. Ethanol and acetic acid (at 0.1 wt%) were proven to improve the BC yield by K. medellinensis by 279% and 222%, respectively. However, the crystallinity index (%), the degree of polymerization, and maximum rate of degradation temperatures decreased by 9.2%, 36%, and 4.96%, respectively, by the addition of ethanol and by 7.2%, 27%, and 4.21%, respectively, by the addition of acetic acid. The significance of this work, lies on the fact that there is not any report about how BC properties change when substances like ethanol or acetic acid are added to culture medium, and which is the mechanism that provokes those changes, that in our case we could demonstrate the relationship of a higher BC production rate (provoked by ethanol and acetic acid adding) and changes in BC properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis.

    PubMed

    Raghuwanshi, Shailendra; Dutt, Kakoli; Gupta, Pritesh; Misra, Swati; Saxena, Rajendra Kumar

    2011-06-01

    An indigenously isolated strain of Bacillus sphaericus was found to produce 1.21 IU/ml of tannase under unoptimized conditions. Optimizing the process one variable at a time resulted in the production of 7.6 IU/ml of tannase in 48 h in the presence of 1.5% tannic acid. A 9.26-fold increase in tannase production was achieved upon further optimization using response surface methodology (RSM), a statistical approach. This increase led to a production level of 11.2I U/ml in medium containing 2.0% tannic acid, 2.5% galactose, 0.25% ammonium chloride, and 0.1% MgSO(4) pH 6.0 incubated at 37°C and 100 rpm for 48 h with a 2.0% inoculum level. Scaling up tannase production in a 30-l bioreactor resulted in the production of 16.54 IU/ml after 36 h. Thus far, this tannase production is the highest reported in this bacterial strain. Partially purified tannase exhibited an optimum pH of 5.0 with activity in the pH range of 3 to 8; 50°C was the optimal temperature for activity. Efficient conversion of tannic acid to purified gallic acid (90.80%) was achieved through crystallization. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Bioactive metabolites produced by Penicillium sp. 1 and sp. 2, two endophytes associated with Alibertia macrophylla (Rubiaceae).

    PubMed

    Oliveira, Camila M; Silva, Geraldo H; Regasini, Luis O; Zanardi, Lisinéia M; Evangelista, Alana H; Young, Maria C M; Bolzani, Vanderlan S; Araujo, Angela R

    2009-01-01

    In the course of our continuous search for bioactive metabolites from endophytic fungi living in plants from the Brazilian flora, leaves of Alibertia macrophylla (Rubiaceae) were submitted to isolation of endophytes, and two species of Penicillium were isolated. The acetonitrile fraction obtained in corn from a culture of Penicillium sp. 1 afforded orcinol (1). On the other hand, Penicillium sp. 1 cultivated in potato-dextrose-broth furnished two different compounds, cyclo-(L-Pro-L-Val) (2) and uracil (3). The chromatographic fractionation of the acetonitrile fraction obtained from Penicillium sp. 2 led to three dihydroisocoumarins, 4-hydroxymellein (4), 8-methoxymellein (5) and 5-hydroxymellein (6). Compounds 5 and 6 were obtained from the Penicillium genus for the first time. Additionally, metabolites 1-6 were evaluated for their antifungal and acetylcholinesterase (AChE) inhibitory activities. The most active compounds 1 and 4 exhibited detection limits of 5.00 and 10.0 microg against Cladosporium cladosporioides and C. sphaerospermum, respectively. Compound 2 showed a detection limit of 10.0 microg, displaying potent AChE inhibitory activity.

  10. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process.

    PubMed

    Skjånes, Kari; Rebours, Céline; Lindblad, Peter

    2013-06-01

    Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen

  11. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process

    PubMed Central

    2013-01-01

    Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen

  12. Metabolite monitoring to guide thiopurine therapy in systemic autoimmune diseases.

    PubMed

    Chapdelaine, Aurélie; Mansour, Anne-Marie; Troyanov, Yves; Williamson, David R; Doré, Maxime

    2017-06-01

    6-Thioguanine nucleotide (6-TGN) is the active metabolite of thiopurine drugs azathioprine and 6-mercaptopurine. 6-Methylmercaptopurine (6-MMP) is an inactive and potentially hepatotoxic metabolite. A subgroup of patients (shunters) preferentially produce 6-MMP instead of 6-TGN, therefore displaying thiopurine resistance and risk for hepatotoxicity. Outside inflammatory bowel disease literature, few data exist regarding individualized thiopurine therapy based on metabolite monitoring. This study sought to describe metabolite monitoring in patients receiving weight-based thiopurine for systemic autoimmune diseases. Patients were enrolled using a laboratory database, and data were retrospectively collected. The correlation between the highest thiopurine dose (mg/kg) and the 6-TGN concentration (pmol/8 × 10 8 erythrocytes) was estimated with Pearson's correlation coefficient. Seventy-one patients with various systemic autoimmune conditions were enrolled. The correlation between the thiopurine dose and the 6-TGN level was weak for the overall patient sample (r = 0.201, p = 0.092) and for the subgroup of non-shunters (r = 0.278, p = 0.053). Subjects with 6-MMP levels >5700 pmol/8 × 10 8 erythrocytes had more hepatic cytolysis compared to subjects with 6-MMP <5700, OR = 4.36 (CI 95% 1.18-16.13, p = 0.027). Twenty-two patients (31%) were identified as shunters. Six shunters developed hepatotoxicity, five of which had 6-MMP concentration >5700. Eleven non-shunters had hepatotoxicity, one of which had 6-MMP >5700. Thiopurine metabolite monitoring shows wide variability in 6-TGN levels among patients treated with weight-based thiopurine for systemic autoimmune diseases. Thirty-one percent of the patients in our series fulfilled the shunter definition. Thiopurine metabolite monitoring and dose adjustment to improve maintenance of remission and avoid hepatotoxicity should be studied prospectively.

  13. Effects of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans.

    PubMed

    Wang, Yi; Lu, Zhenyu; Sun, Kunlai; Zhu, Weiming

    2011-01-01

    To obtain structurally novel and bioactive natural compounds from marine-derived microorganisms, the effect of high salt stress on secondary metabolite production in the marine-derived fungal strain, Spicaria elegans KLA-03, was investigated. The organism, which was isolated from marine sediment, produced different secondary metabolites when cultured in 3% and 10% saline conditions. Four characteristic metabolites, only produced in the 10% salinity culture, were isolated, and their structures were identified as (2E,2'Z)-3,3'-(6,6'-dihydroxybiphenyl-3,3'-diyl)diacrylic acid (1), aspulvinone E (2), aspochalasin E (3) and trichodermamide B (6), according to their 1D and 2D NMR spectra. Compound 1 is a new compound. High salt stress may therefore be a promising means to induce the production of new and chlorinated compounds in halotolerant fungi. Compound 1 showed moderate antibacterial activity against Pseudomonas aeruginosa and Escherichia coli with minimum inhibitory concentration (MIC) values of 0.038 and 0.767 mM, respectively.

  14. Taxonomic Structure and Stability of the Bacterial Community in Belgian Sourdough Ecosystems as Assessed by Culture and Population Fingerprinting▿ †

    PubMed Central

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2008-01-01

    A total of 39 traditional sourdoughs were sampled at 11 bakeries located throughout Belgium which were visited twice with a 1-year interval. The taxonomic structure and stability of the bacterial communities occurring in these traditional sourdoughs were assessed using both culture-dependent and culture-independent methods. A total of 1,194 potential lactic acid bacterium (LAB) isolates were tentatively grouped and identified by repetitive element sequence-based PCR, followed by sequence-based identification using 16S rRNA and pheS genes from a selection of genotypically unique LAB isolates. In parallel, all samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of V3-16S rRNA gene amplicons. In addition, extensive metabolite target analysis of more than 100 different compounds was performed. Both culturing and DGGE analysis showed that the species Lactobacillus sanfranciscensis, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus pontis dominated the LAB population of Belgian type I sourdoughs. In addition, DGGE band sequence analysis demonstrated the presence of Acetobacter sp. and a member of the Erwinia/Enterobacter/Pantoea group in some samples. Overall, the culture-dependent and culture-independent approaches each exhibited intrinsic limitations in assessing bacterial LAB diversity in Belgian sourdoughs. Irrespective of the LAB biodiversity, a large majority of the sugar and amino acid metabolites were detected in all sourdough samples. Principal component-based analysis of biodiversity and metabolic data revealed only little variation among the two samples of the sourdoughs produced at the same bakery. The rare cases of instability observed could generally be linked with variations in technological parameters or differences in detection capacity between culture-dependent and culture-independent approaches. Within a sampling interval of 1 year, this study reinforces previous observations that the bakery environment

  15. Lymphoid organs of neonatal and adult mice preferentially produce active glucocorticoids from metabolites, not precursors.

    PubMed

    Taves, Matthew D; Plumb, Adam W; Korol, Anastasia M; Van Der Gugten, Jessica Grace; Holmes, Daniel T; Abraham, Ninan; Soma, Kiran K

    2016-10-01

    Glucocorticoids (GCs) are circulating adrenal steroid hormones that coordinate physiology, especially the counter-regulatory response to stressors. While systemic GCs are often considered immunosuppressive, GCs in the thymus play a critical role in antigen-specific immunity by ensuring the selection of competent T cells. Elevated thymus-specific GC levels are thought to occur by local synthesis, but the mechanism of such tissue-specific GC production remains unknown. Here, we found metyrapone-blockable GC production in neonatal and adult bone marrow, spleen, and thymus of C57BL/6 mice. This production was primarily via regeneration of adrenal metabolites, rather than de novo synthesis from cholesterol, as we found high levels of gene expression and activity of the GC-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), but not the GC-synthetic enzyme CYP11B1. Furthermore, incubation with physiological concentrations of GC metabolites (11-dehydrocorticosterone, prednisone) induced 11β-HSD1- and GC receptor-dependent apoptosis (caspase activation) in both T and B cells, showing the functional relevance of local GC regeneration in lymphocyte GC signaling. Local GC production in bone marrow and spleen raises the possibility that GCs play a key role in B cell selection similar to their role in T cell selection. Our results also indicate that local GC production may amplify changes in adrenal GC signaling, rather than buffering against such changes, in the immune system. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Soil Exometabolomics: An Approach to Investigate Adsorption of Metabolites on Soils and Minerals

    NASA Astrophysics Data System (ADS)

    Swenson, T.; Nico, P. S.; Northen, T.

    2014-12-01

    A large fraction of soil organic matter (SOM) is composed of small molecules of microbial origin resulting from lysed cells and released metabolites. However, the cycling of these nutrients by microorganisms, a critical component of the global carbon cycle, remains poorly understood. Although there are many biotic and abiotic factors affecting the accessibility of SOM to microbes, adsorption to mineral surfaces is among the most important. Here, we are developing exometabolomics methods to further understand the types of microbial metabolites remaining in the water extractable fraction of SOM (WEOM). To estimate which compounds adsorb to a sandy loam soil (obtained from the Angelo Coast Range Reserve in Mendocino, CA), an extract was prepared from the soil bacterium Pseudomonas stutzerii RCH2 grown on 13C acetate. This approach produced highly labeled metabolites that were easily discriminated from the endogenous soil metabolites by gas chromatography/ mass spectrometry. Comparison of the composition of the fresh bacteria extract with what was recovered following a 15 min incubation with soil revealed that only 26% of the metabolites showed >50% recovery in the WEOM. Most cations (polyamines) and anions showed <10% recovery. These represent metabolites that may be inaccessible to microbes in this environment and would be most likely to accumulate as SOM presumably due to binding with minerals and negatively-charged clay particles. Ongoing studies are focused on comparing the adsorption capacity of bacteria extract with several minerals (ferrihydrite, goethite, meghemite, lepidocrocite). Varying conditions such as metabolite-mineral contact time (ranging from hours to days) and temperature (4-37°C) will provide insight into how microbial metabolites behave in a given mineral-rich environment under certain climatic conditions.

  17. FECAL PROGESTERONE METABOLITES IN POSTPARTUM SIBERIAN FLYING SQUIRRELS.

    PubMed

    Shimamoto, Tatsuki; Suzuki, Kei K; Hamada, Mizuho; Furukawa, Ryuji; Matsui, Motozumi; Yanagawa, Hisashi

    2018-03-01

    The Siberian flying squirrel ( Pteromys volans) produces up to two litters a year. To deliver second litters in breeding season, P. volans may have a postpartum estrus similarly to that of a variety of small mammals. If this were the case, females would have periods of elevated progesterone levels because of the formation of corpora lutea (CL) after postpartum ovulation. To test this hypothesis, fecal progesterone metabolite dynamics was investigated during lactation in this species using an enzyme immunoassay. In five of the six lactating females, periods of high fecal progesterone metabolite concentration were observed, and, furthermore, progesterone secretion patterns were periodic. Therefore, the source of progesterone during lactation could be arising CL from postpartum ovulation, indicating that ovarian activity was reinitiated after parturition and the CL that formed began secreting progesterone. This study thus showed that P. volans likely has the physiologic potential to mate during lactation.

  18. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing.

    PubMed

    Jacobs, Peter L; Ridder, Lars; Ruijken, Marco; Rosing, Hilde; Jager, Nynke Gl; Beijnen, Jos H; Bas, Richard R; van Dongen, William D

    2013-09-01

    Comprehensive identification of human drug metabolites in first-in-man studies is crucial to avoid delays in later stages of drug development. We developed an efficient workflow for systematic identification of human metabolites in plasma or serum that combines metabolite prediction, high-resolution accurate mass LC-MS and MS vendor independent data processing. Retrospective evaluation of predictions for 14 (14)C-ADME studies published in the period 2007-January 2012 indicates that on average 90% of the major metabolites in human plasma can be identified by searching for accurate masses of predicted metabolites. Furthermore, the workflow can identify unexpected metabolites in the same processing run, by differential analysis of samples of drug-dosed subjects and (placebo-dosed, pre-dose or otherwise blank) control samples. To demonstrate the utility of the workflow we applied it to identify tamoxifen metabolites in serum of a breast cancer patient treated with tamoxifen. Previously published metabolites were confirmed in this study and additional metabolites were identified, two of which are discussed to illustrate the advantages of the workflow.

  19. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zilian; Chen, Yi; Wang, Rui

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not bemore » completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. Finally, the fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.« less

  20. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    DOE PAGES

    Zhang, Zilian; Chen, Yi; Wang, Rui; ...

    2015-11-16

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not bemore » completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. Finally, the fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.« less